1
|
Lyons CL, Cowan E, Nilsson O, Mohar M, Peña-Martínez P, Eliasson L, Lagerstedt JO. Apolipoprotein A-I priming via SR-BI and ABCA1 receptor binding upregulates mitochondrial metabolism to promote insulin secretion in INS-1E cells. PLoS One 2024; 19:e0311039. [PMID: 39546458 PMCID: PMC11567530 DOI: 10.1371/journal.pone.0311039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/11/2024] [Indexed: 11/17/2024] Open
Abstract
Apolipoprotein A-I (ApoA-I), the primary component of high-density lipoprotein (HDL) cholesterol primes β-cells to increase insulin secretion, however, the mechanisms involved are not fully defined. Here, we aimed to confirm ApoA-I receptors in β-cells and delineate ApoA-I-receptor pathways in β-cell insulin output. An LRC-TriCEPS experiment was performed using the INS-1E rat β-cell model and ApoA-I for unbiased identification of ApoA-I receptors. Identified targets, alongside ATP binding cassette transporter A1 (ABCA1) (included control) were silenced in the same cells, and insulin secretion (ELISA) and mitochondrial metabolism (seahorse) were assessed with/without ApoA-I priming. Human β-cell expression data was used to investigate ApoA-I receptor pathways in type 2 diabetes (T2D). Scavenger receptor B1 (SR-BI) and regulator of microtubule dynamics 1 were identified as ApoA-I targets. SR-BI or ABCA1 silencing abolished ApoA-I induced increases in insulin secretion. ApoA-I priming increased mitochondrial OXPHOS, however this was greatly attenuated with SR-BI or ABCA1 silencing. Supporting this, human β-cell expression data investigations found SR-BI and ABCA1 to be correlated with genes associated with mitochondrial pathways. In all, SR-BI and ABCA1 correlated with 73 and 3 genes differentially expressed in T2D, respectively. We confirm that SR-BI and ABCA1 are the primary β-cell ApoA-I receptors and demonstrate that ApoA-I priming enhances β-cell insulin secretion via the upregulation of mitochondrial metabolism through ApoA-I-SR-BI and ApoA-I-ABCA1 pathways. We propose that SR-BI relies on mitochondrial and exocytotic pathways, while ABCA1 depends solely on mitochondrial pathways. Our findings uncover new targets in ApoA-I β-cell mechanism for T2D therapies.
Collapse
Affiliation(s)
- Claire L. Lyons
- Department of Experimental Medical Sciences, Unit of Medical Protein Science, Lund University, Lund, Sweden
| | - Elaine Cowan
- Department of Clinical Sciences, Unit of Islet Cell Exocytosis, Lund University Diabetes Centre, Malmö, Sweden
| | - Oktawia Nilsson
- Department of Experimental Medical Sciences, Unit of Medical Protein Science, Lund University, Lund, Sweden
| | - Manca Mohar
- Department of Experimental Medical Sciences, Unit of Medical Protein Science, Lund University, Lund, Sweden
| | - Pablo Peña-Martínez
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Lena Eliasson
- Department of Clinical Sciences, Unit of Islet Cell Exocytosis, Lund University Diabetes Centre, Malmö, Sweden
| | - Jens O. Lagerstedt
- Department of Experimental Medical Sciences, Unit of Medical Protein Science, Lund University, Lund, Sweden
- Department of Clinical Sciences, Unit of Islet Cell Exocytosis, Lund University Diabetes Centre, Malmö, Sweden
| |
Collapse
|
2
|
Lu X, Xie Q, Pan X, Zhang R, Zhang X, Peng G, Zhang Y, Shen S, Tong N. Type 2 diabetes mellitus in adults: pathogenesis, prevention and therapy. Signal Transduct Target Ther 2024; 9:262. [PMID: 39353925 PMCID: PMC11445387 DOI: 10.1038/s41392-024-01951-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/21/2024] [Accepted: 08/06/2024] [Indexed: 10/03/2024] Open
Abstract
Type 2 diabetes (T2D) is a disease characterized by heterogeneously progressive loss of islet β cell insulin secretion usually occurring after the presence of insulin resistance (IR) and it is one component of metabolic syndrome (MS), and we named it metabolic dysfunction syndrome (MDS). The pathogenesis of T2D is not fully understood, with IR and β cell dysfunction playing central roles in its pathophysiology. Dyslipidemia, hyperglycemia, along with other metabolic disorders, results in IR and/or islet β cell dysfunction via some shared pathways, such as inflammation, endoplasmic reticulum stress (ERS), oxidative stress, and ectopic lipid deposition. There is currently no cure for T2D, but it can be prevented or in remission by lifestyle intervention and/or some medication. If prevention fails, holistic and personalized management should be taken as soon as possible through timely detection and diagnosis, considering target organ protection, comorbidities, treatment goals, and other factors in reality. T2D is often accompanied by other components of MDS, such as preobesity/obesity, metabolic dysfunction associated steatotic liver disease, dyslipidemia, which usually occurs before it, and they are considered as the upstream diseases of T2D. It is more appropriate to call "diabetic complications" as "MDS-related target organ damage (TOD)", since their development involves not only hyperglycemia but also other metabolic disorders of MDS, promoting an up-to-date management philosophy. In this review, we aim to summarize the underlying mechanism, screening, diagnosis, prevention, and treatment of T2D, especially regarding the personalized selection of hypoglycemic agents and holistic management based on the concept of "MDS-related TOD".
Collapse
Affiliation(s)
- Xi Lu
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Qingxing Xie
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaohui Pan
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Ruining Zhang
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyi Zhang
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Ge Peng
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Yuwei Zhang
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Sumin Shen
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Nanwei Tong
- Department of Endocrinology and Metabolism, Research Centre for Diabetes and Metabolism, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Shakarami M, Zaman BA, Sedaghat A, Qassem HMA, Zedann YA, Soud NA, Adil M, Shirvani S, Nikbin N. Cholesterol to saturated fat index (CSI), metabolic parameters and inflammatory factors among obese individuals. BMC Endocr Disord 2024; 24:173. [PMID: 39223590 PMCID: PMC11367739 DOI: 10.1186/s12902-024-01697-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The role of dietary fat quality in promotion of cardiovascular diseases is studies before. However, the results are inconsistent. Recently, cholesterol to saturated fatty acid index (CSI) is suggested as a novel indicator of the atherogenicity and thrombogenicity potential of a diet. However, due to limited number of studies, in the current cross-sectional study, we aimed to evaluate the role of CSI in metabolic and inflammatory response among obese individuals. METHODS In the current cross-sectional study 488 obese individuals aged 18-50 years old were involved in volunteer based invitation from outpatient obesity clinics. Subjects underwent anthropometric assays including weight, height, waist circumference (WC) and body composition and their fasting blood sample were obtained for biochemical assessments including blood sugar, serum lipids, hs-CRP and IL-6 concentrations by commercial kits. Physical activity was also assessed by short form of international physical activity questionnaire (IPAQ). RESULTS According to our results, being at the top tetile of CSI was associated with higher anthropometric indices including weight, height, WC, FFM, and basal metabolic rate (BMR) compared with those at the lowest tertile (P < 0.05). Similarly, those at the highest category of CSI had significantly higher levels of serum glucose and hs-CRP both in crude and adjusted models in ANCOVA and in multinomial logistic regression models (P < 0.05). CONCLUSION In the current study, for the first time, we identified the possible triggering role of dietary cholesterol to saturated fat index in increasing serum glucose and hs-CRP levels. due to cross-sectional design of the current study, causal inference is impossible. Further studies will help for better scientific justification.
Collapse
Affiliation(s)
- Mehrnaz Shakarami
- Department of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Burhan Abdullah Zaman
- Department of Basic Sciences, College of Pharmacy, University of Duhok, Duhok, Kurdistan Region, Iraq
| | - Abdullah Sedaghat
- Pedram Ataee Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandag, Iran
| | | | - Yamamah Abas Zedann
- Department of Radiology & Sonar Techniques, Al-Noor University College, Nineveh, Iraq
| | - Nashat Ali Soud
- Collage of Dentist, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | - Mohaned Adil
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | - Shabnam Shirvani
- Department of Medicine, Tehran Medical Branch, Islamic Azad University, Tehran, Iran.
| | | |
Collapse
|
4
|
Saheki T, Imachi H, Fukunaga K, Sato S, Kobayashi T, Yoshimura T, Saheki N, Murao K. NMDA Suppresses Pancreatic ABCA1 Expression through the MEK/ERK/LXR Pathway in Pancreatic Beta Cells. Nutrients 2024; 16:2865. [PMID: 39275180 PMCID: PMC11396903 DOI: 10.3390/nu16172865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
Dysfunction or loss of pancreatic β cells can cause insulin deficiency and impaired glucose regulation, resulting in conditions like type 2 diabetes. The ATP-binding cassette transporter A1 (ABCA1) plays a key role in the reverse cholesterol transport system, and its decreased expression is associated with pancreatic β cell lipotoxicity, resulting in abnormal insulin synthesis and secretion. Increased glutamate release can cause glucotoxicity in β cells, though the detailed mechanisms remain unclear. This study investigated the effect of N-methyl-D-aspartic acid (NMDA) on ABCA1 expression in INS-1 cells and primary pancreatic islets to elucidate the signaling mechanisms that suppress insulin secretion. Using Western blotting, microscopy, and biochemical analyses, we found that NMDA activated the mitogen-activated protein kinase (MEK)-dependent pathway, suppressing ABCA1 protein and mRNA expression. The MEK-specific inhibitor PD98059 restored ABCA1 promoter activity, indicating the involvement of the extracellular signal-regulated kinase (MEK/ERK) pathway. Furthermore, we identified the liver X receptor (LXR) as an effector transcription factor in NMDA regulation of ABCA1 transcription. NMDA treatment increased cholesterol and triglyceride levels while decreasing insulin secretion, even under high-glucose conditions. These effects were abrogated by treatment with PD98059. This study reveals that NMDA suppresses ABCA1 expression via the MEK/ERK/LXR pathway, providing new insights into the pathological suppression of insulin secretion in pancreatic β cells and emphasizing the importance of investigating the role of NMDA in β cell dysfunction.
Collapse
Affiliation(s)
- Takanobu Saheki
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki-cho, Kita-gun 761-0793, Japan; (H.I.); (K.F.); (S.S.); (T.K.); (T.Y.); (N.S.); (K.M.)
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Brunham LR. Familial hypercholesterolemia-Plus: is the metabolic syndrome changing the clinical picture of familial hypercholesterolemia? Curr Opin Lipidol 2024; 35:219-221. [PMID: 38640084 DOI: 10.1097/mol.0000000000000938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
PURPOSE OF REVIEW The purpose of this review article was to describe recent advances in our knowledge about how diabetes and metabolic syndrome are changing the face of familial hypercholesterolemia. RECENT FINDINGS Heterozygous familial hypercholesterolemia, most commonly caused by disruption to LDL receptor function, leads to lifelong elevation of LDL cholesterol and increased risk of atherosclerotic cardiovascular disease. Familial hypercholesterolemia was originally described as a form of 'pure' hypercholesterolemia, in the sense that levels of LDL were uniquely affected. Studies of familial hypercholesterolemia among individuals of predominantly Western European descent conformed to the perception that individuals with familial hypercholesterolemia tended to be lean and otherwise metabolically healthy. More recently, as we have studied familial hypercholesterolemia in more diverse global populations, we have learned that in some regions, rates of diabetes and obesity among familial hypercholesterolemia patients are very high, mirroring the global increases in the prevalence of metabolic disease. SUMMARY When diabetes and metabolic disease coexist, they amplify the cardiovascular risk in familial hypercholesterolemia, and may require more aggressive treatment.
Collapse
Affiliation(s)
- Liam R Brunham
- Centre for Heart Lung Innovation
- Department of Medicine
- Division of Cardiology
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
6
|
Lu F, Li E, Yang X. Proprotein convertase subtilisin/kexin type 9 deficiency in extrahepatic tissues: emerging considerations. Front Pharmacol 2024; 15:1413123. [PMID: 39139638 PMCID: PMC11319175 DOI: 10.3389/fphar.2024.1413123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/08/2024] [Indexed: 08/15/2024] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is primarily secreted by hepatocytes. PCSK9 is critical in liver low-density lipoprotein receptors (LDLRs) metabolism. In addition to its hepatocellular presence, PCSK9 has also been detected in cardiac, cerebral, islet, renal, adipose, and other tissues. Once perceived primarily as a "harmful factor," PCSK9 has been a focal point for the targeted inhibition of both systemic circulation and localized tissues to treat diseases. However, PCSK9 also contributes to the maintenance of normal physiological functions in numerous extrahepatic tissues, encompassing both LDLR-dependent and -independent pathways. Consequently, PCSK9 deficiency may harm extrahepatic tissues in close association with several pathophysiological processes, such as lipid accumulation, mitochondrial impairment, insulin resistance, and abnormal neural differentiation. This review encapsulates the beneficial effects of PCSK9 on the physiological processes and potential disorders arising from PCSK9 deficiency in extrahepatic tissues. This review also provides a comprehensive analysis of the disparities between experimental and clinical research findings regarding the potential harm associated with PCSK9 deficiency. The aim is to improve the current understanding of the diverse effects of PCSK9 inhibition.
Collapse
Affiliation(s)
- Fengyuan Lu
- The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - En Li
- The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Xiaoyu Yang
- The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, China
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
7
|
Jafari Nasab S, Ghanavati M, C T Clark C, Nasirian M. Adherence to Mediterranean dietary pattern and the risk of gestational diabetes mellitus: a systematic review and meta-analysis of observational studies. Nutr Diabetes 2024; 14:55. [PMID: 39039056 PMCID: PMC11263544 DOI: 10.1038/s41387-024-00313-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 06/23/2024] [Accepted: 07/03/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND AND AIM Gestational diabetes mellitus (GDM) is one of the most prevalent disorders occurring during pregnancy, which confers significant risk of short and long-term adverse outcomes in both mothers and offspring. Recently, more attention has been paid to the association of pre-pregnancy and early pregnancy healthy dietary patterns, such as Mediterranean dietary pattern with GDM. However, there is a lack of systematic review and meta-analysis summarizing findings in this regard. Hence, we sought to assess the association of MedDiet and GDM in observational studies by performing a systematic review and meta-analysis. METHODS A comprehensive systematic literature search of observational studies was conducted via PubMed, Scopus, and Google Scholar, up to August 2023. Studies were included in our review if they evaluated the association of MedDiet and GDM, following an observational study design. RESULTS Ten studies were included in this study. Combining effect sizes, we found that adherence to MedDiet was inversely associated with GDM risk (OR = 0.64; CI: 0.52-0.78); implying that higher adherence to the MedDiet could reduce the risk of GDM by about 36%. Stratification by the geographic area, Mediterranean countries, time of dietary assessment and study design, showed a consistent significant association between MedDiet and GDM. CONCLUSION We conclude that adhering to diets resembling MedDiet, before or in early pregnancy, could be associated with lower risks or odds of GDM.
Collapse
Affiliation(s)
- Saeede Jafari Nasab
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Matin Ghanavati
- National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Cain C T Clark
- Centre for Intelligent Healthcare, Coventry University, Coventry, CV1 5FB, UK
| | - Maryam Nasirian
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
- Epidemiology and Biostatistics Department, Health School, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
8
|
Peña-Espinoza BI, Torre-Horta E, Ortiz-López MG, Menjivar M. ABCA1 variant rs9282541 is associated with metabolic syndrome in Maya children. Ann Hum Genet 2024; 88:279-286. [PMID: 38192238 DOI: 10.1111/ahg.12546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 11/17/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024]
Abstract
INTRODUCTION Metabolic syndrome (MetS) is a metabolic disorder encompassing risk factors for cardiovascular disease and type 2 diabetes (T2D). In Mexico, the MetS is a national health problem in adults and children. Environmental and genetic factors condition the MetS. However, studies to elucidate the contribution of genetic factors to MetS in Mexico are scarce. A recent study showed that variant rs9282541 (A-allele) in ATP-binding cassette transporter A1 (ABCA1) was associated with T2D in the Maya population in addition to low levels of high-density lipoprotein cholesterol (HDL-C). Thus, this study aimed to determine whether the genetic variant of ABCA1 A-allele (rs9282541, NM_005502.4:c.688C > T, NP_005493.2:p.Arg230Cys) is associated with MetS and its components in Mexican Maya children. METHODS The study was conducted in 508 children aged 9-13 from the Yucatán Peninsula. MetS was identified according to the de Ferranti criteria. Genotyping was performed using TaqMan assay by real-time PCR. Evaluation of genetic ancestry group was included. RESULTS The frequency of MetS and overweight-obesity was 45.9% and 41.6%, respectively. The genetic variant rs9282541 was associated with low HDL-C and high glucose concentrations. Remarkably, for the first time, this study showed the association of ABCA1 rs9282541 with MetS in Maya children with an OR of 3.076 (95% CI = 1.16-8.13 p = 0.023). Finally, this study reveals a high prevalence of MetS and suggests that variant rs9282541 of the ABCA1 gene plays an important role in the developing risk of MetS in Maya children.
Collapse
Affiliation(s)
- Barbara I Peña-Espinoza
- Laboratorio de Genómica de la Diabetes, Facultad de Química en la Unidad Académica de Ciencia y Tecnología de la UNAM en Yucatán, Ciudad de Mexico, Mexico
| | | | - María G Ortiz-López
- Laboratorio de Endocrinología, Hospital Juárez de México, Mexico City, Mexico
| | - Marta Menjivar
- Laboratorio de Genómica de la Diabetes, Facultad de Química en la Unidad Académica de Ciencia y Tecnología de la UNAM en Yucatán, Ciudad de Mexico, Mexico
- Laboratorio de diabetes, Facultad de Química de la Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
9
|
Babalola JA, Stracke A, Loeffler T, Schilcher I, Sideromenos S, Flunkert S, Neddens J, Lignell A, Prokesch M, Pazenboeck U, Strobl H, Tadic J, Leitinger G, Lass A, Hutter-Paier B, Hoefler G. Effect of astaxanthin in type-2 diabetes -induced APPxhQC transgenic and NTG mice. Mol Metab 2024; 85:101959. [PMID: 38763496 PMCID: PMC11153249 DOI: 10.1016/j.molmet.2024.101959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024] Open
Abstract
OBJECTIVES Aggregation and misfolding of amyloid beta (Aβ) and tau proteins, suggested to arise from post-translational modification processes, are thought to be the main cause of Alzheimer's disease (AD). Additionally, a plethora of evidence exists that links metabolic dysfunctions such as obesity, type 2 diabetes (T2D), and dyslipidemia to the pathogenesis of AD. We thus investigated the combinatory effect of T2D and human glutaminyl cyclase activity (pyroglutamylation), on the pathology of AD and whether astaxanthin (ASX) treatment ameliorates accompanying pathophysiological manifestations. METHODS Male transgenic AD mice, APPxhQC, expressing human APP751 with the Swedish and the London mutation and human glutaminyl cyclase (hQC) enzyme and their non-transgenic (NTG) littermates were used. Both APPxhQC and NTG mice were allocated to 3 groups, control, T2D-control, and T2D-ASX. Mice were fed control or high fat diet ± ASX for 13 weeks starting at an age of 11-12 months. High fat diet fed mice were further treated with streptozocin for T2D induction. Effects of genotype, T2D induction, and ASX treatment were evaluated by analysing glycemic readouts, lipid concentration, Aβ deposition, hippocampus-dependent cognitive function and nutrient sensing using immunosorbent assay, ELISA-based assays, western blotting, immunofluorescence staining, and behavioral testing via Morris water maze (MWM), respectively. RESULTS APPxhQC mice presented a higher glucose sensitivity compared to NTG mice. T2D-induced brain dysfunction was more severe in NTG compared to the APPxhQC mice. T2D induction impaired memory functions while increasing hepatic LC3B, ABCA1, and p65 levels in NTG mice. T2D induction resulted in a progressive shift of Aβ from the soluble to insoluble form in APPxhQC mice. ASX treatment reversed T2D-induced memory dysfunction in NTG mice and in parallel increased hepatic pAKT while decreasing p65 and increasing cerebral p-S6rp and p65 levels. ASX treatment reduced soluble Aβ38 and Aβ40 and insoluble Aβ40 levels in T2D-induced APPxhQC mice. CONCLUSIONS We demonstrate that T2D induction in APPxhQC mice poses additional risk for AD pathology as seen by increased Aβ deposition. Although ASX treatment reduced Aβ expression in T2D-induced APPxhQC mice and rescued T2D-induced memory impairment in NTG mice, ASX treatment alone may not be effective in cases of T2D comorbidity and AD.
Collapse
Affiliation(s)
| | - Anika Stracke
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Austria
| | | | | | - Spyridon Sideromenos
- QPS Austria GmbH, Grambach, Austria; Medical University of Vienna, Vienna, Austria
| | | | | | | | | | - Ute Pazenboeck
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Austria
| | - Herbert Strobl
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Austria
| | - Jelena Tadic
- Institute of Molecular Biosciences, University of Graz, Austria
| | - Gerd Leitinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Austria
| | - Achim Lass
- Institute of Molecular Biosciences, University of Graz, Austria
| | | | - Gerald Hoefler
- Diagnostic and Research Institute of Pathology Medical University of Graz, Graz, Austria.
| |
Collapse
|
10
|
Hernández-Martín M, Garcimartín A, Bocanegra A, Redondo-Castillejo R, Quevedo-Torremocha C, Macho-González A, García Fernández RA, Bastida S, Benedí J, Sánchez-Muniz FJ, López-Oliva ME. Silicon as a Functional Meat Ingredient Improves Jejunal and Hepatic Cholesterol Homeostasis in a Late-Stage Type 2 Diabetes Mellitus Rat Model. Foods 2024; 13:1794. [PMID: 38928736 PMCID: PMC11203255 DOI: 10.3390/foods13121794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Silicon included in a restructured meat (RM) matrix (Si-RM) as a functional ingredient has been demonstrated to be a potential bioactive antidiabetic compound. However, the jejunal and hepatic molecular mechanisms by which Si-RM exerts its cholesterol-lowering effects remain unclear. Male Wistar rats fed an RM included in a high-saturated-fat high-cholesterol diet (HSFHCD) combined with a low dose of streptozotocin plus nicotinamide injection were used as late-stage type 2 diabetes mellitus (T2DM) model. Si-RM was included into the HSFHCD as a functional food. An early-stage TD2M group fed a high-saturated-fat diet (HSFD) was taken as reference. Si-RM inhibited the hepatic and intestinal microsomal triglyceride transfer protein (MTP) reducing the apoB-containing lipoprotein assembly and cholesterol absorption. Upregulation of liver X receptor (LXRα/β) by Si-RM turned in a higher low-density lipoprotein receptor (LDLr) and ATP-binding cassette transporters (ABCG5/8, ABCA1) promoting jejunal cholesterol efflux and transintestinal cholesterol excretion (TICE), and facilitating partially reverse cholesterol transport (RCT). Si-RM decreased the jejunal absorptive area and improved mucosal barrier integrity. Consequently, plasma triglycerides and cholesterol levels decreased, as well as the formation of atherogenic lipoprotein particles. Si-RM mitigated the dyslipidemia associated with late-stage T2DM by Improving cholesterol homeostasis. Silicon could be used as an effective nutritional approach in diabetic dyslipidemia management.
Collapse
Affiliation(s)
- Marina Hernández-Martín
- Departmental Section of Physiology, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Alba Garcimartín
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain; (A.G.); (R.R.-C.); (C.Q.-T.); (J.B.)
| | - Aránzazu Bocanegra
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain; (A.G.); (R.R.-C.); (C.Q.-T.); (J.B.)
| | - Rocío Redondo-Castillejo
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain; (A.G.); (R.R.-C.); (C.Q.-T.); (J.B.)
| | - Claudia Quevedo-Torremocha
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain; (A.G.); (R.R.-C.); (C.Q.-T.); (J.B.)
| | - Adrián Macho-González
- Nutrition and Food Science Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain; (A.M.-G.); (S.B.); (F.J.S.-M.)
| | - Rosa Ana García Fernández
- Animal Medicine and Surgery Department, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Sara Bastida
- Nutrition and Food Science Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain; (A.M.-G.); (S.B.); (F.J.S.-M.)
| | - Juana Benedí
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain; (A.G.); (R.R.-C.); (C.Q.-T.); (J.B.)
| | - Francisco José Sánchez-Muniz
- Nutrition and Food Science Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain; (A.M.-G.); (S.B.); (F.J.S.-M.)
| | - María Elvira López-Oliva
- Departmental Section of Physiology, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain;
| |
Collapse
|
11
|
Quintanilha Gallego F, Barco VS, Sinzato YK, Paula VG, de Souza MR, Lopes da Cruz L, Roy S, Corrente JE, Damasceno DC. Effect of transgenerational diabetes via maternal lineage in female rats. Heliyon 2024; 10:e31049. [PMID: 38803977 PMCID: PMC11128874 DOI: 10.1016/j.heliyon.2024.e31049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024] Open
Abstract
Aim To investigate the transgenerational effect of maternal hyperglycemia on oxidative stress markers, lipid profile, glycemia, pancreatic beta (β)-cells, and reproductive outcomes in the F2 adult generation. Additionally, to expand the knowledge on transgenerational diabetes the F3 generation at birth will be evaluated. Methods On day 5 of postnatal life female Sprague-Dawley rat newborns (F0 generation) were distributed into two groups: Diabetic (Streptozotocin-STZ, 70 mg/kg body weight, subcutaneous route) and Control rats. Adult female rats from the F0 generation and subsequently the F1 generation were mated to obtain the F2 generation, which was distributed into F2 generation (granddaughters) from control (F2_C) and diabetic (F2_D) rats. Oral Glucose Tolerance Test (OGTT), the area under the curve (AUC), blood biochemical analyses, and pancreatic morphology were analyzed before pregnancy. Reproductive outcomes were performed at the end of pregnancy. At birth, the glycemia and body weight of F3_C and F3_D rats were determined. p < 0.05 was considered significant. Results F2_D had higher body weight, triglyceride levels, and percentage of insulin-immunostained cells, contributing to glucose intolerance, and insulin resistance before pregnancy. At day 21 of pregnancy, the F2_D showed increased embryonic losses before and after implantation (84.33 and 83.74 %, respectively). At birth, F3_D presented hyperglycemia, and 16.3 % of newborns were large for pregnancy age (LGA). Conclusion Diabetes induction since the neonatal period in the first generation (F0) led to transgenerational (F2 and F3 generations) changes via the maternal lineage of female rats, confirming the relevance of control strictly the glycemia all the time.
Collapse
Affiliation(s)
- Franciane Quintanilha Gallego
- Laboratory of Experimental Research on Gynecology and Obstetrics (UNIPEX), Course of Postgraduate on Tocogynecology, Botucatu Medical School, Sao Paulo State University (Unesp), Botucatu, São Paulo State, Brazil
| | - Vinícius Soares Barco
- Laboratory of Experimental Research on Gynecology and Obstetrics (UNIPEX), Course of Postgraduate on Tocogynecology, Botucatu Medical School, Sao Paulo State University (Unesp), Botucatu, São Paulo State, Brazil
| | - Yuri Karen Sinzato
- Laboratory of Experimental Research on Gynecology and Obstetrics (UNIPEX), Course of Postgraduate on Tocogynecology, Botucatu Medical School, Sao Paulo State University (Unesp), Botucatu, São Paulo State, Brazil
| | - Verônyca Gonçalves Paula
- Laboratory of Experimental Research on Gynecology and Obstetrics (UNIPEX), Course of Postgraduate on Tocogynecology, Botucatu Medical School, Sao Paulo State University (Unesp), Botucatu, São Paulo State, Brazil
| | - Maysa Rocha de Souza
- Laboratory of Experimental Research on Gynecology and Obstetrics (UNIPEX), Course of Postgraduate on Tocogynecology, Botucatu Medical School, Sao Paulo State University (Unesp), Botucatu, São Paulo State, Brazil
| | - Larissa Lopes da Cruz
- Laboratory of Experimental Research on Gynecology and Obstetrics (UNIPEX), Course of Postgraduate on Tocogynecology, Botucatu Medical School, Sao Paulo State University (Unesp), Botucatu, São Paulo State, Brazil
| | - Sayon Roy
- Department of Ophthalmology, School of Medicine, Boston University, Boston, MA, USA
| | - José Eduardo Corrente
- Research Support Office, Botucatu Medical School, Sao Paulo State University (Unesp), Botucatu, São Paulo State, Brazil
| | - Débora Cristina Damasceno
- Laboratory of Experimental Research on Gynecology and Obstetrics (UNIPEX), Course of Postgraduate on Tocogynecology, Botucatu Medical School, Sao Paulo State University (Unesp), Botucatu, São Paulo State, Brazil
| |
Collapse
|
12
|
Ding J, Nguyen AT, Lohman K, Hensley MT, Parker D, Hou L, Taylor J, Voora D, Sawyer JK, Boudyguina E, Bancks MP, Bertoni A, Pankow JS, Rotter JI, Goodarzi MO, Tracy RP, Murdoch DM, Duprez D, Rich SS, Psaty BM, Siscovick D, Newgard CB, Herrington D, Hoeschele I, Shea S, Stein JH, Patel M, Post W, Jacobs D, Parks JS, Liu Y. LXR signaling pathways link cholesterol metabolism with risk for prediabetes and diabetes. J Clin Invest 2024; 134:e173278. [PMID: 38747290 PMCID: PMC11093600 DOI: 10.1172/jci173278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 03/20/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUNDPreclinical studies suggest that cholesterol accumulation leads to insulin resistance. We previously reported that alterations in a monocyte cholesterol metabolism transcriptional network (CMTN) - suggestive of cellular cholesterol accumulation - were cross-sectionally associated with obesity and type 2 diabetes (T2D). Here, we sought to determine whether the CMTN alterations independently predict incident prediabetes/T2D risk, and correlate with cellular cholesterol accumulation.METHODSMonocyte mRNA expression of 11 CMTN genes was quantified among 934 Multi-Ethnic Study of Atherosclerosis (MESA) participants free of prediabetes/T2D; cellular cholesterol was measured in a subset of 24 monocyte samples.RESULTSDuring a median 6-year follow-up, lower expression of 3 highly correlated LXR target genes - ABCG1 and ABCA1 (cholesterol efflux) and MYLIP (cholesterol uptake suppression) - and not other CMTN genes, was significantly associated with higher risk of incident prediabetes/T2D. Lower expression of the LXR target genes correlated with higher cellular cholesterol levels (e.g., 47% of variance in cellular total cholesterol explained by ABCG1 expression). Further, adding the LXR target genes to overweight/obesity and other known predictors significantly improved prediction of incident prediabetes/T2D.CONCLUSIONThese data suggest that the aberrant LXR/ABCG1-ABCA1-MYLIP pathway (LAAMP) is a major T2D risk factor and support a potential role for aberrant LAAMP and cellular cholesterol accumulation in diabetogenesis.FUNDINGThe MESA Epigenomics and Transcriptomics Studies were funded by NIH grants 1R01HL101250, 1RF1AG054474, R01HL126477, R01DK101921, and R01HL135009. This work was supported by funding from NIDDK R01DK103531 and NHLBI R01HL119962.
Collapse
Affiliation(s)
- Jingzhong Ding
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | | | - Kurt Lohman
- Department of Medicine, Division of Cardiology, and
| | | | - Daniel Parker
- Department of Medicine, Division of Geriatrics, Duke University, Durham, North Carolina, USA
| | - Li Hou
- Department of Medicine, Division of Cardiology, and
| | - Jackson Taylor
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, Ohio, USA
| | - Deepak Voora
- Department of Medicine, Division of Cardiology, and
| | - Janet K. Sawyer
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Elena Boudyguina
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Michael P. Bancks
- Department of Epidemiology and Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Alain Bertoni
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - James S. Pankow
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Mark O. Goodarzi
- Division of Endocrinology, Diabetes and Metabolism, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Russell P. Tracy
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | - David M. Murdoch
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University, Durham, North Carolina, USA
| | - Daniel Duprez
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Systems and Population Health, University of Washington, Seattle, Washington, USA
| | | | - Christopher B. Newgard
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| | - David Herrington
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Ina Hoeschele
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, Virginia, USA
| | - Steven Shea
- Department of Medicine, Columbia University, New York, New York, USA
| | - James H. Stein
- School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Manesh Patel
- Department of Medicine, Division of Cardiology, and
| | - Wendy Post
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - David Jacobs
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - John S. Parks
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Yongmei Liu
- Department of Medicine, Division of Cardiology, and
| |
Collapse
|
13
|
Sheng R, Li Y, Wu Y, Liu C, Wang W, Han X, Li Y, Lei L, Jiang X, Zhang Y, Zhang Y, Li S, Hong B, Liu C, Xu Y, Si S. A pan-PPAR agonist E17241 ameliorates hyperglycemia and diabetic dyslipidemia in KKAy mice via up-regulating ABCA1 in islet, liver, and white adipose tissue. Biomed Pharmacother 2024; 172:116220. [PMID: 38308968 DOI: 10.1016/j.biopha.2024.116220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/05/2024] Open
Abstract
OBJECTIVE Type 2 diabetes mellitus (T2DM) is a common chronic metabolic disease. Peroxisome proliferator-activated receptors (PPARs) play crucial roles in regulating glucolipid metabolism. Previous studies showed that E17241 could ameliorate atherosclerosis and lower fasting blood glucose levels in ApoE-/- mice. In this work, we investigated the role of E17241 in glycolipid metabolism in diabetic KKAy mice. APPROACH AND RESULTS We confirmed that E17241 is a powerful pan-PPAR agonist with a potent agonistic activity on PPARγ, a high activity on PPARα, and a moderate activity on PPARδ. E17241 also significantly increased the protein expression of ATP-binding cassette transporter 1 (ABCA1), a crucial downstream target gene for PPARs. E17241 clearly lowered plasma glucose levels, improved OGTT and ITT, decreased islet cholesterol content, improved β-cell function, and promoted insulin secretion in KKAy mice. Moreover, E17241 could significantly lower plasma total cholesterol and triglyceride levels, reduce liver lipid deposition, and improve the adipocyte hypertrophy and the inflammatory response in epididymal white adipose tissue. Further mechanistic studies indicated that E17241 boosts cholesterol efflux and insulin secretion in an ABCA1 dependent manner. RNA-seq and qRT-PCR analysis demonstrated that E17241 induced different expression of PPAR target genes in liver and adipose tissue differently from the PPARγ agonist rosiglitazone. In addition, E17241 treatment was also demonstrated to have an exhilarating cardiorenal benefits. CONCLUSIONS Our results demonstrate that E17241 regulates glucolipid metabolism in KKAy diabetic mice while having cardiorenal benefits without inducing weight gain. It is a promising drug candidate for the treatment of T2DM.
Collapse
Affiliation(s)
- Ren Sheng
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Yining Li
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Yexiang Wu
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Chang Liu
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Weizhi Wang
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Xiaowan Han
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, CAMS & PUMC, Beijing 100050, China
| | - Yinghong Li
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Lijuan Lei
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Xinhai Jiang
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Yuyan Zhang
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Yuhao Zhang
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Shunwang Li
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Bin Hong
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China
| | - Chao Liu
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China.
| | - Yanni Xu
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China.
| | - Shuyi Si
- NHC Key Laboratory of Biotechnology for Microbial Drugs, National Center for Screening Novel Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tiantan Xili 1#, Beijing 100050, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, CAMS & PUMC, Beijing 100050, China.
| |
Collapse
|
14
|
Carneiro de Oliveira K, Wei Y, Repetti RL, Meth J, Majumder N, Sapkota A, Gusella GL, Rohatgi R. Tubular deficiency of ABCA1 augments cholesterol- and Na +-dependent effects on systemic blood pressure in male mice. Am J Physiol Renal Physiol 2024; 326:F265-F277. [PMID: 38153852 PMCID: PMC11207546 DOI: 10.1152/ajprenal.00154.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/31/2023] [Accepted: 11/17/2023] [Indexed: 12/30/2023] Open
Abstract
Dyslipidemia, with changes in plasma membrane (PM) composition, is associated with hypertension, while rising PM cholesterol induces Na+ channel activity. We hypothesize that ablation of renal tubular ABCA1, a cholesterol efflux protein, leads to cholesterol- and Na+-dependent changes in blood pressure (BP). Transgenic mice (TgPAX8rtTA;tetO-Cre/+) expressing a doxycycline (dox)-inducible CRE recombinase were bred with mice expressing floxed ABCA1 to generate renal tubules deficient in ABCA1 (ABCA1FF). Tail-cuff systolic BP (SBP) was measured in mice on specific diets. Immunoblotting was performed on whole and PM protein lysates of kidney from mice completing experimental diets. Cortical PM of ABCA1FF showed reduced ABCA1 (60 ± 28%; n = 10, P < 0.05) compared with wild-type littermates (WT; n = 9). Tail-cuff SBP of ABCA1FF (n = 11) was not only greater post dox, but also during cholesterol or high Na+ feeding (P < 0.05) compared with WT mice (n = 15). A Na+-deficient diet abolished the difference, while 6 wk of cholesterol diet raised SBP in ABCA1FF compared with mice before cholesterol feeding (P < 0.05). No difference in α-ENaC protein abundance was noted in kidney lysate; however, γ-ENaC increased in ABCA1FF mice versus WT mice. In kidney membranes, NKCC2 abundance was greater in ABCA1FF versus WT mice. Cortical lysates of ABCA1FF mouse kidneys expressed less renin and angiotensin I receptor than WT mouse kidneys. Furosemide injection induced a greater diuretic effect in ABCA1FF (n = 7; 45.2 ± 8.7 µL/g body wt) versus WT (n = 7; 33.1 ± 6.9 µL/g body wt; P < 0.05) but amiloride did not. Tubular ABCA1 deficiency induces cholesterol-dependent rise in SBP and modest Na+ sensitivity of SBP, which we speculate is partly related to Na+ transporters and channels.NEW & NOTEWORTHY Cholesterol has been linked to greater Na+ channel activity in kidney cells, which may predispose to systemic hypertension. We showed that when ABCA1, a protein that removes cholesterol from tissues, is ablated from mouse kidneys, systemic blood pressure is greater than normal mice. Dietary cholesterol further increases blood pressure in transgenic mice, whereas low dietary salt intake reduced blood pressure to that of normal mice. Thus, we speculate that diseases and pharmaceuticals that reduce renal ABCA1 expression, like diabetes and calcineurin inhibitors, respectively, contribute to the prominence of hypertension in their clinical presentation.
Collapse
Affiliation(s)
- Karin Carneiro de Oliveira
- Renal Section, Department of Medicine, James J. Peters Veterans Affairs Medical Center, Bronx, New York, United States
- Barbara T. Murphy Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Yuan Wei
- Renal Section, Department of Medicine, James J. Peters Veterans Affairs Medical Center, Bronx, New York, United States
- Barbara T. Murphy Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Robert L Repetti
- Renal Section, Department of Medicine, Northport Veterans Affairs Medical Center, Northport, New York, United States
- Division of Nephrology, Department of Medicine, Stony Brook University School of Medicine, Stony Brook, New York, United States
| | - Jennifer Meth
- Renal Section, Department of Medicine, Northport Veterans Affairs Medical Center, Northport, New York, United States
| | - Nomrota Majumder
- Division of Nephrology, Department of Medicine, Stony Brook University School of Medicine, Stony Brook, New York, United States
| | - Ananda Sapkota
- Division of Nephrology, Department of Medicine, Stony Brook University School of Medicine, Stony Brook, New York, United States
| | - G Luca Gusella
- Barbara T. Murphy Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Rajeev Rohatgi
- Renal Section, Department of Medicine, James J. Peters Veterans Affairs Medical Center, Bronx, New York, United States
- Barbara T. Murphy Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| |
Collapse
|
15
|
Mineo C, Shaul PW. New Player in an Old Field? Ecto-F 1-ATPase in Antidiabetic Actions of HDL in Pancreatic β-Cells. Arterioscler Thromb Vasc Biol 2024; 44:419-422. [PMID: 38095108 PMCID: PMC10842905 DOI: 10.1161/atvbaha.123.320426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Affiliation(s)
- Chieko Mineo
- Center for Pulmonary and Vascular Biology, Dept. of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
- Dept. of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Philip W. Shaul
- Center for Pulmonary and Vascular Biology, Dept. of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| |
Collapse
|
16
|
Manandhar B, Pandzic E, Deshpande N, Chen SY, Wasinger VC, Kockx M, Glaros EN, Ong KL, Thomas SR, Wilkins MR, Whan RM, Cochran BJ, Rye KA. ApoA-I Protects Pancreatic β-Cells From Cholesterol-Induced Mitochondrial Damage and Restores Their Ability to Secrete Insulin. Arterioscler Thromb Vasc Biol 2024; 44:e20-e38. [PMID: 38095105 DOI: 10.1161/atvbaha.123.319378] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 11/13/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND High cholesterol levels in pancreatic β-cells cause oxidative stress and decrease insulin secretion. β-cells can internalize apo (apolipoprotein) A-I, which increases insulin secretion. This study asks whether internalization of apoA-I improves β-cell insulin secretion by reducing oxidative stress. METHODS Ins-1E cells were cholesterol-loaded by incubation with cholesterol-methyl-β-cyclodextrin. Insulin secretion in the presence of 2.8 or 25 mmol/L glucose was quantified by radioimmunoassay. Internalization of fluorescently labeled apoA-I by β-cells was monitored by flow cytometry. The effects of apoA-I internalization on β-cell gene expression were evaluated by RNA sequencing. ApoA-I-binding partners on the β-cell surface were identified by mass spectrometry. Mitochondrial oxidative stress was quantified in β-cells and isolated islets with MitoSOX and confocal microscopy. RESULTS An F1-ATPase β-subunit on the β-cell surface was identified as the main apoA-I-binding partner. β-cell internalization of apoA-I was time-, concentration-, temperature-, cholesterol-, and F1-ATPase β-subunit-dependent. β-cells with internalized apoA-I (apoA-I+ cells) had higher cholesterol and cell surface F1-ATPase β-subunit levels than β-cells without internalized apoA-I (apoA-I- cells). The internalized apoA-I colocalized with mitochondria and was associated with reduced oxidative stress and increased insulin secretion. The IF1 (ATPase inhibitory factor 1) attenuated apoA-I internalization and increased oxidative stress in Ins-1E β-cells and isolated mouse islets. Differentially expressed genes in apoA-I+ and apoA-I- Ins-1E cells were related to protein synthesis, the unfolded protein response, insulin secretion, and mitochondrial function. CONCLUSIONS These results establish that β-cells are functionally heterogeneous, and apoA-I restores insulin secretion in β-cells with elevated cholesterol levels by improving mitochondrial redox balance.
Collapse
Affiliation(s)
- Bikash Manandhar
- School of Biomedical Sciences, Faculty of Medicine (B.M., E.N.G., K.L.O., S.R.T., B.J.C., K.-A.R.), UNSW, Sydney, Australia
| | - Elvis Pandzic
- Katharina Gaus Light Microscopy Facility, Mark Wainwright Analytical Centre (E.P., R.M.W.), UNSW, Sydney, Australia
| | - Nandan Deshpande
- School of Biotechnology and Biomolecular Sciences (N.D., S.-Y.C., M.R.W.), UNSW, Sydney, Australia
| | - Sing-Young Chen
- School of Biotechnology and Biomolecular Sciences (N.D., S.-Y.C., M.R.W.), UNSW, Sydney, Australia
| | - Valerie C Wasinger
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre (V.C.W.), UNSW, Sydney, Australia
| | - Maaike Kockx
- ANZAC Research Institute, Concord, Sydney, Australia (M.K.)
| | - Elias N Glaros
- School of Biomedical Sciences, Faculty of Medicine (B.M., E.N.G., K.L.O., S.R.T., B.J.C., K.-A.R.), UNSW, Sydney, Australia
| | - Kwok Leung Ong
- School of Biomedical Sciences, Faculty of Medicine (B.M., E.N.G., K.L.O., S.R.T., B.J.C., K.-A.R.), UNSW, Sydney, Australia
| | - Shane R Thomas
- School of Biomedical Sciences, Faculty of Medicine (B.M., E.N.G., K.L.O., S.R.T., B.J.C., K.-A.R.), UNSW, Sydney, Australia
| | - Marc R Wilkins
- School of Biotechnology and Biomolecular Sciences (N.D., S.-Y.C., M.R.W.), UNSW, Sydney, Australia
| | - Renee M Whan
- Katharina Gaus Light Microscopy Facility, Mark Wainwright Analytical Centre (E.P., R.M.W.), UNSW, Sydney, Australia
| | - Blake J Cochran
- School of Biomedical Sciences, Faculty of Medicine (B.M., E.N.G., K.L.O., S.R.T., B.J.C., K.-A.R.), UNSW, Sydney, Australia
| | - Kerry-Anne Rye
- School of Biomedical Sciences, Faculty of Medicine (B.M., E.N.G., K.L.O., S.R.T., B.J.C., K.-A.R.), UNSW, Sydney, Australia
| |
Collapse
|
17
|
Mu W, Patankar V, Kitchen S, Zhen A. Examining Chronic Inflammation, Immune Metabolism, and T Cell Dysfunction in HIV Infection. Viruses 2024; 16:219. [PMID: 38399994 PMCID: PMC10893210 DOI: 10.3390/v16020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Chronic Human Immunodeficiency Virus (HIV) infection remains a significant challenge to global public health. Despite advances in antiretroviral therapy (ART), which has transformed HIV infection from a fatal disease into a manageable chronic condition, a definitive cure remains elusive. One of the key features of HIV infection is chronic immune activation and inflammation, which are strongly associated with, and predictive of, HIV disease progression, even in patients successfully treated with suppressive ART. Chronic inflammation is characterized by persistent inflammation, immune cell metabolic dysregulation, and cellular exhaustion and dysfunction. This review aims to summarize current knowledge of the interplay between chronic inflammation, immune metabolism, and T cell dysfunction in HIV infection, and also discusses the use of humanized mice models to study HIV immune pathogenesis and develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Wenli Mu
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Vaibhavi Patankar
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Scott Kitchen
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Anjie Zhen
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
18
|
Huang J, Gu JX, Wang K, Zhang AM, Hong TT, Li SS, Yao XQ, Yang M, Yin Y, Zhang N, Su M, Hu JJ, Zhang XZ, Jia M. Association between serum PCSK9 and coronary heart disease in patients with type 2 diabetes mellitus. Diabetol Metab Syndr 2023; 15:260. [PMID: 38115042 PMCID: PMC10731704 DOI: 10.1186/s13098-023-01238-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/09/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND AND AIMS Proprotein convertase subtilisin/kexin type 9 (PCSK9) is considered a new biomarker for atherosclerosis, but its ability to predict cardiovascular outcomes has been controversial. This study aimed to address the lack of data on PCSK9, coronary heart disease (CHD) severity, and major cardiovascular events (MACEs) in patients with type 2 diabetes mellitus (T2DM). METHODS A total of 2984 T2DM patients underwent selective coronary angiography, and their serum PCSK9 levels were measured using enzyme-linked immunosorbent assay. Correlation and logistic regression analyses were performed to investigate the association between PCSK9 expression and CHD severity. This study used Cox regression analysis to assess the association between circulating PCSK9 levels and the risk of MACEs. RESULTS Circulating PCSK9 levels were significantly higher in the CHD group than in the non-CHD group [554.62 (265.11) ng/mL vs. 496.86 (129.05) ng/mL, p < 0.001]. Circulating PCSK9 levels positively correlated with CHD severity (diseased vessels: r = 0.35, p < 0.001; Gensini score: r = 0.46, p < 0.001). Elevated PCSK9 levels are an independent risk factor for CHD risk and severity (CHD group vs. non-CHD group: OR = 2.829, 95% CI: 1.771-4.520, p < 0.001; three vessel disease group vs. one vessel disease group: OR = 4.800, 95% CI: 2.387-9.652, p < 0.001; high GS group vs. low GS group: OR = 5.534, 95% CI: 2.733-11.208, p < 0.001). Through a six-year follow-up and multivariate Cox regression analysis, elevated circulating PCSK9 levels were found to be independently associated with MACEs in all participants (HR: 3.416, 5% CI: 2.485-4.697, p < 0.001; adjusted HR: 2.780, 95% CI: 1.930-4.004, p < 0.001). CONCLUSIONS Serum PCSK9 levels were positively correlated with multi-vessel CHD and Gensini score. Elevated circulating PCSK9 levels are an independent risk factor for CHD and increased incidence of MACEs in T2DM.
Collapse
Affiliation(s)
- Juan Huang
- Department of traditional Chinese medicine, Peking University International Hospital, No. 1 Shengmingyuan Road, Zhongguancun Life Science Park, Changping District, Beijing, 102206, P.R. China
| | - Jun-Xu Gu
- Department of Clinical Laboratory, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, P.R. China
| | - Kun Wang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Ai-Min Zhang
- Department of Clinical Laboratory, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, P.R. China
| | - Ting-Ting Hong
- Department of Clinical Laboratory, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, P.R. China
| | - Shan-Shan Li
- Department of Clinical Laboratory, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, P.R. China
| | - Xiao-Qin Yao
- Department of traditional Chinese medicine, Peking University International Hospital, No. 1 Shengmingyuan Road, Zhongguancun Life Science Park, Changping District, Beijing, 102206, P.R. China
| | - Ming Yang
- Department of Clinical Laboratory, Peking University International Hospital, Beijing, P.R. China
| | - Yue Yin
- Department of Clinical Laboratory, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, P.R. China
| | - Na Zhang
- Department of Clinical Laboratory, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, P.R. China
| | - Ming Su
- Department of Clinical Laboratory, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, P.R. China
| | - Jia-Jia Hu
- Department of Clinical Laboratory, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, P.R. China.
| | - Xue-Zhi Zhang
- Department of traditional Chinese medicine, Peking University International Hospital, No. 1 Shengmingyuan Road, Zhongguancun Life Science Park, Changping District, Beijing, 102206, P.R. China.
| | - Mei Jia
- Department of Clinical Laboratory, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, P.R. China.
| |
Collapse
|
19
|
Sun Q, Liu D, Cui W, Cheng H, Huang L, Zhang R, Gu J, Liu S, Zhuang X, Lu Y, Chu B, Li J. Cholesterol mediated ferroptosis suppression reveals essential roles of Coenzyme Q and squalene. Commun Biol 2023; 6:1108. [PMID: 37914914 PMCID: PMC10620397 DOI: 10.1038/s42003-023-05477-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/17/2023] [Indexed: 11/03/2023] Open
Abstract
Recent findings have shown that fatty acid metabolism is profoundly involved in ferroptosis. However, the role of cholesterol in this process remains incompletely understood. In this work, we show that modulating cholesterol levels changes vulnerability of cells to ferroptosis. Cholesterol alters metabolic flux of the mevalonate pathway by promoting Squalene Epoxidase (SQLE) degradation, a rate limiting step in cholesterol biosynthesis, thereby increasing both CoQ10 and squalene levels. Importantly, whereas inactivation of Farnesyl-Diphosphate Farnesyltransferase 1 (FDFT1), the branch point of cholesterol biosynthesis pathway, exhibits minimal effect on ferroptosis, simultaneous inhibition of both CoQ10 and squalene biosynthesis completely abrogates the effect of cholesterol. Mouse models of ischemia-reperfusion and doxorubicin induced hepatoxicity confirm the protective role of cholesterol in ferroptosis. Our study elucidates a potential role of ferroptosis in diseases related to dysregulation of cholesterol metabolism and suggests a possible therapeutic target that involves ferroptotic cell death.
Collapse
Affiliation(s)
- Qi Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Diming Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Weiwei Cui
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Huimin Cheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Lixia Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Ruihao Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Junlian Gu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Shuo Liu
- Department of Geriatric Medicine, Qilu Hospital, Shandong University, Wenhuaxi Road 107, Jinan, Shandong, 250012, China
| | - Xiao Zhuang
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yi Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Bo Chu
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Jian Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
20
|
Graham A. Modulation of the Cellular microRNA Landscape: Contribution to the Protective Effects of High-Density Lipoproteins (HDL). BIOLOGY 2023; 12:1232. [PMID: 37759631 PMCID: PMC10526091 DOI: 10.3390/biology12091232] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
High-density lipoproteins (HDL) play an established role in protecting against cellular dysfunction in a variety of different disease contexts; however, harnessing this therapeutic potential has proved challenging due to the heterogeneous and relative instability of this lipoprotein and its variable cargo molecules. The purpose of this study is to examine the contribution of microRNA (miRNA; miR) sequences, either delivered directly or modulated endogenously, to these protective functions. This narrative review introduces the complex cargo carried by HDL, the protective functions associated with this lipoprotein, and the factors governing biogenesis, export and the uptake of microRNA. The possible mechanisms by which HDL can modulate the cellular miRNA landscape are considered, and the impact of key sequences modified by HDL is explored in diseases such as inflammation and immunity, wound healing, angiogenesis, dyslipidaemia, atherosclerosis and coronary heart disease, potentially offering new routes for therapeutic intervention.
Collapse
Affiliation(s)
- Annette Graham
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Cowcaddens Road, Glasgow G4 0BA, UK
| |
Collapse
|
21
|
Moore JM, Bell EL, Hughes RO, Garfield AS. ABC transporters: human disease and pharmacotherapeutic potential. Trends Mol Med 2023; 29:152-172. [PMID: 36503994 DOI: 10.1016/j.molmed.2022.11.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 12/12/2022]
Abstract
Adenosine triphosphate (ATP)-binding cassette (ABC) transporters are a 48-member superfamily of membrane proteins that actively transport a variety of biological substrates across lipid membranes. Their functional diversity defines an expansive involvement in myriad aspects of human biology. At least 21 ABC transporters underlie rare monogenic disorders, with even more implicated in the predisposition to and symptomology of common and complex diseases. Such broad (patho)physiological relevance places this class of proteins at the intersection of disease causation and therapeutic potential, underlining them as promising targets for drug discovery, as exemplified by the transformative CFTR (ABCC7) modulator therapies for cystic fibrosis. This review will explore the growing relevance of ABC transporters to human disease and their potential as small-molecule drug targets.
Collapse
|
22
|
Galli A, Arunagiri A, Dule N, Castagna M, Marciani P, Perego C. Cholesterol Redistribution in Pancreatic β-Cells: A Flexible Path to Regulate Insulin Secretion. Biomolecules 2023; 13:224. [PMID: 36830593 PMCID: PMC9953638 DOI: 10.3390/biom13020224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
Pancreatic β-cells, by secreting insulin, play a key role in the control of glucose homeostasis, and their dysfunction is the basis of diabetes development. The metabolic milieu created by high blood glucose and lipids is known to play a role in this process. In the last decades, cholesterol has attracted significant attention, not only because it critically controls β-cell function but also because it is the target of lipid-lowering therapies proposed for preventing the cardiovascular complications in diabetes. Despite the remarkable progress, understanding the molecular mechanisms responsible for cholesterol-mediated β-cell function remains an open and attractive area of investigation. Studies indicate that β-cells not only regulate the total cholesterol level but also its redistribution within organelles, a process mediated by vesicular and non-vesicular transport. The aim of this review is to summarize the most current view of how cholesterol homeostasis is maintained in pancreatic β-cells and to provide new insights on the mechanisms by which cholesterol is dynamically distributed among organelles to preserve their functionality. While cholesterol may affect virtually any activity of the β-cell, the intent of this review is to focus on early steps of insulin synthesis and secretion, an area still largely unexplored.
Collapse
Affiliation(s)
- Alessandra Galli
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, 20134 Milan, Italy
| | - Anoop Arunagiri
- Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MA 48106, USA
| | - Nevia Dule
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, 20134 Milan, Italy
| | - Michela Castagna
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, 20134 Milan, Italy
| | - Paola Marciani
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, 20134 Milan, Italy
| | - Carla Perego
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università degli Studi di Milano, 20134 Milan, Italy
| |
Collapse
|
23
|
Zhao X, Song L, Li J, Zhou J, Li N, Yan S, Chen R, Wang Y, Liu C, Zhou P, Sheng Z, Chen Y, Zhao H, Yan H. Effect of Triglyceride-Glucose Indices and Circulating PCSK9-Associated Cardiovascular Risk in STEMI Patients with Primary Percutaneous Coronary Artery Disease: A Prospective Cohort Study. J Inflamm Res 2023; 16:269-282. [PMID: 36713050 PMCID: PMC9875734 DOI: 10.2147/jir.s389778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/05/2022] [Indexed: 01/21/2023] Open
Abstract
Background and Aims This study aimed to determine whether convertase subtilisin/kexin type 9 (PCSK9)-associated cardiovascular risk is modulated by triglyceride-glucose (TyG) in ST-segment elevation myocardial infarction (STEMI) patients with primary percutaneous coronary disease (PCI). Methods A total of 1541 patients with STEMI (aged ≥18 years) undergoing primary PCI were consecutively enrolled between March 2017 and March 2019. Outcomes When stratifying the overall population according to TyG indices less than or greater than the median (TyG median = 9.07) as well as according to quartiles of PCSK9 levels, higher TyG index levels were significantly associated with all-cause mortality only when TyG levels were 9.07 or higher (ie, relative to quartile 1 [Q1], the adjusted HR for all-cause mortality was 3.20 [95% CI, 0.54-18.80] for Q2, p = 0.199; 7.89 [95% CI, 1.56-40.89] for Q3, p = 0.013; and 5.61 [95% CI, 1.04-30.30] for Q4, p = 0.045. During a median follow-up period of 1.96 years, the HR for all-cause mortality was higher in the subset of patients with TyG ≥median and PCSK9 ≥median (p for trend = 0.023) among those with type 2 diabetes mellitus (T2DM). However, there were no statistically significant differences among the subgroups. Among T2DM patients with a TyG index greater than the median, the Kaplan-Meier curve showed that patients with the highest PCSK9 levels had an increased risk of all-cause mortality (log-rank p = 0.017) and cardiac-cause mortality (log-rank p = 0.037) compared with lower PCSK9 quartile levels. Conclusion Elevated PCSK9 levels are related to all-cause mortality and cardiac-related mortality when TyG levels are greater than the median, but not when levels are less than the median. This suggests a potential benefit of lowering circulating PCSK9 levels in STEMI patients with insulin resistance.
Collapse
Affiliation(s)
- Xiaoxiao Zhao
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Li Song
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Jiannan Li
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Jinying Zhou
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Nan Li
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Shaodi Yan
- Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, People’s Republic of China
| | - Runzhen Chen
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Ying Wang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Chen Liu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Peng Zhou
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Zhaoxue Sheng
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Yi Chen
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Hanjun Zhao
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, People’s Republic of China,Hanjun Zhao, Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences, No. 167, Beijing, 100037, People’s Republic of China, Tel +86-15210020808, Email
| | - Hongbing Yan
- Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, People’s Republic of China,Correspondence: Hongbing Yan, Fuwai Hospital, Chinese Academy of Medical Sciences, 12 Langshan Road, Shenzhen, 518000, People’s Republic of China, Tel +86-13701339287, Email
| |
Collapse
|
24
|
Ruscica M, Ferri N, Banach M, Sirtori CR, Corsini A. Side effects of statins: from pathophysiology and epidemiology to diagnostic and therapeutic implications. Cardiovasc Res 2023; 118:3288-3304. [PMID: 35238338 DOI: 10.1093/cvr/cvac020] [Citation(s) in RCA: 61] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/02/2022] [Indexed: 01/25/2023] Open
Abstract
Treatment with statins, inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, has proven beneficial preventive effects on cardiovascular events. However, discontinuation due to intolerance and non-adherence remain two of the major gaps in both primary and secondary prevention. This leads many patients with high-risk of atherosclerotic cardiovascular disease (ASCVD) to be inadequately treated or not to achieve target lipid level goals, and as consequence they undergo an increased risk of cardiovascular events. The aim of this review is thus to give an overview of the reasons for discontinuation and on the possible mechanisms behind them. Although statins, as a class, are generally safe, they are associated with an increased risk of diabetes mellitus and hepatic transaminase elevations. Incidence of cataracts or cognitive dysfunction and others presented in the literature (e.g. proteinuria and haematuria) have been never confirmed to have a causal link. Conversely, debated remains the effect on myalgia. Muscle side effects are the most commonly reported, although myalgia is still believed by some to be the result of a nocebo/drucebo effect. Concerning mechanisms behind muscular side effects, no clear conclusions have been reached. Thus, if on one side it is important to identify individuals either at higher risk to develop a side effect, or with confirmed risk factors and conditions of statin intolerance, on the other side alternative strategies should be identified to avoid an increased ASCVD risk.
Collapse
Affiliation(s)
- Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Nicola Ferri
- Department of Pharmaceutical and Pharmacological Sciences, Universita degli Studi di Padova, Padova, Italy
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), Lodz, Poland.,Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland
| | - Cesare R Sirtori
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Alberto Corsini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| |
Collapse
|
25
|
Yu Y, Li M, Zhao Y, Fan F, Wu W, Gao Y, Bai C. Immune cell-derived extracellular vesicular microRNAs induce pancreatic beta cell apoptosis. Heliyon 2022; 8:e11995. [PMID: 36561684 PMCID: PMC9763775 DOI: 10.1016/j.heliyon.2022.e11995] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/01/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
Background Type 1 diabetes mellitus (T1DM) is an autoimmune disease caused by an autoimmune response against pancreatic islet β cells. Increasing evidence indicates that specific microRNAs (miRNAs) from immune cells extracellular vesicles are involved in islet β cells apoptosis. Methods In this study, the microarray datasets GSE27997 and GSE137637 were downloaded from the Gene Expression Omnibus (GEO) database. miRNAs that promote islet β cells apoptosis in T1DM were searched in PubMed. We used the FunRich tool to determine the miRNA expression in extracellular vesicles derived from immune cells associated with islet β cell apoptosis, of which we selected candidate miRNAs based on fold change expression. Potential upstream transcription factors and downstream target genes of candidate miRNAs were predicted using TransmiR V2.0 and starBase database, respectively. Results Candidate miRNAs expressed in extracellular vesicles derived from T cells, pro-inflammatory macrophages, B cells, and dendritic cells were analyzed to identify the miRNAs involved in β cells apoptosis. Based on these candidate miRNAs, 25 downstream candidate genes, which positively regulate β cell functions, were predicted and screened; 17 transcription factors that positively regulate the candidate miRNAs were also identified. Conclusions Our study demonstrated that immune cell-derived extracellular vesicular miRNAs could promote islet β cell dysfunction and apoptosis. Based on these findings, we have constructed a transcription factor-miRNA-gene regulatory network, which provides a theoretical basis for clinical management of T1DM. This study provides novel insights into the mechanism underlying immune cell-derived extracellular vesicle-mediated islet β cell apoptosis.
Collapse
Affiliation(s)
- Yueyang Yu
- Institute of Precision Medicine, Jining Medical University, Jining, Shandong 272067, PR China
| | - Mengyin Li
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, 272067, PR China
| | - Yuxuan Zhao
- Institute of Precision Medicine, Jining Medical University, Jining, Shandong 272067, PR China
| | - Fangzhou Fan
- Institute of Precision Medicine, Jining Medical University, Jining, Shandong 272067, PR China
| | - Wenxiang Wu
- Institute of Precision Medicine, Jining Medical University, Jining, Shandong 272067, PR China
| | - Yuhua Gao
- Institute of Precision Medicine, Jining Medical University, Jining, Shandong 272067, PR China
- Corresponding author.
| | - Chunyu Bai
- Institute of Precision Medicine, Jining Medical University, Jining, Shandong 272067, PR China
- Corresponding author.
| |
Collapse
|
26
|
Effect of the First Feeding on Enterocytes of Newborn Rats. Int J Mol Sci 2022; 23:ijms232214179. [PMID: 36430658 PMCID: PMC9699143 DOI: 10.3390/ijms232214179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/06/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
The transcytosis of lipids through enterocytes occurs through the delivery of lipid micelles to the microvilli of enterocytes, consumption of lipid derivates by the apical plasma membrane (PM) and then their delivery to the membrane of the smooth ER attached to the basolateral PM. The SER forms immature chylomicrons (iChMs) in the ER lumen. iChMs are delivered at the Golgi complex (GC) where they are subjected to additional glycosylation resulting in maturation of iChMs. ChMs are secreted into the intercellular space and delivered into the lumen of lymphatic capillaries (LCs). The overloading of enterocytes with lipids induces the formation of lipid droplets inside the lipid bilayer of the ER membranes and transcytosis becomes slower. Here, we examined components of the enterocyte-to-lymphatic barriers in newly born rats before the first feeding and after it. In contrast to adult animals, enterocytes of newborns rats exhibited apical endocytosis and a well-developed subapical endosomal tubular network. These enterocytes uptake membranes from amniotic fluid. Then these membranes are transported across the polarized GC and secreted into the intercellular space. The enterocytes did not contain COPII-coated buds on the granular ER. The endothelium of blood capillaries situated near the enterocytes contained only a few fenestrae. The LCs were similar to those in adult animals. The first feeding induced specific alterations of enterocytes, which were similar to those observed after the lipid overloading of enterocytes in adult rats. Enlarged chylomicrons were stopped at the level of the LAMP2 and Neu1 positive post-Golgi structures, secreted, fused, delivered to the interstitial space, captured by the LCs and transported to the lymph node, inducing the movement of macrophages from lymphatic follicles into its sinuses. The macrophages captured the ChMs, preventing their delivery into the blood.
Collapse
|
27
|
Marku A, Da Dalt L, Galli A, Dule N, Corsetto P, Rizzo AM, Moregola A, Uboldi P, Bonacina F, Marciani P, Castagna M, Catapano AL, Norata GD, Perego C. Pancreatic PCSK9 controls the organization of the β-cell secretory pathway via LDLR-cholesterol axis. Metabolism 2022; 136:155291. [PMID: 35981632 DOI: 10.1016/j.metabol.2022.155291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/29/2022] [Accepted: 08/11/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Cholesterol is central to pancreatic β-cell physiology and alterations of its homeostasis contribute to β-cell dysfunction and diabetes. Proper intracellular cholesterol levels are maintained by different mechanisms including uptake via the low-density lipoprotein receptor (LDLR). In the liver, the proprotein convertase subtilisin/kexin type 9 (PCSK9) routes the LDLR to lysosomes for degradation, thus limiting its recycling to the membrane. PCSK9 is also expressed in the pancreas and loss of function mutations of PCSK9 result in higher plasma glucose levels and increased risk of Type 2 diabetes mellitus. Aim of this study was to investigate whether PCSK9 also impacts β-cells function. METHODS Pancreas-specific Pcsk9 null mice (Pdx1Cre/Pcsk9 fl/fl) were generated and characterized for glucose tolerance, insulin release and islet morphology. Isolated Pcsk9-deficient islets and clonal β-cells (INS1E) were employed to characterize the molecular mechanisms of PCSK9 action. RESULTS Pdx1Cre/Pcsk9 fl/fl mice exhibited normal blood PCSK9 and cholesterol levels but were glucose intolerant and had defective insulin secretion in vivo. Analysis of PCSK9-deficient islets revealed comparable β-cell mass and insulin content but impaired stimulated secretion. Increased proinsulin/insulin ratio, modifications of SNARE proteins expression and decreased stimulated‑calcium dynamics were detected in PCSK9-deficient β-cells. Mechanistically, pancreatic PCSK9 silencing impacts β-cell LDLR expression and cholesterol content, both in vivo and in vitro. The key role of LDLR is confirmed by the demonstration that LDLR downregulation rescued the phenotype. CONCLUSIONS These findings establish pancreatic PCSK9 as a novel critical regulator of the functional maturation of the β-cell secretory pathway, via modulation of cholesterol homeostasis.
Collapse
Affiliation(s)
- Algerta Marku
- Dept of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy
| | - Lorenzo Da Dalt
- Dept of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy
| | - Alessandra Galli
- Dept of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy
| | - Nevia Dule
- Dept of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy
| | - Paola Corsetto
- Dept of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy
| | - Angela Maria Rizzo
- Dept of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy
| | - Annalisa Moregola
- Dept of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy
| | - Patrizia Uboldi
- Dept of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy
| | - Fabrizia Bonacina
- Dept of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy
| | - Paola Marciani
- Dept of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy
| | - Michela Castagna
- Dept of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy
| | - Alberico Luigi Catapano
- Dept of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy; IRCCS Multimedica Hospital, Sesto San Giovanni, 20099 Milan, Italy
| | - Giuseppe Danilo Norata
- Dept of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy; Centro SISA per lo studio dell'Aterosclerosi, Ospedale Bassini, 20092 Cinisello Balsamo, Italy.
| | - Carla Perego
- Dept of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20134 Milan, Italy.
| |
Collapse
|
28
|
Galper J, Kim WS, Dzamko N. LRRK2 and Lipid Pathways: Implications for Parkinson's Disease. Biomolecules 2022; 12:1597. [PMID: 36358947 PMCID: PMC9687231 DOI: 10.3390/biom12111597] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 04/10/2024] Open
Abstract
Genetic alterations in the LRRK2 gene, encoding leucine-rich repeat kinase 2, are a common risk factor for Parkinson's disease. How LRRK2 alterations lead to cell pathology is an area of ongoing investigation, however, multiple lines of evidence suggest a role for LRRK2 in lipid pathways. It is increasingly recognized that in addition to being energy reservoirs and structural entities, some lipids, including neural lipids, participate in signaling cascades. Early investigations revealed that LRRK2 localized to membranous and vesicular structures, suggesting an interaction of LRRK2 and lipids or lipid-associated proteins. LRRK2 substrates from the Rab GTPase family play a critical role in vesicle trafficking, lipid metabolism and lipid storage, all processes which rely on lipid dynamics. In addition, LRRK2 is associated with the phosphorylation and activity of enzymes that catabolize plasma membrane and lysosomal lipids. Furthermore, LRRK2 knockout studies have revealed that blood, brain and urine exhibit lipid level changes, including alterations to sterols, sphingolipids and phospholipids, respectively. In human LRRK2 mutation carriers, changes to sterols, sphingolipids, phospholipids, fatty acyls and glycerolipids are reported in multiple tissues. This review summarizes the evidence regarding associations between LRRK2 and lipids, and the functional consequences of LRRK2-associated lipid changes are discussed.
Collapse
Affiliation(s)
- Jasmin Galper
- Charles Perkins Centre and Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW 2050, Australia
| | - Woojin S Kim
- Brain and Mind Centre and Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW 2050, Australia
| | - Nicolas Dzamko
- Charles Perkins Centre and Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW 2050, Australia
- Brain and Mind Centre and Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, NSW 2050, Australia
| |
Collapse
|
29
|
Melnik BC, Schmitz G. Milk Exosomal microRNAs: Postnatal Promoters of β Cell Proliferation but Potential Inducers of β Cell De-Differentiation in Adult Life. Int J Mol Sci 2022; 23:ijms231911503. [PMID: 36232796 PMCID: PMC9569743 DOI: 10.3390/ijms231911503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Pancreatic β cell expansion and functional maturation during the birth-to-weaning period is driven by epigenetic programs primarily triggered by growth factors, hormones, and nutrients provided by human milk. As shown recently, exosomes derived from various origins interact with β cells. This review elucidates the potential role of milk-derived exosomes (MEX) and their microRNAs (miRs) on pancreatic β cell programming during the postnatal period of lactation as well as during continuous cow milk exposure of adult humans to bovine MEX. Mechanistic evidence suggests that MEX miRs stimulate mTORC1/c-MYC-dependent postnatal β cell proliferation and glycolysis, but attenuate β cell differentiation, mitochondrial function, and insulin synthesis and secretion. MEX miR content is negatively affected by maternal obesity, gestational diabetes, psychological stress, caesarean delivery, and is completely absent in infant formula. Weaning-related disappearance of MEX miRs may be the critical event switching β cells from proliferation to TGF-β/AMPK-mediated cell differentiation, whereas continued exposure of adult humans to bovine MEX miRs via intake of pasteurized cow milk may reverse β cell differentiation, promoting β cell de-differentiation. Whereas MEX miR signaling supports postnatal β cell proliferation (diabetes prevention), persistent bovine MEX exposure after the lactation period may de-differentiate β cells back to the postnatal phenotype (diabetes induction).
Collapse
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany
- Correspondence: ; Tel.: +49-52-4198-8060
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, University of Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
30
|
Guevara-Olaya L, Chimal-Vega B, Castañeda-Sánchez CY, López-Cossio LY, Pulido-Capiz A, Galindo-Hernández O, Díaz-Molina R, Ruiz Esparza-Cisneros J, García-González V. LDL Promotes Disorders in β-Cell Cholesterol Metabolism, Implications on Insulin Cellular Communication Mediated by EVs. Metabolites 2022; 12:754. [PMID: 36005626 PMCID: PMC9415214 DOI: 10.3390/metabo12080754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 12/01/2022] Open
Abstract
Dyslipidemia is described as a hallmark of metabolic syndrome, promoting a stage of metabolic inflammation (metainflammation) that could lead to misbalances in energetic metabolism, contributing to insulin resistance, and modifying intracellular cholesterol pathways and the renin-angiotensin system (RAS) in pancreatic islets. Low-density lipoprotein (LDL) hypercholesterolemia could disrupt the tissue communication between Langerhans β-cells and hepatocytes, wherein extracellular vesicles (EVs) are secreted by β-cells, and exposition to LDL can impair these phenomena. β-cells activate compensatory mechanisms to maintain insulin and metabolic homeostasis; therefore, the work aimed to characterize the impact of LDL on β-cell cholesterol metabolism and the implication on insulin secretion, connected with the regulation of cellular communication mediated by EVs on hepatocytes. Our results suggest that β-cells can endocytose LDL, promoting an increase in de novo cholesterol synthesis targets. Notably, LDL treatment increased mRNA levels and insulin secretion; this hyperinsulinism condition was associated with the transcription factor PDX-1. However, a compensatory response that maintains basal levels of intracellular calcium was described, mediated by the overexpression of calcium targets PMCA1/4, SERCA2, and NCX1, together with the upregulation of the unfolded protein response (UPR) through the activation of IRE1 and PERK arms to maintain protein homeostasis. The LDL treatment induced metainflammation by IL-6, NF-κB, and COX-2 overexpression. Furthermore, LDL endocytosis triggered an imbalance of the RAS components. LDL treatment increased the intracellular levels of cholesterol on lipid droplets; the adaptive β-cell response was portrayed by the overexpression of cholesterol transporters ABCA1 and ABCG1. Therefore, lipotoxicity and hyperinsulinism induced by LDL were regulated by the natural compound auraptene, a geranyloxyn coumarin modulator of cholesterol-esterification by ACAT1 enzyme inhibition. EVs isolated from β-cells impaired insulin signaling via mTOR/p70S6Kα in hepatocytes, a phenomenon regulated by auraptene. Our results show that LDL overload plays a novel role in hyperinsulinism, mechanisms associated with a dysregulation of intracellular cholesterol, lipotoxicity, and the adaptive UPR, which may be regulated by coumarin-auraptene; these conditions explain the affectations that occur during the initial stages of insulin resistance.
Collapse
Affiliation(s)
- Lizbeth Guevara-Olaya
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, BC, Mexico
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Facultad de Medicina Mexicali, Universidad Autónoma de BC, Mexicali 21000, BC, Mexico
| | - Brenda Chimal-Vega
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, BC, Mexico
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Facultad de Medicina Mexicali, Universidad Autónoma de BC, Mexicali 21000, BC, Mexico
| | - César Yahel Castañeda-Sánchez
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, BC, Mexico
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Facultad de Medicina Mexicali, Universidad Autónoma de BC, Mexicali 21000, BC, Mexico
| | - Leslie Y. López-Cossio
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, BC, Mexico
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Facultad de Medicina Mexicali, Universidad Autónoma de BC, Mexicali 21000, BC, Mexico
| | - Angel Pulido-Capiz
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, BC, Mexico
- Laboratorio de Biología Molecular, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, BC, Mexico
| | - Octavio Galindo-Hernández
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, BC, Mexico
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Facultad de Medicina Mexicali, Universidad Autónoma de BC, Mexicali 21000, BC, Mexico
| | - Raúl Díaz-Molina
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, BC, Mexico
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Facultad de Medicina Mexicali, Universidad Autónoma de BC, Mexicali 21000, BC, Mexico
| | | | - Victor García-González
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, BC, Mexico
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Facultad de Medicina Mexicali, Universidad Autónoma de BC, Mexicali 21000, BC, Mexico
| |
Collapse
|
31
|
Lv C, Sun Y, Zhang ZY, Aboelela Z, Qiu X, Meng ZX. β-cell dynamics in type 2 diabetes and in dietary and exercise interventions. J Mol Cell Biol 2022; 14:6656373. [PMID: 35929791 PMCID: PMC9710517 DOI: 10.1093/jmcb/mjac046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/07/2022] [Accepted: 08/03/2022] [Indexed: 01/14/2023] Open
Abstract
Pancreatic β-cell dysfunction and insulin resistance are two of the major causes of type 2 diabetes (T2D). Recent clinical and experimental studies have suggested that the functional capacity of β-cells, particularly in the first phase of insulin secretion, is a primary contributor to the progression of T2D and its associated complications. Pancreatic β-cells undergo dynamic compensation and decompensation processes during the development of T2D, in which metabolic stresses such as endoplasmic reticulum stress, oxidative stress, and inflammatory signals are key regulators of β-cell dynamics. Dietary and exercise interventions have been shown to be effective approaches for the treatment of obesity and T2D, especially in the early stages. Whilst the targeted tissues and underlying mechanisms of dietary and exercise interventions remain somewhat vague, accumulating evidence has implicated the improvement of β-cell functional capacity. In this review, we summarize recent advances in the understanding of the dynamic adaptations of β-cell function in T2D progression and clarify the effects and mechanisms of dietary and exercise interventions on β-cell dysfunction in T2D. This review provides molecular insights into the therapeutic effects of dietary and exercise interventions on T2D, and more importantly, it paves the way for future research on the related underlying mechanisms for developing precision prevention and treatment of T2D.
Collapse
Affiliation(s)
- Chengan Lv
- Department of Pathology and Pathophysiology and Metabolic Research Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China,Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yuchen Sun
- Department of Pathology and Pathophysiology and Metabolic Research Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China,Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China,Zhejiang University–University of Edinburgh Institute (ZJE), Zhejiang University, Haining 314400, China
| | - Zhe Yu Zhang
- Department of Pathology and Pathophysiology and Metabolic Research Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China,Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zeyad Aboelela
- Department of Pathology and Pathophysiology and Metabolic Research Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China,Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China,Bachelors of Surgery, Bachelors of Medicine (MBBS), Zhejiang University School of Medicine, Hangzhou 310003, China
| | | | | |
Collapse
|
32
|
Duan Y, Gong K, Xu S, Zhang F, Meng X, Han J. Regulation of cholesterol homeostasis in health and diseases: from mechanisms to targeted therapeutics. Signal Transduct Target Ther 2022; 7:265. [PMID: 35918332 PMCID: PMC9344793 DOI: 10.1038/s41392-022-01125-5] [Citation(s) in RCA: 104] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 12/13/2022] Open
Abstract
Disturbed cholesterol homeostasis plays critical roles in the development of multiple diseases, such as cardiovascular diseases (CVD), neurodegenerative diseases and cancers, particularly the CVD in which the accumulation of lipids (mainly the cholesteryl esters) within macrophage/foam cells underneath the endothelial layer drives the formation of atherosclerotic lesions eventually. More and more studies have shown that lowering cholesterol level, especially low-density lipoprotein cholesterol level, protects cardiovascular system and prevents cardiovascular events effectively. Maintaining cholesterol homeostasis is determined by cholesterol biosynthesis, uptake, efflux, transport, storage, utilization, and/or excretion. All the processes should be precisely controlled by the multiple regulatory pathways. Based on the regulation of cholesterol homeostasis, many interventions have been developed to lower cholesterol by inhibiting cholesterol biosynthesis and uptake or enhancing cholesterol utilization and excretion. Herein, we summarize the historical review and research events, the current understandings of the molecular pathways playing key roles in regulating cholesterol homeostasis, and the cholesterol-lowering interventions in clinics or in preclinical studies as well as new cholesterol-lowering targets and their clinical advances. More importantly, we review and discuss the benefits of those interventions for the treatment of multiple diseases including atherosclerotic cardiovascular diseases, obesity, diabetes, nonalcoholic fatty liver disease, cancer, neurodegenerative diseases, osteoporosis and virus infection.
Collapse
Affiliation(s)
- Yajun Duan
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Ke Gong
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Suowen Xu
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Feng Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xianshe Meng
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Jihong Han
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China. .,College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.
| |
Collapse
|
33
|
Agoons DD, Musani SK, Correa A, Golden SH, Bertoni AG, Echouffo‐Tcheugui JB. High-density lipoprotein-cholesterol and incident type 2 diabetes mellitus among African Americans: The Jackson Heart Study. Diabet Med 2022; 39:e14895. [PMID: 35639386 PMCID: PMC9308726 DOI: 10.1111/dme.14895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 05/19/2022] [Accepted: 05/22/2022] [Indexed: 11/28/2022]
Abstract
AIMS Accruing evidence suggests an association between high-density lipoprotein cholesterol (HDL-C) and incident diabetes. However, there is a paucity of data on the link between HDL-C and diabetes, especially among African Americans (AAs). We aimed to assess the association of HDL-C and its fractions with incident type 2 diabetes among AAs. METHODS We included Jackson Heart Study participants who attended visit 1 (2001-2004), were free from diabetes and were not treated with lipid-modifying medications. Incident diabetes was assessed at two subsequent-yearly visits (2 and 3). We cross-sectionally assessed the association of HDL-C and insulin resistance (IR) using multivariable linear models. We prospectively assessed the association of HDL-C and its fractions with incident diabetes using multivariable Cox regression models. RESULTS Among 2829 participants (mean age: 51.9 ± 12.4 years, 63.9% female), 487 participants (17%) developed new-onset diabetes, over a median follow-up of 8 years. In adjusted models, a higher HDL-C concentration was associated with a lower odds of IR (odds ratio [OR] per standard deviation [SD] increment: OR 0.56 [95% confidence interval, CI 0.50-0.63], p < 0.001). In adjusted models, a higher HDL-C concentration was associated with a lower risk of diabetes (HR per SD increment: 0.78 [95% CI 0.71, 0.87], p < 0.001; HR for highest vs. the lowest tertile of HDL-C was 0.56 [95% CI: 0.44, 0.71], p < 0.001). CONCLUSION In a sample of African-American adults not on any lipid-modifying therapy, high HDL-C concentrations were inversely associated with the risk of new-onset diabetes. These findings suggest a strong link between HDL-C metabolism and glucose regulation.
Collapse
Affiliation(s)
- Dayawa D. Agoons
- Department of MedicineUniversity of Pittsburg Medical Center PinnacleHarrisburgPennsylvaniaUSA
| | - Solomon K. Musani
- Department of MedicineUniversity of Mississippi Medical CenterJacksonMississippiUSA
| | - Adolfo Correa
- Department of MedicineUniversity of Mississippi Medical CenterJacksonMississippiUSA
| | - Sherita H. Golden
- Department of Medicine, Division of Endocrinology, Diabetes & MetabolismJohns Hopkins School of MedicineBaltimoreMarylandUSA
- Welch Prevention Center for Prevention, Epidemiology and Clinical ResearchJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Alain G. Bertoni
- Department of Epidemiology and PreventionWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Justin B. Echouffo‐Tcheugui
- Department of Medicine, Division of Endocrinology, Diabetes & MetabolismJohns Hopkins School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
34
|
Huang JK, Lee HC. Emerging Evidence of Pathological Roles of Very-Low-Density Lipoprotein (VLDL). Int J Mol Sci 2022; 23:4300. [PMID: 35457118 PMCID: PMC9031540 DOI: 10.3390/ijms23084300] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 12/18/2022] Open
Abstract
Embraced with apolipoproteins (Apo) B and Apo E, triglyceride-enriched very-low-density lipoprotein (VLDL) is secreted by the liver into circulation, mainly during post-meal hours. Here, we present a brief review of the physiological role of VLDL and a systemic review of the emerging evidence supporting its pathological roles. VLDL promotes atherosclerosis in metabolic syndrome (MetS). VLDL isolated from subjects with MetS exhibits cytotoxicity to atrial myocytes, induces atrial myopathy, and promotes vulnerability to atrial fibrillation. VLDL levels are affected by a number of endocrinological disorders and can be increased by therapeutic supplementation with cortisol, growth hormone, progesterone, and estrogen. VLDL promotes aldosterone secretion, which contributes to hypertension. VLDL induces neuroinflammation, leading to cognitive dysfunction. VLDL levels are also correlated with chronic kidney disease, autoimmune disorders, and some dermatological diseases. The extra-hepatic secretion of VLDL derived from intestinal dysbiosis is suggested to be harmful. Emerging evidence suggests disturbed VLDL metabolism in sleep disorders and in cancer development and progression. In addition to VLDL, the VLDL receptor (VLDLR) may affect both VLDL metabolism and carcinogenesis. Overall, emerging evidence supports the pathological roles of VLDL in multi-organ diseases. To better understand the fundamental mechanisms of how VLDL promotes disease development, elucidation of the quality control of VLDL and of the regulation and signaling of VLDLR should be indispensable. With this, successful VLDL-targeted therapies can be discovered in the future.
Collapse
Affiliation(s)
- Jih-Kai Huang
- Department of General Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Hsiang-Chun Lee
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Lipid Science and Aging Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80708, Taiwan
- Graduate Institute of Animal Vaccine Technology, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| |
Collapse
|
35
|
Parker DC, Wan M, Lohman K, Hou L, Nguyen AT, Ding J, Bertoni A, Shea S, Burke GL, Jacobs DR, Post W, Corcoran D, Hoeschele I, Parks JS, Liu Y. Monocyte miRNAs Are Associated With Type 2 Diabetes. Diabetes 2022; 71:853-861. [PMID: 35073575 PMCID: PMC8965663 DOI: 10.2337/db21-0704] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022]
Abstract
miRNAs are small noncoding RNAs that may contribute to common diseases through epigenetic regulation of gene expression. Little is known regarding the role of miRNAs in type 2 diabetes (T2D). We performed miRNA sequencing and transcriptomic profiling of peripheral monocytes from the longitudinal Multi-Ethnic Study of Atherosclerosis (MESA) (N = 1,154). We examined associations between miRNAs and prevalent impaired fasting glucose and T2D and evaluated the T2D-associated miRNA effect on incident T2D. Of 774 detected miRNAs, 6 (miR-22-3p, miR-33a-5p, miR-181c-5p, miR-92b-3p, miR-222-3p, and miR-944) were associated with prevalent T2D. For five of the six miRNAs (all but miR-222-3p), our findings suggest a dose-response relationship with impaired fasting glucose and T2D. Two of the six miRNAs were associated with incident T2D (miR-92b-3p: hazard ratio [HR] 1.64, P = 1.30E-03; miR-222-3p: HR 1.97, P = 9.10E-03) in the highest versus lowest tertile of expression. Most of the T2D-associated miRNAs were also associated with HDL cholesterol concentrations. The genes targeted by these miRNAs belong to key nodes of a cholesterol metabolism transcriptomic network. Higher levels of miRNA expression expected to increase intracellular cholesterol accumulation in monocytes are linked to an increase in T2D risk.
Collapse
Affiliation(s)
- Daniel C. Parker
- Division of Geriatrics, Department of Medicine, Duke University School of Medicine, Durham, NC
- Duke University Center for the Study of Aging and Human Development, Durham, NC
| | - Ma Wan
- Division of Cardiology, Department of Medicine, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC
| | - Kurt Lohman
- Division of Cardiology, Department of Medicine, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC
| | - Li Hou
- Division of Cardiology, Department of Medicine, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC
| | - Anh Tram Nguyen
- Division of Cardiology, Department of Medicine, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC
| | - Jingzhong Ding
- Wake Forest University School of Medicine, Winston-Salem, NC
| | - Alain Bertoni
- Wake Forest University School of Medicine, Winston-Salem, NC
| | - Steve Shea
- Columbia University School of Medicine, New York, NY
| | | | - David R. Jacobs
- University of Minnesota School of Public Health, Minneapolis, MN
| | - Wendy Post
- Johns Hopkins University School of Medicine, Baltimore, MD
| | - David Corcoran
- Duke Center for Genomic and Computational Biology, Duke University, Durham, NC
| | - Ina Hoeschele
- Department of Statistics and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA
| | - John S. Parks
- Wake Forest University School of Medicine, Winston-Salem, NC
| | - Yongmei Liu
- Division of Cardiology, Department of Medicine, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC
| |
Collapse
|
36
|
Marouf BH, Iqbal Z, Mohamad JB, Bashir B, Schofield J, Syed A, Kilpatrick ES, Stefanutti C, Soran H. Efficacy and Safety of PCSK9 Monoclonal Antibodies in Patients With Diabetes. Clin Ther 2022; 44:331-348. [PMID: 35246337 DOI: 10.1016/j.clinthera.2021.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/28/2021] [Accepted: 12/09/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors are novel drugs that have proven efficacy in improving cardiovascular outcomes. Roles for the PCSK9 molecule in metabolic pathways beyond LDL receptor processing and cholesterol homeostasis are well established. PCSK9 genetic variants associated with lower LDL-C levels correlate with a higher incidence of type 2 diabetes (T2DM), calling into question the appropriateness of these drugs in patients with T2DM and those at high risk of developing diabetes, and whether cardiovascular benefit seen with PCSK9 inhibitors might be offset by resultant dysglycemia. The purpose of this review was to examine the role of PCSK9 protein in glucose homeostasis, the impact of PCSK9 inhibition in relation to glucose homeostasis, and whether some of the cardiovascular benefit seen with PCSK9 inhibitors and statins might be offset by resultant dysglycemia. METHODS Comprehensive literature searches of electronic databases of PubMed, EMBASE, and OVID were conducted by using the search terms hyperlipidaemia, PCSK9, diabetes, and glucose as well as other relevant papers of interest collected by the authors. The retrieved papers were reviewed and shortlisted most relevant ones. FINDINGS Genetically determined lower circulating LDL-C and PCSK9 concentrations may have an incremental effect in increasing T2DM incidence, but any perceived harm is outweighed by the reduced risk of atherosclerotic cardiovascular disease achieved through lower lifetime exposure to LDL-C. PCSK9 monoclonal antibodies are effective and safe in patients with T2DM and those at high risk of developing it. The number-needed-to-treat to prevent one atherosclerotic cardiovascular disease event in the FOURIER (Further Cardiovascular Outcomes Research with PCSK9 Inhibition in Subjects with Elevated Risk) study in the subgroup with diabetes is significantly lower than for those without. Therefore, T2DM or being at high risk to develop it should not be a reason to avoid these agents. The safety of PCSK9 inhibition in relation to glucose homeostasis may depend on the method of inhibition and whether it occurs in circulation or the cells. Data from experimental studies and randomized controlled trials suggest no detrimental effect of PCSK9 monoclonal antibodies on glucose homeostasis. More data and large randomized controlled studies are needed to assess the impact of other methods of PCSK9 inhibition on glucose homeostasis. IMPLICATIONS PCSK9monoclonal antibodies markedly reduce LDL-C and consistently reduce cardiovascular mortality in patients with and without diabetes. Current evidence does not suggest an adverse effect of PCSK9 monoclonal antibodies on glycemic parameters.
Collapse
Affiliation(s)
- Bushra Hassan Marouf
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Sulaimani, Sulaimani, Federal Region of Kurdistan, Iraq
| | - Zohaib Iqbal
- Cardiovascular Trials Unit, Manchester University NHS Foundation Trust, Manchester, United Kingdom; Centre for Diabetes, Endocrinology and Metabolism, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Jamal Basheer Mohamad
- Department of Internal Medicine, College of Medicine, University of Duhok, Duhok, Federal Region of Kurdistan, Iraq
| | - Bilal Bashir
- Centre for Diabetes, Endocrinology and Metabolism, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Jonathan Schofield
- Cardiovascular Trials Unit, Manchester University NHS Foundation Trust, Manchester, United Kingdom; Centre for Diabetes, Endocrinology and Metabolism, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Akheel Syed
- Department of Diabetes, Endocrinology and Obesity Medicine, Salford Royal NHS Foundation and University Teaching Trust, Salford, United Kingdom
| | - Eric S Kilpatrick
- Department of Clinical Biochemistry, Manchester University NHS Foundation Trust, Manchester, and Hull York Medical School, Hull, United Kingdom
| | - Claudia Stefanutti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Handrean Soran
- Cardiovascular Trials Unit, Manchester University NHS Foundation Trust, Manchester, United Kingdom; Centre for Diabetes, Endocrinology and Metabolism, Manchester University NHS Foundation Trust, Manchester, United Kingdom.
| |
Collapse
|
37
|
Zhang Y, Lan X, Li F, Sun H, Zhang J, Li R, Gao Y, Dong H, Cai C, Zeng G. Dietary cholesterol and egg intake are associated with the risk of gestational diabetes: a prospective study from Southwest China. BMC Pregnancy Childbirth 2022; 22:45. [PMID: 35038995 PMCID: PMC8764826 DOI: 10.1186/s12884-022-04382-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/05/2022] [Indexed: 12/24/2022] Open
Abstract
Background An increasing body of evidence suggests that cholesterol intake increases during pregnancy and may influence the risk of gestational diabetes mellitus (GDM). However, existing evidence remains controversial and limited. The present study aimed to determine the relation among dietary cholesterol, specifically egg consumption, in pregnant Chinese women and their risk of GDM. Methods A population-based study that included 1617 pregnant women was conducted in 2017. At baseline, dietary information was collected by 24-hour dietary recalls over three days. GDM was diagnosed by a 75 g 2-hr oral glucose tolerance test (OGTT) at 24-28 weeks of gestation. Logistic regression models were used to examine the associations of dietary cholesterol and egg intake with GDM. In addition, path analysis including cholesterol intake, plasma lipid profiles and GDM risk was conducted. Results The average total cholesterol intake was 340.8 mg/d, and cholesterol from eggs accounted for 59.2%. The odds ratio (OR) of GDM risk was 1.48 for the highest quartile of total cholesterol intake compared to the lowest quartile (95% CI 1.10-2.00; Ptrend = 0.015) after adjustment for potential risk factors for GDM. Moreover, cholesterol from eggs rather than from other foods was positively associated with incident GDM (OR=1.09, 95% CI 1.03-1.17). Each additional egg consumed per day was positively correlated with a higher risk of GDM (OR=1.32, 95% CI 1.11-1.58). Path analysis indicated that cholesterol intake not only increased the risk of GDM by elevating plasma total cholesterol (TC), but also increased the risk of GDM through other non hyperlipidemia pathways. Conclusions Maternal dietary cholesterol intake was significantly associated with incident GDM, and egg consumption was a major driver of the association in this population. More studies are needed to substantiate these findings and to explore the underlying mechanisms. Supplementary Information The online version contains supplementary material available at 10.1186/s12884-022-04382-y.
Collapse
Affiliation(s)
- Yiqi Zhang
- Department of Nutrition and Food Safety, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, Renmin Nan Road, Chengdu, 610041, Sichuan, China
| | - Xi Lan
- Department of Nutrition and Food Safety, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, Renmin Nan Road, Chengdu, 610041, Sichuan, China
| | - Fei Li
- Department of Nutrition and Food Safety, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, Renmin Nan Road, Chengdu, 610041, Sichuan, China
| | - Hong Sun
- Department of Nutrition and Food Safety, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, Renmin Nan Road, Chengdu, 610041, Sichuan, China
| | - Ju Zhang
- Department of Clinical Nutrition, Sichuan Provincial Hospital for Women and Children, Chengdu, 610000, Sichuan, China
| | - Run Li
- Department of Clinical Nutrition, Sichuan Provincial Hospital for Women and Children, Chengdu, 610000, Sichuan, China
| | - Yan Gao
- Department of Obstetrics, Sichuan Provincial Hospital for Women and Children, Chengdu, 610000, Sichuan, China
| | - Hongli Dong
- Department of Nutrition and Food Safety, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, Renmin Nan Road, Chengdu, 610041, Sichuan, China
| | - Congjie Cai
- Department of Nutrition and Food Safety, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, Renmin Nan Road, Chengdu, 610041, Sichuan, China
| | - Guo Zeng
- Department of Nutrition and Food Safety, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, Renmin Nan Road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
38
|
Lee YH, Chang YS, Hsieh CC, Wang RT, Chang JG, Chen CJ, Chang SJ. APOE and KLF14 genetic variants are sex-specific for low high-density lipoprotein cholesterol identified by a genome-wide association study. Genet Mol Biol 2022; 45:e20210280. [PMID: 35238325 PMCID: PMC8892272 DOI: 10.1590/1678-4685-gmb-2021-0280] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/28/2021] [Indexed: 11/22/2022] Open
|
39
|
Lu Z, Huang L, Li Y, Xu Y, Zhang R, Zhou Q, Sun Q, Lu Y, Chen J, Shen Y, Li J, Zhao B. Fine-Tuning of Cholesterol Homeostasis Controls Erythroid Differentiation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102669. [PMID: 34739188 PMCID: PMC8805577 DOI: 10.1002/advs.202102669] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/01/2021] [Indexed: 05/12/2023]
Abstract
Lipid metabolism is essential for stemness maintenance, self-renewal, and differentiation of stem cells, however, the regulatory function of cholesterol metabolism in erythroid differentiation is poorly studied. In the present study, a critical role for cholesterol homeostasis in terminal erythropoiesis is uncovered. The master transcriptional factor GATA1 binds to Sterol-regulatory element binding protein 2 (SREBP2) to downregulate cholesterol biosynthesis, leading to a gradual reduction in intracellular cholesterol levels. It is further shown that reduced cholesterol functions to block erythroid proliferation via the cholesterol/mTORC1/ribosome biogenesis axis, which coordinates cell cycle exit in the late stages of erythroid differentiation. The interaction of GATA1 and SREBP2 also provides a feedback loop for regulating globin expression through the transcriptional control of NFE2 by SREBP2. Importantly, it is shown that disrupting intracellular cholesterol hemostasis resulted in defect of terminal erythroid differentiation in vivo. These findings demonstrate that fine-tuning of cholesterol homeostasis emerges as a key mechanism for regulating erythropoiesis.
Collapse
Affiliation(s)
- Zhiyuan Lu
- Key Laboratory of Chemical Biology (Ministry of Education)School of Pharmaceutical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Lixia Huang
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Yanxia Li
- Key Laboratory of Chemical Biology (Ministry of Education)School of Pharmaceutical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Yan Xu
- Key Laboratory of Chemical Biology (Ministry of Education)School of Pharmaceutical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Ruihao Zhang
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Qian Zhou
- Key Laboratory of Chemical Biology (Ministry of Education)School of Pharmaceutical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Qi Sun
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Yi Lu
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Junjie Chen
- Analysis and Measurement CenterSchool of Pharmaceutical SciencesXiamen UniversityXiamenFujian361001China
| | - Yuemao Shen
- Key Laboratory of Chemical Biology (Ministry of Education)School of Pharmaceutical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Jian Li
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Baobing Zhao
- Key Laboratory of Chemical Biology (Ministry of Education)School of Pharmaceutical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012China
- Department of PharmacologySchool of Pharmaceutical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012China
| |
Collapse
|
40
|
Carugo S, Sirtori CR, Corsini A, Tokgozoglu L, Ruscica M. PCSK9 Inhibition and Risk of Diabetes: Should We Worry? Curr Atheroscler Rep 2022; 24:995-1004. [PMID: 36383291 PMCID: PMC9750910 DOI: 10.1007/s11883-022-01074-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2022] [Indexed: 11/17/2022]
Abstract
PURPOSE OF REVIEW Since the clinical benefit of proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors occurs in a setting of reducing low-density lipoprotein-cholesterol (LDL-C) to unprecedentedly low levels, it becomes of interest to investigate possible adverse effects pertaining to the risk of new-onset diabetes (NOD). RECENT FINDINGS While safety results reported in either meta-analyses or cardiovascular outcome trials FOURIER (with evolocumab) and ODYSSEY (with alirocumab) did not rise the incidence of NOD, Mendelian randomization analyses were almost concordant in showing an increased risk of NOD. This evidence was in line with post-marketing safety reports highlighting that evolocumab and alirocumab were primarily related to mild hyperglycaemia rather than diabetes, with most of the hyperglycaemic events occurring during the first 6 months of treatment. Considering the different nature of genetic studies and of randomized controlled trials, with careful monitoring of patients, particularly in the earlier phases of treatment, and the identification of those more susceptible to develop NOD, treatment with PCSK9 inhibitors should be of minimal concern.
Collapse
Affiliation(s)
- Stefano Carugo
- grid.4708.b0000 0004 1757 2822Department of Clinical Sciences and Community Health, Università Degli Studi Di Milano, Milan, Italy ,Fondazione Ospedale Maggiore IRCCS Policlinico Di Milano, Milan, Italy
| | - Cesare R. Sirtori
- grid.4708.b0000 0004 1757 2822Department of Pharmacological and Biomolecular Sciences, Università Degli Studi Di Milano, Milan, Italy
| | - Alberto Corsini
- grid.4708.b0000 0004 1757 2822Department of Pharmacological and Biomolecular Sciences, Università Degli Studi Di Milano, Milan, Italy
| | - Lale Tokgozoglu
- grid.14442.370000 0001 2342 7339Hacettepe University, Ankara, Turkey
| | - Massimiliano Ruscica
- grid.4708.b0000 0004 1757 2822Department of Pharmacological and Biomolecular Sciences, Università Degli Studi Di Milano, Milan, Italy
| |
Collapse
|
41
|
Rezazadeh H, Sharifi MR, Sharifi M, Soltani N. Magnesium sulfate improves insulin resistance in high fat diet induced diabetic parents and their offspring. Eur J Pharmacol 2021; 909:174418. [PMID: 34411605 DOI: 10.1016/j.ejphar.2021.174418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/31/2021] [Accepted: 08/11/2021] [Indexed: 01/01/2023]
Abstract
In the present study, first, the role of high-fat diet (HFD) in insulin resistance (IR) in offspring with diabetic and non-diabetic parents, and then the effect of magnesium sulfate (Mg) administration on improved IR in HFD diabetic parents, and their offspring were investigated. Induction of diabetes was carried out by eating HFD and a low dose of streptozotocin (STZ). Diabetic rats were divided into three groups: diabetic control (DC), insulin, and Mg-treated (Mg). The non-diabetic control (NDC) group received a normal diet. Their offspring were fed on a regular diet for four months. Blood glucose and body weight of all animals were measured weekly, and IPGTT, urine volume, and water intake were measured monthly. In both parents and their offspring, the hyperinsulinemic euglycemic clamp was conducted, and blood samples were obtained. In all groups, the expression of IRS1, Akt and GLUT4 genes in muscle was measured. The HFD-fed rats exhibited a significant increase in blood glucose, body weight and IPGTT. In diabetic parents and their offspring, Mg or insulin therapy lowered blood glucose, IPGTT, and HbA1c relative to the DC group. They also increased GIR in parents and their offspring. Compared to the DC group, the expression of IRS1, Akt and GLUT4 genes was increased in both parents. Mg had positive effects on the expression of IRS1, Akt and GLUT4 genes in Mg treated offspring and reduced IR in them. As a result, magnesium may have beneficial effects on IR by increasing the expression of IRS1, Akt and GLUT4 genes.
Collapse
Affiliation(s)
- Hossein Rezazadeh
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Reza Sharifi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohmmadreza Sharifi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nepton Soltani
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
42
|
Xepapadaki E, Nikdima I, Sagiadinou EC, Zvintzou E, Kypreos KE. HDL and type 2 diabetes: the chicken or the egg? Diabetologia 2021; 64:1917-1926. [PMID: 34255113 DOI: 10.1007/s00125-021-05509-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/05/2021] [Indexed: 12/17/2022]
Abstract
HDL is a complex macromolecular cluster of various components, such as apolipoproteins, enzymes and lipids. Quality evidence from clinical and epidemiological studies led to the principle that HDL-cholesterol (HDL-C) levels are inversely correlated with the risk of CHD. Nevertheless, the failure of many cholesteryl ester transfer protein inhibitors to protect against CVD casts doubts on this principle and highlights the fact that HDL functionality, as dictated by its proteome and lipidome, also plays an important role in protecting against metabolic disorders. Recent data indicate that HDL-C levels and HDL particle functionality are correlated with the pathogenesis and prognosis of type 2 diabetes mellitus, a major risk factor for CVD. Hyperglycaemia leads to reduced HDL-C levels and deteriorated HDL functionality, via various alterations in HDL particles' proteome and lipidome. In turn, reduced HDL-C levels and impaired HDL functionality impact the performance of key organs related to glucose homeostasis, such as pancreas and skeletal muscles. Interestingly, different structural alterations in HDL correlate with distinct metabolic abnormalities, as indicated by recent data evaluating the role of apolipoprotein A1 and lecithin-cholesterol acyltransferase deficiency in glucose homeostasis. While it is becoming evident that not all HDL disturbances are causatively associated with the development and progression of type 2 diabetes, a bidirectional correlation between these two conditions exists, leading to a perpetual self-feeding cycle.
Collapse
Affiliation(s)
- Eva Xepapadaki
- Pharmacology Laboratory, Department of Medicine, School of Health Sciences, University of Patras, Rio Achaias, Greece
| | - Ioanna Nikdima
- Pharmacology Laboratory, Department of Medicine, School of Health Sciences, University of Patras, Rio Achaias, Greece
| | - Eleftheria C Sagiadinou
- Pharmacology Laboratory, Department of Medicine, School of Health Sciences, University of Patras, Rio Achaias, Greece
| | - Evangelia Zvintzou
- Pharmacology Laboratory, Department of Medicine, School of Health Sciences, University of Patras, Rio Achaias, Greece
| | - Kyriakos E Kypreos
- Pharmacology Laboratory, Department of Medicine, School of Health Sciences, University of Patras, Rio Achaias, Greece.
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus.
| |
Collapse
|
43
|
Lyu J, Fukunaga K, Imachi H, Sato S, Kobayashi T, Saheki T, Ibata T, Yoshimura T, Iwama H, Murao K. Oxidized LDL Downregulates ABCA1 Expression via MEK/ERK/LXR Pathway in INS-1 Cells. Nutrients 2021; 13:nu13093017. [PMID: 34578896 PMCID: PMC8465850 DOI: 10.3390/nu13093017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 12/23/2022] Open
Abstract
Impaired insulin secretion is one of the main causes of type 2 diabetes. Cholesterol accumulation-induced lipotoxicity contributes to impaired insulin secretion in pancreatic beta cells. However, the detailed mechanism in this process remains unclear. In this study, we proved that oxidized low-density lipoprotein (OxLDL) reduced insulin content, decreased PDX-1 expression, and impaired glucose-stimulated insulin secretion (GSIS) in INS-1 cells, which were rescued by addition of high-density lipoprotein (HDL). OxLDL receptors and cholesterol content were increased by OxLDL. Consistently, OxLDL suppressed cholesterol transporter ABCA1 expression and transcription in a dose-dependent and time-dependent manner. Inhibition of MEK by its specific inhibitor, PD98059, altered the effect of OxLDL on ABCA1 transcription and activation of ERK. Next, chromatin immunoprecipitation assay demonstrated that liver X receptor (LXR) could directly bind to ABCA1 promoter and this binding was inhibited by OxLDL. Furthermore, OxLDL decreased the nuclear LXR expression, which was prevented by HDL. LXR-enhanced ABCA1 transcription was suppressed by OxLDL, and the effect was cancelled by mutation of the LXR-binding sites. In summary, our study shows that OxLDL down-regulates ABCA1 expression by MEK/ERK/LXR pathway, leading to cholesterol accumulation in INS-1 cells, which may result in impaired insulin synthesis and GSIS.
Collapse
Affiliation(s)
- Jingya Lyu
- Department of Physiology, School of Medicine, Jinan University, 601 Huangpu Avenue West, Tianhe District, Guangzhou 510632, China;
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa 761-0793, Japan; (K.F.); (H.I.); (S.S.); (T.K.); (T.S.); (T.I.); (T.Y.)
| | - Kensaku Fukunaga
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa 761-0793, Japan; (K.F.); (H.I.); (S.S.); (T.K.); (T.S.); (T.I.); (T.Y.)
| | - Hitomi Imachi
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa 761-0793, Japan; (K.F.); (H.I.); (S.S.); (T.K.); (T.S.); (T.I.); (T.Y.)
| | - Seisuke Sato
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa 761-0793, Japan; (K.F.); (H.I.); (S.S.); (T.K.); (T.S.); (T.I.); (T.Y.)
| | - Toshihiro Kobayashi
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa 761-0793, Japan; (K.F.); (H.I.); (S.S.); (T.K.); (T.S.); (T.I.); (T.Y.)
| | - Takanobu Saheki
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa 761-0793, Japan; (K.F.); (H.I.); (S.S.); (T.K.); (T.S.); (T.I.); (T.Y.)
| | - Tomohiro Ibata
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa 761-0793, Japan; (K.F.); (H.I.); (S.S.); (T.K.); (T.S.); (T.I.); (T.Y.)
| | - Takafumi Yoshimura
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa 761-0793, Japan; (K.F.); (H.I.); (S.S.); (T.K.); (T.S.); (T.I.); (T.Y.)
| | - Hisakazu Iwama
- Life Science Research Center, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa 761-0793, Japan;
| | - Koji Murao
- Department of Endocrinology and Metabolism, Faculty of Medicine, Kagawa University, 1750-1, Miki-cho, Kita-gun, Kagawa 761-0793, Japan; (K.F.); (H.I.); (S.S.); (T.K.); (T.S.); (T.I.); (T.Y.)
- Correspondence:
| |
Collapse
|
44
|
Genetic polymorphisms in ABCA1 (rs2230806 and rs1800977) and LIPC (rs2070895) genes and their association with the risk of type 2 diabetes: a case control study. Int J Diabetes Dev Ctries 2021. [DOI: 10.1007/s13410-021-00984-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
45
|
Jeong S, Jun JH, Kim JY, Park HJ, Cho YP, Kim GJ. Expression of miRNAs Targeting ATP Binding Cassette Transporter 1 (ABCA1) among Patients with Significant Carotid Artery Stenosis. Biomedicines 2021; 9:biomedicines9080920. [PMID: 34440128 PMCID: PMC8406092 DOI: 10.3390/biomedicines9080920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/18/2022] Open
Abstract
Background: Carotid artery stenosis is a dynamic process associated with an increased risk of cardiovascular events. However, knowledge of biomarkers useful for identifying and quantifying high-risk carotid plaques associated with the increased incidence of cerebrovascular events is insufficient. Therefore, the objectives of this study were to evaluate the expression of ATP binding cassette transporter 1 (ABCA1) and validate its target microRNA (miRNA) candidates in human carotid stenosis arteries to identify its potential as a biomarker. Methods: In human carotid stenosis arterial tissues and plasma, the expression of ABCA1 and its target miRNAs (miRNA-33a-5p, 33b-5p, and 148a-3p) were evaluated by quantitative real time-polymerase chain reaction (qRT-PCR), immunohistochemistry, and enzyme-linked immunosorbent assay (ELISA). Results: The expression of ABCA1 was significantly decreased in the plasma of stenosis patients, but its expression was not different in arterial tissues (p < 0.05). However, significantly more target miRNAs were secreted by stenosis patients than normal patients (p < 0.05). Interestingly, lipotoxicity induced by the oleic and palmitic acid (OAPA) or lipopolysaccharide (LPS) treatment of human umbilical vein endothelial cells (HUVECs) dramatically enhanced the gene expression of adipogenic and inflammatory factors, whereas ABCA1 expression was significantly decreased. Conclusions: Therefore, miRNA-33a-5p, 33b-5p, and 148a-3p represent possible biomarkers of carotid artery stenosis by directly targeting ABCA1.
Collapse
Affiliation(s)
- Seonjeong Jeong
- Asan Medical Center, Department of Surgery, University of Ulsan College of Medicine, Seoul 05505, Korea;
| | - Ji Hye Jun
- Department of Biomedical Science, CHA University, Seongnam 13488, Korea; (J.H.J.); (J.Y.K.); (H.J.P.)
- Research Institute of Placental Science, CHA University, Seongnam 13488, Korea
| | - Jae Yeon Kim
- Department of Biomedical Science, CHA University, Seongnam 13488, Korea; (J.H.J.); (J.Y.K.); (H.J.P.)
- Research Institute of Placental Science, CHA University, Seongnam 13488, Korea
| | - Hee Jung Park
- Department of Biomedical Science, CHA University, Seongnam 13488, Korea; (J.H.J.); (J.Y.K.); (H.J.P.)
| | - Yong-Pil Cho
- Asan Medical Center, Department of Surgery, University of Ulsan College of Medicine, Seoul 05505, Korea;
- Correspondence: (Y.-P.C.); (G.J.K.); Tel.: +82-2-3010-5039 (Y.-P.C.); +82-32-881-7145 (G.J.K.)
| | - Gi Jin Kim
- Department of Biomedical Science, CHA University, Seongnam 13488, Korea; (J.H.J.); (J.Y.K.); (H.J.P.)
- Research Institute of Placental Science, CHA University, Seongnam 13488, Korea
- Correspondence: (Y.-P.C.); (G.J.K.); Tel.: +82-2-3010-5039 (Y.-P.C.); +82-32-881-7145 (G.J.K.)
| |
Collapse
|
46
|
Sun X, Ji G, Li P, Li W, Li J, Zhu L. miR-344-5p Modulates Cholesterol-Induced β-Cell Apoptosis and Dysfunction Through Regulating Caveolin-1 Expression. Front Endocrinol (Lausanne) 2021; 12:695164. [PMID: 34394002 PMCID: PMC8355992 DOI: 10.3389/fendo.2021.695164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetes is a metabolic disorder induced by the modulation of insulin on glucose metabolism, and the dysfunction and decreased number of islets β-cells are the main causes of T2DM (type 2 diabetes mellitus). Among multiple factors that might participate in T2DM pathogenesis, the critical roles of miRNAs in T2DM and β-cell dysfunction have been reported. Through bioinformatics analyses and literature review, we found that miR-344 might play a role in the occurrence and progression of diabetes in rats. The expression levels of miR-344-5p were dramatically decreased within cholesterol-stimulated and palmitic acid (PA)-induced rats' islet β-cells. In cholesterol-stimulated and PA-induced diabetic β-cell model, cholesterol-caused and PA-caused suppression on cell viability, increase in intracellular cholesterol level, decrease in GSIS, and increase in lip droplet deposition were dramatically attenuated via the overexpression of miR-344-5p, whereas aggravated via the inhibition of miR-344-5p. miR-344-5p also inhibited cholesterol-induced β-cell death via affecting the apoptotic caspase 3/Bax signaling. Insulin receptor downstream MPAK/ERK signaling was involved in the protection of miR-344-5p against cholesterol-induced pancreatic β-cell dysfunction. Moreover, miR-344-5p directly targeted Cav1; Cav1 silencing could partially reverse the functions of miR-344-5p inhibition upon cholesterol-induced β-cell dysfunction, β-cell apoptosis, the apoptotic caspase 3/Bax signaling, and insulin receptor downstream MPAK/ERK signaling. In conclusion, the miR-344-5p/Cav1 axis modulates cholesterol-induced β-cell apoptosis and dysfunction. The apoptotic caspase 3/Bax signaling and MAPK/ERK signaling might be involved.
Collapse
Affiliation(s)
| | | | | | | | | | - Liyong Zhu
- Department of General Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
47
|
Satin LS, Soleimanpour SA, Walker EM. New Aspects of Diabetes Research and Therapeutic Development. Pharmacol Rev 2021; 73:1001-1015. [PMID: 34193595 DOI: 10.1124/pharmrev.120.000160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Both type 1 and type 2 diabetes mellitus are advancing at exponential rates, placing significant burdens on health care networks worldwide. Although traditional pharmacologic therapies such as insulin and oral antidiabetic stalwarts like metformin and the sulfonylureas continue to be used, newer drugs are now on the market targeting novel blood glucose-lowering pathways. Furthermore, exciting new developments in the understanding of beta cell and islet biology are driving the potential for treatments targeting incretin action, islet transplantation with new methods for immunologic protection, and the generation of functional beta cells from stem cells. Here we discuss the mechanistic details underlying past, present, and future diabetes therapies and evaluate their potential to treat and possibly reverse type 1 and 2 diabetes in humans. SIGNIFICANCE STATEMENT: Diabetes mellitus has reached epidemic proportions in the developed and developing world alike. As the last several years have seen many new developments in the field, a new and up to date review of these advances and their careful evaluation will help both clinical and research diabetologists to better understand where the field is currently heading.
Collapse
Affiliation(s)
- Leslie S Satin
- Department of Pharmacology (L.S.S.), Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine (L.S.S., S.A.S., E.M.W.), and Brehm Diabetes Center (L.S.S., S.A.S., E.M.W.), University of Michigan Medical School, Ann Arbor, Michigan; and VA Ann Arbor Healthcare System, Ann Arbor, Michigan (S.A.S.) ; ;
| | - Scott A Soleimanpour
- Department of Pharmacology (L.S.S.), Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine (L.S.S., S.A.S., E.M.W.), and Brehm Diabetes Center (L.S.S., S.A.S., E.M.W.), University of Michigan Medical School, Ann Arbor, Michigan; and VA Ann Arbor Healthcare System, Ann Arbor, Michigan (S.A.S.)
| | - Emily M Walker
- Department of Pharmacology (L.S.S.), Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine (L.S.S., S.A.S., E.M.W.), and Brehm Diabetes Center (L.S.S., S.A.S., E.M.W.), University of Michigan Medical School, Ann Arbor, Michigan; and VA Ann Arbor Healthcare System, Ann Arbor, Michigan (S.A.S.) ; ;
| |
Collapse
|
48
|
MicroRNA Sequences Modulated by Beta Cell Lipid Metabolism: Implications for Type 2 Diabetes Mellitus. BIOLOGY 2021; 10:biology10060534. [PMID: 34203703 PMCID: PMC8232095 DOI: 10.3390/biology10060534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/23/2022]
Abstract
Alterations in lipid metabolism within beta cells and islets contributes to dysfunction and apoptosis of beta cells, leading to loss of insulin secretion and the onset of type 2 diabetes. Over the last decade, there has been an explosion of interest in understanding the landscape of gene expression which influences beta cell function, including the importance of small non-coding microRNA sequences in this context. This review sought to identify the microRNA sequences regulated by metabolic challenges in beta cells and islets, their targets, highlight their function and assess their possible relevance as biomarkers of disease progression in diabetic individuals. Predictive analysis was used to explore networks of genes targeted by these microRNA sequences, which may offer new therapeutic strategies to protect beta cell function and delay the onset of type 2 diabetes.
Collapse
|
49
|
Ye Y, Gao J, Liang J, Yang Y, Lv C, Chen M, Wang J, Zhu D, Rong R, Xu M, Zhu T, Yu M. Association between preoperative lipid profiles and new-onset diabetes after transplantation in Chinese kidney transplant recipients: A retrospective cohort study. J Clin Lab Anal 2021; 35:e23867. [PMID: 34101909 PMCID: PMC8373348 DOI: 10.1002/jcla.23867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/28/2021] [Accepted: 05/22/2021] [Indexed: 02/06/2023] Open
Abstract
Background This study investigated the association between the preoperative lipid profiles and new‐onset diabetes after transplantation (NODAT) in Chinese kidney transplant recipients (KTRs). Methods In this study, of 1140 KTRs registered between January 1993 and March 2018 in Zhongshan Hospital, Fudan University, 449 were enrolled. Clinical data, obtained through a chart review of the patient records in the medical record system, were evaluated, and NODAT was diagnosed based on the American Diabetes Association guidelines. Multivariate Cox regression analysis was conducted to determine whether the preoperative lipid profiles in KTRs were independently associated with NODAT incidence. The preoperative lipid profiles were analyzed as continuous variables and grouped into tertiles. Smooth curve fitting was used to confirm the linear associations. Results During a median follow‐up of 28.03 (interquartile range 12.00–84.23) months, 104 of the 449 (23.16%) participants developed NODAT. The multivariate model analysis, adjusted for all potential covariates, showed that increased values of the following parameters were associated with NODAT (hazard ratio, 95% confidence interval): preoperative total cholesterol (TC; 1.25, 1.09–1.58, p = 0.0495), low‐density lipoprotein cholesterol (LDL‐C; 1.33, 1.02–1.75, p = 0.0352), non‐high‐density lipoprotein cholesterol (non‐HDL‐C; 1.41, 1.09–1.82, p = 0.0084), TC/HDL‐C (1.28, 1.06–1.54, p = 0.0109), and non‐HDL‐C/HDL‐C (1.26, 1.05–1.52, p = 0.0138). However, the association between the preoperative triglyceride, HDL‐C, or TG/HDL‐C and NODAT was not significant. Conclusions Preoperative TC, LDL‐C, non‐HDL‐C, TC/HDL‐C, and non‐HDL‐C/HDL‐C were independent risk factors for NODAT.
Collapse
Affiliation(s)
- Yangli Ye
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Jian Gao
- Center of Clinical Epidemiology and Evidence-based Medicine, Fudan University, Shanghai, P.R. China
| | - Jing Liang
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Yinqiu Yang
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Chaoyang Lv
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, P.R. China.,Department of Geriatric Endocrinology, Zhengzhou Seventh People's Hospital, Henan, P.R. China
| | - Minling Chen
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, P.R. China.,Departments of Endocrinology and Metabolism, People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine (The People's Hospital of Fujian Province, Fuzhou, P.R. China
| | - Jina Wang
- Department of Urology, Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Dong Zhu
- Department of Urology, Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Ruiming Rong
- Department of Urology, Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Ming Xu
- Department of Urology, Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Tongyu Zhu
- Department of Urology, Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Mingxiang Yu
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| |
Collapse
|
50
|
Koseki M, Yamashita S, Ogura M, Ishigaki Y, Ono K, Tsukamoto K, Hori M, Matsuki K, Yokoyama S, Harada-Shiba M. Current Diagnosis and Management of Tangier Disease. J Atheroscler Thromb 2021; 28:802-810. [PMID: 33994407 PMCID: PMC8326168 DOI: 10.5551/jat.rv17053] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Tangier disease is a genetic disorder characterized by an absence or extremely low level of high-density lipoprotein (HDL)-cholesterol (HDL-C). It is caused by a dysfunctional mutation of the ATP-binding cassette transporter A1 (ABCA1) gene, the mandatory gene for generation of HDL particles from cellular cholesterol and phospholipids, and it appears in an autosomal recessive hereditary profile. To date, 35 cases have been reported in Japan and 109 cases outside Japan. With dysfunctional mutations in both alleles (homozygotes or compound heterozygotes), the HDL-C level is mostly less than 5 mg/dL and there is 10 mg/dL or less of apolipoprotein A-I (apoA-I), the major protein component of HDL. In patients with Tangier disease, major physical findings are orange-colored pharyngeal tonsils, hepatosplenomegaly, corneal opacity, lymphadenopathy, and peripheral neuropathy. Although patients tend to have decreased low-density lipoprotein (LDL)-cholesterol (LDL-C) levels, premature coronary artery disease is frequently observed. No specific curative treatment is currently available, so early identification of patients and preventing atherosclerosis development are crucial. Management of risk factors other than low HDL-C is also important, such as LDL-C levels, hypertension and smoking. Additionally, treatment for glucose intolerance might be required because impaired insulin secretion from pancreatic beta cells has occasionally been reported.
Collapse
Affiliation(s)
- Masahiro Koseki
- Division of Cardiovascular Medicine, Department of Medicine, Osaka University Graduate School of Medicine
| | | | - Masatsune Ogura
- Department of Molecular Innovation in Lipidology, National Cerebral and Cardiovascular Center Research Institute
| | - Yasushi Ishigaki
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University
| | - Koh Ono
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine
| | | | - Mika Hori
- Department of Molecular Innovation in Lipidology, National Cerebral and Cardiovascular Center Research Institute
| | - Kota Matsuki
- Department of Molecular Innovation in Lipidology, National Cerebral and Cardiovascular Center Research Institute
| | | | - Mariko Harada-Shiba
- Department of Molecular Pathogenesis, National Cerebral and Cardiovascular Center Research Institute
| |
Collapse
|