1
|
Lee MH, Nuccio SP, Mohanty I, Hagey LR, Dorrestein PC, Chu H, Raffatellu M. How bile acids and the microbiota interact to shape host immunity. Nat Rev Immunol 2024; 24:798-809. [PMID: 39009868 DOI: 10.1038/s41577-024-01057-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2024] [Indexed: 07/17/2024]
Abstract
Bile acids are increasingly appearing in the spotlight owing to their novel impacts on various host processes. Similarly, there is growing attention on members of the microbiota that are responsible for bile acid modifications. With recent advances in technology enabling the discovery and continued identification of microbially conjugated bile acids, the chemical complexity of the bile acid landscape in the body is increasing at a rapid pace. In this Review, we summarize our current understanding of how bile acids and the gut microbiota interact to modulate immune responses during homeostasis and disease, with a particular focus on the gut.
Collapse
Affiliation(s)
- Michael H Lee
- Division of Host-Microbe Systems and Therapeutics, Department of Paediatrics, University of California San Diego, La Jolla, CA, USA
| | - Sean-Paul Nuccio
- Division of Host-Microbe Systems and Therapeutics, Department of Paediatrics, University of California San Diego, La Jolla, CA, USA
| | - Ipsita Mohanty
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Lee R Hagey
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Hiutung Chu
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- Chiba University-UC San Diego Center for Mucosal Immunology, Allergy and Vaccines (CU-UCSD cMAV), La Jolla, CA, USA
| | - Manuela Raffatellu
- Division of Host-Microbe Systems and Therapeutics, Department of Paediatrics, University of California San Diego, La Jolla, CA, USA.
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA.
- Chiba University-UC San Diego Center for Mucosal Immunology, Allergy and Vaccines (CU-UCSD cMAV), La Jolla, CA, USA.
| |
Collapse
|
2
|
Ma Y, Yang H, Wang X, Huang Y, Li Y, Pan G. Bile acids as signaling molecules in inflammatory bowel disease: Implications for treatment strategies. JOURNAL OF ETHNOPHARMACOLOGY 2024; 337:118968. [PMID: 39427739 DOI: 10.1016/j.jep.2024.118968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/21/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Inflammatory bowel disease (IBD) is a globally increasing disease. Despite continuous efforts, the clinical application of treatment drugs has not achieved satisfactory success and faces limitations such as adverse drug reactions. Numerous investigations have found that the pathogenesis of IBD is connected with disturbances in bile acid circulation and metabolism. Traditional Chinese medicine targeting bile acids (BAs) has shown significant therapeutic effects and advantages in treating inflammatory bowel disease. AIM OF THIS REVIEW IThis article reviews the role of bile acids and their receptors in IBD, as well as research progress on IBD therapeutic drugs based on bile acids. It explores bile acid metabolism and its interaction with the intestinal microbiota, summarizes clinical drugs for treating IBD including single herbal medicine, traditional herbal prescriptions, and analyzes the mechanisms of action in treating IBD. MATERIALS AND METHODS IThe electronic databases such as PubMed, Web of Science, and China National Knowledge Infrastructure (CNKI) have been utilized to retrieve relevant literature up to January 2024, using keywords "bile acid", "bile acid receptor", "inflammatory bowel disease", "intestinal microbiota" and "targeted drugs". RESULTS IImbalance in bile acid levels can lead to intestinal inflammation, while IBD can disrupt the balance of microbes, result in alterations in the bile acid pool's composition and amount. This change can damage of intestinal mucosa healing ability. Bile acids are vital for keeping the gut barrier function intact, regulating gene expression, managing metabolic equilibrium, and influencing the properties and roles of the gut's microbial community. Consequently, focusing on bile acids could offer a potential treatment strategy for IBD. CONCLUSION IIBD can induce intestinal homeostasis imbalance and changes in BA pool, leading to fluctuations in levels of relevant metabolic enzymes, transporters, and nuclear receptors. Therefore, by regulating the balance of BA and key signaling molecules of bile acids, we can treat IBD. Traditional Chinese medicine has great potential and promising prospects in treating IBD. We should focus on the characteristics and advantages of Chinese medicine, promote the development and clinical application of innovative Chinese medicine, and ultimately make Chinese medicine targeting bile acids the mainstream treatment for IBD.
Collapse
Affiliation(s)
- Yueyue Ma
- Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai District, Tianjin, 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai District, Tianjin, 301617, PR China
| | - Haoze Yang
- Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai District, Tianjin, 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai District, Tianjin, 301617, PR China
| | - Xiaoming Wang
- Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai District, Tianjin, 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai District, Tianjin, 301617, PR China
| | - Yuhong Huang
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300250, PR China
| | - Yuhong Li
- Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai District, Tianjin, 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, Jing Hai District, Tianjin, 301617, PR China.
| | - Guixiang Pan
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300250, PR China.
| |
Collapse
|
3
|
Li T, Chiang JYL. Bile Acid Signaling in Metabolic and Inflammatory Diseases and Drug Development. Pharmacol Rev 2024; 76:1221-1253. [PMID: 38977324 PMCID: PMC11549937 DOI: 10.1124/pharmrev.124.000978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024] Open
Abstract
Bile acids are the end products of cholesterol catabolism. Hepatic bile acid synthesis accounts for a major fraction of daily cholesterol turnover in humans. Biliary secretion of bile acids generates bile flow and facilitates biliary secretion of lipids, endogenous metabolites, and xenobiotics. In intestine, bile acids facilitate the digestion and absorption of dietary lipids and fat-soluble vitamins. Through activation of nuclear receptors and G protein-coupled receptors and interaction with gut microbiome, bile acids critically regulate host metabolism and innate and adaptive immunity and are involved in the pathogenesis of cholestasis, metabolic dysfunction-associated steatotic liver disease, alcohol-associated liver disease, type-2 diabetes, and inflammatory bowel diseases. Bile acids and their derivatives have been developed as potential therapeutic agents for treating chronic metabolic and inflammatory liver diseases and gastrointestinal disorders. SIGNIFICANCE STATEMENT: Bile acids facilitate biliary cholesterol solubilization and dietary lipid absorption, regulate host metabolism and immunity, and modulate gut microbiome. Targeting bile acid metabolism and signaling holds promise for treating metabolic and inflammatory diseases.
Collapse
Affiliation(s)
- Tiangang Li
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (T.L.); and Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio (J.Y.L.C.)
| | - John Y L Chiang
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (T.L.); and Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio (J.Y.L.C.)
| |
Collapse
|
4
|
Leskiw E, Whaley A, Hopwood P, Houston T, Murib N, Al-Falih D, Fujiwara R. Validating Disease Associations of Drug-Metabolizing Enzymes through Genome-Wide Association Study Data Analysis. Genes (Basel) 2024; 15:1326. [PMID: 39457450 PMCID: PMC11507559 DOI: 10.3390/genes15101326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Phase I and phase II drug-metabolizing enzymes are crucial for the metabolism and elimination of various endogenous and exogenous compounds, such as small-molecule hormones, drugs, and xenobiotic carcinogens. While in vitro and animal studies have suggested a link between genetic mutations in these enzymes and an increased risk of cancer, human in vivo studies have provided limited supportive evidence. METHODS Genome-wide association studies (GWASs) are a powerful tool for identifying genes associated with specific diseases by comparing two large groups of individuals. In the present study, we analyzed a GWAS database to identify key diseases genetically associated with drug-metabolizing enzymes, focusing on UDP-glucuronosyltransferases (UGTs). RESULTS Our analysis confirmed a strong association between the UGT1 gene and hyperbilirubinemia. Additionally, over ten studies reported a link between the UGT1 gene and increased low-density lipoprotein (LDL) cholesterol levels. UGT2B7 was found to be associated with testosterone levels, total cholesterol levels, and vitamin D levels. CONCLUSIONS Despite the in vitro capability of UGT1 and UGT2 family enzymes to metabolize small-molecule carcinogens, the GWAS data did not indicate their genetic association with cancer, except for one study that linked UGT2B4 to ovarian cancer. Further investigations are necessary to fill the gap between in vitro, animal, and human in vivo data.
Collapse
Affiliation(s)
- Evan Leskiw
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Adeline Whaley
- College of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Peter Hopwood
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Tailyn Houston
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Nehal Murib
- College of Arts and Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Donna Al-Falih
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Ryoichi Fujiwara
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| |
Collapse
|
5
|
Zhao Y, Guo K, Yan Y, Jiang B. Cucurbitacin IIb alleviates colitis via regulating gut microbial composition and metabolites. Heliyon 2024; 10:e38051. [PMID: 39347394 PMCID: PMC11437856 DOI: 10.1016/j.heliyon.2024.e38051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 09/03/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
Cucurbitacin IIb, a member of the triterpenoid family, exerts beneficial effects on intestinal diseases, including enteritis and bacillary dysentery. However, its effects and mechanisms of action on colitis have not yet been explored. In this study, we used a mouse model of dextran sulfate sodium (DSS)-induced colitis and explored the effects of cucurbitacin IIb on colitis symptoms, inflammatory responses, microbiota, and metabolite profiles. The results showed that cucurbitacin IIb alleviated colitis symptoms including body weight loss, an increase in the disease activity index, and elevated levels of myeloperoxidase and eosinophil peroxidase content. Additionally, it ameliorated intestinal morphology impairment, reduced the phosphorylation of NFκB protein, and mitigated accumulation of pro-inflammatory cytokines IL-6 and IL-1β. Furthermore, cucurbitacin IIb alleviated alterations in gut microbial composition and metabolites in DSS-treated mice. However, antibiotic treatment diminishes the beneficial effects of cucurbitacin IIb on colitis. We further found that transplantation of fresh feces or heat-inactivated feces from mice treated with cucurbitacin IIb to DSS-treated mice alleviated colitis, similar to the effects of cucurbitacin IIb. Collectively, our results suggest that cucurbitacin IIb exerted anti-inflammatory effects in colitis by regulating the microbiota composition and metabolites, thereby alleviating colitis symptoms.
Collapse
Affiliation(s)
- Yinyin Zhao
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, 315000, China
| | - Kangxiao Guo
- Pharmaceutical College, Changsha Health Vocational College, Changsha, 410699, China
| | - Yongwang Yan
- Pharmaceutical College, Changsha Health Vocational College, Changsha, 410699, China
| | - Binyuan Jiang
- Medical Research Center, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, 410004, China
| |
Collapse
|
6
|
Zheng M, Zhai Y, Yu Y, Shen J, Chu S, Focaccia E, Tian W, Wang S, Liu X, Yuan X, Wang Y, Li L, Feng B, Li Z, Guo X, Qiu J, Zhang C, Hou J, Sun Y, Yang X, Zuo X, Heikenwalder M, Li Y, Yuan D, Li S. TNF compromises intestinal bile-acid tolerance dictating colitis progression and limited infliximab response. Cell Metab 2024; 36:2086-2103.e9. [PMID: 38971153 DOI: 10.1016/j.cmet.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/28/2024] [Accepted: 06/07/2024] [Indexed: 07/08/2024]
Abstract
The intestine constantly encounters and adapts to the external environment shaped by diverse dietary nutrients. However, whether and how gut adaptability to dietary challenges is compromised in ulcerative colitis is incompletely understood. Here, we show that a transient high-fat diet exacerbates colitis owing to inflammation-compromised bile acid tolerance. Mechanistically, excessive tumor necrosis factor (TNF) produced at the onset of colitis interferes with bile-acid detoxification through the receptor-interacting serine/threonine-protein kinase 1/extracellular signal-regulated kinase pathway in intestinal epithelial cells, leading to bile acid overload in the endoplasmic reticulum and consequent apoptosis. In line with the synergy of bile acids and TNF in promoting gut epithelial damage, high intestinal bile acids correlate with poor infliximab response, and bile acid clearance improves infliximab efficacy in experimental colitis. This study identifies bile acids as an "opportunistic pathogenic factor" in the gut that would represent a promising target and stratification criterion for ulcerative colitis prevention/therapy.
Collapse
Affiliation(s)
- Mengqi Zheng
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China; Shandong Provincial Clinical Research Center for Digestive Diseases, Jinan, China
| | - Yunjiao Zhai
- Advanced Medical Research Institute, Shandong University, Jinan 250012, China
| | - Yanbo Yu
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China; Shandong Provincial Clinical Research Center for Digestive Diseases, Jinan, China; Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China; Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Jing Shen
- Advanced Medical Research Institute, Shandong University, Jinan 250012, China
| | - Shuzheng Chu
- Advanced Medical Research Institute, Shandong University, Jinan 250012, China
| | - Enrico Focaccia
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wenyu Tian
- Advanced Medical Research Institute, Shandong University, Jinan 250012, China
| | - Sui Wang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Xuesong Liu
- Advanced Medical Research Institute, Shandong University, Jinan 250012, China
| | - Xi Yuan
- Advanced Medical Research Institute, Shandong University, Jinan 250012, China
| | - Yue Wang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Lixiang Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China; Shandong Provincial Clinical Research Center for Digestive Diseases, Jinan, China; Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China; Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Bingcheng Feng
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Zhen Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China; Shandong Provincial Clinical Research Center for Digestive Diseases, Jinan, China; Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China; Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Xiaohuan Guo
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing 100084, China
| | - Ju Qiu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Cuijuan Zhang
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan 250012, China; Department of Pathology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Jiajie Hou
- Cancer Centre, Faculty of Health Sciences University of Macau, Macau SAR, China; MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR, China
| | - Yiyuan Sun
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Xiaoyun Yang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China; Shandong Provincial Clinical Research Center for Digestive Diseases, Jinan, China; Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China; Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Xiuli Zuo
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China; Shandong Provincial Clinical Research Center for Digestive Diseases, Jinan, China; Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China; Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany; The M3 Research Center, Medical faculty, University Tübingen, Ottfried-Müller Strasse 37, Tübingen, Germany.
| | - Yanqing Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China; Shandong Provincial Clinical Research Center for Digestive Diseases, Jinan, China; Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China; Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan 250012, China.
| | - Detian Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China.
| | - Shiyang Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China; Shandong Provincial Clinical Research Center for Digestive Diseases, Jinan, China; Advanced Medical Research Institute, Shandong University, Jinan 250012, China; Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan 250012, China.
| |
Collapse
|
7
|
Cheng WW, Liu BH, Hou XT, Meng H, Wang D, Zhang CH, Yuan S, Zhang QG. Natural Products on Inflammatory Bowel Disease: Role of Gut Microbes. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:1275-1301. [PMID: 39192679 DOI: 10.1142/s0192415x24500514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Inflammatory bowel disease (IBD) refers to long-term medical conditions that involve inflammation of the digestive tract, and the global incidence and prevalence of IBD are on the rise. Gut microbes play an important role in maintaining the intestinal health of the host, and the occurrence, development, and therapeutic effects of IBD are closely related to the structural and functional changes of gut microbes. Published studies have shown that the natural products from traditional Chinese medicine have direct or indirect regulatory impacts on the composition and metabolism of the gut microbes. In this review, we summarize the research progress of several groups of natural products, i.e., flavonoids, alkaloids, saponins, polysaccharides, polyphenols, and terpenoids, for the therapeutic activities in relieving IBD symptoms. The role of gut microbes and their intestinal metabolites in managing the IBD is presented, with focusing on the mechanism of action of those natural products. Traditional Chinese medicine alleviated IBD symptoms by regulating gut microbes, providing important theoretical and practical basis for the treatment of variable inflammatory intestinal diseases.
Collapse
Affiliation(s)
- Wen-Wen Cheng
- Chronic Diseases Research Center, Dalian University College of Medicine, Dalian, Liaoning 116622, P. R. China
| | - Bao-Hong Liu
- Chronic Diseases Research Center, Dalian University College of Medicine, Dalian, Liaoning 116622, P. R. China
| | - Xiao-Ting Hou
- Chronic Diseases Research Center, Dalian University College of Medicine, Dalian, Liaoning 116622, P. R. China
| | - Huan Meng
- Chronic Diseases Research Center, Dalian University College of Medicine, Dalian, Liaoning 116622, P. R. China
| | - Dan Wang
- Chronic Diseases Research Center, Dalian University College of Medicine, Dalian, Liaoning 116622, P. R. China
| | - Cheng-Hao Zhang
- Department of Oral Teaching and Research, Yanbian University College of Medicine, Yanji, Jilin Province 133002, P. R. China
| | - Shuo Yuan
- Chronic Diseases Research Center, Dalian University College of Medicine, Dalian, Liaoning 116622, P. R. China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, P. R. China
| | - Qing-Gao Zhang
- Chronic Diseases Research Center, Dalian University College of Medicine, Dalian, Liaoning 116622, P. R. China
| |
Collapse
|
8
|
Jyotsna, Sarkar B, Yadav M, Deka A, Markandey M, Sanyal P, Nagarajan P, Gaikward N, Ahuja V, Mohanty D, Basak S, Gokhale RS. A hepatocyte-specific transcriptional program driven by Rela and Stat3 exacerbates experimental colitis in mice by modulating bile synthesis. eLife 2024; 12:RP93273. [PMID: 39137024 PMCID: PMC11321761 DOI: 10.7554/elife.93273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024] Open
Abstract
Hepatic factors secreted by the liver promote homeostasis and are pivotal for maintaining the liver-gut axis. Bile acid metabolism is one such example wherein, bile acid synthesis occurs in the liver and its biotransformation happens in the intestine. Dysfunctional interactions between the liver and the intestine stimulate varied pathological outcomes through its bidirectional portal communication. Indeed, aberrant bile acid metabolism has been reported in inflammatory bowel disease (IBD). However, the molecular mechanisms underlying these crosstalks that perpetuate intestinal permeability and inflammation remain obscure. Here, we identify a novel hepatic gene program regulated by Rela and Stat3 that accentuates the inflammation in an acute experimental colitis model. Hepatocyte-specific ablation of Rela and Stat3 reduces the levels of primary bile acids in both the liver and the gut and shows a restricted colitogenic phenotype. On supplementation of chenodeoxycholic acid (CDCA), knock-out mice exhibit enhanced colitis-induced alterations. This study provides persuasive evidence for the development of multi-organ strategies for treating IBD and identifies a hepatocyte-specific Rela-Stat3 network as a promising therapeutic target.
Collapse
Affiliation(s)
- Jyotsna
- Immunometabolism Laboratory, National Institute of ImmunologyNew DelhiIndia
| | - Binayak Sarkar
- Immunometabolism Laboratory, National Institute of ImmunologyNew DelhiIndia
| | - Mohit Yadav
- Immunometabolism Laboratory, National Institute of ImmunologyNew DelhiIndia
| | - Alvina Deka
- System Immunology Laboratory, National Institute of ImmunologyNew DelhiIndia
| | - Manasvini Markandey
- Department of GastroEnterology, All India Institute of Medical SciencesNew DelhiIndia
| | | | - Perumal Nagarajan
- Immunometabolism Laboratory, National Institute of ImmunologyNew DelhiIndia
| | | | - Vineet Ahuja
- Department of GastroEnterology, All India Institute of Medical SciencesNew DelhiIndia
| | - Debasisa Mohanty
- Immunometabolism Laboratory, National Institute of ImmunologyNew DelhiIndia
| | - Soumen Basak
- System Immunology Laboratory, National Institute of ImmunologyNew DelhiIndia
| | - Rajesh S Gokhale
- Immunometabolism Laboratory, National Institute of ImmunologyNew DelhiIndia
- Department of Biology, Indian Institute of Science Education and ResearchPashanIndia
| |
Collapse
|
9
|
Zhu B, Hu Y, Wu R, Yu Q, Wen W. FBXO45 levels regulated ferroptosis renal tubular epithelial cells in a model of diabetic nephropathy by PLK1. Open Med (Wars) 2024; 19:20240971. [PMID: 38841177 PMCID: PMC11151394 DOI: 10.1515/med-2024-0971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 06/07/2024] Open
Abstract
Objective This research aims to investigate the role and underlying biological mechanism of FBXO45 in regulating ferroptosis of renal fibrocytes in a diabetic nephropathy (DN) model. Methods C57BL/6 mice were fed with a high-fat diet and injected with streptozotocin to induce diabetes. Human renal glomerular endothelial cells stimulated with d-glucose. Results Serum FBXO45 mRNA expression was found to be down-regulated in patients with DN. There was a negative correlation between the expression of serum FBXO45 mRNA and serum α-SMA, Collagen I, and E-cadherin mRNA in patients with DN. Additionally, the expression of serum FBXO45 mRNA showed a negative correlation with blood sugar levels. Based on a 3D model prediction, it was observed that FBXO45 interacts with polo-like kinase 1 (PLK1) at GLY-271, ILE-226, GLY-166, LEU-165, ARG-245, and ASN-220, while PLK1 interacts with FBXO45 at TYR-417, ARG-516, HIS-489, TYR-485, GLN-536, and ARG-557. This interaction was confirmed through immunoprecipitation assay, which showed the interlinking of FBXO45 protein with PLK1 protein. Conclusions These findings indicate that FBXO45 plays a role in mitigating ferroptosis in DN through the regulation of the PLK1/GPX4/SOX2 pathway. This highlights the potential of targeting FBXO45 as a therapeutic approach to ameliorate ferroptosis in DN.
Collapse
Affiliation(s)
- Bingming Zhu
- Department of Clinical Laboratory, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Yongxuan Hu
- Department of Dermatology and Venereology, The 3rd Affiliated Hospital of SouthernMedical University, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510600, China
| | - Ruishan Wu
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, 510600, China
| | - Quan Yu
- Medical Experimental Research Center, School of Medicine, Jinan University, Guangzhou, Guangdong, 510630, China
| | - Wangrong Wen
- Clinical Laboratory Center, The Affiliated Shunde Hospital Of Jinan University, Foshan, Guangdong, 528305, China
| |
Collapse
|
10
|
Liu K, Song M, Huang X, Shi Y, Li S, Zhu F, Ben T, Lin X, Chen B, Xu B, Ma S, Shen B, Chen Z, Yan X, Huang R, Zhi F, Tan G. Western diet induces Gsdme-mediated epithelial pyroptosis through the DCA-S1PR2 pathway to disrupt the intestinal epithelial barrier. Sci Bull (Beijing) 2024:S2095-9273(24)00355-4. [PMID: 38821749 DOI: 10.1016/j.scib.2024.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Affiliation(s)
- Ke Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Mengyao Song
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xueqin Huang
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Gastroenterology, Yunfu People's Hospital, Yunfu 527300, China
| | - Yanqiang Shi
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Fangqing Zhu
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Teng Ben
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xinlong Lin
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Bingxia Chen
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Beibei Xu
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Sicong Ma
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Binhai Shen
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zheng Chen
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xinwen Yan
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ruo Huang
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Fachao Zhi
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Gao Tan
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
11
|
Huang X, Liu X, Li Z. Bile acids and coronavirus disease 2019. Acta Pharm Sin B 2024; 14:1939-1950. [PMID: 38799626 PMCID: PMC11119507 DOI: 10.1016/j.apsb.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/08/2023] [Accepted: 01/28/2024] [Indexed: 05/29/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been significantly alleviated. However, long-term health effects and prevention strategy remain unresolved. Thus, it is essential to explore the pathophysiological mechanisms and intervention for SARS-CoV-2 infection. Emerging research indicates a link between COVID-19 and bile acids, traditionally known for facilitating dietary fat absorption. The bile acid ursodeoxycholic acid potentially protects against SARS-CoV-2 infection by inhibiting the farnesoid X receptor, a bile acid nuclear receptor. The activation of G-protein-coupled bile acid receptor, another membrane receptor for bile acids, has also been found to regulate the expression of angiotensin-converting enzyme 2, the receptor through which the virus enters human cells. Here, we review the latest basic and clinical evidence linking bile acids to SARS-CoV-2, and reveal their complicated pathophysiological mechanisms.
Collapse
Affiliation(s)
- Xiaoru Huang
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
- Department of Pharmaceutical Management and Clinical Pharmacy, College of Pharmacy, Peking University, Beijing 100191, China
| | - Xuening Liu
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
- Department of Pharmaceutical Management and Clinical Pharmacy, College of Pharmacy, Peking University, Beijing 100191, China
| | - Zijian Li
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
- Department of Pharmaceutical Management and Clinical Pharmacy, College of Pharmacy, Peking University, Beijing 100191, China
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing Key Laboratory of Cardiovascular Receptors Research, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| |
Collapse
|
12
|
Li S, Zhuge A, Chen H, Han S, Shen J, Wang K, Xia J, Xia H, Jiang S, Wu Y, Li L. Sedanolide alleviates DSS-induced colitis by modulating the intestinal FXR-SMPD3 pathway in mice. J Adv Res 2024:S2090-1232(24)00128-0. [PMID: 38582300 DOI: 10.1016/j.jare.2024.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/08/2024] Open
Abstract
INTRODUCTION Inflammatory bowel disease (IBD) is a global disease with limited therapy. It is reported that sedanolide exerts anti-oxidative and anti-inflammatory effects as a natural phthalide, but its effects on IBD remain unclear. OBJECTIVES In this study, we investigated the impacts of sedanolide on dextran sodium sulfate (DSS)-induced colitis in mice. METHODS The mice were administered sedanolide or vehicle followed by DSS administration, after which colitis symptoms, inflammation levels, and intestinal barrier function were evaluated. Transcriptome analysis, 16S rRNA sequencing, and targeted metabolomics analysis of bile acids and lipids were performed. RESULTS Sedanolide protected mice from DSS-induced colitis, suppressed the inflammation, restored the weakened epithelial barrier, and modified the gut microbiota by decreasing bile salt hydrolase (BSH)-expressing bacteria. The downregulation of BSH activity by sedanolide increased the ratio of conjugated/unconjugated bile acids (BAs), thereby inhibiting the intestinal farnesoid X receptor (FXR) pathway. The roles of the FXR pathway and gut microbiota were verified using an intestinal FXR-specific agonist (fexaramine) and germ-free mice, respectively. Furthermore, we identified the key effector ceramide, which is regulated by sphingomyelin phosphodiesterase 3 (SMPD3). The protective effects of ceramide (d18:1/16:0) against inflammation and the gut barrier were demonstrated in vitro using the human cell line Caco-2. CONCLUSION Sedanolide could reshape the intestinal flora and influence BA composition, thus inhibiting the FXR-SMPD3 pathway to stimulate the synthesis of ceramide, which ultimately alleviated DSS-induced colitis in mice. Overall, our research revealed the protective effects of sedanolide against DSS-induced colitis in mice, which indicated that sedanolide may be a clinical treatment for colitis. Additionally, the key lipid ceramide (d18:1/16:0) was shown to mediate the protective effects of sedanolide, providing new insight into the associations between colitis and lipid metabolites.
Collapse
Affiliation(s)
- Shengjie Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Aoxiang Zhuge
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Hui Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Shengyi Han
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jian Shen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Kaicen Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jiafeng Xia
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - He Xia
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Shiman Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Youhe Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250000, China.
| |
Collapse
|
13
|
Zhang L, Miao C, Wang Z, Guan X, Ma Y, Song J, Shen S, Song H, Li M, Liu C. Preparation and characterisation of baicalin magnesium and its protective effect in ulcerative colitis via gut microbiota-bile acid axis modulation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155416. [PMID: 38394726 DOI: 10.1016/j.phymed.2024.155416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/23/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND Scutellaria baicalensis Georgi is a well-known herb in traditional Chinese medicine that is frequently prescribed for various gastrointestinal conditions, including ulcerative colitis (UC). Its primary active constituent, baicalin, has poorly water solubility that reduces its efficacy. PURPOSE To enhance the aqueous solubility of baicalin by optimising its extraction process. We compared the modulatory effects of isolated water-soluble baicalin and water-insoluble baicalin on UC, and delved deeper into the potential mechanisms of water-soluble baicalin. METHODS We successfully extracted a more hydrophilic baicalin directly from an aqueous S. baicalensis Georgi extract through the process of recrystallisation following alcoholic precipitation of the aqueous extract obtained from S. baicalensis Georgi, eliminating the need for acid additives. This specific form of baicalin was conclusively identified by UV, IR, atomic absorption spectroscopy, elemental analysis, 1H NMR, 13C NMR, and ESI-HRMS. We subsequently compared the regulatory effects of baicalin on UC before and after optimisation, employing 16S rDNA sequencing, bile acid-targeted metabolomics, and transcriptome analysis to elucidate the potential mechanism of water-soluble baicalin; and the key genes and proteins implicated in this mechanism were verified through RT-PCR and western blotting. RESULTS A new form of baicalin present in the aqueous solution of S. baicalensis Georgi was isolated, and its structural characterisation showed that it was bound to magnesium ions (baicalin magnesium) and exhibited favorable water solubility. Baicalin magnesium offers enhanced therapeutic benefits over baicalin for UC treatment, which alleviated the inflammatory response and oxidative stress levels while improving intestinal mucosal damage. Further investigation of the mechanism revealed that baicalin magnesium could effectively regulate bile acid metabolism and maintain intestinal microecological balance in UC mice, and suppress the activation of the nuclear factor-kappa B and peroxisome proliferator-activated receptor α signalling pathways, thereby playing a therapeutic role. CONCLUSIONS Baicalin magnesium has good water solubility, which solves the bottleneck problem of water insolubility in the practical applications of baicalin. Moreover, baicalin magnesium exhibits therapeutic potential for UC significantly better than baicalin.
Collapse
Affiliation(s)
- Lin Zhang
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Institute of Traditional Chinese Medicine, Chengde Medical University, Chengde, Hebei 067000, PR China
| | - Ceyu Miao
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Institute of Traditional Chinese Medicine, Chengde Medical University, Chengde, Hebei 067000, PR China
| | - Zhixuan Wang
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Institute of Traditional Chinese Medicine, Chengde Medical University, Chengde, Hebei 067000, PR China
| | - Xiulu Guan
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Institute of Traditional Chinese Medicine, Chengde Medical University, Chengde, Hebei 067000, PR China
| | - Yechao Ma
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Institute of Traditional Chinese Medicine, Chengde Medical University, Chengde, Hebei 067000, PR China
| | - Jingyu Song
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Institute of Traditional Chinese Medicine, Chengde Medical University, Chengde, Hebei 067000, PR China
| | - Shiyuan Shen
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Institute of Traditional Chinese Medicine, Chengde Medical University, Chengde, Hebei 067000, PR China
| | - Hongru Song
- Hebei North University, Zhangjiakou 075000, PR China
| | - Mingqian Li
- Cancer Institute of Integrated Tradition Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, PR China.
| | - Cuizhe Liu
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Institute of Traditional Chinese Medicine, Chengde Medical University, Chengde, Hebei 067000, PR China.
| |
Collapse
|
14
|
Chen Z, Shao W, Li Y, Zhang X, Geng Y, Ma X, Tao B, Ma Y, Yi C, Zhang B, Zhang R, Lin J, Chen J. Inhibition of PCSK9 prevents and alleviates cholesterol gallstones through PPARα-mediated CYP7A1 activation. Metabolism 2024; 152:155774. [PMID: 38191052 DOI: 10.1016/j.metabol.2023.155774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/28/2023] [Accepted: 12/31/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND & AIMS Dysregulated cholesterol metabolism is the major factor responsible for cholesterol gallstones (CGS). Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a critical role in cholesterol homeostasis and its inhibitors secure approval for treating various cholesterol metabolic disorders such as hypercholesterolemia and cardiovascular diseases, but its role in CGS remains unclear. Our study aims to clarify mechanisms by which PCSK9 promotes CGS formation and explore the application of the PCSK9 inhibitor, alirocumab, in preventing and treating CGS. APPROACH & RESULTS The expressions of PCSK9 were notably increased in CGS patients' serum, bile, and liver tissues compared to those without gallstones. Moreover, among CGS patients, hepatic PCSK9 was positively correlated with hepatic cholesterol and negatively correlated with hepatic bile acids (BAs), suggesting PCSK9 was involved in disrupted hepatic cholesterol metabolism related to CGS. Mechanistically, in vitro experiments demonstrated that inhibition of PCSK9 enhanced nuclear expression of PPARα by diminishing its lysosomal degradation and subsequently activated CYP7A1 transcription. Finally, inhibition of PCSK9 prevented CGS formation and dissolved the existing stones in CGS mice by elevating the conversion of cholesterol into BAs through PPARα-mediated CYP7A1 activation. Additionally, serum PCSK9 level may function as a prognostic signature to evaluate the therapeutic efficacy of PCSK9 inhibitors. CONCLUSIONS Inhibition of PCSK9 exerts preventive and therapeutic effects on CGS by activating PPARα-mediated CYP7A1 expression and facilitating the conversion of cholesterol into BAs, which highlights the potential of PCSK9 inhibition as a promising candidate for preventing and treating CGS in clinical applications. IMPACT AND IMPLICATIONS PCSK9 plays a pivotal role in cholesterol metabolism and its inhibitors are approved for clinical use in cardiovascular diseases. Our study observes inhibition of PCSK9 prevents and dissolves CGS by activating PPARα-mediated CYP7A1 expression and facilitating the conversion of cholesterol into BAs. Mechanistically, PCSK9 inhibition enhanced the nuclear expression of PPARα by diminishing its lysosomal degradation and subsequently activated CYP7A1 transcription. Our study sheds light on the new function and mechanism of PCSK9 in CGS, providing a novel preventive and therapeutic target with potential clinical applications.
Collapse
Affiliation(s)
- Zhenmei Chen
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road, Shanghai 200040, China; Shanghai Institute of Infectious Disease and Biosecurity, Huashan Hospital, Fudan University, 12 Urumqi Road, Shanghai 200040, China
| | - Weiqing Shao
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road, Shanghai 200040, China
| | - Yitong Li
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road, Shanghai 200040, China
| | - Xiandi Zhang
- Department of Ultrasound, Huashan Hospital, Fudan University, 12 Urumqi Road, Shanghai 200040, China
| | - Yan Geng
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road, Shanghai 200040, China
| | - Xiaochen Ma
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road, Shanghai 200040, China
| | - Baorui Tao
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road, Shanghai 200040, China
| | - Yue Ma
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road, Shanghai 200040, China
| | - Chenhe Yi
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road, Shanghai 200040, China
| | - Bo Zhang
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road, Shanghai 200040, China
| | - Rui Zhang
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road, Shanghai 200040, China
| | - Jing Lin
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road, Shanghai 200040, China.
| | - Jinhong Chen
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital, Fudan University, 12 Urumqi Road, Shanghai 200040, China.
| |
Collapse
|
15
|
Kim G, Chen Z, Li J, Luo J, Castro-Martinez F, Wisniewski J, Cui K, Wang Y, Sun J, Ren X, Crawford SE, Becerra SP, Zhu J, Liu T, Wang S, Zhao K, Wu C. Gut-liver axis calibrates intestinal stem cell fitness. Cell 2024; 187:914-930.e20. [PMID: 38280375 PMCID: PMC10923069 DOI: 10.1016/j.cell.2024.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 10/25/2023] [Accepted: 01/02/2024] [Indexed: 01/29/2024]
Abstract
The gut and liver are recognized to mutually communicate through the biliary tract, portal vein, and systemic circulation. However, it remains unclear how this gut-liver axis regulates intestinal physiology. Through hepatectomy and transcriptomic and proteomic profiling, we identified pigment epithelium-derived factor (PEDF), a liver-derived soluble Wnt inhibitor, which restrains intestinal stem cell (ISC) hyperproliferation to maintain gut homeostasis by suppressing the Wnt/β-catenin signaling pathway. Furthermore, we found that microbial danger signals resulting from intestinal inflammation can be sensed by the liver, leading to the repression of PEDF production through peroxisome proliferator-activated receptor-α (PPARα). This repression liberates ISC proliferation to accelerate tissue repair in the gut. Additionally, treating mice with fenofibrate, a clinical PPARα agonist used for hypolipidemia, enhances colitis susceptibility due to PEDF activity. Therefore, we have identified a distinct role for PEDF in calibrating ISC expansion for intestinal homeostasis through reciprocal interactions between the gut and liver.
Collapse
Affiliation(s)
- Girak Kim
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zuojia Chen
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jian Li
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jialie Luo
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Felipe Castro-Martinez
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jan Wisniewski
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kairong Cui
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yan Wang
- Mass Spectrometry Facility, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jialei Sun
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiaobai Ren
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA 94304, USA
| | - Susan E Crawford
- Department of Surgery, North Shore University Research Institute, University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
| | - S Patricia Becerra
- Section of Protein Structure and Function, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jimin Zhu
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Taotao Liu
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Sui Wang
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA 94304, USA
| | - Keji Zhao
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chuan Wu
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
16
|
Kwon SJ, Khan MS, Kim SG. Intestinal Inflammation and Regeneration-Interdigitating Processes Controlled by Dietary Lipids in Inflammatory Bowel Disease. Int J Mol Sci 2024; 25:1311. [PMID: 38279309 PMCID: PMC10816399 DOI: 10.3390/ijms25021311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is a disease of chronic inflammatory conditions of the intestinal tract due to disturbance of the inflammation and immune system. Symptoms of IBD include abdominal pain, diarrhea, bleeding, reduced weight, and fatigue. In IBD, the immune system attacks the intestinal tract's inner wall, causing chronic inflammation and tissue damage. In particular, interlukin-6 and interlukin-17 act on immune cells, including T cells and macrophages, to amplify the immune responses so that tissue damage and morphological changes occur. Of note, excessive calorie intake and obesity also affect the immune system due to inflammation caused by lipotoxicity and changes in lipids supply. Similarly, individuals with IBD have alterations in liver function after sustained high-fat diet feeding. In addition, excess dietary fat intake, along with alterations in primary and secondary bile acids in the colon, can affect the onset and progression of IBD because inflammatory cytokines contribute to insulin resistance; the factors include the release of inflammatory cytokines, oxidative stress, and changes in intestinal microflora, which may also contribute to disease progression. However, interfering with de novo fatty acid synthase by deleting the enzyme acetyl-CoA-carboxylase 1 in intestinal epithelial cells (IEC) leads to the deficiency of epithelial crypt structures and tissue regeneration, which seems to be due to Lgr5+ intestinal stem cell function. Thus, conflicting reports exist regarding high-fat diet effects on IBD animal models. This review will focus on the pathological basis of the link between dietary lipids intake and IBD and will cover the currently available pharmacological approaches.
Collapse
Affiliation(s)
| | | | - Sang Geon Kim
- Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang-si 10326, Gyeonggi-do, Republic of Korea; (S.J.K.); (M.S.K.)
| |
Collapse
|
17
|
Liu HM, Chang ZY, Yang CW, Chang HH, Lee TY. Farnesoid X Receptor Agonist GW4064 Protects Lipopolysaccharide-Induced Intestinal Epithelial Barrier Function and Colorectal Tumorigenesis Signaling through the αKlotho/βKlotho/FGFs Pathways in Mice. Int J Mol Sci 2023; 24:16932. [PMID: 38069256 PMCID: PMC10706872 DOI: 10.3390/ijms242316932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
The farnesoid X receptor (FXR)/βKlotho/fibroblast growth factors (FGFs) pathway is crucial for maintaining the intestinal barrier and preventing colorectal cancer (CRC). We used an FXR agonist, GW4064, and FXR-knockout (FXR-KO) mice to investigate the role of FXR/Klothos/FGFs pathways in lipopolysaccharide (LPS)-induced intestinal barrier dysfunction and colon carcinogenesis. The results showed that upregulation of FXR in enterocytes effectively ameliorated intestinal tight-junction markers (claudin1 and zonula occludens-1), inflammation, and bile acid levels, thereby protecting mice from intestinal barrier dysfunction and colon carcinogenesis. GW4064 treatment increased FXR, αKlotho, βKlotho, FGF19, FGF21, and FGF23 in wild-type mice exposed to LPS, while FXR-KO mice had decreased levels. FXR-KO mice exhibited elevated colon cancer markers (β-catenin, LGR5, CD44, CD34, and cyclin D1) under LPS, underscoring the pivotal role of FXR in inhibiting the development of colon tumorigenesis. The varying gut microbiota responses in FXR-KO mice versus wild-type mice post LPS exposure emphasize the pivotal role of FXR in preserving intestinal microbial health, involving Bacteroides thetaiotaomicron, Bacteroides acidifaciens, and Helicobacter hepaticus. Our study validates the effectiveness of GW4064 in alleviating LPS-induced disruptions to the intestinal barrier and colon carcinogenesis, emphasizing the importance of the FXR/αKlotho/βKlotho/FGFs pathway and the interplay between bile acids and gut microbiota.
Collapse
Affiliation(s)
- Hsuan-Miao Liu
- Graduate Institute of Traditional Chinese Medicine, School of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Zi-Yu Chang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung 20401, Taiwan;
| | - Ching-Wei Yang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Division of Internal and Pediatric Chinese Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Linkou 333423, Taiwan
| | - Hen-Hong Chang
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 40402, Taiwan
| | - Tzung-Yan Lee
- Graduate Institute of Traditional Chinese Medicine, School of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung 20401, Taiwan;
| |
Collapse
|
18
|
Wan T, Wang Y, He K, Zhu S. Microbial sensing in the intestine. Protein Cell 2023; 14:824-860. [PMID: 37191444 PMCID: PMC10636641 DOI: 10.1093/procel/pwad028] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/04/2023] [Indexed: 05/17/2023] Open
Abstract
The gut microbiota plays a key role in host health and disease, particularly through their interactions with the immune system. Intestinal homeostasis is dependent on the symbiotic relationships between the host and the diverse gut microbiota, which is influenced by the highly co-evolved immune-microbiota interactions. The first step of the interaction between the host and the gut microbiota is the sensing of the gut microbes by the host immune system. In this review, we describe the cells of the host immune system and the proteins that sense the components and metabolites of the gut microbes. We further highlight the essential roles of pattern recognition receptors (PRRs), the G protein-coupled receptors (GPCRs), aryl hydrocarbon receptor (AHR) and the nuclear receptors expressed in the intestinal epithelial cells (IECs) and the intestine-resident immune cells. We also discuss the mechanisms by which the disruption of microbial sensing because of genetic or environmental factors causes human diseases such as the inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
- Tingting Wan
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Basic Medical Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Yalong Wang
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Basic Medical Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Kaixin He
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Basic Medical Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Shu Zhu
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Basic Medical Sciences, University of Science and Technology of China, Hefei 230027, China
- Department of Digestive Disease, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230601, China
| |
Collapse
|
19
|
Wang Y, Li J, Wu L, Qin X, Xie C, Gao X. Saikosaponins regulate bile acid excretion in mice liver and ileum by activating farnesoid X receptor and bile acid transporter. Phytother Res 2023; 37:4572-4586. [PMID: 37318212 DOI: 10.1002/ptr.7927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 05/10/2023] [Accepted: 06/03/2023] [Indexed: 06/16/2023]
Abstract
Radix Bupleuri exerts effective hepatoprotective and cholagogic effects through its Saikosaponins (SSs) component. Therefore, we attempted to determine the mechanism of saikosaponins used to promote bile excretion by studying their effects on intrahepatic bile flow, focusing on the synthesis, transport, excretion, and metabolism of bile acids. C57BL/6N mice were continuously gavaged with saikosaponin a (SSa), saikosaponin b2 (SSb2 ), or saikosaponin D (SSd) (200 mg/kg) for 14 days. Liver and serum biochemical indices were determined using Enzyme-linked immunosorbent assay (ELISA) kits. In addition, an ultra-performance liquid chromatography-mass spectrometer (UPLC-MS) was used to measure the levels of the 16 bile acids in the liver, gallbladder, and cecal contents. Furthermore, SSs pharmacokinetics and docking between SSs and farnesoid X receptor (FXR)-related proteins were analyzed to investigate the underlying molecular mechanisms. Administration of SSs and Radix Bupleuri alcohol extract (ESS) did not cause significant changes in alanine aminotransferase (ALT), aspartate aminotransferase (AST), or alkaline phosphatase (ALP) levels. Saikosaponin-regulated changes in bile acid (BA) levels in the liver, gallbladder, and cecum were closely related to genes involved in BA synthesis, transport, and excretion in the liver. Pharmacokinetic studies indicated that SSs were characterized by rapid elimination (t1/2 as 0.68-2.47 h), absorption (Tmax as 0.47-0.78 h), and double peaks in the drug-time curves of SSa and SSb2 . A molecular docking study revealed that SSa, SSb2 , and SSd docked well with the 16 protein FXR molecules and target genes (<-5.2 kcal/mol). Collectively, saikosaponins may maintain BA homeostasis in mice by regulating FXR-related genes and transporters in the liver and intestine.
Collapse
Affiliation(s)
- YuKun Wang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, PR China
| | - Jing Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, PR China
| | - Li Wu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, PR China
| | - XueMei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, PR China
| | - Cen Xie
- State Key Lab Drug Res, Chinese Acad Sci, Shanghai Inst Mat Med, Shanghai, PR China
| | - XiaoXia Gao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, PR China
| |
Collapse
|
20
|
Wang X, Shen C, Wang X, Tang J, Wu Z, Huang Y, Shao W, Geng K, Xie H, Pu Z. Schisandrin protects against ulcerative colitis by inhibiting the SGK1/NLRP3 signaling pathway and reshaping gut microbiota in mice. Chin Med 2023; 18:112. [PMID: 37674245 PMCID: PMC10481484 DOI: 10.1186/s13020-023-00815-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/08/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND According to the Chinese Pharmacopoeia, the fruit of Schisandra chinensis (Turcz.) Baill. (SC) is an important traditional Chinese medicine that can be used to treat diarrhea. Despite the increasing research on the anti-inflammatory and anti-oxidant aspects of SC, the studies on the anti-ulcerative colitis of Schisandrin (SCH), the main constituent of SC, are relatively few. METHODS The mice used in the study were randomly distributed into 6 groups: control, model, 5-ASA, and SCH (20, 40, 80 mg/kg/d). The mice in the model group were administered 3% (w/v) dextran sulfate sodium (DSS) through drinking water for 7 days, and the various parameters of disease activity index (DAI) such as body weight loss, stool consistency, and gross blood were measured. ELISA was used to detect inflammatory factors, and bioinformatics combined with transcriptome analysis was done to screen and verify relevant targets. 16S rDNA high-throughput sequencing was used to analyze the composition of the gut microbiota(GM), while mass spectrometry was done to analyze the changes in the content of bile acids (BAs) in the intestine. RESULTS Mice treated with SCH experienced significant weight gain, effectively alleviating the severity of colitis, and decreasing the levels of inflammatory factors such as TNF-α, IL-1β, IL-18, IL-6, and other related proteins (NLRP3, Caspase-1, SGK1) in UC mice. Furthermore, the analysis of GM and BAs in mice revealed that SCH increased the relative abundance of Lactobacilli spp, reduced the relative abundance of Bacteroides, and promoted the conversion of primary BAs to secondary BAs. These effects contributed to a significant improvement in the DSS-induced GM imbalance and the maintenance of intestinal homeostasis. CONCLUSION It seems that there is a close relationship between the SCH mechanism and the regulation of SGK1/NLRP3 pathway and the restoration of GM balance. Therefore, it can be concluded that SCH could be a potential drug for the treatment of UC.
Collapse
Affiliation(s)
- Xiaohu Wang
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu, 241000, China
- Graduate School of Wannan Medical College, No.22, Wenchang West Road, Yijiang District, Wuhu, 241000, China
| | - Chaozhuang Shen
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu, 241000, China
| | - Xingwen Wang
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu, 241000, China
| | - Jin Tang
- Graduate School of Wannan Medical College, No.22, Wenchang West Road, Yijiang District, Wuhu, 241000, China
| | - Zijing Wu
- Department of Pharmacy, Bengbu First People's Hospital, Bengbu, 233000, China
| | - Yunzhe Huang
- Graduate School of Wannan Medical College, No.22, Wenchang West Road, Yijiang District, Wuhu, 241000, China
| | - Wenxin Shao
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu, 241000, China
| | - Kuo Geng
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu, 241000, China
| | - Haitang Xie
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu, 241000, China.
| | - Zhichen Pu
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Jinghu District, Wuhu, 241000, China.
| |
Collapse
|
21
|
Long XQ, Liu MZ, Liu ZH, Xia LZ, Lu SP, Xu XP, Wu MH. Bile acids and their receptors: Potential therapeutic targets in inflammatory bowel disease. World J Gastroenterol 2023; 29:4252-4270. [PMID: 37545642 PMCID: PMC10401658 DOI: 10.3748/wjg.v29.i27.4252] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/19/2023] [Accepted: 06/21/2023] [Indexed: 07/13/2023] Open
Abstract
Chronic and recurrent inflammatory disorders of the gastrointestinal tract caused by a complex interplay between genetics and intestinal dysbiosis are called inflammatory bowel disease. As a result of the interaction between the liver and the gut microbiota, bile acids are an atypical class of steroids produced in mammals and traditionally known for their function in food absorption. With the development of genomics and metabolomics, more and more data suggest that the pathophysiological mechanisms of inflammatory bowel disease are regulated by bile acids and their receptors. Bile acids operate as signalling molecules by activating a variety of bile acid receptors that impact intestinal flora, epithelial barrier function, and intestinal immunology. Inflammatory bowel disease can be treated in new ways by using these potential molecules. This paper mainly discusses the increasing function of bile acids and their receptors in inflammatory bowel disease and their prospective therapeutic applications. In addition, we explore bile acid metabolism and the interaction of bile acids and the gut microbiota.
Collapse
Affiliation(s)
- Xiong-Quan Long
- Department of Gastroenterology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha 410005, Hunan Province, China
| | - Ming-Zhu Liu
- Department of Gastroenterology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha 410005, Hunan Province, China
| | - Zi-Hao Liu
- Department of Gastroenterology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha 410005, Hunan Province, China
| | - Lv-Zhou Xia
- Department of Gastroenterology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha 410005, Hunan Province, China
| | - Shi-Peng Lu
- Department of Gastroenterology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha 410005, Hunan Province, China
| | - Xiao-Ping Xu
- Department of Gastroenterology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha 410005, Hunan Province, China
| | - Ming-Hao Wu
- Department of Gastroenterology, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha 410005, Hunan Province, China
| |
Collapse
|
22
|
Gui W, Hole MJ, Molinaro A, Edlund K, Jørgensen KK, Su H, Begher-Tibbe B, Gaßler N, Schneider CV, Muthukumarasamy U, Mohs A, Liao L, Jaeger J, Mertens CJ, Bergheim I, Strowig T, Hengstler JG, Hov JR, Marschall HU, Trautwein C, Schneider KM. Colitis ameliorates cholestatic liver disease via suppression of bile acid synthesis. Nat Commun 2023; 14:3304. [PMID: 37280200 DOI: 10.1038/s41467-023-38840-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 05/18/2023] [Indexed: 06/08/2023] Open
Abstract
Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease characterized by chronic inflammation and progressive fibrosis of the biliary tree. The majority of PSC patients suffer from concomitant inflammatory bowel disease (IBD), which has been suggested to promote disease development and progression. However, the molecular mechanisms by which intestinal inflammation may aggravate cholestatic liver disease remain incompletely understood. Here, we employ an IBD-PSC mouse model to investigate the impact of colitis on bile acid metabolism and cholestatic liver injury. Unexpectedly, intestinal inflammation and barrier impairment improve acute cholestatic liver injury and result in reduced liver fibrosis in a chronic colitis model. This phenotype is independent of colitis-induced alterations of microbial bile acid metabolism but mediated via hepatocellular NF-κB activation by lipopolysaccharide (LPS), which suppresses bile acid metabolism in-vitro and in-vivo. This study identifies a colitis-triggered protective circuit suppressing cholestatic liver disease and encourages multi-organ treatment strategies for PSC.
Collapse
Affiliation(s)
- Wenfang Gui
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, 52074, Germany
| | - Mikal Jacob Hole
- Norwegian PSC Research Center, Section of Gastroenterology and Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Antonio Molinaro
- Department of Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
- Norwegian PSC Research Center, Department of Transplantation Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Karolina Edlund
- Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Dortmund, 44139, Germany
| | - Kristin K Jørgensen
- Norwegian PSC Research Center, Department of Transplantation Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Department of Gastroenterology, Akershus University Hospital, Lørenskog, Norway
| | - Huan Su
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, 52074, Germany
| | - Brigitte Begher-Tibbe
- Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Dortmund, 44139, Germany
| | - Nikolaus Gaßler
- Institute for Legal Medicine, Section Pathology, University Hospital, Jena, 07747, Germany
| | - Carolin V Schneider
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, 52074, Germany
| | - Uthayakumar Muthukumarasamy
- Helmholtz Centre for Infection Research, Braunschweig, Germany and Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, 97080, Germany
| | - Antje Mohs
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, 52074, Germany
| | - Lijun Liao
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, 52074, Germany
- Department of Anesthesiology and Pain Management, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Julius Jaeger
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, 52074, Germany
| | - Christian J Mertens
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, 52074, Germany
| | - Ina Bergheim
- Department of Nutritional Sciences, Molecular Nutritional Science, University of Vienna, Vienna, A-1090, Austria
| | - Till Strowig
- Helmholtz Centre for Infection Research, Braunschweig, Germany and Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, 97080, Germany
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Dortmund, 44139, Germany
| | - Johannes R Hov
- Norwegian PSC Research Center, Section of Gastroenterology and Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Hanns-Ulrich Marschall
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 41345, Sweden
| | - Christian Trautwein
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, 52074, Germany.
| | - Kai Markus Schneider
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, 52074, Germany.
| |
Collapse
|
23
|
Hu L, Chen J, Duan H, Zou Z, Qiu Y, Du J, Chen J, Yao X, Kiyohara H, Nagai T, Yao Z. A screening strategy for bioactive components of Bu-Zhong-Yi-Qi-Tang regulating spleen-qi deficiency based on "endobiotics-targets-xenobiotics" association network. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116605. [PMID: 37178982 DOI: 10.1016/j.jep.2023.116605] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/18/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bu-Zhong-Yi-Qi-Tang is a famous traditional Chinese medicine formula that has been prevalent in China for over 700 years to treat spleen-qi deficiency related diseases, such as gastrointestinal and respiratory disorders. However, the bioactive components responsible for regulating spleen-qi deficiency remain unclear and have puzzled many researchers. AIM OF THE STUDY The current study focuses on efficacy evaluation of regulating spleen-qi deficiency and screening the bioactive components of Bu-Zhong-Yi-Qi-Tang. MATERIALS AND METHODS The effects of Bu-Zhong-Yi-Qi-Tang were evaluated through blood routine examination, immune organ index, and biochemical analysis. Metabolomics was utilized to analyze the potential endogenous biomarkers (endobiotics) in the plasma, and the prototypes (xenobiotics) of Bu-Zhong-Yi-Qi-Tang in the bio-samples were characterized using ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. Then, these endobiotics were used as "bait" to predict targets based on network pharmacology and to screen potential bioactive components from the absorbed prototypes in the plasma by constructing an "endobiotics-targets-xenobiotics" association network. Further, the anti-inflammatory activities of representative compounds (calycosin and nobiletin) were validated through poly(I:C)-induced pulmonary inflammation mice model. RESULTS Bu-Zhong-Yi-Qi-Tang exhibited immunomodulatory and anti-inflammatory activities in spleen-qi deficiency rat, as supported by the observation of increased levels of D-xylose and gastrin in serum, an increase in the thymus index and number of lymphocytes in blood, as well as a reduction in the level of IL-6 in bronchoalveolar lavage fluid. Furthermore, plasma metabolomic analysis revealed a total of 36 Bu-Zhong-Yi-Qi-Tang related endobiotics, which were mainly enriched in primary bile acids biosynthesis, the metabolism of linoleic acid, and the metabolism of phenylalanine pathways. Meanwhile, 95 xenobiotics were characterized in plasma, urine, small intestinal contents, and tissues of spleen-qi deficiency rat after Bu-Zhong-Yi-Qi-Tang treatment. Using an integrated association network, six potential bioactive components of Bu-Zhong-Yi-Qi-Tang were screened. Among them, calycosin was found to significantly reduce the levels of IL-6 and TNF-α in the bronchoalveolar lavage fluid, increase the number of lymphocytes, while nobiletin dramatically decreased the levels of CXCL10, TNF-α, GM-CSF, and IL-6. CONCLUSION Our study proposed an available strategy for screening bioactive components of BYZQT regulating spleen-qi deficiency based on "endobiotics-targets-xenobiotics" association network.
Collapse
Affiliation(s)
- Liufang Hu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Jiali Chen
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Huifang Duan
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Zhenyu Zou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Yuan Qiu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Jing Du
- Tong Ren Tang Technologies Co. Ltd, Beijing, 100079, China.
| | - Jiaxu Chen
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Xinsheng Yao
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Hiroaki Kiyohara
- Laboratory of Biochemical Pharmacology for Phytomedicines, Ōmura Satoshi Memorial Institute, Kitasato University, Tokyo, 1088641, Japan
| | - Takayuki Nagai
- Laboratory of Biochemical Pharmacology for Phytomedicines, Ōmura Satoshi Memorial Institute, Kitasato University, Tokyo, 1088641, Japan.
| | - Zhihong Yao
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
24
|
Li Q, Zhang W, Cheng N, Zhu Y, Li H, Zhang S, Guo W, Ge G. Pectolinarigenin ameliorates acetaminophen-induced acute liver injury via attenuating oxidative stress and inflammatory response in Nrf2 and PPARa dependent manners. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 113:154726. [PMID: 36863308 DOI: 10.1016/j.phymed.2023.154726] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/30/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Cirsii Japonici Herba Carbonisata (Dajitan in Chinese) has been used to treat liver disorders in Asian countries. Pectolinarigenin (PEC), an abundant constituent in Dajitan, has been found to possess a wide range of biological benefits, including hepatoprotective effects. However, the effects of PEC on acetaminophen (APAP)-induced liver injury (AILI) and the underlying mechanisms have not been studied. PURPOSES To explore the role and mechanisms of PEC in protecting against AILI. STUDY DESIGN AND METHODS The hepatoprotective benefits of PEC were studied using a mouse model and HepG2 cells. PEC was tested for its effects by injecting it intraperitoneally before APAP administration. To assess liver damage, histological and biochemical tests were performed. The levels of inflammatory factors in the liver were measured using RT-PCR and ELISA. Western blotting was used to measure the expression of a panel of key proteins involved in APAP metabolism, as well as Nrf2 and PPARα. PEC mechanisms on AILI were investigated using HepG2 cells, while the Nrf2 inhibitor (ML385) and PPARα inhibitor (GW6471) were used to validate the importance of either Nrf2 and PPARα in the hepatoprotective effects of PEC. RESULTS PEC treatment decreased serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) levels in the liver. PEC pretreatment increased the activity of superoxide dismutase (SOD) and glutathione (GSH) while decreasing malondialdehyde production (MDA). PEC could also up-regulate two important APAP detoxification enzymes (UGT1A1 and SULT1A1). Further research revealed that PEC reduced hepatic oxidative damage and inflammation, and up-regulated APAP detoxification enzymes in hepatocytes by activating the Nrf2 and PPARα signaling pathways. CONCLUSIONS PEC ameliorates AILI by decreasing hepatic oxidative stress and inflammation while increasing phase Ⅱ detoxification enzymes related to APAP harmless metabolism through activation of Nrf2 and PPARα signaling. Hence, PEC may serve as a promising therapeutic drug against AILI.
Collapse
Affiliation(s)
- Qian Li
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Wen Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China; Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University; Henan Engineering Technology Research Center of Organ Transplantation; Henan Research Centre for Organ Transplantation, No. 1, East Jianshe Road, Zhengzhou 450001, China
| | - Nuo Cheng
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University; Henan Engineering Technology Research Center of Organ Transplantation; Henan Research Centre for Organ Transplantation, No. 1, East Jianshe Road, Zhengzhou 450001, China
| | - Yadi Zhu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Hao Li
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University; Henan Engineering Technology Research Center of Organ Transplantation; Henan Research Centre for Organ Transplantation, No. 1, East Jianshe Road, Zhengzhou 450001, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University; Henan Engineering Technology Research Center of Organ Transplantation; Henan Research Centre for Organ Transplantation, No. 1, East Jianshe Road, Zhengzhou 450001, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University; Henan Engineering Technology Research Center of Organ Transplantation; Henan Research Centre for Organ Transplantation, No. 1, East Jianshe Road, Zhengzhou 450001, China.
| | - Guangbo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| |
Collapse
|
25
|
Jaroonwitchawan T, Arimochi H, Sasaki Y, Ishifune C, Kondo H, Otsuka K, Tsukumo SI, Yasutomo K. Stimulation of the farnesoid X receptor promotes M2 macrophage polarization. Front Immunol 2023; 14:1065790. [PMID: 36776885 PMCID: PMC9911659 DOI: 10.3389/fimmu.2023.1065790] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/11/2023] [Indexed: 01/28/2023] Open
Abstract
FXR is a key molecule that modulates anti-inflammatory activity in the intestinal-liver axis. Although FXR has pleiotropic functions including regulation of liver inflammation and activation of macrophages, it remains unclear whether it is involved in macrophage polarization. In this paper we demonstrated that stimulation of macrophages derived from the bone marrow using an FXR agonist activated polarization toward M2 but not M1 macrophages. The treatment of mice with chitin skewed macrophage polarization towards M2 macrophages, while co-treatment with an FXR agonist further promoted the polarization toward M2 macrophages in vivo. This skewed polarization towards M2 macrophages by an FXR agonist was accompanied by increased expression of signaling molecules related to the retinoic acid receptor. Inhibition of the retinoic acid receptor suppressed FXR agonist-mediated M2 macrophage polarization, indicating that this polarization was, at least, partly dependent on the retinoic acid receptor pathway. These data demonstrate that FXR has a role in polarization toward M2 macrophages and suggest a possible therapeutic potential of FXR agonists in M2 macrophage-related conditions.
Collapse
Affiliation(s)
- Thiranut Jaroonwitchawan
- Department of Immunology and Parasitology, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| | - Hideki Arimochi
- Department of Immunology and Parasitology, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| | - Yuki Sasaki
- Department of Immunology and Parasitology, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| | - Chieko Ishifune
- Department of Immunology and Parasitology, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| | - Hiroyuki Kondo
- Department of Immunology and Parasitology, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| | - Kunihiro Otsuka
- Department of Immunology and Parasitology, Graduate School of Medicine, Tokushima University, Tokushima, Japan.,Department of Interdisciplinary Research on Medicine and Photonics, Institute of Post-LED Photonics, Tokushima University, Tokushima, Japan
| | - Shin-Ichi Tsukumo
- Department of Immunology and Parasitology, Graduate School of Medicine, Tokushima University, Tokushima, Japan.,Department of Interdisciplinary Research on Medicine and Photonics, Institute of Post-LED Photonics, Tokushima University, Tokushima, Japan
| | - Koji Yasutomo
- Department of Immunology and Parasitology, Graduate School of Medicine, Tokushima University, Tokushima, Japan.,Department of Interdisciplinary Research on Medicine and Photonics, Institute of Post-LED Photonics, Tokushima University, Tokushima, Japan.,The Research Cluster Program on Immunological Diseases, Tokushima University, Tokushima, Japan
| |
Collapse
|
26
|
Li Q, Meng X, Hua Q. Circ ASAP2 decreased inflammation and ferroptosis in diabetic nephropathy through SOX2/SLC7A11 by miR-770-5p. Acta Diabetol 2023; 60:29-42. [PMID: 36153434 DOI: 10.1007/s00592-022-01961-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/16/2022] [Indexed: 01/07/2023]
Abstract
AIMS Diabetes nephropathy (DN) is one of the major complications in diabetes. With the improvement of people's living standards in China in recent years, the incidence of diabetes has become the main cause of end-stage renal disease. However, how and whether circ ASAP2 could mediate DN remain poorly understood. This study aimed to determine the function and its biological mechanism of circ ASAP2 on inflammation and ferroptosis of DN. METHODS C57BL/6 mice were fed with a high-fat diet and injected with streptozotocin. Human renal glomerular endothelial cells stimulated with 20 mmol/L D-glucose. RESULTS In mice model DN, circular ASAP2 expression level was down-regulated, and miR-770-5p expression level was up-regulated. Moreover, the inhibition of ASAP2 aggravated diabetic nephropathy in mice model. The inhibition of ASAP2 promoted inflammation and oxidative stress to aggravate renal injury in mice model. Circular ASAP2 was reducing inflammation and oxidative stress in vitro model. The inhibition of ASAP2 promoted ferroptosis in model of DN. CASAP2 suppressed miR-770-5p in DN. Additionally, miR-770-5p aggravated diabetic nephropathy in mice model. MiR-770-5p promoted inflammation and oxidative stress to aggravate renal injury in mice model. MiR-770-5p was increasing inflammation and oxidative stress in vitro model. Circular ASAP2 induced SLC7A11 expression in model of DN through SOX2 by miR-770-5p. CONCLUSIONS These results suggest that circ ASAP2 decreased inflammation and ferroptosis in DN through SOX2/SLC7A11 by miR-770-5p, which might serve as a target for improving the role of ferroptosis in DN.
Collapse
Affiliation(s)
- Qin Li
- Department of Endocrinology, Yijishan Hospital of Wannan Medical College, No.2 Zheshanxi Road, Wuhu, 241001, Anhui, China
| | - Xiangjian Meng
- Department of Endocrinology, Yijishan Hospital of Wannan Medical College, No.2 Zheshanxi Road, Wuhu, 241001, Anhui, China.
| | - Qiang Hua
- Department of Endocrinology, Yijishan Hospital of Wannan Medical College, No.2 Zheshanxi Road, Wuhu, 241001, Anhui, China.
| |
Collapse
|
27
|
Bai J, Xiong T, Wang X, Cheng Y, Luo R, Yang X, Fu C. Potential mechanisms of Lian-Zhi-Fan solution for TNBS-induced ulcerative colitis in rats via a metabolomics approach. Front Pharmacol 2022; 13:1014117. [DOI: 10.3389/fphar.2022.1014117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022] Open
Abstract
Lian-Zhi-Fan (LZF) decoction is a hospital-prescribed traditional Chinese medicine botanical drug prepared by the fermentation of decocted Coptidis Rhizome (Huanglian), Gardeniae Fructus (Zhizi), and alum (Baifan). It has been used clinically in China for the treatment of anal fistula, perianal abscess, ulcerative colitis (UC), and other anorectal diseases for hundreds of years. However, due to the complexity of traditional Chinese medicine, the potential mechanisms of LZF in the treatment of UC have remained unknown. This study primarily investigated the remarkable pharmacological effects of LZF on TNBS-induced UC rats. To explore the complex targets and regulatory mechanisms of metabolic networks under LZF intervention, a metabolomics approach mediated by HPLC/Q-TOF-MS analysis was used to screen the different metabolites and their metabolic pathways in the serum in order to characterize the possible anti-UC mechanisms of LZF. After rectal administration of LZF for seven consecutive days, significant amelioration effects on body weight loss, DAI score, and colon inflammation were found in UC rats. Based on this, further metabolomics identified 14 potential biomarkers in the treatment of UC with LZF, of which five possessed diagnostic significance: L-alanine, taurocholic acid, niacinamide, cholic acid, and L-valine. These metabolites are mainly involved in 12 metabolic pathways, including nicotate and nicotinamide metabolism, glycospholipid metabolism, arginine and proline metabolism, primary bile acid biosynthesis, and pantothenate and CoA biosynthesis. These metabolic pathways suggest that LZF ameliorates UC by regulating amino acid metabolism, fat metabolism, and energy production. This study provides a useful approach for exploring the potential mechanisms of herbal prescription in UC treatment mediated by metabolomics.
Collapse
|
28
|
Grabacka M, Płonka PM, Pierzchalska M. The PPARα Regulation of the Gut Physiology in Regard to Interaction with Microbiota, Intestinal Immunity, Metabolism, and Permeability. Int J Mol Sci 2022; 23:ijms232214156. [PMID: 36430628 PMCID: PMC9696208 DOI: 10.3390/ijms232214156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Peroxisome proliferator-activated receptor alpha (PPARα) is expressed throughout the mammalian gut: in epithelial cells, in the villi of enterocytes and in Paneth cells of intestinal crypts, as well as in some immune cells (e.g., lamina propria macrophages, dendritic cells) of the mucosa. This review examines the reciprocal interaction between PPARα activation and intestinal microbiota. We refer to the published data confirming that microbiota products can influence PPARα signaling and, on the other hand, PPARα activation is able to affect microbiota profile, viability, and diversity. PPARα impact on the broad spectrum of events connected to metabolism, signaling (e.g., NO production), immunological tolerance to dietary antigens, immunity and permeability of the gut are also discussed. We believe that the phenomena described here play a prominent role in gut homeostasis. Therefore, in conclusion we propose future directions for research, including the application of synthetic activators and natural endogenous ligands of PPARα (i.e., endocannabinoids) as therapeutics for intestinal pathologies and systemic diseases assumed to be related to gut dysbiosis.
Collapse
Affiliation(s)
- Maja Grabacka
- Department of Biotechnology and General Technology of Foods, Faculty of Food Technology, University of Agriculture, ul. Balicka 122, 30-149 Cracow, Poland
- Correspondence: ; Tel.: +48-12-662-4701
| | - Przemysław M. Płonka
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Cracow, Poland
| | - Małgorzata Pierzchalska
- Department of Biotechnology and General Technology of Foods, Faculty of Food Technology, University of Agriculture, ul. Balicka 122, 30-149 Cracow, Poland
| |
Collapse
|
29
|
Zhou S, You H, Qiu S, Yu D, Bai Y, He J, Cao H, Che Q, Guo J, Su Z. A new perspective on NAFLD: Focusing on the crosstalk between peroxisome proliferator-activated receptor alpha (PPARα) and farnesoid X receptor (FXR). Biomed Pharmacother 2022; 154:113577. [PMID: 35988420 DOI: 10.1016/j.biopha.2022.113577] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/10/2022] [Accepted: 08/16/2022] [Indexed: 11/19/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is primarily caused by abnormal lipid metabolism and the accumulation of triglycerides in the liver. NAFLD is also associated with hepatic steatosis and nutritional and energy imbalances and is a chronic liver disease associated with a number of factors. Nuclear receptors play a key role in balancing energy and nutrient metabolism, and the peroxisome proliferator-activated receptor alpha (PPARα) and farnesoid X receptor (FXR) regulate lipid metabolism genes, controlling hepatocyte lipid utilization and regulating bile acid (BA) synthesis and transport. They play an important role in lipid metabolism and BA homeostasis. At present, PPARα and FXR are the most promising targets for the treatment of NAFLD among nuclear receptors. This review focuses on the crosstalk mechanisms and transcriptional regulation of PPARα and FXR in the pathogenesis of NAFLD and summarizes PPARα and FXR drugs in clinical trials, laying a theoretical foundation for the targeted treatment of NAFLD and the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Shipeng Zhou
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Huimin You
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Shuting Qiu
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Dawei Yu
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Jincan He
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd, Science City, Guangzhou 510663, China
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
30
|
Ye X, Zhang T, Han H. PPARα: A potential therapeutic target of cholestasis. Front Pharmacol 2022; 13:916866. [PMID: 35924060 PMCID: PMC9342652 DOI: 10.3389/fphar.2022.916866] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 06/29/2022] [Indexed: 12/12/2022] Open
Abstract
The accumulation of bile acids in the liver leads to the development of cholestasis and hepatocyte injury. Nuclear receptors control the synthesis and transport of bile acids in the liver. Among them, the farnesoid X receptor (FXR) is the most common receptor studied in treating cholestasis. The activation of this receptor can reduce the amount of bile acid synthesis and decrease the bile acid content in the liver, alleviating cholestasis. Ursodeoxycholic acid (UDCA) and obeticholic acid (OCA) have a FXR excitatory effect, but the unresponsiveness of some patients and the side effect of pruritus seriously affect the results of UDCA or OCA treatment. The activator of peroxisome proliferator-activated receptor alpha (PPARα) has emerged as a new target for controlling the synthesis and transport of bile acids during cholestasis. Moreover, the anti-inflammatory effect of PPARα can effectively reduce cholestatic liver injury, thereby improving patients’ physiological status. Here, we will focus on the function of PPARα and its involvement in the regulation of bile acid transport and metabolism. In addition, the anti-inflammatory effects of PPARα will be discussed in some detail. Finally, we will discuss the application of PPARα agonists for cholestatic liver disorders.
Collapse
Affiliation(s)
- Xiaoyin Ye
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tong Zhang
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Tong Zhang, ; Han Han,
| | - Han Han
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Tong Zhang, ; Han Han,
| |
Collapse
|
31
|
Liao C, Wang D, Qin S, Zhang Y, Chen J, Xu R, Xu F, Zhang P. Inflammatory-Dependent Bidirectional Effect of Bile Acids on NLRP3 Inflammasome and Its Role in Ameliorating CPT-11-Induced Colitis. Front Pharmacol 2022; 13:677738. [PMID: 35712724 PMCID: PMC9193974 DOI: 10.3389/fphar.2022.677738] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/12/2022] [Indexed: 12/08/2022] Open
Abstract
Irinotecan (CPT-11) in combination with 5-fluorouracil and leucovorin is a first-line chemotherapy regimen for the treatment of colorectal cancer; however, its clinical application is limited by the dose-limiting gastrointestinal toxicity of colitis. In our previous studies, several bile acids (BAs) were found significantly elevated in the colon of the CPT-11-induced rat colitis model. On the other hand, NLRP3 inflammasome has been reported to play important roles in mediating colitis. Interestingly, BA was stated to activate the NLRP3 inflammasome in some studies, while in some other reports, it showed an inhibitory effect. We assumed that the inflammatory status in different circumstances might have contributed to the controversial findings. In this study, we first discovered, under non-inflammatory conditions, that supplementing BA could activate the NLRP3 inflammasome in THP-1-differentiated macrophages and promote inflammation. In lipopolysaccharide (LPS)-induced inflammatory macrophages, however, BA inhibited the NLRP3 inflammasome and reduced inflammation. Further experiments demonstrated that Takeda G protein-coupled receptor 5 (TGR5) is essential in mediating the inhibitory effect of BA, while phospho-SP1 (p-SP1) is key to the activation. Furthermore, we applied the above findings to ameliorate CPT-11-caused colitis in rats by inhibiting SP1 with mithramycin A (MitA) or activating TGR5 using oleanolic acid (OA). Our findings may shed light on the discovery of effective interventions for reducing dose-limiting chemotherapy-induced colitis.
Collapse
Affiliation(s)
- Chuyao Liao
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, China
| | - Di Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, China
| | - Siyuan Qin
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, China
| | - Ying Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, China
| | - Jie Chen
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, China
| | - Ruijie Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, China
| | - Fengguo Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, China
| | - Pei Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
32
|
Liang Z, Song X, Hu J, Wu R, Li P, Dong Z, Liang L, Wang J. Fermented Dairy Food Intake and Risk of Colorectal Cancer: A Systematic Review and Meta-Analysis. Front Oncol 2022; 12:812679. [PMID: 35692761 PMCID: PMC9174999 DOI: 10.3389/fonc.2022.812679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/14/2022] [Indexed: 11/24/2022] Open
Abstract
It was highly controversial whether fermented dairy foods protect against colorectal cancer (CRC) because of conflicting results from current human epidemiologic studies; we therefore conducted this meta-analysis based on the case-control and cohort studies to estimate the holistic analyses. Finally, a total of seven case-control studies and ten cohort studies comprising a total of >20,000 cases were incorporated in the quantitative synthesis. Specifically, statistical evidence of significantly decreasing CRC risk in case-control studies was found to be associated with cheese intake (OR = 0.89, 95% CI = 0.82-0.97). In a subgroup analysis, cheese intake was correlated with lower colon cancer (OR = 0.89, 95% CI = 0.79-1.00) and rectal cancer (OR = 0.86, 95% CI = 0.74-1.00) risk in case-control studies. Furthermore, we also found that the higher intake of yogurt may lower the risk of rectal cancer (OR = 0.75, 95% CI = 0.65-0.88) in cohort studies. The consumption of fermented dairy foods may be relevant to decrease CRC risk in this meta-analysis. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021269798, CRD42021269798.
Collapse
Affiliation(s)
- Zhi Liang
- Department of General Surgery, Baotou Central Hospital, Baotou, Inner Mongolia, China
- Baotou Medical College, Baotou, Inner Mongolia, China
| | - Xiaobiao Song
- Department of General Surgery, Baotou Central Hospital, Baotou, Inner Mongolia, China
| | - Jiang Hu
- Department of General Surgery, Baotou Central Hospital, Baotou, Inner Mongolia, China
| | - Riga Wu
- Baotou Medical College, Baotou, Inner Mongolia, China
| | - Pengda Li
- Baotou Medical College, Baotou, Inner Mongolia, China
| | - Zhenyu Dong
- Baotou Medical College, Baotou, Inner Mongolia, China
| | - Lu Liang
- Department of General Surgery, Baotou Central Hospital, Baotou, Inner Mongolia, China
| | - Jijun Wang
- Department of General Surgery, Baotou Central Hospital, Baotou, Inner Mongolia, China
| |
Collapse
|
33
|
Li P, Zhang HY, Gao JZ, Du WQ, Tang D, Wang W, Wang LH. Mesenchymal stem cells-derived extracellular vesicles containing miR-378a-3p inhibit the occurrence of inflammatory bowel disease by targeting GATA2. J Cell Mol Med 2022; 26:3133-3146. [PMID: 35582765 PMCID: PMC9170824 DOI: 10.1111/jcmm.17176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 12/12/2021] [Accepted: 12/19/2021] [Indexed: 12/12/2022] Open
Abstract
This study sought to determine whether mesenchymal stem cells‐derived extracellular vesicles (MSCs‐EVs) carrying microRNA‐378a‐3p (miR‐378a‐3p) could affect the pathogenesis of inflammatory bowel disease (IBD) by regulating the GATA‐binding protein 2 (GATA2)/aquaporin‐4 (AQP4)/peroxisome proliferator‐activated receptor α (PPAR‐α) axis. Initially, colon mucosa biopsy tissues were harvested from healthy controls and patients with IBD for qRT‐PCR and immunohistochemistry analysis. EVs harvested from MSCs and lipopolysaccharide (LPS) were used to stimulate the M064 cells to establish an in vitro inflammation cell model. Besides, 2,4,6‐trinitrobenzene sulfonic acid intracolon administration was performed to establish in vivo IBD mouse models. After loss‐ and gain‐of‐function assays, the regulatory role of MSCs‐derived EVs loaded with manipulated miR‐378a‐3p in IBD in relation to GATA2/AQP4/PPAR‐α were explored. Upregulation of GATA2 was identified in the colon tissue of IBD patients. GATA2, which was a target gene of miR‐378a‐3p, transcriptionally upregulated AQP4. After silencing of GATA2, LPS‐induced apoptosis of M064 cells was reduced by the downregulation of AQP4. Decreased AQP4 contributed to PPAR‐α pathway inactivation and weakened the LPS‐induced apoptosis of M064 cells. MSCs‐EVs delivering miR‐378a‐3p suppressed the GATA2/AQP4/PPAR‐α pathway, which reduced LPS‐induced apoptosis of M064 cells and the occurrence of IBD in mice. Altogether, the current study illustrated that MSCs‐EVs transfer miR‐378a‐3p to reduce the GATA2 expression, which downregulates AQP4 to block the PPAR‐α signalling pathway, thus suppressing the occurrence of IBD.
Collapse
Affiliation(s)
- Ping Li
- Department of General Surgery, Huaian Tumor Hospital & Huaian Hospital of Huaian City, Huaian, China.,Department of Central Laboratory, Huaian Tumor Hospital & Huaian Hospital of Huaian City, Huaian, China.,Department of Experimental Surgery-Cancer Metastasis, Medical Faculty Mannheim, Ruprecht Karls University, Mannheim, Germany
| | - Hai-Yan Zhang
- Department of Clinical Nursing, Huaian Tumor Hospital & Huaian Hospital of Huaian City, Huaian, China
| | - Jian-Zhen Gao
- Department of Clinical Nursing, Huaian Tumor Hospital & Huaian Hospital of Huaian City, Huaian, China
| | - Wen-Qiang Du
- Department of Central Laboratory, Huaian Tumor Hospital & Huaian Hospital of Huaian City, Huaian, China
| | - Dong Tang
- Department of General Surgery, General Surgery Institute of Yangzhou, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Wei Wang
- Department of General Surgery, General Surgery Institute of Yangzhou, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Liu-Hua Wang
- Department of General Surgery, General Surgery Institute of Yangzhou, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, China
| |
Collapse
|
34
|
Katkar GD, Sayed IM, Anandachar MS, Castillo V, Vidales E, Toobian D, Usmani F, Sawires JR, Leriche G, Yang J, Sandborn WJ, Das S, Sahoo D, Ghosh P. Artificial intelligence-rationalized balanced PPARα/γ dual agonism resets dysregulated macrophage processes in inflammatory bowel disease. Commun Biol 2022; 5:231. [PMID: 35288651 PMCID: PMC8921270 DOI: 10.1038/s42003-022-03168-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
A computational platform, Boolean network explorer (BoNE), has recently been developed to infuse AI-enhanced precision into drug discovery; it enables invariant Boolean Implication Networks of disease maps for prioritizing high-value targets. Here we used BoNE to query an Inflammatory Bowel Disease (IBD)-map and prioritize a therapeutic strategy that involves dual agonism of two nuclear receptors, PPARα/γ. Balanced agonism of PPARα/γ was predicted to modulate macrophage processes, ameliorate colitis, 'reset' the gene expression network from disease to health. Predictions were validated using a balanced and potent PPARα/γ-dual-agonist (PAR5359) in Citrobacter rodentium- and DSS-induced murine colitis models. Using inhibitors and agonists, we show that balanced-dual agonism promotes bacterial clearance efficiently than individual agonists, both in vivo and in vitro. PPARα is required and sufficient to induce the pro-inflammatory cytokines and cellular ROS, which are essential for bacterial clearance and immunity, whereas PPARγ-agonism blunts these responses, delays microbial clearance; balanced dual agonism achieved controlled inflammation while protecting the gut barrier and 'reversal' of the transcriptomic network. Furthermore, dual agonism reversed the defective bacterial clearance observed in PBMCs derived from IBD patients. These findings not only deliver a macrophage modulator for use as barrier-protective therapy in IBD, but also highlight the potential of BoNE to rationalize combination therapy.
Collapse
Affiliation(s)
- Gajanan D Katkar
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, USA
| | - Ibrahim M Sayed
- Department of Pathology, University of California San Diego, San Diego, USA.,Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | | | - Vanessa Castillo
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, USA
| | - Eleadah Vidales
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, USA
| | - Daniel Toobian
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, USA
| | - Fatima Usmani
- Department of Pathology, University of California San Diego, San Diego, USA
| | - Joseph R Sawires
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, USA
| | - Geoffray Leriche
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, USA
| | - Jerry Yang
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, USA
| | - William J Sandborn
- Department of Medicine, University of California San Diego, San Diego, USA.
| | - Soumita Das
- Department of Pathology, University of California San Diego, San Diego, USA.
| | - Debashis Sahoo
- Department of Computer Science and Engineering, Jacob's School of Engineering, University of California San Diego, San Diego, USA. .,Department of Pediatrics, University of California San Diego, San Diego, USA. .,Rebecca and John Moore Comprehensive Cancer Center, University of California San Diego, San Diego, USA.
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, USA. .,Department of Medicine, University of California San Diego, San Diego, USA. .,Rebecca and John Moore Comprehensive Cancer Center, University of California San Diego, San Diego, USA. .,Veterans Affairs Medical Center, La Jolla, San Diego, USA.
| |
Collapse
|
35
|
Chlorogenic Acid Inhibits Lipid Deposition by Regulating the Enterohepatic FXR-FGF15 Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4919153. [PMID: 35257010 PMCID: PMC8897747 DOI: 10.1155/2022/4919153] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 02/08/2022] [Indexed: 12/13/2022]
Abstract
Aim Chlorogenic acid (CGA) is a natural polyphenolic compound found in human dietary products. Previous studies have confirmed that CGA has many biological activities, such as regulating glucose and lipid metabolism and improving insulin resistance. However, its underlying mechanisms of action remains unclear. Here, we demonstrate the protective effects and molecular mechanisms of action of CGA in reducing weight gain and hyperlipidemia in mice fed with a high-fat diet (HFD). Methods and Results C57BL/6 mice were fed with normal chow or HFD; half of the mice in each group received CGA treatment by oral gavage for 16 weeks. CGA treatment was found to significantly inhibit HFD-induced weight gain and hyperlipidemia and increased energy expenditure by promoting the expression of genes involved in thermogenesis and mitochondrial biogenesis. Furthermore, CGA was shown to inhibit the enterohepatic farnesoid X receptor (FXR) fibroblast growth factor 15 (FGF15) pathway and changes serum bile acid (BA) pool, thereby contributing to the increased expression of cholesterol 7 α-hydroxylase (CYP7A1). Conclusions CGA increases the metabolic elimination of cholesterol by inhibiting the enterohepatic FXR/FGF15 pathway.
Collapse
|
36
|
Chen Y, Liu Y, Wang Y, Chen X, Wang C, Chen X, Yuan X, Liu L, Yang J, Zhou X. Prevotellaceae produces butyrate to alleviate PD-1/PD-L1 inhibitor-related cardiotoxicity via PPARα-CYP4X1 axis in colonic macrophages. J Exp Clin Cancer Res 2022; 41:1. [PMID: 34980222 PMCID: PMC8722009 DOI: 10.1186/s13046-021-02201-4] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/26/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Immune checkpoint inhibitor-related cardiotoxicity is one of the most lethal adverse effects, and thus, the identification of underlying mechanisms for developing strategies to overcome it has clinical importance. This study aimed to investigate whether microbiota-host interactions contribute to PD-1/PD-L1 inhibitor-related cardiotoxicity. METHODS A mouse model of immune checkpoint inhibitor-related cardiotoxicity was constructed by PD-1/PD-L1 inhibitor BMS-1 (5 and 10 mg/kg), and cardiomyocyte apoptosis and cardiotoxicity were determined by hematoxylin and eosin, Masson's trichome and TUNEL assays. 16S rRNA sequencing was used to define the gut microbiota composition. Gut microbiota metabolites short-chain fatty acids (SCFAs) were determined by HPLC. The serum levels of myocardial enzymes (creatine kinase, aspartate transaminase, creatine kinase-MB and lactate dehydrogenase) and the production of M1 factors (TNF-α and IL-1β) were measured by ELISA. The colonic macrophage phenotype was measured by mmunofluorescence and qPCR. The expression of Claudin-1, Occludin, ZO-1 and p-p65 was measured by western blot. The gene expression of peroxisome proliferator-activated receptor α (PPARα) and cytochrome P450 (CYP) 4X1 was determined using qPCR. Statistical analyses were performed using Student's t-test for two-group comparisons, and one-way ANOVA followed by Student-Newman-Keul test for multiple-group comparisons. RESULTS We observed intestinal barrier injury and gut microbiota dysbiosis characterized by Prevotellaceae and Rikenellaceae genus depletion and Escherichia-Shigella and Ruminococcaceae genus enrichment, accompanied by low butyrate production and M1-like polarization of colonic macrophages in BMS-1 (5 and 10 mg/kg)-induced cardiotoxicity. Fecal microbiota transplantation mirrored the effect of BMS-1 on cardiomyocyte apoptosis and cardiotoxicity, while macrophage depletion and neutralization of TNF-α and IL-1β greatly attenuated BMS-1-induced cardiotoxicity. Importantly, Prevotella loescheii recolonization and butyrate supplementation alleviated PD-1/PD-L1 inhibitor-related cardiotoxicity. Mechanistically, gut microbiota dysbiosis promoted M1-like polarization of colonic macrophages and the production of proinflammatory factors TNF-α and IL-1β through downregulation of PPARα-CYP4X1 axis. CONCLUSIONS Intestinal barrier dysfunction amplifies PD-1/PD-L1 inhibitor-related cardiotoxicity by upregulating proinflammatory factors TNF-α and IL-1β in colonic macrophages via downregulation of butyrate-PPARα-CYP4X1 axis. Thus, targeting gut microbiota to polarize colonic macrophages away from the M1-like phenotype could provide a potential therapeutic strategy for PD-1/PD-L1 inhibitor-related cardiotoxicity.
Collapse
Affiliation(s)
- Yaxin Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yanzhuo Liu
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yang Wang
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xuewei Chen
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Chenlong Wang
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xuehan Chen
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xi Yuan
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Lilong Liu
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Jing Yang
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China.
| | - Xiaoyang Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
37
|
Chen L, Li R, Wang Z, Zhang Z, Wang J, Qiao Y, Huang Y, Liu W. Lactate-utilizing bacteria ameliorates DSS-induced colitis in mice. Life Sci 2022; 288:120179. [PMID: 34838850 DOI: 10.1016/j.lfs.2021.120179] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/16/2021] [Accepted: 11/21/2021] [Indexed: 02/06/2023]
Abstract
Inflammatory bowel diseases (IBD) stem from alterations in the intestinal immune system and microbial dysbiosis, but the precise interactions between bacteria and IBD remain obscure. The commensal microbiota have a profound impact on human health and diseases. Here, we developed a selective culture medium for lactate-utilizing bacteria (LUB) that function as candidate probiotics to ameliorate IBD using a mouse model. Firstly, LUB, including Megasphaera, were enriched from human faeces using a selective medium with lactate. LUB efficiently attenuated the pathology of colitis induced by dextran sulphate sodium (DSS). Next, LUB administration counteracted the dysbiosis associated with the intestinal inflammatory process, and elevated the proportion of Escherichia-Shigella in intestines. Moreover, E. coli isolated from healthy faeces downstream recapitulated lactate-utilizing bacterial community to ameliorate the severity of DSS-induced acute colitis. In conclusion, our finding revealed that LUB were sufficient to exert inflammatory protection against colitis in mice, highlighting a novel therapeutic strategy to use LUB as potentially curable probiotics for therapeutic manipulation for IBD.
Collapse
Affiliation(s)
- Lirong Chen
- Department of Medical Laboratory Science, Shanxi Medical University Fenyang College, Shanxi 032200, China.
| | - Rong Li
- College of Basic Medicine, Chengde Medical University, Hebei 067000, China
| | - Ziguang Wang
- First Clinical Medical College, Mudanjiang Medical College; Department of Laboratory Medicine, The Second Affiliated Hospital of Mudanjiang Medical College, Heilongjiang 157000, China
| | - Zhiwei Zhang
- Department of Gastroenterology, Shanxi Fenyang Hospital, Shanxi 032200, China
| | - Jie Wang
- Jingle County People's Hospital, Shanxi 035100, China
| | - Yuebing Qiao
- College of Basic Medicine, Chengde Medical University, Hebei 067000, China
| | - Yongcun Huang
- First Clinical Medical College, Mudanjiang Medical College; Department of Laboratory Medicine, The Second Affiliated Hospital of Mudanjiang Medical College, Heilongjiang 157000, China
| | - Wei Liu
- School of Plant Protection, Anhui Agricultural University; Anhui Province Key Laboratory of Crop Integrated Pest Management; Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui 230036, China; Department of Medical Laboratory Science, Shanxi Medical University Fenyang College, Shanxi 032200, China.
| |
Collapse
|
38
|
Toobian D, Ghosh P, Katkar GD. Parsing the Role of PPARs in Macrophage Processes. Front Immunol 2021; 12:783780. [PMID: 35003101 PMCID: PMC8727354 DOI: 10.3389/fimmu.2021.783780] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
Cells are richly equipped with nuclear receptors, which act as ligand-regulated transcription factors. Peroxisome proliferator activated receptors (PPARs), members of the nuclear receptor family, have been extensively studied for their roles in development, differentiation, and homeostatic processes. In the recent past, there has been substantial interest in understanding and defining the functions of PPARs and their agonists in regulating innate and adaptive immune responses as well as their pharmacologic potential in combating acute and chronic inflammatory disease. In this review, we focus on emerging evidence of the potential roles of the PPAR subtypes in macrophage biology. We also discuss the roles of dual and pan PPAR agonists as modulators of immune cell function, microbial infection, and inflammatory diseases.
Collapse
Affiliation(s)
- Daniel Toobian
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, CA, United States
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, CA, United States
- Rebecca and John Moore Comprehensive Cancer Center, University of California San Diego, San Diego, CA, United States
- Department of Medicine, University of California San Diego, San Diego, CA, United States
- Veterans Affairs Medical Center, La Jolla, CA, United States
| | - Gajanan D. Katkar
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, CA, United States
| |
Collapse
|
39
|
So SY, Wu Q, Leung KS, Kundi ZM, Savidge TC, El-Nezami H. Yeast β-glucan reduces obesity-associated Bilophila abundance and modulates bile acid metabolism in healthy and high-fat diet mouse models. Am J Physiol Gastrointest Liver Physiol 2021; 321:G639-G655. [PMID: 34643089 DOI: 10.1152/ajpgi.00226.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/20/2021] [Accepted: 10/09/2021] [Indexed: 01/31/2023]
Abstract
Emerging evidence links dietary fiber with altered gut microbiota composition and bile acid signaling in maintaining metabolic health. Yeast β-glucan (Y-BG) is a dietary supplement known for its immunomodulatory effect, yet its impact on the gut microbiota and bile acid composition remains unclear. This study investigated whether dietary forms of Y-BG modulate these gut-derived signals. We performed 4-wk dietary supplementation in healthy mice to evaluate the effects of different fiber composition (soluble vs. particulate Y-BG) and dose (0.1% vs. 2%). We found that 2% particulate Y-BG induced robust gut microbiota community shifts with elevated liver Cyp7a1 mRNA abundance and bile acid synthesis. These diet-induced responses were notably different when compared with the prebiotic inulin, and included a marked reduction in fecal Bilophila abundance which we demonstrated as translatable to obesity in population-scale American Gut and TwinsUK clinical cohorts. This prompted us to test whether 2% Y-BG maintained metabolic health in mice fed 60% HFD over 13 wk. Y-BG consistently altered the gut microbiota composition and reduced Bilophila abundance, with trends observed in improvement of metabolic phenotype. Notably, Y-BG improved insulin sensitization and this was associated with enhanced ileal Glpr1r mRNA accumulation and reduced Bilophila abundance. Collectively, our results demonstrate that Y-BG modulates gut microbiota community composition and bile acid signaling, but the dietary regime needs to be optimized to facilitate clinical improvement in metabolic phenotype in an aggressive high-fat diet animal model.NEW & NOTEWORTHY The study shows that dietary Y-BG supplementation modulated gut microbiota, bile acid metabolism and associated signaling pathways. Y-BG significantly reduced Bilophila abundance which is associated with obesity in human cohorts. Correlation analysis confirmed functional interactions between bile acid composition, gut microbiota, and metabolic phenotype, although clinical benefit did not reach significance in an aggressive obesity model. Gut microbiota and bile acids correlated with metabolic parameters, indicating future potential of dietary Y-BG modulation of metabolic pathways.
Collapse
Affiliation(s)
- Sik Yu So
- School of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences Building, The University of Hong Kong, Pokfulam, Hong Kong
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
- Texas Children's Microbiome Center, Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Qinglong Wu
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
- Texas Children's Microbiome Center, Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Kin Sum Leung
- School of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences Building, The University of Hong Kong, Pokfulam, Hong Kong
| | - Zuzanna Maria Kundi
- School of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences Building, The University of Hong Kong, Pokfulam, Hong Kong
| | - Tor C Savidge
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
- Texas Children's Microbiome Center, Department of Pathology, Texas Children's Hospital, Houston, Texas
| | - Hani El-Nezami
- School of Biological Sciences, Faculty of Science, Kadoorie Biological Sciences Building, The University of Hong Kong, Pokfulam, Hong Kong
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
40
|
Anderson KM, Gayer CP. The Pathophysiology of Farnesoid X Receptor (FXR) in the GI Tract: Inflammation, Barrier Function and Innate Immunity. Cells 2021; 10:cells10113206. [PMID: 34831429 PMCID: PMC8624027 DOI: 10.3390/cells10113206] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 11/12/2021] [Indexed: 12/12/2022] Open
Abstract
The Farnesoid-X Receptor, FXR, is a nuclear bile acid receptor. Its originally described function is in bile acid synthesis and regulation within the liver. More recently, however, FXR has been increasingly appreciated for its breadth of function and expression across multiple organ systems, including the intestine. While FXR’s role within the liver continues to be investigated, increasing literature indicates that FXR has important roles in responding to inflammation, maintaining intestinal epithelial barrier function, and regulating immunity within the gastrointestinal (GI) tract. Given the complicated and multi-factorial nature of intestinal barrier dysfunction, it is not surprising that FXR’s role appears equally complicated and not without conflicting data in different model systems. Recent work has suggested translational applications of FXR modulation in GI pathology; however, a better understanding of FXR physiology is necessary for these treatments to gain widespread use in human disease. This review aims to discuss current scientific work on the role of FXR within the GI tract, specifically in its role in intestinal inflammation, barrier function, and immune response, while also exploring areas of controversy.
Collapse
Affiliation(s)
- Kemp M. Anderson
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
- Division of Pediatric Surgery, Childrens Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Christopher P. Gayer
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
- Division of Pediatric Surgery, Childrens Hospital Los Angeles, Los Angeles, CA 90027, USA
- Correspondence: ; Tel.: +1-323-361-4974
| |
Collapse
|
41
|
Yao H, Shi Y, Yuan J, Sa R, Chen W, Wan X. Matrine protects against DSS-induced murine colitis by improving gut barrier integrity, inhibiting the PPAR-α signaling pathway, and modulating gut microbiota. Int Immunopharmacol 2021; 100:108091. [PMID: 34474274 DOI: 10.1016/j.intimp.2021.108091] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/16/2021] [Accepted: 08/22/2021] [Indexed: 12/30/2022]
Abstract
Matrine is a naturally occurring quinolizidine alkaloid with various bioactivities. However, little is known of its function on ulcerative colitis (UC). Here, we investigated the effect and underlying mechanisms of matrine on dextran sulfate sodium (DSS)-induced UC mice. In this study, different concentrations of matrine were given to mice with DSS-induced colitis for a week. The symptoms of colitis, colonic pathology, inflammation-related indicators, and intestinal mucosal barrier function were detected and analyzed. Moreover, RNA-seq analysis in colon tissues was conducted, and 16S rDNA sequencing was carried out to evaluate the gut microbiota of colon contents. The results showed that matrine significantly alleviated clinical activity and histological changes of UC mice, inhibited the production of the pro-inflammatory cytokines, and improved gut barrier integrity. Moreover, RNA-seq analysis and experimental verification showed that matrine significantly inhibited the peroxisome proliferator-activated receptor-α (PPAR-α) signaling pathway. 16S rDNA sequencing revealed that matrine altered the composition and functions of gut microbiota, increased the abundance of Barnesiella intestinihominis and decreased the abundance of Helicobacter ganmani at the species level. In conclusion, matrine ameliorated DSS-induced colitis by improving gut barrier integrity, inhibiting the PPAR-α signaling pathway, and modulating gut microbiota. These suggested that matrine may be a therapeutic agent for UC treatment.
Collapse
Affiliation(s)
- Huixiang Yao
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yan Shi
- Department of GI Endoscopy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Junqing Yuan
- Department of Pathology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ri Sa
- Department of Nuclear Medicine, the First Hospital of Jilin University, Changchun, China.
| | - Wei Chen
- Department of Gastroenterology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xinjian Wan
- Department of GI Endoscopy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| |
Collapse
|
42
|
Bile Acids Activate NLRP3 Inflammasome, Promoting Murine Liver Inflammation or Fibrosis in a Cell Type-Specific Manner. Cells 2021; 10:cells10102618. [PMID: 34685598 PMCID: PMC8534222 DOI: 10.3390/cells10102618] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/10/2021] [Accepted: 09/22/2021] [Indexed: 12/12/2022] Open
Abstract
Bile acids (BA) as important signaling molecules are considered crucial in development of cholestatic liver injury, but there is limited understanding on the involved cell types and signaling pathways. The aim of this study was to evaluate the inflammatory and fibrotic potential of key BA and the role of distinct liver cell subsets focusing on the NLRP3 inflammasome. C57BL/6 wild-type (WT) and Nlrp3−/− mice were fed with a diet supplemented with cholic (CA), deoxycholic (DCA) or lithocholic acid (LCA) for 7 days. Additionally, primary hepatocytes, Kupffer cells (KC) and hepatic stellate cells (HSC) from WT and Nlrp3−/− mice were stimulated with aforementioned BA ex vivo. LCA feeding led to strong liver damage and activation of NLRP3 inflammasome. Ex vivo KC were the most affected cells by LCA, resulting in a pro-inflammatory phenotype. Liver damage and primary KC activation was both ameliorated in Nlrp3-deficient mice or cells. DCA feeding induced fibrotic alterations. Primary HSC upregulated the NLRP3 inflammasome and early fibrotic markers when stimulated with DCA, but not LCA. Pro-fibrogenic signals in liver and primary HSC were attenuated in Nlrp3−/− mice or cells. The data shows that distinct BA induce NLRP3 inflammasome activation in HSC or KC, promoting fibrosis or inflammation.
Collapse
|
43
|
Dong S, Zhu M, Wang K, Zhao X, Hu L, Jing W, Lu H, Wang S. Dihydromyricetin improves DSS-induced colitis in mice via modulation of fecal-bacteria-related bile acid metabolism. Pharmacol Res 2021; 171:105767. [PMID: 34273490 DOI: 10.1016/j.phrs.2021.105767] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 11/20/2022]
Abstract
Recent studies show that the nutraceutical supplement dihydromyricetin (DHM) can alleviate IBD in murine models by downregulating the inflammatory pathways. However, the molecular mechanistic link between the therapeutic efficiency of DHM, gut microbiota, and the metabolism of microbial BAs remains elusive. In this study, we explored the improvement of DHM on the dysregulated gut microbiota of mice with dextran sulfate sodium (DSS)-induced colitis. We found that DHM could markedly improve colitis symptoms, gut barrier disruption, and colonic inflammation in DSS-treated mice. In addition, bacterial 16S rDNA sequencing assay demonstrated that DHM could alleviate gut dysbiosis in mice with colitis. Furthermore, antibiotic-mediated depletion of the gut microflora and fecal microbiome transplantation (FMT) demonstrated that the therapeutic efficiency of DHM was closely associated with gut microbiota. BA-targeted metabolomics analysis revealed that DHM restored the metabolism of microbial BAs in the gastrointestinal tract during the development of colitis. DHM significantly enriched the proportion of the beneficial Lactobacillus and Akkermansia genera, which were correlated with increased gastrointestinal levels of unconjugated BAs involving chenodeoxycholic acid and lithocholic acid, enabling the BAs to activate specific receptors, such as FXR and TGR5, and maintaining intestinal integrity. Taken together, DHM could alleviate DSS-induced colitis in mice by restoring the dysregulated gut microbiota and BA metabolism, leading to improvements in intestinal barrier function and colonic inflammation. Increased microbiota-BAs-FXR/TGR5 signaling may be the potential targets of DHM in colitis. Therefore, our findings provide novel insights into the development of novel DHM-derived drugs for the management of IBD.
Collapse
Affiliation(s)
- Sijing Dong
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Min Zhu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Ke Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaoye Zhao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Longlong Hu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China; Laboratory for Functional Metabolomics Science, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wanghui Jing
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China.
| | - Haitao Lu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China; Laboratory for Functional Metabolomics Science, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Sicen Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| |
Collapse
|
44
|
Nguyen JT, Riessen R, Zhang T, Kieffer C, Anakk S. Deletion of Intestinal SHP Impairs Short-term Response to Cholic Acid Challenge in Male Mice. Endocrinology 2021; 162:6189092. [PMID: 33769482 PMCID: PMC8256632 DOI: 10.1210/endocr/bqab063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Indexed: 02/07/2023]
Abstract
Small heterodimer partner (SHP) is a crucial regulator of bile acid (BA) transport and synthesis; however, its intestine-specific role is not fully understood. Here, we report that male intestine-specific Shp knockout (IShpKO) mice exhibit higher intestinal BA but not hepatic or serum BA levels compared with the f/f Shp animals when challenged with an acute (5-day) 1% cholic acid (CA) diet. We also found that BA synthetic genes Cyp7a1 and Cyp8b1 are not repressed to the same extent in IShpKO compared with control mice post-CA challenge. Loss of intestinal SHP did not alter Fxrα messenger RNA (mRNA) but increased Asbt (BA ileal uptake transporter) and Ostα (BA ileal efflux transporter) expression even under chow-fed conditions. Surprisingly, the acute CA diet in IShpKO did not elicit the expected induction of Fgf15 but was able to maintain the suppression of Asbt, and Ostα/β mRNA levels. At the protein level, apical sodium-dependent bile acid transporter (ASBT) was downregulated, while organic solute transporter-α/β (OSTα/β) expression was induced and maintained regardless of diet. Examination of ileal histology in IShpKO mice challenged with acute CA diet revealed reduced villi length and goblet cell numbers. However, no difference in villi length, and the expression of BA regulator and transporter genes, was seen between f/f Shp and IShpKO animals after a chronic (14-day) CA diet, suggesting a potential adaptive response. We found the upregulation of the Pparα-Ugt axis after 14 days of CA diet may reduce the BA burden and compensate for the ileal SHP function. Thus, our study reveals that ileal SHP expression contributes to both overall intestinal structure and BA homeostasis.
Collapse
Affiliation(s)
- James T Nguyen
- Department of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ryan Riessen
- Department of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tongyu Zhang
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Collin Kieffer
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sayeepriyadarshini Anakk
- Department of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Correspondence:Sayeepriyadarshini Anakk, Department of Molecular & Integrative Physiology and Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 450 Medical Science Building, 506 South Matthews Avenue, Urbana, IL 61801, USA. E-mail:
| |
Collapse
|
45
|
van der Lelie D, Oka A, Taghavi S, Umeno J, Fan TJ, Merrell KE, Watson SD, Ouellette L, Liu B, Awoniyi M, Lai Y, Chi L, Lu K, Henry CS, Sartor RB. Rationally designed bacterial consortia to treat chronic immune-mediated colitis and restore intestinal homeostasis. Nat Commun 2021; 12:3105. [PMID: 34050144 PMCID: PMC8163890 DOI: 10.1038/s41467-021-23460-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
Environmental factors, mucosal permeability and defective immunoregulation drive overactive immunity to a subset of resident intestinal bacteria that mediate multiple inflammatory conditions. GUT-103 and GUT-108, live biotherapeutic products rationally designed to complement missing or underrepresented functions in the dysbiotic microbiome of IBD patients, address upstream targets, rather than targeting a single cytokine to block downstream inflammation responses. GUT-103, composed of 17 strains that synergistically provide protective and sustained engraftment in the IBD inflammatory environment, prevented and treated chronic immune-mediated colitis. Therapeutic application of GUT-108 reversed established colitis in a humanized chronic T cell-mediated mouse model. It decreased pathobionts while expanding resident protective bacteria; produced metabolites promoting mucosal healing and immunoregulatory responses; decreased inflammatory cytokines and Th-1 and Th-17 cells; and induced interleukin-10-producing colonic regulatory cells, and IL-10-independent homeostatic pathways. We propose GUT-108 for treating and preventing relapse for IBD and other inflammatory conditions characterized by unbalanced microbiota and mucosal permeability.
Collapse
Affiliation(s)
| | - Akihiko Oka
- Departments of Medicine, Microbiology and Immunology, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Internal Medicine II, Shimane University Faculty of Medicine, Shimane, Japan
| | | | - Junji Umeno
- Departments of Medicine, Microbiology and Immunology, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka, Japan
| | | | | | | | | | - Bo Liu
- Departments of Medicine, Microbiology and Immunology, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Muyiwa Awoniyi
- Departments of Medicine, Microbiology and Immunology, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yunjia Lai
- Department of Environmental Sciences and Engineering, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Liang Chi
- Department of Environmental Sciences and Engineering, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kun Lu
- Department of Environmental Sciences and Engineering, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - R Balfour Sartor
- Departments of Medicine, Microbiology and Immunology, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
46
|
Anwar S, Shamsi A, Mohammad T, Islam A, Hassan MI. Targeting pyruvate dehydrogenase kinase signaling in the development of effective cancer therapy. Biochim Biophys Acta Rev Cancer 2021; 1876:188568. [PMID: 34023419 DOI: 10.1016/j.bbcan.2021.188568] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023]
Abstract
Pyruvate is irreversibly decarboxylated to acetyl coenzyme A by mitochondrial pyruvate dehydrogenase complex (PDC). Decarboxylation of pyruvate is considered a crucial step in cell metabolism and energetics. The cancer cells prefer aerobic glycolysis rather than mitochondrial oxidation of pyruvate. This attribute of cancer cells allows them to sustain under indefinite proliferation and growth. Pyruvate dehydrogenase kinases (PDKs) play critical roles in many diseases because they regulate PDC activity. Recent findings suggest an altered metabolism of cancer cells is associated with impaired mitochondrial function due to PDC inhibition. PDKs inhibit the PDC activity via phosphorylation of the E1a subunit and subsequently cause a glycolytic shift. Thus, inhibition of PDK is an attractive strategy in anticancer therapy. This review highlights that PDC/PDK axis could be implicated in cancer's therapeutic management by developing potential small-molecule PDK inhibitors. In recent years, a dramatic increase in the targeting of the PDC/PDK axis for cancer treatment gained an attention from the scientific community. We further discuss breakthrough findings in the PDC-PDK axis. In addition, structural features, functional significance, mechanism of activation, involvement in various human pathologies, and expression of different forms of PDKs (PDK1-4) in different types of cancers are discussed in detail. We further emphasized the gene expression profiling of PDKs in cancer patients to prognosis and therapeutic manifestations. Additionally, inhibition of the PDK/PDC axis by small molecule inhibitors and natural compounds at different clinical evaluation stages has also been discussed comprehensively.
Collapse
Affiliation(s)
- Saleha Anwar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
47
|
Lázár B, László SB, Hutka B, Tóth AS, Mohammadzadeh A, Berekméri E, Ágg B, Balogh M, Sajtos V, Király K, Al-Khrasani M, Földes A, Varga G, Makra N, Ostorházi E, Szabó D, Ligeti B, Kemény Á, Helyes Z, Ferdinandy P, Gyires K, Zádori ZS. A comprehensive time course and correlation analysis of indomethacin-induced inflammation, bile acid alterations and dysbiosis in the rat small intestine. Biochem Pharmacol 2021; 190:114590. [PMID: 33940029 DOI: 10.1016/j.bcp.2021.114590] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/13/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023]
Abstract
It has been proposed that changes in microbiota due to nonsteroidal anti-inflammatory drugs (NSAIDs) alter the composition of bile, and elevation of hydrophobic secondary bile acids contributes to small intestinal damage. However, little is known about the effect of NSAIDs on small intestinal bile acids, and whether bile alterations correlate with mucosal injury and dysbiosis. Here we determined the ileal bile acid metabolome and microbiota 24, 48 and 72 h after indomethacin treatment, and their correlation with each other and with tissue damage in rats. In parallel with the development of inflammation, indomethacin increased the ileal proportion of glycine and taurine conjugated bile acids, but not bile hydrophobicity. Firmicutes decreased with time, whereas Gammaproteobacteria increased first, but declined later and were partially replaced by Bilophila, Bacteroides and Fusobacterium. Mucosal injury correlated negatively with unconjugated bile acids and Gram-positive bacteria, and positively with taurine conjugates and some Gram-negative taxa. Strong positive correlation was found between Lactobacillaceae, Ruminococcaceae, Clostridiaceae and unconjugated bile acids. Indomethacin-induced dysbiosis was not likely due to direct antibacterial effects or alterations in luminal pH. Here we provide the first detailed characterization of indomethacin-induced time-dependent alterations in small intestinal bile acid composition, and their associations with mucosal injury and dysbiosis. Our results suggest that increased bile hydrophobicity is not likely to contribute to indomethacin-induced small intestinal damage.
Collapse
Affiliation(s)
- Bernadette Lázár
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
| | - Szilvia B László
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
| | - Barbara Hutka
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
| | - András S Tóth
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
| | - Amir Mohammadzadeh
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
| | - Eszter Berekméri
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary; Department of Ecology, University of Veterinary Medicine, 1078 Budapest, Hungary
| | - Bence Ágg
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary; Pharmahungary Group, 6722 Szeged, Hungary
| | - Mihály Balogh
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
| | - Viktor Sajtos
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
| | - Kornél Király
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
| | - Anna Földes
- Department of Oral Biology, Semmelweis University, 1089 Budapest, Hungary
| | - Gábor Varga
- Department of Oral Biology, Semmelweis University, 1089 Budapest, Hungary
| | - Nóra Makra
- Department of Medical Microbiology, Semmelweis University, 1089 Budapest, Hungary
| | - Eszter Ostorházi
- Department of Medical Microbiology, Semmelweis University, 1089 Budapest, Hungary
| | - Dóra Szabó
- Department of Medical Microbiology, Semmelweis University, 1089 Budapest, Hungary
| | - Balázs Ligeti
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, 1083 Budapest, Hungary
| | - Ágnes Kemény
- Department of Medical Biology, University of Pécs, 7624 Pécs, Hungary; Department of Pharmacology and Pharmacotherapy, Medical School & Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School & Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary; Pharmahungary Group, 6722 Szeged, Hungary
| | - Klára Gyires
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
| | - Zoltán S Zádori
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary.
| |
Collapse
|
48
|
Hu J, Huang H, Che Y, Ding C, Zhang L, Wang Y, Hao H, Shen H, Cao L. Qingchang Huashi Formula attenuates DSS-induced colitis in mice by restoring gut microbiota-metabolism homeostasis and goblet cell function. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113394. [PMID: 32941971 DOI: 10.1016/j.jep.2020.113394] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 08/19/2020] [Accepted: 09/12/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Inflammatory bowel disease (IBD) is a chronic and relapsing inflammatory disease of the gastrointestinal tract, consisting of ulcerative colitis (UC) and Crohn's disease (CD). Gut microbiota and their metabolites may play a role in the pathogen of IBD, especially of the UC. Qingchang Huashi Formula (QHF), a traditional Chinese medicine formula, has shown therapeutic effect on treating UC based on the clinical practice without clear pharmacological mechanism. AIM OF THE STUDY The aim of this study was to clearly define the effect of QHF and its components, Baitouweng (PBR) and Baizhi (ADR) on treating UC. MATERIALS AND METHODS Pharmacodynamic effects of QHF and single herb were evaluated in dextran sulfate sodium (DSS) induced acute or chronic colitis mice. Body weight loss, disease activity index (DAI) and colon length were estimated. Histological changes were observed by H&E staining. The number and abundance of gut microbiota were measured with 16S rRNA sequencing. LC-MS and GC-MS were used to detect the concentration of metabolites (e.g., bile acids (BAs) and short chain fatty acids (SCFAs)). The goblet cell was observed by Alcian blue/periodic acid-Schiff (AB/PAS) straining and the crypt stem cell was estimated by immunohistochemical analyses. The colorectal tissues were used to detect levels of IL-1β, IL-6 and TNF-α by ELISA or qRT-PCR. The expression of NLRP3, Caspase 1 and IL-1β were examined by western blotting. RESULTS QHF significantly inhibited colitis, protected mice from the loss of body weight and colon shorten. Comparatively, ADR and PBR showed strong efficacy in inhibiting DSS-induced colitis. We verified that while ADR was responsible for QHF's effect on maintaining gut microbiota homeostasis and metabolism, PBR was more prominent in keeping crypt stem cells proliferation and colonic goblet cells function. Moreover, we demonstrated that the alleviation of colitis by QHF was associated with the restoration of gut microbiota-metabolism homeostasis, protection of intestinal epithelial barrier and regulation of NLRP3/IL-1β pathway. CONCLUSIONS The finding of the present study suggested that QHF is curative in DSS-induced colitis by restoring gut microbiota-metabolism homeostasis and goblet cells function. An optimized QHF was constituted by ADR and PBR, which showed comparable efficacy on colitis to that of QHF. Our work probed out the active constitutes as well as the relevant pharmacological mechanisms of QHF, shedding light on potential new drug combination for the treatment of IBD.
Collapse
Affiliation(s)
- Jingyi Hu
- Affiliated Hospital of Nanjing University of Chinese Medicine (Jiang Su Province Hospital of Chinese Medicine), Nanjing, China; State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China.
| | - Hai Huang
- State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China.
| | - Yuan Che
- State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China.
| | - Chujie Ding
- State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China.
| | - Lu Zhang
- Affiliated Hospital of Nanjing University of Chinese Medicine (Jiang Su Province Hospital of Chinese Medicine), Nanjing, China.
| | - Yun Wang
- Affiliated Hospital of Nanjing University of Chinese Medicine (Jiang Su Province Hospital of Chinese Medicine), Nanjing, China.
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China.
| | - Hong Shen
- Affiliated Hospital of Nanjing University of Chinese Medicine (Jiang Su Province Hospital of Chinese Medicine), Nanjing, China.
| | - Lijuan Cao
- State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
49
|
Yin Y, Wang M, Gu W, Chen L. Intestine-specific FXR agonists as potential therapeutic agents for colorectal cancer. Biochem Pharmacol 2021; 186:114430. [PMID: 33556338 DOI: 10.1016/j.bcp.2021.114430] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) is one of the most malignant cancers in the world. A major cause of death in CRC patients is the limited therapeutic options in its advanced stages. The Farnesoid X receptor (FXR) is a member of the nuclear superfamily, which is effective in slowing the progression of colorectal cancer in addition to its extraordinary role in regulating metabolic disorders. Due to the systemic side-effects caused by non-selective agonists, the intestine-restricted FXR agonists can induce a whole-body benefit without activating the hepatic FXR, suggesting intestinal FXR activation as a potentially safer therapy in the treatment of CRC. This review highlights the effects of FXR on the disturbed bile acid circulation and the carcinogenesis of CRC and with a specific emphasis on listing the functions of several intestinal-restricted FXR agonists.
Collapse
Affiliation(s)
- Yiming Yin
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai 201203, China
| | - Mengge Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai 201203, China
| | - Wenjie Gu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai 201203, China
| | - Lili Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai 201203, China.
| |
Collapse
|
50
|
Xu M, Cen M, Shen Y, Zhu Y, Cheng F, Tang L, Hu W, Dai N. Deoxycholic Acid-Induced Gut Dysbiosis Disrupts Bile Acid Enterohepatic Circulation and Promotes Intestinal Inflammation. Dig Dis Sci 2021; 66:568-576. [PMID: 32198567 DOI: 10.1007/s10620-020-06208-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/11/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND A Western diet is a risk factor for the development of inflammatory bowel disease (IBD). High levels of fecal deoxycholic acid (DCA) in response to a Western diet contribute to bowel inflammatory injury. However, the mechanism of DCA in the natural course of IBD development remains unanswered. AIMS The aim of this study is to investigate the effect of DCA on the induction of gut dysbiosis and its roles in the development of intestinal inflammation. METHODS Wild-type C57BL/6J mice were fed an AIN-93G diet, either supplemented with or without 0.2% DCA, and killed at 24 weeks. Distal ileum and colon tissues were assessed by histopathological analysis. Hepatic and ileal gene expression was examined by qPCR, and the gut microbiota was analyzed by high-throughput 16S rRNA gene sequencing. HPLC-MS was used for fecal bile acid quantification. RESULTS Mice fed the DCA-supplemented diet developed focal areas of ileal and colonic inflammation, accompanied by alteration of the composition of the intestinal microbiota and accumulation of fecal bile acids. DCA-induced dysbiosis decreased the deconjugation of bile acids, and this regulation was associated with the repressed expression of target genes in the enterohepatic farnesoid X receptor-fibroblast growth factor (FXR-FGF15) axis, leading to upregulation of hepatic de novo bile acid synthesis. CONCLUSIONS These results suggest that DCA-induced gut dysbiosis may act as a key etiologic factor in intestinal inflammation, associated with bile acid metabolic disturbance and downregulation of the FXR-FGF15 axis.
Collapse
Affiliation(s)
- Mengque Xu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Mengsha Cen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Yuqin Shen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Yubin Zhu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Fangli Cheng
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Linlin Tang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Weiling Hu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China
| | - Ning Dai
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3 Qingchun East Road, Jianggan District, Hangzhou, 310016, China.
| |
Collapse
|