1
|
Giovarelli M, Mocciaro E, Carnovale C, Cervia D, Perrotta C, Clementi E. Immunosenescence in skeletal muscle: The role-play in cancer cachexia chessboard. Semin Cancer Biol 2025; 111:48-59. [PMID: 40020976 DOI: 10.1016/j.semcancer.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/03/2025]
Abstract
With the increase in life expectancy, age-related conditions and diseases have become a widespread and relevant social burden. Among these, immunosenescence and cancer cachexia play a significant often intertwined role. Immunosenescence is the progressive aging decline of both the innate and adaptive immune systems leading to increased infection susceptibility, poor vaccination efficacy, autoimmune disease, and malignancies. Cancer cachexia affects elderly patients with cancer causing severe weight loss, muscle wasting, inflammation, and reduced response to therapies. Whereas the connections between immunosenescence and cancer cachexia have been raising attention, the molecular mechanisms still need to be completely elucidated. This review aims at providing the current knowledge about the interplay between immunosenescence, skeletal muscle, and cancer cachexia, analyzing the molecular pathways known so far to be involved. Finally, we highlight potential therapeutic strategies suited for elderly population aimed to block immunosenescence and to preserve muscle mass in cachexia, also presenting the analysis of the current state-of-the-art of related clinical trials.
Collapse
Affiliation(s)
- Matteo Giovarelli
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, Milan 20157, Italy.
| | - Emanuele Mocciaro
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, Milan 20157, Italy
| | - Carla Carnovale
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, Milan 20157, Italy
| | - Davide Cervia
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università degli Studi della Tuscia, Viterbo 01100, Italy
| | - Cristiana Perrotta
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, Milan 20157, Italy
| | - Emilio Clementi
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, Milan 20157, Italy.
| |
Collapse
|
2
|
Espinoza DA, Zrzavy T, Breville G, Thebault S, Marefi A, Mexhitaj I, Kan M, Bacchus M, Legaspi J, Fernandez S, Melamed A, Stubblebine M, Kim Y, Martinez Z, Diorio C, Schulte-Mecklenbeck A, Wiendl H, Rezk A, Li R, Narula S, Waldman AT, Hopkins SE, Banwell B, Bar-Or A. Pediatric cerebrospinal fluid immune profiling distinguishes pediatric-onset multiple sclerosis from other pediatric-onset acute neurological disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.27.637541. [PMID: 40060552 PMCID: PMC11888486 DOI: 10.1101/2025.02.27.637541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
The cerebrospinal fluid (CSF) provides a unique glimpse into the central nervous system (CNS) compartment and offers insights into immune processes associated with both healthy immune surveillance as well as inflammatory disorders of the CNS. The latter include demyelinating disorders, such as multiple sclerosis (MS) and myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD), that warrant different therapeutic approaches yet are not always straightforward to distinguish on clinical and imaging grounds alone. Here, we establish a comprehensive phenotypic landscape of the pediatric CSF immune compartment across a range of non-inflammatory and inflammatory neurological disorders, with a focus on better elucidating CNS-associated immune mechanisms potentially involved in, and discriminating between, pediatric-onset MS (MS) and other pediatric-onset suspected neuroimmune disorders, including MOGAD. We find that CSF from pediatric patients with non-inflammatory neurological disorders is primarily composed of non-activated CD4+ T cells, with few if any B cells present. CSF from pediatric patients with acquired inflammatory demyelinating disorders is characterized by increased numbers of B cells compared to CSF of both patients with other inflammatory or non-inflammatory conditions. Certain features, including particular increased frequencies of antibody-secreting cells (ASCs) and decreased frequencies of CD14+ myeloid cells, distinguish MS from MOGAD and other acquired inflammatory demyelinating disorders.
Collapse
Affiliation(s)
- Diego A Espinoza
- Center for Neuroinflammation and Experimental Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Colton Center for Autoimmunity, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tobias Zrzavy
- Center for Neuroinflammation and Experimental Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Gautier Breville
- Center for Neuroinflammation and Experimental Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Simon Thebault
- Center for Neuroinflammation and Experimental Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Amaar Marefi
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Child Neurology, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ina Mexhitaj
- Center for Neuroinflammation and Experimental Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mengyuan Kan
- Colton Center for Autoimmunity, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Micky Bacchus
- Division of Child Neurology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Jessica Legaspi
- Division of Child Neurology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Samantha Fernandez
- Division of Child Neurology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Anna Melamed
- Division of Child Neurology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Mallory Stubblebine
- Division of Child Neurology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Yeseul Kim
- Center for Neuroinflammation and Experimental Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zachary Martinez
- Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Caroline Diorio
- Division of Oncology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Andreas Schulte-Mecklenbeck
- Department of Neurology with Institute of Translational Neurology, University Hospital of Münster, University of Münster, Münster, Germany
| | - Heinz Wiendl
- Clinic for Neurology and Neurophysiology, University Medical Center Freiburg, Freiburg, Germany
| | - Ayman Rezk
- Center for Neuroinflammation and Experimental Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rui Li
- Center for Neuroinflammation and Experimental Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Colton Center for Autoimmunity, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology of the First affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fujian, China
| | - Sona Narula
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Child Neurology, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amy T Waldman
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Child Neurology, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarah E Hopkins
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Child Neurology, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Brenda Banwell
- Center for Neuroinflammation and Experimental Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Child Neurology, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amit Bar-Or
- Center for Neuroinflammation and Experimental Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Colton Center for Autoimmunity, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Child Neurology, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
3
|
Menzel L, Zschummel M, O’Melia MJ, Zhou H, Lei PJ, Liu L, Sen DR, Munn LL, Padera TP. Lymph nodes link sex-biased immune aging to compromised antigen recognition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.11.637693. [PMID: 39990447 PMCID: PMC11844512 DOI: 10.1101/2025.02.11.637693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
A diverse naive CD8 T cell repertoire is essential to provide broad protection against infection and cancer. Aging diminishes naive T cells, reducing potential diversity and leading to lymph node contraction. Here, we revealed that this decline occurs earlier in males, resulting in significant sex differences in immunity during middle age. Earlier in life, naive CD8 T cells in males become virtual memory cells prone to premature senescence. Due to androgen-driven thymic atrophy in males, naïve CD8 T cells are insufficiently replenished. Therapeutic thymus rejuvenation via testosterone ablation restored naive CD8 T cells in lymph nodes of middle-aged male mice, leading to enhanced tumor recognition. These findings show the crucial role of sex and age on lymph node T cell repertoires and suggest potential strategies to restore immune function in males during aging.
Collapse
Affiliation(s)
- Lutz Menzel
- Department of Radiation Oncology, Edwin L. Steele Laboratories, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Maria Zschummel
- Harvard Medical School, Boston, USA
- Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Meghan J. O’Melia
- Department of Radiation Oncology, Edwin L. Steele Laboratories, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Hengbo Zhou
- Department of Radiation Oncology, Edwin L. Steele Laboratories, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Pin-Ji Lei
- Department of Radiation Oncology, Edwin L. Steele Laboratories, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Lingshan Liu
- Department of Radiation Oncology, Edwin L. Steele Laboratories, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Debattama R. Sen
- Harvard Medical School, Boston, USA
- Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Lance L. Munn
- Department of Radiation Oncology, Edwin L. Steele Laboratories, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Timothy P. Padera
- Department of Radiation Oncology, Edwin L. Steele Laboratories, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| |
Collapse
|
4
|
Yamashita S, Hamamoto S, Furukawa J, Fujita K, Takahashi M, Miyake M, Ito N, Iwamoto H, Kohjimoto Y, Hara I. Efficacy and Safety of Nivolumab Plus Ipilimumab for Metastatic Renal Cell Carcinoma in Patients 75 Years and Older: Multicenter Retrospective Study. Cancers (Basel) 2025; 17:474. [PMID: 39941841 PMCID: PMC11816081 DOI: 10.3390/cancers17030474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/27/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND/OBJECTIVES The efficacy and safety of nivolumab plus ipilimumab (NIVO + IPI) for elderly patients with metastatic renal cell carcinoma have not been reported with sufficient evidence. Our study therefore aimed to compare the efficacy and safety of NIVO + IPI between patients ≥75 years and patients <75 years with metastatic renal cell carcinoma. METHODS We retrospectively analyzed a multi-center cohort of the 156 patients that received NIVO + IPI treatment at eight institutions. Among them, 33 patients were ≥75 years old, and the remainder were <75 years old. RESULTS Patient demographics and tumor characteristics were not significantly different between the two groups except for age. The objective response rate, disease control rate, progression-free survival, or cancer-specific survival were not significantly different between the groups. However, overall survival in the patients ≥75 years was significantly shorter than that in the patients <75 years (median: 18 months vs. 46 months, p = 0.01). In addition, an age ≥75 years was shown in multivariable analysis to be a significant independent predictor of poor overall survival. Toxicity did not show any significant variation between the groups. CONCLUSIONS Although the clinical efficacy and safety of NIVO + IPI was demonstrated in patients ≥75 years old, it is suggested that the indication for NIVO + IPI in this age group should be carefully considered, taking into account patients' expected life expectancy.
Collapse
Affiliation(s)
- Shimpei Yamashita
- Department of Urology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-0012, Japan; (Y.K.); (I.H.)
| | - Shuzo Hamamoto
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan;
| | - Junya Furukawa
- Department of Urology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan;
| | - Kazutoshi Fujita
- Department of Urology, Kindai University Faculty of Medicine, 377-2 Onohigashi, Osakasayama 589-0014, Japan;
| | - Masayuki Takahashi
- Department of Urology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramo-to-cho, Tokushima 770-8503, Japan;
| | - Makito Miyake
- Department of Urology, Nara Medical University, 840 Shinjo-cho, Kashihara 634-8521, Japan;
| | - Noriyuki Ito
- Department of Urology, Japanese Red Cross Wakayama Medical Center, 4-20 Komatsubara-dori, Wakayama 640-8558, Japan;
| | - Hideto Iwamoto
- Division of Urology, Department of Surgery, School of Medicine, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan;
| | - Yasuo Kohjimoto
- Department of Urology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-0012, Japan; (Y.K.); (I.H.)
| | - Isao Hara
- Department of Urology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-0012, Japan; (Y.K.); (I.H.)
| |
Collapse
|
5
|
Autaa G, Papagno L, Nogimori T, Boizard-Moracchini A, Korenkov D, Roy M, Suzuki K, Masuta Y, White E, Llewellyn-Lacey S, Yoshioka Y, Nicoli F, Price DA, Dechanet-Merville J, Yamamoto T, Pellegrin I, Appay V. Aging and inflammation limit the induction of SARS-CoV-2-specific CD8+ T cell responses in severe COVID-19. JCI Insight 2025; 10:e180867. [PMID: 39847442 PMCID: PMC11949069 DOI: 10.1172/jci.insight.180867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 01/13/2025] [Indexed: 01/24/2025] Open
Abstract
CD8+ T cells are critical for immune protection against severe COVID-19 during acute infection with SARS-CoV-2. However, the induction of antiviral CD8+ T cell responses varies substantially among infected people, and a better understanding of the mechanisms that underlie such immune heterogeneity is required for pandemic preparedness and risk stratification. In this study, we analyzed SARS-CoV-2-specific CD4+ and CD8+ T cell responses in relation to age, clinical status, and inflammation among patients infected primarily during the initial wave of the pandemic in France or Japan. We found that age-related contraction of the naive lymphocyte pool and systemic inflammation were associated with suboptimal SARS-CoV-2-specific CD4+ and, even more evidently, CD8+ T cell immunity in patients with acute COVID-19. No such differences were observed for humoral immune responses targeting the spike protein of SARS-CoV-2. We also found that the proinflammatory cytokine IL-18, concentrations of which were significantly elevated among patients with severe disease, suppressed the de novo induction and memory recall of antigen-specific CD8+ T cells, including those directed against SARS-CoV-2. These results potentially explain the vulnerability of older adults to infections that elicit a profound inflammatory response, exemplified by acute COVID-19.
Collapse
Affiliation(s)
- Gaëlle Autaa
- University of Bordeaux, CNRS UMR 5164, INSERM ERL 1303, ImmunoConcEpT, 33000 Bordeaux, France
| | - Laura Papagno
- University of Bordeaux, CNRS UMR 5164, INSERM ERL 1303, ImmunoConcEpT, 33000 Bordeaux, France
| | - Takuto Nogimori
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | | | - Daniil Korenkov
- University of Bordeaux, CNRS UMR 5164, INSERM ERL 1303, ImmunoConcEpT, 33000 Bordeaux, France
| | - Maeva Roy
- CHU Bordeaux, Laboratory of Immunology and Immunogenetics, 33000 Bordeaux, France
| | - Koichiro Suzuki
- The Research Foundation for Microbial Diseases of Osaka University (BIKEN), Osaka, Japan
| | - Yuji Masuta
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Eoghann White
- University of Bordeaux, CNRS UMR 5164, INSERM ERL 1303, ImmunoConcEpT, 33000 Bordeaux, France
| | - Sian Llewellyn-Lacey
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Yasuo Yoshioka
- The Research Foundation for Microbial Diseases of Osaka University (BIKEN), Osaka, Japan
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases
- Laboratory of Nano-Design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, and
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Francesco Nicoli
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - David A. Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
- Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Julie Dechanet-Merville
- University of Bordeaux, CNRS UMR 5164, INSERM ERL 1303, ImmunoConcEpT, 33000 Bordeaux, France
| | - Takuya Yamamoto
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Isabelle Pellegrin
- University of Bordeaux, CNRS UMR 5164, INSERM ERL 1303, ImmunoConcEpT, 33000 Bordeaux, France
- CHU Bordeaux, Laboratory of Immunology and Immunogenetics, 33000 Bordeaux, France
| | - Victor Appay
- University of Bordeaux, CNRS UMR 5164, INSERM ERL 1303, ImmunoConcEpT, 33000 Bordeaux, France
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| |
Collapse
|
6
|
McDonald E, Kehoe E, Deines D, McCarthy M, Wright B, Huse S. High-parameter immunophenotyping reveals distinct immune cell profiles in pruritic dogs and cats. Front Vet Sci 2025; 11:1498964. [PMID: 39911485 PMCID: PMC11795398 DOI: 10.3389/fvets.2024.1498964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/10/2024] [Indexed: 02/07/2025] Open
Abstract
Introduction Immunophenotyping is a powerful tool for grading disease severity, aiding in diagnosis, predicting clinical response, and guiding the development of novel therapeutics. Methods This pilot study employs high parameter immunophenotyping panels (15 markers for dog, 12 for cat) and leverages unsupervised clustering to identify immune cell populations. Our analysis uses machine learning and statistical algorithms to perform unsupervised clustering, multiple visualizations, and statistical analysis of high parameter flow cytometry data. This method reduces user bias and precisely identifies cell populations, demonstrating its potential to detect variations and differentiate populations effectively. To enhance our understanding of cat and dog biology and test the unsupervised clustering approach on real-world samples, we performed in-depth profiling of immune cell populations in blood collected from client-owned and laboratory animals [dogs (n = 55) and cats (n = 68)]. These animals were categorized based on pruritic behavior or routine check-ups (non-pruritic controls). Results Unsupervised clustering revealed various immune cell populations, including T-cell subsets distinguished by CD62L expression and distinct monocyte subsets. Notably, there were significant differences in monocyte subsets between pruritic and non-pruritic animals. Pruritic dogs and cats showed significant shifts in CD62LHi T-cell subsets compared to non-pruritic controls, with opposite trends observed between pruritic cats and dogs. Discussion These findings underscore the importance of advancing veterinary immunophenotyping, expanding our knowledge about marker expression on circulating immune cells and driving progress in understanding veterinary-specific biology and uncovering new insights into various conditions and diseases.
Collapse
Affiliation(s)
- Erin McDonald
- Veterinary Medicine Research and Development (VMRD), Zoetis Inc, Fort Collins, CO, United States
| | - Eric Kehoe
- Veterinary Medicine Research and Development (VMRD), Zoetis Inc, Fort Collins, CO, United States
| | | | | | | | | |
Collapse
|
7
|
Chen F, Tang H, Cai X, Lin J, Kang R, Tang D, Liu J. DAMPs in immunosenescence and cancer. Semin Cancer Biol 2024; 106-107:123-142. [PMID: 39349230 DOI: 10.1016/j.semcancer.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/02/2024]
Abstract
Damage-associated molecular patterns (DAMPs) are endogenous molecules released by cells in response to injury or stress, recognized by host pattern recognition receptors that assess the immunological significance of cellular damage. The interaction between DAMPs and innate immune receptors triggers sterile inflammation, which serves a dual purpose: promoting tissue repair and contributing to pathological conditions, including age-related diseases. Chronic inflammation mediated by DAMPs accelerates immunosenescence and influences both tumor progression and anti-tumor immunity, underscoring the critical role of DAMPs in the nexus between aging and cancer. This review explores the characteristics of immunosenescence and its impact on age-related cancers, investigates the various types of DAMPs, their release mechanisms during cell death, and the immune activation pathways they initiate. Additionally, we examine the therapeutic potential of targeting DAMPs in age-related diseases. A detailed understanding of DAMP-induced signal transduction could provide critical insights into immune regulation and support the development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Fangquan Chen
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Hu Tang
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Xiutao Cai
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Junhao Lin
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Jiao Liu
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China.
| |
Collapse
|
8
|
Bohacova P, Terekhova M, Tsurinov P, Mullins R, Husarcikova K, Shchukina I, Antonova AU, Echalar B, Kossl J, Saidu A, Francis T, Mannie C, Arthur L, Harridge SDR, Kreisel D, Mudd PA, Taylor AM, McNamara CA, Cella M, Puram SV, van den Broek T, van Wijk F, Eghtesady P, Artyomov MN. Multidimensional profiling of human T cells reveals high CD38 expression, marking recent thymic emigrants and age-related naive T cell remodeling. Immunity 2024; 57:2362-2379.e10. [PMID: 39321807 DOI: 10.1016/j.immuni.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/21/2024] [Accepted: 08/28/2024] [Indexed: 09/27/2024]
Abstract
Thymic involution is a key factor in human immune aging, leading to reduced thymic output and a decline in recent thymic emigrant (RTE) naive T cells in circulation. Currently, the precise definition of human RTEs and their corresponding cell surface markers lacks clarity. Analysis of single-cell RNA-seq/ATAC-seq data distinguished RTEs by the expression of SOX4, IKZF2, and TOX and CD38 protein, whereby surface CD38hi expression universally identified CD8+ and CD4+ RTEs. We further determined the dynamics of RTEs and mature cells in a cohort of 158 individuals, including age-associated transcriptional reprogramming and shifts in cytokine production. Spectral cytometry profiling revealed two axes of aging common to naive CD8+ and CD4+ T cells: (1) a decrease in CD38++ cells (RTEs) and (2) an increase in CXCR3hi cells. Identification of RTEs enables direct assessment of thymic health. Furthermore, resolving the dynamics of naive T cell remodeling yields insight into vaccination and infection responsiveness throughout aging.
Collapse
Affiliation(s)
- Pavla Bohacova
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marina Terekhova
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Riley Mullins
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kamila Husarcikova
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Irina Shchukina
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alina Ulezko Antonova
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Barbora Echalar
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jan Kossl
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Adam Saidu
- Department of Emergency Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Thomas Francis
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London SE1 1UL, UK
| | - Chelsea Mannie
- Division of Cardiothoracic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Laura Arthur
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Stephen D R Harridge
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London SE1 1UL, UK
| | - Daniel Kreisel
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Philip A Mudd
- Department of Emergency Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Angela M Taylor
- Department of Medicine, Cardiovascular Division, University of Virginia, Charlottesville, VA 22903, USA
| | - Coleen A McNamara
- Department of Medicine, Cardiovascular Division, University of Virginia, Charlottesville, VA 22903, USA; Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22903, USA
| | - Marina Cella
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sidharth V Puram
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; Rob Ebert and Greg Stubblefield Head and Neck Tumor Center at Siteman Cancer Center, St. Louis, MO 63110, USA
| | - Theo van den Broek
- Center for Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht 3584CX, the Netherlands
| | - Femke van Wijk
- Center for Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht 3584CX, the Netherlands
| | - Pirooz Eghtesady
- Division of Cardiothoracic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
9
|
Watanabe M, Davidson L, Smith P, Castellucio PF, Jergovic M, Uhrlaub JL, Smithey MJ, Fantry LE, Dechambre B, Wilson RC, Knox KC, Ren J, Stowe RP, Weinstock G, Twigg H, Nikolich JŽ. Anti-cytomegalovirus antibody levels stratify human immune profiles across the lifespan. GeroScience 2024; 46:4225-4242. [PMID: 38512581 PMCID: PMC11336022 DOI: 10.1007/s11357-024-01124-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024] Open
Abstract
Human cytomegalovirus (hCMV) is a ubiquitous latent persistent herpesvirus infecting 60-90% of the population worldwide. hCMV carriage in immunocompetent people is asymptomatic; thus, hCMV can be considered a component of normative aging. However, hCMV powerfully modulates many features of the immune, and likely other, systems and organs. Questions remain as to how hCMV carriage affects the human host. We used anti-CMV antibody titers as a stratifying criterion to examine the impact of "intensity" of hCMV infection as a potential biomarker of aging, inflammation, and immune homeostasis in a cohort of 247 participants stratified into younger (21-40 years) and older (> 65 years of age) groups. We showed that anti-CMV antibody titers increased with age and directly correlated to increased levels of soluble tumor necrosis factor (sTNFR) I in younger but not older participants. CD8 + cell numbers were reduced in the older group due to the loss in CD8 + T naïve (Tn) cells. In CMV carriers and, in particular, in anti-CMV Ab-high participants, this loss was mitigated or reversed by an increase in the numbers of CD8 + T effector memory (Tem) and T effector memory reexpressing CD45RA (Temra) cells. Analysis of CD38, HLA-DR, and CD57 expression revealed subset (CD4 or CD8)-specific changes that correlated with anti-CMV Ab levels. In addition, anti-CMV Ab levels predicted anti-CMV CD8 T cell responsiveness to different CMV open reading frames (ORFs) selectively in older participants, which correlated to the transcriptional order of expression of specific CMV ORFs. Implications of these results for the potential predictive value of anti-CMV Ab titers during aging are discussed.
Collapse
Affiliation(s)
- Makiko Watanabe
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Arizona Center On Aging, University of Arizona College of Medicine-Tucson, 1501 N. Campbell Ave, P.O. Box 245221, Tucson, AZ, 85724, USA
| | - Lisa Davidson
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Arizona Center On Aging, University of Arizona College of Medicine-Tucson, 1501 N. Campbell Ave, P.O. Box 245221, Tucson, AZ, 85724, USA
| | - Patricia Smith
- Division of Pulmonary Medicine, Department of Medicine, Indiana University College of Medicine, Bloomington, IN, USA
| | - Peter F Castellucio
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mladen Jergovic
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Arizona Center On Aging, University of Arizona College of Medicine-Tucson, 1501 N. Campbell Ave, P.O. Box 245221, Tucson, AZ, 85724, USA
| | - Jennifer L Uhrlaub
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Arizona Center On Aging, University of Arizona College of Medicine-Tucson, 1501 N. Campbell Ave, P.O. Box 245221, Tucson, AZ, 85724, USA
| | - Megan J Smithey
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Arizona Center On Aging, University of Arizona College of Medicine-Tucson, 1501 N. Campbell Ave, P.O. Box 245221, Tucson, AZ, 85724, USA
| | - Lori E Fantry
- Division of Infectious Diseases, Department of Medicine, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
| | - Brett Dechambre
- Division of Infectious Diseases, Department of Medicine, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
- Arizona Department of Health Services, Phoenix, AZ, USA
| | - Rachel C Wilson
- Division of Pulmonary Medicine, Department of Medicine, Indiana University College of Medicine, Bloomington, IN, USA
| | - Kenneth C Knox
- Department of Medicine, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Jie Ren
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | - Homer Twigg
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Janko Ž Nikolich
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA.
- Arizona Center On Aging, University of Arizona College of Medicine-Tucson, 1501 N. Campbell Ave, P.O. Box 245221, Tucson, AZ, 85724, USA.
| |
Collapse
|
10
|
Pan YG, Bartolo L, Xu R, Patel BV, Zarnitsyna VI, Su LF. Preservation of naive-phenotype CD4+ T cells after vaccination contributes to durable immunity. JCI Insight 2024; 9:e180667. [PMID: 38861490 PMCID: PMC11383171 DOI: 10.1172/jci.insight.180667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024] Open
Abstract
Memory T cells are conventionally associated with durable recall responses. In our longitudinal analyses of CD4+ T cell responses to the yellow fever virus (YFV) vaccine by peptide-MHC tetramers, we unexpectedly found CD45RO-CCR7+ virus-specific CD4+ T cells that expanded shortly after vaccination and persisted months to years after immunization. Further phenotypic analyses revealed the presence of stem cell-like memory T cells within this subset. In addition, after vaccination T cells lacking known memory markers and functionally resembling genuine naive T cells were identified, referred to herein as marker-negative T (TMN) cells. Single-cell TCR sequencing detected expanded clonotypes within the TMN subset and identified TMN TCRs shared with memory and effector T cells. Longitudinal tracking of YFV-specific responses over subsequent years revealed superior stability of TMN cells, which correlated with the longevity of the overall tetramer+ population. These findings uncover additional complexity within the post-immune T cell compartment and implicate TMN cells in durable immune responses.
Collapse
Affiliation(s)
- Yi-Gen Pan
- Department of Medicine, Division of Rheumatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Laurent Bartolo
- Department of Medicine, Division of Rheumatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ruozhang Xu
- Department of Medicine, Division of Rheumatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
| | - Bijal V Patel
- Department of Medicine, Division of Rheumatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
| | | | - Laura F Su
- Department of Medicine, Division of Rheumatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
11
|
Pan YG, Bartolo L, Xu R, Patel B, Zarnitsyna V, Su L. Differentiation marker-negative CD4 + T cells persist after yellow fever virus vaccination and contribute to durable memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.11.584523. [PMID: 38559113 PMCID: PMC10979963 DOI: 10.1101/2024.03.11.584523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Factors that contribute to durable immunological memory remain incompletely understood. In our longitudinal analyses of CD4+ T cell responses to the yellow fever virus (YFV) vaccine by peptide-MHC tetramers, we unexpectedly found naïve phenotype virus-specific CD4+ T cells that persisted months to years after immunization. These Marker negative T cells (TMN) lacked CD95, CXCR3, CD11a, and CD49d surface protein expression, distinguishing them from previously discovered stem-cell memory T cells. Functionally, they resembled genuine naïve T cells upon in vitro stimulation. Single-cell TCR sequencing detected expanded clonotypes within the TMN subset and identified a shared repertoire with memory and effector T cells. T cells expressing TMN-associated TCRs were rare before vaccination, suggesting their expansion following vaccination. Longitudinal tracking of YFV-specific responses over the subsequent years revealed superior stability of the TMN subset and their association with the longevity of the overall population. The identification of these long-lived, antigen-experienced T cells may inform the design of durable T cell-based vaccines and engineered T cell therapies.
Collapse
Affiliation(s)
- Yi-Gen Pan
- Department of Medicine, Division of Rheumatology, Perelman School of Medicine, Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Laurent Bartolo
- Department of Medicine, Division of Rheumatology, Perelman School of Medicine, Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ruozhang Xu
- Department of Medicine, Division of Rheumatology, Perelman School of Medicine, Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Corporal Michael J Crescenz VA Medical Center, Philadelphia, PA, 19104, USA
| | - Bijal Patel
- Department of Medicine, Division of Rheumatology, Perelman School of Medicine, Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Corporal Michael J Crescenz VA Medical Center, Philadelphia, PA, 19104, USA
| | - Veronika Zarnitsyna
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Laura Su
- Department of Medicine, Division of Rheumatology, Perelman School of Medicine, Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Corporal Michael J Crescenz VA Medical Center, Philadelphia, PA, 19104, USA
| |
Collapse
|
12
|
Durand A, Bonilla N, Level T, Ginestet Z, Lombès A, Guichard V, Germain M, Jacques S, Letourneur F, Do Cruzeiro M, Marchiol C, Renault G, Le Gall M, Charvet C, Le Bon A, Martin B, Auffray C, Lucas B. Type 1 interferons and Foxo1 down-regulation play a key role in age-related T-cell exhaustion in mice. Nat Commun 2024; 15:1718. [PMID: 38409097 PMCID: PMC10897180 DOI: 10.1038/s41467-024-45984-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/05/2024] [Indexed: 02/28/2024] Open
Abstract
Foxo family transcription factors are critically involved in multiple processes, such as metabolism, quiescence, cell survival and cell differentiation. Although continuous, high activity of Foxo transcription factors extends the life span of some species, the involvement of Foxo proteins in mammalian aging remains to be determined. Here, we show that Foxo1 is down-regulated with age in mouse T cells. This down-regulation of Foxo1 in T cells may contribute to the disruption of naive T-cell homeostasis with age, leading to an increase in the number of memory T cells. Foxo1 down-regulation is also associated with the up-regulation of co-inhibitory receptors by memory T cells and exhaustion in aged mice. Using adoptive transfer experiments, we show that the age-dependent down-regulation of Foxo1 in T cells is mediated by T-cell-extrinsic cues, including type 1 interferons. Taken together, our data suggest that type 1 interferon-induced Foxo1 down-regulation is likely to contribute significantly to T-cell dysfunction in aged mice.
Collapse
Affiliation(s)
- Aurélie Durand
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France
| | - Nelly Bonilla
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France
| | - Théo Level
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France
| | - Zoé Ginestet
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France
| | - Amélie Lombès
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France
| | - Vincent Guichard
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France
| | - Mathieu Germain
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France
| | - Sébastien Jacques
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France
| | - Franck Letourneur
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France
| | - Marcio Do Cruzeiro
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France
| | - Carmen Marchiol
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France
| | - Gilles Renault
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France
| | - Morgane Le Gall
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France
| | - Céline Charvet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- CNRS UMR7104, Illkirch, France
- INSERM U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Agnès Le Bon
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France
| | - Bruno Martin
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France
| | - Cédric Auffray
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France
| | - Bruno Lucas
- Université Paris-Cité, Institut Cochin, Centre National de la Recherche Scientifique (CNRS) UMR8104, Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, 75014, Paris, France.
| |
Collapse
|
13
|
Fu Z, Xu H, Yue L, Zheng W, Pan L, Gao F, Liu X. Immunosenescence and cancer: Opportunities and challenges. Medicine (Baltimore) 2023; 102:e36045. [PMID: 38013358 PMCID: PMC10681516 DOI: 10.1097/md.0000000000036045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/19/2023] [Indexed: 11/29/2023] Open
Abstract
As individuals age, cancer becomes increasingly common. This continually rising risk can be attributed to various interconnected factors that influence the body's susceptibility to cancer. Among these factors, the accumulation of senescent cells in tissues and the subsequent decline in immune cell function and proliferative potential are collectively referred to as immunosenescence. Reduced T-cell production, changes in secretory phenotypes, increased glycolysis, and the generation of reactive oxygen species are characteristics of immunosenescence that contribute to cancer susceptibility. In the tumor microenvironment, senescent immune cells may promote the growth and spread of tumors through multiple pathways, thereby affecting the effectiveness of immunotherapy. In recent years, immunosenescence has gained increasing attention due to its critical role in tumor development. However, our understanding of how immunosenescence specifically impacts cancer immunotherapy remains limited, primarily due to the underrepresentation of elderly patients in clinical trials. Furthermore, there are several age-related intervention methods, including metformin and rapamycin, which involve genetic and pharmaceutical approaches. This article aims to elucidate the defining characteristics of immunosenescence and its impact on malignant tumors and immunotherapy. We particularly focus on the future directions of cancer treatment, exploring the complex interplay between immunosenescence, cancer, and potential interventions.
Collapse
Affiliation(s)
- Zhibin Fu
- Weifang Hospital of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Weifang, Shandong, China
| | - Hailong Xu
- Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, China
| | - Lanping Yue
- Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, China
| | - Weiwei Zheng
- Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, China
| | - Linkang Pan
- Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, China
| | - Fangyi Gao
- Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, China
| | - Xingshan Liu
- Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, China
| |
Collapse
|
14
|
Thomson Z, He Z, Swanson E, Henderson K, Phalen C, Zaim SR, Pebworth MP, Okada LY, Heubeck AT, Roll CR, Hernandez V, Weiss M, Genge PC, Reading J, Giles JR, Manne S, Dougherty J, Jasen CJ, Greenplate AR, Becker LA, Graybuck LT, Vasaikar SV, Szeto GL, Savage AK, Speake C, Buckner JH, Li XJ, Bumol TF, Wherry EJ, Torgerson TR, Vella LA, Henrickson SE, Skene PJ, Gustafson CE. Trimodal single-cell profiling reveals a novel pediatric CD8αα + T cell subset and broad age-related molecular reprogramming across the T cell compartment. Nat Immunol 2023; 24:1947-1959. [PMID: 37845489 PMCID: PMC10602854 DOI: 10.1038/s41590-023-01641-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 09/07/2023] [Indexed: 10/18/2023]
Abstract
Age-associated changes in the T cell compartment are well described. However, limitations of current single-modal or bimodal single-cell assays, including flow cytometry, RNA-seq (RNA sequencing) and CITE-seq (cellular indexing of transcriptomes and epitopes by sequencing), have restricted our ability to deconvolve more complex cellular and molecular changes. Here, we profile >300,000 single T cells from healthy children (aged 11-13 years) and older adults (aged 55-65 years) by using the trimodal assay TEA-seq (single-cell analysis of mRNA transcripts, surface protein epitopes and chromatin accessibility), which revealed that molecular programming of T cell subsets shifts toward a more activated basal state with age. Naive CD4+ T cells, considered relatively resistant to aging, exhibited pronounced transcriptional and epigenetic reprogramming. Moreover, we discovered a novel CD8αα+ T cell subset lost with age that is epigenetically poised for rapid effector responses and has distinct inhibitory, costimulatory and tissue-homing properties. Together, these data reveal new insights into age-associated changes in the T cell compartment that may contribute to differential immune responses.
Collapse
Affiliation(s)
| | - Ziyuan He
- Allen Institute for Immunology, Seattle, WA, USA
| | - Elliott Swanson
- Allen Institute for Immunology, Seattle, WA, USA
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Cole Phalen
- Allen Institute for Immunology, Seattle, WA, USA
| | | | | | | | | | - Charles R Roll
- Allen Institute for Immunology, Seattle, WA, USA
- Microbiology, Immunology and Cancer Biology (MICaB) Program, University of Minnesota, Minneapolis, Minneapolis, MN, USA
| | | | - Morgan Weiss
- Allen Institute for Immunology, Seattle, WA, USA
| | | | | | - Josephine R Giles
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Sasikanth Manne
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Jeanette Dougherty
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - C J Jasen
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Allison R Greenplate
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | | | - Suhas V Vasaikar
- Allen Institute for Immunology, Seattle, WA, USA
- Seagen, Bothell, WA, USA
| | - Gregory L Szeto
- Allen Institute for Immunology, Seattle, WA, USA
- Seagen, Bothell, WA, USA
| | | | - Cate Speake
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Jane H Buckner
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Xiao-Jun Li
- Allen Institute for Immunology, Seattle, WA, USA
| | | | - E John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Laura A Vella
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Pediatrics, Children's Hospital of Philadelphia and the University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sarah E Henrickson
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Pediatrics, Children's Hospital of Philadelphia and the University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | | |
Collapse
|
15
|
Kobayashi M, Numakura K, Hatakeyama S, Ishida T, Koizumi A, Tadachi K, Igarashi R, Takayama K, Muto Y, Sekine Y, Sobu R, Sasagawa H, Akashi H, Kashima S, Yamamoto R, Nara T, Saito M, Narita S, Ohyama C, Habuchi T. Real clinical outcomes of nivolumab plus ipilimumab for renal cell carcinoma in patients over 75 years old. Int J Clin Oncol 2023; 28:1530-1537. [PMID: 37552353 DOI: 10.1007/s10147-023-02394-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/27/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Although nivolumab plus ipilimumab is the standard treatment for metastatic renal cell carcinoma (RCC), its efficacy and safety in older patients remain unclear. Therefore, this study aimed to assess the clinical outcomes of nivolumab plus ipilimumab for metastatic RCC in patients aged ≥ 75 years. METHODS We enrolled 120 patients with metastatic RCC treated with nivolumab plus ipilimumab from August 2015 to January 2023. Objective response rates (ORRs) were compared between patients aged < 75 and ≥ 75 years. Progression-free survival (PFS), overall survival (OS), and adverse events were compared between the groups. Adverse events were evaluated according to the Response Evaluation Criteria in Solid Tumors 1.1. RESULTS Among the patients, 57 and 63 were classified as intermediate and poor risk, respectively, and one could not be classified. The median follow-up duration after the initiation of treatment was 16 months. The patient characteristics between the groups, except for age, were not significantly different. Intergroup differences in ORR (42% vs. 40%; p = 0.818), PFS (HR: 0.820, 95% CI 0.455-1.479; p = 0.510), and median OS (HR: 1.492, 95% CI 0.737-3.020; p = 0.267) were not significant. The incidence of adverse events (50% vs. 67%; p = 0.111) and nivolumab plus ipilimumab discontinuation due to adverse events was not significantly different between the groups (14% vs. 13%; p = 0.877). CONCLUSIONS The effectiveness of nivolumab plus ipilimumab was comparable between patients with metastatic RCC aged < 75 and those ≥ 75 years with respect to their ORRs, PFS, OS, and adverse event rates.
Collapse
Affiliation(s)
- Mizuki Kobayashi
- Department of Urology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Kazuyuki Numakura
- Department of Urology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan.
| | - Shingo Hatakeyama
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Toshiya Ishida
- Department of Urology, Akita City Hospital, Akita, Japan
| | - Atsushi Koizumi
- Department of Urology, Japanese Red Cross Hospital Akita, Akita, Japan
| | - Kazuki Tadachi
- Department of Urology, Iwate Prefectural Isawa Hospital, Oshu, Japan
| | - Ryoma Igarashi
- Department of Urology, Hiraka General Hospital, Yokote, Japan
| | | | - Yumina Muto
- Department of Urology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Yuya Sekine
- Department of Urology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Ryuta Sobu
- Department of Urology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Hajime Sasagawa
- Department of Urology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Hideo Akashi
- Department of Anatomy, Akita University Graduate School of Medicine, Akita, Japan
| | - Soki Kashima
- Department of Urology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Ryohei Yamamoto
- Department of Urology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Taketoshi Nara
- Department of Urology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Mitsuru Saito
- Department of Urology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Shintaro Narita
- Department of Urology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Chikara Ohyama
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tomonori Habuchi
- Department of Urology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| |
Collapse
|
16
|
Shive CL, Kowal CM, Desotelle AF, Nguyen Y, Carbone S, Kostadinova L, Davitkov P, O’Mara M, Reihs A, Siddiqui H, Wilson BM, Anthony DD. Endotoxemia Associated with Liver Disease Correlates with Systemic Inflammation and T Cell Exhaustion in Hepatitis C Virus Infection. Cells 2023; 12:2034. [PMID: 37626844 PMCID: PMC10453378 DOI: 10.3390/cells12162034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/29/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Both acute and chronic hepatitis C virus (HCV) infections are characterized by inflammation. HCV and reduced liver blood filtration contribute to inflammation; however, the mechanisms of systemic immune activation and dysfunction as a result of HCV infection are not clear. We measured circulating inflammatory mediators (IL-6, IP10, sCD163, sCD14), indices of endotoxemia (EndoCab, LBP, FABP), and T cell markers of exhaustion and senescence (PD-1, TIGIT, CD57, KLRG-1) in HCV-infected participants, and followed a small cohort after direct-acting anti-viral therapy. IL-6, IP10, Endocab, LBP, and FABP were elevated in HCV participants, as were T cell co-expression of exhaustion and senescence markers. We found positive associations between IL-6, IP10, EndoCab, LBP, and co-expression of T cell markers of exhaustion and senescence. We also found numerous associations between reduced liver function, as measured by plasma albumin levels, and T cell exhaustion/senescence, inflammation, and endotoxemia. We found positive associations between liver stiffness (TE score) and plasma levels of IL-6, IP10, and LBP. Lastly, plasma IP10 and the proportion of CD8 T cells co-expressing PD-1 and CD57 decreased after initiation of direct-acting anti-viral therapy. Although associations do not prove causality, our results support the model that translocation of microbial products, resulting from decreased liver blood filtration, during HCV infection drives chronic inflammation that results in T cell exhaustion/senescence and contributes to systemic immune dysfunction.
Collapse
Affiliation(s)
- Carey L. Shive
- Cleveland VA Medical Center, Cleveland, OH 44106, USA; (C.M.K.); (A.F.D.); (Y.N.); (S.C.); (L.K.); (P.D.); (M.O.); (A.R.); (H.S.); (B.M.W.); (D.D.A.)
- Pathology Department, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Corinne M. Kowal
- Cleveland VA Medical Center, Cleveland, OH 44106, USA; (C.M.K.); (A.F.D.); (Y.N.); (S.C.); (L.K.); (P.D.); (M.O.); (A.R.); (H.S.); (B.M.W.); (D.D.A.)
| | - Alexandra F. Desotelle
- Cleveland VA Medical Center, Cleveland, OH 44106, USA; (C.M.K.); (A.F.D.); (Y.N.); (S.C.); (L.K.); (P.D.); (M.O.); (A.R.); (H.S.); (B.M.W.); (D.D.A.)
| | - Ynez Nguyen
- Cleveland VA Medical Center, Cleveland, OH 44106, USA; (C.M.K.); (A.F.D.); (Y.N.); (S.C.); (L.K.); (P.D.); (M.O.); (A.R.); (H.S.); (B.M.W.); (D.D.A.)
| | - Sarah Carbone
- Cleveland VA Medical Center, Cleveland, OH 44106, USA; (C.M.K.); (A.F.D.); (Y.N.); (S.C.); (L.K.); (P.D.); (M.O.); (A.R.); (H.S.); (B.M.W.); (D.D.A.)
| | - Lenche Kostadinova
- Cleveland VA Medical Center, Cleveland, OH 44106, USA; (C.M.K.); (A.F.D.); (Y.N.); (S.C.); (L.K.); (P.D.); (M.O.); (A.R.); (H.S.); (B.M.W.); (D.D.A.)
| | - Perica Davitkov
- Cleveland VA Medical Center, Cleveland, OH 44106, USA; (C.M.K.); (A.F.D.); (Y.N.); (S.C.); (L.K.); (P.D.); (M.O.); (A.R.); (H.S.); (B.M.W.); (D.D.A.)
| | - Megan O’Mara
- Cleveland VA Medical Center, Cleveland, OH 44106, USA; (C.M.K.); (A.F.D.); (Y.N.); (S.C.); (L.K.); (P.D.); (M.O.); (A.R.); (H.S.); (B.M.W.); (D.D.A.)
| | - Alexandra Reihs
- Cleveland VA Medical Center, Cleveland, OH 44106, USA; (C.M.K.); (A.F.D.); (Y.N.); (S.C.); (L.K.); (P.D.); (M.O.); (A.R.); (H.S.); (B.M.W.); (D.D.A.)
| | - Hinnah Siddiqui
- Cleveland VA Medical Center, Cleveland, OH 44106, USA; (C.M.K.); (A.F.D.); (Y.N.); (S.C.); (L.K.); (P.D.); (M.O.); (A.R.); (H.S.); (B.M.W.); (D.D.A.)
| | - Brigid M. Wilson
- Cleveland VA Medical Center, Cleveland, OH 44106, USA; (C.M.K.); (A.F.D.); (Y.N.); (S.C.); (L.K.); (P.D.); (M.O.); (A.R.); (H.S.); (B.M.W.); (D.D.A.)
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Donald D. Anthony
- Cleveland VA Medical Center, Cleveland, OH 44106, USA; (C.M.K.); (A.F.D.); (Y.N.); (S.C.); (L.K.); (P.D.); (M.O.); (A.R.); (H.S.); (B.M.W.); (D.D.A.)
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
17
|
Choi H, Lee HJ, Sohn HJ, Kim TG. CD40 ligand stimulation affects the number and memory phenotypes of human peripheral CD8 + T cells. BMC Immunol 2023; 24:15. [PMID: 37391734 PMCID: PMC10311846 DOI: 10.1186/s12865-023-00547-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 06/06/2023] [Indexed: 07/02/2023] Open
Abstract
BACKGROUND CD40L is primarily expressed on activated CD4+ T cells and binds to CD40 which is expressed by various cells including dendritic cells, macrophages and B lymphocytes. While CD40-CD40L interaction is known to be direct between B cells and CD4+ T cells which results in proliferation and immunoglobulin isotype switching, antigen presenting cells (APCs) were thought to be involved in the delivery of CD4+ help to CD8+ T cells by cross-talk between CD4+ and CD8+ T cells and APCs. However, subsequent study demonstrated that CD40L signal can be directly delivered to CD8+ T cells by CD40 expression on CD8+ T cells. Since most studies have been carried out in murine models, we aimed to investigate the direct effect of CD40L on human peripheral CD8+ T cells. RESULTS Human peripheral CD8+ T cells were isolated to exclude the indirect effect of B cells or dendritic cells. Upon activation, CD40 expression on CD8+ T cells was transiently induced and stimulation with artificial APCs expressing CD40L (aAPC-CD40L) increased the number of total and central memory CD8+ T cells and also pp65 specific CD8+ T cells. Stimulation with aAPC-CD40L also resulted in higher proportion of central memory CD8+ T cells. CONCLUSIONS Our study suggests that CD40L has an effect on the increased number of CD8+ T cells through CD40 expressed on activated CD8+ T cells and has influence on memory CD8+ T cell generation. Our results may provide a new perspective of the effect of CD40L on human peripheral CD8+ T cells, which differ according to the memory differentiation status of CD8+ T cells.
Collapse
Affiliation(s)
- Haeyoun Choi
- Department of Microbiology, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seoul, 06591, Republic of Korea
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seoul, 06591, Republic of Korea
| | - Hyun-Joo Lee
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seoul, 06591, Republic of Korea
| | - Hyun-Jung Sohn
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seoul, 06591, Republic of Korea
| | - Tai-Gyu Kim
- Department of Microbiology, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seoul, 06591, Republic of Korea.
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seoul, 06591, Republic of Korea.
| |
Collapse
|
18
|
Imai H, Kawase T, Yoshida S, Mese T, Roh S, Fujita A, Uchiki T, Sasaki A, Nagamatsu S, Takazawa A, Ichinohe T, Koshima I. Peripheral T cell profiling reveals downregulated exhaustion marker and increased diversity in lymphedema post-lymphatic venous anastomosis. iScience 2023; 26:106822. [PMID: 37250774 PMCID: PMC10212982 DOI: 10.1016/j.isci.2023.106822] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/17/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
Lymphedema is a progressive condition accompanying cellulitis and angiosarcoma, suggesting its association with immune dysfunction. Lymphatic venous anastomosis (LVA) can provide relief from cellulitis and angiosarcoma. However, the immune status of peripheral T cells during lymphedema and post-LVA remains poorly understood. Using peripheral blood T cells from lymphedema, post-LVA, and healthy controls (HCs), we compared the profile of T cell subsets and T cell receptor (TCR) diversity. PD-1+ Tim-3 + expression was downregulated in post-LVA compared with lymphedema. IFN-γ levels in CD4+PD-1+ T cells and IL-17A levels in CD4+ T cells were downregulated in post-LVA compared with lymphedema. TCR diversity was decreased in lymphedema compared with HCs; such TCR skewing was drastically improved in post-LVA. T cells in lymphedema were associated with exhaustion, inflammation, and diminished diversity, which were relieved post-LVA. The results provide insights into the peripheral T cell population in lymphedema and highlight the immune modulatory importance of LVA.
Collapse
Affiliation(s)
- Hirofumi Imai
- International Center for Lymphedema, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Takakazu Kawase
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
- International Center for Cell and Gene Therapy, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Shuhei Yoshida
- International Center for Lymphedema, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Toshiro Mese
- International Center for Lymphedema, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Solji Roh
- International Center for Lymphedema, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Asuka Fujita
- Department of Plastic and Reconstructive Surgery, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Toshio Uchiki
- Department of Plastic and Reconstructive Surgery, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Ayano Sasaki
- Department of Plastic and Reconstructive Surgery, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Shogo Nagamatsu
- Department of Plastic and Reconstructive Surgery, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| | - Atsushi Takazawa
- Department of Orthopaedic Surgery, Hiroshima Hiramatsu Hospital, Hiroshima 732-0816, Japan
| | - Tatsuo Ichinohe
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Isao Koshima
- International Center for Lymphedema, Hiroshima University Hospital, Hiroshima 734-8551, Japan
- Department of Plastic and Reconstructive Surgery, Hiroshima University Hospital, Hiroshima 734-8551, Japan
| |
Collapse
|
19
|
Han S, Georgiev P, Ringel AE, Sharpe AH, Haigis MC. Age-associated remodeling of T cell immunity and metabolism. Cell Metab 2023; 35:36-55. [PMID: 36473467 PMCID: PMC10799654 DOI: 10.1016/j.cmet.2022.11.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/14/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022]
Abstract
Aging results in remodeling of T cell immunity and is associated with poor clinical outcomes in age-related diseases such as cancer. Among the hallmarks of aging, changes in host and cellular metabolism critically affect the development, maintenance, and function of T cells. Although metabolic perturbations impact anti-tumor T cell responses, the link between age-associated metabolic dysfunction and anti-tumor immunity remains unclear. In this review, we summarize recent advances in our understanding of aged T cell metabolism, with a focus on the bioenergetic and immunologic features of T cell subsets unique to the aging process. We also survey insights into mechanisms of metabolic T cell dysfunction in aging and discuss the impacts of aging on the efficacy of cancer immunotherapy. As the average life expectancy continues to increase, understanding the interplay between age-related metabolic reprogramming and maladaptive T cell immunity will be instrumental for the development of therapeutic strategies for older patients.
Collapse
Affiliation(s)
- SeongJun Han
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Peter Georgiev
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Alison E Ringel
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA.
| | - Marcia C Haigis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
20
|
Zhang H, Jadhav RR, Cao W, Goronzy IN, Zhao TV, Jin J, Ohtsuki S, Hu Z, Morales J, Greenleaf WJ, Weyand CM, Goronzy JJ. Aging-associated HELIOS deficiency in naive CD4 + T cells alters chromatin remodeling and promotes effector cell responses. Nat Immunol 2023; 24:96-109. [PMID: 36510022 PMCID: PMC10118794 DOI: 10.1038/s41590-022-01369-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 10/24/2022] [Indexed: 12/14/2022]
Abstract
Immune aging combines cellular defects in adaptive immunity with the activation of pathways causing a low-inflammatory state. Here we examined the influence of age on the kinetic changes in the epigenomic and transcriptional landscape induced by T cell receptor (TCR) stimulation in naive CD4+ T cells. Despite attenuated TCR signaling in older adults, TCR activation accelerated remodeling of the epigenome and induced transcription factor networks favoring effector cell differentiation. We identified increased phosphorylation of STAT5, at least in part due to aberrant IL-2 receptor and lower HELIOS expression, as upstream regulators. Human HELIOS-deficient, naive CD4+ T cells, when transferred into human-synovium-mouse chimeras, infiltrated tissues more efficiently. Inhibition of IL-2 or STAT5 activity in T cell responses of older adults restored the epigenetic response pattern to the one seen in young adults. In summary, reduced HELIOS expression in non-regulatory naive CD4+ T cells in older adults directs T cell fate decisions toward inflammatory effector cells that infiltrate tissue.
Collapse
Affiliation(s)
- Huimin Zhang
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - Rohit R Jadhav
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - Wenqiang Cao
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
- Department of Medicine, Stanford University, Stanford, CA, USA
- Health Sciences Institute, China Medical University, Shenyang, China
| | - Isabel N Goronzy
- Biochemistry and Molecular Biophysics, California Institute of Technology, Pasadena, CA, USA
| | - Tuantuan V Zhao
- Department of Medicine, Stanford University, Stanford, CA, USA
- Department of Medicine, Division of Rheumatology, Mayo Clinic, Rochester, MN, USA
| | - Jun Jin
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - Shozo Ohtsuki
- Department of Medicine, Stanford University, Stanford, CA, USA
- Department of Medicine, Division of Rheumatology, Mayo Clinic, Rochester, MN, USA
| | - Zhaolan Hu
- Department of Medicine, Stanford University, Stanford, CA, USA
- Department of Medicine, Division of Rheumatology, Mayo Clinic, Rochester, MN, USA
| | - Jose Morales
- Department of Medicine, Division of Rheumatology, Mayo Clinic, Rochester, MN, USA
| | | | - Cornelia M Weyand
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
- Department of Medicine, Stanford University, Stanford, CA, USA
- Department of Medicine, Division of Rheumatology, Mayo Clinic, Rochester, MN, USA
| | - Jörg J Goronzy
- Department of Immunology, Mayo Clinic, Rochester, MN, USA.
- Department of Medicine, Stanford University, Stanford, CA, USA.
- Department of Medicine, Division of Rheumatology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
21
|
Abstract
Age is the key risk factor for diseases and disabilities of the elderly. Efforts to tackle age-related diseases and increase healthspan have suggested targeting the ageing process itself to 'rejuvenate' physiological functioning. However, achieving this aim requires measures of biological age and rates of ageing at the molecular level. Spurred by recent advances in high-throughput omics technologies, a new generation of tools to measure biological ageing now enables the quantitative characterization of ageing at molecular resolution. Epigenomic, transcriptomic, proteomic and metabolomic data can be harnessed with machine learning to build 'ageing clocks' with demonstrated capacity to identify new biomarkers of biological ageing.
Collapse
Affiliation(s)
- Jarod Rutledge
- Department of Genetics, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Paul F. Glenn Center for the Biology of Ageing, Stanford University School of Medicine, Stanford, CA, USA
| | - Hamilton Oh
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Paul F. Glenn Center for the Biology of Ageing, Stanford University School of Medicine, Stanford, CA, USA
- Graduate Program in Stem Cell and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Tony Wyss-Coray
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
- Paul F. Glenn Center for the Biology of Ageing, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
22
|
Jinna N, Rida P, Su T, Gong Z, Yao S, LaBarge M, Natarajan R, Jovanovic-Talisman T, Ambrosone C, Seewaldt V. The DARC Side of Inflamm-Aging: Duffy Antigen Receptor for Chemokines (DARC/ACKR1) as a Potential Biomarker of Aging, Immunosenescence, and Breast Oncogenesis among High-Risk Subpopulations. Cells 2022; 11:cells11233818. [PMID: 36497078 PMCID: PMC9740232 DOI: 10.3390/cells11233818] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/09/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022] Open
Abstract
The proclivity of certain pre-malignant and pre-invasive breast lesions to progress while others do not continues to perplex clinicians. Clinicians remain at a crossroads with effectively managing the high-risk patient subpopulation owing to the paucity of biomarkers that can adequately risk-stratify and inform clinical decisions that circumvent unnecessary administration of cytotoxic and invasive treatments. The immune system mounts the most important line of defense against tumorigenesis and progression. Unfortunately, this defense declines or "ages" over time-a phenomenon known as immunosenescence. This results in "inflamm-aging" or the excessive infiltration of pro-inflammatory chemokines, which alters the leukocyte composition of the tissue microenvironment, and concomitant immunoediting of these leukocytes to diminish their antitumor immune functions. Collectively, these effects can foster the sequelae of neoplastic transformation and progression. The erythrocyte cell antigen, Duffy antigen receptor for chemokines(DARC/ACKR1), binds and internalizes chemokines to maintain homeostatic levels and modulate leukocyte trafficking. A negative DARC status is highly prevalent among subpopulations of West African genetic ancestry, who are at higher risk of developing breast cancer and disease progression at a younger age. However, the role of DARC in accelerated inflamm-aging and malignant transformation remains underexplored. Herein, we review compelling evidence suggesting that DARC may be protective against inflamm-aging and, therefore, reduce the risk of a high-risk lesion progressing to malignancy. We also discuss evidence supporting that immunotherapeutic intervention-based on DARC status-among high-risk subpopulations may evade malignant transformation and progression. A closer look into this unique role of DARC could glean deeper insight into the immune response profile of individual high-risk patients and their predisposition to progress as well as guide the administration of more "cyto-friendly" immunotherapeutic intervention to potentially "turn back the clock" on inflamm-aging-mediated oncogenesis and progression.
Collapse
Affiliation(s)
- Nikita Jinna
- Department of Population Science, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Padmashree Rida
- Department of Science, Rowland Hall, Salt Lake City, UT 84102, USA
| | - Tianyi Su
- Department of Science, Rowland Hall, Salt Lake City, UT 84102, USA
| | - Zhihong Gong
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Song Yao
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Mark LaBarge
- Department of Population Science, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | | | - Christine Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Victoria Seewaldt
- Department of Population Science, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
- Correspondence:
| |
Collapse
|
23
|
Watanabe M, Jergovic M, Davidson L, LaFleur BJ, Castaneda Y, Martinez C, Smithey MJ, Stowe RP, Haddad EK, Nikolich‐Žugich J. Inflammatory and immune markers in HIV-infected older adults on long-term antiretroviral therapy: Persistent elevation of sCD14 and of proinflammatory effector memory T cells. Aging Cell 2022; 21:e13681. [PMID: 35975357 PMCID: PMC9470897 DOI: 10.1111/acel.13681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/24/2022] [Accepted: 07/10/2022] [Indexed: 01/25/2023] Open
Abstract
HIV-positive patients whose viral loads are successfully controlled by active antiretroviral therapy (ART) show no clinical signs of AIDS. However, their lifespan is shorter compared with individuals with no HIV infection and they prematurely exhibit a multitude of chronic diseases typically associated with advanced age. It was hypothesized that immune system aging may correlate with, and provide useful biomarkers for, this premature loss of healthspan in HIV-positive subjects. Here, we tested whether the immune correlates of aging, including cell numbers and phenotypes, inflammatory status, and control of human cytomegalovirus (hCMV) in HIV-positive subjects on long-term successful ART (HIV+) may reveal increased "immunological age" compared with HIV-negative, age-matched cohort (HIV-) in participants between 50 and 69 years of age. Specifically, we expected that younger HIV+ subjects may immunologically resemble older individuals without HIV. We found no evidence to support this hypothesis. While T cells from HIV+ participants displayed differential expression in several differentiation and/or inhibitory/exhaustion markers in different T cell subpopulations, aging by a decade did not pronounce these changes. Similarly, while the HIV+ participants exhibited higher T cell responses and elevated inflammatory marker levels in plasma, indicative of chronic inflammation, this trait was not age-sensitive. We did find differences in immune control of hCMV, and, more importantly, a sustained elevation of sCD14 and of proinflammatory CD4 and CD8 T cell responses across age groups, pointing towards uncontrolled inflammation as a factor in reduced healthspan in successfully treated older HIV+ patients.
Collapse
Affiliation(s)
- Makiko Watanabe
- Department of ImmunobiologyUniversity of Arizona College of Medicine‐TucsonTucsonArizonaUSA,Arizona Center on AgingUniversity of Arizona College of Medicine‐TucsonTucsonArizonaUSA
| | - Mladen Jergovic
- Department of ImmunobiologyUniversity of Arizona College of Medicine‐TucsonTucsonArizonaUSA,Arizona Center on AgingUniversity of Arizona College of Medicine‐TucsonTucsonArizonaUSA
| | - Lisa Davidson
- Department of ImmunobiologyUniversity of Arizona College of Medicine‐TucsonTucsonArizonaUSA,Arizona Center on AgingUniversity of Arizona College of Medicine‐TucsonTucsonArizonaUSA
| | - Bonnie J. LaFleur
- BIO5 InstituteUniversity of ArizonaTucsonArizonaUSA,R. Ken Coit College of PharmacyUniveristy of ArizonaTucsonArizonaUSA
| | - Yvonne Castaneda
- Department of ImmunobiologyUniversity of Arizona College of Medicine‐TucsonTucsonArizonaUSA,Arizona Center on AgingUniversity of Arizona College of Medicine‐TucsonTucsonArizonaUSA
| | - Carmine Martinez
- Department of ImmunobiologyUniversity of Arizona College of Medicine‐TucsonTucsonArizonaUSA,Arizona Center on AgingUniversity of Arizona College of Medicine‐TucsonTucsonArizonaUSA
| | - Megan J. Smithey
- Department of ImmunobiologyUniversity of Arizona College of Medicine‐TucsonTucsonArizonaUSA,Arizona Center on AgingUniversity of Arizona College of Medicine‐TucsonTucsonArizonaUSA
| | | | - Elias K. Haddad
- Division of Infectious Diseases and HIV Medicine, Department of MedicineDrexel UniversityPhiladelphiaPennsylvaniaUSA
| | - Janko Nikolich‐Žugich
- Department of ImmunobiologyUniversity of Arizona College of Medicine‐TucsonTucsonArizonaUSA,Arizona Center on AgingUniversity of Arizona College of Medicine‐TucsonTucsonArizonaUSA,BIO5 InstituteUniversity of ArizonaTucsonArizonaUSA
| |
Collapse
|
24
|
Wu Q, Luo S, Xie X. Lack of Efficacy of Immune Checkpoint Inhibitors in Cancer Patients Older Than 75? J Immunother 2022; 45:307-320. [PMID: 35674663 DOI: 10.1097/cji.0000000000000426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/10/2022] [Indexed: 11/26/2022]
Abstract
This research was designed to compare the efficacy of immune checkpoint inhibitors (ICIs) in cancer patients among different age groups. Electronic databases were searched to identify relevant trials. Randomized-controlled trials (RCTs) with ICIs and RCTs that conducted subgroup analysis of overall survival (OS) and/or progression-free survival (PFS) based on age were included. Summary hazard ratio (HR) and 95% confidence interval (CI) were available. Totally, 35,777 individuals from 59 RCTs were recruited. ICIs can ameliorate OS and PFS of cancer patients in groups of below 65 year and 65-75 years. Conversely, patients in group of 75 years or above failed to acquire benefit from ICIs for both OS (HR=0.99, 95% CI: 0.91-1.09, P =0.8767) and PFS (HR=0.96, 95% CI: 0.82-1.11, P =0.5694). Subgroup analysis was performed based on class of ICIs, type of ICIs, type of cancer, line of treatment, blind method, and type of nonsmall-cell lung cancer. In all subgroups, OS and PFS were not significantly improved in patients 75 years or above. Cancer patients older than 75 years failed to acquire remarkable benefit from ICIs for both OS and PFS.
Collapse
Affiliation(s)
- Qing Wu
- Department of Oncology, Molecular Oncology Research Institute
| | - Shuimei Luo
- Department of Oncology, Molecular Oncology Research Institute
| | - Xianhe Xie
- Department of Oncology, Molecular Oncology Research Institute
- Fujian Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
25
|
Xia S, Huang J, Yan L, Han J, Zhang W, Shao H, Shen H, Wang J, Wang J, Tao C, Wang D, Wu F. miR-150 promotes progressive T cell differentiation via inhibiting FOXP1 and RC3H1. Hum Immunol 2022; 83:778-788. [PMID: 35999072 DOI: 10.1016/j.humimm.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/19/2022] [Accepted: 08/11/2022] [Indexed: 11/04/2022]
Abstract
T cells used in immune cell therapy, represented by T cell receptor therapy (TCR-T), are usually activated and proliferated in vitro and are induced to a terminally differentiated phenotype, with limited viability after transfusion back into the body. T cells exhibited a robust proliferative potential and in vivo viability in the early stages of progressive differentiation. In this study, we identified microRNAs that regulate T cell differentiation. After microRNA sequencing of the four subsets: Naïve T cells (TN), stem cell-like memory T cells (TSCM), central memory T cells (TCM), and effector memory T cells (TEM), miR-150 was identified as the most highly expressed miRNA among the four subsets and was lowly expressed in the TSCM cells. We predicted the target genes of miR-150 miRNA and performed Gene Ontology and Kyoto Encyclopaedia of Genes and Genomes analyses. We observed that the target genes of miR-150 were enriched in pathways associated with T-cell differentiation. FOXP1 and RC3H1 were identified as key target genes of miR-150 in the regulation of T-cell function. We examined the effects of miR-150 on the differentiation and function of healthy donor T-cells. We observed that miR-150 overexpression promoted T-cell differentiation to effector T-cells and effector memory T-cells, enhanced apoptosis, inhibited cell proliferation and increased secretion of pro-inflammatory cytokines such as IFN-γ and TNF-α. In addition, the expressions of early differentiation-related genes (ACTN1, CERS6, BCL2, and EOMES), advanced differentiation-related genes (KLRG1), and effector-function-related genes (PRF1 and GZMB) were significantly decreased after overexpression of miR-150. Collectively, our results suggested that miR-150 can promote progressive differentiation of T cells and the downmodulation of miR-150 expression while performing adoptive immunotherapy may inhibit T-cell differentiation and increase the proliferative potential of T cells.
Collapse
Affiliation(s)
- Shengfang Xia
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China; School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jianqing Huang
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China; School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lijun Yan
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China; School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiayi Han
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China; School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wenfeng Zhang
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China; School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hongwei Shao
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China; School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Han Shen
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China; School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jinquan Wang
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China; School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jinquan Wang
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China; School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Changli Tao
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China; School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Dingding Wang
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China; School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Fenglin Wu
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, China; School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
26
|
Shive C, Pandiyan P. Inflammation, Immune Senescence, and Dysregulated Immune Regulation in the Elderly. FRONTIERS IN AGING 2022; 3:840827. [PMID: 35821823 PMCID: PMC9261323 DOI: 10.3389/fragi.2022.840827] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/30/2022] [Indexed: 12/22/2022]
Abstract
An optimal immune response requires the appropriate interaction between the innate and the adaptive arms of the immune system as well as a proper balance of activation and regulation. After decades of life, the aging immune system is continuously exposed to immune stressors and inflammatory assaults that lead to immune senescence. In this review, we will discuss inflammaging in the elderly, specifically concentrating on IL-6 and IL-1b in the context of T lymphocytes, and how inflammation is related to mortality and morbidities, specifically cardiovascular disease and cancer. Although a number of studies suggests that the anti-inflammatory cytokine TGF-b is elevated in the elderly, heightened inflammation persists. Thus, the regulation of the immune response and the ability to return the immune system to homeostasis is also important. Therefore, we will discuss cellular alterations in aging, concentrating on senescent T cells and CD4+ CD25+ FOXP3+ regulatory T cells (Tregs) in aging
Collapse
Affiliation(s)
- Carey Shive
- Louis Stokes Cleveland VA Medical Center, United States Department of Veterans Affairs, Cleveland, OH, United States.,Case Western Reserve University, Cleveland, OH, United States
| | - Pushpa Pandiyan
- Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
27
|
Homeostatic cytokines tune naivety and stemness of cord blood-derived transgenic T cells. Cancer Gene Ther 2022; 29:961-972. [PMID: 34645974 DOI: 10.1038/s41417-021-00395-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/28/2021] [Accepted: 09/28/2021] [Indexed: 12/18/2022]
Abstract
Engineered T-cell therapies have proven to be successful in cancer and their clinical effectiveness is directly correlated with the infused T-cell differentiation profile. Indeed, stem cell memory and central memory T cells proliferate and persist longer in vivo compared with more-differentiated T cells, while conferring enhanced antitumor activity. Here, we propose an optimized process using cord blood (CB) to generate minimally differentiated T-cell products in terms of phenotype, function, gene expression, and metabolism, using peripheral blood (PB)-derived T cells cultured with IL-2 as a standard. Phenotypically, CB-derived T cells, particularly CD4 T cells, are less differentiated than their PB counterparts when cultured with IL-2 or with IL-7 and IL-15. Furthermore, culture with IL-7 and IL-15 enables better preservation of less-differentiated CB-derived T cells compared with IL-2. In addition, transcriptomic and metabolic assessments of CB-derived transgenic T cells cultured with IL-7 and IL-15 point out their naivety and stemness signature. These relatively quiescent transgenic T cells are nevertheless primed for secondary stimulation and cytokine production. In conclusion, our study indicates that CB may be used as a source of early differentiated T cells to develop more effective adoptive cancer immunotherapy.
Collapse
|
28
|
Sun X, Nguyen T, Achour A, Ko A, Cifello J, Ling C, Sharma J, Hiroi T, Zhang Y, Chia CW, Wood Iii W, Wu WW, Zukley L, Phue JN, Becker KG, Shen RF, Ferrucci L, Weng NP. Longitudinal analysis reveals age-related changes in the T cell receptor repertoire of human T cell subsets. J Clin Invest 2022; 132:158122. [PMID: 35708913 PMCID: PMC9433102 DOI: 10.1172/jci158122] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022] Open
Abstract
A diverse T cell receptor (TCR) repertoire is essential for protection against a variety of pathogens, and TCR repertoire size is believed to decline with age. However, the precise size of human TCR repertoires, in both total and subsets of T cells, as well as their changes with age, are not fully characterized. We conducted a longitudinal analysis of the human blood TCRα and TCRβ repertoire of CD4+ and CD8+ T cell subsets using a unique molecular identifier–based (UMI-based) RNA-seq method. Thorough analysis of 1.9 × 108 T cells yielded the lower estimate of TCR repertoire richness in an adult at 3.8 × 108. Alterations of the TCR repertoire with age were observed in all 4 subsets of T cells. The greatest reduction was observed in naive CD8+ T cells, while the greatest clonal expansion was in memory CD8+ T cells, and the highest increased retention of TCR sequences was in memory CD8+ T cells. Our results demonstrated that age-related TCR repertoire attrition is subset specific and more profound for CD8+ than CD4+ T cells, suggesting that aging has a more profound effect on cytotoxic as opposed to helper T cell functions. This may explain the increased susceptibility of older adults to novel infections.
Collapse
Affiliation(s)
- Xiaoping Sun
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, United States of America
| | - Thomas Nguyen
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, United States of America
| | - Achouak Achour
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, United States of America
| | - Annette Ko
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, United States of America
| | - Jeffrey Cifello
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, United States of America
| | - Chen Ling
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, United States of America
| | - Jay Sharma
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, United States of America
| | - Toyoko Hiroi
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, United States of America
| | - Yongqing Zhang
- Gene expression and Genomics Unit, Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, United States of America
| | - Chee W Chia
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, United States of America
| | - William Wood Iii
- Gene expression and Genomics Unit, Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, United States of America
| | - Wells W Wu
- Facility for Biotechnology Resources, Food and Drug Administration, Silver Spring, United States of America
| | - Linda Zukley
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, United States of America
| | - Je-Nie Phue
- Facility for Biotechnology Resources, Food and Drug Administration, Silver Spring, United States of America
| | - Kevin G Becker
- Gene expression and Genomics Unit, Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, United States of America
| | - Rong-Fong Shen
- Facility for Biotechnology Resources, Food and Drug Administration, Silver Spring, United States of America
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, United States of America
| | - Nan-Ping Weng
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, NIH, Baltimore, United States of America
| |
Collapse
|
29
|
Hu M, Alashkar Alhamwe B, Santner-Nanan B, Miethe S, Harb H, Renz H, Potaczek DP, Nanan RK. Short-Chain Fatty Acids Augment Differentiation and Function of Human Induced Regulatory T Cells. Int J Mol Sci 2022; 23:ijms23105740. [PMID: 35628549 PMCID: PMC9143307 DOI: 10.3390/ijms23105740] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/08/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022] Open
Abstract
Regulatory T cells (Tregs) control immune system activity and inhibit inflammation. While, in mice, short-chain fatty acids (SCFAs) are known to be essential regulators of naturally occurring and in vitro induced Tregs (iTregs), data on their contribution to the development of human iTregs are sparse, with no reports of the successful SCFAs-augmented in vitro generation of fully functional human iTregs. Likewise, markers undoubtedly defining human iTregs are missing. Here, we aimed to generate fully functional human iTregs in vitro using protocols involving SCFAs and to characterize the underlying mechanism. Our target was to identify the potential phenotypic markers best characterizing human iTregs. Naïve non-Treg CD4+ cells were isolated from the peripheral blood of 13 healthy adults and cord blood of 12 healthy term newborns. Cells were subjected to differentiation toward iTregs using a transforming growth factor β (TGF-β)-based protocol, with or without SCFAs (acetate, butyrate, or propionate). Thereafter, they were subjected to flow cytometric phenotyping or a suppression assay. During differentiation, cells were collected for chromatin-immunoprecipitation (ChIP)-based analysis of histone acetylation. The enrichment of the TGF-β-based protocol with butyrate or propionate potentiated the in vitro differentiation of human naïve CD4+ non-Tregs towards iTregs and augmented the suppressive capacity of the latter. These seemed to be at least partly underlain by the effects of SCFAs on the histone acetylation levels in differentiating cells. GITR, ICOS, CD39, PD-1, and PD-L1 were proven to be potential markers of human iTregs. Our results might boost the further development of Treg-based therapies against autoimmune, allergic and other chronic inflammatory disorders.
Collapse
Affiliation(s)
- Mingjing Hu
- Charles Perkins Centre Nepean, Sydney Medical School Nepean, The University of Sydney, Sydney, NSW 2747, Australia; (M.H.); (B.S.-N.)
- International Inflammation (in-VIVO) Network, Worldwide Universities Network (WUN), West New York, NJ 10001, USA; (B.A.A.); (H.H.); (H.R.); (D.P.P.)
- Discipline of Obstetrics, Gynaecology and Neonatology, Sydney Medical School Nepean, The University of Sydney, Sydney, NSW 2747, Australia
- Nepean Hospital, Derby Street, Kingswood, NSW 2747, Australia
| | - Bilal Alashkar Alhamwe
- International Inflammation (in-VIVO) Network, Worldwide Universities Network (WUN), West New York, NJ 10001, USA; (B.A.A.); (H.H.); (H.R.); (D.P.P.)
- Institute for Tumor Immunology, Clinic for Hematology, Immunology, and Oncology, Philipps University Marburg, 35043 Marburg, Germany
- Institute of Laboratory Medicine, Philipps University of Marburg-Medical Faculty, Member of the German Center for Lung Research (DZL), and the Universities of Giessen and Marburg Lung Center (UGMLC), 35043 Marburg, Germany;
- College of Pharmacy, International University for Science and Technology (IUST), Daraa 15, Syria
| | - Brigitte Santner-Nanan
- Charles Perkins Centre Nepean, Sydney Medical School Nepean, The University of Sydney, Sydney, NSW 2747, Australia; (M.H.); (B.S.-N.)
- International Inflammation (in-VIVO) Network, Worldwide Universities Network (WUN), West New York, NJ 10001, USA; (B.A.A.); (H.H.); (H.R.); (D.P.P.)
| | - Sarah Miethe
- Institute of Laboratory Medicine, Philipps University of Marburg-Medical Faculty, Member of the German Center for Lung Research (DZL), and the Universities of Giessen and Marburg Lung Center (UGMLC), 35043 Marburg, Germany;
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Philipps University of Marburg-Medical Faculty, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center (UGMLC), 35043 Marburg, Germany
| | - Hani Harb
- International Inflammation (in-VIVO) Network, Worldwide Universities Network (WUN), West New York, NJ 10001, USA; (B.A.A.); (H.H.); (H.R.); (D.P.P.)
- Institute of Laboratory Medicine, Philipps University of Marburg-Medical Faculty, Member of the German Center for Lung Research (DZL), and the Universities of Giessen and Marburg Lung Center (UGMLC), 35043 Marburg, Germany;
- Institute of Medical Microbiology and Virology, Medical Faculty, Technische Universität Dresden, 01307 Dresden, Germany
| | - Harald Renz
- International Inflammation (in-VIVO) Network, Worldwide Universities Network (WUN), West New York, NJ 10001, USA; (B.A.A.); (H.H.); (H.R.); (D.P.P.)
- Institute of Laboratory Medicine, Philipps University of Marburg-Medical Faculty, Member of the German Center for Lung Research (DZL), and the Universities of Giessen and Marburg Lung Center (UGMLC), 35043 Marburg, Germany;
| | - Daniel P. Potaczek
- International Inflammation (in-VIVO) Network, Worldwide Universities Network (WUN), West New York, NJ 10001, USA; (B.A.A.); (H.H.); (H.R.); (D.P.P.)
- Institute of Laboratory Medicine, Philipps University of Marburg-Medical Faculty, Member of the German Center for Lung Research (DZL), and the Universities of Giessen and Marburg Lung Center (UGMLC), 35043 Marburg, Germany;
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Philipps University of Marburg-Medical Faculty, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center (UGMLC), 35043 Marburg, Germany
| | - Ralph K. Nanan
- Charles Perkins Centre Nepean, Sydney Medical School Nepean, The University of Sydney, Sydney, NSW 2747, Australia; (M.H.); (B.S.-N.)
- International Inflammation (in-VIVO) Network, Worldwide Universities Network (WUN), West New York, NJ 10001, USA; (B.A.A.); (H.H.); (H.R.); (D.P.P.)
- Correspondence: ; Tel.: +61-2-4734-2612; Fax: +61-2-4734-1144
| |
Collapse
|
30
|
López-Cantillo G, Urueña C, Camacho BA, Ramírez-Segura C. CAR-T Cell Performance: How to Improve Their Persistence? Front Immunol 2022; 13:878209. [PMID: 35572525 PMCID: PMC9097681 DOI: 10.3389/fimmu.2022.878209] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/25/2022] [Indexed: 01/07/2023] Open
Abstract
Adoptive cell therapy with T cells reprogrammed to express chimeric antigen receptors (CAR-T cells) has been highly successful in patients with hematological neoplasms. However, its therapeutic benefits have been limited in solid tumor cases. Even those patients who respond to this immunotherapy remain at risk of relapse due to the short-term persistence or non-expansion of CAR-T cells; moreover, the hostile tumor microenvironment (TME) leads to the dysfunction of these cells after reinfusion. Some research has shown that, in adoptive T-cell therapies, the presence of less differentiated T-cell subsets within the infusion product is associated with better clinical outcomes. Naive and memory T cells persist longer and exhibit greater antitumor activity than effector T cells. Therefore, new methods are being studied to overcome the limitations of this therapy to generate CAR-T cells with these ideal phenotypes. In this paper, we review the characteristics of T-cell subsets and their implications in the clinical outcomes of adoptive therapy with CAR-T cells. In addition, we describe some strategies developed to overcome the reduced persistence of CAR T-cells and alternatives to improve this therapy by increasing the expansion ability and longevity of modified T cells. These methods include cell culture optimization, incorporating homeostatic cytokines during the expansion phase of manufacturing, modulation of CAR-T cell metabolism, manipulating signaling pathways involved in T-cell differentiation, and strategies related to CAR construct designs.
Collapse
Affiliation(s)
- Gina López-Cantillo
- Laboratorio de Investigación en Ingeniería Celular y Molecular, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud (IDCBIS), Bogotá, Colombia
| | - Claudia Urueña
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | | | - Cesar Ramírez-Segura
- Laboratorio de Investigación en Ingeniería Celular y Molecular, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud (IDCBIS), Bogotá, Colombia
- Instituto Distrital de Ciencia Biotecnología e Innovación en Salud (IDCBIS), Bogotá, Colombia
| |
Collapse
|
31
|
Lo JW, de Mucha MV, Henderson S, Roberts LB, Constable LE, Garrido‐Mesa N, Hertweck A, Stolarczyk E, Houlder EL, Jackson I, MacDonald AS, Powell N, Neves JF, Howard JK, Jenner RG, Lord GM. A population of naive-like CD4 + T cells stably polarized to the T H 1 lineage. Eur J Immunol 2022; 52:566-581. [PMID: 35092032 PMCID: PMC9304323 DOI: 10.1002/eji.202149228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 11/19/2021] [Accepted: 01/13/2022] [Indexed: 11/11/2022]
Abstract
T-bet is the lineage-specifying transcription factor for CD4+ TH 1 cells. T-bet has also been found in other CD4+ T cell subsets, including TH 17 cells and Treg, where it modulates their functional characteristics. However, we lack information on when and where T-bet is expressed during T cell differentiation and how this impacts T cell differentiation and function. To address this, we traced the ontogeny of T-bet-expressing cells using a fluorescent fate-mapping mouse line. We demonstrate that T-bet is expressed in a subset of CD4+ T cells that have naïve cell surface markers and transcriptional profile and that this novel cell population is phenotypically and functionally distinct from previously described populations of naïve and memory CD4+ T cells. Naïve-like T-bet-experienced cells are polarized to the TH 1 lineage, predisposed to produce IFN-γ upon cell activation, and resist repolarization to other lineages in vitro and in vivo. These results demonstrate that lineage-specifying factors can polarize T cells in the absence of canonical markers of T cell activation and that this has an impact on the subsequent T-helper response.
Collapse
Affiliation(s)
- Jonathan W. Lo
- School of Immunology and Microbial SciencesKing's College LondonLondonUK
- Division of Digestive DiseasesFaculty of MedicineImperial College LondonLondonUK
| | - Maria Vila de Mucha
- UCL Cancer Institute and CRUK UCL CentreUniversity College London (UCL)LondonUK
| | - Stephen Henderson
- UCL Cancer Institute and CRUK UCL CentreUniversity College London (UCL)LondonUK
| | - Luke B. Roberts
- School of Immunology and Microbial SciencesKing's College LondonLondonUK
| | - Laura E. Constable
- School of Immunology and Microbial SciencesKing's College LondonLondonUK
- Division of Digestive DiseasesFaculty of MedicineImperial College LondonLondonUK
| | - Natividad Garrido‐Mesa
- School of Immunology and Microbial SciencesKing's College LondonLondonUK
- School of Life Sciences, Pharmacy and ChemistryKingston UniversityLondonUK
| | - Arnulf Hertweck
- UCL Cancer Institute and CRUK UCL CentreUniversity College London (UCL)LondonUK
| | - Emilie Stolarczyk
- Abcam Plc.Cambridge Biomedical CampusCambridgeUK
- School of Cardiovascular Medicine and SciencesGuy's Campus, King's College LondonLondonUK
| | - Emma L. Houlder
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Ian Jackson
- School of Immunology and Microbial SciencesKing's College LondonLondonUK
| | - Andrew S. MacDonald
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Nick Powell
- School of Immunology and Microbial SciencesKing's College LondonLondonUK
- Division of Digestive DiseasesFaculty of MedicineImperial College LondonLondonUK
| | - Joana F. Neves
- School of Immunology and Microbial SciencesKing's College LondonLondonUK
- Centre for Host‐Microbiome InteractionsKing's College LondonLondonUK
| | - Jane K. Howard
- School of Cardiovascular Medicine and SciencesGuy's Campus, King's College LondonLondonUK
| | - Richard G. Jenner
- UCL Cancer Institute and CRUK UCL CentreUniversity College London (UCL)LondonUK
| | - Graham M. Lord
- School of Immunology and Microbial SciencesKing's College LondonLondonUK
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
- School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| |
Collapse
|
32
|
Nicoli F, Cabral-Piccin MP, Papagno L, Gallerani E, Fusaro M, Folcher V, Dubois M, Clave E, Vallet H, Frere JJ, Gostick E, Llewellyn-Lacey S, Price DA, Toubert A, Dupré L, Boddaert J, Caputo A, Gavioli R, Appay V. Altered Basal Lipid Metabolism Underlies the Functional Impairment of Naive CD8 + T Cells in Elderly Humans. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:562-570. [PMID: 35031578 PMCID: PMC7615155 DOI: 10.4049/jimmunol.2100194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 11/24/2021] [Indexed: 12/26/2022]
Abstract
Aging is associated with functional deficits in the naive T cell compartment, which compromise the generation of de novo immune responses against previously unencountered Ags. The mechanisms that underlie this phenomenon have nonetheless remained unclear. We found that naive CD8+ T cells in elderly humans were prone to apoptosis and proliferated suboptimally in response to stimulation via the TCR. These abnormalities were associated with dysregulated lipid metabolism under homeostatic conditions and enhanced levels of basal activation. Importantly, reversal of the bioenergetic anomalies with lipid-altering drugs, such as rosiglitazone, almost completely restored the Ag responsiveness of naive CD8+ T cells. Interventions that favor lipid catabolism may therefore find utility as adjunctive therapies in the elderly to promote vaccine-induced immunity against targetable cancers and emerging pathogens, such as seasonal influenza viruses and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
Collapse
Affiliation(s)
- Francesco Nicoli
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM U1135, Paris, France;
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Mariela P Cabral-Piccin
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM U1135, Paris, France
| | - Laura Papagno
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM U1135, Paris, France
| | - Eleonora Gallerani
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Mathieu Fusaro
- Toulouse Institute for Infectious and Inflammatory Diseases, Université Toulouse III, INSERM UMR1291/CNRS UMR5051, Toulouse, France
| | - Victor Folcher
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM U1135, Paris, France
| | - Marion Dubois
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM U1135, Paris, France
| | - Emmanuel Clave
- Institut de Recherche Saint Louis, EMiLy, Université de Paris, INSERM U1160, Paris, France
| | - Hélène Vallet
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM U1135, Paris, France
- Service de Gériatrie, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - Justin J Frere
- Department of Immunobiology and the Arizona Center on Aging, University of Arizona College of Medicine Tucson, Tucson, AZ
| | - Emma Gostick
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Sian Llewellyn-Lacey
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
- Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Antoine Toubert
- Institut de Recherche Saint Louis, EMiLy, Université de Paris, INSERM U1160, Paris, France
- Laboratoire d'Immunologie et d'Histocompatibilité, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Loïc Dupré
- Toulouse Institute for Infectious and Inflammatory Diseases, Université Toulouse III, INSERM UMR1291/CNRS UMR5051, Toulouse, France
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Jacques Boddaert
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM U1135, Paris, France
- Service de Gériatrie, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - Antonella Caputo
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Riccardo Gavioli
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Victor Appay
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM U1135, Paris, France;
- International Research Center of Medical Sciences, Kumamoto University, Kumamoto, Japan; and
- Université de Bordeaux, CNRS UMR5164, INSERM ERL1303, ImmunoConcEpT, Bordeaux, France
| |
Collapse
|
33
|
Talebi M, Mohammadi Vadoud SA, Haratian A, Talebi M, Farkhondeh T, Pourbagher-Shahri AM, Samarghandian S. The interplay between oxidative stress and autophagy: focus on the development of neurological diseases. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2022; 18:3. [PMID: 35093121 PMCID: PMC8799983 DOI: 10.1186/s12993-022-00187-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 01/17/2022] [Indexed: 12/12/2022]
Abstract
Regarding the epidemiological studies, neurological dysfunctions caused by cerebral ischemia or neurodegenerative diseases (NDDs) have been considered a pointed matter. Mount-up shreds of evidence support that both autophagy and reactive oxygen species (ROS) are involved in the commencement and progression of neurological diseases. Remarkably, oxidative stress prompted by an increase of ROS threatens cerebral integrity and improves the severity of other pathogenic agents such as mitochondrial damage in neuronal disturbances. Autophagy is anticipated as a cellular defending mode to combat cytotoxic substances and damage. The recent document proposes that the interrelation of autophagy and ROS creates a crucial function in controlling neuronal homeostasis. This review aims to overview the cross-talk among autophagy and oxidative stress and its molecular mechanisms in various neurological diseases to prepare new perceptions into a new treatment for neurological disorders. Furthermore, natural/synthetic agents entailed in modulation/regulation of this ambitious cross-talk are described.
Collapse
Affiliation(s)
- Marjan Talebi
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyyed Ali Mohammadi Vadoud
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Haratian
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Talebi
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, 76019, USA
- Viatris Pharmaceuticals Inc, 3300 Research Plaza, San Antonio, TX, 78235, USA
| | - Tahereh Farkhondeh
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
- Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
34
|
Lambert K, Moo KG, Arnett A, Goel G, Hu A, Flynn KJ, Speake C, Wiedeman AE, Gersuk VH, Linsley PS, Greenbaum CJ, Long SA, Partridge R, Buckner JH, Khor B. Deep immune phenotyping reveals similarities between aging, Down syndrome, and autoimmunity. Sci Transl Med 2022; 14:eabi4888. [PMID: 35020411 DOI: 10.1126/scitranslmed.abi4888] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Katharina Lambert
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101, USA
| | - Keagan G Moo
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101, USA
| | - Azlann Arnett
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101, USA
| | - Gautam Goel
- Center for Systems Immunology, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101, USA
| | - Alex Hu
- Center for Systems Immunology, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101, USA
| | - Kaitlin J Flynn
- Center for Systems Immunology, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101, USA
| | - Cate Speake
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101, USA
| | - Alice E Wiedeman
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101, USA
| | - Vivian H Gersuk
- Center for Systems Immunology, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101, USA
| | - Peter S Linsley
- Center for Systems Immunology, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101, USA
| | - Carla J Greenbaum
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101, USA
| | - S Alice Long
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101, USA
| | - Rebecca Partridge
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101, USA.,Department of Pediatrics, Virginia Mason Medical Center, 100 N.E. Gilman Blvd., Issaquah, WA 98027, USA
| | - Jane H Buckner
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101, USA
| | - Bernard Khor
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle, WA 98101, USA
| |
Collapse
|
35
|
Tian G, Li M, Lv G. Analysis of T-Cell Receptor Repertoire in Transplantation: Fingerprint of T Cell-mediated Alloresponse. Front Immunol 2022; 12:778559. [PMID: 35095851 PMCID: PMC8790170 DOI: 10.3389/fimmu.2021.778559] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
T cells play a key role in determining allograft function by mediating allogeneic immune responses to cause rejection, and recent work pointed their role in mediating tolerance in transplantation. The unique T-cell receptor (TCR) expressed on the surface of each T cell determines the antigen specificity of the cell and can be the specific fingerprint for identifying and monitoring. Next-generation sequencing (NGS) techniques provide powerful tools for deep and high-throughput TCR profiling, and facilitate to depict the entire T cell repertoire profile and trace antigen-specific T cells in circulation and local tissues. Tailing T cell transcriptomes and TCR sequences at the single cell level provides a full landscape of alloreactive T-cell clones development and biofunction in alloresponse. Here, we review the recent advances in TCR sequencing techniques and computational tools, as well as the recent discovery in overall TCR profile and antigen-specific T cells tracking in transplantation. We further discuss the challenges and potential of using TCR sequencing-based assays to profile alloreactive TCR repertoire as the fingerprint for immune monitoring and prediction of rejection and tolerance.
Collapse
Affiliation(s)
| | - Mingqian Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
36
|
[Immunosenescence, viral infections and nutrition: A narrative review of scientific available evidence]. Rev Esp Geriatr Gerontol 2021; 57:33-38. [PMID: 34844781 DOI: 10.1016/j.regg.2021.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/30/2021] [Accepted: 08/05/2021] [Indexed: 01/22/2023]
Abstract
Aging of the immune system, or immunosenescence, alters the viral immune response in the elderly, especially when frailty exists. Research findings have demonstrated an imbalance in pro- and anti-inflammatory mechanisms, reduced production and diversification of T lymphocytes, and an alteration in immunovigilance and antibody synthesis. In this context, nutrition has a role in combating sarcopenia and frailty. Some food components that contribute to immune-competence are protein, vitamin D, n-3 fatty acids, antioxidant vitamins (vitamins C and E), zinc, selenium and iron. In times of a pandemic, nutritional recommendations for immune-competence in the elderly should be based on clinical studies. In this article, immunosenescence and its relationship to nutrition are addressed, including interventions studied in the context of the COVID-19 pandemic.
Collapse
|
37
|
Zhang H, Weyand CM, Goronzy JJ, Gustafson CE. Understanding T cell aging to improve anti-viral immunity. Curr Opin Virol 2021; 51:127-133. [PMID: 34688983 DOI: 10.1016/j.coviro.2021.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/24/2021] [Accepted: 09/30/2021] [Indexed: 12/26/2022]
Abstract
T cells are a critical component of the immune system and required for protection against viral and bacterial infections. However, the capacity of these cells to provide sufficient protection declines with age, leading to an increased susceptibility to and mortality from infection in older individuals. In many cases, it also contributes to poor vaccine-induced immunity. Understanding the basic biology behind T cell aging is key to unraveling these defects and, in turn, designing more effective vaccines and therapeutics for the older population. Here, we will discuss recent studies that have provided significant insight into the features of T cell aging, how these features may contribute to poor immune responses with advancing age and newer avenues of research that may further enhance anti-viral immunity in older individuals.
Collapse
Affiliation(s)
- Huimin Zhang
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA 94305, USA; Department of Medicine, Veterans Administration Healthcare System, 3801 Miranda Ave, Palo Alto, CA 94304, USA
| | - Cornelia M Weyand
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA 94305, USA; Department of Medicine, Veterans Administration Healthcare System, 3801 Miranda Ave, Palo Alto, CA 94304, USA
| | - Jörg J Goronzy
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA 94305, USA; Department of Medicine, Veterans Administration Healthcare System, 3801 Miranda Ave, Palo Alto, CA 94304, USA
| | - Claire E Gustafson
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA 94305, USA.
| |
Collapse
|
38
|
Sottile R, Panjwani MK, Lau CM, Daniyan AF, Tanaka K, Barker JN, Brentjens RJ, Sun JC, Le Luduec JB, Hsu KC. Human cytomegalovirus expands a CD8 + T cell population with loss of BCL11B expression and gain of NK cell identity. Sci Immunol 2021; 6:eabe6968. [PMID: 34559552 DOI: 10.1126/sciimmunol.abe6968] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Rosa Sottile
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - M Kazim Panjwani
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Colleen M Lau
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anthony F Daniyan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kento Tanaka
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Juliet N Barker
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Renier J Brentjens
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joseph C Sun
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY, USA
| | - Jean-Benoît Le Luduec
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Katharine C Hsu
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
39
|
Jergović M, Coplen CP, Uhrlaub JL, Besselsen DG, Cheng S, Smithey MJ, Nikolich-Žugich J. Infection-induced type I interferons critically modulate the homeostasis and function of CD8 + naïve T cells. Nat Commun 2021; 12:5303. [PMID: 34489451 PMCID: PMC8421345 DOI: 10.1038/s41467-021-25645-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 08/21/2021] [Indexed: 11/14/2022] Open
Abstract
Naïve T (Tn) cells require two homeostatic signals for long-term survival: tonic T cell receptor:self-peptide-MHC contact and IL-7 stimulation. However, how microbial exposure impacts Tn homeostasis is still unclear. Here we show that infections can lead to the expansion of a subpopulation of long-lived, Ly6C+ CD8+ Tn cells with accelerated effector function. Mechanistically, mono-infection with West Nile virus transiently, and polymicrobial exposure persistently, enhances Ly6C expression selectively on CD5hiCD8+ cells, which in the case of polyinfection translates into a numerical CD8+ Tn cell increase in the lymph nodes. This conversion and expansion of Ly6C+ Tn cells depends on IFN-I, which upregulates MHC class I expression and enhances tonic TCR signaling in differentiating Tn cells. Moreover, for Ly6C+CD8+ Tn cells, IFN-I-mediated signals optimize their homing to secondary sites, extend their lifespan, and enhance their effector differentiation and antibacterial function, particularly for low-affinity clones. Our results thus uncover significant regulation of Tn homeostasis and function via infection-driven IFN-I, with potential implications for immunotherapy.
Collapse
Affiliation(s)
- Mladen Jergović
- Department of Immunobiology and the University of Arizona Center on Aging, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Christopher P Coplen
- Department of Immunobiology and the University of Arizona Center on Aging, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Jennifer L Uhrlaub
- Department of Immunobiology and the University of Arizona Center on Aging, University of Arizona College of Medicine, Tucson, AZ, USA
| | | | - Shu Cheng
- Department of Medicine, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Megan J Smithey
- Department of Immunobiology and the University of Arizona Center on Aging, University of Arizona College of Medicine, Tucson, AZ, USA
- Vir, Inc., San Francisco, CA, USA
| | - Janko Nikolich-Žugich
- Department of Immunobiology and the University of Arizona Center on Aging, University of Arizona College of Medicine, Tucson, AZ, USA.
| |
Collapse
|
40
|
Melgaço JG, Azamor T, Silva AMV, Linhares JHR, dos Santos TP, Mendes YS, de Lima SMB, Fernandes CB, da Silva J, de Souza AF, Tubarão LN, Brito e Cunha D, Pereira TBS, Menezes CEL, Miranda MD, Matos AR, Caetano BC, Martins JSCC, Calvo TL, Rodrigues NF, Sacramento CQ, Siqueira MM, Moraes MO, Missailidis S, Neves PCC, Ano Bom APD. Two-Step In Vitro Model to Evaluate the Cellular Immune Response to SARS-CoV-2. Cells 2021; 10:2206. [PMID: 34571855 PMCID: PMC8465121 DOI: 10.3390/cells10092206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 01/08/2023] Open
Abstract
The cellular immune response plays an important role in COVID-19, caused by SARS-CoV-2. This feature makes use of in vitro models' useful tools to evaluate vaccines and biopharmaceutical effects. Here, we developed a two-step model to evaluate the cellular immune response after SARS-CoV-2 infection-induced or spike protein stimulation in peripheral blood mononuclear cells (PBMC) from both unexposed and COVID-19 (primo-infected) individuals (Step1). Moreover, the supernatants of these cultures were used to evaluate its effects on lung cell lines (A549) (Step2). When PBMC from the unexposed were infected by SARS-CoV-2, cytotoxic natural killer and nonclassical monocytes expressing inflammatory cytokines genes were raised. The supernatant of these cells can induce apoptosis of A549 cells (mock vs. Step2 [mean]: 6.4% × 17.7%). Meanwhile, PBMCs from primo-infected presented their memory CD4+ T cells activated with a high production of IFNG and antiviral genes. Supernatant from past COVID-19 subjects contributed to reduce apoptosis (mock vs. Step2 [ratio]: 7.2 × 1.4) and to elevate the antiviral activity (iNOS) of A549 cells (mock vs. Step2 [mean]: 31.5% × 55.7%). Our findings showed features of immune primary cells and lung cell lines response after SARS-CoV-2 or spike protein stimulation that can be used as an in vitro model to study the immunity effects after SARS-CoV-2 antigen exposure.
Collapse
Affiliation(s)
- Juliana G. Melgaço
- Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-900, Brazil; (T.A.); (A.M.V.S.); (J.H.R.L.); (T.P.d.S.); (Y.S.M.); (S.M.B.d.L.); (C.B.F.); (J.d.S.); (A.F.d.S.); (L.N.T.); (D.B.e.C.); (T.B.S.P.); (C.E.L.M.); (S.M.); (P.C.C.N.); (A.P.D.A.B.)
| | - Tamiris Azamor
- Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-900, Brazil; (T.A.); (A.M.V.S.); (J.H.R.L.); (T.P.d.S.); (Y.S.M.); (S.M.B.d.L.); (C.B.F.); (J.d.S.); (A.F.d.S.); (L.N.T.); (D.B.e.C.); (T.B.S.P.); (C.E.L.M.); (S.M.); (P.C.C.N.); (A.P.D.A.B.)
| | - Andréa M. V. Silva
- Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-900, Brazil; (T.A.); (A.M.V.S.); (J.H.R.L.); (T.P.d.S.); (Y.S.M.); (S.M.B.d.L.); (C.B.F.); (J.d.S.); (A.F.d.S.); (L.N.T.); (D.B.e.C.); (T.B.S.P.); (C.E.L.M.); (S.M.); (P.C.C.N.); (A.P.D.A.B.)
| | - José Henrique R. Linhares
- Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-900, Brazil; (T.A.); (A.M.V.S.); (J.H.R.L.); (T.P.d.S.); (Y.S.M.); (S.M.B.d.L.); (C.B.F.); (J.d.S.); (A.F.d.S.); (L.N.T.); (D.B.e.C.); (T.B.S.P.); (C.E.L.M.); (S.M.); (P.C.C.N.); (A.P.D.A.B.)
| | - Tiago P. dos Santos
- Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-900, Brazil; (T.A.); (A.M.V.S.); (J.H.R.L.); (T.P.d.S.); (Y.S.M.); (S.M.B.d.L.); (C.B.F.); (J.d.S.); (A.F.d.S.); (L.N.T.); (D.B.e.C.); (T.B.S.P.); (C.E.L.M.); (S.M.); (P.C.C.N.); (A.P.D.A.B.)
| | - Ygara S. Mendes
- Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-900, Brazil; (T.A.); (A.M.V.S.); (J.H.R.L.); (T.P.d.S.); (Y.S.M.); (S.M.B.d.L.); (C.B.F.); (J.d.S.); (A.F.d.S.); (L.N.T.); (D.B.e.C.); (T.B.S.P.); (C.E.L.M.); (S.M.); (P.C.C.N.); (A.P.D.A.B.)
| | - Sheila M. B. de Lima
- Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-900, Brazil; (T.A.); (A.M.V.S.); (J.H.R.L.); (T.P.d.S.); (Y.S.M.); (S.M.B.d.L.); (C.B.F.); (J.d.S.); (A.F.d.S.); (L.N.T.); (D.B.e.C.); (T.B.S.P.); (C.E.L.M.); (S.M.); (P.C.C.N.); (A.P.D.A.B.)
| | - Camilla Bayma Fernandes
- Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-900, Brazil; (T.A.); (A.M.V.S.); (J.H.R.L.); (T.P.d.S.); (Y.S.M.); (S.M.B.d.L.); (C.B.F.); (J.d.S.); (A.F.d.S.); (L.N.T.); (D.B.e.C.); (T.B.S.P.); (C.E.L.M.); (S.M.); (P.C.C.N.); (A.P.D.A.B.)
| | - Jane da Silva
- Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-900, Brazil; (T.A.); (A.M.V.S.); (J.H.R.L.); (T.P.d.S.); (Y.S.M.); (S.M.B.d.L.); (C.B.F.); (J.d.S.); (A.F.d.S.); (L.N.T.); (D.B.e.C.); (T.B.S.P.); (C.E.L.M.); (S.M.); (P.C.C.N.); (A.P.D.A.B.)
| | - Alessandro F. de Souza
- Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-900, Brazil; (T.A.); (A.M.V.S.); (J.H.R.L.); (T.P.d.S.); (Y.S.M.); (S.M.B.d.L.); (C.B.F.); (J.d.S.); (A.F.d.S.); (L.N.T.); (D.B.e.C.); (T.B.S.P.); (C.E.L.M.); (S.M.); (P.C.C.N.); (A.P.D.A.B.)
| | - Luciana N. Tubarão
- Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-900, Brazil; (T.A.); (A.M.V.S.); (J.H.R.L.); (T.P.d.S.); (Y.S.M.); (S.M.B.d.L.); (C.B.F.); (J.d.S.); (A.F.d.S.); (L.N.T.); (D.B.e.C.); (T.B.S.P.); (C.E.L.M.); (S.M.); (P.C.C.N.); (A.P.D.A.B.)
| | - Danielle Brito e Cunha
- Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-900, Brazil; (T.A.); (A.M.V.S.); (J.H.R.L.); (T.P.d.S.); (Y.S.M.); (S.M.B.d.L.); (C.B.F.); (J.d.S.); (A.F.d.S.); (L.N.T.); (D.B.e.C.); (T.B.S.P.); (C.E.L.M.); (S.M.); (P.C.C.N.); (A.P.D.A.B.)
| | - Tamires B. S. Pereira
- Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-900, Brazil; (T.A.); (A.M.V.S.); (J.H.R.L.); (T.P.d.S.); (Y.S.M.); (S.M.B.d.L.); (C.B.F.); (J.d.S.); (A.F.d.S.); (L.N.T.); (D.B.e.C.); (T.B.S.P.); (C.E.L.M.); (S.M.); (P.C.C.N.); (A.P.D.A.B.)
| | - Catarina E. L. Menezes
- Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-900, Brazil; (T.A.); (A.M.V.S.); (J.H.R.L.); (T.P.d.S.); (Y.S.M.); (S.M.B.d.L.); (C.B.F.); (J.d.S.); (A.F.d.S.); (L.N.T.); (D.B.e.C.); (T.B.S.P.); (C.E.L.M.); (S.M.); (P.C.C.N.); (A.P.D.A.B.)
| | - Milene D. Miranda
- Laboratório de Vírus Respiratório e do Sarampo, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-900, Brazil; (M.D.M.); (A.R.M.); (B.C.C.); (J.S.C.C.M.); (M.M.S.)
| | - Aline R. Matos
- Laboratório de Vírus Respiratório e do Sarampo, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-900, Brazil; (M.D.M.); (A.R.M.); (B.C.C.); (J.S.C.C.M.); (M.M.S.)
| | - Braulia C. Caetano
- Laboratório de Vírus Respiratório e do Sarampo, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-900, Brazil; (M.D.M.); (A.R.M.); (B.C.C.); (J.S.C.C.M.); (M.M.S.)
| | - Jéssica S. C. C. Martins
- Laboratório de Vírus Respiratório e do Sarampo, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-900, Brazil; (M.D.M.); (A.R.M.); (B.C.C.); (J.S.C.C.M.); (M.M.S.)
| | - Thyago L. Calvo
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-900, Brazil; (T.L.C.); (M.O.M.)
| | - Natalia F. Rodrigues
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-900, Brazil; (N.F.R.); (C.Q.S.)
- Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-900, Brazil
| | - Carolina Q. Sacramento
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-900, Brazil; (N.F.R.); (C.Q.S.)
- Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-900, Brazil
| | - Marilda M. Siqueira
- Laboratório de Vírus Respiratório e do Sarampo, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-900, Brazil; (M.D.M.); (A.R.M.); (B.C.C.); (J.S.C.C.M.); (M.M.S.)
| | - Milton O. Moraes
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-900, Brazil; (T.L.C.); (M.O.M.)
| | - Sotiris Missailidis
- Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-900, Brazil; (T.A.); (A.M.V.S.); (J.H.R.L.); (T.P.d.S.); (Y.S.M.); (S.M.B.d.L.); (C.B.F.); (J.d.S.); (A.F.d.S.); (L.N.T.); (D.B.e.C.); (T.B.S.P.); (C.E.L.M.); (S.M.); (P.C.C.N.); (A.P.D.A.B.)
| | - Patrícia C. C. Neves
- Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-900, Brazil; (T.A.); (A.M.V.S.); (J.H.R.L.); (T.P.d.S.); (Y.S.M.); (S.M.B.d.L.); (C.B.F.); (J.d.S.); (A.F.d.S.); (L.N.T.); (D.B.e.C.); (T.B.S.P.); (C.E.L.M.); (S.M.); (P.C.C.N.); (A.P.D.A.B.)
| | - Ana Paula D. Ano Bom
- Instituto de Tecnologia em Imunobiológicos, Bio-Manguinhos, Fundação Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-900, Brazil; (T.A.); (A.M.V.S.); (J.H.R.L.); (T.P.d.S.); (Y.S.M.); (S.M.B.d.L.); (C.B.F.); (J.d.S.); (A.F.d.S.); (L.N.T.); (D.B.e.C.); (T.B.S.P.); (C.E.L.M.); (S.M.); (P.C.C.N.); (A.P.D.A.B.)
| |
Collapse
|
41
|
Charab W, Rosenberger MG, Shivram H, Mirazee JM, Donkor M, Shekhar SR, Gjuka D, Khoo KH, Kim JE, Iyer VR, Georgiou G. IgG Immune Complexes Inhibit Naïve T Cell Proliferation and Suppress Effector Function in Cytotoxic T Cells. Front Immunol 2021; 12:713704. [PMID: 34447380 PMCID: PMC8383740 DOI: 10.3389/fimmu.2021.713704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 06/24/2021] [Indexed: 02/05/2023] Open
Abstract
Elevated levels of circulating immune complexes are associated with autoimmunity and with worse prognoses in cancer. Here, we examined the effects of well-defined, soluble immune complexes (ICs) on human peripheral T cells. We demonstrate that IgG-ICs inhibit the proliferation and differentiation of a subset of naïve T cells but stimulate the division of another naïve-like T cell subset. Phenotypic analysis by multi-parameter flow cytometry and RNA-Seq were used to characterize the inhibited and stimulated T cells revealing that the inhibited subset presented immature features resembling those of recent thymic emigrants and non-activated naïve T cells, whereas the stimulated subset exhibited transcriptional features indicative of a more differentiated, early memory progenitor with a naïve-like phenotype. Furthermore, we show that while IgG1-ICs do not profoundly inhibit the proliferation of memory T cells, IgG1-ICs suppress the production of granzyme-β and perforin in cytotoxic memory T cells. Our findings reveal how ICs can link humoral immunity and T cell function.
Collapse
Affiliation(s)
- Wissam Charab
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Matthew G. Rosenberger
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Haridha Shivram
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States
| | - Justin M. Mirazee
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States
| | - Moses Donkor
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States
| | - Soumya R. Shekhar
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States
| | - Donjeta Gjuka
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States
| | - Kimberly H. Khoo
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States
| | - Jin Eyun Kim
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Vishwanath R. Iyer
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States
| | - George Georgiou
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, United States
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
42
|
Abstract
Innate and adaptive immune responses decline with age, leading to greater susceptibility to infectious diseases and reduced responses to vaccines. Diseases are more severe in old than in young individuals and have a greater impact on health outcomes such as morbidity, disability, and mortality. Aging is characterized by increased low-grade chronic inflammation, so-called inflammaging, that represents a link between changes in immune cells and a number of diseases and syndromes typical of old age. In this review we summarize current knowledge on age-associated changes in immune cells with special emphasis on B cells, which are more inflammatory and less responsive to infections and vaccines in the elderly. We highlight recent findings on factors and pathways contributing to inflammaging and how these lead to dysfunctional immune responses. We summarize recent published studies showing that adipose tissue, which increases in size with aging, contributes to inflammaging and dysregulated B cell function.
Collapse
Affiliation(s)
- Daniela Frasca
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA; .,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida 33136, USA.,Miami Integrative Metabolomics Research Center, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Alain Diaz
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA;
| | - Maria Romero
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA;
| | - Denisse Garcia
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA;
| | - Bonnie B Blomberg
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA; .,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| |
Collapse
|
43
|
Palacios-Pedrero MÁ, Osterhaus ADME, Becker T, Elbahesh H, Rimmelzwaan GF, Saletti G. Aging and Options to Halt Declining Immunity to Virus Infections. Front Immunol 2021; 12:681449. [PMID: 34054872 PMCID: PMC8149791 DOI: 10.3389/fimmu.2021.681449] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022] Open
Abstract
Immunosenescence is a process associated with aging that leads to dysregulation of cells of innate and adaptive immunity, which may become dysfunctional. Consequently, older adults show increased severity of viral and bacterial infections and impaired responses to vaccinations. A better understanding of the process of immunosenescence will aid the development of novel strategies to boost the immune system in older adults. In this review, we focus on major alterations of the immune system triggered by aging, and address the effect of chronic viral infections, effectiveness of vaccination of older adults and strategies to improve immune function in this vulnerable age group.
Collapse
Affiliation(s)
| | - Albert D M E Osterhaus
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Tanja Becker
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Husni Elbahesh
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Guus F Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Giulietta Saletti
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
44
|
Vaena S, Chakraborty P, Lee HG, Janneh AH, Kassir MF, Beeson G, Hedley Z, Yalcinkaya A, Sofi MH, Li H, Husby ML, Stahelin RV, Yu XZ, Mehrotra S, Ogretmen B. Aging-dependent mitochondrial dysfunction mediated by ceramide signaling inhibits antitumor T cell response. Cell Rep 2021; 35:109076. [PMID: 33951438 PMCID: PMC8127241 DOI: 10.1016/j.celrep.2021.109076] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/10/2021] [Accepted: 04/12/2021] [Indexed: 01/09/2023] Open
Abstract
We lack a mechanistic understanding of aging-mediated changes in mitochondrial bioenergetics and lipid metabolism that affect T cell function. The bioactive sphingolipid ceramide, induced by aging stress, mediates mitophagy and cell death; however, the aging-related roles of ceramide metabolism in regulating T cell function remain unknown. Here, we show that activated T cells isolated from aging mice have elevated C14/C16 ceramide accumulation in mitochondria, generated by ceramide synthase 6, leading to mitophagy/mitochondrial dysfunction. Mechanistically, aging-dependent mitochondrial ceramide inhibits protein kinase A, leading to mitophagy in activated T cells. This aging/ceramide-dependent mitophagy attenuates the antitumor functions of T cells in vitro and in vivo. Also, inhibition of ceramide metabolism or PKA activation by genetic and pharmacologic means prevents mitophagy and restores the central memory phenotype in aging T cells. Thus, these studies help explain the mechanisms behind aging-related dysregulation of T cells' antitumor activity, which can be restored by inhibiting ceramide-dependent mitophagy.
Collapse
Affiliation(s)
- Silvia Vaena
- Departments of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Paramita Chakraborty
- Department of Surgery, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Han Gyul Lee
- Departments of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Alhaji H Janneh
- Departments of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Mohamed Faisal Kassir
- Departments of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Gyda Beeson
- College of Pharmacy, Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Zachariah Hedley
- Department of Surgery, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Ahmet Yalcinkaya
- Departments of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - M Hanief Sofi
- Department of Microbiology and Immunology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Hong Li
- Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Department of Public Health, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Monica L Husby
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Robert V Stahelin
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Xue-Zhong Yu
- Department of Microbiology and Immunology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Shikhar Mehrotra
- Department of Surgery, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Besim Ogretmen
- Departments of Biochemistry and Molecular Biology, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA.
| |
Collapse
|
45
|
Martínez‐Zamudio RI, Dewald HK, Vasilopoulos T, Gittens‐Williams L, Fitzgerald‐Bocarsly P, Herbig U. Senescence-associated β-galactosidase reveals the abundance of senescent CD8+ T cells in aging humans. Aging Cell 2021; 20:e13344. [PMID: 33939265 PMCID: PMC8135084 DOI: 10.1111/acel.13344] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/18/2021] [Accepted: 02/27/2021] [Indexed: 01/10/2023] Open
Abstract
Aging leads to a progressive functional decline of the immune system, rendering the elderly increasingly susceptible to disease and infection. The degree to which immune cell senescence contributes to this decline remains unclear, however, since markers that label immune cells with classical features of cellular senescence accurately and comprehensively have not been identified. Using a second-generation fluorogenic substrate for β-galactosidase and multi-parameter flow cytometry, we demonstrate here that peripheral blood mononuclear cells (PBMCs) isolated from healthy humans increasingly display cells with high senescence-associated β-galactosidase (SA-βGal) activity with advancing donor age. The greatest age-associated increases were observed in CD8+ T-cell populations, in which the fraction of cells with high SA-βGal activity reached average levels of 64% in donors in their 60s. CD8+ T cells with high SA-βGal activity, but not those with low SA-βGal activity, were found to exhibit features of telomere dysfunction-induced senescence and p16-mediated senescence, were impaired in their ability to proliferate, developed in various T-cell differentiation states, and had a gene expression signature consistent with the senescence state previously observed in human fibroblasts. Based on these results, we propose that senescent CD8+ T cells with classical features of cellular senescence accumulate to levels that are significantly higher than previously reported and additionally provide a simple yet robust method for the isolation and characterization of senescent CD8+ T cells with predictive potential for biological age.
Collapse
Affiliation(s)
- Ricardo I. Martínez‐Zamudio
- Center for Cell SignalingRutgers‐New Jersey Medical SchoolRutgers Biomedical and Health SciencesRutgers UniversityNewarkNew JerseyUSA
- Department of Microbiology, Biochemistry, and Molecular GeneticsRutgers‐New Jersey Medical SchoolRutgers Biomedical and Health SciencesRutgers UniversityNewarkNew JerseyUSA
| | - Hannah K. Dewald
- Rutgers School of Graduate StudiesRutgers‐New Jersey Medical SchoolRutgers Biomedical and Health SciencesRutgers UniversityNewarkNew JerseyUSA
- Center for Immunity and InflammationRutgers‐New Jersey Medical SchoolRutgers Biomedical and Health SciencesRutgers UniversityNewarkNew JerseyUSA
- Department of Pathology, Immunology, and Laboratory MedicineRutgers‐New Jersey Medical SchoolRutgers Biomedical and Health SciencesRutgers UniversityNewarkNew JerseyUSA
| | - Themistoklis Vasilopoulos
- Center for Cell SignalingRutgers‐New Jersey Medical SchoolRutgers Biomedical and Health SciencesRutgers UniversityNewarkNew JerseyUSA
- Department of Microbiology, Biochemistry, and Molecular GeneticsRutgers‐New Jersey Medical SchoolRutgers Biomedical and Health SciencesRutgers UniversityNewarkNew JerseyUSA
- Rutgers School of Graduate StudiesRutgers‐New Jersey Medical SchoolRutgers Biomedical and Health SciencesRutgers UniversityNewarkNew JerseyUSA
| | - Lisa Gittens‐Williams
- Department of Obstetrics, Gynecology and Women's HealthRutgers‐New Jersey Medical SchoolRutgers Biomedical and Health SciencesRutgers UniversityNewarkNew JerseyUSA
| | - Patricia Fitzgerald‐Bocarsly
- Center for Immunity and InflammationRutgers‐New Jersey Medical SchoolRutgers Biomedical and Health SciencesRutgers UniversityNewarkNew JerseyUSA
- Department of Pathology, Immunology, and Laboratory MedicineRutgers‐New Jersey Medical SchoolRutgers Biomedical and Health SciencesRutgers UniversityNewarkNew JerseyUSA
| | - Utz Herbig
- Center for Cell SignalingRutgers‐New Jersey Medical SchoolRutgers Biomedical and Health SciencesRutgers UniversityNewarkNew JerseyUSA
- Department of Microbiology, Biochemistry, and Molecular GeneticsRutgers‐New Jersey Medical SchoolRutgers Biomedical and Health SciencesRutgers UniversityNewarkNew JerseyUSA
| |
Collapse
|
46
|
Abstract
Aging leads to numerous changes that affect many components of the immune system, called "immunosenescence". Indeed, elderly individuals exhibit dysregulated immune responses against pathogens, poor responses to vaccination, and increased susceptibility to many diseases including cancer, autoimmune disorders, and other chronic inflammatory diseases. Despite progressed understanding of immunosenescence, its detailed mechanisms are still not fully understood. With advances in medicine, the population of older cancer patients is expected to rapidly increase in the coming years. Cancer immunotherapies, including immune checkpoint inhibitors (ICIs), have been shown to be effective for multiple cancer types, whereas to date, few specific data for elderly individuals have been published. Some systemic reviews have demonstrated that ICIs exhibit similar efficacy in older cancer patients, but they seem to be less effective in very old patients. In addition, toxicities might be more frequently observed in such patients. Here, we provide a summary to better understand immunosenescence and an overview of its relationship with cancer and antitumor immunity, including the efficacy and toxicity of ICIs.
Collapse
|
47
|
Shive CL, Freeman ML, Younes SA, Kowal CM, Canaday DH, Rodriguez B, Lederman MM, Anthony DD. Markers of T Cell Exhaustion and Senescence and Their Relationship to Plasma TGF-β Levels in Treated HIV+ Immune Non-responders. Front Immunol 2021; 12:638010. [PMID: 33868264 PMCID: PMC8044907 DOI: 10.3389/fimmu.2021.638010] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/16/2021] [Indexed: 11/23/2022] Open
Abstract
Background: Immune non-responders (INR) are HIV+, ART-controlled (>2 yrs) people who fail to reconstitute their CD4 T cell numbers. Systemic inflammation and markers of T cell senescence and exhaustion are observed in INR. This study aims to investigate T cell senescence and exhaustion and their possible association with soluble immune mediators and to understand the immune profile of HIV-infected INR. Selected participants were <50 years old to control for the confounder of older age. Methods: Plasma levels of IL-6, IP10, sCD14, sCD163, and TGF-β and markers of T cell exhaustion (PD-1, TIGIT) and senescence (CD57, KLRG-1) were measured in ART-treated, HIV+ participants grouped by CD4 T cell counts (n = 63). Immune parameters were also measured in HIV-uninfected, age distribution-matched controls (HC; n = 30). Associations between T cell markers of exhaustion and senescence and plasma levels of immune mediators were examined by Spearman rank order statistics. Results: Proportions of CD4 T cell subsets expressing markers of exhaustion (PD-1, TIGIT) and senescence (CD57, KLRG-1) were elevated in HIV+ participants. When comparing proportions between INR and IR, INR had higher proportions of CD4 memory PD-1+, EM CD57+, TEM TIGIT+ and CD8 EM and TEM TIGIT+ cells. Plasma levels of IL-6, IP10, and sCD14 were elevated during HIV infection. IP10 was higher in INR. Plasma TGF-β levels and CD4 cycling proportions of T regulatory cells were lower in INR. Proportions of CD4 T cells expressing TIGIT, PD-1, and CD57 positively correlated with plasma levels of IL-6. Plasma levels of TGF-β negatively correlated with proportions of TIGIT+ and PD-1+ T cell subsets. Conclusions: INR have lower levels of TGF-β and decreased proportions of cycling CD4 T regulatory cells and may have difficulty controlling inflammation. IP10 is elevated in INR and is linked to higher proportions of T cell exhaustion and senescence seen in INR.
Collapse
Affiliation(s)
- Carey L. Shive
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States
- Center for AIDS Research, Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Michael L. Freeman
- Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Souheil-Antoine Younes
- Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Corinne M. Kowal
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States
| | - David H. Canaday
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States
- Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Benigno Rodriguez
- Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Michael M. Lederman
- Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Donald D. Anthony
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States
- Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, OH, United States
- MetroHealth Medical Center, Division of Rheumatic Disease, Case Western Reserve, Cleveland, OH, United States
| |
Collapse
|
48
|
Herda S, Heimann A, Obermayer B, Ciraolo E, Althoff S, Ruß J, Grunert C, Busse A, Bullinger L, Pezzutto A, Blankenstein T, Beule D, Na IK. Long-term in vitro expansion ensures increased yield of central memory T cells as perspective for manufacturing challenges. Int J Cancer 2021; 148:3097-3110. [PMID: 33600609 DOI: 10.1002/ijc.33523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 01/15/2021] [Accepted: 01/27/2021] [Indexed: 11/07/2022]
Abstract
Adoptive T cell therapy (ATT) has revolutionized the treatment of cancer patients. A sufficient number of functional T cells are indispensable for ATT efficacy; however, several ATT dropouts have been reported due to T cell expansion failure or lack of T cell persistence in vivo. With the aim of providing ATT also to those patients experiencing insufficient T cell manufacturing via standard protocol, we evaluated if minimally manipulative prolongation of in vitro expansion (long-term [LT] >3 weeks with IL-7 and IL-15 cytokines) could result in enhanced T cell yield with preserved T cell functionality. The extended expansion resulted in a 39-fold increase of murine CD8+ T central memory cells (Tcm). LT expanded CD8+ and CD4+ Tcm cells retained a gene expression profile related to Tcm and T memory stem cells (Tscm). In vivo transfer of LT expanded Tcm revealed persistence and antitumor capacity. We confirmed our in vitro findings on human T cells, on healthy donors and diffuse large B cell lymphoma patients, undergoing salvage therapy. Our study demonstrates the feasibility of an extended T cell expansion as a practicable alternative for patients with insufficient numbers of T cells after the standard manufacturing process thereby increasing ATT accessibility.
Collapse
Affiliation(s)
- Stefanie Herda
- Experimental and Clinical Research Center, Berlin, Germany
| | - Andreas Heimann
- Experimental and Clinical Research Center, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Benedikt Obermayer
- Core Unit Bioinformatics - CUBI, Berlin Institute of Health, Berlin, Germany
| | - Elisa Ciraolo
- Experimental and Clinical Research Center, Berlin, Germany
| | | | - Josefine Ruß
- Experimental and Clinical Research Center, Berlin, Germany
| | | | - Antonia Busse
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Lars Bullinger
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Antonio Pezzutto
- Berlin Institute of Health, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Thomas Blankenstein
- Berlin Institute of Health, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Institute of Immunology, Charité, Campus Berlin Buch, Berlin, Germany
| | - Dieter Beule
- Core Unit Bioinformatics - CUBI, Berlin Institute of Health, Berlin, Germany
| | - Il-Kang Na
- Experimental and Clinical Research Center, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
49
|
Lian J, Yue Y, Yu W, Zhang Y. Immunosenescence: a key player in cancer development. J Hematol Oncol 2020; 13:151. [PMID: 33168037 PMCID: PMC7653700 DOI: 10.1186/s13045-020-00986-z] [Citation(s) in RCA: 263] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022] Open
Abstract
Immunosenescence is a process of immune dysfunction that occurs with age and includes remodeling of lymphoid organs, leading to changes in the immune function of the elderly, which is closely related to the development of infections, autoimmune diseases, and malignant tumors. T cell-output decline is an important feature of immunosenescence as well as the production of senescence-associated secretory phenotype, increased glycolysis, and reactive oxygen species. Senescent T cells exhibit abnormal phenotypes, including downregulation of CD27, CD28, and upregulation of CD57, killer cell lectin-like receptor subfamily G, Tim-3, Tight, and cytotoxic T-lymphocyte-associated protein 4, which are tightly related to malignant tumors. The role of immunosenescence in tumors is sophisticated: the many factors involved include cAMP, glucose competition, and oncogenic stress in the tumor microenvironment, which can induce the senescence of T cells, macrophages, natural killer cells, and dendritic cells. Accordingly, these senescent immune cells could also affect tumor progression. In addition, the effect of immunosenescence on the response to immune checkpoint blocking antibody therapy so far is ambiguous due to the low participation of elderly cancer patients in clinical trials. Furthermore, many other senescence-related interventions could be possible with genetic and pharmacological methods, including mTOR inhibition, interleukin-7 recombination, and NAD+ activation. Overall, this review aims to highlight the characteristics of immunosenescence and its impact on malignant tumors and immunotherapy, especially the future directions of tumor treatment through senescence-focused strategies.
Collapse
Affiliation(s)
- Jingyao Lian
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, 450052, Henan, China
| | - Ying Yue
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, 450052, Henan, China
- Clinical Laboratory, Henan Medical College Hospital Workers, Zhengzhou, 450000, Henan, China
| | - Weina Yu
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450052, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, 450052, Henan, China
| | - Yi Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou, 450052, Henan, China.
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
50
|
Bhaskaran N, Faddoul F, Paes da Silva A, Jayaraman S, Schneider E, Mamileti P, Weinberg A, Pandiyan P. IL-1β-MyD88-mTOR Axis Promotes Immune-Protective IL-17A +Foxp3 + Cells During Mucosal Infection and Is Dysregulated With Aging. Front Immunol 2020; 11:595936. [PMID: 33240286 PMCID: PMC7677307 DOI: 10.3389/fimmu.2020.595936] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/08/2020] [Indexed: 12/22/2022] Open
Abstract
CD4+Foxp3+Tregs maintain immune homeostasis, but distinct mechanisms underlying their functional heterogeneity during infections are driven by specific cytokine milieu. Here we show that MyD88 deletion in Foxp3+ cells altered their function and resulted in increased fungal burden and immunopathology during oral Candida albicans (CA) challenge. Excessive inflammation due to the absence of MyD88 in Tregs coincided with a reduction of the unique population of IL-17A expressing Foxp3+ cells (Treg17) and an increase in dysfunctional IFN-γ+/Foxp3+ cells (TregIFN-γ) in infected mice. Failure of MyD88-/- Tregs to regulate effector CD4+ T cell functions correlated with heightened levels of IFN-γ in CD4+ T cells, as well as increased infiltration of inflammatory monocytes and neutrophils in oral mucosa in vivo. Mechanistically, IL-1β/MyD88 signaling was required for the activation of IRAK-4, Akt, and mTOR, which led to the induction and proliferation of Treg17 cells. In the absence of IL-1 receptor signaling, Treg17 cells were reduced, but IL-6-driven expansion of TregIFN-γ cells was increased. This mechanism was physiologically relevant during Candida infection in aged mice, as they exhibited IL-1 receptor/MyD88 defect in Foxp3+ cells, loss of p-mTORhighTreg17 cells and reduced levels of IL-1β in oral mucosa, which coincided with persistent tongue inflammation. Concurrent with Treg dysfunction, aging was associated with increased CD4+ T cell hyperactivation and heightened levels of IL-6 in mice and humans in oral mucosa in vivo. Taken together, our data identify IL-1β/MyD88/Treg axis as a new component that modulates inflammatory responses in oral mucosa. Also, dysregulation of this axis in an aging immune system may skew host defense towards an immunopathological response in mucosal compartments.
Collapse
Affiliation(s)
- Natarajan Bhaskaran
- Department of Biological Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Fady Faddoul
- Advanced Education in General Dentistry, Case Western Reserve University, Cleveland, OH, United States
| | - Andre Paes da Silva
- Department of Periodontics, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Sangeetha Jayaraman
- Department of Biological Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Elizabeth Schneider
- Department of Biological Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Prerna Mamileti
- Department of Biological Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Aaron Weinberg
- Department of Biological Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Pushpa Pandiyan
- Department of Biological Sciences, Case Western Reserve University, Cleveland, OH, United States.,Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|