1
|
Mansueto L, Tandayu E, Mieog J, Garcia-de Heer L, Das R, Burn A, Mauleon R, Kretzschmar T. HASCH - A high-throughput amplicon-based SNP-platform for medicinal cannabis and industrial hemp genotyping applications. BMC Genomics 2024; 25:818. [PMID: 39210290 PMCID: PMC11363669 DOI: 10.1186/s12864-024-10734-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Cannabis sativa is seeing a global resurgence as a food, fiber and medicinal crop for industrial hemp and medicinal Cannabis industries respectively. However, a widespread moratorium on the use and research of C. sativa throughout most of the 20th century has seen the development of improved cultivars for specific end uses lag behind that of conventional crops. While C. sativa research and development has seen significant investments in the recent past, resulting in a suite of publicly available genomic resources and tools, a versatile and cost-effective mid-density genotyping platform for applied purposes in breeding and pre-breeding is lacking. Here we report on a first mid-density fixed-target SNP platform for C. sativa. RESULTS The High-throughput Amplicon-based SNP-platform for medicinal Cannabis and industrial Hemp (HASCH) was designed using a combination of filtering and Integer Linear Programming on publicly available whole-genome sequencing and RNA sequencing data, supplemented with in-house generated genotyping-by-sequencing (GBS) data. HASCH contains 1,504 genome-wide targets of high call rate (97% mean) and even distribution across the genome, designed to be highly informative (> 0.3 minor allele frequency) across both medicinal cannabis and industrial hemp gene pools. Average numbers of mismatch SNP between any two accessions were 251 for medicinal cannabis (N = 116) and 272 for industrial hemp (N = 87). Comparing HASCH data with corresponding GBS data on a collection of diverse C. sativa accessions demonstrated high concordance and resulted in comparable phylogenies and genetic distance matrices. Using HASCH on a segregating F2 population derived from a cross between a tetrahydrocannabinol (THC)-dominant and a cannabidiol (CBD)-dominant accession resulted in a genetic map consisting of 310 markers, comprising 10 linkage groups and a total size of 582.7 cM. Quantitative Trait Locus (QTL) mapping identified a major QTL for CBD content on chromosome 7, consistent with previous findings. CONCLUSION HASCH constitutes a versatile, easy to use and cost-effective genotyping solution for the rapidly growing Cannabis research community. It provides consistent genetic fingerprints of 1504 SNPs with wide applicability genetic resource management, quantitative genetics and breeding.
Collapse
Affiliation(s)
- Locedie Mansueto
- Southern Cross Plant Science, Faculty of Science and Engineering, Southern Cross University, 1 Military Road, East Lismore, NSW, 2480, Australia
| | - Erwin Tandayu
- Southern Cross Plant Science, Faculty of Science and Engineering, Southern Cross University, 1 Military Road, East Lismore, NSW, 2480, Australia
| | - Jos Mieog
- Southern Cross Plant Science, Faculty of Science and Engineering, Southern Cross University, 1 Military Road, East Lismore, NSW, 2480, Australia
| | - Lennard Garcia-de Heer
- Southern Cross Plant Science, Faculty of Science and Engineering, Southern Cross University, 1 Military Road, East Lismore, NSW, 2480, Australia
| | - Rekhamani Das
- Southern Cross Plant Science, Faculty of Science and Engineering, Southern Cross University, 1 Military Road, East Lismore, NSW, 2480, Australia
| | - Adam Burn
- Southern Cross Plant Science, Faculty of Science and Engineering, Southern Cross University, 1 Military Road, East Lismore, NSW, 2480, Australia
| | - Ramil Mauleon
- Southern Cross Plant Science, Faculty of Science and Engineering, Southern Cross University, 1 Military Road, East Lismore, NSW, 2480, Australia
- International Rice Research Institute, Pili Drive, Los Banos, Laguna, Philippines
| | - Tobias Kretzschmar
- Southern Cross Plant Science, Faculty of Science and Engineering, Southern Cross University, 1 Military Road, East Lismore, NSW, 2480, Australia.
| |
Collapse
|
2
|
Kang Y, Nishizawa D, Ohka S, Terui T, Ishitani K, Morino R, Yokota M, Hasegawa J, Nakayama K, Ebata Y, Koshika K, Ichinohe T, Ikeda K. TMEM132C rs7296262 Single-Nucleotide Polymorphism Is Significantly Associated with Nausea Induced by Opioids Administered for Cancer Pain and Postoperative Pain. Int J Mol Sci 2024; 25:8845. [PMID: 39201532 PMCID: PMC11354332 DOI: 10.3390/ijms25168845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
Opioids are almost mandatorily used for analgesia for cancer pain and postoperative pain. Opioid analgesics commonly induce nausea as a side effect. However, the genetic factors involved are still mostly unknown. To clarify the genetic background of individual differences in the occurrence of nausea during opioid administration, the incidence of nausea was investigated in 331 patients (Higashi-Sapporo Hospital [HS] group) who received morphine chronically for cancer pain treatment and in 2021 patients (Cancer Institute Hospital [CIH] group) who underwent elective surgery under general anesthesia. We conducted a genome-wide association study of nausea in HS samples. Among the top 20 candidate single-nucleotide polymorphisms (SNPs), we focused on the TMEM132C rs7296262 SNP, which has been reportedly associated with psychiatric disorders. The rs7296262 SNP was significantly associated with nausea in both the HS and CIH groups (TT+TC vs. CC; HS group, p = 0.0001; CIH group, p = 0.0064). The distribution of nausea-prone genotypes for the rs7296262 SNP was reversed between HS and CIH groups. These results suggest that the TMEM132C rs7296262 SNP is significantly associated with nausea during opioid use, and the effect of the SNP genotype on nausea is reversed between chronic and acute phases of opioid use.
Collapse
Affiliation(s)
- Yuna Kang
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan; (Y.K.); (D.N.); (S.O.); (J.H.); (K.N.); (Y.E.)
- Department of Dental Anesthesiology, Tokyo Dental College, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Daisuke Nishizawa
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan; (Y.K.); (D.N.); (S.O.); (J.H.); (K.N.); (Y.E.)
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan; (K.K.); (T.I.)
| | - Seii Ohka
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan; (Y.K.); (D.N.); (S.O.); (J.H.); (K.N.); (Y.E.)
| | - Takeshi Terui
- Division of Internal Medicine, Department of Medicine, Higashi-Sapporo Hospital, Sapporo 003-8585, Japan; (T.T.); (K.I.)
| | - Kunihiko Ishitani
- Division of Internal Medicine, Department of Medicine, Higashi-Sapporo Hospital, Sapporo 003-8585, Japan; (T.T.); (K.I.)
| | - Ryozo Morino
- Division of Anesthesiology, Koujinkai Daiichi Hospital, Tokyo 125-0041, Japan;
| | - Miyuki Yokota
- Department of Anesthesiology, Cancer Institute Hospital, Tokyo 135-8550, Japan;
- Department of Anesthesiology, East Hokkaido Hospital, Kushiro 085-0036, Japan
| | - Junko Hasegawa
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan; (Y.K.); (D.N.); (S.O.); (J.H.); (K.N.); (Y.E.)
| | - Kyoko Nakayama
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan; (Y.K.); (D.N.); (S.O.); (J.H.); (K.N.); (Y.E.)
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan; (K.K.); (T.I.)
| | - Yuko Ebata
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan; (Y.K.); (D.N.); (S.O.); (J.H.); (K.N.); (Y.E.)
| | - Kyotaro Koshika
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan; (K.K.); (T.I.)
| | - Tatsuya Ichinohe
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan; (K.K.); (T.I.)
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan; (Y.K.); (D.N.); (S.O.); (J.H.); (K.N.); (Y.E.)
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan; (K.K.); (T.I.)
| |
Collapse
|
3
|
Martinez KL, Klein A, Martin JR, Sampson CU, Giles JB, Beck ML, Bhakta K, Quatraro G, Farol J, Karnes JH. Disparities in ABO blood type determination across diverse ancestries: a systematic review and validation in the All of Us Research Program. J Am Med Inform Assoc 2024:ocae161. [PMID: 38917427 DOI: 10.1093/jamia/ocae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/02/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024] Open
Abstract
OBJECTIVES ABO blood types have widespread clinical use and robust associations with disease. The purpose of this study is to evaluate the portability and suitability of tag single-nucleotide polymorphisms (tSNPs) used to determine ABO alleles and blood types across diverse populations in published literature. MATERIALS AND METHODS Bibliographic databases were searched for studies using tSNPs to determine ABO alleles. We calculated linkage between tSNPs and functional variants across inferred continental ancestry groups from 1000 Genomes. We compared r2 across ancestry and assessed real-world consequences by comparing tSNP-derived blood types to serology in a diverse population from the All of Us Research Program. RESULTS Linkage between functional variants and O allele tSNPs was significantly lower in African (median r2 = 0.443) compared to East Asian (r2 = 0.946, P = 1.1 × 10-5) and European (r2 = 0.869, P = .023) populations. In All of Us, discordance between tSNP-derived blood types and serology was high across all SNPs in African ancestry individuals and linkage was strongly correlated with discordance across all ancestries (ρ = -0.90, P = 3.08 × 10-23). DISCUSSION Many studies determine ABO blood types using tSNPs. However, tSNPs with low linkage disequilibrium promote misinference of ABO blood types, particularly in diverse populations. We observe common use of inappropriate tSNPs to determine ABO blood type, particularly for O alleles and with some tSNPs mistyping up to 58% of individuals. CONCLUSION Our results highlight the lack of transferability of tSNPs across ancestries and potential exacerbation of disparities in genomic research for underrepresented populations. This is especially relevant as more diverse cohorts are made publicly available.
Collapse
Affiliation(s)
- Kiana L Martinez
- Department of Pharmacy Practice and Science, The University of Arizona R. Ken Coit College of Pharmacy, Tucson, AZ 85721, United States
| | - Andrew Klein
- Department of Pharmacy Practice and Science, The University of Arizona R. Ken Coit College of Pharmacy, Tucson, AZ 85721, United States
| | - Jennifer R Martin
- Department of Pharmacy Practice and Science, The University of Arizona R. Ken Coit College of Pharmacy, Tucson, AZ 85721, United States
- Department of the University of Arizona Health Sciences Library, The University of Arizona, Tucson, AZ 85721, United States
| | - Chinwuwanuju U Sampson
- Department of Pharmacy Practice and Science, The University of Arizona R. Ken Coit College of Pharmacy, Tucson, AZ 85721, United States
| | - Jason B Giles
- Department of Pharmacy Practice and Science, The University of Arizona R. Ken Coit College of Pharmacy, Tucson, AZ 85721, United States
| | - Madison L Beck
- Department of Pharmacy Practice and Science, The University of Arizona R. Ken Coit College of Pharmacy, Tucson, AZ 85721, United States
| | - Krupa Bhakta
- Department of Pharmacy Practice and Science, The University of Arizona R. Ken Coit College of Pharmacy, Tucson, AZ 85721, United States
| | - Gino Quatraro
- Department of Pharmacy Practice and Science, The University of Arizona R. Ken Coit College of Pharmacy, Tucson, AZ 85721, United States
| | - Juvie Farol
- Department of Clinical and Translational Science, The University of Arizona College of Medicine, Tucson, AZ 85721, United States
| | - Jason H Karnes
- Department of Pharmacy Practice and Science, The University of Arizona R. Ken Coit College of Pharmacy, Tucson, AZ 85721, United States
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| |
Collapse
|
4
|
Araida J, Ohka S, Soeda M, Nishizawa D, Hasegawa J, Nakayama K, Ebata Y, Ogai Y, Fukuda KI, Ikeda K. rs12411980 single-nucleotide polymorphism related to PRTFDC1 expression is significantly associated with phantom tooth pain. Mol Pain 2024; 20:17448069241272215. [PMID: 39093623 PMCID: PMC11348367 DOI: 10.1177/17448069241272215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 08/04/2024] Open
Abstract
Phantom tooth pain (PTP) is one type of non-odontogenic neuropathic toothache, which rarely occurs after appropriate pulpectomy or tooth extraction. The cause of PTP is unknown. We investigated pain-related genetic factors that are associated with PTP. Four pain-associated genes, including G protein-coupled receptor 158 (GPR158) and phosphoribosyl transferase domain containing 1 (PRTFDC1), are adjacent to each other on the human genome. Some of these four genes or their genomic region may be related to PTP. We statistically analyzed associations between single-nucleotide polymorphisms (SNPs) in the genomic region and PTP in patients with PTP (PTP group), other orofacial pain (OFP group), and healthy control subjects. We then performed a database search of expression quantitative trait loci (eQTLs). For the seven SNPs that were significantly associated with PTP even after Bonferroni correction, we focused on the rs12411980 tag SNP (p = 9.42 × 10-4). Statistical analyses of the PTP group and healthy subject groups (group labels: NOC and TD) revealed that the rate of the GG genotype of the rs12411980 SNP was significantly higher in the PTP group than in the healthy subject groups (PTP group vs. NOC group: p = 2.92 × 10-4, PTP group vs. TD group: p = 5.46 × 10-4; percentage of GG: 30% in PTP group, 12% in NOC group, 11% in TD group). These results suggest that the GG genotype of the rs12411980 SNP is more susceptible to PTP. The rs2765697 SNP that is in strong linkage disequilibrium with the rs12411980 SNP is an eQTL that is associated with higher PRTFDC1 expression in the minor allele homozygotes in the healthy subject groups of the rs2765697 SNP. Thus, PRTFDC1 expression similarly increases in the minor allele homozygotes (GG genotype) in the healthy subject groups of the rs12411980 SNP, which would lead to greater susceptibility to PTP.
Collapse
Affiliation(s)
- Jun Araida
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Department of Oral Health and Clinical Science, Tokyo Dental College, Tokyo, Japan
| | - Seii Ohka
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Moe Soeda
- Department of Oral Health and Clinical Science, Tokyo Dental College, Tokyo, Japan
| | - Daisuke Nishizawa
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Junko Hasegawa
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kyoko Nakayama
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yuko Ebata
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yasukazu Ogai
- Social Psychiatry and Mental Health, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Ken-ichi Fukuda
- Department of Oral Health and Clinical Science, Tokyo Dental College, Tokyo, Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan
| |
Collapse
|
5
|
Soeda M, Ohka S, Nishizawa D, Iseki M, Yamaguchi K, Arita H, Hanaoka K, Kato J, Ogawa S, Hiranuma A, Hasegawa J, Nakayama K, Ebata Y, Hayashida M, Ichinohe T, Fukuda KI, Ikeda K. Single-Nucleotide Polymorphisms of the PAR2 and IL-17A Genes Are Significantly Associated with Chronic Pain. Int J Mol Sci 2023; 24:17627. [PMID: 38139455 PMCID: PMC10744199 DOI: 10.3390/ijms242417627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/10/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Patients with chronic pain are affected psychologically and socially. There are also individual differences in treatment efficacy. Insufficient research has been conducted on genetic polymorphisms that are related to individual differences in the susceptibility to chronic pain. Autoimmune disorders can lead to inflammation and chronic pain; therefore, we focused on the autoimmune-related protease-activated receptor 2 (PAR2/F2RL1) and interleukin 17A (IL-17A/IL17A) genes. PAR2 and IL-17A are associated with autoimmune diseases that lead to chronic pain, and PAR2 regulates T-helper (Th) cell activation and differentiation. We hypothesized that the PAR2 and IL-17A genes are associated with chronic pain. The present study used a case-control design to statistically examine associations between genetic polymorphisms and the vulnerability to chronic pain. The rs2243057 polymorphism of the PAR2 gene and rs3819025 polymorphism of the IL-17A gene were previously reported to be associated with pain- or autoimmune-related phenotypes. Thus, these polymorphisms were investigated in the present study. We found that both rs2243057 and rs3819025 were significantly associated with a susceptibility to chronic pain. The present findings revealed autoimmune-related genetic factors that are involved in individual differences in chronic pain, further aiding understanding of the pathomechanism that underlies chronic pain and possibly contributing to future personalized medicine.
Collapse
Affiliation(s)
- Moe Soeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (M.S.); (S.O.); (D.N.)
- Department of Oral Health and Clinical Science, Tokyo Dental College, Tokyo 101-0061, Japan
| | - Seii Ohka
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (M.S.); (S.O.); (D.N.)
| | - Daisuke Nishizawa
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (M.S.); (S.O.); (D.N.)
| | - Masako Iseki
- Department of Anesthesiology & Pain Medicine, Juntendo University School of Medicine, Tokyo 113-8431, Japan; (M.I.)
| | - Keisuke Yamaguchi
- Department of Anesthesiology & Pain Medicine, Juntendo University School of Medicine, Tokyo 113-8431, Japan; (M.I.)
| | - Hideko Arita
- Department of Anesthesiology, Pain Relief Center, JR Tokyo General Hospital, Tokyo 151-8528, Japan; (H.A.); (K.H.)
| | - Kazuo Hanaoka
- Department of Anesthesiology, Pain Relief Center, JR Tokyo General Hospital, Tokyo 151-8528, Japan; (H.A.); (K.H.)
| | - Jitsu Kato
- Department of Anesthesiology, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Setsuro Ogawa
- University Research Center, Nihon University, Tokyo 173-8610, Japan
| | - Ayako Hiranuma
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (M.S.); (S.O.); (D.N.)
- Department of Surgery, Toho University Sakura Medical Center, Chiba 285-8741, Japan
| | - Junko Hasegawa
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (M.S.); (S.O.); (D.N.)
| | - Kyoko Nakayama
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (M.S.); (S.O.); (D.N.)
| | - Yuko Ebata
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (M.S.); (S.O.); (D.N.)
| | - Masakazu Hayashida
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (M.S.); (S.O.); (D.N.)
- Department of Anesthesiology & Pain Medicine, Juntendo University School of Medicine, Tokyo 113-8431, Japan; (M.I.)
- Department of Anesthesiology, Saitama Medical University International Medical Center, Saitama 350-1298, Japan
| | - Tatsuya Ichinohe
- Department of Dental Anesthesiology, Tokyo Dental College, Tokyo 101-0061, Japan;
| | - Ken-ichi Fukuda
- Department of Oral Health and Clinical Science, Tokyo Dental College, Tokyo 101-0061, Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (M.S.); (S.O.); (D.N.)
| |
Collapse
|
6
|
Weber SE, Frisch M, Snowdon RJ, Voss-Fels KP. Haplotype blocks for genomic prediction: a comparative evaluation in multiple crop datasets. FRONTIERS IN PLANT SCIENCE 2023; 14:1217589. [PMID: 37731980 PMCID: PMC10507710 DOI: 10.3389/fpls.2023.1217589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023]
Abstract
In modern plant breeding, genomic selection is becoming the gold standard for selection of superior genotypes. The basis for genomic prediction models is a set of phenotyped lines along with their genotypic profile. With high marker density and linkage disequilibrium (LD) between markers, genotype data in breeding populations tends to exhibit considerable redundancy. Therefore, interest is growing in the use of haplotype blocks to overcome redundancy by summarizing co-inherited features. Moreover, haplotype blocks can help to capture local epistasis caused by interacting loci. Here, we compared genomic prediction methods that either used single SNPs or haplotype blocks with regards to their prediction accuracy for important traits in crop datasets. We used four published datasets from canola, maize, wheat and soybean. Different approaches to construct haplotype blocks were compared, including blocks based on LD, physical distance, number of adjacent markers and the algorithms implemented in the software "Haploview" and "HaploBlocker". The tested prediction methods included Genomic Best Linear Unbiased Prediction (GBLUP), Extended GBLUP to account for additive by additive epistasis (EGBLUP), Bayesian LASSO and Reproducing Kernel Hilbert Space (RKHS) regression. We found improved prediction accuracy in some traits when using haplotype blocks compared to SNP-based predictions, however the magnitude of improvement was very trait- and model-specific. Especially in settings with low marker density, haplotype blocks can improve genomic prediction accuracy. In most cases, physically large haplotype blocks yielded a strong decrease in prediction accuracy. Especially when prediction accuracy varies greatly across different prediction models, prediction based on haplotype blocks can improve prediction accuracy of underperforming models. However, there is no "best" method to build haplotype blocks, since prediction accuracy varied considerably across methods and traits. Hence, criteria used to define haplotype blocks should not be viewed as fixed biological parameters, but rather as hyperparameters that need to be adjusted for every dataset.
Collapse
Affiliation(s)
- Sven E. Weber
- Department of Plant Breeding, Justus Liebig University, Giessen, Germany
| | - Matthias Frisch
- Department of Biometry and Population Genetics, Justus Liebig University, Giessen, Germany
| | - Rod J. Snowdon
- Department of Plant Breeding, Justus Liebig University, Giessen, Germany
| | - Kai P. Voss-Fels
- Institute for Grapevine Breeding, Hochschule Geisenheim University, Geisenheim, Germany
| |
Collapse
|
7
|
Abounouh K, Tanouti IA, Ouladlahsen A, Tahiri M, Badre W, Dehbi H, Sarih M, Benjelloun S, Pineau P, Ezzikouri S. The peroxisome proliferator-activated receptor γ coactivator-1 alpha rs8192678 (Gly482Ser) variant and hepatitis B virus clearance. Infect Dis (Lond) 2023; 55:614-624. [PMID: 37376899 DOI: 10.1080/23744235.2023.2228403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/06/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Chronic hepatitis B virus (CHB) infection is still incurable a major public health problem. It is yet unclear how host genetic factors influence the development of HBV infection. The peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PPARGC1A) has been shown to regulate hepatitis B virus (HBV). Several reports found that PPARGC1A variants are involved in a number of distinct liver diseases. Here we investigate whether the PPARGC1A rs8192678 (Gly482Ser) variant is involved in the spontaneous clearance of acute HBV infection and if it participates in chronic disease progression in Moroccan patients. METHODS Our study included 292 chronic hepatitis B (CHB) patients and 181 individuals who spontaneously cleared-HBV infection. We genotyped the rs8192678 SNP using a TaqMan allelic discrimination assay and then explored its association with spontaneous HBV clearance and CHB progression. RESULTS Our data showed that individuals carrying CT and TT genotypes were more likely to achieve spontaneous clearance (OR = 0.48, 95% CI (0.32-0.73), p = 0.00047; OR = 0.28, 95% CI (0.15-0.53), p = 0.00005, respectively). Subjects carrying the mutant allele T were more likely to achieve spontaneous clearance (OR = 0.51, 95% CI (0.38-0.67), P = 2.68E-06). However, when we investigated the impact of rs8192678 on the progression of liver diseases, we neither observe any influence (p > 0.05) nor found any significant association between ALT, AST, HBV viral loads, and the PPARGC1A rs8192678 genotypes in patients with CHB (p > 0.05). CONCLUSION Our result suggests that PPARGC1A rs8192678 may modulate acute HBV infection, and could therefore represent a potential predictive marker in the Moroccan population.
Collapse
Affiliation(s)
- Karima Abounouh
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
- Laboratory of Cellular and Molecular Pathology, Medical School, University Hassan II
| | - Ikram-Allah Tanouti
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Ahd Ouladlahsen
- Faculté de médecine de Casablanca, CHU Ibn Rochd, Casablanca, Morocco
| | - Mohamed Tahiri
- Faculté de médecine de Casablanca, CHU Ibn Rochd, Casablanca, Morocco
| | - Wafaa Badre
- Faculté de médecine de Casablanca, CHU Ibn Rochd, Casablanca, Morocco
| | - Hind Dehbi
- Laboratory of Cellular and Molecular Pathology, Medical School, University Hassan II
| | - M'hammed Sarih
- Service de Parasitologie et des Maladies Vectorielles, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Soumaya Benjelloun
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Pascal Pineau
- Unité "Organisation Nucléaire et Oncogenèse", INSERM U993, Institut Pasteur, Paris, France
| | - Sayeh Ezzikouri
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| |
Collapse
|
8
|
Gršković P, Korać P. Circadian Gene Variants in Diseases. Genes (Basel) 2023; 14:1703. [PMID: 37761843 PMCID: PMC10531145 DOI: 10.3390/genes14091703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
The circadian rhythm is a self-sustaining 24 h cycle that regulates physiological processes within the body, including cycles of alertness and sleepiness. Cells have their own intrinsic clock, which consists of several proteins that regulate the circadian rhythm of each individual cell. The core of the molecular clock in human cells consists of four main circadian proteins that work in pairs. The CLOCK-BMAL1 heterodimer and the PER-CRY heterodimer each regulate the other pair's expression, forming a negative feedback loop. Several other proteins are involved in regulating the expression of the main circadian genes, and can therefore also influence the circadian rhythm of cells. This review focuses on the existing knowledge regarding circadian gene variants in both the main and secondary circadian genes, and their association with various diseases, such as tumors, metabolic diseases, cardiovascular diseases, and sleep disorders.
Collapse
Affiliation(s)
| | - Petra Korać
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10 000 Zagreb, Croatia;
| |
Collapse
|
9
|
Mauleekoonphairoj J, Tongsima S, Khongphatthanayothin A, Jurgens SJ, Zimmerman DS, Sutjaporn B, Wandee P, Bezzina CR, Nademanee K, Poovorawan Y. A diverse ancestrally-matched reference panel increases genotype imputation accuracy in a underrepresented population. Sci Rep 2023; 13:12360. [PMID: 37524845 PMCID: PMC10390539 DOI: 10.1038/s41598-023-39429-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023] Open
Abstract
Variant imputation, a common practice in genome-wide association studies, relies on reference panels to infer unobserved genotypes. Multiple public reference panels are currently available with variations in size, sequencing depth, and represented populations. Currently, limited data exist regarding the performance of public reference panels when used in an imputation of populations underrepresented in the reference panel. Here, we compare the performance of various public reference panels: 1000 Genomes Project, Haplotype Reference Consortium, GenomeAsia 100 K, and the recent Trans-Omics for Precision Medicine (TOPMed) program, when used in an imputation of samples from the Thai population. Genotype yields were assessed, and imputation accuracies were examined by comparison with high-depth whole genome sequencing data of the same sample. We found that imputation using the TOPMed panel yielded the largest number of variants (~ 271 million). Despite being the smallest in size, GenomeAsia 100 K achieved the best imputation accuracy with a median genotype concordance rate of 0.97. For rare variants, GenomeAsia 100 K also offered the best accuracy, although rare variants were less accurately imputable than common variants (30.3% reduction in concordance rates). The high accuracy observed when using GenomeAsia 100 K is likely attributable to the diverse representation of populations genetically similar to the study cohort emphasizing the benefits of sequencing populations classically underrepresented in human genomics.
Collapse
Affiliation(s)
- John Mauleekoonphairoj
- Center of Excellence in Arrhythmia Research, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Interdisciplinary Program of Biomedical Sciences, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Sissades Tongsima
- National Biobank of Thailand, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Apichai Khongphatthanayothin
- Center of Excellence in Arrhythmia Research, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Division of Cardiology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Bangkok Hospital, Bangkok, Thailand
| | - Sean J Jurgens
- Heart Center, Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University, Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Dominic S Zimmerman
- Heart Center, Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University, Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Boosamas Sutjaporn
- Center of Excellence in Arrhythmia Research, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pharawee Wandee
- Center of Excellence in Arrhythmia Research, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Connie R Bezzina
- Heart Center, Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University, Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Koonlawee Nademanee
- Center of Excellence in Arrhythmia Research, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Pacific Rim Electrophysiology Research Institute, Bumrungrad International Hospital, Bangkok, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
10
|
Jiang Z, Zhang T, Han W, Xiao J, Zhang W, Wang X, Liu J, Yang Y, Yang C, Guan F, Li T, Rice JP. Identification of PROK2 gene polymorphisms as predictors of methamphetamine use disorder risk and indicators of craving scale in the Chinese Han population. Front Pharmacol 2023; 14:1217382. [PMID: 37484015 PMCID: PMC10356980 DOI: 10.3389/fphar.2023.1217382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023] Open
Abstract
Background: Methamphetamine use disorder (MUD) has become a global problem due to the highly addictive nature of methamphetamine. Earlier research have demonstrated that PROK2 functions as a compensatory and protective response against neurotoxic stress by stimulating astrocyte reactivity. The aim of our study was to evaluate the correlation between the PROK2 gene and both MUD risk susceptibility and craving scale in the Chinese Han population. Methods: A total of 5,282 participants (1,796 MUD patients and 3,486 controls) were recruited. Seven tag SNPs of the PROK2 gene were chosen and genotyped in the samples. Genetic association analyses were performed to capture the significant SNPs. To investigate the relationship between PROK2 levels and craving scores with the associated-SNP genotypes, we conducted a linear model. Results: SNP rs75433452 was significantly linked with MUD risk (p-value = 1.54 × 10-8), with the A allele being positively correlated with an increased risk of MUD. Moreover, the average serum level of PROK2 decreased when more copies of the A allele were presented in both MUD patients (p-value = 4.57 × 10-6) and controls (p-value = 1.13 × 10-5). Furthermore, the genotypes of SNP rs75433452 were strongly correlated with the craving scores in MUD patients (p-value = 4.05 × 10-4). Conclusion: Our study identified a significant association signal of the PROK2 gene with MUD risk susceptibility and methamphetamine craving scores in the Chinese Han population, providing potential valuable insights into the underlying mechanisms of METH dependence.
Collapse
Affiliation(s)
- Zhao Jiang
- Department of Forensic Medicine, School of Medicine and Forensics, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Key Laboratory of National Health Commission for Forensic Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Department of Neurology, Honghui Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Tianxiao Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Wei Han
- Department of Forensic Medicine, School of Medicine and Forensics, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Key Laboratory of National Health Commission for Forensic Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Jing Xiao
- Department of Forensic Medicine, School of Medicine and Forensics, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Wenpei Zhang
- Department of Forensic Medicine, School of Medicine and Forensics, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xiaochen Wang
- Department of Forensic Medicine, School of Medicine and Forensics, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jianing Liu
- Department of Forensic Medicine, School of Medicine and Forensics, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Ying Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Congying Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Fanglin Guan
- Department of Forensic Medicine, School of Medicine and Forensics, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Key Laboratory of National Health Commission for Forensic Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Tao Li
- Department of Forensic Medicine, School of Medicine and Forensics, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Key Laboratory of National Health Commission for Forensic Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - John P. Rice
- Department of Psychiatry, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
11
|
Alemu A, Batista L, Singh PK, Ceplitis A, Chawade A. Haplotype-tagged SNPs improve genomic prediction accuracy for Fusarium head blight resistance and yield-related traits in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:92. [PMID: 37009920 PMCID: PMC10068637 DOI: 10.1007/s00122-023-04352-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Linkage disequilibrium (LD)-based haplotyping with subsequent SNP tagging improved the genomic prediction accuracy up to 0.07 and 0.092 for Fusarium head blight resistance and spike width, respectively, across six different models. Genomic prediction is a powerful tool to enhance genetic gain in plant breeding. However, the method is accompanied by various complications leading to low prediction accuracy. One of the major challenges arises from the complex dimensionality of marker data. To overcome this issue, we applied two pre-selection methods for SNP markers viz. LD-based haplotype-tagging and GWAS-based trait-linked marker identification. Six different models were tested with preselected SNPs to predict the genomic estimated breeding values (GEBVs) of four traits measured in 419 winter wheat genotypes. Ten different sets of haplotype-tagged SNPs were selected by adjusting the level of LD thresholds. In addition, various sets of trait-linked SNPs were identified with different scenarios from the training-test combined and only from the training populations. The BRR and RR-BLUP models developed from haplotype-tagged SNPs had a higher prediction accuracy for FHB and SPW by 0.07 and 0.092, respectively, compared to the corresponding models developed without marker pre-selection. The highest prediction accuracy for SPW and FHB was achieved with tagged SNPs pruned at weak LD thresholds (r2 < 0.5), while stringent LD was required for spike length (SPL) and flag leaf area (FLA). Trait-linked SNPs identified only from training populations failed to improve the prediction accuracy of the four studied traits. Pre-selection of SNPs via LD-based haplotype-tagging could play a vital role in optimizing genomic selection and reducing genotyping costs. Furthermore, the method could pave the way for developing low-cost genotyping methods through customized genotyping platforms targeting key SNP markers tagged to essential haplotype blocks.
Collapse
Affiliation(s)
- Admas Alemu
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | | | - Pawan K Singh
- International Maize and Wheat Improvement Center, Texcoco, Mexico
| | | | - Aakash Chawade
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| |
Collapse
|
12
|
Li L, Wei B, Jia J, Li M, Ren M, Zhang S. P2X3- P2X7 SNPs and gene-gene and gene-environment interactions on pediatric asthma. J Asthma 2023; 60:1438-1445. [PMID: 36469748 DOI: 10.1080/02770903.2022.2155184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND To investigate the relationship between polymorphisms of P2X3, P2X7 genes and environment interaction with susceptibility of childhood asthma. METHODS We conducted a matched case-control study with 170 cases and 175 healthy controls. The rs10896611, rs2276038, rs3781899 in P2X3 and rs1718119, rs3751143 in P2X7 polymorphisms were genotyped using the technique of an improved multiplex ligation detection reaction. Gene-gene, gene-environment and haplotype-environment interactions were tested using the generalized multi-factor dimensionality reduction method. RESULTS There were no differences between cases and controls in allele or genotype frequencies of P2X3 and P2X7. The C/C, G/C genotypes of rs10896611, and C/C, C/T genotypes of rs2276038 and G/G, G/A genotypes of rs3781899 were associated with asthmatic cough (p > 0.05). The haplotype GCT of P2X3 reduced the risk of asthma (OR = 0.48, p = 0.048), and the haplotypes AGT (OR = 0.45, p = 0.001) and GCC (OR = 2.16, p = 0.002) were associated with asthmatic cough. The haplotype AA of P2X7 increased risk of asthma severity (p < 0.05). The three-locus model indicated a potential haplotype-environment interaction in GCT, ETS, and pet (p = 0.001). CONCLUSIONS The rs10896611, rs2276038 and rs3781899 of P2X3 minor alleles increased the risk of asthmatic cough. Haplotype GCT of P2X3 was a protective factor for asthma, the haplotype AGT was a protective factor and GCC was a risk factor for asthma with cough. In addition, the interactions of haplotype GCT of P2X3, ETS and pet may increase an individual's susceptibility to asthma.
Collapse
Affiliation(s)
- Lingxue Li
- Department of Neonatology, Northern Theater Command General Hospital (formerly General Hospital of Shenyang Military Command), Shenyang, P.R. China
| | - Bing Wei
- Department of Neonatology, Northern Theater Command General Hospital (formerly General Hospital of Shenyang Military Command), Shenyang, P.R. China
| | - Jingjing Jia
- Department of Neonatology, Northern Theater Command General Hospital (formerly General Hospital of Shenyang Military Command), Shenyang, P.R. China.,Post-graduate College, Jinzhou Medical University, Jinzhou, P.R. China
| | - Mo Li
- Department of Neonatology, Northern Theater Command General Hospital (formerly General Hospital of Shenyang Military Command), Shenyang, P.R. China
| | - Mengyang Ren
- Department of Neonatology, Northern Theater Command General Hospital (formerly General Hospital of Shenyang Military Command), Shenyang, P.R. China.,Post-graduate College, Jinzhou Medical University, Jinzhou, P.R. China
| | - Shinan Zhang
- Department of Neonatology, Northern Theater Command General Hospital (formerly General Hospital of Shenyang Military Command), Shenyang, P.R. China
| |
Collapse
|
13
|
Morii M, Ohka S, Nishizawa D, Hasegawa J, Nakayama K, Ebata Y, Soeda M, Fukuda KI, Yoshida K, Koshika K, Ichinohe T, Ikeda K. The rs216009 single-nucleotide polymorphism of the CACNA1C gene is associated with phantom tooth pain. Mol Pain 2023; 19:17448069231193383. [PMID: 37489644 PMCID: PMC10437699 DOI: 10.1177/17448069231193383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023] Open
Abstract
Phantom tooth pain (PTP) is a rare and specific neuropathic pain that occurs after pulpectomy and tooth extraction, but its cause is not understood. We hypothesized that there is a genetic contribution to PTP. The present study focused on the CACNA1C gene, which encodes the α1C subunit of the Cav1.2 L-type Ca2+ channel (LTCC) that has been reported to be associated with neuropathic pain in previous studies. We investigated genetic polymorphisms that contribute to PTP. We statistically examined the association between genetic polymorphisms and PTP vulnerability in 33 patients with PTP and 118 patients without PTP but with pain or dysesthesia in the orofacial region. From within and around the CACNA1C gene, 155 polymorphisms were selected and analyzed for associations with clinical data. We found that the rs216009 single-nucleotide polymorphism (SNP) of the CACNA1C gene in the recessive model was significantly associated with the vulnerability to PTP. Homozygote carriers of the minor C allele of rs216009 had a higher rate of PTP. Nociceptive transmission in neuropathic pain has been reported to involve Ca2+ influx from LTCCs, and the rs216009 polymorphism may be involved in CACNA1C expression, which regulates intracellular Ca2+ levels, leading to the vulnerability to PTP. Furthermore, psychological factors may lead to the development of PTP by modulating the descending pain inhibitory system. Altogether, homozygous C-allele carriers of the rs216009 SNP were more likely to be vulnerable to PTP, possibly through the regulation of intracellular Ca2+ levels and affective pain systems, such as those that mediate fear memory recall.
Collapse
Affiliation(s)
- Masako Morii
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Department of Dental Anesthesiology, Tokyo Dental College,Tokyo, Japan
| | - Seii Ohka
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Daisuke Nishizawa
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Junko Hasegawa
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kyoko Nakayama
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yuko Ebata
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Moe Soeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Department of Oral Health and Clinical Science, Tokyo Dental College, Tokyo, Japan
| | - Ken-ichi Fukuda
- Department of Oral Health and Clinical Science, Tokyo Dental College, Tokyo, Japan
| | - Kaori Yoshida
- Department of Dental Anesthesiology, Tokyo Dental College,Tokyo, Japan
| | - Kyotaro Koshika
- Department of Dental Anesthesiology, Tokyo Dental College,Tokyo, Japan
| | - Tatsuya Ichinohe
- Department of Dental Anesthesiology, Tokyo Dental College,Tokyo, Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
14
|
Djordjevic A, Zivkovic M, Boskovic M, Dekleva M, Stankovic G, Stankovic A, Djuric T. Variants Tagging LGALS-3 Haplotype Block in Association with First Myocardial Infarction and Plasma Galectin-3 Six Months after the Acute Event. Genes (Basel) 2022; 14:genes14010109. [PMID: 36672849 PMCID: PMC9859409 DOI: 10.3390/genes14010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/09/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Galectin-3 is encoded by LGALS-3, located in a unique haplotype block in Caucasians. According to the Tagger server, rs4040064, rs11628437, and rs7159490 cover 82% (r2 > 0.8) of the genetic variance of this HapBlock. Our aims were to examine the association of their haplotypes with first myocardial infarction (MI), changes in left ventricular echocardiographic parameters over time, and impact on plasma galectin-3 and LGALS-3 mRNA in peripheral blood mononuclear cells, both 6 months post-MI. The study group consisted of 546 MI patients and 323 controls. Gene expression was assessed in 92 patients and plasma galectin-3 in 189 patients. Rs4040064, rs11628437, rs7159490, and LGALS-3 mRNA expression were detected using TaqMan® technology. Plasma galectin-3 concentrations were determined by the ELISA method. We found that the TGC haplotype could have a protective effect against MI (adjusted OR 0.19 [0.05-0.72], p = 0.015) and that the GAC haplotype had significantly higher galectin-3 concentrations (48.3 [37.3-59.4] ng/mL vs. 18.9 [14.5-23.4] ng/mL, p < 0.0001), both in males and compared to the referent haplotype GGC. Higher plasma Gal-3 was also associated with higher NYHA class and systolic dysfunction. Our results suggest that variants tagging LGALS-3 HapBlock could reflect plasma Gal-3 levels 6 months post-MI and may have a potential protective effect against MI in men. Further replication, validation, and functional studies are needed.
Collapse
Affiliation(s)
- Ana Djordjevic
- Department of Radiobiology and Molecular Genetics, “Vinca” Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11001 Belgrade, Serbia
- Correspondence: ; Tel.: +381-113-408-566 or +381-116-447-485
| | - Maja Zivkovic
- Department of Radiobiology and Molecular Genetics, “Vinca” Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11001 Belgrade, Serbia
| | - Maja Boskovic
- Department of Radiobiology and Molecular Genetics, “Vinca” Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11001 Belgrade, Serbia
| | - Milica Dekleva
- Department of Cardiology, University Clinical Centre “Zvezdara”, 11120 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Goran Stankovic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Department of Cardiology, Clinical Centre of Serbia, 11000 Belgrade, Serbia
| | - Aleksandra Stankovic
- Department of Radiobiology and Molecular Genetics, “Vinca” Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11001 Belgrade, Serbia
| | - Tamara Djuric
- Department of Radiobiology and Molecular Genetics, “Vinca” Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11001 Belgrade, Serbia
| |
Collapse
|
15
|
Sun Y, Yuan F, Wang L, Dai D, Zhang Z, Liang F, Liu N, Long J, Zhao X, Xi Y. Recombination and mutation shape variations in the major histocompatibility complex. J Genet Genomics 2022; 49:1151-1161. [PMID: 35358716 DOI: 10.1016/j.jgg.2022.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 01/14/2023]
Abstract
The major histocompatibility complex (MHC) is closely associated with numerous diseases, but its high degree of polymorphism complicates the discovery of disease-associated variants. In principle, recombination and de novo mutations are two critical factors responsible for MHC polymorphisms. However, direct evidence for this hypothesis is lacking. Here, we report the generation of fine-scale MHC recombination and de novo mutation maps of ∼5 Mb by deep sequencing (> 100×) of the MHC genome for 17 MHC recombination and 30 non-recombination Han Chinese families (a total of 190 individuals). Recombination hotspots and Han-specific breakpoints are located in close proximity at haplotype block boundaries. The average MHC de novo mutation rate is higher than the genome-wide de novo mutation rate, particularly in MHC recombinant individuals. Notably, mutation and recombination generated polymorphisms are located within and outside linkage disequilibrium regions of the MHC, respectively, and evolution of the MHC locus was mainly controlled by positive selection. These findings provide insights on the evolutionary causes of the MHC diversity and may facilitate the identification of disease-associated genetic variants.
Collapse
Affiliation(s)
- Yuying Sun
- Department of Immunology and National Immunoassay Laboratory, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China; Institute of Beijing 307 Hospital, Anhui Medical University, Hefei, Anhui 230032, China.
| | - Fang Yuan
- Department of Immunology and National Immunoassay Laboratory, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Ling Wang
- Department of Immunology and National Immunoassay Laboratory, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China; Institute of Beijing 307 Hospital, Anhui Medical University, Hefei, Anhui 230032, China
| | - Dongfa Dai
- Department of Immunology and National Immunoassay Laboratory, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China; Institute of Beijing 307 Hospital, Anhui Medical University, Hefei, Anhui 230032, China
| | - Zhijian Zhang
- Department of Immunology and National Immunoassay Laboratory, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China; Institute of Beijing 307 Hospital, Anhui Medical University, Hefei, Anhui 230032, China
| | - Fei Liang
- Department of Immunology and National Immunoassay Laboratory, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Nan Liu
- Department of Immunology and National Immunoassay Laboratory, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Juan Long
- Department of Immunology and National Immunoassay Laboratory, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Xiao Zhao
- Department of Immunology and National Immunoassay Laboratory, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Yongzhi Xi
- Department of Immunology and National Immunoassay Laboratory, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China.
| |
Collapse
|
16
|
Alamin M, Sultana MH, Lou X, Jin W, Xu H. Dissecting Complex Traits Using Omics Data: A Review on the Linear Mixed Models and Their Application in GWAS. PLANTS (BASEL, SWITZERLAND) 2022; 11:3277. [PMID: 36501317 PMCID: PMC9739826 DOI: 10.3390/plants11233277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Genome-wide association study (GWAS) is the most popular approach to dissecting complex traits in plants, humans, and animals. Numerous methods and tools have been proposed to discover the causal variants for GWAS data analysis. Among them, linear mixed models (LMMs) are widely used statistical methods for regulating confounding factors, including population structure, resulting in increased computational proficiency and statistical power in GWAS studies. Recently more attention has been paid to pleiotropy, multi-trait, gene-gene interaction, gene-environment interaction, and multi-locus methods with the growing availability of large-scale GWAS data and relevant phenotype samples. In this review, we have demonstrated all possible LMMs-based methods available in the literature for GWAS. We briefly discuss the different LMM methods, software packages, and available open-source applications in GWAS. Then, we include the advantages and weaknesses of the LMMs in GWAS. Finally, we discuss the future perspective and conclusion. The present review paper would be helpful to the researchers for selecting appropriate LMM models and methods quickly for GWAS data analysis and would benefit the scientific society.
Collapse
Affiliation(s)
- Md. Alamin
- Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | | | - Xiangyang Lou
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Wenfei Jin
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Haiming Xu
- Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
17
|
Wang Y, Du M, Vallis J, Shariati M, Parfrey PS, Mclaughlin JR, Wang PP, Zhu Y. The Roles of MTRR and MTHFR Gene Polymorphisms in Colorectal Cancer Survival. Nutrients 2022; 14:nu14214594. [PMID: 36364857 PMCID: PMC9658674 DOI: 10.3390/nu14214594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Background: Paradoxically epidemiological data illustrate a negative relationship between dietary folate intake and colorectal cancer (CRC) risk. The occurrence and progression of CRC may be influenced by variants in some key enzyme coding genes in the folate metabolic pathway. We investigated the correlation between genetic variants in methionine synthase reductase (MTRR) and methylenetetrahydrofolate reductase (MTHFR) and CRC survival. Methods: This study used data collected from the Newfoundland Familial Colorectal Cancer Study. A total of 532 patients diagnosed with CRC for the first time from 1999 to 2003 were enrolled, and their mortality were tracked until April 2010. DNA samples were genotyped by Illumina’s integrated quantum 1 million chip. Cox models were established to assess 33 tag single-nucleotide polymorphisms in MTRR and MTHFR in relation to overall survival (OS), disease-free survival (DFS) and CRC-specific survival. Results: The MTRR and MTHFR genes were associated with DFS and CRC-specific survival in CRC patients at the gene level. After multiple comparison adjustment, MTRR rs1801394 A (vs. G) allele was associated with increased DFS (p = 0.024), while MTHRT rs3737966 (G vs. A), rs4846049 (T vs. G), rs1476413 (A vs. G), rs1801131 (C vs. A), rs12121543 (A vs. C), rs1801133 (C vs. T), rs4846052 (T vs. C), rs2066471 (A vs. G) and rs7533315 (T vs. C) were related to worse CRC-specific survival. Additionally, significant interactions were seen among pre-diagnostic alcohol consumption with MTRR rs1801394, rs3776467, rs326124, rs162040, and rs3776455, with superior OS associated with those protective variant alleles limited to patients with alcohol consumption under the median. The MTHFR rs3737966 (G vs. A) allele seemed to be detrimental to CRC survival only among subjects with fruit intake below the median. Conclusions: Polymorphic variants in MTRR and MTHFR genes that code for key enzymes for folate metabolism may be associated with survival in patients with CRC. The gene-CRC outcome association seems modulated by alcohol drinking and fruit intake.
Collapse
Affiliation(s)
- Yu Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Meizhi Du
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Jillian Vallis
- Division of Community Health and Humanities, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1B 3V6, Canada
| | - Matin Shariati
- Division of Community Health and Humanities, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1B 3V6, Canada
| | - Patrick S. Parfrey
- Clinical Epidemiology Unit, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1B 3V6, Canada
| | - John R. Mclaughlin
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada
| | - Peizhong Peter Wang
- Division of Community Health and Humanities, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1B 3V6, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada
- Correspondence: (P.P.W.); (Y.Z.); Tel.: +1-(709)-777-8571 (P.P.W.); +86-(022)-8333-6118 (Y.Z.)
| | - Yun Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin 300070, China
- Correspondence: (P.P.W.); (Y.Z.); Tel.: +1-(709)-777-8571 (P.P.W.); +86-(022)-8333-6118 (Y.Z.)
| |
Collapse
|
18
|
Martinelli M, Mancarella C, Scapoli L, Palmieri A, De Sanctis P, Ferrari C, Pasello M, Zucchini C, Scotlandi K. Polymorphic variants of IGF2BP3 and SENCR have an impact on predisposition and/or progression of Ewing sarcoma. Front Oncol 2022; 12:968884. [PMID: 36338681 PMCID: PMC9634078 DOI: 10.3389/fonc.2022.968884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/26/2022] [Indexed: 11/15/2022] Open
Abstract
Ewing sarcoma (EWS), the second most common malignant bone tumor in children and adolescents, occurs abruptly without clear evidence of tumor history or progression. Previous association studies have identified some inherited variants associated with the risk of developing EWS but a common picture of the germline susceptibility to this tumor remains largely unclear. Here, we examine the association between thirty single nucleotide polymorphisms (SNPs) of the IGF2BP3, a gene that codes for an oncofetal RNA-binding protein demonstrated to be important for EWS patient’s risk stratification, and five SNPs of SENCR, a long non-coding RNA shown to regulate IGF2BP3. An association between polymorphisms and EWS susceptibility was observed for three IGF2BP3 SNPs - rs112316332, rs13242065, rs12700421 - and for four SENCR SNPs - rs10893909, rs11221437, rs12420823, rs4526784 -. In addition, IGF2BP3 rs34033684 and SENCR rs10893909 variants increased the risk for female respect to male subgroup when carried together, while IGF2BP3 rs13242065 or rs76983703 variants reduced the probability of a disease later onset (> 14 years). Moreover, the absence of IGF2BP3 rs10488282 variant and the presence of rs199653 or rs35875486 variant were significantly associated with a worse survival in EWS patients with localized disease at diagnosis. Overall, our data provide the first evidence linking genetic variants of IGF2BP3 and its modulator SENCR to the risk of EWS development and to disease progression, thus supporting the concept that heritable factors can influence susceptibility to EWS and may help to predict patient prognosis.
Collapse
Affiliation(s)
- Marcella Martinelli
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
- *Correspondence: Marcella Martinelli, ; Katia Scotlandi,
| | - Caterina Mancarella
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Luca Scapoli
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Annalisa Palmieri
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Paola De Sanctis
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Cristina Ferrari
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Michela Pasello
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Cinzia Zucchini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- *Correspondence: Marcella Martinelli, ; Katia Scotlandi,
| |
Collapse
|
19
|
王 梦, 李 文, 周 仁, 王 斯, 刘 冬, 郑 鸿, 周 治, 朱 洪, 吴 涛, 胡 永. [Association study between haplotypes of WNT signaling pathway genes and nonsyndromic oral clefts among Chinese Han populations]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2022; 54:394-399. [PMID: 35701114 PMCID: PMC9197701 DOI: 10.19723/j.issn.1671-167x.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To explore whether WNT signaling pathway genes were associated with non-syndromic oral clefts (NSOC) based on haplotypes analyses among 1 008 Chinese NSOC case-parent trios. METHODS The genome-wide association study (GWAS) data of 806 Chinese non-syndromic cleft lip with or without cleft palate (NSCL/P) trios and 202 Chinese non-syndromic cleft palate (NSCP) case-parent trios were drawn from the International Consortium to Identify Genes and Interactions Controlling Oral Clefts (ICOCs) study GWAS data set, whose Chinese study population were recruited from four provinces in China, namely Taiwan, Shandong, Hubei, and Sichuan provinces. The process of DNA genotyping was conducted by the Center for Inherited Disease Research in the Johns Hopkins University, using Illumina Human610-Quad v.1_B Bead Chip. The method of sliding windows was used to determine the haplotypes for analyses, including 2 SNPs haplotypes and 3 SNPs haplotypes. Haplotypes with a frequency lower than 1% were excluded for further analyses. To further assess the association between haplotypes and NSOC risks, and the transmission disequilibrium test (TDT) was performed. The Bonferroni method was adopted to correct multiple tests in the study, with which the threshold of statistical significance level was set as P < 0.05 divided by the number of tests, e.g P < 3.47×10-4 in the current stu-dy. All the statistical analyses were performed by using plink (v1.07). RESULTS After quality control, a total of 144 single nucleotide polymorphisms (SNPs) mapped in seven genes in WNT signaling pathway were included for the analyses among the 806 Chinese NSCL/P trios and 202 Chinese NSCP trios. A total of 1 042 haplotypes with frequency higher than 1% were included for NSCL/P analyses and another 1 057 haplotypes with frequency higher than 1% were included for NSCP analyses. Results from the TDT analyses showed that a total of 69 haplotypes were nominally associated with the NSCL/P risk among Chinese (P < 0.05). Another 34 haplotypes showed nominal significant association with the NSCP risk among Chinese (P < 0.05). However, none of these haplotypes reached pre-defined statistical significance level after Bonferroni correction (P>3.47×10-4). CONCLUSION This study failed to observe any statistically significant associations between haplotypes of seven WNT signaling pathway genes and the risk of NSOC among Chinese. Further studies are warranted to replicate the findings here.
Collapse
Affiliation(s)
- 梦莹 王
- 北京大学公共卫生学院流行病与卫生统计学系,北京 100191Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
| | - 文咏 李
- 北京大学公共卫生学院流行病与卫生统计学系,北京 100191Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
| | - 仁 周
- 北京大学公共卫生学院流行病与卫生统计学系,北京 100191Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
| | - 斯悦 王
- 北京大学公共卫生学院流行病与卫生统计学系,北京 100191Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
| | - 冬静 刘
- 北京大学公共卫生学院流行病与卫生统计学系,北京 100191Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
| | - 鸿尘 郑
- 北京大学公共卫生学院流行病与卫生统计学系,北京 100191Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
| | - 治波 周
- 北京大学口腔医学院·口腔医院口腔颌面外科,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔生物材料和数字诊疗装备国家工程研究中心,口腔数字医学北京市重点实验室,国家卫生健康委员会口腔医学计算机应用工程技术研究中心,国家药品监督管理局口腔生物材料重点实验室,北京 100081Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Research Center of Engineering and Technology for Computerized Dentistry & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - 洪平 朱
- 北京大学口腔医学院·口腔医院口腔颌面外科,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔生物材料和数字诊疗装备国家工程研究中心,口腔数字医学北京市重点实验室,国家卫生健康委员会口腔医学计算机应用工程技术研究中心,国家药品监督管理局口腔生物材料重点实验室,北京 100081Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Research Center of Engineering and Technology for Computerized Dentistry & NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - 涛 吴
- 北京大学公共卫生学院流行病与卫生统计学系,北京 100191Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
| | - 永华 胡
- 北京大学公共卫生学院流行病与卫生统计学系,北京 100191Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China
| |
Collapse
|
20
|
Soeda M, Ohka S, Nishizawa D, Hasegawa J, Nakayama K, Ebata Y, Fukuda KI, Ikeda K. Single-nucleotide polymorphisms of the SLC17A9 and P2RY12 genes are significantly associated with phantom tooth pain. Mol Pain 2022; 18:17448069221089592. [PMID: 35266813 PMCID: PMC9003655 DOI: 10.1177/17448069221089592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Phantom tooth pain (PTP) is a rare and specific neuropathic pain that occurs after pulpectomy and tooth extraction, but its cause is not understood. We hypothesized that there is a genetic contribution to PTP. We focused on solute carrier family 17 member 9 (SLC17A9)/vesicular nucleotide transporter (VNUT) and purinergic receptor P2Y12 (P2RY12), both of which have been associated with neuropathic pain and pain transduction signaling in the trigeminal ganglion in rodents. We sought to corroborate these associations in humans. We investigated gene polymorphisms that contribute to PTP. We statistically examined the association between genetic polymorphisms and PTP vulnerability in 150 patients with orofacial pain, including PTP, and 500 healthy subjects. We found that the rs735055 polymorphism of the SLC17A9 gene and rs3732759 polymorphism of the P2RY12 gene were associated with the development of PTP. Carriers of the minor allele of rs735055 and individuals who were homozygous for the major allele of rs3732759 had a higher rate of PTP. Carriers of the minor allele of rs735055 reportedly had high SLC17A9 mRNA expression in the spinal cord, which may increase the storage and release of adenosine triphosphate. Individuals who were homozygous for the major allele of rs3732759 may have higher P2RY12 expression that is more active in microglia. Therefore, these carriers may be more susceptible to PTP. These results suggest that specific genetic polymorphisms of the SLC17A9 and P2RY12 genes are involved in PTP. This is the first report on genes that are associated with PTP in humans.
Collapse
Affiliation(s)
- Moe Soeda
- 13931Tokyo Metropolitan Institute of Medical Science
| | - Seii Ohka
- 13931Tokyo Metropolitan Institute of Medical Science
| | | | | | | | - Yuko Ebata
- 13931Tokyo Metropolitan Institute of Medical Science
| | | | - Kazutaka Ikeda
- Department of Psychiatry and Behavioral Sciences13931Tokyo Metropolitan Institute of Medical Science
| |
Collapse
|
21
|
Epistasis Detection via the Joint Cumulant. STATISTICS IN BIOSCIENCES 2022. [DOI: 10.1007/s12561-022-09336-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Gene-environment interactions between CREB1 and childhood maltreatment on aggression among male Chinese adolescents. Sci Rep 2022; 12:1326. [PMID: 35079050 PMCID: PMC8789832 DOI: 10.1038/s41598-022-05137-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/06/2022] [Indexed: 12/03/2022] Open
Abstract
Both the genetic and environmental factors may affect aggression susceptibility. However, the conclusions of these associations remain discrepant. In addition, studies that explored the association between CREB1 and aggression were meager. The aim of our present study was to assess whether CREB1 polymorphisms were related to aggression and also to explore the interactive effects of CREB1 variants and childhood maltreatment on aggression. A total of 488 individuals with aggressive behavior and 488 controls were recruited. Aggression and childhood maltreatment were surveyed by standardized self-administered questionnaires. Buccal cells were also obtained and genotyping was conducted using SNPscan. Logistic regressions were applied to investigate both individual effects of CREB1 polymorphisms and the interactive influences with childhood maltreatment on aggression. We found that adolescents who carried the rs4675690 T allele in CREB1 showed a higher level of aggression compared with those who carried wildtype genotypes (CC) under the dominant model (OR = 1.67, 95% CI, 1.16–2.40) after controlling for age and childhood maltreatment. Moreover, we also found that rs4675690 T allele had a synergic additive interaction with childhood sexual abuse and emotional neglect on aggression. The significant interactive effects of CREB1 polymorphisms and childhood maltreatment on aggression were reported for the first time.
Collapse
|
23
|
Xu ZM, Rüeger S, Zwyer M, Brites D, Hiza H, Reinhard M, Rutaihwa L, Borrell S, Isihaka F, Temba H, Maroa T, Naftari R, Hella J, Sasamalo M, Reither K, Portevin D, Gagneux S, Fellay J. Using population-specific add-on polymorphisms to improve genotype imputation in underrepresented populations. PLoS Comput Biol 2022; 18:e1009628. [PMID: 35025869 PMCID: PMC8791479 DOI: 10.1371/journal.pcbi.1009628] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 01/26/2022] [Accepted: 11/10/2021] [Indexed: 12/13/2022] Open
Abstract
Genome-wide association studies rely on the statistical inference of untyped variants, called imputation, to increase the coverage of genotyping arrays. However, the results are often suboptimal in populations underrepresented in existing reference panels and array designs, since the selected single nucleotide polymorphisms (SNPs) may fail to capture population-specific haplotype structures, hence the full extent of common genetic variation. Here, we propose to sequence the full genomes of a small subset of an underrepresented study cohort to inform the selection of population-specific add-on tag SNPs and to generate an internal population-specific imputation reference panel, such that the remaining array-genotyped cohort could be more accurately imputed. Using a Tanzania-based cohort as a proof-of-concept, we demonstrate the validity of our approach by showing improvements in imputation accuracy after the addition of our designed add-on tags to the base H3Africa array. Genome-wide association studies, which study the association between genetic variants and various phenotypes, typically rely on genotyping arrays. Only a small proportion of genetic variants within the genome are typed on genotyping arrays. Untyped variants are statistically inferred through a process known as genotype imputation, where correlations between variants (haplotypes) observed in external reference panels are leveraged to infer untyped variants in the study population. However, for study populations that are underrepresented in existing reference panels, the quality of imputation is often sub-optimal. This is because typed variants incorporated on existing genotyping arrays can be unsuitable for the study population, and haplotype structures can be different between the reference and the study population. Here, we illustrate an approach to select a custom set of population-specific typed variants to improve genotype imputation in such underrepresented populations.
Collapse
Affiliation(s)
- Zhi Ming Xu
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sina Rüeger
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Michaela Zwyer
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Daniela Brites
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Hellen Hiza
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Ifakara Health Institute, Dar es Salaam, Tanzania
| | - Miriam Reinhard
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Liliana Rutaihwa
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Sonia Borrell
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | | | | | - Thomas Maroa
- Ifakara Health Institute, Dar es Salaam, Tanzania
| | | | - Jerry Hella
- Ifakara Health Institute, Dar es Salaam, Tanzania
| | | | - Klaus Reither
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Damien Portevin
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Jacques Fellay
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Precision Medicine Unit, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
24
|
Simons CCJM, Schouten LJ, Godschalk RWL, van Schooten FJ, Stoll M, Van Steen K, van den Brandt PA, Weijenberg MP. Polymorphisms in the mTOR-PI3K-Akt pathway, energy balance-related exposures and colorectal cancer risk in the Netherlands Cohort Study. BioData Min 2022; 15:2. [PMID: 35012583 PMCID: PMC8751328 DOI: 10.1186/s13040-021-00286-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 12/22/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The mTOR-PI3K-Akt pathway influences cell metabolism and (malignant) cell growth. We generated sex-specific polygenic risk scores capturing natural variation in 7 out of 10 top-ranked genes in this pathway. We studied the scores directly and in interaction with energy balance-related factors (body mass index (BMI), trouser/skirt size, height, physical activity, and early life energy restriction) in relation to colorectal cancer (CRC) risk in the Netherlands Cohort Study (NLCS) (n=120,852). The NLCS has a case-cohort design and 20.3 years of follow-up. Participants completed a baseline questionnaire on diet and cancer in 1986 when 55-69 years old. ~75% of the cohort returned toenail clippings used for DNA isolation and genotyping (n subcohort=3,793, n cases=3,464). To generate the scores, the dataset was split in two and risk alleles were defined and weighted based on sex-specific associations with CRC risk in the other dataset half, because there were no SNPs in the top-ranked genes associated with CRC risk in previous genome-wide association studies at a significance level p<1*10-5. RESULTS Cox regression analyses showed positive associations between the sex-specific polygenic risk scores and colon but not rectal cancer risk in men and women, with hazard ratios for continuously modeled scores close to 1.10. There was no modifying effect observed of the scores on associations between the energy balance-related factors and CRC risk. However, BMI (in men), non-occupational physical activity (in women), and height (in men and women) were associated with the risk of CRC, in particular (proximal and distal) colon cancer, in the direction as expected in the lower tertiles of the sex-specific polygenic risk scores. CONCLUSIONS Current data suggest that the mTOR-PI3K-Akt pathway may be involved in colon cancer development. This study thereby sheds more light on colon cancer etiology through use of genetic variation in the mTOR-PI3K-Akt pathway.
Collapse
Affiliation(s)
- Colinda C J M Simons
- Department of Epidemiology, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands.
| | - Leo J Schouten
- Department of Epidemiology, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Roger W L Godschalk
- Department of Pharmacology and Toxicology, NUTRIM - School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Frederik-Jan van Schooten
- Department of Pharmacology and Toxicology, NUTRIM - School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Monika Stoll
- Institute of Human Genetics, Genetic Epidemiology, University of Münster, Münster, Germany.,Department of Biochemistry, Maastricht Centre for Systems Biology (MaCSBio), School for Cardiovascular Diseases, CARIM-, Maastricht University, Maastricht, the Netherlands
| | | | - Piet A van den Brandt
- Department of Epidemiology, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Matty P Weijenberg
- Department of Epidemiology, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
25
|
Aftab F, Ahmed S, Ali SM, Ame SM, Bahl R, Baqui AH, Chowdhury NH, Deb S, Dhingra U, Dutta A, Hasan T, Hotwani A, Ilyas M, Javaid M, Jehan F, Juma MH, Khalid F, Khanam R, Manu AA, Mehmood U, Minckas N, Mitra DK, Nisar I, Polašek O, Rahman S, Rudan I, Sajid M, Sazawal S, Yoshida S. Cohort Profile: The Alliance for Maternal and Newborn Health Improvement (AMANHI) biobanking study. Int J Epidemiol 2022; 50:1780-1781i. [PMID: 34999881 PMCID: PMC8743110 DOI: 10.1093/ije/dyab124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2021] [Indexed: 11/20/2022] Open
Affiliation(s)
- Fahad Aftab
- Center for Public Health Kinetics, Global Zanzibar, Tanzania
| | | | | | | | - Rajiv Bahl
- Department for Maternal, Newborn, Child, and Adolescent Health, and Ageing, World Health Organization, Geneva, Switzerland
| | - Abdullah H Baqui
- International Center for Maternal and Newborn Health, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - Saikat Deb
- Public Health Laboratory-IdC, Pemba, Zanzibar, Tanzania
- Center for Public Health Kinetics, New Delhi, India
| | - Usha Dhingra
- Center for Public Health Kinetics, New Delhi, India
| | - Arup Dutta
- Center for Public Health Kinetics, New Delhi, India
| | | | - Aneeta Hotwani
- The Department of Paediatrics and Child Health, Aga Khan University, Karachi, Sind Pakistan
| | - Muhammad Ilyas
- The Department of Paediatrics and Child Health, Aga Khan University, Karachi, Sind Pakistan
| | - Mohammad Javaid
- The Department of Paediatrics and Child Health, Aga Khan University, Karachi, Sind Pakistan
| | - Fyezah Jehan
- The Department of Paediatrics and Child Health, Aga Khan University, Karachi, Sind Pakistan
| | | | - Farah Khalid
- The Department of Paediatrics and Child Health, Aga Khan University, Karachi, Sind Pakistan
| | - Rasheda Khanam
- International Center for Maternal and Newborn Health, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Alexander Ansah Manu
- Department of Epidemiology and Disease Control, University of Ghana School of Public Health, Legon, Accra, Ghana
| | - Usma Mehmood
- The Department of Paediatrics and Child Health, Aga Khan University, Karachi, Sind Pakistan
| | - Nicole Minckas
- Department for Maternal, Newborn, Child, and Adolescent Health, and Ageing, World Health Organization, Geneva, Switzerland
| | | | - Imran Nisar
- The Department of Paediatrics and Child Health, Aga Khan University, Karachi, Sind Pakistan
| | - Ozren Polašek
- University of Split School of Medicine, Split, Croatia
- Gen–info Ltd, Zagreb, Croatia
| | | | - Igor Rudan
- Centre for Global Health, The Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Muhammad Sajid
- The Department of Paediatrics and Child Health, Aga Khan University, Karachi, Sind Pakistan
| | - Sunil Sazawal
- Center for Public Health Kinetics, Global Zanzibar, Tanzania
- Center for Public Health Kinetics, New Delhi, India
| | - Sachiyo Yoshida
- Department for Maternal, Newborn, Child, and Adolescent Health, and Ageing, World Health Organization, Geneva, Switzerland
| | | |
Collapse
|
26
|
Chang HH, Lee CH, Chen YT, Huang CY, Yu CC, Lin VC, Geng JH, Lu TL, Huang SP, Bao BY. Genetic Analysis Reveals the Prognostic Significance of the DNA Mismatch Repair Gene MSH2 in Advanced Prostate Cancer. Cancers (Basel) 2022; 14:cancers14010223. [PMID: 35008387 PMCID: PMC8750592 DOI: 10.3390/cancers14010223] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Androgen deprivation therapy is the most effective and widely used treatment for advanced prostate cancer, but its efficacy is highly variable among patients. Therefore, the identification of potent prognostic biomarkers is needed to determine patients at risk. We demonstrated that MSH2 rs1400633 was notably associated with patient survival during androgen deprivation therapy even after adjustment for clinical predictors and false discovery rate correction. Furthermore, our meta-analyses demonstrated that the MSH2 gene is highly expressed in prostate cancer and correlates positively with poor prognosis for this disease. Abstract DNA damage repair is frequently dysregulated in advanced prostate cancer and has been linked to cancer susceptibility and survival outcomes. The aim of this study is to assess the influence of genetic variants in DNA damage repair pathways on the prognosis of prostate cancer. Specifically, 167 single nucleotide polymorphisms (SNPs) in 18 DNA damage repair pathway genes were assessed for association with cancer-specific survival (CSS), overall survival (OS), and progression-free survival (PFS) in a cohort of 630 patients with advanced prostate cancer receiving androgen deprivation therapy. Univariate analysis identified four SNPs associated with CSS, four with OS, and two with PFS. However, only MSH2 rs1400633 C > G showed a significant association upon multivariate analysis and multiple testing adjustments (hazard ratio = 0.75, 95% confidence interval = 0.63–0.90, p = 0.002). Furthermore, rs1400633 risk allele C increased MSH2 expression in the prostate and other tissues, which correlated with more aggressive prostate cancer characteristics. A meta-analysis of 31 gene expression datasets revealed significantly higher MSH2 expression in prostate cancer than in normal tissues (p < 0.001), and this high expression was associated with a poor prognosis of prostate cancer (p = 0.002). In summary, we identified MSH2 rs1400633 as an independent prognostic biomarker for prostate cancer survival, and the association of MSH2 with cancer progression lends relevance to our findings.
Collapse
Affiliation(s)
- Hao-Han Chang
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (H.-H.C.); (C.-H.L.); (J.-H.G.)
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Cheng-Hsueh Lee
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (H.-H.C.); (C.-H.L.); (J.-H.G.)
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yei-Tsung Chen
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Chao-Yuan Huang
- Department of Urology, College of Medicine, National Taiwan University Hospital, National Taiwan University, Taipei 100, Taiwan;
| | - Chia-Cheng Yu
- Division of Urology, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan;
- Department of Urology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
- Department of Pharmacy, Tajen University, Pingtung 907, Taiwan
| | - Victor C. Lin
- Department of Urology, E-Da Hospital, Kaohsiung 824, Taiwan;
- School of Medicine for International Students, I-Shou University, Kaohsiung 840, Taiwan
| | - Jiun-Hung Geng
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (H.-H.C.); (C.-H.L.); (J.-H.G.)
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Urology, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung 812, Taiwan
| | - Te-Ling Lu
- Department of Pharmacy, China Medical University, Taichung 404, Taiwan;
| | - Shu-Pin Huang
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (H.-H.C.); (C.-H.L.); (J.-H.G.)
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Urology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Ph.D. Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: (S.-P.H.); (B.-Y.B.); Tel.: +886-7-3121101 (ext. 6694) (S.-P.H.); +886-4-22053366 (ext. 5126) (B.-Y.B.)
| | - Bo-Ying Bao
- Department of Pharmacy, China Medical University, Taichung 404, Taiwan;
- Sex Hormone Research Center, China Medical University Hospital, Taichung 404, Taiwan
- Department of Nursing, Asia University, Taichung 413, Taiwan
- Correspondence: (S.-P.H.); (B.-Y.B.); Tel.: +886-7-3121101 (ext. 6694) (S.-P.H.); +886-4-22053366 (ext. 5126) (B.-Y.B.)
| |
Collapse
|
27
|
Wang J, Yu J, Lipka AE, Zhang Z. Interpretation of Manhattan Plots and Other Outputs of Genome-Wide Association Studies. Methods Mol Biol 2022; 2481:63-80. [PMID: 35641759 DOI: 10.1007/978-1-0716-2237-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With increasing marker density, estimation of recombination rate between a marker and a causal mutation using linkage analysis becomes less important. Instead, linkage disequilibrium (LD) becomes the major indicator for gene mapping through genome-wide association studies (GWAS). In addition to the linkage between the marker and the causal mutation, many other factors may contribute to the LD, including population structure and cryptic relationships among individuals. As statistical methods and software evolve to improve statistical power and computing speed in GWAS, the corresponding outputs must also evolve to facilitate the interpretation of input data, the analytical process, and final association results. In this chapter, our descriptions focus on (1) considerations in creating a Manhattan plot displaying the strength of LD and locations of markers across a genome; (2) criteria for genome-wide significance threshold and the different appearance of Manhattan plots in single-locus and multiple-locus models; (3) exploration of population structure and kinship among individuals; (4) quantile-quantile (QQ) plot; (5) LD decay across the genome and LD between the associated markers and their neighbors; (6) exploration of individual and marker information on Manhattan and QQ plots via interactive visualization using HTML. The ultimate objective of this chapter is to help users to connect input data to GWAS outputs to balance power and false positives, and connect GWAS outputs to the selection of candidate genes using LD extent.
Collapse
Affiliation(s)
- Jiabo Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, Sichuan, China.
| | - Jianming Yu
- Department of Agronomy, Iowa State University, Ames, IA, USA
| | - Alexander E Lipka
- Department of Crop Sciences, University of Illinois, Urbana, IL, USA
| | - Zhiwu Zhang
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
28
|
Djordjevic A, Zivkovic M, Koncar I, Stankovic A, Kuveljic J, Djuric T. Tag Variants of LGALS-3 Containing Haplotype Block in Advanced Carotid Atherosclerosis. J Stroke Cerebrovasc Dis 2021; 31:106212. [PMID: 34814004 DOI: 10.1016/j.jstrokecerebrovasdis.2021.106212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 10/19/2022] Open
Abstract
OBJECTIVES Galectin-3 affects a variety of biological processes. It is encoded by LGALS-3, located in unique haplotype block in Caucasians. Most of the studies regarding the gal-3 role in atherosclerosis are focused exclusively on protein/mRNA levels. Genetic analyses of LGALS-3 are scarce. We sought to thoroughly examine the genetic background of gal-3 and to analyze tag variants that cover more than 80% variability of the LGALS-3 containing hap-block in association with carotid plaque presence (CPP). According to Tagger server, rs4040064 G/T, rs11628437 G/A and rs7159490 C/T cover 82% (r2 > 0.8) of the genetic variance of this hap-block. Our aims were to investigate possible association of rs4040064, rs11628437 and rs7159490 haplotypes with CPP in patients with advanced carotid atherosclerosis (CA) and to analyze their possible effect on LGALS-3 mRNA expression in carotid plaques. MATERIALS AND METHODS Study group consisted of 468 patients and 296 controls. Rs4040064, rs11628437, rs7159490 and LGALS-3 mRNA expression were detected by TaqMan® technology. RESULTS We have found that haplotype TAC was associated with the cerebrovascular insult (CVI) occurrence (OR = 1.68, 95% CI = 1.09-2.58, p = 0.02), compared to the referent haplotype. OR was adjusted for hypertension, age and BMI. TAC also showed higher, but not statistically significant, LGALS-3 expression in carotid plaques. CONCLUSIONS Our results suggest that rs4040064, rs11628437 and rs7159490 bear no association with CPP, neither they affect LGALS-3 mRNA in carotid plaques. However, we showed a significant association of haplotype TAC with the CVI occurrence in CA patients from Serbia. Replication and validation of our results are required.
Collapse
Affiliation(s)
- Ana Djordjevic
- Department of Radiobiology and Molecular Genetics, "Vinca" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, Mike Petrovica Alasa 12-14, P.O. Box 522, University of Belgrade, Belgrade 11001, Serbia.
| | - Maja Zivkovic
- Department of Radiobiology and Molecular Genetics, "Vinca" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, Mike Petrovica Alasa 12-14, P.O. Box 522, University of Belgrade, Belgrade 11001, Serbia
| | - Igor Koncar
- Clinic for Vascular and Endovascular Surgery, Clinical Center of Serbia, Belgrade, Serbia; Medical Faculty, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Stankovic
- Department of Radiobiology and Molecular Genetics, "Vinca" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, Mike Petrovica Alasa 12-14, P.O. Box 522, University of Belgrade, Belgrade 11001, Serbia
| | - Jovana Kuveljic
- Department of Radiobiology and Molecular Genetics, "Vinca" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, Mike Petrovica Alasa 12-14, P.O. Box 522, University of Belgrade, Belgrade 11001, Serbia
| | - Tamara Djuric
- Department of Radiobiology and Molecular Genetics, "Vinca" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, Mike Petrovica Alasa 12-14, P.O. Box 522, University of Belgrade, Belgrade 11001, Serbia
| |
Collapse
|
29
|
Laaksonen J, Mishra PP, Seppälä I, Raitoharju E, Marttila S, Mononen N, Lyytikäinen LP, Kleber ME, Delgado GE, Lepistö M, Almusa H, Ellonen P, Lorkowski S, März W, Hutri-Kähönen N, Raitakari O, Kähönen M, Salonen JT, Lehtimäki T. Mitochondrial genome-wide analysis of nuclear DNA methylation quantitative trait loci. Hum Mol Genet 2021; 31:1720-1732. [PMID: 35077545 PMCID: PMC9122653 DOI: 10.1093/hmg/ddab339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022] Open
Abstract
Abstract
Mitochondria have a complex communication network with the surrounding cell and can alter nuclear DNA methylation (DNAm). Variation in the mitochondrial DNA (mtDNA) has also been linked to differential DNAm. Genome-wide association studies have identified numerous DNAm quantitative trait loci, but these studies have not examined the mitochondrial genome. Herein, we quantified nuclear DNAm from blood and conducted a mitochondrial genome-wide association study of DNAm, with an additional emphasis on sex- and prediabetes-specific heterogeneity. We used the Young Finns Study (n = 926) with sequenced mtDNA genotypes as a discovery sample and sought replication in the Ludwigshafen Risk and Cardiovascular Health study (n = 2317). We identified numerous significant associations in the discovery phase (P < 10−9), but they were not replicated when accounting for multiple testing. In total, 27 associations were nominally replicated with a P < 0.05. The replication analysis presented no evidence of sex- or prediabetes-specific heterogeneity. The 27 associations were included in a joint meta-analysis of the two cohorts, and 19 DNAm sites associated with mtDNA variants, while four other sites showed haplogroup associations. An expression quantitative trait methylation analysis was performed for the identified DNAm sites, pinpointing two statistically significant associations. This study provides evidence of a mitochondrial genetic control of nuclear DNAm with little evidence found for sex- and prediabetes-specific effects. The lack of a comparable mtDNA data set for replication is a limitation in our study and further studies are needed to validate our results.
Collapse
Affiliation(s)
- Jaakko Laaksonen
- To whom correspondence should be addressed at: Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, PO Box 100, Tampere FI-33014, Finland. Tel: +358 504080774; E-mail:
| | - Pashupati P Mishra
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Ilkka Seppälä
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Emma Raitoharju
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
- Molecular Epidemiology, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Saara Marttila
- Molecular Epidemiology, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
- Gerontology Research Center, Tampere University, Tampere 33520, Finland
| | - Nina Mononen
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Marcus E Kleber
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim 68167, Germany
| | - Graciela E Delgado
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim 68167, Germany
| | - Maija Lepistö
- Institute for Molecular Medicine (FIMM), University of Helsinki, Helsinki 00290, Finland
| | - Henrikki Almusa
- Institute for Molecular Medicine (FIMM), University of Helsinki, Helsinki 00290, Finland
| | - Pekka Ellonen
- Institute for Molecular Medicine (FIMM), University of Helsinki, Helsinki 00290, Finland
| | - Stefan Lorkowski
- Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena 07743, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Jena 07743, Germany
| | - Winfried März
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim 68167, Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Jena 07743, Germany
- SYNLAB Academy, SYNLAB Holding Deutschland GmbH, Augsburg 86156, Germany
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz 8010, Austria
| | - Nina Hutri-Kähönen
- Tampere Centre for Skills Training and Simulation, Tampere University, Tampere 33520, Finland
| | - Olli Raitakari
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku 20520, Finland
- Research Centre for Applied and Preventive Cardiovascular Medicine, University of Turku, Turku 20520, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku 20520, Finland
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, Tampere 33520, Finland
- Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Jukka T Salonen
- Department of Public Health, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
- MAS-Metabolic Analytical Services Oy, Helsinki 00990, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| |
Collapse
|
30
|
Xie C, Niu Y, Ping J, Wang Y, Yang C, Li Y, Zhou G. Genome-wide association study identifies new loci associated with noise-induced tinnitus in Chinese populations. BMC Genom Data 2021; 22:31. [PMID: 34482816 PMCID: PMC8420059 DOI: 10.1186/s12863-021-00987-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/25/2021] [Indexed: 11/21/2022] Open
Abstract
Background Tinnitus is an auditory phantom sensation in the absence of an acoustic stimulus, which affects nearly 15% of the population. Excessive noise exposure is one of the main causes of tinnitus. To now, the knowledge of the genetic determinants of susceptibility to tinnitus remains limited. Results We performed a two-stage genome-wide association study (GWAS) and identified that two single nucleotide polymorphisms (SNPs), rs2846071 located in the intergenic region at 11q13.5 (odds ratio [OR] = 2.14, 95% confidence interval [CI] = 1.96–3.40, combined P = 4.89 × 10− 6) and rs4149577 located in the intron of TNFRSF1A gene at 12p13.31 (OR = 2.05, 95% CI = 1.89–2.51, combined P = 6.88 × 10− 6), are significantly associated with the susceptibility to noise-induced tinnitus. Furthermore, the expression quantitative trait loci (eQTL) analyses revealed that rs2846071 is significantly correlated with the expression of WNT11 gene, and rs4149577 with the expression of TNFRSF1A gene in multiple brain tissues (all P < 0.05). The newly identified candidate gene WNT11 is involved in Wnt pathway, and TNFRSF1A in the tumor necrosis factor pathway, respectively. Pathway enrichment analyses also showed that these two pathways are closely relevant to tinnitus. Conclusions Our findings highlight two novel loci at 11q13.5 and 12p13.31 conferring susceptibility to noise-induced tinnitus. and suggest that the WNT11 and TNFRSF1A genes might be the candidate causal targets of 11q13.5 and 12p13.31 loci, respectively. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-021-00987-y.
Collapse
Affiliation(s)
- Chengyong Xie
- Medical College of Guizhou University, Guiyang City, 550025, China
| | - Yuguang Niu
- Department of Ambulatory Medicine, The First Medical Center of PLA General Hospital, Beijing, 100853, China
| | - Jie Ping
- State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Yahui Wang
- State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Chenning Yang
- State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Yuanfeng Li
- State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Gangqiao Zhou
- Medical College of Guizhou University, Guiyang City, 550025, China. .,State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China. .,Collaborative Innovation Center for Personalized Cancer Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing City, 210029, China.
| |
Collapse
|
31
|
Chen JH, Zhao Y, Khan RAW, Li ZQ, Zhou J, Shen JW, Xiang SY, Li NN, Wen ZJ, Jian XM, Song ZJ, Stewart R, Wang Z, Pan D, He L, Xu YF, Shi YY. SNX29, a new susceptibility gene shared with major mental disorders in Han Chinese population. World J Biol Psychiatry 2021; 22:526-534. [PMID: 33143498 DOI: 10.1080/15622975.2020.1845793] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVES Environmental and genetic factors play important roles in the development of schizophrenia (SCZ), bipolar disorder (BPD) or major depressive disorder (MDD). Some risk loci are identified with shared genetic effects on major psychiatric disorders. To investigate whether SNX29 gene played a significant role in these psychiatric disorders in the Han Chinese population. METHODS We focussed on 11 single-nucleotide polymorphisms (SNPs) harbouring SNX29 gene and carried out case-control studies in patients with SCZ (n = 1248), BPD (n = 1344), or MDD (n = 1056), and 1248 healthy controls (HC) recruited from the Han Chinese population. We constructed weighted gene co-expression network analysis (WGCNA) and extracted significant modules by R package. RESULTS We found that rs3743592 was significantly associated with MDD and rs6498263 with BPD in both allele and genotype distributions. Before correction, rs3743592 showed allelic and genotypic significance with SCZ, rs6498263 showed allelic significance with SCZ. WGCNA identified top 10 modules of co-expressed genes. Gene Ontology (GO) and pathway analysis were used to examine the functions of SNX29, which revealed that SNX29 was involved in the regulation of a number of biological processes, such as TGF-beta, ErbB, and Wnt signalling pathway, etc. CONCLUSIONS Our results supported common risk factors in SNX29 might share among these three mental disorders in the Han Chinese population.
Collapse
Affiliation(s)
- Jian-Hua Chen
- Shanghai Clinical Research Center for Mental Health, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China.,Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P. R. China.,Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, P. R. China
| | - Ying Zhao
- Physical Education Department, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Raja Amjad Waheed Khan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P. R. China.,Department of Chemistry, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Zhi-Qiang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P. R. China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, P. R. China.,The Affiliated Hospital of Qingdao University and The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, P. R. China
| | - Juan Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Jia-Wei Shen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Si-Ying Xiang
- Shanghai Clinical Research Center for Mental Health, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Ning-Ning Li
- Shanghai Clinical Research Center for Mental Health, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Zu-Jia Wen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Xue-Min Jian
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Zhi-Jian Song
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Robert Stewart
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,South London and Maudsley NHS Foundation Trust, London, UK
| | - Zhuo Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Dun Pan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Yi-Feng Xu
- Shanghai Clinical Research Center for Mental Health, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Yong-Yong Shi
- Shanghai Clinical Research Center for Mental Health, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China.,Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, P. R. China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, P. R. China.,The Affiliated Hospital of Qingdao University and The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, P. R. China.,Shanghai Changning Mental Health Center, Shanghai, P. R. China.,Department of Psychiatry, The First Teaching Hospital of Xinjiang Medical University, Urumqi, P. R. China
| |
Collapse
|
32
|
Genetic susceptibility to multiple sclerosis in African Americans. PLoS One 2021; 16:e0254945. [PMID: 34370753 PMCID: PMC8352072 DOI: 10.1371/journal.pone.0254945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/06/2021] [Indexed: 12/26/2022] Open
Abstract
Objective To explore the nature of genetic-susceptibility to multiple sclerosis (MS) in African-Americans. Background Recently, the number of genetic-associations with MS has exploded although the MS-associations of specific haplotypes within the major histocompatibility complex (MHC) have been known for decades. For example, the haplotypes HLA-DRB1*15:01~HLA-DQB1*06:02, and HLA-DRB1*03:01~ HLA-DQB1*02:01 have odds ratios (ORs) for an MS-association orders of magnitude stronger than many of these newly-discovered associations. Nevertheless, all these haplotypes are part of much larger conserved extended haplotypes (CEHs), which span both the Class I and Class II MHC regions. African-Americans are at greater risk of developing MS compared to a native Africans but at lesser risk compared to Europeans. It is the purpose of this manuscript to explore the relationship between MS-susceptibility and the CEH make-up of our African-American cohort. Design/methods The African-American (AA) cohort consisted of 1,305 patients with MS and 1,155 controls, who self-identified as being African-American. For comparison, we used the 18,492 controls and 11,144 MS-cases from the predominantly European Wellcome Trust Case Control Consortium (WTCCC) and the 28,557 phased native Africans from the multinational “Be the Match” registry. The WTCCC and the African-Americans were phased at each of five HLA loci (HLA-A, HLA-C, HLA-B, HLA-DRB1 and HLA-DQB1) and the at 11 SNPs (10 of which were in non-coding regions) surrounding the Class II region of the DRB1 gene using previously-published probabilistic phasing algorithms. Results Of the 32 most frequent CEHs, 18 (56%) occurred either more frequently or exclusively in Africans) whereas 9 (28%) occurred more frequently or exclusively in Europeans. The remaining 5 CEHs occurred in neither control group although, likely, these were African in origin. Eight of these CEHs carried the DRB1*15:03~DQB1*06:02~a36 haplotype and three carried the DRB1*15:01~DQB1*06:02~a1 haplotype. In African Americans, a single-copy of the European CEH (03:01_07:02_07:02_15:01_06:02_a1) was associated with considerable MS-risk (OR = 3.30; p = 0.0001)–similar to that observed in the WTCCC (OR = 3.25; p<10−168). By contrast, the MS-risk for the European CEH (02:01_07:02_07:02_15:01_06:02_a1) was less (OR = 1.49; ns)–again, similar to the WTCCC (OR = 2.2; p<10−38). Moreover, four African haplotypes were “protective” relative to a neutral reference, to three European CEHs, and also to the five other African CEHs. Conclusions The common CEHs in African Americans are divisible into those that are either African or European in origin, which are derived without modification from their source population. European CEHs, linked to MS-risk, in general, had similar impacts in African-Americans as they did in Europeans. By contrast, African CEHs had mixed MS-risks. For a few, the MS-risk exceeded that in a neutral-reference group whereas, for many others, these CEHs were “protective”–perhaps providing a partial rationale for the lower MS-risk in African-Americans compared to European-Americans.
Collapse
|
33
|
Interactions between exposure to polycyclic aromatic hydrocarbons and xenobiotic metabolism genes, and risk of breast cancer. Breast Cancer 2021; 29:38-49. [PMID: 34351578 DOI: 10.1007/s12282-021-01279-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 07/25/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Polycyclic aromatic hydrocarbons (PAHs) are a group of environmental pollutants associated with multiple cancers, including female breast cancer. Several xenobiotic metabolism genes (XMGs), including the CYP450 family, play an important role in activating and detoxifying PAHs, and variations in the activity of the enzymes they encode can impact this process. This study aims to examine the association between XMGs and breast cancer, and to assess whether these variants modify the effects of PAH exposure on breast cancer risk. METHODS In a case-control study in Vancouver, British Columbia, and Kingston, Ontario, 1037 breast cancer cases and 1046 controls had DNA extracted from blood or saliva and genotyped for 138 single nucleotide polymorphisms (SNPs) and tagSNPs in 27 candidate XMGs. Occupational PAH exposure was assessed using a measurement-based job-exposure matrix. RESULTS An association between genetic variants and breast cancer was observed among six XMGs, including increased risk among the minor allele carriers of AKR1C3 variant rs12387 (OR 2.71, 95% CI 1.42-5.19) and AKR1C4 variant rs381267 (OR 2.50, 95% CI 1.23-5.07). Heterogeneous effects of occupational PAH exposure were observed among carriers of AKR1C3/4 variants, as well as the PTGS2 variant rs5275. CONCLUSION Our findings support an association between SNPs of XMGs and female breast cancer, including novel genetic variants that modify the toxicity of PAH exposure. These results highlight the interplay between genetic and environmental factors, which can be helpful in understanding the modifiable risks of breast cancer and its complex etiology.
Collapse
|
34
|
Goodin DS, Khankhanian P, Gourraud PA, Vince N. Genetic susceptibility to multiple sclerosis: interactions between conserved extended haplotypes of the MHC and other susceptibility regions. BMC Med Genomics 2021; 14:183. [PMID: 34246256 PMCID: PMC8272333 DOI: 10.1186/s12920-021-01018-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 06/11/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND To study the accumulation of MS-risk resulting from different combinations of MS-associated conserved-extended-haplotypes (CEHs) of the MHC and three non-MHC "risk-haplotypes" nearby genes EOMES, ZFP36L1, and CLEC16A. Many haplotypes are MS-associated despite having population-frequencies exceeding the percentage of genetically-susceptible individuals. The basis of this frequency-disparity requires explanation. METHODS The SNP-data from the WTCCC was phased at the MHC and three non-MHC susceptibility-regions. CEHs at the MHC were classified into five haplotype-groups: (HLA-DRB1*15:01 ~ DQB1*06:02 ~ a1)-containing (H +); extended-risk (ER); all-protective (AP); neutral (0); and the single-CEH (c1). MS-associations for different "risk-combinations" at the MHC and other non-MHC "risk-loci" and the appropriateness of additive and multiplicative risk-accumulation models were assessed. RESULTS Different combinations of "risk-haplotypes" produce a final MS-risk closer to additive rather than multiplicative risk-models but neither model was consistent. Thus, (H +)-haplotypes had greater impact when combined with (0)-haplotypes than with (H +)-haplotypes, whereas, (H +)-haplotypes had greater impact when combined with a (c1)-haplotypes than with (0)-haplotypes. Similarly, risk-genotypes (0,H +), (c1,H +), (H + ,H +) and (0,c1) were additive with risks from non-MHC risk-loci, whereas risk-genotypes (ER,H +) and (AP,c1) were unaffected. CONCLUSIONS Genetic-susceptibility to MS is essential for MS to develop but actually developing MS depends heavily upon both an individual's particular combination of "risk-haplotypes" and how these loci interact.
Collapse
Affiliation(s)
- D S Goodin
- Department of Neurology, University of California, UCSF MS Center, San Francisco 675 Nelson Rising Lane, Suite #221D, CA, 94158, San Francisco, USA.
| | - P Khankhanian
- Center for Neuro-Engineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - P A Gourraud
- Department of Neurology, University of California, UCSF MS Center, San Francisco 675 Nelson Rising Lane, Suite #221D, CA, 94158, San Francisco, USA
- Centre de Recherche en Transplantation Et Immunologie, UMR 1064, INSERM, Université de Nantes, Nantes, France
- Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - N Vince
- Centre de Recherche en Transplantation Et Immunologie, UMR 1064, INSERM, Université de Nantes, Nantes, France
- Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| |
Collapse
|
35
|
Rivera-Paredez B, Quezada-Sánchez AD, Denova-Gutiérrez E, Torres-Ibarra L, Flores YN, Salmerón J, Velázquez-Cruz R. Diet Modulates the Effects of Genetic Variants on the Vitamin D Metabolic Pathway and Bone Mineral Density in Mexican Postmenopausal Women. J Nutr 2021; 151:1726-1735. [PMID: 33847345 PMCID: PMC8277435 DOI: 10.1093/jn/nxab067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/30/2020] [Accepted: 02/22/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Macro- and micronutrients, such as proteins, vitamin D, and calcium (Ca), are important dietary factors that can modify bone mineral density (BMD). Genetic factors can interact with diet, affecting an individual's predisposition to osteoporosis. OBJECTIVES This study aimed to evaluate the associations between macro- and micronutrient intakes and BMD in Mexican postmenopausal women, and their interactions with genetic polymorphisms involved in the vitamin D metabolic pathway. METHODS We analyzed data from 317 postmenopausal women from the Health Workers Cohort Study, a longitudinal cohort studied in Cuernavaca, Mexico. Postmenopausal women participated in 2 data collection waves (2004-2006 and 2010-2011), with a mean time of 6.4 years. Dietary intake was assessed with a semi-quantitative FFQ. BMD (femoral neck, hip, and lumbar spine) was measured by DXA. Hybrid mixed-effects regression models were used to assess the associations of dietary macro- and micronutrients on BMD, after adjusting for confounding factors and for diet and single nucleotide polymorphism interactions. RESULTS At baseline, the median age was 57 years (IQR, 50-64). Mean femoral neck, hip, and lumbar spine BMDs decreased over time. We observed statistically significant longitudinal associations for diet (Ca, vitamin D, magnesium, phosphorus, and protein intake) and BMD. Increases of vitamin D, Ca, and protein intakes by 1 SD were associated with mean increases in the femoral neck BMD (0.083 SD, 0.064 SD, and 0.130 SD, respectively). Multiple significant interactions were identified between several loci (CYP2R1, CYP24A1, CYP27B1, VDR, and DHCR7/NADSYN1) and diet for BMDs (femoral neck, hip, and lumbar spine), mainly for protein intake. CONCLUSIONS Our data support associations of vitamin D, Ca, protein, phosphorous, and magnesium consumption with BMD in Mexican postmenopausal women and suggest possible gene-diet interactions. These results could facilitate future personalized nutrition recommendations to help prevent low BMD.
Collapse
Affiliation(s)
- Berenice Rivera-Paredez
- Research Center in Policies, Population, and Health, Faculty
of Medicine, National Autonomous University of Mexico,
Mexico City, Mexico
| | - Amado D Quezada-Sánchez
- Center for Evaluation and Surveys Research, National Institute
of Public Health, Cuernavaca, Mexico
| | - Edgar Denova-Gutiérrez
- Center for Nutrition and Health Research, National Institute
of Public Health, Cuernavaca, Morelos, Mexico
| | - Leticia Torres-Ibarra
- Center for Population Health Research, National Institute of
Public Health, Cuernavaca, Mexico
| | - Yvonne N Flores
- Epidemiology and Health Services Research Unit, Mexican
Institute of Social Security, Cuernavaca, Morelos,
Mexico
- Department of Health Policy and Management, Center for Cancer
Prevention and Control Research, Los Angeles, CA, USA
- University of California, Los Angeles, Kaiser Permanente
Center for Health Equity, Fielding School of Public Health
and Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Jorge Salmerón
- Research Center in Policies, Population, and Health, Faculty
of Medicine, National Autonomous University of Mexico,
Mexico City, Mexico
| | - Rafael Velázquez-Cruz
- Genomics of Bone Metabolism Laboratory, National Institute of
Genomic Medicine (INMEGEN), Mexico City, Mexico
| |
Collapse
|
36
|
Jurado-Escobar R, Doña I, Perkins JR, Laguna JJ, Muñoz-Cano R, García-Sánchez A, Ayuso P, Torres MJ, Mayorga C, Cornejo-García JA. Polymorphisms in eicosanoid-related biosynthesis enzymes associated with acute urticaria/angioedema induced by nonsteroidal anti-inflammatory drug hypersensitivity. Br J Dermatol 2021; 185:815-824. [PMID: 33955560 DOI: 10.1111/bjd.20440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND Nonsteroidal anti-inflammatory drugs (NSAIDs) are the main triggers of drug hypersensitivity, with NSAID-induced acute urticaria/angioedema (NIUA) the most frequent phenotype. NSAID hypersensitivity is caused by cyclooxygenase 1 inhibition, which leads to an imbalance in prostaglandin (PG) and cysteinyl leukotriene (CysLT) synthesis. As only susceptible individuals develop NSAID hypersensitivity, genetic factors are believed to be involved; however, no study has assessed the overall genetic variability of key enzymes in PG and CysLT synthesis in NSAID hypersensitivity. OBJECTIVES To evaluate simultaneously variants in the main genes involved in PG and CysLT biosynthesis in NIUA. METHODS Two independent cohorts of patients were recruited in Spain, alongside NSAID-tolerant controls. The discovery cohort included only patients with NIUA; the replication cohort included patients with NSAID-exacerbated respiratory disease (NERD). A set of tagging single-nucleotide polymorphisms (tagSNPs) in PTGS1, PTGS2, ALOX5 and LTC4S was genotyped using mass spectrometry coupled with endpoint polymerase chain reaction. RESULTS The study included 1272 individuals. Thirty-five tagSNPs were successfully genotyped in the discovery cohort, with three being significantly associated after Bonferroni correction (rs10306194 and rs1330344 in PTGS1; rs28395868 in ALOX5). These polymorphisms were genotyped in the replication cohort: rs10306194 and rs28395868 remained associated with NIUA, and rs28395868 was marginally associated with NERD. Odds ratios (ORs) in the combined analysis (discovery and replication NIUA populations) were 1·7 for rs10306194 [95% confidence interval (CI) 1·34-2·14; Pcorrected = 2·83 × 10-4 ) and 2·19 for rs28395868 (95% CI 1·43-3·36; Pcorrected = 0·002). CONCLUSIONS Variants of PTGS1 and ALOX5 may play a role in NIUA and NERD, supporting the proposed mechanisms of NSAID-hypersensitivity and shedding light on their genetic basis.
Collapse
Affiliation(s)
- R Jurado-Escobar
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA, ARADyAL, Malaga, Spain.,Departments of, Department of, Medicine, University of Malaga, Malaga, Spain
| | - I Doña
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA, ARADyAL, Malaga, Spain.,Allergy Unit, Hospital Regional Universitario de Málaga, Malaga, Spain.,ARADyAL Network, Instituto de Salud Carlos III, Madrid, Spain
| | - J R Perkins
- Department of, Molecular Biology and Biochemistry, University of Malaga, Malaga, Spain.,CIBER de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain.,The Biomedical Research Institute of Malaga (IBIMA), Malaga, Spain
| | - J J Laguna
- ARADyAL Network, Instituto de Salud Carlos III, Madrid, Spain.,Unidad de Alergia, Hospital Central de la Cruz Roja, Madrid, Spain
| | - R Muñoz-Cano
- ARADyAL Network, Instituto de Salud Carlos III, Madrid, Spain.,Allergy Section, Pneumology Department, Hospital Clinic, Universitat de Barcelona, ARADyAL, Barcelona, Spain
| | - A García-Sánchez
- ARADyAL Network, Instituto de Salud Carlos III, Madrid, Spain.,Department of Clinical Biochemistry, Pharmacogenetics Unit, University Hospital of Salamanca, Salamanca, Spain
| | - P Ayuso
- ARADyAL Network, Instituto de Salud Carlos III, Madrid, Spain.,Department of Pharmacology, University of Extremadura, Caceres, Spain
| | - M J Torres
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA, ARADyAL, Malaga, Spain.,Departments of, Department of, Medicine, University of Malaga, Malaga, Spain.,Allergy Unit, Hospital Regional Universitario de Málaga, Malaga, Spain.,ARADyAL Network, Instituto de Salud Carlos III, Madrid, Spain.,Nanostructures for Diagnosing and Treatment of Allergic Diseases Laboratory, Andalusian Center for Nanomedicine and Biotechnology (BIONAND), Malaga, Spain
| | - C Mayorga
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA, ARADyAL, Malaga, Spain.,Allergy Unit, Hospital Regional Universitario de Málaga, Malaga, Spain.,ARADyAL Network, Instituto de Salud Carlos III, Madrid, Spain.,Nanostructures for Diagnosing and Treatment of Allergic Diseases Laboratory, Andalusian Center for Nanomedicine and Biotechnology (BIONAND), Malaga, Spain
| | - J A Cornejo-García
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA, ARADyAL, Malaga, Spain.,ARADyAL Network, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
37
|
Juang JMJ, Lu TP, Su MW, Lin CW, Yang JH, Chu HW, Chen CH, Hsiao YW, Lee CY, Chiang LM, Yu QY, Hsiao CK, Chen CYJ, Wu PE, Pai CH, Chuang EY, Shen CY. Rare variants discovery by extensive whole-genome sequencing of the Han Chinese population in Taiwan: Applications to cardiovascular medicine. J Adv Res 2021; 30:147-158. [PMID: 34026292 PMCID: PMC8132201 DOI: 10.1016/j.jare.2020.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 12/26/2022] Open
Abstract
Introduction A population-specific genomic reference is important for research and clinical practice, yet it remains unavailable for Han Chinese (HC) in Taiwan. Objectives We report the first whole genome sequencing (WGS) database of HC (1000 Taiwanese genome (1KTW-WGS)) and demonstrate several applications to cardiovascular medicine. Methods Whole genomes of 997 HC were sequenced to at least 30X depth. A total of 20,117 relatively healthy HC individuals were genotyped using a customized Axiom GWAS array. We performed a genome-wide genotype imputation technique using IMPUTE2. Results We identified 26.7 million single-nucleotide variants (SNVs) and 4.2 million insertions-deletions. Of the SNVs, 16.1% were novel relative to dbSNP (build 152), and 34.2% were novel relative to gnomAD. A total of 18,450 healthy HC individuals were genotyped using a customized Genome-Wide Association Study (GWAS) array. We identified hypertension-associated variants and developed a hypertension prediction model based on the correlation between the WGS data and GWAS data (combined clinical and genetic models, AUC 0.887), and also identified 3 novel hyperlipidemia-associated variants. Each individual carried an average of 16.42 (SD = 3.72) disease-causing variants. Additionally, we established an online SCN5A (an important cardiac gene) database that can be used to explore racial differences. Finally, pharmacogenetics studies identified HC population-specific SNVs in genes (CYP2C9 and VKORC1) involved in drug metabolism and blood clotting. Conclusion This research demonstrates the benefits of constructing a population-specific genomic reference database for precision medicine.
Collapse
Affiliation(s)
- Jyh-Ming Jimmy Juang
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 10002, Taiwan
| | - Tzu-Pin Lu
- Department of Public Health, Institute of Epidemiology and Preventative Medicine and Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan
| | | | | | - Jenn-Hwai Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11574, Taiwan
| | | | - Chien-Hsiun Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11574, Taiwan
| | - Yi-Wen Hsiao
- Department of Public Health, Institute of Epidemiology and Preventative Medicine and Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan
| | - Chien-Yueh Lee
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan
| | - Li-Mei Chiang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan
| | - Qi-You Yu
- Department of Public Health, Institute of Epidemiology and Preventative Medicine and Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan
| | - Chuhsing Kate Hsiao
- Department of Public Health, Institute of Epidemiology and Preventative Medicine and Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan
| | - Ching-Yu Julius Chen
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 10002, Taiwan
| | - Pei-Ei Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11574, Taiwan
| | | | - Eric Y. Chuang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan
| | - Chen-Yang Shen
- Taiwan Biobank, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11574, Taiwan
| |
Collapse
|
38
|
Jurado-Escobar R, Doña I, Triano-Cornejo J, Perkins JR, Pérez-Sánchez N, Testera-Montes A, Labella M, Bartra J, Laguna JJ, Estravís M, Agúndez JAG, Torres MJ, Cornejo-García JA. Genetic Variants in Cytosolic Phospholipase A2 Associated With Nonsteroidal Anti-Inflammatory Drug-Induced Acute Urticaria/Angioedema. Front Pharmacol 2021; 12:667824. [PMID: 33995098 PMCID: PMC8120030 DOI: 10.3389/fphar.2021.667824] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/15/2021] [Indexed: 12/14/2022] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are among the main triggers of drug hypersensitivity reactions, probably due to their high consumption worldwide. The most frequent type of NSAID hypersensitivity is NSAID cross-hypersensitivity, in which patients react to NSAIDs from different chemical groups in the absence of a specific immunological response. The underlying mechanism of NSAID cross-hypersensitivity has been linked to cyclooxygenase (COX)-1 inhibition causing an imbalance in the arachidonic acid pathway. Despite NSAID-induced acute urticaria/angioedema (NIUA) being the most frequent clinical phenotype, most studies have focused on NSAID-exacerbated respiratory disease. As NSAID cross-hypersensitivity reactions are idiosyncratic, only appearing in some subjects, it is believed that individual susceptibility is under the influence of genetic factors. Although associations with polymorphisms in genes from the AA pathway have been described, no previous study has evaluated the potential role of cytosolic phospholipase A2 (cPLA2) variants. This enzyme catalyzes the initial hydrolysis of membrane phospholipids to release AA, which can be subsequently metabolized into eicosanoids. Here, we analyzed for the first time the overall genetic variation in the cPLA2 gene (PLA2G4A) in NIUA patients. For this purpose, a set of tagging single nucleotide polymorphisms (tagSNPs) in PLA2G4A were selected using data from Europeans subjects in the 1,000 Genomes Project, and genotyped with the iPlex Sequenom MassArray technology. Two independent populations, each comprising NIUA patients and NSAID-tolerant controls, were recruited in Spain, for the purposes of discovery and replication, comprising a total of 1,128 individuals. Fifty-eight tagSNPs were successfully genotyped in the discovery cohort, of which four were significantly associated with NIUA after Bonferroni correction (rs2049963, rs2064471, rs12088010, and rs12746200). These polymorphisms were then genotyped in the replication cohort: rs2049963 was associated with increased risk for NIUA after Bonferroni correction under the dominant and additive models, whereas rs12088010 and rs12746200 were protective under these two inheritance models. Our results suggest a role for PLA2G4A polymorphisms in NIUA. However, further studies are required to replicate our findings, elucidate the mechanistic role, and evaluate the participation of PLA2G4A variants in other phenotypes induced by NSAID cross-hypersensitivity.
Collapse
Affiliation(s)
- Raquel Jurado-Escobar
- Allergy Research Group, Instituto De Investigación Biomédica De Málaga-IBIMA, Malaga, Spain.,Departamento De Medicina, Universidad De Málaga, Malaga, Spain
| | - Inmaculada Doña
- Allergy Research Group, Instituto De Investigación Biomédica De Málaga-IBIMA, Malaga, Spain.,Allergy Unit, Hospital Regional Universitario De Málaga, Malaga, Spain.,ARADyAL Network, Instituto De Salud Carlos III, Madrid, Spain
| | - José Triano-Cornejo
- Allergy Research Group, Instituto De Investigación Biomédica De Málaga-IBIMA, Malaga, Spain
| | - James R Perkins
- Department of Molecular Biology and Biochemistry, University of Malaga, Malaga, Spain.,CIBER De Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain.,The Biomedical Research Institute of Malaga (IBIMA), Malaga, Spain
| | | | | | - Marina Labella
- Allergy Unit, Hospital Regional Universitario De Málaga, Malaga, Spain
| | - Joan Bartra
- ARADyAL Network, Instituto De Salud Carlos III, Madrid, Spain.,Allergy Section, Pneumology Department, Hospital Clinic, Universitat De Barcelona, Barcelona, Spain
| | - José J Laguna
- ARADyAL Network, Instituto De Salud Carlos III, Madrid, Spain.,Allergy Unit, Allergo-Anaesthesia Unit, Hospital Central De La Cruz Roja, Faculty of Medicine, Alfonso X El Sabio University, Madrid, Spain
| | - Miguel Estravís
- ARADyAL Network, Instituto De Salud Carlos III, Madrid, Spain.,Instituto De Investigación Biomédica De Salamanca (IBSAL), Salamanca, Spain
| | - José A G Agúndez
- ARADyAL Network, Instituto De Salud Carlos III, Madrid, Spain.,Institute of Molecular Pathology Biomarkers, UEx, Cáceres, Spain
| | - María J Torres
- Allergy Research Group, Instituto De Investigación Biomédica De Málaga-IBIMA, Malaga, Spain.,Departamento De Medicina, Universidad De Málaga, Malaga, Spain.,Allergy Unit, Hospital Regional Universitario De Málaga, Malaga, Spain.,ARADyAL Network, Instituto De Salud Carlos III, Madrid, Spain.,Nanostructures for Diagnosing and Treatment of Allergic Diseases Laboratory, Andalusian Center for Nanomedicine and Biotechnology-BIONAND, Malaga, Spain
| | - José A Cornejo-García
- Allergy Research Group, Instituto De Investigación Biomédica De Málaga-IBIMA, Malaga, Spain.,ARADyAL Network, Instituto De Salud Carlos III, Madrid, Spain
| |
Collapse
|
39
|
Rusmini M, Uva P, Amoroso A, Tolomeo M, Cavalli A. How Genetics Might Explain the Unusual Link Between Malaria and COVID-19. Front Med (Lausanne) 2021; 8:650231. [PMID: 33981715 PMCID: PMC8107224 DOI: 10.3389/fmed.2021.650231] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/24/2021] [Indexed: 12/31/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-associated coronavirus disease 2019 (COVID-19) pandemic has been the subject of a large number of studies in recent times. Here, starting from the evidence that in Italy, the areas with the lowest number of COVID-19 cases were those with the highest incidence of malaria in the early 1900's, we explore possible inverse relationships between malaria and COVID-19. Indeed, some genetic variants, which have been demonstrated to give an advantage against malaria, can also play a role in the incidence and severity of SARS-CoV-2 infections (e.g., the ACE2 receptor). To verify this scientific hypothesis, we here use public data from whole-genome sequencing (WGS) experiments to extrapolate the genetic information of 46 world populations with matched COVID-19 data. In particular, we focus on 47 genes, including ACE2 and genes which have previously been reported to play a role in malaria. Only common variants (>5%) in at least 30% of the selected populations were considered, and, for this subset, we correlate the intra-population allele frequency with the COVID-19 data (cases/million inhabitants), eventually pinpointing meaningful variants in 6 genes. This study allows us to distinguish between positive and negative correlations, i.e., variants whose frequency significantly increases with increasing or decreasing COVID-19 cases. Finally, we discuss the possible molecular mechanisms associated with these variants and advance potential therapeutic options, which may help fight and/or prevent COVID-19.
Collapse
Affiliation(s)
- Marta Rusmini
- Computational and Chemical Biology, Italian Institute of Technology, Genova, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) G. Gaslini, Genova, Italy
| | - Paolo Uva
- Computational and Chemical Biology, Italian Institute of Technology, Genova, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) G. Gaslini, Genova, Italy
| | - Antonio Amoroso
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Manlio Tolomeo
- Department of Health Promotion Sciences, Azienda Ospedaliera Universitaria Policlinico Paolo Giaccone, Palermo, Italy
| | - Andrea Cavalli
- Computational and Chemical Biology, Italian Institute of Technology, Genova, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
40
|
Luo JY, Fang BB, Du GL, Liu F, Li YH, Tian T, Li XM, Gao XM, Yang YN. Association between MIF gene promoter rs755622 and susceptibility to coronary artery disease and inflammatory cytokines in the Chinese Han population. Sci Rep 2021; 11:8050. [PMID: 33850223 PMCID: PMC8044220 DOI: 10.1038/s41598-021-87580-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 03/17/2021] [Indexed: 02/01/2023] Open
Abstract
Macrophage migration inhibitory factor (MIF) is an essential mediator of atherosclerotic plaque progression and instability leading to intracoronary thrombosis, therefore contributing to coronary artery disease (CAD). In this study, we investigated the relationship between MIF gene polymorphism and CAD in Chinese Han population. Three single nucleotide polymorphisms (SNP, rs755622, rs1007888 and rs2096525) of MIF gene were genotyped by TaqMan genotyping assay in 1120 control participants and 1176 CAD patients. Coronary angiography was performed in all CAD patients and Gensini score was used to assess the severity of coronary artery lesions. The plasma levels of MIF and other inflammatory mediators were measured by ELISA. The CAD patients had a higher frequency of CC genotype and C allele of rs755622 compared with that in control subjects (CC genotype: 6.5% vs. 3.9%, P = 0.008, C allele: 24.0% vs. 20.6%, P = 0.005). The rs755622 CC genotype was associated with an increased risk of CAD (OR: 1.804, 95%CI: 1.221-2.664, P = 0.003). CAD patients with a variation of rs755622 CC genotype had significantly higher Gensini score compared with patients with GG or CG genotype (all P < 0.05). In addition, the circulating MIF level was highest in CAD patients carrying rs755622 CC genotype (40.7 ± 4.2 ng/mL) and then followed by GC (37.9 ± 3.4 ng/mL) or GG genotype (36.9 ± 3.7 ng/mL, all P < 0.01). Our study showed an essential relationship between the MIF gene rs755622 variation and CAD in Chinese Han population. Individuals who carrying MIF gene rs755622 CC genotype were more susceptible to CAD and had more severe coronary artery lesion. This variation also had a potential influence in circulating MIF levels.
Collapse
Affiliation(s)
- Jun-Yi Luo
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China
| | - Bin-Bin Fang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China
| | - Guo-Li Du
- Department of Endocrinology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Fen Liu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China
| | - Yan-Hong Li
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China
- Department of Clinical Laboratory, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Ting Tian
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China
| | - Xiao-Mei Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China
| | - Xiao-Ming Gao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China.
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China.
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China.
| | - Yi-Ning Yang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China.
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China.
| |
Collapse
|
41
|
Goodin DS, Khankhanian P, Gourraud PA, Vince N. The nature of genetic and environmental susceptibility to multiple sclerosis. PLoS One 2021; 16:e0246157. [PMID: 33750973 PMCID: PMC7984655 DOI: 10.1371/journal.pone.0246157] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 01/15/2021] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVE To understand the nature of genetic and environmental susceptibility to multiple sclerosis (MS) and, by extension, susceptibility to other complex genetic diseases. BACKGROUND Certain basic epidemiological parameters of MS (e.g., population-prevalence of MS, recurrence-risks for MS in siblings and twins, proportion of women among MS patients, and the time-dependent changes in the sex-ratio) are well-established. In addition, more than 233 genetic-loci have now been identified as being unequivocally MS-associated, including 32 loci within the major histocompatibility complex (MHC), and one locus on the X chromosome. Despite this recent explosion in genetic associations, however, the association of MS with the HLA-DRB1*15:01~HLA-DQB1*06:02~a1 (H+) haplotype has been known for decades. DESIGN/METHODS We define the "genetically-susceptible" subset (G) to include everyone with any non-zero life-time chance of developing MS. Individuals who have no chance of developing MS, regardless of their environmental experiences, belong to the mutually exclusive "non-susceptible" subset (G-). Using these well-established epidemiological parameters, we analyze, mathematically, the implications that these observations have regarding the genetic-susceptibility to MS. In addition, we use the sex-ratio change (observed over a 35-year interval in Canada), to derive the relationship between MS-probability and an increasing likelihood of a sufficient environmental exposure. RESULTS We demonstrate that genetic-susceptibitly is confined to less than 7.3% of populations throughout Europe and North America. Consequently, more than 92.7% of individuals in these populations have no chance whatsoever of developing MS, regardless of their environmental experiences. Even among carriers of the HLA-DRB1*15:01~HLA-DQB1*06:02~a1 haplotype, far fewer than 32% can possibly be members the (G) subset. Also, despite the current preponderance of women among MS patients, women are less likely to be in the susceptible (G) subset and have a higher environmental threshold for developing MS compared to men. Nevertheless, the penetrance of MS in susceptible women is considerably greater than it is in men. Moreover, the response-curves for MS-probability in susceptible individuals increases with an increasing likelihood of a sufficient environmental exposure, especially among women. However, these environmental response-curves plateau at under 50% for women and at a significantly lower level for men. CONCLUSIONS The pathogenesis of MS requires both a genetic predisposition and a suitable environmental exposure. Nevertheless, genetic-susceptibility is rare in the population (< 7.3%) and requires specific combinations of non-additive genetic risk-factors. For example, only a minority of carriers of the HLA-DRB1*15:01~HLA-DQB1*06:02~a1 haplotype are even in the (G) subset and, thus, genetic-susceptibility to MS in these carriers must result from the combined effect this haplotype together with the effects of certain other (as yet, unidentified) genetic factors. By itself, this haplotype poses no MS-risk. By contrast, a sufficient environmental exposure (however many events are involved, whenever these events need to act, and whatever these events might be) is common, currently occurring in, at least, 76% of susceptible individuals. In addition, the fact that environmental response-curves plateau well below 50% (especially in men), indicates that disease pathogenesis is partly stochastic. By extension, other diseases, for which monozygotic-twin recurrence-risks greatly exceed the disease-prevalence (e.g., rheumatoid arthritis, diabetes, and celiac disease), must have a similar genetic basis.
Collapse
Affiliation(s)
- Douglas S. Goodin
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States of America
| | - Pouya Khankhanian
- Center for Neuro-Engineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Pierre-Antoine Gourraud
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States of America
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France
- Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Nicolas Vince
- Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France
- Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| |
Collapse
|
42
|
Khvorykh G, Khrunin A, Filippenkov I, Stavchansky V, Dergunova L, Limborska S. A Workflow for Selection of Single Nucleotide Polymorphic Markers for Studying of Genetics of Ischemic Stroke Outcomes. Genes (Basel) 2021; 12:328. [PMID: 33668793 PMCID: PMC7996278 DOI: 10.3390/genes12030328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/21/2021] [Accepted: 02/21/2021] [Indexed: 11/17/2022] Open
Abstract
In this paper we propose a workflow for studying the genetic architecture of ischemic stroke outcomes. It develops further the candidate gene approach. The workflow is based on the animal model of brain ischemia, comparative genomics, human genomic variations, and algorithms of selection of tagging single nucleotide polymorphisms (tagSNPs) in genes which expression was changed after ischemic stroke. The workflow starts from a set of rat genes that changed their expression in response to brain ischemia and results in a set of tagSNPs, which represent other SNPs in the human genes analyzed and influenced on their expression as well.
Collapse
|
43
|
Common variants in FAN1, located in 15q13.3, confer risk for schizophrenia and bipolar disorder in Han Chinese. Prog Neuropsychopharmacol Biol Psychiatry 2020; 103:109973. [PMID: 32450113 DOI: 10.1016/j.pnpbp.2020.109973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 05/18/2020] [Accepted: 05/18/2020] [Indexed: 01/01/2023]
Abstract
Multiple genetic risk factors have been associated with psychiatric disorders which provides the genetic insight to these disorders; however, the etiology of these disorders is still elusive. 15q13.3 was previously associated with schizophrenia, bipolar and other neurodevelopmental disorders. Whereas, the FAN1 which encodes the Fanconi anemia associated nuclease 1 was suggested to be causal gene for 15q13.3 related psychiatric disorders. This study aimed to investigate the association of FAN1 with three major psychiatric disorders. Herein, we conducted a case-control study with the Chinese Han population. Three single nucleotide polymorphisms (SNPs) of FAN1 were genotyped in 1248 schizophrenia cases, 1344 bipolar disorder cases, 1056 major depressive disorder cases and 1248 normal controls. We found that SNPs rs7171212 was associated with bipolar (pallele = 0.023, pgenotype = 0.022, OR = 0.658) and schizophrenia (pallele = 0.021, pgenotype = 0.019, OR = 0.645). Whereas, rs4779796 was associated with schizophrenia (pgenotype = 0.001, adjusted pgenotype = 0.003, OR = 1.089). In addition, rs7171212 (adjusted pallele = 0.018, adjusted pgenotype = 0.018, OR = 0.652) and rs4779796 (adjusted pgenotype = 0.024, OR = 1.12) showed significantly associated with combined cases of schizophrenia and bipolar disorder. Further, meta-analysis was performed with the case-control data and dataset extracted from previously reported genome-wide association study to validate the promising SNPs. Our results provide the new evidence that FAN1 may be a common susceptibility gene for schizophrenia and bipolar disorder in Han Chinese. These novel findings need further validation with larger sample size and functional characterization to understand the underlying pathogenic mechanism behind FAN1 in the prevalence of schizophrenia and bipolar disorders.
Collapse
|
44
|
Wu T, Wang Y, Shi W, Zhang BQ, Raelson J, Yao YM, Wu HD, Xu ZX, Marois-Blanchet FC, Ledoux J, Blunck R, Sheng JZ, Hu SJ, Luo H, Wu J. A Variant in the Nicotinic Acetylcholine Receptor Alpha 3 Subunit Gene Is Associated With Hypertension Risks in Hypogonadic Patients. Front Genet 2020; 11:539862. [PMID: 33329690 PMCID: PMC7728919 DOI: 10.3389/fgene.2020.539862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 11/10/2020] [Indexed: 12/29/2022] Open
Abstract
Ephb6 gene knockout causes hypertension in castrated mice. EPHB6 controls catecholamine secretion by adrenal gland chromaffin cells (AGCCs) in a testosterone-dependent way. Nicotinic acetylcholine receptor (nAChR) is a ligand-gated Ca2+/Na+ channel, and its opening is the first signaling event leading to catecholamine secretion by AGCCs. There is a possibility that nAChR might be involved in EPHB6 signaling, and thus sequence variants of its subunit genes are associated with hypertension risks. CHRNA3 is the major subunit of nAChR used in human and mouse AGCCs. We conducted a human genetic study to assess the association of CHRNA3 variants with hypertension risks in hypogonadic males. The study cohort included 1,500 hypogonadic Chinese males with (750 patients) or without (750 patients) hypertension. The result revealed that SNV rs3743076 in the fourth intron of CHRNA3 was significantly associated with hypertension risks in the hypogonadic males. We further showed that EPHB6 physically interacted with CHRNA3 in AGCCs, providing a molecular basis for nAChR being in the EPHB6 signaling pathway.
Collapse
Affiliation(s)
- Tao Wu
- Institute of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yujia Wang
- Research Centre, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada.,Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Shi
- Research Centre, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| | - Bi-Qi Zhang
- Institute of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - John Raelson
- Research Centre, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| | - Yu-Mei Yao
- Department of Cardiology, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Huan-Dong Wu
- Institute of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zao-Xian Xu
- Institute of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | | | - Jonathan Ledoux
- Montreal Heart Institute, Université de Montréal, Montreal, QC, Canada
| | - Rikard Blunck
- Department of Physics, University of Montreal, Montreal, QC, Canada
| | - Jian-Zhong Sheng
- Department of Pathology and Physiopathology, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shen-Jiang Hu
- Institute of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hongyu Luo
- Research Centre, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| | - Jiangping Wu
- Research Centre, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada.,Nephrology Service, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| |
Collapse
|
45
|
White PJ, Lapworth AL, McGarrah RW, Kwee LC, Crown SB, Ilkayeva O, An J, Carson MW, Christopher BA, Ball JR, Davies MN, Kjalarsdottir L, George T, Muehlbauer MJ, Bain JR, Stevens RD, Koves TR, Muoio DM, Brozinick JT, Gimeno RE, Brosnan MJ, Rolph TP, Kraus WE, Shah SH, Newgard CB. Muscle-Liver Trafficking of BCAA-Derived Nitrogen Underlies Obesity-Related Glycine Depletion. Cell Rep 2020; 33:108375. [PMID: 33176135 PMCID: PMC8493998 DOI: 10.1016/j.celrep.2020.108375] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 09/23/2020] [Accepted: 10/20/2020] [Indexed: 01/08/2023] Open
Abstract
Glycine levels are inversely associated with branched-chain amino acids (BCAAs) and cardiometabolic disease phenotypes, but biochemical mechanisms that explain these relationships remain uncharted. Metabolites and genes related to BCAA metabolism and nitrogen handling were strongly associated with glycine in correlation analyses. Stable isotope labeling in Zucker fatty rats (ZFRs) shows that glycine acts as a carbon donor for the pyruvate-alanine cycle in a BCAA-regulated manner. Inhibition of the BCAA transaminase (BCAT) enzymes depletes plasma pools of alanine and raises glycine levels. In high-fat-fed ZFRs, dietary glycine supplementation raises urinary acyl-glycine content and lowers circulating triglycerides but also results in accumulation of long-chain acyl-coenzyme As (acyl-CoAs), lower 5' adenosine monophosphate-activated protein kinase (AMPK) phosphorylation in muscle, and no improvement in glucose tolerance. Collectively, these studies frame a mechanism for explaining obesity-related glycine depletion and also provide insight into the impact of glycine supplementation on systemic glucose, lipid, and amino acid metabolism.
Collapse
Affiliation(s)
- Phillip J White
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA; Departments of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA; Division of Endocrinology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | | | - Robert W McGarrah
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA; Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Lydia Coulter Kwee
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Scott B Crown
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Olga Ilkayeva
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA; Division of Endocrinology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Jie An
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Matthew W Carson
- Diabetes Therapeutic Area, Lilly Research Laboratories, a Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, USA
| | - Bridgette A Christopher
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA; Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - James R Ball
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Michael N Davies
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Lilja Kjalarsdottir
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Tabitha George
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Michael J Muehlbauer
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - James R Bain
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA; Division of Endocrinology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Robert D Stevens
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA; Division of Endocrinology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Timothy R Koves
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA; Division of Geriatrics, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Deborah M Muoio
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA; Departments of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA; Division of Endocrinology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Joseph T Brozinick
- Diabetes Therapeutic Area, Lilly Research Laboratories, a Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, USA
| | - Ruth E Gimeno
- Diabetes Therapeutic Area, Lilly Research Laboratories, a Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, USA
| | - M Julia Brosnan
- CV and Metabolic Diseases Research Unit, Pfizer, Cambridge, MA, USA
| | - Timothy P Rolph
- CV and Metabolic Diseases Research Unit, Pfizer, Cambridge, MA, USA
| | - William E Kraus
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA; Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Svati H Shah
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA; Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Christopher B Newgard
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA; Departments of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA; Division of Endocrinology, Department of Medicine, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
46
|
Lolita L, Zheng M, Zhang X, Han Z, Tao J, Fei S, Wang Z, Guo M, Yang H, Ju X, Tan R, Wei JF, Gu M. The Genetic Polymorphism of CYP3A4 rs 2242480 is Associated with Sirolimus Trough Concentrations Among Adult Renal Transplant Recipients. Curr Drug Metab 2020; 21:1052-1059. [PMID: 33115392 DOI: 10.2174/1389200221999201027203401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 09/02/2020] [Accepted: 09/16/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND The large interindividual variability in the genetic polymorphisms of sirolimus (SIR)- metabolizing enzymes, transporters, and receptors can lead to qualitatively and quantitatively distinct therapeutic responses. OBJECTIVE We examined the impact of numerous candidate single-nucleotide polymorphisms (SNPs) involved in the trough concentration of SIR-based immunosuppressant regimen. METHODS This is a retrospective, long-term cohort study involving 69 renal allograft recipients. Total DNA was isolated from recipient blood samples and trough SIR concentrations were measured by microparticle enzyme immunoassay. Genome sequence reading was targeted based on next-generation sequencing. The association of tagger SNPs to SIR trough concentrations with non-genetic covariate adjusting was analyzed using logistic regression. RESULTS A total of 300 SNPs were genotyped in the recipient DNA samples using target sequencing analysis. Only the SNP of CYP3A4 (Ch7: 99361466 C>T, rs2242480) had a significantly higher association with SIR trough concentration as compared to the other 36 tagger SNPs. The mean trough SIR concentration of patients in the CYP3A4 rs2242480-CC group was more significant compared to that of the CYP3A4 rs2242480-TC and TT group, respectively 533.3; 157.4 and 142.5 (ng/ml)/mg/kg, P<0.0001. After adjusting the SNPs, there was no significant association between clinical factors such as age, follow-up period, the incidence of delayed graft function, immunosuppression protocol, and sex with SIR trough concentration. CONCLUSION These findings indicated a significant association of polymorphism in the CYP3A4 (Ch7: 99361466 C>T, rs2242480) with SIR trough concentration after 1-year administration in patients who have undergone kidney transplantation.
Collapse
Affiliation(s)
- Lolita Lolita
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ming Zheng
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiang Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhijian Han
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Tao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shuang Fei
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zijie Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Miao Guo
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Haiwei Yang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaobing Ju
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ruoyun Tan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ji-Fu Wei
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Min Gu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
47
|
Ma C, Li X, Chen J, Li Z, Guan J, Li Y, Yin S, Shi Y. Association Analysis Between Common Variants of the TRPM1 Gene and Three Mental Disorders in the Han Chinese Population. Genet Test Mol Biomarkers 2020; 24:649-657. [PMID: 33001715 PMCID: PMC7585623 DOI: 10.1089/gtmb.2019.0096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Objective: Our study was designed to determine if the TRPM1 gene is associated with any of three mental disorders. The project included a cross disorder meta-analysis and association analysis including 141701 cases and 175248 controls. Materials and Methods: We genotyped eight tag single nucleotide polymorphisms (SNPs) in 1248 unrelated schizophrenia (SCZ) patients, 1056 major depressive disorder patients, 1344 bipolar disorder patients, and 1248 normal controls. We then performed a meta-analysis of 10 GWASs to identify common genetic factors among these three mental disorders. Finally, we performed a meta-analysis of six GWASs to explore the role of rs10162727 in SCZ. Result: Although two haplotypes of the TRPM1 gene, rs1035706-rs10162727 and rs10162727-rs3784599, were identified in the control group, as well as all three disease groups, none of the eight tag SNP associations remained significant after correction for multiple tests. In this cross-disorder meta-analysis of the three diseases, none of the tag SNPs were confirmed to be common among the diseases. In addition, in the meta-analysis conducted for the rs10162727 locus in SCZ, there was no significant association (p-value = 0.84, odds ratio = 1.02 [95% CI = 0.87-1.19]). Conclusion: In the Han Chinese population, no significant evidence was found linking variants of the TRPM1 gene with any of the mental disorders examined.
Collapse
Affiliation(s)
- Chuanchuan Ma
- Department of Biology, School of Life Science, Anhui Medical University, Hefei, China
| | - Xiuli Li
- Department of Biology, School of Life Science, Anhui Medical University, Hefei, China
| | - Jianhua Chen
- Department of Biology, School of Life Science, Anhui Medical University, Hefei, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- Department of Otolaryngology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Department of Otolaryngology, Therapy Center for Obstructive Sleep Apnea, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Zhiqiang Li
- Department of Biology, School of Life Science, Anhui Medical University, Hefei, China
- Department of Otolaryngology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Department of Otolaryngology, Therapy Center for Obstructive Sleep Apnea, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
- The Affiliated Hospital of Qingdao University, The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, People's Republic of China
| | - Jian Guan
- Department of Otolaryngology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Department of Otolaryngology, Therapy Center for Obstructive Sleep Apnea, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Yigang Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Shankai Yin
- Department of Otolaryngology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Department of Otolaryngology, Therapy Center for Obstructive Sleep Apnea, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Yongyong Shi
- Department of Biology, School of Life Science, Anhui Medical University, Hefei, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- Department of Otolaryngology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- Department of Otolaryngology, Therapy Center for Obstructive Sleep Apnea, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
- The Affiliated Hospital of Qingdao University, The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, People's Republic of China
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
48
|
Stewart-Brown BB, Vaughn JN, Carter TE, Li Z. Characterizing the impact of an exotic soybean line on elite cultivar development. PLoS One 2020; 15:e0235434. [PMID: 32649700 PMCID: PMC7351202 DOI: 10.1371/journal.pone.0235434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/15/2020] [Indexed: 11/18/2022] Open
Abstract
The genetic diversity of North American soybean cultivars has been largely influenced by a small number of ancestors. High yielding breeding lines that possess exotic pedigrees have been developed, but identifying beneficial exotic alleles has been difficult as a result of complex interactions of yield alleles with genetic backgrounds and environments as well as the highly quantitative nature of yield. PI 416937 has been utilized in the development of many high yielding lines that have been entered into the USDA Southern States Uniform Tests over the past ~20 years. The primary goal of this research was to identify genomic regions under breeding selection from PI 416937 and introduce a methodology for identifying and potentially utilizing beneficial diversity from lines prevalent in the ancestry of elite cultivars. Utilizing SoySNP50K Infinium BeadChips, 52 high yielding PI 416937-derived lines as well as their parents were genotyped to identify PI 416937 alleles under breeding selection. Nine genomic regions across three chromosomes and 17 genomic regions across seven chromosomes were identified where PI 416937 alleles were under positive or negative selection. Minimal significant associations between PI 416937 alleles and yield were observed in replicated yield trials of five RIL populations, highlighting the difficulty of consistently detecting yield associations.
Collapse
Affiliation(s)
- Benjamin B. Stewart-Brown
- Department of Crop and Soil Sciences, Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, United States of America
| | - Justin N. Vaughn
- Genomics and Bioinformatics Research Unit, USDA-ARS, Athens, GA, United States of America
| | - Thomas E. Carter
- Soybean & Nitrogen Fixation Unit, USDA-ARS, Raleigh, NC, United States of America
| | - Zenglu Li
- Department of Crop and Soil Sciences, Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, United States of America
| |
Collapse
|
49
|
Clinical relevance of single nucleotide polymorphisms in the CXCL1 and CXCL12 genes in patients with major trauma. J Trauma Acute Care Surg 2020; 86:440-447. [PMID: 30489503 DOI: 10.1097/ta.0000000000002141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Genetic backgrounds have been recognized as significant determinants of susceptibility to sepsis. CXC chemokines play a significant role in innate immunity against infectious diseases. Genetic polymorphisms of CXC chemokine genes have been widely studied in inflammatory and infectious diseases but not in sepsis. Thus, we aimed to investigate the clinical relevance of CXC chemokine gene polymorphisms and susceptibility to sepsis in a traumatically injured population. METHODS Thirteen tag single nucleotide polymorphisms were selected from CXC chemokine genes using a multimarker tagging algorithm in the Tagger software. Three independent cohorts of injured patients (n = 1700) were prospectively recruited. Selected single nucleotide polymorphisms were genotyped using an improved multiplex ligation detection reaction method. Cytokine production in lipopolysaccharide-stimulated whole blood was measured using an enzyme-linked immunosorbent assay. RESULTS Among the 13 tag single nucleotide polymorphisms, four single nucleotide polymorphisms (rs1429638, rs266087, rs2297630, and rs2839693) were significantly associated with the susceptibility to sepsis, and three (rs3117604, rs1429638, and rs4074) were significantly associated with an increased multiple organ dysfunction score in the derivation cohort. However, only the clinical relevance of rs1429638 and rs266087 was confirmed in the validation cohorts. In addition, rs2297630 was significantly associated with interleukin 6 production. CONCLUSION The rs1429638 polymorphism in the CXCL1 gene and the rs2297630 polymorphism in the CXCL12 gene were associated with altered susceptibility to sepsis and might be used as important genetic markers to assess the risks of sepsis in trauma patients. LEVEL OF EVIDENCE Prognostic and epidemiologic study, level II.
Collapse
|
50
|
Beltrán AP, Benitez E, Rondon M, Ariza YV, Aristizabal FA, Briceño I. Association of DEAR1 Tagging Single Nucleotide Polymorphisms With Breast Cancer in a Sample of Colombian Population: A Case Control Study. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2020; 14:1178223420904939. [PMID: 32341648 PMCID: PMC7172001 DOI: 10.1177/1178223420904939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/31/2019] [Indexed: 11/23/2022]
Abstract
Purpose: Ubiquitin ligase genes can act as oncogenes or tumor suppressor genes. They play a role in various diseases, including development and progression of breast cancer; the objective of this study was to evaluate the association of common variants in the ductal-epithelium-associated RING chromosome 1 (DEAR1) gene with breast cancer risk in a sample of Colombian population. Methods: We carried out a case-control study to investigate associations of variants in DEAR1 with breast cancer in women from Colombia. Single nucleotide polymorphisms (SNPs) rs584298, rs2927970, rs59983645, and rs599167 were genotyped in 1022 breast cancer cases and 1023 healthy controls using the iPLEX® and Kompetitive Allele Specific PCR (polymerase chain reaction) (KASP) method. The associations between SNPs and breast cancer were examined by conditional logistic regression. The associations between SNPs and epidemiological/histopathological variables were examined by multinomial logistic regression. Results: Associations were found between tag SNPs and breast cancer adjusted for the epidemiological risk factors rs584298 genotypes AG and GG (P = .048 and P = .004, respectively). The analysis of the disease characteristics showed that SNP rs584298 (genotype AG) (P = .015) shows association with progesterone receptor (PR) status and (genotype AA) (P = .048) shows association with human epidermal growth factor receptor 2 (HER2) status. Conclusions: The SNP rs584298 in DEAR1 showed associations with breast cancer and the expression of HER2 receptor; when this receptor is amplified, the result is aggressive tumoral subtype and expression of PR receptor that is associated with high-proliferative tumor grade. Validation of this SNP is important to establish whether this variant or the tagged variant is the cause for the risk association showed.
Collapse
Affiliation(s)
- Angela P Beltrán
- Biotechnology Institute, Universidad Nacional de Colombia, Bogotá, Colombia.,Institute of Genetic, Faculty of Medicine, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Edgar Benitez
- Faculty of Medicine, Universidad de la Sabana, Chía, Colombia
| | - Martin Rondon
- Department of Clinical Epidemiology and Biostatistics, Pontificia Universidad Javeriana, Bogotà, Colombia
| | - Yeimy V Ariza
- Biotechnology Institute, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | - Ignacio Briceño
- Faculty of Medicine, Universidad de la Sabana, Chía, Colombia
| |
Collapse
|