1
|
Hesselman MC, Zeeb M, Rusert P, Pasin C, Mamrosh J, Kariuki S, Pichler I, Sickmann M, Kaufmann MM, Schmidt D, Friedrich N, Metzner KJ, Rindler A, Kuster H, Adams C, Thebus R, Huber M, Yerly S, Leuzinger K, Perreau M, Koller R, Dollenmaier G, Frigerio S, Westfall DH, Deng W, deCamp AC, Juraska M, Edupuganti S, Mgodi N, Murrell H, Garrett N, Wagh K, Mullins JI, Williamson C, Moore PL, Günthard HF, Kouyos RD, Trkola A. Rare twin cysteine residues in the HIV-1 envelope variable region 1 link to neutralization escape and breadth development. Cell Host Microbe 2025; 33:279-293.e6. [PMID: 39909038 DOI: 10.1016/j.chom.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/26/2024] [Accepted: 01/09/2025] [Indexed: 02/07/2025]
Abstract
Identifying HIV-1 envelope (Env) traits associated with neutralization cross-reactivity is crucial for vaccine design. Variable loops 1 and 2 (V1V2), positioned at the Env trimer apex, are key regions linked to neutralization. We describe non-canonical cysteine (Cys) residues in V1 that are enriched in individuals with elite neutralization breadth. Analyzing over 65,000 V1 sequences from the CATNAP database, AMP trials, and longitudinal HIV-1 cohorts (SHCS, ZPHI, and CAPRISA), we found that Env variants with extra V1 Cys are present at low levels and fluctuate over time. Extra V1 Cys associate with elite plasma neutralization, and two additional Cys are preferred, suggesting stabilization through disulfide bonds. Among 34 broadly neutralizing antibody (bnAb)-inducer Envs, 17.6% had elongated V1 regions with extra Cys. These extra Cys moderately increased neutralization resistance and altered bnAb epitope accessibility. Collectively, altering epitope exposure alongside Env stabilization renders the V1 twin Cys motif a promising feature for HIV-1 bnAb immunogens.
Collapse
Affiliation(s)
- Maria C Hesselman
- Institute of Medical Virology, University of Zurich (UZH), 8057 Zurich, Switzerland
| | - Marius Zeeb
- Institute of Medical Virology, University of Zurich (UZH), 8057 Zurich, Switzerland; Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich (USZ), 8091 Zurich, Switzerland
| | - Peter Rusert
- Institute of Medical Virology, University of Zurich (UZH), 8057 Zurich, Switzerland
| | - Chloé Pasin
- Institute of Medical Virology, University of Zurich (UZH), 8057 Zurich, Switzerland; Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich (USZ), 8091 Zurich, Switzerland
| | - Jennifer Mamrosh
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Samuel Kariuki
- Department of Biological Sciences, School of Science, University of Eldoret, 30100 Eldoret, Kenya; Institute for Infectious Diseases and Molecular Medicine, Division of Medical Virology, Faculty of Health Sciences, University of Cape Town and National Health Laboratory Service, 7925 Cape Town, South Africa
| | - Ian Pichler
- Institute of Medical Virology, University of Zurich (UZH), 8057 Zurich, Switzerland
| | - Michèle Sickmann
- Institute of Medical Virology, University of Zurich (UZH), 8057 Zurich, Switzerland
| | - Masako M Kaufmann
- Institute of Medical Virology, University of Zurich (UZH), 8057 Zurich, Switzerland
| | - Daniel Schmidt
- Institute of Medical Virology, University of Zurich (UZH), 8057 Zurich, Switzerland
| | - Nikolas Friedrich
- Institute of Medical Virology, University of Zurich (UZH), 8057 Zurich, Switzerland
| | - Karin J Metzner
- Institute of Medical Virology, University of Zurich (UZH), 8057 Zurich, Switzerland; Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich (USZ), 8091 Zurich, Switzerland
| | - Audrey Rindler
- Institute of Medical Virology, University of Zurich (UZH), 8057 Zurich, Switzerland; Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich (USZ), 8091 Zurich, Switzerland
| | - Herbert Kuster
- Institute of Medical Virology, University of Zurich (UZH), 8057 Zurich, Switzerland; Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich (USZ), 8091 Zurich, Switzerland
| | - Craig Adams
- Institute for Infectious Diseases and Molecular Medicine, Division of Medical Virology, Faculty of Health Sciences, University of Cape Town and National Health Laboratory Service, 7925 Cape Town, South Africa
| | - Ruwayhida Thebus
- Institute for Infectious Diseases and Molecular Medicine, Division of Medical Virology, Faculty of Health Sciences, University of Cape Town and National Health Laboratory Service, 7925 Cape Town, South Africa
| | - Michael Huber
- Institute of Medical Virology, University of Zurich (UZH), 8057 Zurich, Switzerland
| | - Sabine Yerly
- Laboratory of Virology, University Hospital Geneva, University of Geneva, 1205 Geneva, Switzerland
| | | | - Matthieu Perreau
- Division of Immunology and Allergy, University Hospital Lausanne, University of Lausanne, 1011 Lausanne, Switzerland
| | - Roger Koller
- Institute for Infectious Diseases, University of Bern, 3001 Bern, Switzerland
| | | | - Simona Frigerio
- Institute of Laboratory Medicine, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland
| | - Dylan H Westfall
- Department of Microbiology at the University of Washington, Seattle, WA 98195, USA
| | - Wenjie Deng
- Department of Microbiology at the University of Washington, Seattle, WA 98195, USA
| | | | | | - Srilatha Edupuganti
- Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta, GA 30322, USA
| | - Nyaradzo Mgodi
- University of Zimbabwe Clinical Trials Research Centre, Harare, Zimbabwe; University of California, San Francisco, San Francisco, CA 94115, USA
| | - Hugh Murrell
- Institute for Infectious Diseases and Molecular Medicine, Division of Medical Virology, Faculty of Health Sciences, University of Cape Town and National Health Laboratory Service, 7925 Cape Town, South Africa
| | - Nigel Garrett
- Department of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, 4041 Durban, South Africa; Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, 4013 Durban, South Africa
| | - Kshitij Wagh
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - James I Mullins
- Department of Microbiology at the University of Washington, Seattle, WA 98195, USA
| | - Carolyn Williamson
- Institute for Infectious Diseases and Molecular Medicine, Division of Medical Virology, Faculty of Health Sciences, University of Cape Town and National Health Laboratory Service, 7925 Cape Town, South Africa; Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, 4013 Durban, South Africa
| | - Penny L Moore
- SA MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, 2050 Johannesburg, South Africa; National Institute for Communicable Disease of the National Health Laboratory Services, 2192 Johannesburg, South Africa; Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, 4013 Durban, South Africa
| | - Huldrych F Günthard
- Institute of Medical Virology, University of Zurich (UZH), 8057 Zurich, Switzerland; Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich (USZ), 8091 Zurich, Switzerland
| | - Roger D Kouyos
- Institute of Medical Virology, University of Zurich (UZH), 8057 Zurich, Switzerland; Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich (USZ), 8091 Zurich, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich (UZH), 8057 Zurich, Switzerland.
| |
Collapse
|
2
|
Mason RD, Zhang B, Morano NC, Shen CH, McKee K, Heimann A, Du R, Nazzari AF, Hodges S, Kanai T, Lin BC, Louder MK, Doria-Rose NA, Zhou T, Shapiro L, Roederer M, Kwong PD, Gorman J. Structural development of the HIV-1 apex-directed PGT145-PGDM1400 antibody lineage. Cell Rep 2025; 44:115223. [PMID: 39826122 DOI: 10.1016/j.celrep.2024.115223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/23/2024] [Accepted: 12/29/2024] [Indexed: 01/22/2025] Open
Abstract
Broadly neutralizing antibodies (bNAbs) targeting the apex of the HIV-1-envelope (Env) trimer comprise the most potent category of HIV-1 bNAbs and have emerged as promising therapeutics. Here, we investigate the development of the HIV-1 apex-directed PGT145-PGDM1400 antibody lineage and report cryo-EM structures at 3.4 Å resolution of PGDM1400 and of an improved PGT145 variant (PGT145-R100aS), each bound to the BG505 Env trimer. Cross-species-based engineering improves PGT145 IC80 breadth to near that of PGDM1400. Despite similar breadth and potency, the two antibodies differ in their residue-level interactions with important apex features, including N160 glycans and apex cavity, with residue 100i of PGT145 (sulfated tyrosine) penetrating ∼7 Å farther than residue 100i of PGDM1400 (aspartic acid). While apex-directed bNAbs from other donors use maturation pathways that often converge on analogous residue-level recognition, our results demonstrate that divergent residue-level recognition can occur within the same lineage, thereby enabling improved coverage of escape variants.
Collapse
Affiliation(s)
- Rosemarie D Mason
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicholas C Morano
- Aaron Diamond AIDS Research Center and Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Krisha McKee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ashley Heimann
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Renguang Du
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexandra F Nazzari
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shelby Hodges
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Tapan Kanai
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Bob C Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lawrence Shapiro
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Aaron Diamond AIDS Research Center and Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Aaron Diamond AIDS Research Center and Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA.
| |
Collapse
|
3
|
Pandey B, S S, Chatterjee A, Mangala Prasad V. Role of surface glycans in enveloped RNA virus infections: A structural perspective. Proteins 2025; 93:93-104. [PMID: 37994197 DOI: 10.1002/prot.26636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/16/2023] [Accepted: 10/30/2023] [Indexed: 11/24/2023]
Abstract
Enveloped RNA viruses have been causative agents of major pandemic outbreaks in the recent past. Glycans present on these virus surface proteins are critical for multiple processes during the viral infection cycle. Presence of glycans serves as a key determinant of immunogenicity, but intrinsic heterogeneity, dynamics, and evolutionary shifting of glycans in heavily glycosylated enveloped viruses confounds typical structure-function analysis. Glycosylation sites are also conserved across different viral families, which further emphasizes their functional significance. In this review, we summarize findings regarding structure-function correlation of glycans on enveloped RNA virus proteins.
Collapse
Affiliation(s)
- Bhawna Pandey
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Srividhya S
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Ananya Chatterjee
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Vidya Mangala Prasad
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, India
- Center for Infectious Disease Research, Indian Institute of Science, Bengaluru, Karnataka, India
| |
Collapse
|
4
|
Uversky VN. How to drug a cloud? Targeting intrinsically disordered proteins. Pharmacol Rev 2024; 77:PHARMREV-AR-2023-001113. [PMID: 39433443 DOI: 10.1124/pharmrev.124.001113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/03/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024] Open
Abstract
Biologically active proteins/regions without stable structure (i.e., intrinsically disordered proteins and regions (IDPs and IDRs)) are commonly found in all proteomes. They have a unique functional repertoire that complements the functionalities of ordered proteins and domains. IDPs/IDRs are multifunctional promiscuous binders capable of folding at interaction with specific binding partners on a template- or context-dependent manner, many of which undergo liquid-liquid phase separation, leading to the formation of membrane-less organelles and biomolecular condensates. Many of them are frequently related to the pathogenesis of various human diseases. All this defines IDPs/IDRs as attractive targets for the development of novel drugs. However, their lack of unique structures, multifunctionality, binding promiscuity, and involvement in unusual modes of action preclude direct use of traditional structure-based drug design approaches for targeting IDPs/IDRs, and make disorder-based drug discovery for these "protein clouds" challenging. Despite all these complexities there is continuing progress in the design of small molecules affecting IDPs/IDRs. This article describes the major structural features of IDPs/IDRs and the peculiarities of the disorder-based functionality. It also discusses the roles of IDPs/IDRs in various pathologies, and shows why the approaches elaborated for finding drugs targeting ordered proteins cannot be directly used for the intrinsic disorder-based drug design, and introduces some novel methodologies suitable for these purposes. Finally, it emphasizes that regardless of their multifunctionality, binding promiscuity, lack of unique structures, and highly dynamic nature, "protein clouds" are principally druggable. Significance Statement Intrinsically disordered proteins and regions are highly abundant in nature, have multiple important biological functions, are commonly involved in the pathogenesis of a multitude of human diseases, and are therefore considered as very attractive drug targets. Although dealing with these unstructured multifunctional protein/regions is a challenging task, multiple innovative approaches have been designed to target them by small molecules.
Collapse
|
5
|
Haryadi R, Chan KF, Lin PC, Tan YL, Wan C, Shahreel W, Tay SJ, Nguyen-Khuong T, Walsh I, Song Z. Generating and characterizing a comprehensive panel of CHO cells glycosylation mutants for advancing glycobiology and biotechnology research. Sci Rep 2024; 14:23068. [PMID: 39367021 PMCID: PMC11452509 DOI: 10.1038/s41598-024-73722-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/20/2024] [Indexed: 10/06/2024] Open
Abstract
This report describes the development and characterization of a comprehensive collection of CHO cell glycosylation mutants with significant potential for advancing glycobiology and biotechnology. EPO-Fc and trastuzumab, two model molecules, were produced using these mutants to assess the effects of mutated glycogenes, and LC-MS/MS analysis was employed to quantitatively analyse their N-glycans. EPO-Fc exhibited exclusively homogeneous Man9 glycans only when nearly all α-mannosidases in the genome were inactivated, except lysosomal MAN2B1. Some mutants lacking GnT-I activity produce mostly Man5 N-glycans, while their O-glycan and glycolipid profiles can differ due to other mutations in the cell. GnT-II deficiency prevents GnT-V from adding GlcNAc to the core N-glycan, resulting in branches attaching solely to the α1,3-linked mannose, leaving the α1,6-linked mannose free. The mutant-produced antibody's single-branched glycan contains more sialic acid than the dual-branched glycans produced in CHO-K1 cells. Trastuzumab produced in these mutants provided insights into how Fc N-glycans impact the antibody's interaction with FcγR1 and FcγR2a, FcγR3a, and their influence on antibody-dependent cellular cytotoxicity (ADCC). In the study of Fc glycans in Fc-FcγR1 and FcγR2a interactions, we observed a consistent glycan-related impact on binding to both receptors, indicating a common interaction mechanism between Fc glycans and both FcγRI and FcγRIIa. CHO mutants produced trimeric gp120 demonstrated distinct reactivity with multiple broadly neutralizing anti-HIV antibodies, confirming the involvement of gp120 glycans in interactions with specific broadly neutralizing antibodies. Finally, one of the mutants produced human β-glucocerebrosidase with uniform Man5 N-glycans, showcasing its potential for glycoengineered production and enhancement in therapeutic efficacy.
Collapse
Affiliation(s)
- Ryan Haryadi
- Bioprocessing Technology Institute, A*STAR, 20 Biopolis Way, #06-01, Centros, 138668, Singapore
| | - Kah Fai Chan
- Bioprocessing Technology Institute, A*STAR, 20 Biopolis Way, #06-01, Centros, 138668, Singapore
| | - Pao Chun Lin
- Bioprocessing Technology Institute, A*STAR, 20 Biopolis Way, #06-01, Centros, 138668, Singapore
| | - Yun Lei Tan
- Bioprocessing Technology Institute, A*STAR, 20 Biopolis Way, #06-01, Centros, 138668, Singapore
| | - Corrine Wan
- Bioprocessing Technology Institute, A*STAR, 20 Biopolis Way, #06-01, Centros, 138668, Singapore
| | - Wahyu Shahreel
- Bioprocessing Technology Institute, A*STAR, 20 Biopolis Way, #06-01, Centros, 138668, Singapore
| | - Shi Jie Tay
- Bioprocessing Technology Institute, A*STAR, 20 Biopolis Way, #06-01, Centros, 138668, Singapore
| | - Terry Nguyen-Khuong
- Bioprocessing Technology Institute, A*STAR, 20 Biopolis Way, #06-01, Centros, 138668, Singapore
| | - Ian Walsh
- Bioprocessing Technology Institute, A*STAR, 20 Biopolis Way, #06-01, Centros, 138668, Singapore
| | - Zhiwei Song
- Bioprocessing Technology Institute, A*STAR, 20 Biopolis Way, #06-01, Centros, 138668, Singapore.
| |
Collapse
|
6
|
Upadhyay C, Rao P, Behzadi MA, Feyznezhad R, Lambert GS, Kumar R, Kumar M, Yang W, Jiang X, Luo CC, Nadas A, Arthos J, Kong XP, Zhang H, Hioe CE, Duty JA. Signal peptide exchange alters HIV-1 envelope antigenicity and immunogenicity. Front Immunol 2024; 15:1476924. [PMID: 39380992 PMCID: PMC11458420 DOI: 10.3389/fimmu.2024.1476924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024] Open
Abstract
Introduction HIV-1 envelope (Env) is the key target for antibodies (Abs) against the virus and thus an important HIV-1 vaccine component. Env is synthesized from a gp160 precursor with a signal peptide (SP) at its N-terminus. This study investigated the influence of the SP on Env antigenicity and immunogenicity. Methods Env proteins from two HIV-1 isolates, AA05 and AC02, were analyzed as gp120 and gp160 in their native wild-type (WT) forms and as chimeras with swapped SPs (AA05-02 and AC02-05). The WT and chimeric Env were assessed for antigenicity and glycosylation using monoclonal antibodies (mAbs) and glycan probes. Immunogenicity was tested in mice using three vaccine types: gp120 protein, gp120 DNA+gp120 protein, and gp120 DNA+gp160 DNA. Results The recombinant AC02 gp120 protein was antigenically superior to AA05 as indicated by higher reactivity with most mAbs tested. When SPs were swapped, the antigenicity of the chimeric gp120s (AA05-02 and AC02-05) resembled that of the gp120s from which the SPs were derived; AA05-02 was similar to AC02 and vice versa. Glycan probe reactivity followed a similar pattern: AA05-02 and AC02 showed similar affinity to high-mannose specific mAbs and lectins. Interestingly, the antigenicity of gp160s showed an opposite pattern; membrane-bound gp160 expressed with the AA05 SP (AA05 and AC02-05) showed greater mAb binding than gp160 with the AC02 SP (AC02 and AA05-02). Mice immunized with gp120 protein showed that AA05-02 induced stronger cross-reactive binding Ab responses than AA05 WT, and AC02 elicited stronger responses than AC02-05, indicating AC02 SP enhanced gp120 immunogenicity. However, when DNA vaccines were included (gp120 DNA+gp120 protein and gp120 DNA+gp160 DNA), the use of heterologous SPs diminished the immunogenicity of the WT immunogens. Among the three vaccine regimens tested, only gp120 DNA+gp160 DNA immunization elicited low-level Tier 2 neutralizing Abs, with AA05 WT inducing Abs with greater neutralization capabilities than AA05-02. Conclusion These data demonstrate that the SP can significantly impact the antigenicity and immunogenicity of HIV-1 Env proteins. Hence, while SP swapping is a common practice in constructing Env immunogens, this study highlights the importance of careful consideration of the effects of replacing native SPs on the immunogenicity of Env vaccines.
Collapse
Affiliation(s)
- Chitra Upadhyay
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Priyanka Rao
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Mohammad Amin Behzadi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Roya Feyznezhad
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Gregory S. Lambert
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Rajnish Kumar
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Madhu Kumar
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Weiming Yang
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| | - Xunqing Jiang
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, United States
| | - Christina C. Luo
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, United States
| | - Arthur Nadas
- Department of Environment Medicine, New York University Grossman School of Medicine, New York, NY, United States
| | - James Arthos
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, United States
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| | - Catarina E. Hioe
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Research Service, James J. Peters VA Medical Center, Bronx, NY, United States
| | - J. Andrew Duty
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
7
|
Vukovich MJ, Shiakolas AR, Lindenberger J, Richardson RA, Bass LE, Barr M, Liu Y, Go EP, Park CS, May AJ, Sammour S, Kambarami C, Huang X, Janowska K, Edwards RJ, Mansouri K, Spence TN, Abu-Shmais AA, Manamela NP, Richardson SI, Leonard SEW, Gripenstraw KR, Setliff I, Saunders KO, Bonami RH, Ross TM, Desaire H, Moore PL, Parks R, Haynes BF, Sheward DJ, Acharya P, Sautto GA, Georgiev IS. Isolation and characterization of IgG3 glycan-targeting antibodies with exceptional cross-reactivity for diverse viral families. PLoS Pathog 2024; 20:e1012499. [PMID: 39292703 PMCID: PMC11410209 DOI: 10.1371/journal.ppat.1012499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/13/2024] [Indexed: 09/20/2024] Open
Abstract
Broadly reactive antibodies that target sequence-diverse antigens are of interest for vaccine design and monoclonal antibody therapeutic development because they can protect against multiple strains of a virus and provide a barrier to evolution of escape mutants. Using LIBRA-seq (linking B cell receptor to antigen specificity through sequencing) data for the B cell repertoire of an individual chronically infected with human immunodeficiency virus type 1 (HIV-1), we identified a lineage of IgG3 antibodies predicted to bind to HIV-1 Envelope (Env) and influenza A Hemagglutinin (HA). Two lineage members, antibodies 2526 and 546, were confirmed to bind to a large panel of diverse antigens, including several strains of HIV-1 Env, influenza HA, coronavirus (CoV) spike, hepatitis C virus (HCV) E protein, Nipah virus (NiV) F protein, and Langya virus (LayV) F protein. We found that both antibodies bind to complex glycans on the antigenic surfaces. Antibody 2526 targets the stem region of influenza HA and the N-terminal domain (NTD) region of SARS-CoV-2 spike. A crystal structure of 2526 Fab bound to mannose revealed the presence of a glycan-binding pocket on the light chain. Antibody 2526 cross-reacted with antigens from multiple pathogens and displayed no signs of autoreactivity. These features distinguish antibody 2526 from previously described glycan-reactive antibodies. Further study of this antibody class may aid in the selection and engineering of broadly reactive antibody therapeutics and can inform the development of effective vaccines with exceptional breadth of pathogen coverage.
Collapse
Affiliation(s)
- Matthew J. Vukovich
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Andrea R. Shiakolas
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Jared Lindenberger
- Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - Robert A. Richardson
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, Florida, United States of America
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, United States of America
| | - Lindsay E. Bass
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Maggie Barr
- Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - Yanshun Liu
- Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - Eden P. Go
- Department of Chemistry, University of Kansas, Lawrence, Kansas, United States of America
| | - Chan Soo Park
- Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - Aaron J. May
- Duke Human Vaccine Institute, Durham, North Carolina, United States of America
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Salam Sammour
- Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - Chipo Kambarami
- Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - Xiao Huang
- Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - Katarzyna Janowska
- Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - Robert J. Edwards
- Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - Katayoun Mansouri
- Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - Taylor N. Spence
- Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - Alexandra A. Abu-Shmais
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Nelia P. Manamela
- MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Simone I. Richardson
- MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Sabina E. W. Leonard
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Kathryn R. Gripenstraw
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Ian Setliff
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Program in Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Kevin O. Saunders
- Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - Rachel H. Bonami
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Ted M. Ross
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, Florida, United States of America
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, United States of America
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Heather Desaire
- Department of Chemistry, University of Kansas, Lawrence, Kansas, United States of America
| | - Penny L. Moore
- MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Robert Parks
- Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Durham, North Carolina, United States of America
- Department of Medicine and Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Daniel J. Sheward
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Durham, North Carolina, United States of America
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Giuseppe A. Sautto
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, Florida, United States of America
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, United States of America
| | - Ivelin S. Georgiev
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Program in Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Computer Science, Vanderbilt University, Nashville, Tennessee, United States of America
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- Program in Computational Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| |
Collapse
|
8
|
Voss WN, Mallory MA, Byrne PO, Marchioni JM, Knudson SA, Powers JM, Leist SR, Dadonaite B, Townsend DR, Kain J, Huang Y, Satterwhite E, Castillo IN, Mattocks M, Paresi C, Munt JE, Scobey T, Seeger A, Premkumar L, Bloom JD, Georgiou G, McLellan JS, Baric RS, Lavinder JJ, Ippolito GC. Hybrid immunity to SARS-CoV-2 arises from serological recall of IgG antibodies distinctly imprinted by infection or vaccination. Cell Rep Med 2024; 5:101668. [PMID: 39094579 PMCID: PMC11384961 DOI: 10.1016/j.xcrm.2024.101668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/15/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
We describe the molecular-level composition of polyclonal immunoglobulin G (IgG) anti-spike antibodies from ancestral severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, vaccination, or their combination ("hybrid immunity") at monoclonal resolution. Infection primarily triggers S2/N-terminal domain (NTD)-reactive antibodies, whereas vaccination mainly induces anti-receptor-binding domain (RBD) antibodies. This imprint persists after secondary exposures wherein >60% of ensuing hybrid immunity derives from the original IgG pool. Monoclonal constituents of the original IgG pool can increase breadth, affinity, and prevalence upon secondary exposures, as exemplified by the plasma antibody SC27. Following a breakthrough infection, vaccine-induced SC27 gained neutralization breadth and potency against SARS-CoV-2 variants and zoonotic viruses (half-maximal inhibitory concentration [IC50] ∼0.1-1.75 nM) and increased its binding affinity to the protective RBD class 1/4 epitope (dissociation constant [KD] < 5 pM). According to polyclonal escape analysis, SC27-like binding patterns are common in SARS-CoV-2 hybrid immunity. Our findings provide a detailed molecular definition of immunological imprinting and show that vaccination can produce class 1/4 (SC27-like) IgG antibodies circulating in the blood.
Collapse
Affiliation(s)
- William N Voss
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Michael A Mallory
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Patrick O Byrne
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Jeffrey M Marchioni
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Sean A Knudson
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - John M Powers
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sarah R Leist
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bernadeta Dadonaite
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Douglas R Townsend
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Jessica Kain
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Yimin Huang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Ed Satterwhite
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Izabella N Castillo
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Melissa Mattocks
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chelsea Paresi
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Jennifer E Munt
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Trevor Scobey
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Allison Seeger
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Lakshmanane Premkumar
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA; Howard Hughes Medical Institute, Seattle, WA, USA
| | - George Georgiou
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Ralph S Baric
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jason J Lavinder
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA.
| | - Gregory C Ippolito
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
9
|
Heindel DW, Figueroa Acosta DM, Goff M, Yengo CK, Jan M, Liu X, Wang XH, Petrova MI, Zhang M, Sagar M, Barnette P, Pandey S, Hessell AJ, Chan KW, Kong XP, Chen BK, Mahal LK, Bensing BA, Hioe CE. HIV-1 interaction with an O-glycan-specific bacterial lectin enhances virus infectivity and resistance to neutralizing antibodies. iScience 2024; 27:110390. [PMID: 39108723 PMCID: PMC11301080 DOI: 10.1016/j.isci.2024.110390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/21/2023] [Accepted: 06/25/2024] [Indexed: 10/13/2024] Open
Abstract
Bacteria dysbiosis and its accompanying inflammation or compromised mucosal integrity is associated with an increased risk of HIV-1 transmission. However, HIV-1 may also bind bacteria or bacterial products to impact infectivity and transmissibility. This study evaluated HIV-1 interactions with bacteria through glycan-binding lectins. The Streptococcal Siglec-like lectin SLBR-N, a part of the fimbriae shrouding the bacteria surface that recognizes α2,3 sialyated O-linked glycans, was noted for its ability to enhance HIV-1 infectivity in the context of cell-free infection and cell-to-cell transfer. Enhancing effects were recapitulated with O-glycan-binding plant lectins, signifying the importance of O-glycans. N-glycan-binding bacterial lectins FimH and Msl had no effect. SLBR-N was demonstrated to capture and transfer infectious HIV-1 virions, bind to O-glycans on HIV-1 Env, and increase HIV-1 resistance to neutralizing antibodies targeting different regions of Env. This study highlights the potential contribution of O-glycan-binding lectins from commensal bacteria at the mucosa in promoting HIV-1 infection.
Collapse
Affiliation(s)
- Daniel W. Heindel
- Divison of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dania M. Figueroa Acosta
- Divison of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marisa Goff
- Divison of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Clauvis Kunkeng Yengo
- Divison of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Muzafar Jan
- Divison of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xiaomei Liu
- Divison of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xiao-Hong Wang
- VA New York Harbor Healthcare System-Manhattan, New York, NY, USA
| | - Mariya I. Petrova
- Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Mo Zhang
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Manish Sagar
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Virology, Immunology and Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Phillip Barnette
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Shilpi Pandey
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Ann J. Hessell
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Kun-Wei Chan
- Department of Biochemistry and Molecular Pharmacology New York University Grossman School of Medicine, New York, NY, USA
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology New York University Grossman School of Medicine, New York, NY, USA
| | - Benjamin K. Chen
- Divison of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lara K. Mahal
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Barbara A. Bensing
- Department of Medicine, San Francisco Veterans Affairs Medical Center and University of California, San Francisco, CA, USA
| | - Catarina E. Hioe
- Divison of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- James J. Peters VA Medical Center, Bronx, NY, USA
| |
Collapse
|
10
|
Becerra JC, Hitchcock L, Vu K, Gach JS. Neutralizing the threat: harnessing broadly neutralizing antibodies against HIV-1 for treatment and prevention. MICROBIAL CELL (GRAZ, AUSTRIA) 2024; 11:207-220. [PMID: 38975023 PMCID: PMC11224682 DOI: 10.15698/mic2024.07.826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/06/2024] [Accepted: 05/15/2024] [Indexed: 07/09/2024]
Abstract
Broadly neutralizing antibodies (bnAbs) targeting the human immunodeficiency virus-1 (HIV-1) have played a crucial role in elucidating and characterizing neutralization-sensitive sites on the HIV-1 envelope spike and in informing vaccine development. Continual advancements in identifying more potent bnAbs, along with their capacity to trigger antibody-mediated effector functions, coupled with modifications to extend their half-life, position them as promising candidates for both HIV-1 treatment and prevention. While current pharmacological interventions have made significant progress in managing HIV-1 infection and enhancing quality of life, no definitive cure or vaccines have been developed thus far. Standard treatments involve daily oral anti-retroviral therapy, which, despite its efficacy, can lead to notable long-term side effects. Recent clinical trial data have demonstrated encouraging therapeutic and preventive potential for bnAb therapies in both HIV-1-infected individuals and those without the infection. This review provides an overview of the advancements in HIV-1-specific bnAbs and discusses the insights gathered from recent clinical trials regarding their application in treating and preventing HIV-1 infection.
Collapse
Affiliation(s)
- Juan C Becerra
- Department of Medicine, Division of Infectious Diseases, University of CaliforniaCA, Irvine, Irvine, 92697USA
| | - Lauren Hitchcock
- Department of Medicine, Division of Infectious Diseases, University of CaliforniaCA, Irvine, Irvine, 92697USA
| | - Khoa Vu
- Department of Medicine, Division of Infectious Diseases, University of CaliforniaCA, Irvine, Irvine, 92697USA
| | - Johannes S Gach
- Department of Medicine, Division of Infectious Diseases, University of CaliforniaCA, Irvine, Irvine, 92697USA
| |
Collapse
|
11
|
Wieczorek L, Chang D, Sanders-Buell E, Zemil M, Martinez E, Schoen J, Chenine AL, Molnar S, Barrows B, Poltavee K, Charurat ME, Abimiku A, Blattner W, Iroezindu M, Kokogho A, Michael NL, Crowell TA, Ake JA, Tovanabutra S, Polonis VR. Differences in neutralizing antibody sensitivities and envelope characteristics indicate distinct antigenic properties of Nigerian HIV-1 subtype G and CRF02_AG. Virol J 2024; 21:148. [PMID: 38951814 PMCID: PMC11218331 DOI: 10.1186/s12985-024-02394-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/19/2024] [Indexed: 07/03/2024] Open
Abstract
The magnitude of the HIV-1 epidemic in Nigeria is second only to the subtype C epidemic in South Africa, yet the subtypes prevalent in Nigeria require further characterization. A panel of 50 subtype G and 18 CRF02_AG Nigerian HIV-1 pseudoviruses (PSV) was developed and envelope coreceptor usage, neutralization sensitivity and cross-clade reactivity were characterized. These PSV were neutralized by some antibodies targeting major neutralizing determinants, but potentially important differences were observed in specific sensitivities (eg. to sCD4, MPER and V2/V3 monoclonal antibodies), as well as in properties such as variable loop lengths, number of potential N-linked glycans and charge, demonstrating distinct antigenic characteristics of CRF02_AG and subtype G. There was preferential neutralization of the matched CRF/subtype when PSV from subtype G or CRF02_AG were tested using pooled plasma. These novel Nigerian PSV will be useful to study HIV-1 CRF- or subtype-specific humoral immune responses for subtype G and CRF02_AG.
Collapse
Affiliation(s)
- Lindsay Wieczorek
- U.S. Military HIV Research Program, CIDR, Walter Reed Army Institute of Resarch, Silver Spring, MD, USA
- Henry M. Jackson Foundation for Advancement of Military Medicine, Bethesda, MD, USA
| | - David Chang
- U.S. Military HIV Research Program, CIDR, Walter Reed Army Institute of Resarch, Silver Spring, MD, USA
- Henry M. Jackson Foundation for Advancement of Military Medicine, Bethesda, MD, USA
- Present address: Office of AIDS Research, National Institutes of Health, Rockville, MD, 20852, USA
| | - Eric Sanders-Buell
- U.S. Military HIV Research Program, CIDR, Walter Reed Army Institute of Resarch, Silver Spring, MD, USA
- Henry M. Jackson Foundation for Advancement of Military Medicine, Bethesda, MD, USA
| | - Michelle Zemil
- U.S. Military HIV Research Program, CIDR, Walter Reed Army Institute of Resarch, Silver Spring, MD, USA
- Henry M. Jackson Foundation for Advancement of Military Medicine, Bethesda, MD, USA
| | - Elizabeth Martinez
- U.S. Military HIV Research Program, CIDR, Walter Reed Army Institute of Resarch, Silver Spring, MD, USA
- Henry M. Jackson Foundation for Advancement of Military Medicine, Bethesda, MD, USA
| | - Jesse Schoen
- U.S. Military HIV Research Program, CIDR, Walter Reed Army Institute of Resarch, Silver Spring, MD, USA
- Henry M. Jackson Foundation for Advancement of Military Medicine, Bethesda, MD, USA
| | - Agnes-Laurence Chenine
- U.S. Military HIV Research Program, CIDR, Walter Reed Army Institute of Resarch, Silver Spring, MD, USA
- Henry M. Jackson Foundation for Advancement of Military Medicine, Bethesda, MD, USA
- Present address: Integrated Biotherapeutics, Rockville, MD, 20850, USA
| | - Sebastian Molnar
- U.S. Military HIV Research Program, CIDR, Walter Reed Army Institute of Resarch, Silver Spring, MD, USA
- Henry M. Jackson Foundation for Advancement of Military Medicine, Bethesda, MD, USA
| | - Brittani Barrows
- U.S. Military HIV Research Program, CIDR, Walter Reed Army Institute of Resarch, Silver Spring, MD, USA
- Henry M. Jackson Foundation for Advancement of Military Medicine, Bethesda, MD, USA
- Present address: Lentigen Technology, Gaithersburg, MD, 20878, USA
| | - Kultida Poltavee
- SEARCH, Insititute of HIV Research and Innovation (IHRI), Bangkok, Thailand
| | - Man E Charurat
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alash'le Abimiku
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - William Blattner
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michael Iroezindu
- U.S. Military HIV Research Program, CIDR, Walter Reed Army Institute of Resarch, Silver Spring, MD, USA
- HJF Medical Research International, Abuja, Nigeria
| | - Afoke Kokogho
- U.S. Military HIV Research Program, CIDR, Walter Reed Army Institute of Resarch, Silver Spring, MD, USA
- HJF Medical Research International, Abuja, Nigeria
| | - Nelson L Michael
- Center for Infectious Disease Research, Walter Reed Army Institute of Resarch, Silver Spring, MD, USA
| | - Trevor A Crowell
- U.S. Military HIV Research Program, CIDR, Walter Reed Army Institute of Resarch, Silver Spring, MD, USA
- Henry M. Jackson Foundation for Advancement of Military Medicine, Bethesda, MD, USA
| | - Julie A Ake
- U.S. Military HIV Research Program, CIDR, Walter Reed Army Institute of Resarch, Silver Spring, MD, USA
| | - Sodsai Tovanabutra
- U.S. Military HIV Research Program, CIDR, Walter Reed Army Institute of Resarch, Silver Spring, MD, USA
- Henry M. Jackson Foundation for Advancement of Military Medicine, Bethesda, MD, USA
| | - Victoria R Polonis
- U.S. Military HIV Research Program, CIDR, Walter Reed Army Institute of Resarch, Silver Spring, MD, USA.
| |
Collapse
|
12
|
Mahomed S. Broadly neutralizing antibodies for HIV prevention: a comprehensive review and future perspectives. Clin Microbiol Rev 2024; 37:e0015222. [PMID: 38687039 PMCID: PMC11324036 DOI: 10.1128/cmr.00152-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
SUMMARYThe human immunodeficiency virus (HIV) epidemic remains a formidable global health concern, with 39 million people living with the virus and 1.3 million new infections reported in 2022. Despite anti-retroviral therapy's effectiveness in pre-exposure prophylaxis, its global adoption is limited. Broadly neutralizing antibodies (bNAbs) offer an alternative strategy for HIV prevention through passive immunization. Historically, passive immunization has been efficacious in the treatment of various diseases ranging from oncology to infectious diseases. Early clinical trials suggest bNAbs are safe, tolerable, and capable of reducing HIV RNA levels. Although challenges such as bNAb resistance have been noted in phase I trials, ongoing research aims to assess the additive or synergistic benefits of combining multiple bNAbs. Researchers are exploring bispecific and trispecific antibodies, and fragment crystallizable region modifications to augment antibody efficacy and half-life. Moreover, the potential of other antibody isotypes like IgG3 and IgA is under investigation. While promising, the application of bNAbs faces economic and logistical barriers. High manufacturing costs, particularly in resource-limited settings, and logistical challenges like cold-chain requirements pose obstacles. Preliminary studies suggest cost-effectiveness, although this is contingent on various factors like efficacy and distribution. Technological advancements and strategic partnerships may mitigate some challenges, but issues like molecular aggregation remain. The World Health Organization has provided preferred product characteristics for bNAbs, focusing on optimizing their efficacy, safety, and accessibility. The integration of bNAbs in HIV prophylaxis necessitates a multi-faceted approach, considering economic, logistical, and scientific variables. This review comprehensively covers the historical context, current advancements, and future avenues of bNAbs in HIV prevention.
Collapse
Affiliation(s)
- Sharana Mahomed
- Centre for the AIDS
Programme of Research in South Africa (CAPRISA), Doris Duke Medical
Research Institute, Nelson R Mandela School of Medicine, University of
KwaZulu-Natal, Durban,
South Africa
| |
Collapse
|
13
|
Roark RS, Habib R, Gorman J, Li H, Connell AJ, Bonsignori M, Guo Y, Hogarty MP, Olia AS, Sowers K, Zhang B, Bibollet-Ruche F, Callaghan S, Carey JW, Cerutti G, Harris DR, He W, Lewis E, Liu T, Mason RD, Park Y, Rando JM, Singh A, Wolff J, Lei QP, Louder MK, Doria-Rose NA, Andrabi R, Saunders KO, Seaman MS, Haynes BF, Kulp DW, Mascola JR, Roederer M, Sheng Z, Hahn BH, Shaw GM, Kwong PD, Shapiro L. HIV-1 neutralizing antibodies in SHIV-infected macaques recapitulate structurally divergent modes of human V2 apex recognition with a single D gene. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598384. [PMID: 38903070 PMCID: PMC11188099 DOI: 10.1101/2024.06.11.598384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Broadly neutralizing antibodies targeting the V2 apex of the HIV-1 envelope trimer are among the most common specificities elicited in HIV-1-infected humans and simian-human immunodeficiency virus (SHIV)-infected macaques. To gain insight into the prevalent induction of these antibodies, we isolated and characterized 11 V2 apex-directed neutralizing antibody lineages from SHIV-infected rhesus macaques. Remarkably, all SHIV-induced V2 apex lineages were derived from reading frame two of the rhesus DH3-15*01 gene. Cryo-EM structures of envelope trimers in complex with antibodies from nine rhesus lineages revealed modes of recognition that mimicked three canonical human V2 apex-recognition modes. Notably, amino acids encoded by DH3-15*01 played divergent structural roles, inserting into a hole at the trimer apex, H-bonding to an exposed strand, or forming part of a loop scaffold. Overall, we identify a DH3-15*01-signature for rhesus V2 apex broadly neutralizing antibodies and show that highly selected genetic elements can play multiple roles in antigen recognition. Highlights Isolated 11 V2 apex-targeted HIV-neutralizing lineages from 10 SHIV-infected Indian-origin rhesus macaquesCryo-EM structures of Fab-Env complexes for nine rhesus lineages reveal modes of recognition that mimic three modes of human V2 apex antibody recognitionAll SHIV-elicited V2 apex lineages, including two others previously published, derive from the same DH3-15*01 gene utilizing reading frame twoThe DH3-15*01 gene in reading frame two provides a necessary, but not sufficient, signature for V2 apex-directed broadly neutralizing antibodiesStructural roles played by DH3-15*01-encoded amino acids differed substantially in different lineages, even for those with the same recognition modePropose that the anionic, aromatic, and extended character of DH3-15*01 in reading frame two provides a selective advantage for V2 apex recognition compared to B cells derived from other D genes in the naïve rhesus repertoireDemonstrate that highly selected genetic elements can play multiple roles in antigen recognition, providing a structural means to enhance recognition diversity.
Collapse
|
14
|
Wang S, Chan KW, Wei D, Ma X, Liu S, Hu G, Park S, Pan R, Gu Y, Nazzari AF, Olia AS, Xu K, Lin BC, Louder MK, McKee K, Doria-Rose NA, Montefiori D, Seaman MS, Zhou T, Kwong PD, Arthos J, Kong XP, Lu S. Human CD4-binding site antibody elicited by polyvalent DNA prime-protein boost vaccine neutralizes cross-clade tier-2-HIV strains. Nat Commun 2024; 15:4301. [PMID: 38773089 PMCID: PMC11109196 DOI: 10.1038/s41467-024-48514-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 05/03/2024] [Indexed: 05/23/2024] Open
Abstract
The vaccine elicitation of HIV tier-2-neutralization antibodies has been a challenge. Here, we report the isolation and characterization of a CD4-binding site (CD4bs) specific monoclonal antibody, HmAb64, from a human volunteer immunized with a polyvalent DNA prime-protein boost HIV vaccine. HmAb64 is derived from heavy chain variable germline gene IGHV1-18 and light chain germline gene IGKV1-39. It has a third heavy chain complementarity-determining region (CDR H3) of 15 amino acids. On a cross-clade panel of 208 HIV-1 pseudo-virus strains, HmAb64 neutralized 20 (10%), including tier-2 strains from clades B, BC, C, and G. The cryo-EM structure of the antigen-binding fragment of HmAb64 in complex with a CNE40 SOSIP trimer revealed details of its recognition; HmAb64 uses both heavy and light CDR3s to recognize the CD4-binding loop, a critical component of the CD4bs. This study demonstrates that a gp120-based vaccine can elicit antibodies capable of tier 2-HIV neutralization.
Collapse
Affiliation(s)
- Shixia Wang
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - Kun-Wei Chan
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Danlan Wei
- Laboratory of Immune Regulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Xiuwen Ma
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - Shuying Liu
- SYL Consulting, Thousand Oak, CA, 91320, USA
| | - Guangnan Hu
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - Saeyoung Park
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - Ruimin Pan
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Ying Gu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Alexandra F Nazzari
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Adam S Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Kai Xu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Bob C Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Krisha McKee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | | | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - James Arthos
- Laboratory of Immune Regulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Shan Lu
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA.
| |
Collapse
|
15
|
Yuan M, Wilson IA. The D Gene in CDR H3 Determines a Public Class of Human Antibodies to SARS-CoV-2. Vaccines (Basel) 2024; 12:467. [PMID: 38793718 PMCID: PMC11126049 DOI: 10.3390/vaccines12050467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Public antibody responses have been found against many infectious agents. Structural convergence of public antibodies is usually determined by immunoglobulin V genes. Recently, a human antibody public class against SARS-CoV-2 was reported, where the D gene (IGHD3-22) encodes a common YYDxxG motif in heavy-chain complementarity-determining region 3 (CDR H3), which determines specificity for the receptor-binding domain (RBD). In this review, we discuss the isolation, structural characterization, and genetic analyses of this class of antibodies, which have been isolated from various cohorts of COVID-19 convalescents and vaccinees. All eleven YYDxxG antibodies with available structures target the SARS-CoV-2 RBD in a similar binding mode, where the CDR H3 dominates the interaction with antigen. The antibodies target a conserved site on the RBD that does not overlap with the receptor-binding site, but their particular angle of approach results in direct steric hindrance to receptor binding, which enables both neutralization potency and breadth. We also review the properties of CDR H3-dominant antibodies that target other human viruses. Overall, unlike most public antibodies, which are identified by their V gene usage, this newly discovered public class of YYDxxG antibodies is dominated by a D-gene-encoded motif and uncovers further opportunities for germline-targeting vaccine design.
Collapse
Affiliation(s)
- Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA;
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA;
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
16
|
Tam EH, Peng Y, Cheah MXY, Yan C, Xiao T. Neutralizing antibodies to block viral entry and for identification of entry inhibitors. Antiviral Res 2024; 224:105834. [PMID: 38369246 DOI: 10.1016/j.antiviral.2024.105834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/20/2024]
Abstract
Neutralizing antibodies (NAbs) are naturally produced by our immune system to combat viral infections. Clinically, neutralizing antibodies with potent efficacy and high specificity have been extensively used to prevent and treat a wide variety of viral infections, including Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Human Immunodeficiency Virus (HIV), Dengue Virus (DENV) and Hepatitis B Virus (HBV). An overwhelmingly large subset of clinically effective NAbs operates by targeting viral envelope proteins to inhibit viral entry into the host cell. Binding of viral envelope protein to the host receptor is a critical rate limiting step triggering a cascade of downstream events, including endocytosis, membrane fusion and pore formation to allow viral entry. In recent years, improved structural knowledge on these processes have allowed researchers to also leverage NAbs as an indispensable tool in guiding discovery of novel antiviral entry inhibitors, providing drug candidates with high efficacy and pan-genus specificity. This review will summarize the latest progresses on the applications of NAbs as effective entry inhibitors and as important tools to develop antiviral therapeutics by high-throughput drug screenings, rational design of peptidic entry inhibitor mimicking NAbs and in silico computational modeling approaches.
Collapse
Affiliation(s)
- Ee Hong Tam
- School of Biological Sciences, Nanyang Technological University 637551, Singapore; Institute of Structural Biology, Nanyang Technological University 636921, Singapore
| | - Yu Peng
- School of Biological Sciences, Nanyang Technological University 637551, Singapore; Institute of Structural Biology, Nanyang Technological University 636921, Singapore
| | - Megan Xin Yan Cheah
- Institute of Molecular and Cell Biology, A*STAR (Agency of Science, Technology and Research) 138673, Singapore
| | - Chuan Yan
- Institute of Molecular and Cell Biology, A*STAR (Agency of Science, Technology and Research) 138673, Singapore
| | - Tianshu Xiao
- School of Biological Sciences, Nanyang Technological University 637551, Singapore; Institute of Structural Biology, Nanyang Technological University 636921, Singapore.
| |
Collapse
|
17
|
Marichannegowda M, Heredia A, Wang Y, Song H. Genetic signatures in the highly virulent subtype B HIV-1 conferring immune escape to V1/V2 and V3 broadly neutralizing antibodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.584899. [PMID: 38559199 PMCID: PMC10980024 DOI: 10.1101/2024.03.13.584899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
HIV-1 is considered to become less susceptible to existing neutralizing antibodies over time. Our study on the virulent B (VB) HIV-1 identified genetic signatures responsible for immune escape from broadly neutralizing antibodies (bNAbs) targeting V1/V2 and V3 glycan epitopes. We found that the absence of N295 and N332 glycans in the high mannose patch, which are crucial for neutralization by V3 glycan bNAbs and are typically conserved in subtype B HIV-1, is a notable feature in more than half of the VB variants. Neutralization assays confirmed that the loss of these two glycans in VB HIV-1 leads to escape from V3 glycan bNAbs. Additionally, all VB variants we investigated have an insertion in V2, contributing to immune escape from V1/V2 bNAbs PG9 and PG16. These findings suggest potential co-evolution of HIV-1 virulence and antigenicity, underscoring the need to monitor both the pathogenicity and neutralization susceptibility of newly emerged HIV-1 strains.
Collapse
|
18
|
Habib A, Liang Y, Xu X, Zhu N, Xie J. Immunoinformatic Identification of Multiple Epitopes of gp120 Protein of HIV-1 to Enhance the Immune Response against HIV-1 Infection. Int J Mol Sci 2024; 25:2432. [PMID: 38397105 PMCID: PMC10889372 DOI: 10.3390/ijms25042432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Acquired Immunodeficiency Syndrome is caused by the Human Immunodeficiency Virus (HIV), and a significant number of fatalities occur annually. There is a dire need to develop an effective vaccine against HIV-1. Understanding the structural proteins of viruses helps in designing a vaccine based on immunogenic peptides. In the current experiment, we identified gp120 epitopes using bioinformatic epitope prediction tools, molecular docking, and MD simulations. The Gb-1 peptide was considered an adjuvant. Consecutive sequences of GTG, GSG, GGTGG, and GGGGS linkers were used to bind the B cell, Cytotoxic T Lymphocytes (CTL), and Helper T Lymphocytes (HTL) epitopes. The final vaccine construct consisted of 315 amino acids and is expected to be a recombinant protein of approximately 35.49 kDa. Based on docking experiments, molecular dynamics simulations, and tertiary structure validation, the analysis of the modeled protein indicates that it possesses a stable structure and can interact with Toll-like receptors. The analysis demonstrates that the proposed vaccine can provoke an immunological response by activating T and B cells, as well as stimulating the release of IgA and IgG antibodies. This vaccine shows potential for HIV-1 prophylaxis. The in-silico design suggests that multiple-epitope constructs can be used as potentially effective immunogens for HIV-1 vaccine development.
Collapse
Affiliation(s)
- Arslan Habib
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China; (A.H.); (X.X.); (N.Z.)
| | - Yulai Liang
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China; (A.H.); (X.X.); (N.Z.)
| | - Xinyi Xu
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China; (A.H.); (X.X.); (N.Z.)
| | - Naishuo Zhu
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China; (A.H.); (X.X.); (N.Z.)
- Institute of Biomedical Sciences, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jun Xie
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China; (A.H.); (X.X.); (N.Z.)
| |
Collapse
|
19
|
D’Antona AM, Lee JM, Zhang M, Friedman C, He T, Mosyak L, Bennett E, Lin L, Silverman M, Cometa F, Meade C, Hageman T, Sousa E, Cohen J, Marquette K, Ferguson D, Zhong X. Tyrosine Sulfation at Antibody Light Chain CDR-1 Increases Binding Affinity and Neutralization Potency to Interleukine-4. Int J Mol Sci 2024; 25:1931. [PMID: 38339208 PMCID: PMC10855961 DOI: 10.3390/ijms25031931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Structure and function of therapeutic antibodies can be modulated by a variety of post-translational modifications (PTM). Tyrosine (Tyr) sulfation is a type of negatively charged PTM that occurs during protein trafficking through the Golgi. In this study, we discovered that an anti-interleukin (IL)-4 human IgG1, produced by transiently transfected HEK293 cells, contained a fraction of unusual negatively charged species. Interestingly, the isolated acidic species exhibited a two-fold higher affinity to IL-4 and a nearly four-fold higher potency compared to the main species. Mass spectrometry (MS) showed the isolated acidic species possessed an +80-Dalton from the expected mass, suggesting an occurrence of Tyr sulfation. Consistent with this hypothesis, we show the ability to control the acidic species during transient expression with the addition of Tyr sulfation inhibitor sodium chlorate or, conversely, enriched the acidic species from 30% to 92% of the total antibody protein when the IL-4 IgG was co-transfected with tyrosylprotein sulfotransferase genes. Further MS and mutagenesis analysis identified a Tyr residue at the light chain complementarity-determining region-1 (CDRL-1), which was sulfated specifically. These results together have demonstrated for the first time that Tyr sulfation at CDRL-1 could modulate antibody binding affinity and potency to a human immune cytokine.
Collapse
Affiliation(s)
- Aaron M. D’Antona
- BioMedicine Design, Pfizer Research & Development, 610 Main Street, Cambridge, MA 02139, USA (T.H.); (T.H.); (E.S.)
| | - Julie M. Lee
- Translational Clinical Sciences, Pfizer Discovery & Early Development, 610 Main Street, Cambridge, MA 02139, USA
| | - Melvin Zhang
- Inflammation and Immunology Research Unit, Pfizer Research & Development, 610 Main Street, Cambridge, MA 02139, USA
| | - Clarence Friedman
- BioMedicine Design, Pfizer Research & Development, 610 Main Street, Cambridge, MA 02139, USA (T.H.); (T.H.); (E.S.)
| | - Tao He
- BioMedicine Design, Pfizer Research & Development, 610 Main Street, Cambridge, MA 02139, USA (T.H.); (T.H.); (E.S.)
| | - Lidia Mosyak
- BioMedicine Design, Pfizer Research & Development, 610 Main Street, Cambridge, MA 02139, USA (T.H.); (T.H.); (E.S.)
| | - Eric Bennett
- BioMedicine Design, Pfizer Research & Development, 610 Main Street, Cambridge, MA 02139, USA (T.H.); (T.H.); (E.S.)
| | - Laura Lin
- BioMedicine Design, Pfizer Research & Development, 610 Main Street, Cambridge, MA 02139, USA (T.H.); (T.H.); (E.S.)
| | - Maddison Silverman
- BioMedicine Design, Pfizer Research & Development, 610 Main Street, Cambridge, MA 02139, USA (T.H.); (T.H.); (E.S.)
| | - Funi Cometa
- BioMedicine Design, Pfizer Research & Development, 610 Main Street, Cambridge, MA 02139, USA (T.H.); (T.H.); (E.S.)
| | - Caryl Meade
- BioMedicine Design, Pfizer Research & Development, 610 Main Street, Cambridge, MA 02139, USA (T.H.); (T.H.); (E.S.)
| | - Tyler Hageman
- BioMedicine Design, Pfizer Research & Development, 610 Main Street, Cambridge, MA 02139, USA (T.H.); (T.H.); (E.S.)
| | - Eric Sousa
- BioMedicine Design, Pfizer Research & Development, 610 Main Street, Cambridge, MA 02139, USA (T.H.); (T.H.); (E.S.)
| | - Justin Cohen
- BioMedicine Design, Pfizer Research & Development, 610 Main Street, Cambridge, MA 02139, USA (T.H.); (T.H.); (E.S.)
| | - Kimberly Marquette
- BioMedicine Design, Pfizer Research & Development, 610 Main Street, Cambridge, MA 02139, USA (T.H.); (T.H.); (E.S.)
| | - Darren Ferguson
- BioMedicine Design, Pfizer Research & Development, 610 Main Street, Cambridge, MA 02139, USA (T.H.); (T.H.); (E.S.)
| | - Xiaotian Zhong
- BioMedicine Design, Pfizer Research & Development, 610 Main Street, Cambridge, MA 02139, USA (T.H.); (T.H.); (E.S.)
| |
Collapse
|
20
|
Voss WN, Mallory MA, Byrne PO, Marchioni JM, Knudson SA, Powers JM, Leist SR, Dadonaite B, Townsend DR, Kain J, Huang Y, Satterwhite E, Castillo IN, Mattocks M, Paresi C, Munt JE, Scobey T, Seeger A, Premkumar L, Bloom JD, Georgiou G, McLellan JS, Baric RS, Lavinder JJ, Ippolito GC. Hybrid immunity to SARS-CoV-2 arises from serological recall of IgG antibodies distinctly imprinted by infection or vaccination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.22.576742. [PMID: 38545622 PMCID: PMC10970720 DOI: 10.1101/2024.01.22.576742] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
We used plasma IgG proteomics to study the molecular composition and temporal durability of polyclonal IgG antibodies triggered by ancestral SARS-CoV-2 infection, vaccination, or their combination ("hybrid immunity"). Infection, whether primary or post-vaccination, mainly triggered an anti-spike antibody response to the S2 domain, while vaccination predominantly induced anti-RBD antibodies. Immunological imprinting persisted after a secondary (hybrid) exposure, with >60% of the ensuing serological response originating from the initial antibodies generated during the first exposure. We highlight one instance where hybrid immunity arising from breakthrough infection resulted in a marked increase in the breadth and affinity of a highly abundant vaccination-elicited plasma IgG antibody, SC27. With an intrinsic binding affinity surpassing a theoretical maximum (K D < 5 pM), SC27 demonstrated potent neutralization of various SARS-CoV-2 variants and SARS-like zoonotic viruses (IC 50 ∼0.1-1.75 nM) and provided robust protection in vivo . Cryo-EM structural analysis unveiled that SC27 binds to the RBD class 1/4 epitope, with both VH and VL significantly contributing to the binding interface. These findings suggest that exceptionally broad and potent antibodies can be prevalent in plasma and can largely dictate the nature of serological neutralization. HIGHLIGHTS ▪ Infection and vaccination elicit unique IgG antibody profiles at the molecular level▪ Immunological imprinting varies between infection (S2/NTD) and vaccination (RBD)▪ Hybrid immunity maintains the imprint of first infection or first vaccination▪ Hybrid immune IgG plasma mAbs have superior neutralization potency and breadth.
Collapse
|
21
|
Pal A, Ganguly A, Wei P, Barman SR, Chang C, Lin Z. Construction of Triboelectric Series and Chirality Detection of Amino Acids Using Triboelectric Nanogenerator. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307266. [PMID: 38032132 PMCID: PMC10811508 DOI: 10.1002/advs.202307266] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Indexed: 12/01/2023]
Abstract
Triboelectrification necessitates a frictional interaction between two materials, and their contact electrification is characteristically based on the polarity variance in the triboelectric series. Utilizing this fundamental advantage of the triboelectric phenomenon, different materials can be identified according to their contact electrification capability. Herein, an in-depth analysis of the amino acids present in the stratum corneum of human skin is performed and these are quantified regarding triboelectric polarization. The principal focus of this study lies in analyzing and identifying the amino acids present in copious amounts in the stratum corneum to explain their positive behavior during the contact electrification process. Thus, an augmented triboelectric series of amino acids with quantified triboelectric charging polarity by scrutinizing the transfer charge, work function, and atomic percentage is presented. Furthermore, the chirality of aspartic acid as it is most susceptible to racemization with clear consequences on the human skin is detected. The study is expected to accelerate research exploiting triboelectrification and provide valuable information on the surface properties and biological activities of these important biomolecules.
Collapse
Affiliation(s)
- Arnab Pal
- International Intercollegiate PhD ProgramNational Tsing Hua UniversityHsinchu30013Taiwan
- Institute of Biomedical EngineeringNational Tsing Hua UniversityHsinchu30013Taiwan
| | - Anindita Ganguly
- Department of Biomedical EngineeringNational Taiwan UniversityTaipei10617Taiwan
| | - Po‐Han Wei
- Institute of Biomedical EngineeringNational Tsing Hua UniversityHsinchu30013Taiwan
| | - Snigdha Roy Barman
- International Intercollegiate PhD ProgramNational Tsing Hua UniversityHsinchu30013Taiwan
- Institute of Biomedical EngineeringNational Tsing Hua UniversityHsinchu30013Taiwan
| | - Chia‐Chih Chang
- Department of Applied ChemistryNational Yang Ming Chiao Tung University1001 University RoadHsinchu30010Taiwan
| | - Zong‐Hong Lin
- Department of Biomedical EngineeringNational Taiwan UniversityTaipei10617Taiwan
| |
Collapse
|
22
|
Stuart DI, Oksanen HM, Abrescia NGA. Integrative Approaches to Study Virus Structures. Subcell Biochem 2024; 105:247-297. [PMID: 39738949 DOI: 10.1007/978-3-031-65187-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
A virus particle must work as a strongroom to protect its genome, but at the same time it must undergo dramatic conformational changes to infect the cell in order to replicate and assemble progeny. Thus, viruses are miniaturized wonders whose structural complexity requires investigation by a combination of different techniques that can tackle both static and dynamic processes. In this chapter, we will illustrate how major structural techniques such as X-ray crystallography and electron microscopy can be combined with other techniques to determine the structure of complex viruses. The power of these hybrid approaches is discussed through a number of examples.
Collapse
Affiliation(s)
- David I Stuart
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, UK
| | - Hanna M Oksanen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Nicola G A Abrescia
- Structure and Cell Biology of Viruses Lab, CIC bioGUNE - Basque Research and Technology Alliance, Derio, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
23
|
Newby ML, Allen JD, Crispin M. Influence of glycosylation on the immunogenicity and antigenicity of viral immunogens. Biotechnol Adv 2024; 70:108283. [PMID: 37972669 PMCID: PMC10867814 DOI: 10.1016/j.biotechadv.2023.108283] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 10/04/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
A key aspect of successful viral vaccine design is the elicitation of neutralizing antibodies targeting viral attachment and fusion glycoproteins that embellish viral particles. This observation has catalyzed the development of numerous viral glycoprotein mimetics as vaccines. Glycans can dominate the surface of viral glycoproteins and as such, the viral glycome can influence the antigenicity and immunogenicity of a candidate vaccine. In one extreme, glycans can form an integral part of epitopes targeted by neutralizing antibodies and are therefore considered to be an important feature of key immunogens within an immunization regimen. In the other extreme, the existence of peptide and bacterially expressed protein vaccines shows that viral glycosylation can be dispensable in some cases. However, native-like glycosylation can indicate native-like protein folding and the presence of conformational epitopes. Furthermore, going beyond native glycan mimicry, in either occupancy of glycosylation sites or the glycan processing state, may offer opportunities for enhancing the immunogenicity and associated protection elicited by an immunogen. Here, we review key determinants of viral glycosylation and how recombinant immunogens can recapitulate these signatures across a range of enveloped viruses, including HIV-1, Ebola virus, SARS-CoV-2, Influenza and Lassa virus. The emerging understanding of immunogen glycosylation and its control will help guide the development of future vaccines in both recombinant protein- and nucleic acid-based vaccine technologies.
Collapse
Affiliation(s)
- Maddy L Newby
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| |
Collapse
|
24
|
Banach BB, Pletnev S, Olia AS, Xu K, Zhang B, Rawi R, Bylund T, Doria-Rose NA, Nguyen TD, Fahad AS, Lee M, Lin BC, Liu T, Louder MK, Madan B, McKee K, O'Dell S, Sastry M, Schön A, Bui N, Shen CH, Wolfe JR, Chuang GY, Mascola JR, Kwong PD, DeKosky BJ. Antibody-directed evolution reveals a mechanism for enhanced neutralization at the HIV-1 fusion peptide site. Nat Commun 2023; 14:7593. [PMID: 37989731 PMCID: PMC10663459 DOI: 10.1038/s41467-023-42098-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 09/25/2023] [Indexed: 11/23/2023] Open
Abstract
The HIV-1 fusion peptide (FP) represents a promising vaccine target, but global FP sequence diversity among circulating strains has limited anti-FP antibodies to ~60% neutralization breadth. Here we evolve the FP-targeting antibody VRC34.01 in vitro to enhance FP-neutralization using site saturation mutagenesis and yeast display. Successive rounds of directed evolution by iterative selection of antibodies for binding to resistant HIV-1 strains establish a variant, VRC34.01_mm28, as a best-in-class antibody with 10-fold enhanced potency compared to the template antibody and ~80% breadth on a cross-clade 208-strain neutralization panel. Structural analyses demonstrate that the improved paratope expands the FP binding groove to accommodate diverse FP sequences of different lengths while also recognizing the HIV-1 Env backbone. These data reveal critical antibody features for enhanced neutralization breadth and potency against the FP site of vulnerability and accelerate clinical development of broad HIV-1 FP-targeting vaccines and therapeutics.
Collapse
Affiliation(s)
- Bailey B Banach
- Bioengineering Graduate Program, The University of Kansas, Lawrence, KS, 66045, USA
| | - Sergei Pletnev
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Adam S Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Kai Xu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Tatsiana Bylund
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Thuy Duong Nguyen
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, 66045, USA
| | - Ahmed S Fahad
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, 66045, USA
| | - Myungjin Lee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Bob C Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Tracy Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Bharat Madan
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, 66045, USA
| | - Krisha McKee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Mallika Sastry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Arne Schön
- Department of Biology, John Hopkins University, Baltimore, MD, 21218, USA
| | - Natalie Bui
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, 66045, USA
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Jacy R Wolfe
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, 66045, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, USA.
| | - Brandon J DeKosky
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, 66045, USA.
- Department of Chemical Engineering, The University of Kansas, Lawrence, KS, 66045, USA.
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA.
| |
Collapse
|
25
|
Kreer C, Lupo C, Ercanoglu MS, Gieselmann L, Spisak N, Grossbach J, Schlotz M, Schommers P, Gruell H, Dold L, Beyer A, Nourmohammad A, Mora T, Walczak AM, Klein F. Probabilities of developing HIV-1 bNAb sequence features in uninfected and chronically infected individuals. Nat Commun 2023; 14:7137. [PMID: 37932288 PMCID: PMC10628170 DOI: 10.1038/s41467-023-42906-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 10/24/2023] [Indexed: 11/08/2023] Open
Abstract
HIV-1 broadly neutralizing antibodies (bNAbs) are able to suppress viremia and prevent infection. Their induction by vaccination is therefore a major goal. However, in contrast to antibodies that neutralize other pathogens, HIV-1-specific bNAbs frequently carry uncommon molecular characteristics that might prevent their induction. Here, we perform unbiased sequence analyses of B cell receptor repertoires from 57 uninfected and 46 chronically HIV-1- or HCV-infected individuals and learn probabilistic models to predict the likelihood of bNAb development. We formally show that lower probabilities for bNAbs are predictive of higher HIV-1 neutralization activity. Moreover, ranking bNAbs by their probabilities allows to identify highly potent antibodies with superior generation probabilities as preferential targets for vaccination approaches. Importantly, we find equal bNAb probabilities across infected and uninfected individuals. This implies that chronic infection is not a prerequisite for the generation of bNAbs, fostering the hope that HIV-1 vaccines can induce bNAb development in uninfected people.
Collapse
Affiliation(s)
- Christoph Kreer
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Cosimo Lupo
- Laboratoire de physique de l'Ecole normale supérieure, CNRS, PSL University, Sorbonne Université, and Université Paris Cité, 75005, Paris, France
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma I, 00185, Rome, Italy
| | - Meryem S Ercanoglu
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Lutz Gieselmann
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- German Center for Infection Research, Partner Site Bonn-Cologne, 50931, Cologne, Germany
| | - Natanael Spisak
- Laboratoire de physique de l'Ecole normale supérieure, CNRS, PSL University, Sorbonne Université, and Université Paris Cité, 75005, Paris, France
| | - Jan Grossbach
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases & Institute for Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, 50931, Cologne, Germany
| | - Maike Schlotz
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Philipp Schommers
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- German Center for Infection Research, Partner Site Bonn-Cologne, 50931, Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931, Cologne, Germany
| | - Henning Gruell
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
| | - Leona Dold
- Department of Internal Medicine I, University Hospital of Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Andreas Beyer
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases & Institute for Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931, Cologne, Germany
| | - Armita Nourmohammad
- Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077, Göttingen, Germany
- Department of Physics, University of Washington, 3910 15th Ave Northeast, Seattle, WA, 98195, USA
- Department of Applied Mathematics, University of Washington, 4182 W Stevens Way NE, Seattle, WA, 98105, USA
- Paul G. Allen School of Computer Science and Engineering, University of Washington, 85 E Stevens Way NE, Seattle, WA, 98195, USA
- Fred Hutchinson Cancer Center, 1241 Eastlake Ave E, Seattle, WA, 98102, USA
| | - Thierry Mora
- Laboratoire de physique de l'Ecole normale supérieure, CNRS, PSL University, Sorbonne Université, and Université Paris Cité, 75005, Paris, France
| | - Aleksandra M Walczak
- Laboratoire de physique de l'Ecole normale supérieure, CNRS, PSL University, Sorbonne Université, and Université Paris Cité, 75005, Paris, France
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany.
- German Center for Infection Research, Partner Site Bonn-Cologne, 50931, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931, Cologne, Germany.
| |
Collapse
|
26
|
Stamatatos L. 'Immunization during ART and ATI for HIV-1 vaccine discovery/development'. Curr Opin HIV AIDS 2023; 18:309-314. [PMID: 37712859 PMCID: PMC10552831 DOI: 10.1097/coh.0000000000000817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
PURPOSE OF REVIEW Explore whether immunization with germline-targeting Env immunogens during ART, followed by ATI, leads to the identification of viral envelope glycoproteins (Envs) that promote and guide the full maturation of broadly neutralizing antibody responses. RECENT FINDINGS The HIV-1 envelope glycoprotein (Env) does not efficiently engage the germline precursors of broadly neutralizing antibodies (bnAbs). However, Env-derived proteins specifically designed to precisely do that, have been recently developed. These 'germline-targeting' Env immunogens activate naïve B cells that express the germline precursors of bnAbs but by themselves cannot guide their maturation towards their broadly neutralizing forms. This requires sequential immunizations with heterologous sets of Envs. These 'booster' Envs are currently unknown. SUMMARY Combining germline-targeting Env immunization approaches during ART with ATI could lead to the identification of natural Envs that are responsible for the maturation of broadly neutralizing antibody responses during infection. Such Envs could then serve as booster immunogens to guide the maturation of glBCRs that have become activated by germline-targeting immunogens in uninfected subjects.
Collapse
Affiliation(s)
- Leonidas Stamatatos
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center and University of Washington, Department of Global Health, Seattle, WA, USA
| |
Collapse
|
27
|
Wang S, Chan KW, Wei D, Ma X, Liu S, Hu G, Park S, Pan R, Gu Y, Nazzari AF, Olia AS, Xu K, Lin BC, Louder MK, Doria-Rose NA, Montefiori D, Seaman MS, Zhou T, Kwong PD, Arthos J, Kong XP, Lu S. Human CD4-Binding Site Antibody Elicited by Polyvalent DNA Prime-Protein Boost Vaccine Neutralizes Cross-Clade Tier-2-HIV Strains. RESEARCH SQUARE 2023:rs.3.rs-3360161. [PMID: 37886518 PMCID: PMC10602183 DOI: 10.21203/rs.3.rs-3360161/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The vaccine elicitation of HIV-neutralizing antibodies with tier-2-neutralization breadth has been a challenge. Here, we report the isolation and characteristics of a CD4-binding site specific monoclonal antibody, HmAb64, from a human volunteer immunized with a polyvalent gp120 DNA prime-protein boost vaccine. HmAb64 derived from heavy chain variable germline gene IGHV1-18, light chain germline gene IGKV1-39, and had a 3rd heavy chain complementarity determining region (CDR H3) of 15 amino acids. On a cross-clade panel of 208 HIV-1 pseudo-virus strains, HmAb64 neutralized 21 (10%), including tier-2 neutralization resistant strains from clades B, BC, C, and G. The cryo-EM structure of the antigen-binding fragment of HmAb64 bound to a conformation between prefusion closed and occluded open forms of envelope trimer, using both heavy and light CDR3s to recognize the CD4-binding loop, a critical component of the CD4-binding site. A gp120 subunit-based vaccine can thus elicit an antibody capable of tier 2-HIV neutralization.
Collapse
Affiliation(s)
- Shixia Wang
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Kun-Wei Chan
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Danlan Wei
- Laboratory of Immune Regulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Xiuwen Ma
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | | | - Guangnan Hu
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Saeyoung Park
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Ruimin Pan
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ying Gu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Alexandra F Nazzari
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Adam S Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Kai Xu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Bob C Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | | | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - James Arthos
- Laboratory of Immune Regulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Shan Lu
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| |
Collapse
|
28
|
He W, Ou T, Skamangas N, Bailey CC, Bronkema N, Guo Y, Yin Y, Kobzarenko V, Zhang X, Pan A, Liu X, Xu J, Zhang L, Allwardt AE, Mitra D, Quinlan B, Sanders RW, Choe H, Farzan M. Heavy-chain CDR3-engineered B cells facilitate in vivo evaluation of HIV-1 vaccine candidates. Immunity 2023; 56:2408-2424.e6. [PMID: 37531955 PMCID: PMC11092302 DOI: 10.1016/j.immuni.2023.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/09/2023] [Accepted: 07/05/2023] [Indexed: 08/04/2023]
Abstract
V2-glycan/apex broadly neutralizing antibodies (bnAbs) recognize a closed quaternary epitope of the HIV-1 envelope glycoprotein (Env). This closed structure is necessary to elicit apex antibodies and useful to guide the maturation of other bnAb classes. To compare antigens designed to maintain this conformation, we evaluated apex-specific responses in mice engrafted with a diverse repertoire of B cells expressing the HCDR3 of the apex bnAb VRC26.25. Engineered B cells affinity matured, guiding the improvement of VRC26.25 itself. We found that soluble Env (SOSIP) variants differed significantly in their ability to raise anti-apex responses. A transmembrane SOSIP (SOSIP-TM) delivered as an mRNA-lipid nanoparticle elicited more potent neutralizing responses than multimerized SOSIP proteins. Importantly, SOSIP-TM elicited neutralizing sera from B cells engineered with the predicted VRC26.25-HCDR3 progenitor, which also affinity matured. Our data show that HCDR3-edited B cells facilitate efficient in vivo comparisons of Env antigens and highlight the potential of an HCDR3-focused vaccine approach.
Collapse
Affiliation(s)
- Wenhui He
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Department of Immunology and Microbiology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Tianling Ou
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Department of Immunology and Microbiology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Nickolas Skamangas
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Department of Immunology and Microbiology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Charles C Bailey
- The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Immunology and Microbiology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Naomi Bronkema
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Skaggs Graduate School, Scripps Research, La Jolla, CA 92037, USA
| | - Yan Guo
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Yiming Yin
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Valerie Kobzarenko
- Department of Computer Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
| | - Xia Zhang
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Andi Pan
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Skaggs Graduate School, Scripps Research, La Jolla, CA 92037, USA
| | - Xin Liu
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Jinge Xu
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Lizhou Zhang
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Department of Immunology and Microbiology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Ava E Allwardt
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Debasis Mitra
- Department of Computer Engineering and Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA
| | - Brian Quinlan
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, Jupiter, FL 33458, USA
| | - Rogier W Sanders
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Hyeryun Choe
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Michael Farzan
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA 02115, USA; The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Skaggs Graduate School, Scripps Research, La Jolla, CA 92037, USA.
| |
Collapse
|
29
|
Hodge EA, Chatterjee A, Chen C, Naika GS, Laohajaratsang M, Mangala Prasad V, Lee KK. An HIV-1 broadly neutralizing antibody overcomes structural and dynamic variation through highly focused epitope targeting. NPJ VIRUSES 2023; 1:2. [PMID: 38665238 PMCID: PMC11041648 DOI: 10.1038/s44298-023-00002-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 09/13/2023] [Indexed: 04/28/2024]
Abstract
The existence of broadly cross-reactive antibodies that can neutralize diverse HIV-1 isolates (bnAbs) has been appreciated for more than a decade. Many high-resolution structures of bnAbs, typically with one or two well-characterized HIV-1 Env glycoprotein trimers, have been reported. However, an understanding of how such antibodies grapple with variability in their antigenic targets across diverse viral isolates has remained elusive. To achieve such an understanding requires first characterizing the extent of structural and antigenic variation embodied in Env, and then identifying how a bnAb overcomes that variation at a structural level. Here, using hydrogen/deuterium-exchange mass spectrometry (HDX-MS) and quantitative measurements of antibody binding kinetics, we show that variation in structural ordering in the V1/V2 apex of Env across a globally representative panel of HIV-1 isolates has a marked effect on antibody association rates and affinities. We also report cryo-EM reconstructions of the apex-targeting PGT145 bnAb bound to two divergent Env that exhibit different degrees of structural dynamics throughout the trimer structures. Parallel HDX-MS experiments demonstrate that PGT145 bnAb has an exquisitely focused footprint at the trimer apex where binding did not yield allosteric changes throughout the rest of the structure. These results demonstrate that structural dynamics are a cryptic determinant of antigenicity, and mature antibodies that have achieved breadth and potency in some cases are able to achieve their broad cross-reactivity by "threading the needle" and binding in a highly focused fashion, thus evading and overcoming the variable properties found in Env from divergent isolates.
Collapse
Affiliation(s)
- Edgar A. Hodge
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195 USA
| | - Ananya Chatterjee
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012 India
| | - Chengbo Chen
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195 USA
- Biological Physics, Structure and Design Graduate Program, University of Washington, Seattle, WA 98195 USA
| | - Gajendra S. Naika
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195 USA
| | - Mint Laohajaratsang
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195 USA
| | - Vidya Mangala Prasad
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195 USA
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012 India
- Center for Infectious Diseases Research, Indian Institute of Science, Bangalore, Karnataka 560012 India
| | - Kelly K. Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195 USA
- Biological Physics, Structure and Design Graduate Program, University of Washington, Seattle, WA 98195 USA
| |
Collapse
|
30
|
Hioe CE, Liu X, Banin AN, Heindel DW, Klingler J, Rao PG, Luo CC, Jiang X, Pandey S, Ordonez T, Barnette P, Totrov M, Zhu J, Nádas A, Zolla-Pazner S, Upadhyay C, Shen X, Kong XP, Hessell AJ. Vaccination with immune complexes modulates the elicitation of functional antibodies against HIV-1. Front Immunol 2023; 14:1271686. [PMID: 37854587 PMCID: PMC10579950 DOI: 10.3389/fimmu.2023.1271686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/05/2023] [Indexed: 10/20/2023] Open
Abstract
Introduction Neutralizing antibodies (Abs) are one of the immune components required to protect against viral infections. However, developing vaccines capable of eliciting neutralizing Abs effective against a broad array of HIV-1 isolates has been an arduous challenge. Objective This study sought to test vaccines aimed to induce Abs against neutralizing epitopes at the V1V2 apex of HIV-1 envelope (Env). Methods Four groups of rabbits received a DNA vaccine expressing the V1V2 domain of the CRF01_AE A244 strain on a trimeric 2J9C scaffold (V1V2-2J9C) along with a protein vaccine consisting of an uncleaved prefusion-optimized A244 Env trimer with V3 truncation (UFO-BG.ΔV3) or a V1V2-2J9C protein and their respective immune complexes (ICs). These IC vaccines were made using 2158, a V1V2-specific monoclonal Ab (mAb), which binds the V2i epitope in the underbelly region of V1V2 while allosterically promoting the binding of broadly neutralizing mAb PG9 to its V2 apex epitope in vitro. Results Rabbit groups immunized with the DNA vaccine and uncomplexed or complexed UFO-BG.ΔV3 proteins (DNA/UFO-UC or IC) displayed similar profiles of Env- and V1V2-binding Abs but differed from the rabbits receiving the DNA vaccine and uncomplexed or complexed V1V2-2J9C proteins (DNA/V1V2-UC or IC), which generated more cross-reactive V1V2 Abs without detectable binding to gp120 or gp140 Env. Notably, the DNA/UFO-UC vaccine elicited neutralizing Abs against some heterologous tier 1 and tier 2 viruses from different clades, albeit at low titers and only in a fraction of animals, whereas the DNA/V1V2-UC or IC vaccines did not. In comparison with the DNA/UFO-UC group, the DNA/UFO-IC group showed a trend of higher neutralization against TH023.6 and a greater potency of V1V2-specific Ab-dependent cellular phagocytosis (ADCP) but failed to neutralize heterologous viruses. Conclusion These data demonstrate the capacity of V1V2-2J9C-encoding DNA vaccine in combination with UFO-BG.ΔV3, but not V1V2-2J9C, protein vaccines, to elicit homologous and heterologous neutralizing activities in rabbits. The elicitation of neutralizing and ADCP activities was modulated by delivery of UFO-BG.ΔV3 complexed with V2i mAb 2158.
Collapse
Affiliation(s)
- Catarina E. Hioe
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Research Service, James J. Peters VA Medical Center, Bronx, NY, United States
| | - Xiaomei Liu
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Andrew N. Banin
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Daniel W. Heindel
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jéromine Klingler
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Priyanka G. Rao
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Christina C. Luo
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, United States
| | - Xunqing Jiang
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, United States
| | - Shilpi Pandey
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Tracy Ordonez
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Philip Barnette
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | | | - Jiang Zhu
- Department of Integrative Structural and Computational Biology and Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| | - Arthur Nádas
- Department of Environment Medicine, New York University Grossman School of Medicine, New York, NY, United States
| | - Susan Zolla-Pazner
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Chitra Upadhyay
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Xiaoying Shen
- Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, United States
| | - Ann J. Hessell
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| |
Collapse
|
31
|
Rao PG, Lambert GS, Upadhyay C. Broadly neutralizing antibody epitopes on HIV-1 particles are exposed after virus interaction with host cells. J Virol 2023; 97:e0071023. [PMID: 37681958 PMCID: PMC10537810 DOI: 10.1128/jvi.00710-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/07/2023] [Indexed: 09/09/2023] Open
Abstract
The envelope (Env) glycoproteins on HIV-1 virions are the sole target of broadly neutralizing antibodies (bNAbs) and the focus of vaccines. However, many cross-reactive conserved epitopes are often occluded on virus particles, contributing to the evasion of humoral immunity. This study aimed to identify the Env epitopes that are exposed/occluded on HIV-1 particles and to investigate the mechanisms contributing to their masking. Using a flow cytometry-based assay, three HIV-1 isolates, and a panel of antibodies, we show that only select epitopes, including V2i, the gp120-g41 interface, and gp41-MPER, are accessible on HIV-1 particles, while V3, V2q, and select CD4bs epitopes are masked. These epitopes become accessible after allosteric conformational changes are induced by the pre-binding of select Abs, prompting us to test if similar conformational changes are required for these Abs to exhibit their neutralization capability. We tested HIV-1 neutralization where the virus-mAb mix was pre-incubated/not pre-incubated for 1 hour prior to adding the target cells. Similar levels of neutralization were observed under both assay conditions, suggesting that the interaction between virus and target cells sensitizes the virions for neutralization via bNAbs. We further show that lectin-glycan interactions can also expose these epitopes. However, this effect is dependent on the lectin specificity. Given that, bNAbs are ideal for providing sterilizing immunity and are the goal of current HIV-1 vaccine efforts, these data offer insight on how HIV-1 may occlude these vulnerable epitopes from the host immune response. In addition, the findings can guide the formulation of effective antibody combinations for therapeutic use. IMPORTANCE The human immunodeficiency virus (HIV-1) envelope (Env) glycoprotein mediates viral entry and is the sole target of neutralizing antibodies. Our data suggest that antibody epitopes including V2q (e.g., PG9, PGT145), CD4bs (e.g., VRC01, 3BNC117), and V3 (2219, 2557) are masked on HIV-1 particles. The PG9 and 2219 epitopes became accessible for binding after conformational unmasking was induced by the pre-binding of select mAbs. Attempts to understand the masking mechanism led to the revelation that interaction between virus and host cells is needed to sensitize the virions for neutralization by broadly neutralizing antibodies (bNAbs). These data provide insight on how bNAbs may gain access to these occluded epitopes to exert their neutralization effects and block HIV-1 infection. These findings have important implications for the way we evaluate the neutralizing efficacy of antibodies and can potentially guide vaccine design.
Collapse
Affiliation(s)
- Priyanka Gadam Rao
- Division of Infectious Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Gregory S. Lambert
- Division of Infectious Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Chitra Upadhyay
- Division of Infectious Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
32
|
Holt GT, Gorman J, Wang S, Lowegard AU, Zhang B, Liu T, Lin BC, Louder MK, Frenkel MS, McKee K, O'Dell S, Rawi R, Shen CH, Doria-Rose NA, Kwong PD, Donald BR. Improved HIV-1 neutralization breadth and potency of V2-apex antibodies by in silico design. Cell Rep 2023; 42:112711. [PMID: 37436900 PMCID: PMC10528384 DOI: 10.1016/j.celrep.2023.112711] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/05/2023] [Accepted: 06/12/2023] [Indexed: 07/14/2023] Open
Abstract
Broadly neutralizing antibodies (bNAbs) against HIV can reduce viral transmission in humans, but an effective therapeutic will require unusually high breadth and potency of neutralization. We employ the OSPREY computational protein design software to engineer variants of two apex-directed bNAbs, PGT145 and PG9RSH, resulting in increases in potency of over 100-fold against some viruses. The top designed variants improve neutralization breadth from 39% to 54% at clinically relevant concentrations (IC80 < 1 μg/mL) and improve median potency (IC80) by up to 4-fold over a cross-clade panel of 208 strains. To investigate the mechanisms of improvement, we determine cryoelectron microscopy structures of each variant in complex with the HIV envelope trimer. Surprisingly, we find the largest increases in breadth to be a result of optimizing side-chain interactions with highly variable epitope residues. These results provide insight into mechanisms of neutralization breadth and inform strategies for antibody design and improvement.
Collapse
Affiliation(s)
- Graham T Holt
- Department of Computer Science, Duke University, Durham, NC, USA; Program in Computational Biology & Bioinformatics, Duke University, Durham, NC, USA
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Siyu Wang
- Program in Computational Biology & Bioinformatics, Duke University, Durham, NC, USA
| | - Anna U Lowegard
- Department of Computer Science, Duke University, Durham, NC, USA; Program in Computational Biology & Bioinformatics, Duke University, Durham, NC, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tracy Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bob C Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Krisha McKee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Bruce R Donald
- Department of Computer Science, Duke University, Durham, NC, USA; Department of Biochemistry, Duke University, Durham, NC, USA; Department of Mathematics, Duke University, Durham, NC, USA; Department of Chemistry, Duke University, Durham, NC, USA.
| |
Collapse
|
33
|
Rao PG, Lambert GS, Upadhyay C. Broadly Neutralizing Antibody Epitopes on HIV-1 Particles are exposed after Virus Interaction with Host Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.20.524996. [PMID: 36711466 PMCID: PMC9882293 DOI: 10.1101/2023.01.20.524996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The envelope glycoproteins (Env) on HIV-1 virions are the sole target of broadly neutralizing antibodies (bNAb) and the focus of vaccines. However, many cross-reactive conserved epitopes are often occluded on virus particles, contributing to the evasion of humoral immunity. This study aimed to identify the Env epitopes that are exposed/occluded on HIV-1 particles and to investigate the mechanisms contributing to their masking. Using a flow cytometry-based assay, three HIV-1 isolates, and a panel of antibodies, we show that only select epitopes including V2i, gp120-g41 interface, and gp41-MPER are accessible on HIV-1 particles, while V3, V2q, and select CD4bs epitopes are masked. These epitopes become accessible after allosteric conformational changes are induced by pre-binding of select Abs, prompting us to test if similar conformational changes are required for these Abs to exhibit their neutralization capability. We tested HIV-1 neutralization where virus-mAb mix was pre-incubated/not pre-incubated for one hour prior to adding the target cells. Similar levels of neutralization were observed under both assay conditions, suggesting that the interaction between virus and target cells sensitizes the virions for neutralization via bNAbs. We further show that lectin-glycan interactions can also expose these epitopes. However, this effect is dependent on the lectin specificity. Given that, bNAbs are the ideal for providing sterilizing immunity and are the goal of current HIV-1 vaccine efforts, these data offer insight on how HIV-1 may occlude these vulnerable epitopes from the host immune response. In addition, the findings can guide the formulation of effective antibody combinations for therapeutic use.
Collapse
|
34
|
Dynesen LT, Fernandez I, Coquin Y, Delaplace M, Montange T, Njouom R, Bilounga-Ndongo C, Rey FA, Gessain A, Backovic M, Buseyne F. Neutralization of zoonotic retroviruses by human antibodies: Genotype-specific epitopes within the receptor-binding domain from simian foamy virus. PLoS Pathog 2023; 19:e1011339. [PMID: 37093892 PMCID: PMC10159361 DOI: 10.1371/journal.ppat.1011339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/04/2023] [Accepted: 03/31/2023] [Indexed: 04/25/2023] Open
Abstract
Infection with viruses of animal origin pose a significant threat to human populations. Simian foamy viruses (SFVs) are frequently transmitted to humans, in which they establish a life-long infection, with the persistence of replication-competent virus. However, zoonotic SFVs do not induce severe disease nor are they transmitted between humans. Thus, SFVs represent a model of zoonotic retroviruses that lead to a chronic infection successfully controlled by the human immune system. We previously showed that infected humans develop potent neutralizing antibodies (nAbs). Within the viral envelope (Env), the surface protein (SU) carries a variable region that defines two genotypes, overlaps with the receptor binding domain (RBD), and is the exclusive target of nAbs. However, its antigenic determinants are not understood. Here, we characterized nAbs present in plasma samples from SFV-infected individuals living in Central Africa. Neutralization assays were carried out in the presence of recombinant SU that compete with SU at the surface of viral vector particles. We defined the regions targeted by the nAbs using mutant SU proteins modified at the glycosylation sites, RBD functional subregions, and genotype-specific sequences that present properties of B-cell epitopes. We observed that nAbs target conformational epitopes. We identified three major epitopic regions: the loops at the apex of the RBD, which likely mediate interactions between Env protomers to form Env trimers, a loop located in the vicinity of the heparan binding site, and a region proximal to the highly conserved glycosylation site N8. We provide information on how nAbs specific for each of the two viral genotypes target different epitopes. Two common immune escape mechanisms, sequence variation and glycan shielding, were not observed. We propose a model according to which the neutralization mechanisms rely on the nAbs to block the Env conformational change and/or interfere with binding to susceptible cells. As the SFV RBD is structurally different from known retroviral RBDs, our data provide fundamental knowledge on the structural basis for the inhibition of viruses by nAbs. Trial registration: The study was registered at www.clinicaltrials.gov: https://clinicaltrials.gov/ct2/show/NCT03225794/.
Collapse
Affiliation(s)
- Lasse Toftdal Dynesen
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité d'épidémiologie et Physiopathologie des Virus Oncogènes, Paris, France
| | - Ignacio Fernandez
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité de Virologie Structurale, Paris, France
| | - Youna Coquin
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité d'épidémiologie et Physiopathologie des Virus Oncogènes, Paris, France
| | - Manon Delaplace
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité d'épidémiologie et Physiopathologie des Virus Oncogènes, Paris, France
| | - Thomas Montange
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité d'épidémiologie et Physiopathologie des Virus Oncogènes, Paris, France
| | | | | | - Félix A Rey
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité de Virologie Structurale, Paris, France
| | - Antoine Gessain
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité d'épidémiologie et Physiopathologie des Virus Oncogènes, Paris, France
| | - Marija Backovic
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité de Virologie Structurale, Paris, France
| | - Florence Buseyne
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Unité d'épidémiologie et Physiopathologie des Virus Oncogènes, Paris, France
| |
Collapse
|
35
|
Rahman MA, Becerra-Flores M, Patskovsky Y, Silva de Castro I, Bissa M, Basu S, Shen X, Williams LD, Sarkis S, N’guessan KF, LaBranche C, Tomaras GD, Aye PP, Veazey R, Paquin-Proulx D, Rao M, Franchini G, Cardozo T. Cholera toxin B scaffolded, focused SIV V2 epitope elicits antibodies that influence the risk of SIV mac251 acquisition in macaques. Front Immunol 2023; 14:1139402. [PMID: 37153584 PMCID: PMC10160393 DOI: 10.3389/fimmu.2023.1139402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/30/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction An efficacious HIV vaccine will need to elicit a complex package of innate, humoral, and cellular immune responses. This complex package of responses to vaccine candidates has been studied and yielded important results, yet it has been a recurring challenge to determine the magnitude and protective effect of specific in vivo immune responses in isolation. We therefore designed a single, viral-spike-apical, epitope-focused V2 loop immunogen to reveal individual vaccine-elicited immune factors that contribute to protection against HIV/SIV. Method We generated a novel vaccine by incorporating the V2 loop B-cell epitope in the cholera toxin B (CTB) scaffold and compared two new immunization regimens to a historically protective 'standard' vaccine regimen (SVR) consisting of 2xDNA prime boosted with 2xALVAC-SIV and 1xΔV1gp120. We immunized a cohort of macaques with 5xCTB-V2c vaccine+alum intramuscularly simultaneously with topical intrarectal vaccination of CTB-V2c vaccine without alum (5xCTB-V2/alum). In a second group, we tested a modified version of the SVR consisting of 2xDNA prime and boosted with 1xALVAC-SIV and 2xALVAC-SIV+CTB-V2/alum, (DA/CTB-V2c/alum). Results In the absence of any other anti-viral antibodies, V2c epitope was highly immunogenic when incorporated in the CTB scaffold and generated highly functional anti-V2c antibodies in the vaccinated animals. 5xCTB-V2c/alum vaccination mediated non-neutralizing ADCC activity and efferocytosis, but produced low avidity, trogocytosis, and no neutralization of tier 1 virus. Furthermore, DA/CTB-V2c/alum vaccination also generated lower total ADCC activity, avidity, and neutralization compared to the SVR. These data suggest that the ΔV1gp120 boost in the SVR yielded more favorable immune responses than its CTB-V2c counterpart. Vaccination with the SVR generates CCR5- α4β7+CD4+ Th1, Th2, and Th17 cells, which are less likely to be infected by SIV/HIV and likely contributed to the protection afforded in this regimen. The 5xCTB-V2c/alum regimen likewise elicited higher circulating CCR5- α4β7+ CD4+ T cells and mucosal α4β7+ CD4+ T cells compared to the DA/CTB-V2c/alum regimen, whereas the first cell type was associated with reduced risk of viral acquisition. Conclusion Taken together, these data suggest that individual viral spike B-cell epitopes can be highly immunogenic and functional as isolated immunogens, although they might not be sufficient on their own to provide full protection against HIV/SIV infection.
Collapse
Affiliation(s)
- Mohammad Arif Rahman
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, NIH Bethesda, MD, United States
| | - Manuel Becerra-Flores
- NYU Langone Health, New York University School of Medicine, New York, NY, United States
| | - Yury Patskovsky
- NYU Langone Health, New York University School of Medicine, New York, NY, United States
| | - Isabela Silva de Castro
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, NIH Bethesda, MD, United States
| | - Massimiliano Bissa
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, NIH Bethesda, MD, United States
| | - Shraddha Basu
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Xiaoying Shen
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - LaTonya D. Williams
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Sarkis Sarkis
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, NIH Bethesda, MD, United States
| | - Kombo F. N’guessan
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Celia LaBranche
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Georgia D. Tomaras
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Pyone Pyone Aye
- Veterinary Medicine, Tulane National Primate Research Center, Covington, LA, United States
| | - Ronald Veazey
- Division of Comparative Pathology, Department of Pathology and Laboratory Medicine, Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, United States
| | - Dominic Paquin-Proulx
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Mangala Rao
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, NIH Bethesda, MD, United States
| | - Timothy Cardozo
- NYU Langone Health, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
36
|
Zhang YN, Paynter J, Antanasijevic A, Allen JD, Eldad M, Lee YZ, Copps J, Newby ML, He L, Chavez D, Frost P, Goodroe A, Dutton J, Lanford R, Chen C, Wilson IA, Crispin M, Ward AB, Zhu J. Single-component multilayered self-assembling protein nanoparticles presenting glycan-trimmed uncleaved prefusion optimized envelope trimmers as HIV-1 vaccine candidates. Nat Commun 2023; 14:1985. [PMID: 37031217 PMCID: PMC10082823 DOI: 10.1038/s41467-023-37742-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/29/2023] [Indexed: 04/10/2023] Open
Abstract
Uncleaved prefusion-optimized (UFO) design can stabilize diverse HIV-1 envelope glycoproteins (Envs). Single-component, self-assembling protein nanoparticles (1c-SApNP) can display 8 or 20 native-like Env trimers as vaccine candidates. We characterize the biophysical, structural, and antigenic properties of 1c-SApNPs that present the BG505 UFO trimer with wildtype and modified glycans. For 1c-SApNPs, glycan trimming improves recognition of the CD4 binding site without affecting broadly neutralizing antibodies (bNAbs) to major glycan epitopes. In mice, rabbits, and nonhuman primates, glycan trimming increases the frequency of vaccine responders (FVR) and steers antibody responses away from immunodominant glycan holes and glycan patches. The mechanism of vaccine-induced immunity is examined in mice. Compared with the UFO trimer, the multilayered E2p and I3-01v9 1c-SApNPs show 420 times longer retention in lymph node follicles, 20-32 times greater presentation on follicular dendritic cell dendrites, and up-to-4 times stronger germinal center reactions. These findings can inform future HIV-1 vaccine development.
Collapse
Affiliation(s)
- Yi-Nan Zhang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jennifer Paynter
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Aleksandar Antanasijevic
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Joel D Allen
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, SO17 1BJ, UK
| | - Mor Eldad
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Yi-Zong Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jeffrey Copps
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Maddy L Newby
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, SO17 1BJ, UK
| | - Linling He
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Deborah Chavez
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Pat Frost
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Anna Goodroe
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - John Dutton
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Robert Lanford
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Christopher Chen
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Max Crispin
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, SO17 1BJ, UK
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jiang Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
37
|
Zhang Y, Li Q, Luo L, Duan C, Shen J, Wang Z. Application of germline antibody features to vaccine development, antibody discovery, antibody optimization and disease diagnosis. Biotechnol Adv 2023; 65:108143. [PMID: 37023966 DOI: 10.1016/j.biotechadv.2023.108143] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023]
Abstract
Although the efficacy and commercial success of vaccines and therapeutic antibodies have been tremendous, designing and discovering new drug candidates remains a labor-, time- and cost-intensive endeavor with high risks. The main challenges of vaccine development are inducing a strong immune response in broad populations and providing effective prevention against a group of highly variable pathogens. Meanwhile, antibody discovery faces several great obstacles, especially the blindness in antibody screening and the unpredictability of the developability and druggability of antibody drugs. These challenges are largely due to poorly understanding of germline antibodies and the antibody responses to pathogen invasions. Thanks to the recent developments in high-throughput sequencing and structural biology, we have gained insight into the germline immunoglobulin (Ig) genes and germline antibodies and then the germline antibody features associated with antigens and disease manifestation. In this review, we firstly outline the broad associations between germline antibodies and antigens. Moreover, we comprehensively review the recent applications of antigen-specific germline antibody features, physicochemical properties-associated germline antibody features, and disease manifestation-associated germline antibody features on vaccine development, antibody discovery, antibody optimization, and disease diagnosis. Lastly, we discuss the bottlenecks and perspectives of current and potential applications of germline antibody features in the biotechnology field.
Collapse
Affiliation(s)
- Yingjie Zhang
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Qing Li
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Liang Luo
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Changfei Duan
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China
| | - Zhanhui Wang
- National Key Laboratory of Veterinary Public Health Security, Beijing Key Laboratory of Detection Technology for Animal-Derived Food, College of Veterinary Medicine, China Agricultural University, 100193 Beijing, People's Republic of China.
| |
Collapse
|
38
|
García-Machorro J, Gutiérrez-Sánchez M, Rojas-Ortega DA, Bello M, Andrade-Ochoa S, Díaz-Hernández S, Correa-Basurto J, Rojas-Hernández S. Identification of peptide epitopes of the gp120 protein of HIV-1 capable of inducing cellular and humoral immunity. RSC Adv 2023; 13:9078-9090. [PMID: 36950073 PMCID: PMC10025946 DOI: 10.1039/d2ra08160a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/12/2023] [Indexed: 03/24/2023] Open
Abstract
The Human Immunodeficiency Virus (HIV-1) causes Acquired Immunodeficiency Syndrome (AIDS) and a high percentage of deaths. Therefore, it is necessary to design vaccines against HIV-1 for the prevention of AIDS. Bioinformatic tools and theoretical algorisms allow us to understand the structural proteins of viruses to develop vaccines based on immunogenic peptides (epitopes). In this work, we identified the epitopes: P1, P2, P10, P27 and P30 from the gp120 protein of HIV-1. These peptides were administered intranasally alone or with cholera toxin (CT) to BALB/c mice. The population of CD4+, CD8+ T lymphocytes and B cells (CD19/CD138+, IgA+ and IgG+) from nasal-associated lymphoid tissue, nasal passages, cervical and inguinal nodes was determined by flow cytometry. In addition, anti-peptides IgG and IgA from serum, nasal and vaginal washings were measured by ELISA. The results show that peptides administered by i.n. can modulate the immune response of T and B lymphocyte populations, as well as IgA and IgG antibodies secretion in the different sites analyzed. In conclusion, bioinformatics tools help us to select peptides with physicochemical properties that allow the induction of the humoral and cellular responses that depend on the peptide sequence.
Collapse
Affiliation(s)
- Jazmín García-Machorro
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico. Plan de San Luis y Díaz Mirón s/n Col. Casco de Santo Tomas Delegación Miguel Hidalgo C.P. 11340 Ciudad de México Mexico
| | - Mara Gutiérrez-Sánchez
- Laboratorio de Inmunobiología Molecular y Celular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional México City Mexico
| | - Diego Alexander Rojas-Ortega
- Laboratorio de Inmunobiología Molecular y Celular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional México City Mexico
| | - Martiniano Bello
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotécnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Escuela Superior de Medicina, Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n Col. Casco de Santo Tomas Delegación Miguel Hidalgo C.P. 11340 Ciudad de México Mexico
| | - Sergio Andrade-Ochoa
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario S/N 31125 Chihuahua México
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N Colonia Santo Tomas 11340 Ciudad de México Mexico
| | - Sebastián Díaz-Hernández
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotécnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Escuela Superior de Medicina, Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n Col. Casco de Santo Tomas Delegación Miguel Hidalgo C.P. 11340 Ciudad de México Mexico
| | - José Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotécnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Escuela Superior de Medicina, Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n Col. Casco de Santo Tomas Delegación Miguel Hidalgo C.P. 11340 Ciudad de México Mexico
| | - Saúl Rojas-Hernández
- Laboratorio de Inmunobiología Molecular y Celular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional México City Mexico
| |
Collapse
|
39
|
Ivanochko D, Fabra-García A, Teelen K, van de Vegte-Bolmer M, van Gemert GJ, Newton J, Semesi A, de Bruijni M, Bolscher J, Ramjith J, Szabat M, Vogt S, Kraft L, Duncan S, Lee SM, Kamya MR, Feeney ME, Jagannathan P, Greenhouse B, Sauerwein RW, Richter King C, MacGill RS, Bousema T, Jore MM, Julien JP. Potent transmission-blocking monoclonal antibodies from naturally exposed individuals target a conserved epitope on Plasmodium falciparum Pfs230. Immunity 2023; 56:420-432.e7. [PMID: 36792575 PMCID: PMC9942874 DOI: 10.1016/j.immuni.2023.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/04/2022] [Accepted: 01/12/2023] [Indexed: 02/16/2023]
Abstract
Pfs230 is essential for Plasmodium falciparum transmission to mosquitoes and is the protein targeted by the most advanced malaria-transmission-blocking vaccine candidate. Prior understanding of functional epitopes on Pfs230 is based on two monoclonal antibodies (mAbs) with moderate transmission-reducing activity (TRA), elicited from subunit immunization. Here, we screened the B cell repertoire of two naturally exposed individuals possessing serum TRA and identified five potent mAbs from sixteen Pfs230 domain-1-specific mAbs. Structures of three potent and three low-activity antibodies bound to Pfs230 domain 1 revealed four distinct epitopes. Highly potent mAbs from natural infection recognized a common conformational epitope that is highly conserved across P. falciparum field isolates, while antibodies with negligible TRA derived from natural infection or immunization recognized three distinct sites. Our study provides molecular blueprints describing P. falciparum TRA, informed by contrasting potent and non-functional epitopes elicited by natural exposure and vaccination.
Collapse
Affiliation(s)
- Danton Ivanochko
- Program in Molecular Medicine, the Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | | | - Karina Teelen
- Department of Medical Microbiology, Radboudumc, Nijmegen, the Netherlands
| | | | | | - Jocelyn Newton
- Program in Molecular Medicine, the Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Anthony Semesi
- Program in Molecular Medicine, the Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | | | | | - Jordache Ramjith
- Radboud Institute for Health Sciences, Department for Health Evidence, Biostatistics Section, Radboudumc, Nijmegen, the Netherlands
| | | | | | - Lucas Kraft
- AbCellera Biologics Inc., Vancouver, BC, Canada
| | | | - Shwu-Maan Lee
- PATH's Malaria Vaccine Initiative, Washington, DC 20001, USA
| | - Moses R Kamya
- Infectious Disease Research Collaboration, Kampala, Uganda
| | - Margaret E Feeney
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Prasanna Jagannathan
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Bryan Greenhouse
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | | | - C Richter King
- PATH's Malaria Vaccine Initiative, Washington, DC 20001, USA
| | | | - Teun Bousema
- Department of Medical Microbiology, Radboudumc, Nijmegen, the Netherlands.
| | - Matthijs M Jore
- Department of Medical Microbiology, Radboudumc, Nijmegen, the Netherlands.
| | - Jean-Philippe Julien
- Program in Molecular Medicine, the Hospital for Sick Children Research Institute, Toronto, ON, Canada; Departments of Biochemistry and Immunology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
40
|
Laumaea A, Marchitto L, Ding S, Beaudoin-Bussières G, Prévost J, Gasser R, Chatterjee D, Gendron-Lepage G, Medjahed H, Chen HC, Smith AB, Ding H, Kappes JC, Hahn BH, Kirchhoff F, Richard J, Duerr R, Finzi A. Small CD4 mimetics sensitize HIV-1-infected macrophages to antibody-dependent cellular cytotoxicity. Cell Rep 2023; 42:111983. [PMID: 36640355 PMCID: PMC9941794 DOI: 10.1016/j.celrep.2022.111983] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/25/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
HIV-1 envelope (Env) conformation determines the susceptibility of infected CD4+ T cells to antibody-dependent cellular cytotoxicity (ADCC). Upon interaction with CD4, Env adopts more "open" conformations, exposing ADCC epitopes. HIV-1 limits Env-CD4 interaction and protects infected cells against ADCC by downregulating CD4 via Nef, Vpu, and Env. Limited data exist, however, of the role of these proteins in downmodulating CD4 on infected macrophages and how this impacts Env conformation. While Nef, Vpu, and Env are all required to efficiently downregulate CD4 on infected CD4+ T cells, we show here that any one of these proteins is sufficient to downmodulate most CD4 from the surface of infected macrophages. Consistent with this finding, Nef and Vpu have a lesser impact on Env conformation and ADCC sensitivity in infected macrophages compared with CD4+ T cells. However, treatment of infected macrophages with small CD4 mimetics exposes vulnerable CD4-induced Env epitopes and sensitizes them to ADCC.
Collapse
Affiliation(s)
- Annemarie Laumaea
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada.
| | - Lorie Marchitto
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Shilei Ding
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
| | - Guillaume Beaudoin-Bussières
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Jérémie Prévost
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Romain Gasser
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | | | | | | | - Hung-Ching Chen
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Amos B Smith
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Haitao Ding
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - John C Kappes
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, AL 35233, USA
| | - Beatrice H Hahn
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6076, USA
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Jonathan Richard
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Ralf Duerr
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada.
| |
Collapse
|
41
|
Zhang B, Gorman J, Kwon YD, Pegu A, Chao CW, Liu T, Asokan M, Bender MF, Bylund T, Damron L, Gollapudi D, Lei P, Li Y, Liu C, Louder MK, McKee K, Olia AS, Rawi R, Schön A, Wang S, Yang ES, Yang Y, Carlton K, Doria-Rose NA, Shapiro L, Seaman MS, Mascola JR, Kwong PD. Bispecific antibody CAP256.J3LS targets V2-apex and CD4-binding sites with high breadth and potency. MAbs 2023; 15:2165390. [PMID: 36729903 PMCID: PMC9897750 DOI: 10.1080/19420862.2023.2165390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Antibody CAP256-VRC26.25 targets the second hypervariable region (V2) at the apex of the HIV envelope (Env) trimer with extraordinary neutralization potency, although less than optimal breadth. To improve breadth, we linked the light chain of CAP256V2LS, an optimized version of CAP256-VRC26.25 currently under clinical evaluation, to the llama nanobody J3, which has broad CD4-binding site-directed neutralization. The J3-linked bispecific antibody exhibited improved breadth and potency over both J3 and CAP256V2LS, indicative of synergistic neutralization. The cryo-EM structure of the bispecific antibody in complex with a prefusion-closed Env trimer revealed simultaneous binding of J3 and CAP256V2LS. We further optimized the pharmacokinetics of the bispecific antibody by reducing the net positive charge of J3. The optimized bispecific antibody, which we named CAP256.J3LS, had a half-life similar to CAP256V2LS in human FcRn knock-in mice and exhibited suitable auto-reactivity, manufacturability, and biophysical risk. CAP256.J3LS neutralized over 97% of a multiclade 208-strain panel (geometric mean concentration for 80% inhibition (IC80) 0.079 μg/ml) and 100% of a 100-virus clade C panel (geometric mean IC80 of 0.05 μg/ml), suggesting its anti-HIV utility especially in regions where clade C dominates.
Collapse
Affiliation(s)
- Baoshan Zhang
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Jason Gorman
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Young D. Kwon
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Amarendra Pegu
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Cara W. Chao
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Tracy Liu
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | | | - Michael F. Bender
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Tatsiana Bylund
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Leland Damron
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Deepika Gollapudi
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Paula Lei
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Yile Li
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Cuiping Liu
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Mark K. Louder
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Krisha McKee
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Adam S. Olia
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Reda Rawi
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Arne Schön
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Shuishu Wang
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Eun Sung Yang
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Yongping Yang
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Kevin Carlton
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Nicole A. Doria-Rose
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Lawrence Shapiro
- Department of Biochemistry, Columbia University, New York, NY, USA
| | - Michael S. Seaman
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - John R. Mascola
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA
| | - Peter D. Kwong
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD, USA,Department of Biochemistry, Columbia University, New York, NY, USA,CONTACT Peter D. Kwong Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD20892, USA
| |
Collapse
|
42
|
Brouwer PJM, Antanasijevic A, Ronk AJ, Müller-Kräuter H, Watanabe Y, Claireaux M, Perrett HR, Bijl TPL, Grobben M, Umotoy JC, Schriek AI, Burger JA, Tejjani K, Lloyd NM, Steijaert TH, van Haaren MM, Sliepen K, de Taeye SW, van Gils MJ, Crispin M, Strecker T, Bukreyev A, Ward AB, Sanders RW. Lassa virus glycoprotein nanoparticles elicit neutralizing antibody responses and protection. Cell Host Microbe 2022; 30:1759-1772.e12. [PMID: 36400021 PMCID: PMC9794196 DOI: 10.1016/j.chom.2022.10.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/07/2022] [Accepted: 10/25/2022] [Indexed: 11/18/2022]
Abstract
The Lassa virus is endemic in parts of West Africa, and it causes hemorrhagic fever with high mortality. The development of a recombinant protein vaccine has been hampered by the instability of soluble Lassa virus glycoprotein complex (GPC) trimers, which disassemble into monomeric subunits after expression. Here, we use two-component protein nanoparticles consisting of trimeric and pentameric subunits to stabilize GPC in a trimeric conformation. These GPC nanoparticles present twenty prefusion GPC trimers on the surface of an icosahedral particle. Cryo-EM studies of GPC nanoparticles demonstrated a well-ordered structure and yielded a high-resolution structure of an unliganded GPC. These nanoparticles induced potent humoral immune responses in rabbits and protective immunity against the lethal Lassa virus challenge in guinea pigs. Additionally, we isolated a neutralizing antibody that mapped to the putative receptor-binding site, revealing a previously undefined site of vulnerability. Collectively, these findings offer potential approaches to vaccine and therapeutic design for the Lassa virus.
Collapse
Affiliation(s)
- Philip J M Brouwer
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands; Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Aleksandar Antanasijevic
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Adam J Ronk
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77550, USA; Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77550, USA
| | | | - Yasunori Watanabe
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Mathieu Claireaux
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Hailee R Perrett
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tom P L Bijl
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Marloes Grobben
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Jeffrey C Umotoy
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Angela I Schriek
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Judith A Burger
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Khadija Tejjani
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Nicole M Lloyd
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77550, USA; Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Thijs H Steijaert
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Marlies M van Haaren
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Kwinten Sliepen
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Steven W de Taeye
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Marit J van Gils
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Thomas Strecker
- Institute of Virology, Philipps University Marburg, 35043 Marburg, Germany
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77550, USA; Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Andrew B Ward
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Rogier W Sanders
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, the Netherlands; Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA.
| |
Collapse
|
43
|
Moin SM, Boyington JC, Boyoglu-Barnum S, Gillespie RA, Cerutti G, Cheung CSF, Cagigi A, Gallagher JR, Brand J, Prabhakaran M, Tsybovsky Y, Stephens T, Fisher BE, Creanga A, Ataca S, Rawi R, Corbett KS, Crank MC, Karlsson Hedestam GB, Gorman J, McDermott AB, Harris AK, Zhou T, Kwong PD, Shapiro L, Mascola JR, Graham BS, Kanekiyo M. Co-immunization with hemagglutinin stem immunogens elicits cross-group neutralizing antibodies and broad protection against influenza A viruses. Immunity 2022; 55:2405-2418.e7. [PMID: 36356572 PMCID: PMC9772109 DOI: 10.1016/j.immuni.2022.10.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/19/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022]
Abstract
Current influenza vaccines predominantly induce immunity to the hypervariable hemagglutinin (HA) head, requiring frequent vaccine reformulation. Conversely, the immunosubdominant yet conserved HA stem harbors a supersite that is targeted by broadly neutralizing antibodies (bnAbs), representing a prime target for universal vaccines. Here, we showed that the co-immunization of two HA stem immunogens derived from group 1 and 2 influenza A viruses elicits cross-group protective immunity and neutralizing antibody responses in mice, ferrets, and nonhuman primates (NHPs). Immunized mice were protected from multiple group 1 and 2 viruses, and all animal models showed broad serum-neutralizing activity. A bnAb isolated from an immunized NHP broadly neutralized and protected against diverse viruses, including H5N1 and H7N9. Genetic and structural analyses revealed strong homology between macaque and human bnAbs, illustrating common biophysical constraints for acquiring cross-group specificity. Vaccine elicitation of stem-directed cross-group-protective immunity represents a step toward the development of broadly protective influenza vaccines.
Collapse
Affiliation(s)
- Syed M Moin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey C Boyington
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Seyhan Boyoglu-Barnum
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rebecca A Gillespie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Gabriele Cerutti
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Crystal Sao-Fong Cheung
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alberto Cagigi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John R Gallagher
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Joshua Brand
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Madhu Prabhakaran
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yaroslav Tsybovsky
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, USA
| | - Tyler Stephens
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, USA
| | - Brian E Fisher
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Adrian Creanga
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sila Ataca
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kizzmekia S Corbett
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Michelle C Crank
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Audray K Harris
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lawrence Shapiro
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
44
|
Zhong X, D’Antona AM. A potential antibody repertoire diversification mechanism through tyrosine sulfation for biotherapeutics engineering and production. Front Immunol 2022; 13:1072702. [PMID: 36569848 PMCID: PMC9774471 DOI: 10.3389/fimmu.2022.1072702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
The diversity of three hypervariable loops in antibody heavy chain and light chain, termed the complementarity-determining regions (CDRs), defines antibody's binding affinity and specificity owing to the direct contact between the CDRs and antigens. These CDR regions typically contain tyrosine (Tyr) residues that are known to engage in both nonpolar and pi stacking interaction with antigens through their complementary aromatic ring side chains. Nearly two decades ago, sulfotyrosine residue (sTyr), a negatively charged Tyr formed by Golgi-localized membrane-bound tyrosylprotein sulfotransferases during protein trafficking, were also found in the CDR regions and shown to play an important role in modulating antibody-antigen interaction. This breakthrough finding demonstrated that antibody repertoire could be further diversified through post-translational modifications, in addition to the conventional genetic recombination. This review article summarizes the current advances in the understanding of the Tyr-sulfation modification mechanism and its application in potentiating protein-protein interaction for antibody engineering and production. Challenges and opportunities are also discussed.
Collapse
|
45
|
Peterhoff D, Thalhauser S, Neckermann P, Barbey C, Straub K, Nazet J, Merkl R, Laengst G, Breunig M, Wagner R. Multivalent display of engineered HIV-1 envelope trimers on silica nanoparticles for targeting and in vitro activation of germline VRC01 B cells. Eur J Pharm Biopharm 2022; 181:88-101. [PMID: 36272655 DOI: 10.1016/j.ejpb.2022.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/04/2022] [Accepted: 10/09/2022] [Indexed: 12/14/2022]
Abstract
Selective targeting of germline B cells with specifically designed germline-targeting HIV-1 envelope immunogens (GT-Env) is considered a feasible vaccination strategy to elicit broadly neutralizing antibodies (bnAbs). BnAbs are extremely valuable because they neutralize genetically distant viral strains at the same time. To overcome its inherently low affinity to germline B cells, the aim of the study was to present GT-Env via different immobilization strategies densely arrayed on the surface of nanoparticles. We engineered a prefusion-stabilized GT-Env trimer with affinity to VRC01 germline B cells using a bioinformatics-supported design approach. Distinct glycan modifications and amino acid substitutions yielded a GT-Env trimer which bound to the receptor with a KD of 11.5 µM. Silica nanoparticles with 200 nm diameter (SiNPs) were used for the multivalent display of the novel GT-Env with a 15 nm mean centre-to-centre spacing either by site-specific, covalent conjugation or at random, non-specific adsorption. Oriented, covalent GT-Env conjugation revealed better binding of structure dependent bnAbs as compared to non-specifically adsorbed GT-Env. In addition, GT-Env covalently attached activated a B cell line expressing the germline VRC01 receptor at an EC50 value in the nanomolar range (4 nM), while soluble GT-Env required 1,000-fold higher concentrations to induce signalling. The significantly lower GT-Env concentration was likely required due to avidity effects, which were in the picomolar range. Thus, low affinity antigens may particularly benefit from a particulate and multivalent delivery. In future, SiNPs are ideal to be modified in a modular design with various GT-Env variants that target different stages of germline and bnAb precursor B cells.
Collapse
Affiliation(s)
- David Peterhoff
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, 93040 Regensburg, Germany; Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany.
| | - Stefanie Thalhauser
- Department of Pharmaceutical Technology, University of Regensburg, 93040 Regensburg, Germany
| | - Patrick Neckermann
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, 93040 Regensburg, Germany
| | - Clara Barbey
- Department of Pharmaceutical Technology, University of Regensburg, 93040 Regensburg, Germany
| | - Kristina Straub
- Regensburg Center for Biochemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Julian Nazet
- Regensburg Center for Biochemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Rainer Merkl
- Regensburg Center for Biochemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Gernot Laengst
- Regensburg Center for Biochemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Miriam Breunig
- Department of Pharmaceutical Technology, University of Regensburg, 93040 Regensburg, Germany.
| | - Ralf Wagner
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, 93040 Regensburg, Germany; Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany.
| |
Collapse
|
46
|
Reiss EIMM, van Haaren MM, van Schooten J, Claireaux MAF, Maisonnasse P, Antanasijevic A, Allen JD, Bontjer I, Torres JL, Lee WH, Ozorowski G, Vázquez Bernat N, Kaduk M, Aldon Y, Burger JA, Chawla H, Aartse A, Tolazzi M, Gao H, Mundsperger P, Crispin M, Montefiori DC, Karlsson Hedestam GB, Scarlatti G, Ward AB, Le Grand R, Shattock R, Dereuddre-Bosquet N, Sanders RW, van Gils MJ. Fine-mapping the immunodominant antibody epitopes on consensus sequence-based HIV-1 envelope trimer vaccine candidates. NPJ Vaccines 2022; 7:152. [PMID: 36433972 PMCID: PMC9700725 DOI: 10.1038/s41541-022-00576-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 11/07/2022] [Indexed: 11/27/2022] Open
Abstract
The HIV-1 envelope glycoprotein (Env) trimer is the key target for vaccines aimed at inducing neutralizing antibodies (NAbs) against HIV-1. The clinical candidate immunogen ConM SOSIP.v7 is a stabilized native-like HIV-1 Env trimer based on an artificial consensus sequence of all HIV-1 isolates in group M. In preclinical studies ConM SOSIP.v7 trimers induced strong autologous NAb responses in non-human primates (NHPs). To fine-map these responses, we isolated monoclonal antibodies (mAbs) from six cynomolgus macaques that were immunized three times with ConM SOSIP.v7 protein and boosted twice with the closely related ConSOSL.UFO.664 immunogen. A total of 40 ConM and/or ConS-specific mAbs were isolated, of which 18 were retrieved after the three ConM SOSIP.v7 immunizations and 22 after the two immunizations with ConSOSL.UFO.664. 22 mAbs (55%) neutralized the ConM and/or ConS virus. Cross-neutralization of ConS virus by approximately one-third of the mAbs was seen prior to ConSOSL.UFO.664 immunization, albeit with modest potency. Neutralizing antibodies predominantly targeted the V1 and V2 regions of the immunogens, with an apparent extension towards the V3 region. Thus, the V1V2V3 region is immunodominant in the potent NAb response elicited by two consensus sequence native-like HIV-1 Env immunogens. Immunization with these soluble consensus Env proteins also elicited non-neutralizing mAbs targeting the trimer base. These results inform the use and improvement of consensus-based trimer immunogens in combinatorial vaccine strategies.
Collapse
Affiliation(s)
- E I M M Reiss
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam, The Netherlands
| | - M M van Haaren
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam, The Netherlands
| | - J van Schooten
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam, The Netherlands
| | - M A F Claireaux
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam, The Netherlands
| | - P Maisonnasse
- Université Paris-Saclay - CEA - INSERM U1184, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, France
| | - A Antanasijevic
- Department of Integrative Structural and Computational Biology, Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - J D Allen
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - I Bontjer
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam, The Netherlands
| | - J L Torres
- Department of Integrative Structural and Computational Biology, Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - W-H Lee
- Department of Integrative Structural and Computational Biology, Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - G Ozorowski
- Department of Integrative Structural and Computational Biology, Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - N Vázquez Bernat
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - M Kaduk
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Y Aldon
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam, The Netherlands
| | - J A Burger
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam, The Netherlands
| | - H Chawla
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - A Aartse
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam, The Netherlands
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, the Netherlands
| | - M Tolazzi
- Viral Evolution and Transmission Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milan, Italy
| | - H Gao
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - P Mundsperger
- Polymun Scientific Immunbiologische Forschung GmbH, Klosterneuburg, Austria
| | - M Crispin
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - D C Montefiori
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - G B Karlsson Hedestam
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - G Scarlatti
- Viral Evolution and Transmission Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milan, Italy
| | - A B Ward
- Department of Integrative Structural and Computational Biology, Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA
| | - R Le Grand
- Université Paris-Saclay - CEA - INSERM U1184, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, France
| | - R Shattock
- Division of Mucosal Infection and Immunity, Department of Medicine, Imperial College of Science, Technology and Medicine, London, UK
| | - N Dereuddre-Bosquet
- Université Paris-Saclay - CEA - INSERM U1184, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, France
| | - R W Sanders
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam, The Netherlands
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA
| | - M J van Gils
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam, The Netherlands.
| |
Collapse
|
47
|
Knudsen ML, Agrawal P, MacCamy A, Parks KR, Gray MD, Takushi BN, Khechaduri A, Salladay KR, Coler RN, LaBranche CC, Montefiori D, Stamatatos L. Adjuvants influence the maturation of VRC01-like antibodies during immunization. iScience 2022; 25:105473. [PMID: 36405776 PMCID: PMC9667313 DOI: 10.1016/j.isci.2022.105473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/26/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
Once naive B cells expressing germline VRC01-class B cell receptors become activated by germline-targeting immunogens, they enter germinal centers and undergo affinity maturation. Booster immunizations with heterologous Envs are required for the full maturation of VRC01-class antibodies. Here, we examined whether and how three adjuvants, Poly(I:C), GLA-LSQ, or Rehydragel, that activate different pathways of the innate immune system, influence the rate and type of somatic mutations accumulated by VRC01-class BCRs that become activated by the germline-targeting 426c.Mod.Core immunogen and the heterologous HxB2.WT.Core booster immunogen. We report that although the adjuvant used had no influence on the durability of plasma antibody responses after the prime, it influenced the plasma VRC01 antibody titers after the boost and the accumulation of somatic mutations on the elicited VRC01 antibodies.
Collapse
Affiliation(s)
- Maria L. Knudsen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Parul Agrawal
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Anna MacCamy
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - K. Rachael Parks
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
| | - Matthew D. Gray
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Brittany N. Takushi
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Arineh Khechaduri
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Kelsey R. Salladay
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Rhea N. Coler
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | | | - David Montefiori
- Division of Surgical Sciences, Duke University, Durham, NC 27710, USA
| | - Leonidas Stamatatos
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
48
|
Melzi E, Willis JR, Ma KM, Lin YC, Kratochvil S, Berndsen ZT, Landais EA, Kalyuzhniy O, Nair U, Warner J, Steichen JM, Kalyuzhniy A, Le A, Pecetta S, Perez M, Kirsch K, Weldon SR, Falcone S, Himansu S, Carfi A, Sok D, Ward AB, Schief WR, Batista FD. Membrane-bound mRNA immunogens lower the threshold to activate HIV Env V2 apex-directed broadly neutralizing B cell precursors in humanized mice. Immunity 2022; 55:2168-2186.e6. [PMID: 36179690 PMCID: PMC9671093 DOI: 10.1016/j.immuni.2022.09.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/31/2022] [Accepted: 09/02/2022] [Indexed: 12/14/2022]
Abstract
Eliciting broadly neutralizing antibodies (bnAbs) is the core of HIV vaccine design. bnAbs specific to the V2-apex region of the HIV envelope acquire breadth and potency with modest somatic hypermutation, making them attractive vaccination targets. To evaluate Apex germline-targeting (ApexGT) vaccine candidates, we engineered knockin (KI) mouse models expressing the germline B cell receptor (BCR) of the bnAb PCT64. We found that high affinity of the ApexGT immunogen for PCT64-germline BCRs was necessary to specifically activate KI B cells at human physiological frequencies, recruit them to germinal centers, and select for mature bnAb mutations. Relative to protein, mRNA-encoded membrane-bound ApexGT immunization significantly increased activation and recruitment of PCT64 precursors to germinal centers and lowered their affinity threshold. We have thus developed additional models for HIV vaccine research, validated ApexGT immunogens for priming V2-apex bnAb precursors, and identified mRNA-LNP as a suitable approach to substantially improve the B cell response.
Collapse
Affiliation(s)
- Eleonora Melzi
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Jordan R Willis
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Krystal M Ma
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ying-Cing Lin
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Sven Kratochvil
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Zachary T Berndsen
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Elise A Landais
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Oleksandr Kalyuzhniy
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Usha Nair
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - John Warner
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Jon M Steichen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Anton Kalyuzhniy
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Amber Le
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Simone Pecetta
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Manfredo Perez
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Kathrin Kirsch
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | | | | | | | | | - Devin Sok
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Andrew B Ward
- International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - William R Schief
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Scripps Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Facundo D Batista
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Department of Immunology, Harvard Medical School, Boston, MA, USA; Department of Microbiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
49
|
Willis JR, Berndsen ZT, Ma KM, Steichen JM, Schiffner T, Landais E, Liguori A, Kalyuzhniy O, Allen JD, Baboo S, Omorodion O, Diedrich JK, Hu X, Georgeson E, Phelps N, Eskandarzadeh S, Groschel B, Kubitz M, Adachi Y, Mullin TM, Alavi NB, Falcone S, Himansu S, Carfi A, Wilson IA, Yates JR, Paulson JC, Crispin M, Ward AB, Schief WR. Human immunoglobulin repertoire analysis guides design of vaccine priming immunogens targeting HIV V2-apex broadly neutralizing antibody precursors. Immunity 2022; 55:2149-2167.e9. [PMID: 36179689 PMCID: PMC9671094 DOI: 10.1016/j.immuni.2022.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/01/2022] [Accepted: 08/31/2022] [Indexed: 12/14/2022]
Abstract
Broadly neutralizing antibodies (bnAbs) to the HIV envelope (Env) V2-apex region are important leads for HIV vaccine design. Most V2-apex bnAbs engage Env with an uncommonly long heavy-chain complementarity-determining region 3 (HCDR3), suggesting that the rarity of bnAb precursors poses a challenge for vaccine priming. We created precursor sequence definitions for V2-apex HCDR3-dependent bnAbs and searched for related precursors in human antibody heavy-chain ultradeep sequencing data from 14 HIV-unexposed donors. We found potential precursors in a majority of donors for only two long-HCDR3 V2-apex bnAbs, PCT64 and PG9, identifying these bnAbs as priority vaccine targets. We then engineered ApexGT Env trimers that bound inferred germlines for PCT64 and PG9 and had higher affinities for bnAbs, determined cryo-EM structures of ApexGT trimers complexed with inferred-germline and bnAb forms of PCT64 and PG9, and developed an mRNA-encoded cell-surface ApexGT trimer. These methods and immunogens have promise to assist HIV vaccine development.
Collapse
Affiliation(s)
- Jordan R Willis
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Zachary T Berndsen
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Krystal M Ma
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jon M Steichen
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Torben Schiffner
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Elise Landais
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Alessia Liguori
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Oleksandr Kalyuzhniy
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Sabyasachi Baboo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Oluwarotimi Omorodion
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jolene K Diedrich
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Xiaozhen Hu
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Erik Georgeson
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nicole Phelps
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Saman Eskandarzadeh
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bettina Groschel
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Michael Kubitz
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yumiko Adachi
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tina-Marie Mullin
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nushin B Alavi
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | - Ian A Wilson
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - James C Paulson
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Andrew B Ward
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - William R Schief
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA.
| |
Collapse
|
50
|
Gorman J, Wang C, Mason RD, Nazzari AF, Welles HC, Zhou T, Bess JW, Bylund T, Lee M, Tsybovsky Y, Verardi R, Wang S, Yang Y, Zhang B, Rawi R, Keele BF, Lifson JD, Liu J, Roederer M, Kwong PD. Cryo-EM structures of prefusion SIV envelope trimer. Nat Struct Mol Biol 2022; 29:1080-1091. [PMID: 36344847 PMCID: PMC10606957 DOI: 10.1038/s41594-022-00852-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 09/25/2022] [Indexed: 11/09/2022]
Abstract
Simian immunodeficiency viruses (SIVs) are lentiviruses that naturally infect non-human primates of African origin and seeded cross-species transmissions of HIV-1 and HIV-2. Here we report prefusion stabilization and cryo-EM structures of soluble envelope (Env) trimers from rhesus macaque SIV (SIVmac) in complex with neutralizing antibodies. These structures provide residue-level definition for SIV-specific disulfide-bonded variable loops (V1 and V2), which we used to delineate variable-loop coverage of the Env trimer. The defined variable loops enabled us to investigate assembled Env-glycan shields throughout SIV, which we found to comprise both N- and O-linked glycans, the latter emanating from V1 inserts, which bound the O-link-specific lectin jacalin. We also investigated in situ SIVmac-Env trimers on virions, determining cryo-electron tomography structures at subnanometer resolutions for an antibody-bound complex and a ligand-free state. Collectively, these structures define the prefusion-closed structure of the SIV-Env trimer and delineate variable-loop and glycan-shielding mechanisms of immune evasion conserved throughout SIV evolution.
Collapse
Affiliation(s)
- Jason Gorman
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Chunyan Wang
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, USA
- Microbial Sciences Institute, Yale University, West Haven, CT, USA
| | - Rosemarie D Mason
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | | | - Hugh C Welles
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Julian W Bess
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Tatsiana Bylund
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Myungjin Lee
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Raffaello Verardi
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Shuishu Wang
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Yongping Yang
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Reda Rawi
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, USA.
- Microbial Sciences Institute, Yale University, West Haven, CT, USA.
| | - Mario Roederer
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA.
| | - Peter D Kwong
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|