1
|
Al-Marzooqi N, Al-Suhail H, AlRefai MO, Alhaj HA. Genomic factors associated with substance use disorder relapse: A critical review. Addict Behav Rep 2024; 20:100569. [PMID: 39553284 PMCID: PMC11568783 DOI: 10.1016/j.abrep.2024.100569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/01/2024] [Accepted: 10/27/2024] [Indexed: 11/19/2024] Open
Abstract
Several genetic and epigenetic factors contribute to the elevated substance use disorder (SUD) relapse vulnerability, yet a comprehensive investigation into these factors is lacking. This review aims to delve into current literature to highlight key genomic factors associated with SUD relapse. Focusing on genetic predisposition and epigenetic modifications the review synthesized research findings of several genetic polymorphisms, histone modifications and DNA methylation patterns contributing to the initiation of SUD and the elevated relapse susceptibility. Notably, specific gene polymorphisms, such as Dopamine Receptor D2 gene (DRD2), Gamma-Aminobutyric Acid Receptor Alpha gene (GABRA2), Catechol-O-methyltransferase (COMT) gene, Dopamine Transporter (DAT1) gene and others were identified to be connected to various patterns of SUD relapse. Furthermore, SUD initiation and relapse has been shown to be influenced by epigenetics. Specifically, CpG hypermethylation has been associated with severe alcohol use disorder in the 5' untranslated region of the Bladder Cancer Associated Protein gene (BLCAP) and the upstream region of the Active BCR Related gene (ABR). Co-users of cannabis and tobacco showed notable variations in CpG site methylation, especially at the Aryl Hydrocarbon Receptor Repressor (AHRR), and factor II receptor-like 3 gene sites (F2RL3). In conclusion, there is good evidence of certain associations between genomic factors and relapse to SUD. However, further research is needed to ascertain causality effects of these factors and develop novel interventions for effective treatment and relapse prevention.
Collapse
Affiliation(s)
- Noora Al-Marzooqi
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Hanan Al-Suhail
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Mohammad O. AlRefai
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Hamid A Alhaj
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
2
|
Mareckova K, Marecek R, Andryskova L, Brazdil M, Nikolova YS. Prenatal exposure to alcohol and its impact on reward processing and substance use in adulthood. Transl Psychiatry 2024; 14:220. [PMID: 38806472 PMCID: PMC11133468 DOI: 10.1038/s41398-024-02941-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/30/2024] Open
Abstract
Heavy maternal alcohol drinking during pregnancy has been associated with altered neurodevelopment in the child but the effects of low-dose alcohol drinking are less clear and any potential safe level of alcohol use during pregnancy is not known. We evaluated the effects of prenatal alcohol on reward-related behavior and substance use in young adulthood and the potential sex differences therein. Participants were members of the European Longitudinal Study of Pregnancy and Childhood (ELSPAC) prenatal birth cohort who participated in its neuroimaging follow-up in young adulthood. A total of 191 participants (28-30 years; 51% men) had complete data on prenatal exposure to alcohol, current substance use, and fMRI data from young adulthood. Maternal alcohol drinking was assessed during mid-pregnancy and pre-conception. Brain response to reward anticipation and reward feedback was measured using the Monetary Incentive Delay task and substance use in young adulthood was assessed using a self-report questionnaire. We showed that even a moderate exposure to alcohol in mid-pregnancy but not pre-conception was associated with robust effects on brain response to reward feedback (six frontal, one parietal, one temporal, and one occipital cluster) and with greater cannabis use in both men and women 30 years later. Moreover, mid-pregnancy but not pre-conception exposure to alcohol was associated with greater cannabis use in young adulthood and these effects were independent of maternal education and maternal depression during pregnancy. Further, the extent of cannabis use in the late 20 s was predicted by the brain response to reward feedback in three out of the nine prenatal alcohol-related clusters and these effects were independent of current alcohol use. Sex differences in the brain response to reward outcome emerged only during the no loss vs. loss contrast. Young adult men exposed to alcohol prenatally had significantly larger brain response to no loss vs. loss in the putamen and occipital region than women exposed to prenatal alcohol. Therefore, we conclude that even moderate exposure to alcohol prenatally has long-lasting effects on brain function during reward processing and risk of cannabis use in young adulthood.
Collapse
Affiliation(s)
- Klara Mareckova
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic.
- First Department of Neurology, Faculty of Medicine, Masaryk University and St. Anne's University Hospital, Brno, Czech Republic.
| | - Radek Marecek
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- First Department of Neurology, Faculty of Medicine, Masaryk University and St. Anne's University Hospital, Brno, Czech Republic
| | | | - Milan Brazdil
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- First Department of Neurology, Faculty of Medicine, Masaryk University and St. Anne's University Hospital, Brno, Czech Republic
| | - Yuliya S Nikolova
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
3
|
Hughes NC, Qian H, Zargari M, Zhao Z, Singh B, Wang Z, Fulton JN, Johnson GW, Li R, Dawant BM, Englot DJ, Constantinidis C, Roberson SW, Bick SK. Reward Circuit Local Field Potential Modulations Precede Risk Taking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588629. [PMID: 38645237 PMCID: PMC11030333 DOI: 10.1101/2024.04.10.588629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Risk taking behavior is a symptom of multiple neuropsychiatric disorders and often lacks effective treatments. Reward circuitry regions including the amygdala, orbitofrontal cortex, insula, and anterior cingulate have been implicated in risk-taking by neuroimaging studies. Electrophysiological activity associated with risk taking in these regions is not well understood in humans. Further characterizing the neural signalling that underlies risk-taking may provide therapeutic insight into disorders associated with risk-taking. Eleven patients with pharmacoresistant epilepsy who underwent stereotactic electroencephalography with electrodes in the amygdala, orbitofrontal cortex, insula, and/or anterior cingulate participated. Patients participated in a gambling task where they wagered on a visible playing card being higher than a hidden card, betting $5 or $20 on this outcome, while local field potentials were recorded from implanted electrodes. We used cluster-based permutation testing to identify reward prediction error signals by comparing oscillatory power following unexpected and expected rewards. We also used cluster-based permutation testing to compare power preceding high and low bets in high-risk (<50% chance of winning) trials and two-way ANOVA with bet and risk level to identify signals associated with risky, risk averse, and optimized decisions. We used linear mixed effects models to evaluate the relationship between reward prediction error and risky decision signals across trials, and a linear regression model for associations between risky decision signal power and Barratt Impulsiveness Scale scores for each patient. Reward prediction error signals were identified in the amygdala (p=0.0066), anterior cingulate (p=0.0092), and orbitofrontal cortex (p=6.0E-4, p=4.0E-4). Risky decisions were predicted by increased oscillatory power in high-gamma frequency range during card presentation in the orbitofrontal cortex (p=0.0022), and by increased power following bet cue presentation across the theta-to-beta range in the orbitofrontal cortex ( p =0.0022), high-gamma in the anterior cingulate ( p =0.0004), and high-gamma in the insula ( p =0.0014). Risk averse decisions were predicted by decreased orbitofrontal cortex gamma power ( p =2.0E-4). Optimized decisions that maximized earnings were preceded by decreases within the theta to beta range in orbitofrontal cortex ( p =2.0E-4), broad frequencies in amygdala ( p =2.0E-4), and theta to low-gamma in insula ( p =4.0E-4). Insula risky decision power was associated with orbitofrontal cortex high-gamma reward prediction error signal ( p =0.0048) and with patient impulsivity ( p =0.00478). Our findings identify and help characterize reward circuitry activity predictive of risk-taking in humans. These findings may serve as potential biomarkers to inform the development of novel treatment strategies such as closed loop neuromodulation for disorders of risk taking.
Collapse
|
4
|
Tose K, Takamura T, Isobe M, Hirano Y, Sato Y, Kodama N, Yoshihara K, Maikusa N, Moriguchi Y, Noda T, Mishima R, Kawabata M, Noma S, Takakura S, Gondo M, Kakeda S, Takahashi M, Ide S, Adachi H, Hamatani S, Kamashita R, Sudo Y, Matsumoto K, Nakazato M, Numata N, Hamamoto Y, Shoji T, Muratsubaki T, Sugiura M, Murai T, Fukudo S, Sekiguchi A. Systematic reduction of gray matter volume in anorexia nervosa, but relative enlargement with clinical symptoms in the prefrontal and posterior insular cortices: a multicenter neuroimaging study. Mol Psychiatry 2024; 29:891-901. [PMID: 38246936 PMCID: PMC11176065 DOI: 10.1038/s41380-023-02378-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024]
Abstract
Although brain morphological abnormalities have been reported in anorexia nervosa (AN), the reliability and reproducibility of previous studies were limited due to insufficient sample sizes, which prevented exploratory analysis of the whole brain as opposed to regions of interest (ROIs). Objective was to identify brain morphological abnormalities in AN and the association with severity of AN by brain structural magnetic resonance imaging (MRI) in a multicenter study, and to conduct exploratory analysis of the whole brain. Here, we conducted a cross-sectional multicenter study using T1-weighted imaging (T1WI) data collected between May 2014 and February 2019 in Japan. We analyzed MRI data from 103 female AN patients (58 anorexia nervosa restricting type [ANR] and 45 anorexia nervosa binge-purging type [ANBP]) and 102 age-matched female healthy controls (HC). MRI data from five centers were preprocessed using the latest harmonization method to correct for intercenter differences. Gray matter volume (GMV) was calculated from T1WI data of all participants. Of the 205 participants, we obtained severity of eating disorder symptom scores from 179 participants, including 87 in the AN group (51 ANR, 36 ANBP) and 92 HC using the Eating Disorder Examination Questionnaire (EDE-Q) 6.0. GMV reduction were observed in the AN brain, including the bilateral cerebellum, middle and posterior cingulate gyrus, supplementary motor cortex, precentral gyrus medial segment, and thalamus. In addition, the orbitofrontal cortex (OFC), ventromedial prefrontal cortex (vmPFC), rostral anterior cingulate cortex (ACC), and posterior insula volumes showed positive correlations with severity of symptoms. This multicenter study was conducted with a large sample size to identify brain morphological abnormalities in AN. The findings provide a better understanding of the pathogenesis of AN and have potential for the development of brain imaging biomarkers of AN. Trial Registration: UMIN000017456. https://center6.umin.ac.jp/cgi-open-bin/icdr/ctr_view.cgi?recptno=R000019303 .
Collapse
Affiliation(s)
- Keima Tose
- Department of Psychiatry, Graduate School of Medicine, Kyoto University Hospital, Kyoto, Japan
| | - Tsunehiko Takamura
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Masanori Isobe
- Department of Psychiatry, Graduate School of Medicine, Kyoto University Hospital, Kyoto, Japan
| | - Yoshiyuki Hirano
- Research Center for Child Mental Development, Chiba University, Chiba, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Japan
| | - Yasuhiro Sato
- Department of Psychosomatic Medicine, Tohoku University Hospital, Sendai, Japan
| | - Naoki Kodama
- Division of Psychosomatic Medicine, Department of Neurology, University of Occupational and Environment Health, Kitakyushu, Japan
| | - Kazufumi Yoshihara
- Department of Psychosomatic Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Norihide Maikusa
- Center for Evolutionary Cognitive Sciences, Graduate School of Art and Sciences, The University of Tokyo, Tokyo, Japan
| | - Yoshiya Moriguchi
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Tomomi Noda
- Department of Psychiatry, Graduate School of Medicine, Kyoto University Hospital, Kyoto, Japan
| | - Ryo Mishima
- Department of Psychiatry, Graduate School of Medicine, Kyoto University Hospital, Kyoto, Japan
| | - Michiko Kawabata
- Department of Psychiatry, Graduate School of Medicine, Kyoto University Hospital, Kyoto, Japan
| | - Shun'ichi Noma
- Department of Psychiatry, Graduate School of Medicine, Kyoto University Hospital, Kyoto, Japan
- Nomakokoro Clinic, Kyoto, Japan
| | - Shu Takakura
- Department of Psychosomatic Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Motoharu Gondo
- Department of Psychosomatic Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Shingo Kakeda
- Department of Radiology, Hirosaki University Graduate School of Medicine, Aomori, Japan
| | - Masatoshi Takahashi
- Division of Psychosomatic Medicine, Department of Neurology, University of Occupational and Environment Health, Kitakyushu, Japan
| | - Satoru Ide
- Department of Radiology, University of Occupational and Environmental Health, School of Medicine, Kitakyushu, Japan
| | - Hiroaki Adachi
- Department of Neurology, University of Occupational and Environmental Health School of Medicine, Kitakyushu, Japan
| | - Sayo Hamatani
- Research Center for Child Mental Development, Chiba University, Chiba, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Japan
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan
| | - Rio Kamashita
- Research Center for Child Mental Development, Chiba University, Chiba, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Japan
| | - Yusuke Sudo
- Research Center for Child Mental Development, Chiba University, Chiba, Japan
| | - Koji Matsumoto
- Department of Radiology, Chiba University Hospital, Chiba, Japan
| | - Michiko Nakazato
- Department of Psychiatry, International University of Health and Welfare, School of Medicine, Narita, Japan
| | - Noriko Numata
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Japan
- Department of Cognitive Behavioral Physiology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yumi Hamamoto
- Department of Psychology, Northumbria University, Newcastle-upon-Tyne, United Kingdom
- Department of Human Brain Science, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
| | - Tomotaka Shoji
- Department of Psychosomatic Medicine, Tohoku University Hospital, Sendai, Japan
- Department of Internal Medicine, Nagamachi Hospital, Sendai, Japan
- Department of Psychosomatic Medicine, Tohoku University School of Medicine, Sendai, Japan
| | - Tomohiko Muratsubaki
- Department of Psychosomatic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Motoaki Sugiura
- Department of Human Brain Science, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
- Cognitive Sciences Lab, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - Toshiya Murai
- Department of Psychiatry, Graduate School of Medicine, Kyoto University Hospital, Kyoto, Japan
| | - Shin Fukudo
- Department of Psychosomatic Medicine, Tohoku University Hospital, Sendai, Japan
- Department of Psychosomatic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Atsushi Sekiguchi
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan.
- Center for Eating Disorder Research and Information, National Center of Neurology and Psychiatry, Tokyo, Japan.
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan.
| |
Collapse
|
5
|
Jiang Z, Chen Z, Chen X. Candidate gene-environment interactions in substance abuse: A systematic review. PLoS One 2023; 18:e0287446. [PMID: 37906564 PMCID: PMC10617739 DOI: 10.1371/journal.pone.0287446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 06/06/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND The abuse of psychogenic drugs can lead to multiple health-related problems. Genetic and environmental vulnerabilities are factors in the emergence of substance use disorders. Empirical evidence regarding the gene-environment interaction in substance use is mixed. Summaries of the latest findings from a candidate gene approach will be useful for revealing the significance of particular gene contributions. Thus, we aim to identify different gene-environment interactions in patterns of substance use and investigate whether any effects trend notably across different genders and races. METHODS We reviewed published studies, until March 1, 2022, on substance use for candidate gene-environment interaction. Basic demographics of the included studies, target genes, environmental factors, main findings, patterns of gene-environment interaction, and other relevant information were collected and summarized. RESULTS Among a total of 44 studies, 38 demonstrated at least one significant interaction effect. About 61.5% of studies on the 5-HTTLPR gene, 100% on the MAOA gene, 42.9% on the DRD2 gene, 50% on the DRD4 gene, 50% on the DAT gene, 80% on the CRHR1 gene, 100% on the OPRM1 gene, 100% on the GABRA1 gene, and 50% on the CHRNA gene had a significant gene-environment interaction effect. The diathesis-stress model represents a dominant interaction pattern (89.5%) in the studies with a significant interaction effect; the remaining significant effect on substance use is found in the differential susceptibility model. The social push and swing model were not reported in the included studies. CONCLUSION The gene-environment interaction research on substance use behavior is methodologically multidimensional, which causes difficulty in conducting pooled analysis, or stated differently-making it hard to identify single sources of significant influence over maladaptive patterns of drug taking. In decreasing the heterogeneity and facilitating future pooled analysis, researchers must (1) replicate the existing studies with consistent study designs and measures, (2) conduct power calculations to report gene-environment correlations, (3) control for covariates, and (4) generate theory-based hypotheses with factorial based experiments when designing future studies.
Collapse
Affiliation(s)
- Zheng Jiang
- Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Zidong Chen
- Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Xi Chen
- Jockey Club School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong
- Department of Sociology and Social Policy, Lingnan University, Tuen Mun, Hong Kong
| |
Collapse
|
6
|
Meyers JL, Brislin SJ, Kamarajan C, Plawecki MH, Chorlian D, Anohkin A, Kuperman S, Merikangas A, Pandey G, Kinreich S, Pandey A, Edenberg HJ, Bucholz KK, Almasy L, Porjesz B. The collaborative study on the genetics of alcoholism: Brain function. GENES, BRAIN, AND BEHAVIOR 2023; 22:e12862. [PMID: 37587903 PMCID: PMC10550791 DOI: 10.1111/gbb.12862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/19/2023] [Accepted: 07/22/2023] [Indexed: 08/18/2023]
Abstract
Alcohol use disorder (AUD) and related health conditions result from a complex interaction of genetic, neural and environmental factors, with differential impacts across the lifespan. From its inception, the Collaborative Study on the Genetics of Alcoholism (COGA) has focused on the importance of brain function as it relates to the risk and consequences of alcohol use and AUD, through the examination of noninvasively recorded brain electrical activity and neuropsychological tests. COGA's sophisticated neurophysiological and neuropsychological measures, together with rich longitudinal, multi-modal family data, have allowed us to disentangle brain-related risk and resilience factors from the consequences of prolonged and heavy alcohol use in the context of genomic and social-environmental influences over the lifespan. COGA has led the field in identifying genetic variation associated with brain functioning, which has advanced the understanding of how genomic risk affects AUD and related disorders. To date, the COGA study has amassed brain function data on over 9871 participants, 7837 with data at more than one time point, and with notable diversity in terms of age (from 7 to 97), gender (52% female), and self-reported race and ethnicity (28% Black, 9% Hispanic). These data are available to the research community through several mechanisms, including directly through the NIAAA, through dbGAP, and in collaboration with COGA investigators. In this review, we provide an overview of COGA's data collection methods and specific brain function measures assessed, and showcase the utility, significance, and contributions these data have made to our understanding of AUD and related disorders, highlighting COGA research findings.
Collapse
Affiliation(s)
- Jacquelyn L. Meyers
- Department of Psychiatry and Behavioral SciencesState University of New York Downstate Medical CenterBrooklynNew YorkUSA
| | - Sarah J. Brislin
- Department of Psychiatry, Robert Wood Johnson Medical SchoolRutgers UniversityNew BrunswickNew JerseyUSA
| | - Chella Kamarajan
- Department of Psychiatry and Behavioral SciencesState University of New York Downstate Medical CenterBrooklynNew YorkUSA
| | | | - David Chorlian
- Department of Psychiatry and Behavioral SciencesState University of New York Downstate Medical CenterBrooklynNew YorkUSA
| | - Andrey Anohkin
- Department of PsychiatryWashington University in St. LouisSt. LouisMissouriUSA
| | - Samuel Kuperman
- Department of PsychiatryUniversity of IowaIowa CityIndianaUSA
| | - Alison Merikangas
- Department of Biomedical and Health InformaticsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Penn‐CHOP Lifespan Brain InstituteUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Genetics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Gayathri Pandey
- Department of Psychiatry and Behavioral SciencesState University of New York Downstate Medical CenterBrooklynNew YorkUSA
| | - Sivan Kinreich
- Department of Psychiatry and Behavioral SciencesState University of New York Downstate Medical CenterBrooklynNew YorkUSA
| | - Ashwini Pandey
- Department of Psychiatry and Behavioral SciencesState University of New York Downstate Medical CenterBrooklynNew YorkUSA
| | - Howard J. Edenberg
- Department of Biochemistry and Molecular BiologyIndiana UniversityBloomingtonIndianaUSA
| | - Kathleen K. Bucholz
- Department of PsychiatryWashington University in St. LouisSt. LouisMissouriUSA
| | | | - Laura Almasy
- Department of Biomedical and Health InformaticsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Penn‐CHOP Lifespan Brain InstituteUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Genetics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Bernice Porjesz
- Department of Psychiatry and Behavioral SciencesState University of New York Downstate Medical CenterBrooklynNew YorkUSA
| |
Collapse
|
7
|
Musial MPM, Beck A, Rosenthal A, Charlet K, Bach P, Kiefer F, Vollstädt-Klein S, Walter H, Heinz A, Rothkirch M. Reward Processing in Alcohol-Dependent Patients and First-Degree Relatives: Functional Brain Activity During Anticipation of Monetary Gains and Losses. Biol Psychiatry 2023; 93:546-557. [PMID: 35863919 DOI: 10.1016/j.biopsych.2022.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND According to the reward deficiency syndrome and allostatic hypotheses, hyposensitivity of mesocorticolimbic regions to non-alcohol-related stimuli predisposes to dependence or is long-lastingly enhanced by chronic substance use. To date, no study has directly compared mesocorticolimbic brain activity during non-drug reward anticipation between alcohol-dependent, at risk, and healthy subjects. METHODS Seventy-five abstinent alcohol-dependent human subjects (mean abstinence duration 957.66 days), 62 healthy first-degree relatives of alcohol-dependent individuals, and 76 healthy control subjects without family history of alcohol dependence performed a monetary incentive delay task. Functional magnetic resonance imaging data of the anticipation phase were analyzed, during which visual cues predicted that fast response to a target would result in monetary gain, avoidance of monetary loss, or a neutral outcome. RESULTS During gain anticipation, there were no significant group differences. During loss anticipation, abstinent alcohol-dependent subjects showed lower activity in the left anterior insula compared with healthy control subjects without family history of alcohol dependence only (Montreal Neurological Institute [MNI] -25 19 -5; t206 = 4.17, familywise error corrected p = .009). However, this effect was no longer significant when age was included as a covariate. There were no group differences between abstinent alcohol-dependent subjects and healthy first-degree relatives or between healthy first-degree relatives and healthy control subjects during loss anticipation, respectively. CONCLUSIONS Neither the neural reward deficiency syndrome nor the allostatic hypotheses are supported by the results. Future studies should investigate whether the incentive salience hypothesis allows for more accurate predictions regarding mesocorticolimbic brain activity of subjects with alcohol dependence and healthy individuals during reward and loss anticipation and further examine the neural substrates underlying a predisposition to dependence.
Collapse
Affiliation(s)
- Milena P M Musial
- Charité - Universitätsmedizin Berlin, corporate member of Freie and Humboldt-Universität zu Berlin, Department of Psychiatry and Neurosciences
- CCM, Berlin, Germany.
| | - Anne Beck
- Charité - Universitätsmedizin Berlin, corporate member of Freie and Humboldt-Universität zu Berlin, Department of Psychiatry and Neurosciences
- CCM, Berlin, Germany; Health and Medical University, Campus Potsdam, Faculty of Health, Potsdam, Germany
| | - Annika Rosenthal
- Charité - Universitätsmedizin Berlin, corporate member of Freie and Humboldt-Universität zu Berlin, Department of Psychiatry and Neurosciences
- CCM, Berlin, Germany
| | - Katrin Charlet
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Patrick Bach
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
| | - Falk Kiefer
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany; Mannheim Center for Translational Neurosciences, Medical Faculty of Mannheim, Heidelberg University, Mannheim, Germany
| | - Sabine Vollstädt-Klein
- Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany; Mannheim Center for Translational Neurosciences, Medical Faculty of Mannheim, Heidelberg University, Mannheim, Germany
| | - Henrik Walter
- Charité - Universitätsmedizin Berlin, corporate member of Freie and Humboldt-Universität zu Berlin, Department of Psychiatry and Neurosciences
- CCM, Berlin, Germany
| | - Andreas Heinz
- Charité - Universitätsmedizin Berlin, corporate member of Freie and Humboldt-Universität zu Berlin, Department of Psychiatry and Neurosciences
- CCM, Berlin, Germany
| | - Marcus Rothkirch
- Charité - Universitätsmedizin Berlin, corporate member of Freie and Humboldt-Universität zu Berlin, Department of Psychiatry and Neurosciences
- CCM, Berlin, Germany
| |
Collapse
|
8
|
Wang RWY, Liu IN. Temporal and electroencephalography dynamics of surreal marketing. Front Neurosci 2022; 16:949008. [PMID: 36389218 PMCID: PMC9648353 DOI: 10.3389/fnins.2022.949008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/25/2022] [Indexed: 11/28/2022] Open
Abstract
Event-related spectral perturbation analysis was employed in this study to explore whether surreal image designs containing metaphors could influence product marketing effects, including consumers' product curiosity, product comprehension, product preference, and purchase intention. A total of 30 healthy participants aged 21-30 years were recruited. Neurophysiological findings revealed that lower gamma, beta, and theta spectral powers were evoked in the right insula (Brodmann Area 13) by surreal marketing images. This was associated, behaviorally, with the manifestation of higher product curiosity and purchase intention. Based on previous research, the brain functions of this area include novelty, puzzle-solving, and cravings for reward caused by cognitive overload.
Collapse
Affiliation(s)
- Regina W. Y. Wang
- Department of Design, National Taiwan University of Science and Technology, Taipei City, Taiwan
- Design Perceptual Awareness Laboratory, Taiwan Building Technology Center, National Taiwan University of Science and Technology, Taipei City, Taiwan
| | - I-Ning Liu
- Department of Design, National Taiwan University of Science and Technology, Taipei City, Taiwan
- Design Perceptual Awareness Laboratory, Taiwan Building Technology Center, National Taiwan University of Science and Technology, Taipei City, Taiwan
| |
Collapse
|
9
|
Evans CL, Sawyer KS, Levy SA, Conklin JP, McDonough E, Gansler DA. Factors in the neurodevelopment of negative urgency: Findings from a community-dwelling sample. Brain Neurosci Adv 2022; 6:23982128221079548. [PMID: 35237725 PMCID: PMC8882942 DOI: 10.1177/23982128221079548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/22/2022] [Indexed: 11/29/2022] Open
Abstract
This study investigated neuroanatomic, genetic, cognitive, sociodemographic and emotional underpinnings of the Negative Urgency subscale of the Urgency, Premeditation, Perseverance, Sensation-Seeking and Positive Urgency Impulsive Behavior Scale in a healthy developmental sample. The goal of the investigation is to contribute to the harmonisation of behavioural, brain and neurogenetic aspects of behavioural self-control. Three domains - (1) Demographic, developmental, psychiatric and cognitive ability; (2) Regional brain volumes (neurobiological); and (3) Genetic variability (single nucleotide polymorphisms) - were examined, and models with relevant predictor variables were selected. Least absolute shrinkage and selection operator and best subset regressions were used to identify sparse models predicting negative urgency scores, which revealed that variables related to emotional regulation and right cingulate volume, as well as single nucleotide polymorphisms in CADM2 and SLC6A4, were associated with negative urgency. Our results contribute to the construct and criterion validity of negative urgency and support the hypothesis that negative urgency is a result of a complex array of influences across domains whose integration furthers developmental psychopathology research.
Collapse
Affiliation(s)
- Casey L. Evans
- Department of Psychology, Suffolk
University, Boston, MA, USA
- Psychology Assessment Center,
Massachusetts General Hospital, Boston, MA, USA
| | - Kayle S. Sawyer
- Boston University, Boston, MA,
USA
- VA Boston Healthcare System, Boston,
MA, USA
- Massachusetts General Hospital, Boston,
MA, USA
- Sawyer Scientific, Boston, MA,
USA
| | - Sarah A. Levy
- Department of Psychology, Suffolk
University, Boston, MA, USA
| | | | - EmilyKate McDonough
- Department of Medical Education, Tufts
University, Boston, MA, USA
- Department of Microbiology, Harvard
Medical School, Boston, MA, USA
| | | |
Collapse
|
10
|
Chaudhury S, Vijay P, Khan A, Sowmya AV, Chaudhari B, Saldanha D. Cognitive deficits in alcohol dependence—A case–control analytical study. MEDICAL JOURNAL OF DR. D.Y. PATIL VIDYAPEETH 2022. [DOI: 10.4103/mjdrdypu.mjdrdypu_921_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
11
|
Le TM, Wang W, Zhornitsky S, Dhingra I, Zhang S, Li CSR. Interdependent Neural Correlates of Reward and Punishment Sensitivity During Rewarded Action and Inhibition of Action. Cereb Cortex 2021; 30:1662-1676. [PMID: 31667492 DOI: 10.1093/cercor/bhz194] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 07/10/2019] [Accepted: 07/31/2019] [Indexed: 11/13/2022] Open
Abstract
Imaging studies have distinguished the brain correlates of approach and avoidance behaviors and suggested the influence of individual differences in trait sensitivity to reward (SR) and punishment (SP) on these neural processes. Theoretical work of reinforcement sensitivity postulates that SR and SP may interdependently regulate behavior. Here, we examined the distinct and interrelated neural substrates underlying rewarded action versus inhibition of action in relation to SR and SP as evaluated by the Sensitivity to Punishment and Sensitivity to Reward Questionnaire. Forty-nine healthy adults performed a reward go/no-go task with approximately 2/3 go and 1/3 no-go trials. Correct go and no-go responses were rewarded and incorrect responses were penalized. The results showed that SR and SP modulated rewarded go and no-go, respectively, both by recruiting the rostral anterior cingulate cortex and left middle frontal gyrus (rACC/left MFG). Importantly, SR and SP influenced these regional activations in opposite directions, thus exhibiting an antagonistic relationship as suggested by the reinforcement sensitivity theory. Furthermore, mediation analysis revealed that heightened SR contributed to higher rewarded go success rate via enhanced rACC/left MFG activity. The findings demonstrate interrelated neural correlates of SR and SP to support the diametric processes of behavioral approach and avoidance.
Collapse
Affiliation(s)
- Thang M Le
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Wuyi Wang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Simon Zhornitsky
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Isha Dhingra
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Sheng Zhang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA.,Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA.,Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
12
|
Nakamura Y, Koike S. Association of Disinhibited Eating and Trait of Impulsivity With Insula and Amygdala Responses to Palatable Liquid Consumption. Front Syst Neurosci 2021; 15:647143. [PMID: 34012386 PMCID: PMC8128107 DOI: 10.3389/fnsys.2021.647143] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/09/2021] [Indexed: 12/31/2022] Open
Abstract
Eating behavior is not only influenced by the current energy balance, but also by the behavioral characteristics of eating. One of the recognized eating behavior constructs is ‘disinhibited eating,’ which refers to the tendency to overeat in response to negative emotional states or the presence of highly palatable foods. Food-related disinhibition is involved in binge eating, weight gain, and obesity and is also associated with the trait of impulsivity, which in turn, is linked to weight gain or maladaptive eating. However, the relationships among food-related disinhibition, the trait of impulsivity, and the neural substrates of eating behaviors in adolescence remain unclear. Therefore, we designed a functional magnetic resonance imaging (fMRI) study to examine the associations between brain responses to palatable liquid consumption and disinhibited eating behavior or impulsivity in healthy adolescents. Thirty-four adolescents (mean age ± standard deviation = 17.12 ± 1.91 years, age range = 14–19 years, boys = 15, girls = 19) participated in this study. Disinhibited eating was assessed with the disinhibition subscale of the Three-Factor Eating Questionnaire, while impulsivity was assessed using the Barratt impulsiveness scale. Participants received two fMRI sessions−a palatable liquid consumption fMRI and a resting-state fMRI. The fMRI experiment showed that increased disinhibited eating was positively associated with a greater insular response to palatable liquid consumption, while increased impulsivity was positively correlated with a greater amygdala response. The resting-state fMRI experiment showed that increased disinhibited eating was positively correlated with strengthened intrinsic functional connectivity between the insula and the amygdala, adjusting for sex (estimates of the beta coefficients = 0.146, standard error = 0.068, p = 0.040). Given that the amygdala and insular cortex are structurally and functionally connected and involved in trait impulsivity and ingestive behavior, our findings suggest that increased disinhibited eating would be associated with impulsivity via strengthened intrinsic functional connectivity between the insula and amygdala and linked to maladaptive eating.
Collapse
Affiliation(s)
- Yuko Nakamura
- UTokyo Center for Integrative Science of Human Behavior, The University of Tokyo, Tokyo, Japan
| | - Shinsuke Koike
- UTokyo Center for Integrative Science of Human Behavior, The University of Tokyo, Tokyo, Japan.,International Research Center for Neurointelligence, The University of Tokyo Institutes for Advanced Study, Tokyo, Japan.,UTokyo Institute for Diversity and Adaptation of Human Mind, The University of Tokyo, Tokyo, Japan.,Center for Evolutionary Cognitive Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
13
|
Burmeister M, Sen S. Genetic interactions with stressful environments in depression and addiction. BJPSYCH ADVANCES 2021; 27:153-157. [DOI: 10.1192/bja.2021.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
SUMMARYStress is the most important proximal precipitant of depression, yet most large genome-wide association studies (GWAS) do not include stress as a variable. Here, we review how gene × environment (G × E) interaction might impede the discovery of genetic factors, discuss two examples of G × E interaction in depression and addiction, studies incorporating high-stress environments, as well as upcoming waves of genome-wide environment interaction studies (GWEIS). We discuss recent studies which have shown that genetic distributions can be affected by social factors such as migrations and socioeconomic background. These distinctions are not just academic but have practical consequences. Owing to interaction with the environment, genetic predispositions to depression should not be viewed as unmodifiable destiny. Patients may genetically differ not just in their response to drugs, as in the now well-recognised field of pharmacogenetics, but also in how they react to stressful environments and how they are affected by behavioural therapies.
Collapse
|
14
|
Goetjen A, Watson M, Lieberman R, Clinton K, Kranzler HR, Covault J. Induced pluripotent stem cell reprogramming-associated methylation at the GABRA2 promoter and chr4p12 GABA A subunit gene expression in the context of alcohol use disorder. Am J Med Genet B Neuropsychiatr Genet 2020; 183:464-474. [PMID: 33029895 PMCID: PMC8022112 DOI: 10.1002/ajmg.b.32824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/27/2020] [Accepted: 09/15/2020] [Indexed: 11/07/2022]
Abstract
Twin studies indicate that there is a significant genetic contribution to the risk of developing alcohol use disorder (AUD). With the exception of coding variants in ADH1B and ALDH2, little is known about the molecular effects of AUD-associated loci. We previously reported that the AUD-associated synonymous polymorphism rs279858 within the GABAA α2 receptor subunit gene, GABRA2, was associated with gene expression of the chr4p12 GABAA subunit gene cluster in induced pluripotent stem cell (iPSC)-derived neural cultures. Based on this and other studies that showed changes in GABRA2 DNA methylation associated with schizophrenia and aging, we examined methylation in GABRA2. Specifically, using 69 iPSC lines and neural cultures derived from 47 of them, we examined whether GABRA2 rs279858 genotype predicted methylation levels and whether methylation was related to GABAA receptor subunit gene expression. We found that the GABRA2 CpG island undergoes random stochastic methylation during reprogramming and that methylation is associated with decreased GABRA2 gene expression, an effect that extends to the GABRB1 gene over 600 kb distal to GABRA2. Further, we identified additive effects of GABRA2 CpG methylation and GABRA2 rs279858 genotype on expression of the GABRB1 subunit gene in iPSC-derived neural cultures.
Collapse
Affiliation(s)
- Alexandra Goetjen
- Alcohol Research Center, Department of Psychiatry, University of Connecticut School of Medicine, Farmington, Connecticut
- Genetics and Developmental Biology Graduate Program, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Maegan Watson
- Alcohol Research Center, Department of Psychiatry, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Richard Lieberman
- Alcohol Research Center, Department of Psychiatry, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Kaitlin Clinton
- Alcohol Research Center, Department of Psychiatry, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Henry R. Kranzler
- Center for Studies of Addiction, Department of Psychiatry, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania
- VISN 4 MIRECC, Crescenz VAMC, Philadelphia, Pennsylvania
| | - Jonathan Covault
- Alcohol Research Center, Department of Psychiatry, University of Connecticut School of Medicine, Farmington, Connecticut
- Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
15
|
Rapuano KM, Rosenberg MD, Maza MT, Dennis NJ, Dorji M, Greene AS, Horien C, Scheinost D, Todd Constable R, Casey BJ. Behavioral and brain signatures of substance use vulnerability in childhood. Dev Cogn Neurosci 2020; 46:100878. [PMID: 33181393 PMCID: PMC7662869 DOI: 10.1016/j.dcn.2020.100878] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 09/17/2020] [Accepted: 10/28/2020] [Indexed: 12/23/2022] Open
Abstract
The prevalence of risky behavior such as substance use increases during adolescence; however, the neurobiological precursors to adolescent substance use remain unclear. Predictive modeling may complement previous work observing associations with known risk factors or substance use outcomes by developing generalizable models that predict early susceptibility. The aims of the current study were to identify and characterize behavioral and brain models of vulnerability to future substance use. Principal components analysis (PCA) of behavioral risk factors were used together with connectome-based predictive modeling (CPM) during rest and task-based functional imaging to generate predictive models in a large cohort of nine- and ten-year-olds enrolled in the Adolescent Brain & Cognitive Development (ABCD) study (NDA release 2.0.1). Dimensionality reduction (n = 9,437) of behavioral measures associated with substance use identified two latent dimensions that explained the largest amount of variance: risk-seeking (PC1; e.g., curiosity to try substances) and familial factors (PC2; e.g., family history of substance use disorder). Using cross-validated regularized regression in a subset of data (Year 1 Fast Track data; n>1,500), functional connectivity during rest and task conditions (resting-state; monetary incentive delay task; stop signal task; emotional n-back task) significantly predicted individual differences in risk-seeking (PC1) in held-out participants (partial correlations between predicted and observed scores controlling for motion and number of frames [rp]: 0.07-0.21). By contrast, functional connectivity was a weak predictor of familial risk factors associated with substance use (PC2) (rp: 0.03-0.06). These results demonstrate a novel approach to understanding substance use vulnerability, which—together with mechanistic perspectives—may inform strategies aimed at early identification of risk for addiction.
Collapse
Affiliation(s)
- Kristina M Rapuano
- Department of Psychology, Yale University, New Haven, CT, United States.
| | - Monica D Rosenberg
- Department of Psychology, University of Chicago, Chicago, IL, United States
| | - Maria T Maza
- Department of Psychology, Yale University, New Haven, CT, United States
| | - Nicholas J Dennis
- Department of Psychology, Yale University, New Haven, CT, United States
| | - Mila Dorji
- Department of Psychology, Yale University, New Haven, CT, United States
| | - Abigail S Greene
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, United States
| | - Corey Horien
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, United States
| | - Dustin Scheinost
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
| | - R Todd Constable
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, United States; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
| | - B J Casey
- Department of Psychology, Yale University, New Haven, CT, United States
| |
Collapse
|
16
|
Abstract
Alcohol consumption has long been a part of human culture. However, alcohol consumption levels and alcohol consumption patterns are associated with chronic diseases. Overall, light and moderate alcohol consumption (up to 14 g per day for women and up to 28 g per day for men) may be associated with reduced mortality risk, mainly due to reduced risks for cardiovascular disease and type-2 diabetes. However, chronic heavy alcohol consumption and alcohol abuse lead to alcohol-use disorder, which results in physical and mental diseases such as liver disease, pancreatitis, dementia, and various types of cancer. Risk factors for alcohol-use disorder are largely unknown. Alcohol-use disorder and frequent heavy drinking have detrimental effects on personal health.
Collapse
|
17
|
Gruber J, Villanueva C, Burr E, Purcell JR, Karoly H. Understanding and Taking Stock of Positive Emotion Disturbance. SOCIAL AND PERSONALITY PSYCHOLOGY COMPASS 2020; 14:e12515. [PMID: 37636238 PMCID: PMC10456988 DOI: 10.1111/spc3.12515] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The prevailing view on positive emotions is that they correlate with and confer psychological health benefits for the individual, including improved social, physical and cognitive functioning. Yet an emerging wave of scientific work suggests that positive emotions are also related to a range of suboptimal psychological health outcomes, especially when the intensity, duration, or context do not optimize the individual's goals or meet current environmental demands. This paper provides an overview of the 'other side' of positive emotion, by describing and reviewing evidence supporting the emerging field of Positive Emotion Disturbance (PED). We review relevant emotion processes and key themes of PED and apply this framework to example emotional disorders, and discuss implications for psychological change and future research agendas.
Collapse
Affiliation(s)
- June Gruber
- Department of Psychology and Neuroscience, University of Colorado Boulder
| | - Cynthia Villanueva
- Department of Psychology and Neuroscience, University of Colorado Boulder
| | - Emily Burr
- Department of Psychology and Neuroscience, University of Colorado Boulder
| | - John R. Purcell
- Department of Psychological & Brain Sciences, Indiana University
| | - Hollis Karoly
- Department of Psychology and Neuroscience, University of Colorado Boulder
| |
Collapse
|
18
|
Langenecker SA, Kling LR, Crane NA, Gorka SM, Nusslock R, Damme KSF, Weafer J, de Wit H, Phan KL. Anticipation of monetary reward in amygdala, insula, caudate are predictors of pleasure sensitivity to d-Amphetamine administration. Drug Alcohol Depend 2020; 206:107725. [PMID: 31757518 PMCID: PMC6980714 DOI: 10.1016/j.drugalcdep.2019.107725] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 10/25/2019] [Accepted: 11/03/2019] [Indexed: 11/24/2022]
Abstract
BACKGROUND Drug addiction and dependence continue as an unresolved source of morbidity and mortality. Two approaches to identifying risk for abuse and addiction are psychopharmacological challenge studies and neuroimaging experiments. The present study combined these two approaches by examining associations between self-reported euphoria or liking after a dose of d-amphetamine and neural-based responses to anticipation of a monetary reward. METHODS Healthy young adults (N = 73) aged 19 and 26, without any history of alcohol/substance dependence completed four laboratory sessions in which they received oral d-amphetamine (20 mg) or placebo, and completed drug effect questionnaires. On a separate session they underwent a functional magnetic resonance imaging scan while they completed a monetary incentive delay task. During the task, we recorded neural signal related to anticipation of winning $5 or $1.50 compared to winning no money (WinMoney-WinZero), in reward related regions. RESULTS Liking of amphetamine during the drug sessions was related to differences in activation during the WinMoney-WinZero conditions - in the amygdala (positive), insula (negative) and caudate (negative). In posthoc analyses, liking of amphetamine was also positively correlated with activation of the amygdala during anticipation of large rewards and negatively related to activation of the left insula to both small and large anticipated rewards. CONCLUSIONS These findings suggest that individual differences in key regions of the reward network are related to rewarding subjective effects of a stimulant drug. To further clarify these relationships, future pharmacofMRI studies could probe the influence of amphetamine at the neural level during reward anticipation.
Collapse
Affiliation(s)
- Scott A Langenecker
- Department of Psychiatry, University of Utah, 501 Chipeta Way, Salt Lake City, UT 84108, USA; Department of Psychiatry, University of Illinois at Chicago, 1601 W Taylor St, Chicago, IL 60612, USA.
| | - Leah R Kling
- Department of Psychiatry, University of Illinois at Chicago, 1601 W Taylor St, Chicago, IL 60612, USA
| | - Natania A Crane
- Department of Psychiatry, University of Illinois at Chicago, 1601 W Taylor St, Chicago, IL 60612, USA
| | - Stephanie M Gorka
- Department of Psychiatry, University of Illinois at Chicago, 1601 W Taylor St, Chicago, IL 60612, USA
| | - Robin Nusslock
- Department of Psychology, Northwestern University, Swift Hall 102, 2029 Sheridan Road, Evanston, IL 60208, USA
| | - Katherine S F Damme
- Department of Psychology, Northwestern University, Swift Hall 102, 2029 Sheridan Road, Evanston, IL 60208, USA
| | - Jessica Weafer
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Billings Hospital, 5841 S. Maryland Avenue, Chicago, IL 60637, USA
| | - Harriet de Wit
- Department of Psychology, University of Kentucky, 171 Funkhouser Drive Lexington, KY 40506-0044, USA
| | - K Luan Phan
- Department of Psychiatry, University of Illinois at Chicago, 1601 W Taylor St, Chicago, IL 60612, USA; Mental Health Service Line, Jesse Brown VA Medical Center, 820 S Damen Ave, Chicago, IL 60612, USA; Department of Psychiatry and Behavioral Health, The Ohio State University, OSU Harding Hospital, 1670 Upham Drive, Suite 130, Columbus, OH 43210, USA
| |
Collapse
|
19
|
Time-varying Effects of GABRG1 and Maladaptive Peer Behavior on Externalizing Behavior from Childhood to Adulthood: Testing Gene × Environment × Development Effects. J Youth Adolesc 2019; 49:1351-1364. [PMID: 31786770 DOI: 10.1007/s10964-019-01171-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 11/04/2019] [Indexed: 10/25/2022]
Abstract
Engagement in externalizing behavior is problematic. Deviant peer affiliation increases risk for externalizing behavior. Yet, peer effects vary across individuals and may differ across genes. This study determines gene × environment × development interactions as they apply to externalizing behavior from childhood to adulthood. A sample (n = 687; 68% male, 90% White) of youth from the Michigan Longitudinal Study was assessed from ages 10 to 25. Interactions between γ-amino butyric acid type A receptor γ1 subunit (GABRG1; rs7683876, rs13120165) and maladaptive peer behavior on externalizing behavior were examined using time-varying effect modeling. The findings indicate a sequential risk gradient in the influence of maladaptive peer behavior on externalizing behavior depending on the number of G alleles during childhood through adulthood. Individuals with the GG genotype are most vulnerable to maladaptive peer influences, which results in greater externalizing behavior during late childhood through early adulthood.
Collapse
|
20
|
Sun Y, Chang S, Wang F, Sun H, Ni Z, Yue W, Zhou H, Gelernter J, Malison RT, Kalayasiri R, Wu P, Lu L, Shi J. Genome-wide association study of alcohol dependence in male Han Chinese and cross-ethnic polygenic risk score comparison. Transl Psychiatry 2019; 9:249. [PMID: 31591379 PMCID: PMC6779867 DOI: 10.1038/s41398-019-0586-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 09/01/2019] [Accepted: 09/16/2019] [Indexed: 12/20/2022] Open
Abstract
Alcohol-related behaviors are moderately heritable and have ethnic-specific characteristics. At present, genetic studies for alcohol dependence (AD) in Chinese populations are underrepresented. We are the first to conduct a genome-wide association study (GWAS) for AD using 533 male alcoholics and 2848 controls of Han Chinese ethnicity and replicate our findings in 146 male alcoholics and 200 male controls. We then assessed genetic effects on AD characteristics (drinking volume/age onset/Michigan Alcoholism Screening Test (MAST)/Barratt Impulsiveness Scale (BIS-11)), and compared the polygenic risk of AD in Han Chinese with other populations (Thai, European American and African American). We found and validated two significant loci, one located in 4q23, with lead SNP rs2075633*ADH1B (Pdiscovery = 6.64 × 10-16) and functional SNP rs1229984*ADH1B (Pdiscovery = 3.93 × 10-13); and the other located in 12q24.12-12q24.13, with lead SNP rs11066001*BRAP (Pdiscovery = 1.63 × 10-9) and functional SNP rs671*ALDH2 (Pdiscovery = 3.44 × 10-9). ADH1B rs1229984 was associated with MAST, BIS_total score and average drinking volume. Polygenic risk scores from the Thai AD and European American AD GWAS were significantly associated with AD in Han Chinese, which were entirely due to the top two loci, however there was no significant prediction from African Americans. This is the first case-control AD GWAS in Han Chinese. Our findings demonstrate that these variants, which were highly linked with ALDH2 rs671 and ADH1B rs1229984, were significant modulators for AD in our Han Chinese cohort. A larger replication cohort is still needed to validate our findings.
Collapse
Affiliation(s)
- Yan Sun
- National Institute on Drug Dependence, Peking University, 100191, Beijing, China
| | - Suhua Chang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, 100191, Beijing, China
| | - Fan Wang
- Beijing Hui Long Guan Hospital, 100096, Beijing, China
- The Second Affiliated Hospital, Xinjiang Medical University, 830063, Urumqi, China
| | - Hongqiang Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, 100191, Beijing, China
| | - Zhaojun Ni
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, 100191, Beijing, China
| | - Weihua Yue
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, 100191, Beijing, China
| | - Hang Zhou
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511, USA
- VA Connecticut Healthcare System, West Haven, CT, 06516, USA
| | - Joel Gelernter
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511, USA
- VA Connecticut Healthcare System, West Haven, CT, 06516, USA
| | - Robert T Malison
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511, USA
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, CT, 06519, USA
| | - Rasmon Kalayasiri
- Department of Psychiatry, King Chulalongkorn Memorial Hospital, Bangkok, 10330, Thailand
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Ping Wu
- National Institute on Drug Dependence, Peking University, 100191, Beijing, China
| | - Lin Lu
- National Institute on Drug Dependence, Peking University, 100191, Beijing, China.
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Peking University, 100191, Beijing, China.
| | - Jie Shi
- National Institute on Drug Dependence, Peking University, 100191, Beijing, China.
- Beijing Key Laboratory of Drug Dependence Research, Peking University, 100191, Beijing, China.
- The State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, Beijing, China.
- The Key Laboratory for Neuroscience of the Ministry of Education and Health, Peking University, 100191, Beijing, China.
| |
Collapse
|
21
|
Hong YJ, Park S, Kyeong S, Kim JJ. Neural Basis of Professional Pride in the Reaction to Uniform Wear. Front Hum Neurosci 2019; 13:253. [PMID: 31396065 PMCID: PMC6664020 DOI: 10.3389/fnhum.2019.00253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/08/2019] [Indexed: 11/29/2022] Open
Abstract
Professional pride is a positive emotion that includes self-reflection or evaluation and attitude toward one’s own occupational group. Uniforms can encourage the wearer to have professional pride. The current study aimed to elucidate the neural basis of professional pride using an experimental task related to the self in uniform and functional magnetic resonance imaging (fMRI). The person-adjective matching task, in which a participant or other in uniform or casual wear was presented with positive and negative words, was used for scanning fMRI. Imaging data from 21 adults who had an occupation requiring a uniform were analyzed to identify the main and interaction effects of individual (self vs. other), clothes (uniform vs. casual wear), and valence (positive vs. negative). Identified brain activities were correlated with psychological scales including the Rosenberg Self-esteem Scale and Group Environment Questionnaire. Whole brain analyses found that the interaction between individual and clothes was present in multiple regions such as the right ventrolateral prefrontal cortex (VLPFC), left dorsolateral prefrontal cortex, left middle and inferior temporal gyri, left posterior superior temporal sulcus, right temporoparietal junction, left lingual gyrus, left calcarine cortex, right insula, left caudate, and right putamen. In particular, activities in the right VLPFC, left calcarine cortex, and right putamen in the self/uniform condition were positively correlated with several psychological scales. These results suggest that professional pride may be represented through multiple brain networks related to empathy, reward, and emotion regulation as well as the theory-of-mind network. The neural basis of professional pride is closely related to positive self-evaluation and group cohesion.
Collapse
Affiliation(s)
- Yeon-Ju Hong
- Department of Cognitive Science, Yonsei University, Seoul, South Korea.,Institute of Behavioral Sciences in Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Sunyoung Park
- Institute of Behavioral Sciences in Medicine, Yonsei University College of Medicine, Seoul, South Korea.,Department of Psychiatry, National Health Insurance Service Ilsan Hospital, Goyang, South Korea
| | - Sunghyon Kyeong
- Institute of Behavioral Sciences in Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae-Jin Kim
- Department of Cognitive Science, Yonsei University, Seoul, South Korea.,Institute of Behavioral Sciences in Medicine, Yonsei University College of Medicine, Seoul, South Korea.,Department of Psychiatry, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
22
|
Zorrilla EP, Koob GF. Impulsivity Derived From the Dark Side: Neurocircuits That Contribute to Negative Urgency. Front Behav Neurosci 2019; 13:136. [PMID: 31293401 PMCID: PMC6603097 DOI: 10.3389/fnbeh.2019.00136] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 06/05/2019] [Indexed: 01/05/2023] Open
Abstract
Negative urgency is a unique dimension of impulsivity that involves acting rashly when in extreme distress and impairments in inhibitory control. It has been hypothesized to derive from stress that is related to negative emotional states that are experienced during the withdrawal/negative affect stage of the addiction cycle. Classically, a transition to compulsive drug use prevents or relieves negative emotional states that result from abstinence or stressful environmental circumstances. Recent work suggests that this shift to the "dark side" is also implicated in impulsive use that derives from negative urgency. Stress and anxious, depressed, and irritable mood have high comorbidity with addiction. They may trigger bouts of drug seeking in humans via both negative reinforcement and negative urgency. The neurocircuitry that has been identified in the "dark side" of addiction involves key neuropeptides in the central extended amygdala, including corticotropin-releasing factor. The present review article summarizes empirical and conceptual advances in the field to understand the role of the "dark side" in driving the risky and detrimental substance use that is associated with negative urgency in addiction.
Collapse
Affiliation(s)
- Eric P. Zorrilla
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, United States
| | - George F. Koob
- Neurobiology of Addiction Section, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, United States
| |
Collapse
|
23
|
Hsu LM, Keeley RJ, Liang X, Brynildsen JK, Lu H, Yang Y, Stein EA. Intrinsic Insular-Frontal Networks Predict Future Nicotine Dependence Severity. J Neurosci 2019; 39:5028-5037. [PMID: 30992371 PMCID: PMC6670258 DOI: 10.1523/jneurosci.0140-19.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/27/2019] [Accepted: 04/06/2019] [Indexed: 01/01/2023] Open
Abstract
Although 60% of the US population have tried smoking cigarettes, only 16% smoke regularly. Identifying this susceptible subset of the population before the onset of nicotine dependence may encourage targeted early interventions to prevent regular smoking and/or minimize severity. While prospective neuroimaging in human populations can be challenging, preclinical neuroimaging models before chronic nicotine administration can help to develop translational biomarkers of disease risk. Chronic, intermittent nicotine (0, 1.2, or 4.8 mg/kg/d; N = 10-11/group) was administered to male Sprague Dawley rats for 14 d; dependence severity was quantified using precipitated withdrawal behaviors collected before, during, and following forced nicotine abstinence. Resting-state fMRI functional connectivity (FC) before drug administration was subjected to a graph theory analytical framework to form a predictive model of subsequent individual differences in nicotine dependence. Whole-brain modularity analysis identified five modules in the rat brain. A metric of intermodule connectivity, participation coefficient, of an identified insular-frontal cortical module predicted subsequent dependence severity, independent of nicotine dose. To better spatially isolate this effect, this module was subjected to a secondary exploratory modularity analysis, which segregated it into three submodules (frontal-motor, insular, and sensory). Higher FC among these three submodules and three of the five originally identified modules (striatal, frontal-executive, and sensory association) also predicted dependence severity. These data suggest that predispositional, intrinsic differences in circuit strength between insular-frontal-based brain networks before drug exposure may identify those at highest risk for the development of nicotine dependence.SIGNIFICANCE STATEMENT Developing biomarkers of individuals at high risk for addiction before the onset of this brain-based disease is essential for prevention, early intervention, and/or subsequent treatment decisions. Using a rodent model of nicotine dependence and a novel data-driven, network-based analysis of resting-state fMRI data collected before drug exposure, functional connections centered on an intrinsic insular-frontal module predicted the severity of nicotine dependence after drug exposure. The predictive capacity of baseline network measures was specific to inter-regional but not within-region connectivity. While insular and frontal regions have consistently been implicated in nicotine dependence, this is the first study to reveal that innate, individual differences in their circuit strength have the predictive capacity to identify those at greatest risk for and resilience to drug dependence.
Collapse
Affiliation(s)
- Li-Ming Hsu
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, Maryland 21224, and
| | - Robin J Keeley
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, Maryland 21224, and
| | - Xia Liang
- Research Center of Basic Space Science, Harbin Institute of Technology, Nangang Qu, Haerbin Shi 150001, Heilongjiang Sheng, People's Republic of China
| | - Julia K Brynildsen
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, Maryland 21224, and
| | - Hanbing Lu
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, Maryland 21224, and
| | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, Maryland 21224, and
| | - Elliot A Stein
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, Maryland 21224, and
| |
Collapse
|
24
|
Halcomb M, Argyriou E, Cyders MA. Integrating Preclinical and Clinical Models of Negative Urgency. Front Psychiatry 2019; 10:324. [PMID: 31191369 PMCID: PMC6541698 DOI: 10.3389/fpsyt.2019.00324] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/26/2019] [Indexed: 12/31/2022] Open
Abstract
Overwhelming evidence suggests that negative urgency is robustly associated with rash, ill-advised behavior, and this trait may hamper attempts to treat patients with substance use disorder. Research applying negative urgency to clinical treatment settings has been limited, in part, due to the absence of an objective, behavioral, and translational model of negative urgency. We suggest that development of such a model will allow for determination of prime neurological and physiological treatment targets, the testing of treatment effectiveness in the preclinical and the clinical laboratory, and, ultimately, improvement in negative-urgency-related treatment response and effectiveness. In the current paper, we review the literature on measurement of negative urgency and discuss limitations of current attempts to assess this trait in human models. Then, we review the limited research on animal models of negative urgency and make suggestions for some promising models that could lead to a translational measurement model. Finally, we discuss the importance of applying objective, behavioral, and translational models of negative urgency, especially those that are easily administered in both animals and humans, to treatment development and testing and make suggestions on necessary future work in this field. Given that negative urgency is a transdiagnostic risk factor that impedes treatment success, the impact of this work could be large in reducing client suffering and societal costs.
Collapse
Affiliation(s)
- Meredith Halcomb
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine Indianapolis, Indianapolis, IN, United States
| | - Evangelia Argyriou
- Department of Psychology, Indiana University-Purdue University, Indianapolis, IN, United States
| | - Melissa A Cyders
- Department of Psychology, Indiana University-Purdue University, Indianapolis, IN, United States
| |
Collapse
|
25
|
Koulentaki M, Kouroumalis E. GABA A receptor polymorphisms in alcohol use disorder in the GWAS era. Psychopharmacology (Berl) 2018; 235:1845-1865. [PMID: 29721579 DOI: 10.1007/s00213-018-4918-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/18/2018] [Indexed: 12/11/2022]
Abstract
Alcohol use disorder (AUD) is a chronic, relapsing, neuro-psychiatric illness of high prevalence and with a serious public health impact worldwide. It is complex and polygenic, with a heritability of about 50%, and influenced by environmental causal heterogeneity. Risk factors associated with its etiology have a genetic component. GABA (γ-aminobutyric acid) is a major inhibitory neurotransmitter in mammalian brain. GABAA receptors are believed to mediate some of the physiological and behavioral actions of alcohol. In this critical review, relevant genetic terms and type and methodology of the genetic studies are briefly explained. Postulated candidate genes that encode subunits of GABAA receptors, with all the reported SNPs, are presented. Genetic studies and meta-analyses examining polymorphisms of the GABAA receptor and their association with AUD predisposition are presented. The data are critically examined with reference to recent GWAS studies that failed to show relations between GABAA receptors and AUD. Restrictions and perspectives of the different findings are discussed.
Collapse
Affiliation(s)
- Mairi Koulentaki
- Alcohology Research Laboratory, Medical School, University of Crete, 71500, Heraklion, Crete, Greece.,Department of Gastroenterology, University Hospital Heraklion, 71500, Heraklion, Crete, Greece
| | - Elias Kouroumalis
- Department of Gastroenterology, University Hospital Heraklion, 71500, Heraklion, Crete, Greece.
| |
Collapse
|
26
|
Meldrum RC, Trucco EM, Cope LM, Zucker RA, Heitzeg MM. Brain Activity, Low Self-Control, and Delinquency: An fMRI Study of At-Risk Adolescents. JOURNAL OF CRIMINAL JUSTICE 2018; 56:107-117. [PMID: 29773923 PMCID: PMC5951637 DOI: 10.1016/j.jcrimjus.2017.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
PURPOSE A vast literature finds that low self-control is associated with a myriad of antisocial behaviors. Consequently, increasing attention has focused on the causes of low self-control. While criminologists have directed significant attention to studying its social causes, fewer studies have considered its neural bases. METHODS We add to this nascent body of research by using data collected on an at-risk sample of adolescents participating in the ongoing Michigan Longitudinal Study. We examine the functioning of prefrontal and limbic regions of the brain during failed inhibitory control, assessed using the go/no-go task and functional magnetic resonance imaging, in relation to low self-control and self-reported delinquency. RESULTS Results indicate that greater activation localized in the anterior cingulate cortex (ACC) during failed inhibitory control is negatively associated with low self-control. Moreover, the association between ACC activity and later delinquency is mediated through low self-control. CONCLUSIONS Findings of this study demonstrate the utility of integrating neuroscientific and criminological perspectives on the causes of antisocial behavior. Concluding remarks address the theoretical and policy implications of the findings, as well as directions for future research.
Collapse
Affiliation(s)
- Ryan Charles Meldrum
- Florida International University, Department of Criminal Justice, 11200 SW 8th Street, PCA-364B, Miami, FL 33199
| | - Elisa M Trucco
- Florida International University, Department of Psychology, 11200 SW 8th Street, AHC1-237, Miami, FL 33199
| | - Lora M Cope
- University of Michigan, Addiction Center and Department of Psychiatry, 4250 Plymouth Road, 2901H, Ann Arbor, MI 48109
| | - Robert A Zucker
- University of Michigan, Addiction Center and Departments of Psychiatry and Psychology, 4250 Plymouth Road, 2901F, Ann Arbor, MI 48109
| | - Mary M Heitzeg
- University of Michigan, Addiction Center and Department of Psychiatry, 4250 Plymouth Road, 2901D, Ann Arbor, MI 48109
| |
Collapse
|
27
|
Casey BJ, Cannonier T, Conley MI, Cohen AO, Barch DM, Heitzeg MM, Soules ME, Teslovich T, Dellarco DV, Garavan H, Orr CA, Wager TD, Banich MT, Speer NK, Sutherland MT, Riedel MC, Dick AS, Bjork JM, Thomas KM, Chaarani B, Mejia MH, Hagler DJ, Daniela Cornejo M, Sicat CS, Harms MP, Dosenbach NUF, Rosenberg M, Earl E, Bartsch H, Watts R, Polimeni JR, Kuperman JM, Fair DA, Dale AM. The Adolescent Brain Cognitive Development (ABCD) study: Imaging acquisition across 21 sites. Dev Cogn Neurosci 2018; 32:43-54. [PMID: 29567376 PMCID: PMC5999559 DOI: 10.1016/j.dcn.2018.03.001] [Citation(s) in RCA: 1130] [Impact Index Per Article: 161.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 01/29/2018] [Accepted: 03/02/2018] [Indexed: 11/29/2022] Open
Abstract
The ABCD study is recruiting and following the brain development and health of over 10,000 9–10 year olds through adolescence. The imaging component of the study was developed by the ABCD Data Analysis and Informatics Center (DAIC) and the ABCD Imaging Acquisition Workgroup. Imaging methods and assessments were selected, optimized and harmonized across all 21 sites to measure brain structure and function relevant to adolescent development and addiction. This article provides an overview of the imaging procedures of the ABCD study, the basis for their selection and preliminary quality assurance and results that provide evidence for the feasibility and age-appropriateness of procedures and generalizability of findings to the existent literature.
Collapse
Affiliation(s)
- B J Casey
- Department of Psychology, Yale University, United States; Sackler Institute for Developmental Psycholobiology, Weill Cornell Medical College, United States.
| | | | - May I Conley
- Department of Psychology, Yale University, United States; Sackler Institute for Developmental Psycholobiology, Weill Cornell Medical College, United States
| | - Alexandra O Cohen
- Sackler Institute for Developmental Psycholobiology, Weill Cornell Medical College, United States
| | - Deanna M Barch
- Departments of Psychological & Brain Sciences and Psychiatry, Washington University, St. Louis, United States
| | - Mary M Heitzeg
- Department of Psychiatry, University of Michigan, United States
| | - Mary E Soules
- Department of Psychiatry, University of Michigan, United States
| | - Theresa Teslovich
- Sackler Institute for Developmental Psycholobiology, Weill Cornell Medical College, United States
| | - Danielle V Dellarco
- Sackler Institute for Developmental Psycholobiology, Weill Cornell Medical College, United States
| | - Hugh Garavan
- Departments of Psychiatry and Radiology, University of Vermont, United States
| | - Catherine A Orr
- Departments of Psychiatry and Radiology, University of Vermont, United States
| | - Tor D Wager
- Department of Psychology & Neuroscience, University of Colorado, Boulder, United States
| | - Marie T Banich
- Department of Psychology & Neuroscience, University of Colorado, Boulder, United States
| | - Nicole K Speer
- Department of Psychology & Neuroscience, University of Colorado, Boulder, United States
| | - Matthew T Sutherland
- Departments of Physics and Psychology, Florida International University, United States
| | - Michael C Riedel
- Departments of Physics and Psychology, Florida International University, United States
| | - Anthony S Dick
- Departments of Physics and Psychology, Florida International University, United States
| | - James M Bjork
- Department of Psychiatry, Virginia Commonwealth University, United States
| | - Kathleen M Thomas
- Institute of Child Development, University of Minnesota, United States
| | - Bader Chaarani
- Departments of Psychiatry and Radiology, University of Vermont, United States
| | - Margie H Mejia
- Center for Human Development, Departments of Neuroscience and Radiology, University of California, San Diego, United States
| | - Donald J Hagler
- Center for Human Development, Departments of Neuroscience and Radiology, University of California, San Diego, United States
| | - M Daniela Cornejo
- Center for Human Development, Departments of Neuroscience and Radiology, University of California, San Diego, United States
| | - Chelsea S Sicat
- Center for Human Development, Departments of Neuroscience and Radiology, University of California, San Diego, United States
| | - Michael P Harms
- Department of Psychiatry, Washington University, St. Louis, United States
| | - Nico U F Dosenbach
- Department of Pediatric Neurology, Washington University, St. Louis, United States
| | | | - Eric Earl
- Behavioral Neuroscience and Psychiatry, Oregon Health State University, United States
| | - Hauke Bartsch
- Center for Human Development, Departments of Neuroscience and Radiology, University of California, San Diego, United States
| | - Richard Watts
- Departments of Psychiatry and Radiology, University of Vermont, United States
| | - Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, United States
| | - Joshua M Kuperman
- Center for Human Development, Departments of Neuroscience and Radiology, University of California, San Diego, United States
| | - Damien A Fair
- Behavioral Neuroscience and Psychiatry, Oregon Health State University, United States
| | - Anders M Dale
- Center for Human Development, Departments of Neuroscience and Radiology, University of California, San Diego, United States
| | | |
Collapse
|
28
|
Trucco EM, Cope LM, Burmeister M, Zucker RA, Heitzeg MM. Pathways to Youth Behavior: The Role of Genetic, Neural, and Behavioral Markers. JOURNAL OF RESEARCH ON ADOLESCENCE : THE OFFICIAL JOURNAL OF THE SOCIETY FOR RESEARCH ON ADOLESCENCE 2018; 28:26-39. [PMID: 29460350 PMCID: PMC5823277 DOI: 10.1111/jora.12341] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Neural and temperamental mechanisms through which a genetic risk marker in the γ-amino butyric acid α2 receptor subunit (GABRA2) impacts adolescent functioning were investigated. Participants (N = 80; 29 female) completed an emotional word task during functional magnetic resonance imaging. Behavioral control, negative emotionality, and resiliency temperament constructs were assessed. Externalizing and internalizing problems were the outcomes. Those with the GABRA2 minor allele had reduced activation to positive words in the angular gyrus, middle temporal gyrus, and cerebellum, and to negative words in frontal, parietal, and occipital cortices. Reduced activation in the angular gyrus predicted greater negative emotionality and, in turn, elevated externalizing problems. Reduced activation in the inferior parietal cortex predicted greater resiliency and, in turn, low externalizing problems.
Collapse
Affiliation(s)
- Elisa M. Trucco
- Department of Psychology, Florida International University, USA
- Center for Children and Families, Florida International University, USA
- Department of Psychiatry, University of Michigan, USA
- Addiction Center, University of Michigan, USA
| | - Lora M. Cope
- Department of Psychiatry, University of Michigan, USA
- Addiction Center, University of Michigan, USA
| | - Margit Burmeister
- Department of Psychiatry, University of Michigan, USA
- Molecular & Behavioral Neuroscience Institute, University of Michigan, USA
- Department of Human Genetics, University of Michigan, USA
- Department of Computational Medicine & Bioinformatics, University of Michigan, USA
| | - Robert A. Zucker
- Department of Psychiatry, University of Michigan, USA
- Addiction Center, University of Michigan, USA
- Department of Psychology, University of Michigan, USA
| | - Mary M. Heitzeg
- Department of Psychiatry, University of Michigan, USA
- Addiction Center, University of Michigan, USA
| |
Collapse
|
29
|
Mallard TT, Ashenhurst JR, Harden KP, Fromme K. GABRA2, alcohol, and illicit drug use: An event-level model of genetic risk for polysubstance use. JOURNAL OF ABNORMAL PSYCHOLOGY 2018; 127:190-201. [PMID: 29528673 PMCID: PMC5851473 DOI: 10.1037/abn0000333] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
GABRA2, the gene encoding the α2 subunit of the GABAA receptor, potentially plays a role in the etiology of problematic drinking, as GABRA2 genotype has been associated with subjective response to alcohol and other alcohol-related reward processes. The GABRA2 gene has also been associated with illicit drug use, but the extent to which associations with drug use are independent of associations with alcohol use remains unclear, partly because most previous research has used a cross-sectional design that cannot discriminate comorbidity at the between-person level and co-occurrence within-persons. The present study used a daily monitoring method that assessed the effects of GABRA2 variation on substance use as it occurred in the natural environment during emerging adulthood. Non-Hispanic European participants provided DNA samples and completed daily reports of alcohol and drug use for 1 month per year across 4 years (N = 28,263 unique observations of N = 318 participants). GABRA2 variants were associated with illicit drug use in both sober and intoxicated conditions. Moreover, the effect of GABRA2 variation on drug use was moderated by an individual's degree of intoxication. These findings are consistent with recent genetic and neuroscience research, and they suggest GABRA2 variation influences drug-seeking behavior through both alcohol-related and alcohol-independent pathways. (PsycINFO Database Record
Collapse
Affiliation(s)
| | | | - K Paige Harden
- Department of Psychology, The University of Texas at Austin
| | - Kim Fromme
- Department of Psychology, The University of Texas at Austin
| |
Collapse
|
30
|
Grodin EN, Cortes CR, Spagnolo PA, Momenan R. Structural deficits in salience network regions are associated with increased impulsivity and compulsivity in alcohol dependence. Drug Alcohol Depend 2017; 179:100-108. [PMID: 28763777 PMCID: PMC11034794 DOI: 10.1016/j.drugalcdep.2017.06.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 06/01/2017] [Accepted: 06/24/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND Convergent preclinical and clinical evidence has linked the anterior insula to impulsivity and alcohol-associated compulsivity. The anterior insula is functionally connected to the anterior cingulate cortex, together comprising the major nodes of the salience network, which serves to signal salient events, including negative consequences. Clinical studies have found structural and functional alterations in the anterior insula and anterior cingulate cortices of alcohol dependent individuals. No studies have yet investigated the association between morphometric abnormalities in salience network regions and the phenotype of high levels of impulsivity and compulsivity seen in alcohol dependent individuals. METHODS In the current study, we compared self-report impulsivity, decisional impulsivity, self-report compulsivity, and structural neuroimaging measures in a sample of alcohol dependent individuals (n=60) and a comparison group of healthy controls (n=49). From the structural magnetic resonance images, we calculated volume and cortical thickness for 6 regions of interest: left and right anterior insula, posterior insula, and anterior cingulate. RESULTS We found that alcohol dependent individuals had smaller anterior insula and anterior cingulate volumes, as well as thinner anterior insula cortices. There were no group differences in posterior insula morphometry. Anterior insula and anterior cingulate structural measures were negatively associated with self-report impulsivity, decisional impulsivity, and compulsivity measures. CONCLUSIONS Our results suggest that addiction endophenotypes are associated with salience network morphometry in alcohol addiction. These relationships indicate that salience network hubs represent potential treatment targets for impulse control disorders, including alcohol addiction.
Collapse
Affiliation(s)
- Erica N Grodin
- Clinical Neuroimaging Research Core, NIAAA, NIH, Bethesda, MD 20892, United States; Department of Neuroscience, Brown University, Providence, RI, 02912, United States
| | - Carlos R Cortes
- Clinical Neuroimaging Research Core, NIAAA, NIH, Bethesda, MD 20892, United States
| | | | - Reza Momenan
- Clinical Neuroimaging Research Core, NIAAA, NIH, Bethesda, MD 20892, United States.
| |
Collapse
|
31
|
Murao E, Sugihara G, Isobe M, Noda T, Kawabata M, Matsukawa N, Takahashi H, Murai T, Noma S. Differences in neural responses to reward and punishment processing between anorexia nervosa subtypes: An fMRI study. Psychiatry Clin Neurosci 2017; 71:647-658. [PMID: 28459134 DOI: 10.1111/pcn.12537] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/21/2017] [Accepted: 04/25/2017] [Indexed: 12/30/2022]
Abstract
AIM Anorexia nervosa (AN) includes the restricting (AN-r) and binge-eating/purging (AN-bp) subtypes, which have been reported to differ regarding their underlying pathophysiologies as well as their behavioral patterns. However, the differences in neural mechanisms of reward systems between AN subtypes remain unclear. The aim of the present study was to explore differences in the neural processing of reward and punishment between AN subtypes. METHODS Twenty-three female patients with AN (11 AN-r and 12 AN-bp) and 20 healthy women underwent functional magnetic resonance imaging while performing a monetary incentive delay task. Whole-brain one-way analysis of variance was conducted to test between-group differences. RESULTS There were significant group differences in brain activation in the rostral anterior cingulate cortex and right posterior insula during loss anticipation, with increased brain activation in the AN-bp group relative to the AN-r and healthy women groups. No significant differences were found during gain anticipation. CONCLUSION AN-bp patients showed altered neural responses to punishment in brain regions implicated in emotional arousal. Our findings suggest that individuals with AN-bp are more sensitive to potential punishment than individuals with AN-r and healthy individuals at the neural level. The present study provides preliminary evidence that there are neurobiological differences between AN subtypes with regard to the reward system, especially punishment processing.
Collapse
Affiliation(s)
- Ema Murao
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Genichi Sugihara
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masanori Isobe
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomomi Noda
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Michiko Kawabata
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | - Hidehiko Takahashi
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toshiya Murai
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shun'ichi Noma
- Department of Psychiatry, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
32
|
Etiology of Teen Dating Violence among Adolescent Children of Alcoholics. J Youth Adolesc 2017; 47:515-533. [PMID: 28791542 DOI: 10.1007/s10964-017-0730-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 07/26/2017] [Indexed: 10/19/2022]
Abstract
Family processes in early life have been implicated in adolescent involvement in teen dating violence, yet the developmental pathways through which this occurs are not well understood. In this study, etiological pathways from parental psychopathology and marital conflict in infancy to involvement in dating violence in late adolescence were examined in a sample of children at high-risk due to parental alcohol problems. Families (N = 227) recruited when the child was 12 months of age were assessed at 12-, 24-, 36-months, kindergarten, 6th, 8th, and 12th grades. Slightly more than half of the children were female (51%) and the majority were of European American descent (91%). Parental psychopathology in infancy was indirectly associated with teen dating violence in late adolescence via low maternal warmth and self-regulation in early childhood, externalizing behavior from kindergarten to early adolescence, and sibling problems in middle childhood. Marital conflict was also indirectly associated with teen dating violence via child externalizing behavior. Maternal warmth and sensitivity in early childhood emerged as an important protective factor and was associated with reduced marital conflict and increased child self-regulation in the preschool years as well as increased parental monitoring in middle childhood and early adolescence. Family processes occurring in the preschool years and in middle childhood appear to be critical periods for creating conditions that contribute to dating violence risk in late adolescence. These findings underscore the need for early intervention and prevention with at-risk families.
Collapse
|
33
|
Kiive E, Laas K, Vaht M, Veidebaum T, Harro J. Stressful life events increase aggression and alcohol use in young carriers of the GABRA2 rs279826/rs279858 A-allele. Eur Neuropsychopharmacol 2017; 27:816-827. [PMID: 28237505 DOI: 10.1016/j.euroneuro.2017.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/28/2016] [Accepted: 02/09/2017] [Indexed: 01/14/2023]
Abstract
Research of GABRA2 gene in alcohol use and impulse control suggests its role in aggressive behaviour. The purpose of the present study was to examine the effects of GABRA2 genotype and stressful life events on aggressive behaviour, alcohol use frequency and occurrence of alcohol use disorder in a population representative sample of adolescents followed up from third grade to 25 years of age. The sample consisted of the younger cohort of the longitudinal Estonian Children Personality, Behaviour and Health Study. Aggressive behaviour was rated with the activity scale of af Klinteberg, Illinois Bully Scale and Buss-Perry Aggression Questionnaire. Stressful life events and alcohol use were self-reported. Life history of aggression and lifetime occurrence of psychiatric disorders were estimated in a structured interview. The sample was genotyped for GABRA2 rs279826 and rs279858 polymorphisms that are in strong linkage disequilibrium and yielded very similar findings: Higher number of stressful life events reported at age 15 was associated with increased fighting in A-allele carriers, but not in GG homozygotes. At age 25, A-allele carriers with more stressful life events scored higher on physical aggression than those with less stress, and this was also observed regarding life history of aggression. A-allele carriers exposed to higher stress had consumed alcoholic beverages more frequently at age 15, and by age 25, they had alcohol use disorder with higher prevalence. The results of the present study suggest that the GABRA2 genotype interacts with stress in young people with impact on the development of alcohol use and aggressive behaviour.
Collapse
Affiliation(s)
- Evelyn Kiive
- Division of Special Education, Department of Education, University of Tartu, Tartu, Estonia.
| | - Kariina Laas
- Division of Neuropsychopharmacology, Department of Psychology, University of Tartu, Tartu, Estonia
| | - Mariliis Vaht
- Division of Neuropsychopharmacology, Department of Psychology, University of Tartu, Tartu, Estonia
| | | | - Jaanus Harro
- Division of Neuropsychopharmacology, Department of Psychology, University of Tartu, Tartu, Estonia
| |
Collapse
|
34
|
Genetic variation within GRIN2B in adolescents with alcohol use disorder may be associated with larger left posterior cingulate cortex volume. Acta Neuropsychiatr 2017; 29:252-258. [PMID: 27498914 PMCID: PMC5478461 DOI: 10.1017/neu.2016.41] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Brain structure differences and adolescent alcohol dependence both show substantial heritability. However, exactly which genes are responsible for brain volume variation in adolescents with substance abuse disorders are currently unknown. The aim of this investigation was to determine whether genetic variants previously implicated in psychiatric disorders are associated with variation in brain volume in adolescents with alcohol use disorder (AUD). METHODS The cohort consisted of 58 adolescents with DSM-IV AUD and 58 age and gender-matched controls of mixed ancestry ethnicity. An Illumina Infinium iSelect custom 6000 bead chip was used to genotype 5348 single nucleotide polymorphisms (SNPs) in 378 candidate genes. Magnetic resonance images were acquired and volumes of global and regional structures were estimated using voxel-based morphometry. To determine whether any of the genetic variants were associated with brain volume, association analysis was conducted using linear regression in Plink. RESULTS From the exploratory analysis, the GRIN2B SNP rs219927 was associated with brain volume in the left posterior cingulate cortex (p<0.05), whereby having a G-allele was associated with a bigger volume. CONCLUSION The GRIN2B gene is involved in glutamatergic signalling and may be associated with developmental differences in AUD in brain regions such as the posterior cingulate cortex. Such differences may play a role in risk for AUD, and deserve more detailed investigation.
Collapse
|
35
|
Duka T, Nikolaou K, King SL, Banaschewski T, Bokde ALW, Büchel C, Carvalho FM, Conrod PJ, Flor H, Gallinat J, Garavan H, Heinz A, Jia T, Gowland P, Martinot JL, Paus T, Rietschel M, Robbins TW, Smolka M, Schumann G, Stephens DN. GABRB1 Single Nucleotide Polymorphism Associated with Altered Brain Responses (but not Performance) during Measures of Impulsivity and Reward Sensitivity in Human Adolescents. Front Behav Neurosci 2017; 11:24. [PMID: 28261068 PMCID: PMC5309221 DOI: 10.3389/fnbeh.2017.00024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 01/31/2017] [Indexed: 11/13/2022] Open
Abstract
Variations in genes encoding several GABAA receptors have been associated with human drug and alcohol abuse. Among these, a number of human studies have suggested an association between GABRB1, the gene encoding GABAA receptor β1 subunits, with Alcohol dependence (AD), both on its own and comorbid with other substance dependence and psychiatric illnesses. In the present study, we hypothesized that the GABRB1 genetically-associated increased risk for developing alcoholism may be associated with impaired behavioral control and altered sensitivity to reward, as a consequence of altered brain function. Exploiting the IMAGEN database (Schumann et al., 2010), we explored in a human adolescent population whether possession of the minor (T) variant of the single nucleotide polymorphism (SNP) rs2044081 is associated with performance of tasks measuring aspects of impulsivity, and reward sensitivity that are implicated in drug and alcohol abuse. Allelic variation did not associate with altered performance in either a stop-signal task (SST), measuring one aspect of impulsivity, or a monetary incentive delay (MID) task assessing reward anticipation. However, increased functional magnetic resonance imaging (fMRI) blood-oxygen-level dependent (BOLD) response in the right hemisphere inferior frontal gyrus (IFG), left hemisphere caudate/insula and left hemisphere inferior temporal gyrus (ITG) during MID performance was higher in the minor (T) allelic group. In contrast, during SST performance, the BOLD response found in the right hemisphere supramarginal gyrus, right hemisphere lingual and left hemisphere inferior parietal gyrus indicated reduced responses in the minor genotype. We suggest that β1-containing GABAA receptors may play a role in excitability of brain regions important in controlling reward-related behavior, which may contribute to susceptibility to addictive behavior.
Collapse
Affiliation(s)
- Theodora Duka
- School of Psychology, University of Sussex Falmer, UK
| | | | - Sarah L King
- School of Psychology, University of Sussex Falmer, UK
| | - Tobias Banaschewski
- Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University Mannheim, Germany
| | - Arun L W Bokde
- Institute of Neuroscience, Trinity College Dublin Dublin, Ireland
| | - Christian Büchel
- Department of Systems Neuroscience, Universitätsklinikum Hamburg Eppendorf Hamburg, Germany
| | | | - Patricia J Conrod
- Institute of Psychiatry, Kings College LondonLondon, UK; Department of Psychiatry, Université de Montréal, CHU Ste Justine HospitalMontréal, QC, Canada
| | - Herta Flor
- Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University Mannheim, Germany
| | - Jürgen Gallinat
- Department of Systems Neuroscience, Universitätsklinikum Hamburg Eppendorf Hamburg, Germany
| | - Hugh Garavan
- Institute of Neuroscience, Trinity College DublinDublin, Ireland; Departments of Psychiatry and Psychology, University of VermontBurlington, VT, USA
| | - Andreas Heinz
- Clinic for Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Germany
| | - Tianye Jia
- Institute of Psychiatry, Kings College London London, UK
| | - Penny Gowland
- School of Psychology, University of Nottingham Nottingham, UK
| | - Jean-Luc Martinot
- INSERM, UMR 1000, Research Unit Imaging and Psychiatry, IFR49, CEA, DSV, I2BM-Service Hospitalier Frédéric Joliot Orsay, France
| | - Tomáš Paus
- School of Psychology, University of NottinghamNottingham, UK; Rotman Research Institute, University of TorontoToronto, ON, Canada
| | - Marcella Rietschel
- Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University Mannheim, Germany
| | | | - Michael Smolka
- Department of Psychiatry and Psychotherapy, Technische Universität Dresden Dresden, Germany
| | - Gunter Schumann
- Institute of Psychiatry, Kings College LondonLondon, UK; MRC Social, Genetic and Developmental Psychiatry (SGDP) CentreLondon, UK
| | | |
Collapse
|
36
|
Analysis of alcohol use disorders from the Nathan Kline Institute-Rockland Sample: Correlation of brain cortical thickness with neuroticism. Drug Alcohol Depend 2017; 170:66-73. [PMID: 27875803 PMCID: PMC5183556 DOI: 10.1016/j.drugalcdep.2016.10.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 10/20/2016] [Accepted: 10/27/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Although differences in both neuroanatomical measures and personality traits, in particular neuroticism, have been associated with alcohol use disorders (AUD), whether lifetime AUD diagnosis alters the relationship between neuroticism and neuroanatomical structures remains to be determined. METHODS Data from 65 patients with lifetime AUD diagnoses and 65 healthy comparisons (HC) group-matched on age, sex and race were extracted from the Nathan Kline Institute - Rockland Sample data set. Each subject completed personality trait measures and underwent MRI scanning. Cortical thickness measures at 68 Desikan-Killiany Atlas regions were obtained using FreeSurfer 5.3.0. Regression analyses were performed to identify brain regions at which the neuroticism-cortical thickness relationship was altered by lifetime AUD status. RESULTS As expected, AUDs had higher neuroticism scores than HCs. Correlations between neuroticism and cortical thickness in the left insula and right fusiform differed significantly across groups. Higher neuroticism score in AUD and the interaction between the insular cortical thickness-neuroticism correlation and AUD status were confirmed in a replication study using the Human Connectome Project data set. CONCLUSIONS Results confirmed the relationship between neuroticism and AUD and suggests that specific cortical regions, particularly the left insula, represent anatomic substrates underlying this association in AUD.
Collapse
|
37
|
Salvatore JE, Meyers JL, Yan J, Aliev F, Lansford JE, Pettit GS, Bates JE, Dodge KA, Rose RJ, Pulkkinen L, Kaprio J, Dick DM. Intergenerational continuity in parents' and adolescents' externalizing problems: The role of life events and their interaction with GABRA2. JOURNAL OF ABNORMAL PSYCHOLOGY 2016; 124:709-28. [PMID: 26075969 DOI: 10.1037/abn0000066] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We examine whether parental externalizing behavior has an indirect effect on adolescent externalizing behavior via elevations in life events, and whether this indirect effect is further qualified by an interaction between life events and adolescents' GABRA2 genotype (rs279871). We use data from 2 samples: the Child Development Project (CDP; n = 324) and FinnTwin12 (n = 802). In CDP, repeated measures of life events, mother-reported adolescent externalizing, and teacher-reported adolescent externalizing were used. In FinnTwin12, life events and externalizing were assessed at age 14. Parental externalizing was indexed by measures of antisocial behavior and alcohol problems or alcohol dependence symptoms in both samples. In CDP, parental externalizing was associated with more life events, and the association between life events and subsequent adolescent externalizing varied as a function of GABRA2 genotype (p ≤ .05). The association between life events and subsequent adolescent externalizing was stronger for adolescents with 0 copies of the G minor allele compared to those with 1 or 2 copies of the minor allele. Parallel moderation trends were observed in FinnTwin12 (p ≤ .11). The discussion focuses on how the strength of intergenerational pathways for externalizing psychopathology may differ as a function of adolescent-level individual differences.
Collapse
Affiliation(s)
| | | | - Jia Yan
- Department of Psychiatry, Virginia Commonwealth University
| | - Fazil Aliev
- Department of Psychiatry, Virginia Commonwealth University
| | | | - Gregory S Pettit
- Department of Human Development and Family Studies, Auburn University
| | - John E Bates
- Department of Psychological and Brain Sciences, Indiana University
| | | | - Richard J Rose
- Department of Psychological and Brain Sciences, Indiana University
| | | | | | | |
Collapse
|
38
|
Wang PW, Lin HC, Liu GC, Yang YHC, Ko CH, Yen CF. Abnormal interhemispheric resting state functional connectivity of the insula in heroin users under methadone maintenance treatment. Psychiatry Res Neuroimaging 2016; 255:9-14. [PMID: 27497215 DOI: 10.1016/j.pscychresns.2016.07.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/16/2016] [Accepted: 07/27/2016] [Indexed: 11/25/2022]
Abstract
Abnormal interhemispheric functional connectivity is attracting more and more attention in the field of substance use. This study aimed to examine 1) the differences in interhemispheric functional connections of the insula with the contralateral insula and other brain regions between heroin users under methadone maintenance treatment (MMT) and healthy controls, and 2) the association between heroin users' interhemispheric insular functional connectivity using resting functional magnetic resonance imaging (fMRI) and the results of urine heroin analysis. Sixty male right-handed persons, including 30 with heroin dependence under MMT and 30 healthy controls, were recruited to this study. Resting fMRI experiments and urine heroin analysis were performed. Compared with the controls, the heroin users had a significantly lower interhemispheric insular functional connectivity. They also exhibited lower functional connectivity between insula and contralateral inferior orbital frontal lobe. After controlling for age, educational level and methadone dosage, less deviation of the interhemispheric insula functional connectivity was significantly associated with a lower risk of a positive urine heroin analysis result. Our findings demonstrated that the heroin users under MMT had abnormal long-range and interhemispheric resting functional connections. Those with a less dysfunctional interhemispheric insula functional connectivity had a lower risk of a positive urine heroin test.
Collapse
Affiliation(s)
- Peng-Wei Wang
- Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Psychiatry, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Huang-Chi Lin
- Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Psychiatry, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Gin-Chung Liu
- Department of Medical Imaging, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Radiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | - Chih-Hung Ko
- Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Psychiatry, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Psychiatry, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Cheng-Fang Yen
- Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Psychiatry, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
39
|
Stephens DN, King SL, Lambert JJ, Belelli D, Duka T. GABAAreceptor subtype involvement in addictive behaviour. GENES BRAIN AND BEHAVIOR 2016; 16:149-184. [DOI: 10.1111/gbb.12321] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/19/2016] [Accepted: 08/15/2016] [Indexed: 12/17/2022]
Affiliation(s)
| | - S. L. King
- School of Psychology; University of Sussex; Brighton UK
| | - J. J. Lambert
- Division of Neuroscience; University of Dundee; Dundee UK
| | - D. Belelli
- Division of Neuroscience; University of Dundee; Dundee UK
| | - T. Duka
- School of Psychology; University of Sussex; Brighton UK
| |
Collapse
|
40
|
Abstract
Multiple lines of evidence strongly indicate that genetic factors contribute to the risk for alcohol use disorders (AUD). There is substantial heterogeneity in AUD, which complicates studies seeking to identify specific genetic factors. To identify these genetic effects, several different alcohol-related phenotypes have been analyzed, including diagnosis and quantitative measures related to AUDs. Study designs have used candidate gene analyses, genetic linkage studies, genomewide association studies (GWAS), and analyses of rare variants. Two genes that encode enzymes of alcohol metabolism have the strongest effect on AUD: aldehyde dehydrogenase 2 and alcohol dehydrogenase 1B each has strongly protective variants that reduce risk, with odds ratios approximately 0.2-0.4. A number of other genes important in AUD have been identified and replicated, including GABRA2 and alcohol dehydrogenases 1B and 4. GWAS have identified additional candidates. Rare variants are likely also to play a role; studies of these are just beginning. A multifaceted approach to gene identification, targeting both rare and common variations and assembling much larger datasets for meta-analyses, is critical for identifying the key genes and pathways important in AUD.
Collapse
Affiliation(s)
- Howard J Edenberg
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
41
|
Beyond risk: Prospective effects of GABA Receptor Subunit Alpha-2 (GABRA2) × Positive Peer Involvement on adolescent behavior. Dev Psychopathol 2016; 29:711-724. [PMID: 27581089 DOI: 10.1017/s0954579416000419] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Research on Gene × Environment interactions typically focuses on maladaptive contexts and outcomes. However, the same genetic factors may also impact susceptibility to positive social contexts, leading to adaptive behavior. This paper examines whether the GABA receptor subunit alpha-2 (GABRA2) single nucleotide polymorphism rs279858 moderates the influence of positive peer affiliation on externalizing behavior and various forms of competence. Regions of significance were calculated to determine whether the form of the interaction supported differential susceptibility (increased sensitivity to both low and high positive peer affiliation) or vantage sensitivity (increased sensitivity to high positive peer affiliation). It was hypothesized that those carrying the homozygous minor allele (GG) would be more susceptible to peer effects. A sample (n = 300) of primarily male (69.7%) and White (93.0%) adolescents from the Michigan Longitudinal Study was assessed from ages 12 to 17. There was evidence for prospective Gene × Environment interactions in three of the four models. At low levels of positive peer involvement, those with the GG genotype were rated as having fewer adaptive outcomes, while at high levels they were rated as having greater adaptive outcomes. This supports differential susceptibility. Conceptualizing GABRA2 variants as purely risk factors may be inaccurate. Genetic differences in susceptibility to adaptive environmental exposures warrants further investigation.
Collapse
|
42
|
Smith GT, Cyders MA. Integrating affect and impulsivity: The role of positive and negative urgency in substance use risk. Drug Alcohol Depend 2016; 163 Suppl 1:S3-S12. [PMID: 27306729 PMCID: PMC4911536 DOI: 10.1016/j.drugalcdep.2015.08.038] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 08/25/2015] [Accepted: 08/28/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND The personality traits of positive and negative urgency refer to the tendencies to act rashly when experiencing unusually positive or negative emotions, respectively. METHODS The authors review recent empirical work testing urgency theory (Cyders and Smith, 2008a) and consider advances in theory related to these traits. RESULTS Empirical findings indicate that (a) the urgency traits are particularly important predictors of the onset of, and increases in, substance use in both children and young adults; (b) they appear to operate in part by biasing psychosocial learning; (c) pubertal onset is associated with increases in negative urgency, which in turn predict increases in adolescent drinking behavior; (d) variation in negative urgency trait levels are associated with variations in the functioning of an identified brain system; and (e) variations in the serotonin transporter gene, known to influence the relevant brain system, relate to variations in the urgency traits. CONCLUSION A recent model (Carver et al., 2008) proposes the urgency traits to be markers of a tendency to respond reflexively to emotion, whether through impulsive action or ill-advised inaction (the latter leading to depressive symptoms); this model has received empirical support. The authors discuss new directions for research on the urgency traits.
Collapse
Affiliation(s)
- Gregory T Smith
- Department of Psychology, University of Kentucky, Lexington, KY, USA.
| | - Melissa A Cyders
- Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA.
| |
Collapse
|
43
|
Förstera B, Castro PA, Moraga-Cid G, Aguayo LG. Potentiation of Gamma Aminobutyric Acid Receptors (GABAAR) by Ethanol: How Are Inhibitory Receptors Affected? Front Cell Neurosci 2016; 10:114. [PMID: 27199667 PMCID: PMC4858537 DOI: 10.3389/fncel.2016.00114] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/20/2016] [Indexed: 01/10/2023] Open
Abstract
In recent years there has been an increase in the understanding of ethanol actions on the type A γ-aminobutyric acid chloride channel (GABAAR), a member of the pentameric ligand gated ion channels (pLGICs). However, the mechanism by which ethanol potentiates the complex is still not fully understood and a number of publications have shown contradictory results. Thus many questions still remain unresolved requiring further studies for a better comprehension of this effect. The present review concentrates on the involvement of GABAAR in the acute actions of ethanol and specifically focuses on the immediate, direct or indirect, synaptic and extra-synaptic modulatory effects. To elaborate on the immediate, direct modulation of GABAAR by acute ethanol exposure, electrophysiological studies investigating the importance of different subunits, and data from receptor mutants will be examined. We will also discuss the nature of the putative binding sites for ethanol based on structural data obtained from other members of the pLGICs family. Finally, we will briefly highlight the glycine gated chloride channel (GlyR), another member of the pLGIC family, as a suitable target for the development of new pharmacological tools.
Collapse
Affiliation(s)
- Benjamin Förstera
- Laboratory of Neurophysiology, Department of Physiology, University of Concepcion Concepcion, Chile
| | - Patricio A Castro
- Laboratory of Environmental Neurotoxicology, Department of Biomedical Sciences, Faculty of Medicine, Universidad Católica del Norte Coquimbo, Chile
| | - Gustavo Moraga-Cid
- Hindbrain Integrative Neurobiology Laboratory, Institut de Neurobiologie Alfred Fessard Gif-Sur-Yvette, France
| | - Luis G Aguayo
- Laboratory of Neurophysiology, Department of Physiology, University of Concepcion Concepcion, Chile
| |
Collapse
|
44
|
Perry BL. Gendering Genetics: Biological Contingencies in the Protective Effects of Social Integration for Men and Women. AJS; AMERICAN JOURNAL OF SOCIOLOGY 2016; 121:1655-1696. [PMID: 27416652 DOI: 10.1086/685486] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Evidence that social and biological processes are intertwined in producing health and human behavior is rapidly accumulating. Using a feminist approach, this research explores how gender moderates the interaction between biological processes and men's and women's behavioral and emotional responses to similar social environments. Using data from the Collaborative Study on the Genetics of Alcoholism, the influence of gender, social integration, and genetic risk on nicotine and alcohol dependence is examined. Three-way interaction models reveal gender-specific moderation of interactions between genetic risk score and social integration. Namely, being currently married and reporting positive social psychological integration are predictive of reduced risk of nicotine dependence among men with genetic susceptibility to strong nicotine cravings in the presence of social cues like stress. In contrast, the protective effects of marital status and social integration are substantially attenuated and absent, respectively, among women with high-risk genotypes. This pattern reflects the dualism (i.e., simultaneous costs and benefits) inherent in social integration for women, which may disproportionately affect those with a genetic sensitivity to stress. These findings contest the notion of genotype as static biological hardwiring that is independent from social and cultural systems of gender difference.
Collapse
|
45
|
Konova AB, Moeller SJ, Parvaz MA, Froböse MI, Alia-Klein N, Goldstein RZ. Converging effects of cocaine addiction and sex on neural responses to monetary rewards. Psychiatry Res 2016; 248:110-118. [PMID: 26809268 PMCID: PMC4752897 DOI: 10.1016/j.pscychresns.2016.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 10/09/2015] [Accepted: 01/03/2016] [Indexed: 12/11/2022]
Abstract
There is some evidence that cocaine addiction manifests as more severe in women than men. Here, we examined whether these sex-specific differences in the clinical setting parallel differential neurobehavioral sensitivity to rewards in the laboratory setting. Twenty-eight (14 females/14 males) cocaine-dependent and 25 (11 females/14 males) healthy individuals completed a monetary reward task during fMRI. Results showed that the effects of cocaine dependence and sex overlapped in regions traditionally considered part of the mesocorticolimbic brain circuits including the hippocampus and posterior cingulate cortex (PCC), as well as those outside of this circuit (e.g., the middle temporal gyrus). The nature of this 'overlap' was such that both illness and female sex were associated with lower activations in these regions in response to money. Diagnosis-by-sex interactions instead emerged in the frontal cortex, such that cocaine-dependent females exhibited lower precentral gyrus and greater inferior frontal gyrus (IFG) activations relative to cocaine-dependent males and healthy females. Within these regions modulated both by diagnosis and sex, lower activation in the hippocampus and PCC, and higher IFG activations, correlated with increased subjective craving during the task. Results suggest sex-specific differences in addiction extend to monetary rewards and may contribute to core symptoms linked to relapse.
Collapse
Affiliation(s)
- Anna B Konova
- Center for Neural Science, New York University, New York, NY 10003, United States
| | - Scott J Moeller
- Departments of Psychiatry & Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Muhammad A Parvaz
- Departments of Psychiatry & Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Monja I Froböse
- Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| | - Nelly Alia-Klein
- Departments of Psychiatry & Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Rita Z Goldstein
- Departments of Psychiatry & Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| |
Collapse
|
46
|
Trucco EM, Hicks BM, Villafuerte S, Nigg JT, Burmeister M, Zucker RA. Temperament and externalizing behavior as mediators of genetic risk on adolescent substance use. JOURNAL OF ABNORMAL PSYCHOLOGY 2016; 125:565-75. [PMID: 26845260 DOI: 10.1037/abn0000143] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Understanding how specific genes contribute to risk for addiction remains challenging. This study tests whether childhood temperament and externalizing behavior in early adolescence account for a portion of the association between specific genetic variants and substance use problems in late adolescence. The sample consisted of 487 adolescents from the Michigan Longitudinal Study, a high-risk sample (70.2% male, 81.7% European American ancestry). Polymorphisms across serotonergic (SLC6A4, 5-HTTLPR), dopaminergic (DRD4, u-VNTR), noradrenergic (SLC6A2, rs36021), and GABAergic (GABRA2, rs279858; GABRA6, rs3811995) genes were examined given prior support for associations with temperament, externalizing behavior, and substance use problems. The temperament traits behavioral control and resiliency were assessed using interviewer ratings (ages 9-11), and externalizing behavior (ages 12-14) was assessed using teacher ratings. Self-reported substance use outcomes (ages 15-17) included maximum alcoholic beverages consumed in 24 hours, and frequency of past year cigarette and marijuana use. Behavioral control, resiliency, and externalizing behavior accounted for the associations between polymorphisms in noradrenergic and GABAergic genes and substance use in late adolescence. Individual differences in emotional coping and behavioral regulation represent nonspecific neurobiological underpinnings for an externalizing pathway to addiction. (PsycINFO Database Record
Collapse
Affiliation(s)
| | | | | | - Joel T Nigg
- Department of Psychiatry, Oregon Health and Science University
| | | | | |
Collapse
|
47
|
Wang FL, Chassin L, Geiser C, Lemery-Chalfant K. Mechanisms in the relation between GABRA2 and adolescent externalizing problems. Eur Child Adolesc Psychiatry 2016; 25:67-80. [PMID: 25804982 PMCID: PMC4583314 DOI: 10.1007/s00787-015-0703-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 03/12/2015] [Indexed: 12/16/2022]
Abstract
Conduct problems, alcohol problems and hyperactive-inattentive symptoms co-occur at a high rate and are heritable in adolescence. The γ-aminobutyric acid A receptor, α2 gene (GABRA2) is associated with a broad spectrum of externalizing problems and disinhibitory-related traits. The current study tested whether two important forms of disinhibition in adolescence, impulsivity and sensation seeking, mediated the effects of GABRA2 on hyperactive-inattentive symptoms, conduct problems, and alcohol problems. Participants were assessed at two waves (11-17 and 12-18 years old; N = 292). Analyses used the GABRA2 SNP, rs279858, which tags the two complementary (yin-yang) GABRA2 haplotypes. Multiple informants reported on adolescents' impulsivity and sensation seeking and adolescents self-reported their hyperactive-inattentive symptoms, conduct problems and lifetime alcohol problems. Impulsivity mediated the effect of GABRA2 on alcohol problems, hyperactive-inattentive symptoms, and conduct problems, whereas sensation seeking mediated the effect of GABRA2 on alcohol problems (AA/AG genotypes conferred risk). GABRA2 directly predicted adolescent alcohol problems, but the GG genotype conferred risk. Results suggest that there may be multiple pathways of risk from GABRA2 to adolescent externalizing problems, and suggest important avenues for future research.
Collapse
Affiliation(s)
- Frances L Wang
- Department of Psychology, Arizona State University, 950 S. McAllister Ave, P.O. Box 871104, Tempe, AZ, 85287-1104, USA.
| | - Laurie Chassin
- Department of Psychology, Arizona State University, 950 S. McAllister Ave, P.O. Box 871104, Tempe, AZ, 85287-1104, USA
| | - Christian Geiser
- Department of Psychology, Utah State University, 2810 Old Main Hill, Logan, UT, 84322-2810, USA
| | - Kathryn Lemery-Chalfant
- Department of Psychology, Arizona State University, 950 S. McAllister Ave, P.O. Box 871104, Tempe, AZ, 85287-1104, USA
| |
Collapse
|
48
|
Hess JL, Kawaguchi DM, Wagner KE, Faraone SV, Glatt SJ. The influence of genes on "positive valence systems" constructs: A systematic review. Am J Med Genet B Neuropsychiatr Genet 2016; 171B:92-110. [PMID: 26365619 DOI: 10.1002/ajmg.b.32382] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 08/31/2015] [Indexed: 11/08/2022]
Abstract
In 2009, the U.S. National Institute of Mental Health (NIMH) proposed an approach toward the deconstruction of psychiatric nosology under the research domain criteria (RDoC) framework. The overarching goal of RDoC is to identify robust, objective measures of behavior, emotion, cognition, and other domains that are more closely related to neurobiology than are diagnoses. A preliminary framework has been constructed, which has connected molecules, genes, brain circuits, behaviors, and other elements to dimensional psychiatric constructs. Although the RDoC framework has salience in emerging studies, foundational literature that pre-dated this framework requires synthesis and translation to the evolving objectives and nomenclature of RDoC. Toward this end, we review the candidate-gene association, linkage, and genome-wide studies that have implicated a variety of loci and genetic polymorphisms in selected Positive Valence Systems (PVS) constructs. Our goal is to review supporting evidence to currently listed genes implicated in this domain and novel candidates. We systematically searched and reviewed literature based on keywords listed under the June, 2011, edition of the PVS matrix on the RDoC website (http://www.nimh.nih.gov/research-priorities/rdoc/positive-valence-systems-workshop-proceedings.shtml), which were supplemented with de novo keywords pertinent to the scope of our review. Several candidate genes linked to the PVS framework were identified from candidate-gene association studies. We also identified novel candidates with loose association to PVS traits from genome-wide studies. There is strong evidence suggesting that PVS constructs, as currently conceptualized under the RDoC initiative, index genetically influenced traits; however, future research, including genetic epidemiological, and psychometric analyses, must be performed.
Collapse
Affiliation(s)
- Jonathan L Hess
- Departmentof Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York
| | - Daniel M Kawaguchi
- Departmentof Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York
| | - Kayla E Wagner
- Departmentof Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York.,Department of Psychology, Syracuse University, Syracuse, New York
| | - Stephen V Faraone
- Departmentof Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York.,K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
| | - Stephen J Glatt
- Departmentof Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York
| |
Collapse
|
49
|
Gondré-Lewis MC, Warnock KT, Wang H, June HL, Bell KA, Rabe H, Phani Babu Tiruveedhula V, Cook J, Lüddens H, Aurelian L, June HL. Early life stress is a risk factor for excessive alcohol drinking and impulsivity in adults and is mediated via a CRF/GABA(A) mechanism. Stress 2016; 19:235-47. [PMID: 27023221 PMCID: PMC4962560 DOI: 10.3109/10253890.2016.1160280] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Childhood stress and trauma are associated with substance use disorders in adulthood, but the neurological changes that confer increased vulnerability are largely unknown. In this study, maternal separation (MS) stress, restricted to the pre-weaning period, was used as a model to study mechanisms of protracted effects of childhood stress/traumatic experiences on binge drinking and impulsivity. Using an operant self-administration model of binge drinking and a delay discounting assay to measure impulsive-like behavior, we report that early life stress due to MS facilitated acquisition of binge drinking and impulsivity during adulthood in rats. Previous studies have shown heightened levels of corticotropin releasing factor (CRF) after MS, and here, we add that MS increased expression levels of GABA(A) α2 subunit in central stress circuits. To investigate the precise role of these circuits in regulating impulsivity and binge drinking, the CRF1 receptor antagonist antalarmin and the novel GABA(A) α2 subunit ligand 3-PBC were infused into the central amygdala (CeA) and medial prefrontal cortex (mPFC). Antalarmin and 3-PBC at each site markedly reduced impulsivity and produced profound reductions on binge-motivated alcohol drinking, without altering responding for sucrose. Furthermore, whole-cell patch-clamp studies showed that low concentrations of 3-PBC directly reversed the effect of relatively high concentrations of ethanol on α2β3γ2 GABA(A) receptors, by a benzodiazepine site-independent mechanism. Together, our data provide strong evidence that maternal separation, i.e. early life stress, is a risk factor for binge drinking, and is linked to impulsivity, another key risk factor for excessive alcohol drinking. We further show that pharmacological manipulation of CRF and GABA receptor signaling is effective to reverse binge drinking and impulsive-like behavior in MS rats. These results provide novel insights into the role of the brain stress systems in the development of impulsivity and excessive alcohol consumption.
Collapse
Affiliation(s)
- Marjorie C. Gondré-Lewis
- Department of Anatomy, Howard University College of Medicine, Washington, DC 20059, USA
- Department of Psychiatry and Behavioral Sciences, Howard University College of Medicine, Washington, DC 20059, USA
- Correspondence and request for materials should be addressed to: Dr. Marjorie C. Gondré-Lewis, Associate Professor, Laboratory for Neurodevelopment, Department of Anatomy, Howard University College of Medicine, 520 W Street, NW, Washington, DC 20059, Ph: 202-806-5274,
| | - Kaitlin T. Warnock
- Department of Psychiatry and Behavioral Sciences, Howard University College of Medicine, Washington, DC 20059, USA
| | - Hong Wang
- Department of Anatomy, Howard University College of Medicine, Washington, DC 20059, USA
| | - Harry L. June
- Department of Psychiatry and Behavioral Sciences, Howard University College of Medicine, Washington, DC 20059, USA
| | - Kimberly A. Bell
- Department of Psychiatry and Behavioral Sciences, Howard University College of Medicine, Washington, DC 20059, USA
| | - Holger Rabe
- Department of Psychiatry, University of Mainz, D-55131, Germany
| | | | - James Cook
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
| | - Hartmut Lüddens
- Department of Psychiatry, University of Mainz, D-55131, Germany
| | - Laure Aurelian
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Harry L. June
- Department of Psychiatry and Behavioral Sciences, Howard University College of Medicine, Washington, DC 20059, USA
| |
Collapse
|
50
|
Duka T, Dixon CI, Trick L, Crombag HS, King SL, Stephens DN. Motivational Effects of Methylphenidate are Associated with GABRA2 Variants Conferring Addiction Risk. Front Behav Neurosci 2015; 9:304. [PMID: 26635556 PMCID: PMC4649050 DOI: 10.3389/fnbeh.2015.00304] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/29/2015] [Indexed: 12/02/2022] Open
Abstract
Background: Variations in the GABRA2 gene, encoding α2 subunits of GABAA receptors, have been associated with risk for addiction to several drugs, but the mechanisms by which variations in non-coding regions of GABRA2 increase risk for addictions are not understood. Mice with deletion of GABRA2 show deficits in the ability of psychostimulants to facilitate responding for conditioned reinforcers, offering a potential explanation. Methods: We report human and mouse studies investigating a potential endophenotype underlying this association. Healthy human volunteers carrying either cocaine-addiction “risk” or “protective” GABRA2 single nucleotide polymorphism (SNPs) were tested for their subjective responses to methylphenidate, and methylphenidate’s ability to facilitate conditioned reinforcement (CRf) for visual stimuli (CS+) associated with monetary reward. In parallel, methylphenidate’s ability to facilitate responding for a visual CRf was studied in wildtype and α2 knockout (α2−/−) mice. Results: Methylphenidate increased the number of CS+ presentations obtained by human subjects carrying protective, but not risk SNPs. In mice, methylphenidate increased responding for a CS+ in wildtype, but not α2−/− mice. Human subjects carrying protective SNPs felt stimulated, aroused and restless following methylphenidate, while individuals carrying risk SNPs did not. Conclusion: Human risk SNP carriers were insensitive to methylphenidate’s effects on mood or in facilitating CRf. That mice with the gene deletion were also insensitive to methylphenidate’s ability to increase responding for CRf, suggests a potential mechanism whereby low α2-subunit levels increase risk for addictions. Circuits employing GABAA-α2 subunit-containing receptors may protect against risk for addictions.
Collapse
Affiliation(s)
- Theodora Duka
- School of Psychology, University of Sussex, Falmer Brighton, UK
| | - Claire I Dixon
- School of Psychology, University of Sussex, Falmer Brighton, UK
| | - Leanne Trick
- School of Psychology, University of Sussex, Falmer Brighton, UK
| | - Hans S Crombag
- School of Psychology, University of Sussex, Falmer Brighton, UK
| | - Sarah L King
- School of Psychology, University of Sussex, Falmer Brighton, UK
| | | |
Collapse
|