1
|
Cavaillon JM, Chaudry IH. Facing stress and inflammation: From the cell to the planet. World J Exp Med 2024; 14:96422. [DOI: 10.5493/wjem.v14.i4.96422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/27/2024] [Accepted: 09/19/2024] [Indexed: 10/31/2024] Open
Abstract
As identified in 1936 by Hans Selye, stress is shaping diseases through the induction of inflammation. But inflammation display some yin yang properties. On one hand inflammation is merging with the innate immune response aimed to fight infectious or sterile insults, on the other hand inflammation favors chronic physical or psychological disorders. Nature has equipped the cells, the organs, and the individuals with mediators and mechanisms that allow them to deal with stress, and even a good stress (eustress) has been associated with homeostasis. Likewise, societies and the planet are exposed to stressful settings, but wars and global warming suggest that the regulatory mechanisms are poorly efficient. In this review we list some inducers of the physiological stress, psychologic stress, societal stress, and planetary stress, and mention some of the great number of parameters which affect and modulate the response to stress and render it different from an individual to another, from the cellular level to the societal one. The cell, the organ, the individual, the society, and the planet share many stressors of which the consequences are extremely interconnected ending in the domino effect and the butterfly effect.
Collapse
Affiliation(s)
| | - Irshad H Chaudry
- Department of Surgery, University of Alabama Birmingham, Birmingham, AL 35294, United States
| |
Collapse
|
2
|
Giua G, Strauss B, Lassalle O, Chavis P, Manzoni OJ. Adaptive group behavior of Fragile X mice in unfamiliar environments. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111111. [PMID: 39074527 DOI: 10.1016/j.pnpbp.2024.111111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
Fragile X Syndrome (FXS) stands out as a prominent cause of inherited intellectual disability and a prevalent disorder closely linked to autism. FXS is characterized by substantial alterations in social behavior, encompassing social withdrawal, avoidance of eye contact, heightened social anxiety, increased arousal levels, language deficits, and challenges in regulating emotions. Conventional behavioral assessments primarily focus on short-term interactions within controlled settings. In this study, we conducted a comprehensive examination of the adaptive group behavior of Fmr1 KO male mice over a three-day period, without introducing experimental interventions or task-based evaluations. The data unveiled intricate behavioral anomalies, with the most significant changes manifesting during the initial adaptation to unfamiliar environments. Notably, certain behaviors exhibited a gradual return to typical patterns over time. This dynamic Fmr1 KO phenotype exhibited heightened activity, featuring increased exploration, amplified social interest, and an unconventional approach to social interactions characterized by a higher frequency of shorter engagements. These findings contribute to the growing understanding of social behavior in individuals with FXS and underscore the significance of comprehending their adaptive responses in various environmental contexts.
Collapse
Affiliation(s)
- Gabriele Giua
- INMED, INSERM U1249, Marseille, France; Aix-Marseille University, France
| | - Benjamin Strauss
- INMED, INSERM U1249, Marseille, France; Aix-Marseille University, France
| | - Olivier Lassalle
- INMED, INSERM U1249, Marseille, France; Aix-Marseille University, France
| | - Pascale Chavis
- INMED, INSERM U1249, Marseille, France; Aix-Marseille University, France
| | - Olivier J Manzoni
- INMED, INSERM U1249, Marseille, France; Aix-Marseille University, France.
| |
Collapse
|
3
|
Farghal M, Pajor E, Luna SPL, Pang D, Windeyer MC, Ceballos MC. Development of the calf grimace scale for pain and stress assessment in castrated Angus beef calves. Sci Rep 2024; 14:25620. [PMID: 39465332 PMCID: PMC11514156 DOI: 10.1038/s41598-024-77147-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024] Open
Abstract
Grimace scales have been used to assess pain in various animal species. This study aimed to develop the calf grimace scale (CGS), evaluate its responsiveness and the effect of external factors (change of environment and dam separation, and restraint) on CGS. Sixty-nine Angus calves, 6-8 weeks old, were randomly allocated into castrated (n = 34) and sham castrated (n = 35) groups. Images were extracted from videos pre- (M1-M4), during- (M5), and post-castration/sham castration (M6, M7). Six facial action units (FAUs) were identified: ear position, orbital tightening, tension above the eye, nostril dilation, straining of chewing muscle, and mouth opening. Final CGS median scores increased after castration (P < 0.001) for both non-restrained (M7 versus M2) and restrained (M6 versus M3) calves, indicating scale responsiveness. Final CGS median scores increased (P < 0.001) when calves were subjected to external factors before castration (M1 [baseline] versus M2 and M3). However, there was no difference (P > 0.05) in CGS median scores before and after sham castration, regardless of restraint (M3 versus M6, and M2 versus M7), indicating that the external factors may have reached a maximum effect. The CGS is composed of six FAUs, responsive to acute pain and can identify stress unrelated to pain.
Collapse
Affiliation(s)
- Mostafa Farghal
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Faculty of Veterinary Medicine, Minia University, Minia, Egypt
| | - Ed Pajor
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Stelio P L Luna
- Faculty of Veterinary Medicine, Sao Paulo State University, Sao Paulo, Brazil
| | - Daniel Pang
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - M Claire Windeyer
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | | |
Collapse
|
4
|
Stein G, Aly JS, Lange L, Manzolillo A, Riege K, Brancato A, Hübner CA, Turecki G, Hoffmann S, Engmann O. Npbwr1 signaling mediates fast antidepressant action. Mol Psychiatry 2024:10.1038/s41380-024-02790-4. [PMID: 39433904 DOI: 10.1038/s41380-024-02790-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024]
Abstract
Chronic stress is a major risk factor for depression, a leading cause of disability and suicide. Because current antidepressants work slowly, have common side effects, and are only effective in a minority of patients, there is an unmet need to identify the underlying molecular mechanisms. Here, we identify the receptor for neuropeptides B and W, Npbwr1, as a key regulator of depressive-like symptoms. Npbwr1 is increased in the nucleus accumbens of chronically stressed mice and postmortem in patients diagnosed with depression. Using viral-mediated gene transfer, we demonstrate a causal link between Npbwr1, dendritic spine morphology, the biomarker Bdnf, and depressive-like behaviors. Importantly, microinjection of the synthetic antagonist of Npbwr1, CYM50769, rapidly ameliorates depressive-like behavioral symptoms and alters Bdnf levels. CYM50769 is selective, well tolerated, and shows effects up to 7 days after administration of a single dose. In summary, these findings advance our understanding of mood and chronic stress and warrant further investigation of CYM50769 as a potential fast-acting antidepressant.
Collapse
Affiliation(s)
- Gregor Stein
- Institute for Biochemistry and Biophysics, Friedrich-Schiller-University Jena, Jena, Germany
| | - Janine S Aly
- Institute of Human Genetics, Jena University Hospital, Am Klinikum 1, F2E20, 07747, Jena, Germany
| | - Lisa Lange
- Institute for Biochemistry and Biophysics, Friedrich-Schiller-University Jena, Jena, Germany
| | - Annamaria Manzolillo
- Institute of Human Genetics, Jena University Hospital, Am Klinikum 1, F2E20, 07747, Jena, Germany
| | - Konstantin Riege
- Computational Biology Group, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745, Jena, Germany
| | - Anna Brancato
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Christian A Hübner
- Institute of Human Genetics, Jena University Hospital, Am Klinikum 1, F2E20, 07747, Jena, Germany
| | - Gustavo Turecki
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Steve Hoffmann
- Computational Biology Group, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745, Jena, Germany
| | - Olivia Engmann
- Institute for Biochemistry and Biophysics, Friedrich-Schiller-University Jena, Jena, Germany.
- Institute of Human Genetics, Jena University Hospital, Am Klinikum 1, F2E20, 07747, Jena, Germany.
| |
Collapse
|
5
|
Santos EJ, Akbarali HI, Bow EW, Chambers DR, Gutman ES, Jacobson AE, Kang M, Lee YK, Lutz JA, Rice KC, Sulima A, Negus SS. Low-Efficacy Mu Opioid Agonists as Candidate Analgesics: Effects of Novel C-9 Substituted Phenylmorphans on Pain-Depressed Behavior in Mice. J Pharmacol Exp Ther 2024; 391:138-151. [PMID: 38637015 PMCID: PMC11493441 DOI: 10.1124/jpet.124.002153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/11/2024] [Accepted: 03/27/2024] [Indexed: 04/20/2024] Open
Abstract
Low-efficacy mu opioid receptor (MOR) agonists may serve as novel candidate analgesics with improved safety relative to high-efficacy opioids. This study used a recently validated assay of pain-depressed behavior in mice to evaluate a novel series of MOR-selective C9-substituted phenylmorphan opioids with graded MOR efficacies. Intraperitoneal injection of dilute lactic acid (IP acid) served as a noxious stimulus to depress locomotor activity by mice in an activity chamber composed of two compartments connected by an obstructed door. Behavioral measures included (1) crosses between compartments (vertical activity over the obstruction) and (2) movement counts quantified as photobeam breaks summed across compartments (horizontal activity). Each drug was tested alone and as a pretreatment to IP acid. A charcoal-meal test and whole-body-plethysmography assessment of breathing in 5% CO2 were also used to assess gastrointestinal (GI) inhibition and respiratory depression, respectively. IP acid produced a concentration-dependent depression in crosses and movement that was optimally alleviated by intermediate- to low-efficacy phenylmorphans with sufficient efficacy to produce analgesia with minimal locomotor disruption. Follow-up studies with two low-efficacy phenylmorphans (JL-2-39 and DC-1-76.1) indicated that both drugs produced naltrexone-reversible antinociception with a rapid onset and a duration of ∼1 h. Potency of both drugs increased when behavior was depressed by a lower IP-acid concentration, and neither drug alleviated behavioral depression by a non-pain stimulus (IP lithium chloride). Both drugs produced weaker GI inhibition and respiratory depression than fentanyl and attenuated fentanyl-induced GI inhibition and respiratory depression. Results support further consideration of selective, low-efficacy MOR agonists as candidate analgesics. SIGNIFICANCE STATEMENT: This study used a novel set of mu opioid receptor (MOR)-selective opioids with graded MOR efficacies to examine the lower boundary of MOR efficacy sufficient to relieve pain-related behavioral depression in mice. Two novel low-efficacy opioids (JL-2-39, DC-1-76.1) produced effective antinociception with improved safety relative to higher- or lower-efficacy opioids, and results support further consideration of these and other low-efficacy opioids as candidate analgesics.
Collapse
Affiliation(s)
- Edna J Santos
- Department of Pharmacology & Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia (E.J.S., H.I.A., M.K., Y.K.L., S.S.N.) and Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, NIDA and NIAAA, Bethesda, Maryland (E.W.B., D.R.C., E.S.G., A.E.J., J.A.L., K.C.R., A.S.)
| | - Hamid I Akbarali
- Department of Pharmacology & Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia (E.J.S., H.I.A., M.K., Y.K.L., S.S.N.) and Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, NIDA and NIAAA, Bethesda, Maryland (E.W.B., D.R.C., E.S.G., A.E.J., J.A.L., K.C.R., A.S.)
| | - Eric W Bow
- Department of Pharmacology & Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia (E.J.S., H.I.A., M.K., Y.K.L., S.S.N.) and Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, NIDA and NIAAA, Bethesda, Maryland (E.W.B., D.R.C., E.S.G., A.E.J., J.A.L., K.C.R., A.S.)
| | - Dana R Chambers
- Department of Pharmacology & Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia (E.J.S., H.I.A., M.K., Y.K.L., S.S.N.) and Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, NIDA and NIAAA, Bethesda, Maryland (E.W.B., D.R.C., E.S.G., A.E.J., J.A.L., K.C.R., A.S.)
| | - Eugene S Gutman
- Department of Pharmacology & Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia (E.J.S., H.I.A., M.K., Y.K.L., S.S.N.) and Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, NIDA and NIAAA, Bethesda, Maryland (E.W.B., D.R.C., E.S.G., A.E.J., J.A.L., K.C.R., A.S.)
| | - Arthur E Jacobson
- Department of Pharmacology & Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia (E.J.S., H.I.A., M.K., Y.K.L., S.S.N.) and Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, NIDA and NIAAA, Bethesda, Maryland (E.W.B., D.R.C., E.S.G., A.E.J., J.A.L., K.C.R., A.S.)
| | - Minho Kang
- Department of Pharmacology & Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia (E.J.S., H.I.A., M.K., Y.K.L., S.S.N.) and Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, NIDA and NIAAA, Bethesda, Maryland (E.W.B., D.R.C., E.S.G., A.E.J., J.A.L., K.C.R., A.S.)
| | - Young K Lee
- Department of Pharmacology & Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia (E.J.S., H.I.A., M.K., Y.K.L., S.S.N.) and Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, NIDA and NIAAA, Bethesda, Maryland (E.W.B., D.R.C., E.S.G., A.E.J., J.A.L., K.C.R., A.S.)
| | - Joshua A Lutz
- Department of Pharmacology & Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia (E.J.S., H.I.A., M.K., Y.K.L., S.S.N.) and Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, NIDA and NIAAA, Bethesda, Maryland (E.W.B., D.R.C., E.S.G., A.E.J., J.A.L., K.C.R., A.S.)
| | - Kenner C Rice
- Department of Pharmacology & Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia (E.J.S., H.I.A., M.K., Y.K.L., S.S.N.) and Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, NIDA and NIAAA, Bethesda, Maryland (E.W.B., D.R.C., E.S.G., A.E.J., J.A.L., K.C.R., A.S.)
| | - Agnieszka Sulima
- Department of Pharmacology & Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia (E.J.S., H.I.A., M.K., Y.K.L., S.S.N.) and Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, NIDA and NIAAA, Bethesda, Maryland (E.W.B., D.R.C., E.S.G., A.E.J., J.A.L., K.C.R., A.S.)
| | - S Stevens Negus
- Department of Pharmacology & Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia (E.J.S., H.I.A., M.K., Y.K.L., S.S.N.) and Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, NIDA and NIAAA, Bethesda, Maryland (E.W.B., D.R.C., E.S.G., A.E.J., J.A.L., K.C.R., A.S.)
| |
Collapse
|
6
|
Landes RD. How cage effects can hurt statistical analyses of completely randomized designs. Lab Anim 2024; 58:476-480. [PMID: 39315617 DOI: 10.1177/00236772241276785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Cage effects: some researchers worry about them, some don't, and some aren't even aware of them. When statistical analyses do not account for cage effects, there is real reason to worry. Regardless of researchers' worries or lack thereof, all researchers should be aware of how cage effects can affect the results. The "how" depends, in part, on the experimental design. Here, I (a) define cage effects; (b) illustrate a completely randomized design (CRD) often used in animal experiments; (c) explain how statistical significance is artificially inflated when cage effects are ignored and (d) give guidance on proper analyses and on how to increase statistical power in CRDs.
Collapse
Affiliation(s)
- Reid D Landes
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
7
|
Wingfield KK, Misic T, Jain K, McDermott CS, Abney NM, Richardson KT, Rubman MB, Beierle JA, Miracle SA, Sandago EJ, Baskin BM, Lynch WB, Borrelli KN, Yao EJ, Wachman EM, Bryant CD. The ultrasonic vocalization (USV) syllable profile during neonatal opioid withdrawal and a kappa opioid receptor component to increased USV emissions in female mice. Psychopharmacology (Berl) 2024:10.1007/s00213-024-06694-7. [PMID: 39348003 DOI: 10.1007/s00213-024-06694-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024]
Abstract
RATIONALE Opioid use during pregnancy can lead to negative infant health outcomes, including neonatal opioid withdrawal syndrome (NOWS). NOWS comprises gastrointestinal, autonomic nervous system, and neurological dysfunction that manifest during spontaneous withdrawal. Variability in NOWS severity necessitates a more individualized treatment approach. Ultrasonic vocalizations (USVs) in neonatal mice are emitted in isolation as a stress response and are increased during opioid withdrawal, thus modeling a negative affective state that can be utilized to test new treatments. OBJECTIVES We sought to identify the behavioral and USV profile, brainstem transcriptomic adaptations, and role of kappa opioid receptors in USVs during neonatal opioid withdrawal. METHODS We employed a third trimester-approximate opioid exposure model, where neonatal inbred FVB/NJ pups were injected twice-daily with morphine (10mg/kg, s.c.) or saline (0.9%, 20 ul/g, s.c.) from postnatal day(P) 1 to P14. This protocol induces reduced weight gain, hypothermia, thermal hyperalgesia, and increased USVs during spontaneous morphine withdrawal. RESULTS On P14, there were increased USV emissions and altered USV syllables during withdrawal, including an increase in Complex 3 syllables in FVB/NJ females (but not males). Brainstem bulk mRNA sequencing revealed an upregulation of the kappa opioid receptor (Oprk1), which contributes to withdrawal-induced dysphoria. The kappa opioid receptor (KOR) antagonist, nor-BNI (30 mg/kg, s.c.), significantly reduced USVs in FVB/NJ females, but not males during spontaneous morphine withdrawal. Furthermore, the KOR agonist, U50,488h (0.625 mg/kg, s.c.), was sufficient to increase USVs on P10 (both sexes) and P14 (females only) in FVB/NJ mice. CONCLUSIONS We identified an elevated USV syllable, Complex 3, and a female-specific recruitment of the dynorphin/KOR system in increased USVs associated with neonatal opioid withdrawal severity.
Collapse
Affiliation(s)
- Kelly K Wingfield
- Laboratory of Addiction Genetics, Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, 140 The Fenway, Boston, MA, USA
- T32 Biomolecular Pharmacology Training Program, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Teodora Misic
- Laboratory of Addiction Genetics, Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, 140 The Fenway, Boston, MA, USA
| | - Kaahini Jain
- Laboratory of Addiction Genetics, Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, 140 The Fenway, Boston, MA, USA
| | - Carly S McDermott
- Laboratory of Addiction Genetics, Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, 140 The Fenway, Boston, MA, USA
| | - Nalia M Abney
- Laboratory of Addiction Genetics, Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, 140 The Fenway, Boston, MA, USA
| | - Kayla T Richardson
- Laboratory of Addiction Genetics, Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, 140 The Fenway, Boston, MA, USA
- Post-Baccalaureate Research Education Program, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Mia B Rubman
- NIH/NIDA Summer Undergraduate Fellowship Program, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Jacob A Beierle
- T32 Biomolecular Pharmacology Training Program, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Transformative Training Program in Addiction Science, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Sophia A Miracle
- Laboratory of Addiction Genetics, Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, 140 The Fenway, Boston, MA, USA
- Graduate Program for Neuroscience, Boston University, Boston, MA, USA
| | - Emma J Sandago
- Laboratory of Addiction Genetics, Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, 140 The Fenway, Boston, MA, USA
| | - Britahny M Baskin
- Laboratory of Addiction Genetics, Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, 140 The Fenway, Boston, MA, USA
- T32 Training Program on Development of Medications for Substance Use Disorders Fellowship, Center for Drug Discovery, Northeastern University, Boston, MA, USA
| | - William B Lynch
- Laboratory of Addiction Genetics, Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, 140 The Fenway, Boston, MA, USA
- Transformative Training Program in Addiction Science, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Graduate Program for Neuroscience, Boston University, Boston, MA, USA
| | - Kristyn N Borrelli
- Laboratory of Addiction Genetics, Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, 140 The Fenway, Boston, MA, USA
- T32 Biomolecular Pharmacology Training Program, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Transformative Training Program in Addiction Science, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Graduate Program for Neuroscience, Boston University, Boston, MA, USA
| | - Emily J Yao
- Laboratory of Addiction Genetics, Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, 140 The Fenway, Boston, MA, USA
| | - Elisha M Wachman
- Department of Pediatrics, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, MA, USA
| | - Camron D Bryant
- Laboratory of Addiction Genetics, Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, 140 The Fenway, Boston, MA, USA.
| |
Collapse
|
8
|
Ameli K, Krämer S. Culture of care: the question of animal agency in laboratory animal science. Front Vet Sci 2024; 11:1373778. [PMID: 39318601 PMCID: PMC11420019 DOI: 10.3389/fvets.2024.1373778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/01/2024] [Indexed: 09/26/2024] Open
Abstract
Background A majority of the current debates in experimental animal science research focus to a large extent on the significance and implementation of the 3Rs principle according to Russell and Burch. In this context, not least due to the EU Directive 2010/63/EU, the concept of a culture of care has become more prevalent. Although animals are essential actors in the field of laboratory science, the discussion around animal agency, as well as the resulting consequences for laboratory animal science, is currently unconsidered. Methods The purpose of this qualitative survey was to identify the perception and understanding of professional workers in laboratory animal science regarding the culture of care in general and aspects of animal agency in particular. Using a non-standardized qualitative survey method (topic-oriented, guideline-based expert interviews), persons involved in animal experimentation in different groups (management, science, regulation, and care) were interviewed. Results Overall, the results of the qualitative survey showed that animal agency plays a subordinate role in the question of a culture of care in animal research. Although not all groups explicitly applied the construct of animal agency or comparable terminology for this, there were links to the theoretical construct. Overall, the interviews showed a recognized network between humans and animals and that animals can interact dialogically in research. This is justified, for example, by the transfer of emotions from carers or scientists to animals. Nevertheless, a differentiated reflection of an animal's agency remains disregarded. Conclusion The present qualitative survey approached the understanding of a culture of care among experts in the field of animal research. Animal agency does occur in the theoretical reception of the culture of care model. However, it is not conclusively established in everyday practice. Rather, the results lead to the assumption that strategies are being implemented to largely fade out animal agency.
Collapse
Affiliation(s)
- Katharina Ameli
- Interdisciplinary Centre for Animal Welfare Research and 3R (ICAR3R), Justus Liebig University, Gießen, Germany
| | - Stephanie Krämer
- Interdisciplinary Centre for Animal Welfare Research and 3R (ICAR3R), Justus Liebig University, Gießen, Germany
| |
Collapse
|
9
|
Wingfield KK, Misic T, Jain K, McDermott CS, Abney NM, Richardson KT, Rubman MB, Beierle JA, Miracle SA, Sandago EJ, Baskin BM, Lynch WB, Borrelli KN, Yao EJ, Wachman EM, Bryant CD. The ultrasonic vocalization (USV) syllable profile during neonatal opioid withdrawal and a kappa opioid receptor component to increased USV emissions in female mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.02.601766. [PMID: 39005445 PMCID: PMC11244951 DOI: 10.1101/2024.07.02.601766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Rationale Opioid use during pregnancy can lead to negative infant health outcomes, including neonatal opioid withdrawal syndrome (NOWS). NOWS comprises gastrointestinal, autonomic nervous system, and neurological dysfunction that manifest during spontaneous withdrawal. Variability in NOWS severity necessitates a more individualized treatment approach. Ultrasonic vocalizations (USVs) in neonatal mice are emitted in isolation as a stress response and are increased during opioid withdrawal, thus modeling a negative affective state that can be utilized to test new treatments. Objectives We sought to identify the behavioral and USV profile, brainstem transcriptomic adaptations, and role of kappa opioid receptors in USVs during neonatal opioid withdrawal. Methods We employed a third trimester-approximate opioid exposure model, where neonatal inbred FVB/NJ pups were injected twice-daily with morphine (10mg/kg, s.c.) or saline (0.9%, 20 ul/g, s.c.) from postnatal day(P) 1 to P14. This protocol induces reduced weight gain, hypothermia, thermal hyperalgesia, and increased USVs during spontaneous morphine withdrawal. Results On P14, there were increased USV emissions and altered USV syllables during withdrawal, including an increase in Complex 3 syllables in FVB/NJ females (but not males). Brainstem bulk mRNA sequencing revealed an upregulation of the kappa opioid receptor (Oprk1), which contributes to withdrawal-induced dysphoria. The kappa opioid receptor (KOR) antagonist, nor-BNI (30 mg/kg, s.c.), significantly reduced USVs in FVB/NJ females, but not males during spontaneous morphine withdrawal. Furthermore, the KOR agonist, U50,488h (0.625 mg/kg, s.c.), was sufficient to increase USVs on P10 (both sexes) and P14 (females only) in FVB/NJ mice. Conclusions We identified an elevated USV syllable, Complex 3, and a female-specific recruitment of the dynorphin/KOR system in increased USVs associated with neonatal opioid withdrawal severity.
Collapse
Affiliation(s)
- Kelly K. Wingfield
- Laboratory of Addiction Genetics, Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA USA
- T32 Biomolecular Pharmacology Training Program, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
| | - Teodora Misic
- Laboratory of Addiction Genetics, Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA USA
| | - Kaahini Jain
- Laboratory of Addiction Genetics, Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA USA
| | - Carly S. McDermott
- Laboratory of Addiction Genetics, Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA USA
| | - Nalia M. Abney
- Laboratory of Addiction Genetics, Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA USA
| | - Kayla T. Richardson
- Laboratory of Addiction Genetics, Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA USA
- Post-Baccalaureate Research Education Program, Boston University Chobanian & Avedisian School of Medicine
| | | | - Jacob A. Beierle
- T32 Biomolecular Pharmacology Training Program, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
- Transformative Training Program in Addiction Science, Boston University Chobanian & Avedisian School of Medicine
| | - Sophia A. Miracle
- Laboratory of Addiction Genetics, Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA USA
- Graduate Program for Neuroscience, Boston University, Boston, MA USA
| | - Emma J. Sandago
- Laboratory of Addiction Genetics, Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA USA
| | - Britahny M. Baskin
- Laboratory of Addiction Genetics, Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA USA
- T32 Training Program on Development of Medications for Substance Use Disorders Fellowship, Center for Drug Discovery, Northeastern University
| | - William B. Lynch
- Laboratory of Addiction Genetics, Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA USA
- Transformative Training Program in Addiction Science, Boston University Chobanian & Avedisian School of Medicine
- Graduate Program for Neuroscience, Boston University, Boston, MA USA
| | - Kristyn N. Borrelli
- Laboratory of Addiction Genetics, Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA USA
- T32 Biomolecular Pharmacology Training Program, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA
- Transformative Training Program in Addiction Science, Boston University Chobanian & Avedisian School of Medicine
- Graduate Program for Neuroscience, Boston University, Boston, MA USA
| | - Emily J. Yao
- Laboratory of Addiction Genetics, Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA USA
| | - Elisha M. Wachman
- Department of Pediatrics, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston MA USA
| | - Camron D. Bryant
- Laboratory of Addiction Genetics, Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA USA
| |
Collapse
|
10
|
Szente L, Balla GY, Varga ZK, Toth B, Biro L, Balogh Z, Hill MN, Toth M, Mikics E, Aliczki M. Endocannabinoid and neuroplasticity-related changes as susceptibility factors in a rat model of posttraumatic stress disorder. Neurobiol Stress 2024; 32:100662. [PMID: 39183773 PMCID: PMC11341941 DOI: 10.1016/j.ynstr.2024.100662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/18/2024] [Accepted: 07/10/2024] [Indexed: 08/27/2024] Open
Abstract
Traumatic experiences result in the development of posttraumatic stress disorder (PTSD) in 10-25% of exposed individuals. While human clinical studies suggest that susceptibility is potentially linked to endocannabinoid (eCB) signaling, neurobiological PTSD susceptibility factors are poorly understood. Employing a rat model of contextual conditioned fear, we characterized distinct resilient and susceptible subpopulations based on lasting generalized fear, a core symptom of PTSD. In these groups, we assessed i.) eCB levels by mass spectrometry and ii.) expression variations of eCB system- and iii.) neuroplasticity-related genes by real-time quantitative PCR in the circuitry relevant in trauma-induced changes. Furthermore, employing unsupervised and semi-supervised machine learning based statistical analytical models, we assessed iv.) gene expression patterns with the most robust predictive power regarding PTSD susceptibility. According to our findings, in our model, generalized fear responses occurred with sufficient variability to characterize distinct resilient and susceptible subpopulations. Resilient subjects showed elevated prelimbic and lower ventral hippocampal levels of eCB 2-arachidonoyl-glycerol (2-AG) compared to resilient and non-shocked control subjects. Ventral hippocampal 2-AG content positively correlated with the strength of fear generalization. Furthermore, susceptibility was associated with i.) prefrontal, hippocampal and amygdalar neuronal hypoactivity, ii.) marked decrease in the expression of genes of transcription factors modulating neuroplasticity and iii.) an altered expression pattern of eCB-related genes, including enzymes involved in eCB metabolism. Unsupervised and semi-supervised statistical approaches highlighted that hippocampal gene expression patterns possess strong predictive power regarding susceptibility. Taken together, the marked eCB and neuroplasticity changes in susceptible individuals associated with abnormal activity patterns in the fear circuitry possibly contribute to context coding deficits, resulting in generalized fear.
Collapse
Affiliation(s)
- Laszlo Szente
- Translational Behavioural Neuroscience Research Group, Institute of Experimental Medicine, Hungarian Research Network, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Gyula Y. Balla
- Translational Behavioural Neuroscience Research Group, Institute of Experimental Medicine, Hungarian Research Network, Budapest, Hungary
| | - Zoltan K. Varga
- Translational Behavioural Neuroscience Research Group, Institute of Experimental Medicine, Hungarian Research Network, Budapest, Hungary
| | - Blanka Toth
- Department of Inorganic and Analytical Chemistry, University of Technology and Economics, Budapest, Hungary
| | - Laszlo Biro
- Translational Behavioural Neuroscience Research Group, Institute of Experimental Medicine, Hungarian Research Network, Budapest, Hungary
| | - Zoltan Balogh
- Translational Behavioural Neuroscience Research Group, Institute of Experimental Medicine, Hungarian Research Network, Budapest, Hungary
| | - Matthew N. Hill
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Mate Toth
- Translational Behavioural Neuroscience Research Group, Institute of Experimental Medicine, Hungarian Research Network, Budapest, Hungary
| | - Eva Mikics
- Translational Behavioural Neuroscience Research Group, Institute of Experimental Medicine, Hungarian Research Network, Budapest, Hungary
| | - Mano Aliczki
- Translational Behavioural Neuroscience Research Group, Institute of Experimental Medicine, Hungarian Research Network, Budapest, Hungary
| |
Collapse
|
11
|
Snyder MC, Qi KK, Yartsev MM. Neural representation of human experimenters in the bat hippocampus. Nat Neurosci 2024; 27:1675-1679. [PMID: 38956164 PMCID: PMC11374686 DOI: 10.1038/s41593-024-01690-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/23/2024] [Indexed: 07/04/2024]
Abstract
Here we conducted wireless electrophysiological recording of hippocampal neurons from Egyptian fruit bats in the presence of human experimenters. In flying bats, many neurons modulated their activity depending on the identity of the human at the landing target. In stationary bats, many neurons carried significant spatial information about the position and identity of humans traversing the environment. Our results reveal that hippocampal activity is robustly modulated by the presence, movement and identity of human experimenters.
Collapse
Affiliation(s)
| | - Kevin K Qi
- Biophysics Graduate Group, UC Berkeley, Berkeley, CA, USA
| | - Michael M Yartsev
- Department of Bioengineering, UC Berkeley, Berkeley, CA, USA.
- Biophysics Graduate Group, UC Berkeley, Berkeley, CA, USA.
- Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, CA, USA.
| |
Collapse
|
12
|
Cattaneo A, Bellenghi M, Ferroni E, Mangia C, Marconi M, Rizza P, Borghini A, Martini L, Luciani MN, Ortona E, Carè A, Appetecchia M, Ministry Of Health-Gender Medicine Team. Recommendations for the Application of Sex and Gender Medicine in Preclinical, Epidemiological and Clinical Research. J Pers Med 2024; 14:908. [PMID: 39338162 PMCID: PMC11433203 DOI: 10.3390/jpm14090908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Gender medicine studies how health status and diseases differ between men and women in terms of prevention, therapeutic approach, prognosis, and psychological and social impact. Sex and gender analyses have been demonstrated to improve science, contributing to achieving real appropriateness and equity in the cure for each person. Therefore, it is fundamental to consider, both in preclinical and clinical research, the different clinical and biological features associated with sex and/or gender, where sex differences are mainly influenced by biological determinants and gender ones by socio-cultural and economic matters. This article was developed to provide knowledge and methodological tools for the development of studies/research protocols in which sex and gender should be taken into account.
Collapse
Affiliation(s)
- Annamaria Cattaneo
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni, 4, 25125 Brescia, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| | - Maria Bellenghi
- Center of Gender Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Eliana Ferroni
- Epidemiological System of the Veneto Region, Regional Center for Epidemiology, Veneto Region, 35100 Padova, Italy
| | - Cristina Mangia
- Istituto di Scienze dell'Atmosfera e del Clima, Consiglio Nazionale delle Ricerche, 73100 Lecce, Italy
| | - Matteo Marconi
- Center of Gender Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Paola Rizza
- Center of Gender Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Alice Borghini
- Agenzia Nazionale per i Servizi Sanitari Regionali, 00187 Rome, Italy
| | - Lorena Martini
- Agenzia Nazionale per i Servizi Sanitari Regionali, 00187 Rome, Italy
| | | | - Elena Ortona
- Center of Gender Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Alessandra Carè
- Center of Gender Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Marialuisa Appetecchia
- Oncological Endocrinology Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 00144 Rome, Italy
| | | |
Collapse
|
13
|
Morello GM, Capas-Peneda S, Brajon S, Lamas S, Lopes IM, Gilbert C, Olsson IAS. Proper micro-environment alleviates mortality in laboratory mouse breeding induced by litter overlap and older dams. Commun Biol 2024; 7:1008. [PMID: 39154136 PMCID: PMC11330512 DOI: 10.1038/s42003-024-06654-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/30/2024] [Indexed: 08/19/2024] Open
Abstract
The ongoing worldwide effort to reduce animal numbers in research often omits the issue of pre-weaning mortality in mouse breeding. A conservative estimate of 20% mortality would mean approximately 1.1 M mice die annually in the EU before scientific use. We hypothesize that pre-weaning mortality in laboratory mouse breeding is associated with cage social and macro/micro-environment conditions. Here we count pups from 509 C57BL/6J litters daily for accurate detection of mortality, and monitor cage micro-environment for 172 C57BL/6J litters. Probability of pups to die increases with the increase in dam age, number and age of older pups in the cage (of overlapped/cohabitating litters), and in small (<6 pups) and large (>11 pups) focal litters. Higher temperatures (>23.6 °C) and nest scores (>3.75) compensate for some of the socially-associated risks for pup death. These findings can be implemented in strategies for reducing pre-weaning mouse mortality, a more welfare-friendly and sustainable approach for science.
Collapse
Affiliation(s)
- Gabriela M Morello
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.
| | - Sara Capas-Peneda
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Sophie Brajon
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Sofia Lamas
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Igor M Lopes
- Sociedade Portuguesa de Inovação, Porto, Portugal
| | | | - I Anna S Olsson
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| |
Collapse
|
14
|
Conrad CD, Peay DN, Acuña AM, Whittaker K, Donnay ME. Corticosterone disrupts spatial working memory during retention testing when highly taxed, which positively correlates with depressive-like behavior in middle-aged, ovariectomized female rats. Horm Behav 2024; 164:105600. [PMID: 39003890 PMCID: PMC11330725 DOI: 10.1016/j.yhbeh.2024.105600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024]
Abstract
Major Depressive Disorder affects 8.4 % of the U.S. population, particularly women during perimenopause. This study implemented a chronic corticosterone manipulation (CORT, a major rodent stress hormone) using middle-aged, ovariectomized female rats to investigate depressive-like behavior, anxiety-like symptoms, and cognitive ability. CORT (400 μg/ml, in drinking water) was administered for four weeks before behavioral testing began and continued throughout all behavioral assessments. Compared to vehicle-treated rats, CORT significantly intensified depressive-like behaviors: CORT decreased sucrose preference, enhanced immobility on the forced swim test, and decreased sociability on a choice task between a novel conspecific female rat and an inanimate object. Moreover, CORT enhanced anxiety-like behavior on a marble bury task by reducing time investigating tabasco-topped marbles. No effects were observed on novelty suppressed feeding or the elevated plus maze. For spatial working memory using an 8-arm radial arm maze, CORT did not alter acquisition but disrupted performance during retention. CORT enhanced the errors committed during the highest working memory load following a delay and during the last trial requiring the most items to remember; this cognitive metric positively correlated with a composite depressive-like score to reveal that as depressive-like symptoms increased, cognitive performance worsened. This protocol allowed for the inclusion of multiple behavioral assessments without stopping the CORT treatment needed to produce a MDD phenotype and to assess a battery of behaviors. Moreover, that when middle-age was targeted, chronic CORT produced a depressive-like phenotype in ovariectomized females, who also comorbidly expressed aspects of anxiety and cognitive dysfunction.
Collapse
Affiliation(s)
- Cheryl D Conrad
- Arizona State University, Department of Psychology, Box 1104, Tempe 85287, AZ, United States.
| | - Dylan N Peay
- Arizona State University, Department of Psychology, Box 1104, Tempe 85287, AZ, United States
| | - Amanda M Acuña
- Arizona State University, Department of Psychology, Box 1104, Tempe 85287, AZ, United States
| | - Kennedy Whittaker
- Arizona State University, Department of Psychology, Box 1104, Tempe 85287, AZ, United States
| | - Megan E Donnay
- Arizona State University, Department of Psychology, Box 1104, Tempe 85287, AZ, United States
| |
Collapse
|
15
|
Volianskis R, Lundbye CJ, Petroff GN, Jane DE, Georgiou J, Collingridge GL. Cage effects on synaptic plasticity and its modulation in a mouse model of fragile X syndrome. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230484. [PMID: 38853552 PMCID: PMC11343313 DOI: 10.1098/rstb.2023.0484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 06/11/2024] Open
Abstract
Fragile X syndrome (FXS) is characterized by impairments in executive function including different types of learning and memory. Long-term potentiation (LTP), thought to underlie the formation of memories, has been studied in the Fmr1 mouse model of FXS. However, there have been many discrepancies in the literature with inconsistent use of littermate and non-littermate Fmr1 knockout (KO) and wild-type (WT) control mice. Here, the influence of the breeding strategy (cage effect) on short-term potentiation (STP), LTP, contextual fear conditioning (CFC), expression of N-methyl-d-aspartate receptor (NMDAR) subunits and the modulation of NMDARs, were examined. The largest deficits in STP, LTP and CFC were found in KO mice compared with non-littermate WT. However, the expression of NMDAR subunits was unchanged in this comparison. Rather, NMDAR subunit (GluN1, 2A, 2B) expression was sensitive to the cage effect, with decreased expression in both WT and KO littermates compared with non-littermates. Interestingly, an NMDAR-positive allosteric modulator, UBP714, was only effective in potentiating the induction of LTP in non-littermate KO mice and not the littermate KO mice. These results suggest that commonly studied phenotypes in Fmr1 KOs are sensitive to the cage effect and therefore the breeding strategy may contribute to discrepancies in the literature.This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Collapse
Affiliation(s)
- Rasa Volianskis
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, OntarioM5G 1X5, Canada
- Department of Physiology, University of Toronto, Toronto, OntarioM5S 1A8, Canada
| | - Camilla J. Lundbye
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, OntarioM5G 1X5, Canada
- Department of Physiology, University of Toronto, Toronto, OntarioM5S 1A8, Canada
| | - Gillian N. Petroff
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, OntarioM5G 1X5, Canada
- Department of Physiology, University of Toronto, Toronto, OntarioM5S 1A8, Canada
| | - David. E. Jane
- Hello Bio Limited, Cabot Park, Avonmouth, BristolBS11 0QL, UK
| | - John Georgiou
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, OntarioM5G 1X5, Canada
- TANZ Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, OntarioM5S 1A8, Canada
| | - Graham L. Collingridge
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, OntarioM5G 1X5, Canada
- Department of Physiology, University of Toronto, Toronto, OntarioM5S 1A8, Canada
- TANZ Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, OntarioM5S 1A8, Canada
| |
Collapse
|
16
|
Larrigaldie I, Damon F, Mousqué S, Patris B, Lansade L, Schaal B, Destrez A. Do sheep (Ovis aries) discriminate human emotional odors? Anim Cogn 2024; 27:51. [PMID: 39060454 PMCID: PMC11282138 DOI: 10.1007/s10071-024-01895-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
While sheep can detect and discriminate human emotions through visual and vocal cues, their reaction to human body odors remains unknown. The present study aimed to determine whether sheep (Ovis aries) can detect human odors, olfactorily discriminate stressed from non-stressed individuals, and behave accordingly based on the emotional valence of the odors. Axillary secretions from 34 students were collected following an oral examination (stress odor) or a regular class (non-stress odor). Fourteen female and 15 male lambs were then exposed to these odors through a habituation-dishabituation procedure. The habituation stimulus was presented four times for one minute, followed by the dishabituation stimulus presented once for one minute. Behavioral variables included spatiality relative to target odors, approach/withdrawal, ear positioning, sniffing, ingestion, and vocalization. Both female and male lambs more often positioned their ears backwards/forwards, and asymmetrically when exposed to the dishabituation stimulus, but regardless of their stress or non-stress value. They also changed their approach behavior when exposed to the dishabituation stimuli. Lambs displayed some behavioral signs of discrimination between the habituation and dishabituation odors, but regardless of their relation to stress or non-stress of human donors. In sum, this exploratory study suggests that young sheep respond negatively to the odor of unfamiliar humans, without showing any specific emotional contagion related to the stress odor. This exploratory study suggests young ovines can detect human body odor, a further step toward understanding the human-sheep relationship.
Collapse
Affiliation(s)
- Izïa Larrigaldie
- Development of Olfaction in Cognition and Communication Lab, Centre des Sciences du Goût et de l'Alimentation, CNRS, Université Bourgogne, Institut Agro Dijon, Dijon, France.
| | - Fabrice Damon
- Development of Olfaction in Cognition and Communication Lab, Centre des Sciences du Goût et de l'Alimentation, CNRS, Université Bourgogne, Institut Agro Dijon, Dijon, France
| | - Solène Mousqué
- Development of Olfaction in Cognition and Communication Lab, Centre des Sciences du Goût et de l'Alimentation, CNRS, Université Bourgogne, Institut Agro Dijon, Dijon, France
- Institut Agro Dijon, Dijon, France
| | - Bruno Patris
- Development of Olfaction in Cognition and Communication Lab, Centre des Sciences du Goût et de l'Alimentation, CNRS, Université Bourgogne, Institut Agro Dijon, Dijon, France
| | - Léa Lansade
- Unité de Physiologie de la Reproduction et des Comportements, IFCE, Inrae, CNRS, Université de Tours, Nouzilly, France
| | - Benoist Schaal
- Development of Olfaction in Cognition and Communication Lab, Centre des Sciences du Goût et de l'Alimentation, CNRS, Université Bourgogne, Institut Agro Dijon, Dijon, France
| | - Alexandra Destrez
- Development of Olfaction in Cognition and Communication Lab, Centre des Sciences du Goût et de l'Alimentation, CNRS, Université Bourgogne, Institut Agro Dijon, Dijon, France
- Institut Agro Dijon, Dijon, France
| |
Collapse
|
17
|
Stein G, Aly JS, Manzolillo A, Lange L, Riege K, Hussain I, Heller EA, Cubillos S, Ernst T, Hübner CA, Turecki G, Hoffmann S, Engmann O. Transthyretin Orchestrates Vitamin B12-Induced Stress Resilience. Biol Psychiatry 2024:S0006-3223(24)01457-4. [PMID: 39029777 DOI: 10.1016/j.biopsych.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/24/2024] [Accepted: 07/06/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Chronic stress significantly contributes to mood and anxiety disorders. Previous data suggest a correlative connection between vitamin B12 supplementation, depression, and stress resilience. However, the underlying mechanisms are still poorly understood. METHODS Using the chronic variable stress mouse model coupled with RNA sequencing, we identified vitamin B12-induced transcriptional changes related to stress resilience. Using viral-mediated gene transfer and in vivo epigenome editing, we revealed a functional pathway linking vitamin B12, DNA methylation (DNAme), and depression-like symptoms. RESULTS We identified Ttr (transthyretin) as a key sex-specific target of vitamin B12 in chronic stress. Accordingly, TTR expression was increased postmortem in the prefrontal cortex of male but not female patients with depression. Virally altered Ttr in the prefrontal cortex functionally contributed to stress- and depression-related behaviors, changes in dendritic spine morphology, and gene expression. In stressed mice, vitamin B12 reduced DNAme in the Ttr promoter region. Importantly, using in vivo epigenome editing to alter DNAme in the brains of living mice for the first time, we established a direct causal link between DNAme and Ttr and stress-associated behaviors. CONCLUSIONS Using state-of-the-art techniques, this study uncovered a mechanistic link between vitamin B12 supplementation, Ttr, and markers of chronic stress and depression, encouraging further studies into dietary interventions for mood disorders.
Collapse
Affiliation(s)
- Gregor Stein
- Institute for Biochemistry and Biophysics, Friedrich Schiller University, Jena, Germany
| | - Janine S Aly
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | | | - Lisa Lange
- Institute for Biochemistry and Biophysics, Friedrich Schiller University, Jena, Germany
| | - Konstantin Riege
- Computational Biology Group, Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Iqra Hussain
- Institute for Biochemistry and Biophysics, Friedrich Schiller University, Jena, Germany
| | - Elisabeth A Heller
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Susana Cubillos
- Institute for Biochemistry and Biophysics, Friedrich Schiller University, Jena, Germany
| | - Thomas Ernst
- Clinic for Internal Medicine II, Jena University Hospital, Jena, Germany
| | | | - Gustavo Turecki
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Québec, Canada
| | - Steve Hoffmann
- Computational Biology Group, Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Olivia Engmann
- Institute for Biochemistry and Biophysics, Friedrich Schiller University, Jena, Germany; Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| |
Collapse
|
18
|
Onuma K, Watanabe M, Sasaki N. The grimace scale: a useful tool for assessing pain in laboratory animals. Exp Anim 2024; 73:234-245. [PMID: 38382945 PMCID: PMC11254488 DOI: 10.1538/expanim.24-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 02/13/2024] [Indexed: 02/23/2024] Open
Abstract
Accurately and promptly assessing pain in experimental animals is extremely important to avoid unnecessary suffering of the animals and to enhance the reproducibility of experiments. This is a key concern for veterinarians, animal caretakers, and researchers from the perspectives of veterinary care and animal welfare. Various methods including ethology, immunohistochemistry, electrophysiology, and molecular biology are used for pain assessment. However, the grimace scale, which was developed by taking cues from interpreting pain through facial expressions of non-verbal infants, has become recognized as a very simple and practical method for objectively evaluating pain levels by scoring changes in an animal's expressions. This method, which was first implemented with mice approximately 10 years ago, is now being applied to various experimental animals and is widely used in research settings. This review focuses on the usability of the grimace scale from the "cage-side" perspective, aiming to make it a more user-friendly tool for those involved in animal experiments. Differences in facial expressions in response to pain in various animals, examples of applying the grimace scale, current automated analytical methods, and future prospects are discussed.
Collapse
Affiliation(s)
- Kenta Onuma
- Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University, 35-1 Higashi-23, Towada, Aomori 034-0021, Japan
| | - Masaki Watanabe
- Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University, 35-1 Higashi-23, Towada, Aomori 034-0021, Japan
| | - Nobuya Sasaki
- Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University, 35-1 Higashi-23, Towada, Aomori 034-0021, Japan
| |
Collapse
|
19
|
Krishnan V, Wu J, Mazumder AG, Kamen JL, Schirmer C, Adhyapak N, Bass JS, Lee SC, Maheshwari A, Molinaro G, Gibson JR, Huber KM, Minassian BA. Clinicopathologic Dissociation: Robust Lafora Body Accumulation in Malin KO Mice Without Observable Changes in Home-Cage Behavior. J Comp Neurol 2024; 532:e25660. [PMID: 39039998 PMCID: PMC11370821 DOI: 10.1002/cne.25660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
Lafora disease (LD) is a syndrome of progressive myoclonic epilepsy and cumulative neurocognitive deterioration caused by recessively inherited genetic lesions of EPM2A (laforin) or NHLRC1 (malin). Neuropsychiatric symptomatology in LD is thought to be directly downstream of neuronal and astrocytic polyglucosan aggregates, termed Lafora bodies (LBs), which faithfully accumulate in an age-dependent manner in all mouse models of LD. In this study, we applied home-cage monitoring to examine the extent of neurobehavioral deterioration in a model of malin-deficient LD as a means to identify robust preclinical endpoints that may guide the selection of novel genetic treatments. At 6 weeks, ∼6-7 months, and ∼12 months of age, malin-deficient mice ("KO") and wild-type (WT) littermates underwent a standardized home-cage behavioral assessment designed to non-obtrusively appraise features of rest/arousal, consumptive behaviors, risk aversion, and voluntary wheel-running. At all timepoints, and over a range of metrics that we report transparently, WT and KO mice were essentially indistinguishable. In contrast, within WT mice compared across the same timepoints, we identified age-related nocturnal hypoactivity, diminished sucrose preference, and reduced wheel-running. Neuropathological examinations in subsets of the same mice revealed expected age-dependent LB accumulation, gliosis, and microglial activation in cortical and subcortical brain regions. At 12 months of age, despite the burden of neocortical LBs, we did not identify spontaneous seizures during an electroencephalographic (EEG) survey, and KO and WT mice exhibited similar spectral EEG features. However, in an in vitro assay of neocortical function, paroxysmal bursts of network activity (UP states) in KO slices were more prolonged at 3 and 6 months of age, but similar to WT at 12 months. KO mice displayed a distinct response to pentylenetetrazole, with a greater incidence of clonic seizures and a more pronounced postictal suppression of movement, feeding, and drinking behavior. Together, these results highlight the clinicopathologic dissociation in a mouse model of LD, where the accrual of LBs may latently modify cortical circuit function and seizure threshold without clinically meaningful changes in home-cage behavior. Our findings allude to a delay between LB accumulation and neurobehavioral decline in LD: one that may provide a window for treatment, and whose precise duration may be difficult to ascertain within the typical lifespan of a laboratory mouse.
Collapse
Affiliation(s)
- Vaishnav Krishnan
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Jun Wu
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Arindam Ghosh Mazumder
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Jessica L. Kamen
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Catharina Schirmer
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Nandani Adhyapak
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - John Samuel Bass
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Samuel C. Lee
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Atul Maheshwari
- Department of Neurology, Peter Kellaway Section of Neurophysiology and Epilepsy, Baylor College of Medicine, Houston, TX
| | - Gemma Molinaro
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX
| | - Jay R. Gibson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX
| | - Kimberly M. Huber
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX
| | - Berge A Minassian
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
20
|
Zumbusch AS, McEachern ELF, Morgan OB, Nickner E, Mogil JS. Normative Preclinical Algesiometry Data on the von Frey and Radiant Heat Paw-Withdrawal Tests: An Analysis of Data from More Than 8,000 Mice Over 20 Years. THE JOURNAL OF PAIN 2024; 25:104468. [PMID: 38219851 DOI: 10.1016/j.jpain.2024.01.333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/18/2023] [Accepted: 01/03/2024] [Indexed: 01/16/2024]
Abstract
The measurement of withdrawal to experimenter-delivered mechanical stimuli (von Frey test) and to heat stimuli (radiant heat paw-withdrawal or Hargreaves' test) applied to the hind paws is ubiquitous in preclinical pain research, but no normative values for the most-common applications of these tests have ever been published. We analyzed a retrospective data set of withdrawal thresholds or latencies in 8,150 mice in which these measures were taken using replicate determinations, before and after injection of inflammatory substances or experimental nerve damage producing pain hypersensitivity, totaling 97,332 measurements. All mice were tested in the same physical laboratory over a 20-year period using similar equipment and procedures. We nonetheless find evidence of large interindividual variability, affected by tester, genotype, mouse sex, tester sex, replicate order, and injury. These factors are discussed, and we believe that these normative data will serve as a useful reference for expected values in preclinical pain testing. PERSPECTIVE: This article presents a retrospective analysis of a large data set of mouse von Frey and radiant heat paw-withdrawal (Hargreaves' test) measurements collected in a single laboratory over 20 years. In addition to serving as a normative guide, sources of variability are identified including genotype, tester, and sex.
Collapse
Affiliation(s)
- Alicia S Zumbusch
- Departments of Psychology and Anesthesia, Faculties of Science, Medicine, and Dentistry, Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Eleri L F McEachern
- Departments of Psychology and Anesthesia, Faculties of Science, Medicine, and Dentistry, Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Oakley B Morgan
- Departments of Psychology and Anesthesia, Faculties of Science, Medicine, and Dentistry, Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Elodie Nickner
- Departments of Psychology and Anesthesia, Faculties of Science, Medicine, and Dentistry, Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Jeffrey S Mogil
- Departments of Psychology and Anesthesia, Faculties of Science, Medicine, and Dentistry, Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| |
Collapse
|
21
|
Rodríguez García DM, Szabo A, Mikesell AR, Zorn SJ, Tsafack UK, Sriram A, Waltz TB, Enders JD, Mecca CM, Stucky CL, Sadler KE. High-speed imaging of evoked rodent mechanical behaviors yields variable results that are not predictive of inflammatory injury. Pain 2024; 165:1569-1582. [PMID: 38314814 PMCID: PMC11189758 DOI: 10.1097/j.pain.0000000000003174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/30/2023] [Indexed: 02/07/2024]
Abstract
ABSTRACT Few analgesics identified using preclinical models have successfully translated to clinical use. These translational limitations may be due to the unidimensional nature of behavioral response measures used to assess rodent nociception. Advances in high-speed videography for pain behavior allow for objective quantification of nuanced aspects of evoked paw withdrawal responses. However, whether videography-based assessments of mechanical hypersensitivity outperform traditional measurement reproducibility is unknown. First, we determined whether high-speed videography of paw withdrawal was reproducible across experimenters. Second, we examined whether this method distinguishes behavioral responses exhibited by naive mice and mice with complete Freund's adjuvant (CFA)-induced inflammation. Twelve experimenters stimulated naive C57BL/6 mice with varying mechanical stimuli. Paw withdrawal responses were recorded with high-speed videography and scored offline by one individual. Our group was unable to replicate the original findings produced by high-speed videography analysis. Surprisingly, ∼80% of variation was not accounted for by variables previously reported to distinguish between responses to innocuous and noxious stimuli (paw height, paw velocity, and pain score), or by additional variables (experimenter, time-of-day, and animal), but rather by unidentified factors. Similar high-speed videography assessments were performed in CFA- and vehicle-treated animals, and the cumulative data failed to reveal an effect of CFA injection on withdrawal as measured by high-speed videography. This study does not support using paw height, velocity, or pain score measurements from high-speed recordings to delineate behavioral responses to innocuous and noxious stimuli. Our group encourages the continued use of traditional mechanical withdrawal assessments until additional high-speed withdrawal measures are validated in established pain models.
Collapse
Affiliation(s)
- Dianise M Rodríguez García
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Aniko Szabo
- Division of Biostatistics, Institute of Health and Equity, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Alexander R Mikesell
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Samuel J Zorn
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Ulrich Kemmo Tsafack
- Division of Biostatistics, Institute of Health and Equity, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Anvitha Sriram
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Tyler B Waltz
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jonathan D Enders
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Christina M Mecca
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Cheryl L Stucky
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Katelyn E Sadler
- Department of Neuroscience, Center for Advanced Pain Studies, The University of Texas at Dallas, Richardson, TX, United States
| |
Collapse
|
22
|
Christian-Hinman CA. The Promise and Practicality of Addressing Sex as a Biological Variable and the Ovarian Cycle in Preclinical Epilepsy Research. Epilepsy Curr 2024; 24:274-279. [PMID: 39309055 PMCID: PMC11412390 DOI: 10.1177/15357597241261463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
Seizures and epilepsy affect people of all sexes and genders. In the last several years, funding agency initiatives such as the U.S. National Institutes of Health policy on sex as a biological variable (SABV) have intended to encourage researchers to study both males and females from cell to tissue to organism and analyze and report the resulting data with sex as a factor. Preclinical epilepsy research, however, continues to be plagued by confusion regarding both the SABV policy and its implementation, reflecting similar beliefs in the larger neuroscience research community. This article aims to address some common misconceptions and provide practical tools and suggestions for preclinical epilepsy researchers in implementing SABV and analysis of the female ovarian cycle (estrous cycle in rodents) in their research programs, with a focus on studies using rodent models. Examples of recent publications in preclinical epilepsy research highlighting the value of incorporating SABV and information on the estrous cycle are included. The specifics of how best to address SABV and the estrous cycle can vary depending on the needs and goals of a particular research program, but an embrace of these physiological factors by the preclinical epilepsy research community promises to yield more rigorous research and improved treatment strategies for all people with epilepsy.
Collapse
Affiliation(s)
- Catherine A. Christian-Hinman
- Department of Molecular and Integrative Physiology, Neuroscience Program, Beckman Institute of Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
23
|
Baruffaldi L, Andrade MCB. Does female control and male mating system predict courtship investment and mating outcomes? A comparative study in five widow spider species (genus Latrodectus) tested under similar laboratory conditions. BMC Ecol Evol 2024; 24:86. [PMID: 38937685 PMCID: PMC11212240 DOI: 10.1186/s12862-024-02272-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/14/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Male courtship investment may evolve in response to the male's expectation of future mating opportunities or the degree of female control during mating interactions. We used a comparative approach to test this hypotheses by assessing the courtship and mating behaviors of five widow spider species (genus Latrodectus) under common laboratory conditions. We predicted male investment in courtship would be higher in species where males mate only once because of high cannibalism rates (monogyny, L. geometricus, L. hasselti, L. mirabilis), compared to species with rare cannibalism (L. mactans, L. hesperus) in which males should reserve energy for future mating opportunities. Increased male investment, measured as courtship duration, might also evolve with increased female control over mating outcomes if females prefer longer courtships. We tested this by assessing the frequency of copulations, timing of sexual cannibalism, and the degree of female-biased size dimorphism, which is expected to be negatively correlated with the energetic cost of rebuffing male mating attempts. RESULTS Copulation frequency was consistently lower in species with extreme female-skewed size dimorphism, and where sexual cannibalism was more prevalent, suggesting the importance of female control for mating outcomes. We confirmed significant interspecific variation in average courtship duration, but contrary to predictions, it was not predicted by male mating system, and there was no consistent link between courtship duration and sexual size dimorphism. CONCLUSION We show that the degree of sexual dimorphism is not only correlated with sexual cannibalism, but also with mating success since restriction of male copulation frequency by female Latrodectus affects paternity. However, predictions about male mating system or female control affecting courtship duration were not supported. We propose that the form of female control over mating and cannibalism, and male responses, might be more informative for understanding the evolution of courtship duration. For example, male tactics to avoid female aggression may drive lower courtship duration in species like L. mirabilis. Nonetheless, our results differ from inferences based on published studies of each species in isolation, illuminating the need for standardized data collection for behavioural comparative studies.
Collapse
Affiliation(s)
- Luciana Baruffaldi
- Departments of Biological Sciences and Ecology & Evolutionary Biology, University of Toronto Scarborough, Toronto, ON, M1C 1A4, Canada.
- Departamento de Ecología y Biología Evolutiva, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.
| | - Maydianne C B Andrade
- Departments of Biological Sciences and Ecology & Evolutionary Biology, University of Toronto Scarborough, Toronto, ON, M1C 1A4, Canada
| |
Collapse
|
24
|
Pádua MS, Guil-Guerrero JL, Lopes PA. Behaviour Hallmarks in Alzheimer's Disease 5xFAD Mouse Model. Int J Mol Sci 2024; 25:6766. [PMID: 38928472 PMCID: PMC11204382 DOI: 10.3390/ijms25126766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
The 5xFAD transgenic mouse model widely used in Alzheimer's disease (AD) research recapitulates many AD-related phenotypes with a relatively early onset and aggressive age-dependent progression. Besides developing amyloid peptide deposits alongside neuroinflammation by the age of 2 months, as well as exhibiting neuronal decline by the age of 4 months that intensifies by the age of 9 months, these mice manifest a broad spectrum of behavioural impairments. In this review, we present the extensive repertoire of behavioural dysfunctions in 5xFAD mice, organised into four categories: motor skills, sensory function, learning and memory abilities, and neuropsychiatric-like symptoms. The motor problems, associated with agility and reflex movements, as well as balance and coordination, and skeletal muscle function, typically arise by the time mice reach 9 months of age. The sensory function (such as taste, smell, hearing, and vision) starts to deteriorate when amyloid peptide buildups and neuroinflammation spread into related anatomical structures. The cognitive functions, encompassing learning and memory abilities, such as visual recognition, associative, spatial working, reference learning, and memory show signs of decline from 4 to 6 months of age. Concerning neuropsychiatric-like symptoms, comprising apathy, anxiety and depression, and the willingness for exploratory behaviour, it is believed that motivational changes emerge by approximately 6 months of age. Unfortunately, numerous studies from different laboratories are often contradictory on the conclusions drawn and the identification of onset age, making preclinical studies in rodent models not easily translatable to humans. This variability is likely due to a range of factors associated with animals themselves, housing and husbandry conditions, and experimental settings. In the forthcoming studies, greater clarity in experimental details when conducting behavioural testing in 5xFAD transgenic mice could minimise the inconsistencies and could ensure the reliability and the reproducibility of the results.
Collapse
Affiliation(s)
- Mafalda Soares Pádua
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal;
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
| | - José L. Guil-Guerrero
- Departamento de Tecnología de Alimentos, Universidad de Almería, 04120 Almería, Spain;
| | - Paula Alexandra Lopes
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal;
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
| |
Collapse
|
25
|
Imenez Silva PH, Pepin M, Figurek A, Gutiérrez-Jiménez E, Bobot M, Iervolino A, Mattace-Raso F, Hoorn EJ, Bailey MA, Hénaut L, Nielsen R, Frische S, Trepiccione F, Hafez G, Altunkaynak HO, Endlich N, Unwin R, Capasso G, Pesic V, Massy Z, Wagner CA. Animal models to study cognitive impairment of chronic kidney disease. Am J Physiol Renal Physiol 2024; 326:F894-F916. [PMID: 38634137 DOI: 10.1152/ajprenal.00338.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/11/2024] [Accepted: 04/04/2024] [Indexed: 04/19/2024] Open
Abstract
Mild cognitive impairment (MCI) is common in people with chronic kidney disease (CKD), and its prevalence increases with progressive loss of kidney function. MCI is characterized by a decline in cognitive performance greater than expected for an individual age and education level but with minimal impairment of instrumental activities of daily living. Deterioration can affect one or several cognitive domains (attention, memory, executive functions, language, and perceptual motor or social cognition). Given the increasing prevalence of kidney disease, more and more people with CKD will also develop MCI causing an enormous disease burden for these individuals, their relatives, and society. However, the underlying pathomechanisms are poorly understood, and current therapies mostly aim at supporting patients in their daily lives. This illustrates the urgent need to elucidate the pathogenesis and potential therapeutic targets and test novel therapies in appropriate preclinical models. Here, we will outline the necessary criteria for experimental modeling of cognitive disorders in CKD. We discuss the use of mice, rats, and zebrafish as model systems and present valuable techniques through which kidney function and cognitive impairment can be assessed in this setting. Our objective is to enable researchers to overcome hurdles and accelerate preclinical research aimed at improving the therapy of people with CKD and MCI.
Collapse
Affiliation(s)
- Pedro H Imenez Silva
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, University Medical Center, Rotterdam, The Netherlands
| | - Marion Pepin
- Institut National de la Santé et de la Recherche Médicale U-1018 Centre de Recherche en Épidémiologie et Santé des Population, Équipe 5, Paris-Saclay University, Versailles Saint-Quentin-en-Yvelines University, Villejuif, France
- Department of Geriatrics, Centre Hospitalier Universitaire Ambroise Paré, Assistance Publique-Hôpitaux de Paris Université Paris-Saclay, Paris, France
| | - Andreja Figurek
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Eugenio Gutiérrez-Jiménez
- Center for Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mickaël Bobot
- Centre de Néphrologie et Transplantation Rénale, Hôpital de la Conception, Assistance Publique-Hopitaux de Marseille, and INSERM 1263, Institut National de la Recherche Agronomique 1260, C2VN, Aix-Marseille Universitaire, Marseille, France
| | - Anna Iervolino
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli,' Naples, Italy
| | - Francesco Mattace-Raso
- Division of Geriatrics, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Ewout J Hoorn
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, University Medical Center, Rotterdam, The Netherlands
| | - Matthew A Bailey
- Edinburgh Kidney, Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, United Kingdom
| | - Lucie Hénaut
- UR UPJV 7517, Jules Verne University of Picardie, Amiens, France
| | - Rikke Nielsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Francesco Trepiccione
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli,' Naples, Italy
| | - Gaye Hafez
- Department of Pharmacology, Faculty of Pharmacy, Altinbas University, Istanbul, Turkey
| | - Hande O Altunkaynak
- Department of Pharmacology, Gulhane Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| | - Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Robert Unwin
- Department of Renal Medicine, Royal Free Hospital, University College London, London, United Kingdom
| | - Giovambattista Capasso
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli,' Naples, Italy
- Biogem Research Institute, Ariano Irpino, Italy
| | - Vesna Pesic
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Ziad Massy
- Centre for Research in Epidemiology and Population Health, INSERM UMRS 1018, Clinical Epidemiology Team, University Paris-Saclay, University Versailles-Saint Quentin, Villejuif, France
- Department of Nephrology, Centre Hospitalier Universitaire Ambroise Paré, Assistance Publique-Hôpitaux de Paris Université Paris-Saclay, Paris, France
| | - Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
26
|
Brown RE. Measuring the replicability of our own research. J Neurosci Methods 2024; 406:110111. [PMID: 38521128 DOI: 10.1016/j.jneumeth.2024.110111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
In the study of transgenic mouse models of neurodevelopmental and neurodegenerative disorders, we use batteries of tests to measure deficits in behaviour and from the results of these tests, we make inferences about the mental states of the mice that we interpret as deficits in "learning", "memory", "anxiety", "depression", etc. This paper discusses the problems of determining whether a particular transgenic mouse is a valid mouse model of disease X, the problem of background strains, and the question of whether our behavioural tests are measuring what we say they are. The problem of the reliability of results is then discussed: are they replicable between labs and can we replicate our results in our own lab? This involves the study of intra- and inter- experimenter reliability. The variables that influence replicability and the importance of conducting a complete behavioural phenotype: sensory, motor, cognitive and social emotional behaviour are discussed. Then the thorny question of failure to replicate is examined: Is it a curse or a blessing? Finally, the role of failure in research and what it tells us about our research paradigms is examined.
Collapse
Affiliation(s)
- Richard E Brown
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
27
|
Lalji HM, Bailey CP, Husbands SM, Bailey SJ. Effects of sex and hydration status on kappa opioid receptor-mediated diuresis in rats. Basic Clin Pharmacol Toxicol 2024; 134:792-804. [PMID: 38584299 DOI: 10.1111/bcpt.14008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/09/2024]
Abstract
Understanding the function of the kappa opioid receptor (KOP) is crucial for the development of novel therapeutic interventions that target KOP for the treatment of pain, stress-related disorders and other indications. Activation of KOP produces diuretic effects in rodents and man. Sex is a vital factor to consider when assessing drug response in pre-clinical and clinical studies. In this study, the diuretic effect of the KOP agonist, U50488 (1-10 mg/kg), was investigated in both adult female and male Wistar rats that were either normally hydrated or water-loaded. The KOP antagonist norbinaltorphimine (norBNI, 10 mg/kg) was administered 24 h prior to U50488 to confirm the involvement of KOP. U50488 elicited a significant diuretic response at doses ≥ 3 mg/kg in both female and male rats independent of hydration status. U50488 diuretic effects were inhibited by norBNI pre-administration. Water-loading reduced data variability for urine volume in males, but not in females, compared with normally hydrated rats. Sex differences were also evident in U50488 eliciting a significant increase in sodium and potassium ion excretion only in males. This may suggest different mechanisms of U50488 diuretic action in males where renal excretion mechanisms are directly affected more than in females.
Collapse
Affiliation(s)
| | | | | | - Sarah J Bailey
- Department of Life Sciences, University of Bath, Bath, UK
| |
Collapse
|
28
|
Norris MR, Becker LJ, Bilbily J, Chang YH, Borges G, Dunn SS, Madasu MK, Vazquez CR, Cariello SA, Al-Hasani R, Creed MC, McCall JG. Spared nerve injury decreases motivation in long-access homecage-based operant tasks in mice. Pain 2024; 165:1247-1265. [PMID: 38015628 PMCID: PMC11095834 DOI: 10.1097/j.pain.0000000000003123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 10/10/2023] [Indexed: 11/30/2023]
Abstract
ABSTRACT Neuropathic pain causes both sensory and emotional maladaptation. Preclinical animal studies of neuropathic pain-induced negative affect could result in novel insights into the mechanisms of chronic pain. Modeling pain-induced negative affect, however, is variable across research groups and conditions. The same injury may or may not produce robust negative affective behavioral responses across different species, strains, and laboratories. Here, we sought to identify negative affective consequences of the spared nerve injury model on C57BL/6J male and female mice. We found no significant effect of spared nerve injury across a variety of approach-avoidance conflict, hedonic choice, and coping strategy assays. We hypothesized these inconsistencies may stem in part from the short test duration of these assays. To test this hypothesis, we used the homecage-based Feeding Experimentation Device version 3 to conduct 12-hour, overnight progressive ratio testing to determine whether mice with chronic spared nerve injury had decreased motivation to earn palatable food rewards. Our data demonstrate that despite equivalent task learning, spared nerve injury mice are less motivated to work for a sugar pellet than sham controls. Furthermore, when we normalized behavioral responses across all the behavioral assays we tested, we found that a combined normalized behavioral score is predictive of injury state and significantly correlates with mechanical thresholds. Together, these results suggest that homecage-based operant behaviors provide a useful platform for modeling nerve injury-induced negative affect and that valuable pain-related information can arise from agglomerative data analyses across behavioral assays-even when individual inferential statistics do not demonstrate significant mean differences.
Collapse
Affiliation(s)
- Makenzie R. Norris
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, MO, USA; Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Léa J. Becker
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, MO, USA; Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
| | - John Bilbily
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, MO, USA; Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Yu-Hsuan Chang
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, MO, USA; Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Gustavo Borges
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, MO, USA; Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Samantha S. Dunn
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, MO, USA; Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Manish K. Madasu
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, MO, USA; Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Chayla R. Vazquez
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, MO, USA; Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Solana A. Cariello
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, MO, USA; Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Ream Al-Hasani
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, MO, USA; Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Meaghan C. Creed
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, MO, USA; Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Jordan G. McCall
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, MO, USA; Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
29
|
Wang M, Jendrichovsky P, Kanold PO. Auditory discrimination learning differentially modulates neural representation in auditory cortex subregions and inter-areal connectivity. Cell Rep 2024; 43:114172. [PMID: 38703366 PMCID: PMC11450637 DOI: 10.1016/j.celrep.2024.114172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/06/2024] [Accepted: 04/16/2024] [Indexed: 05/06/2024] Open
Abstract
Changes in sound-evoked responses in the auditory cortex (ACtx) occur during learning, but how learning alters neural responses in different ACtx subregions and changes their interactions is unclear. To address these questions, we developed an automated training and widefield imaging system to longitudinally track the neural activity of all mouse ACtx subregions during a tone discrimination task. We find that responses in primary ACtx are highly informative of learned stimuli and behavioral outcomes throughout training. In contrast, representations of behavioral outcomes in the dorsal posterior auditory field, learned stimuli in the dorsal anterior auditory field, and inter-regional correlations between primary and higher-order areas are enhanced with training. Moreover, ACtx response changes vary between stimuli, and such differences display lag synchronization with the learning rate. These results indicate that learning alters functional connections between ACtx subregions, inducing region-specific modulations by propagating behavioral information from primary to higher-order areas.
Collapse
Affiliation(s)
- Mingxuan Wang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Peter Jendrichovsky
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Patrick O Kanold
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
30
|
Midavaine É, Moraes BC, Benitez J, Rodriguez SR, Braz JM, Kochhar NP, Eckalbar WL, Domingos AI, Pintar JE, Basbaum AI, Kashem SW. Regulatory T cell-derived enkephalin imparts pregnancy-induced analgesia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.11.593442. [PMID: 38798460 PMCID: PMC11118376 DOI: 10.1101/2024.05.11.593442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
T cells have emerged as sex-dependent orchestrators of pain chronification but the sexually dimorphic mechanisms by which T cells control pain sensitivity is not resolved. Here, we demonstrate an influence of regulatory T cells (Tregs) on pain processing that is distinct from their canonical functions of immune regulation and tissue repair. Specifically, meningeal Tregs (mTregs) express the endogenous opioid, enkephalin, and mTreg-derived enkephalin exerts an antinociceptive action through a presynaptic opioid receptor signaling mechanism that is dispensable for immunosuppression. mTregs are both necessary and sufficient for suppressing mechanical pain sensitivity in female but not male mice. Notably, the mTreg modulation of pain thresholds depends on sex-hormones and expansion of enkephalinergic mTregs during gestation imparts a remarkable pregnancy-induced analgesia in a pre-existing, chronic, unremitting neuropathic pain model. These results uncover a fundamental sex-specific, pregnancy-pronounced, and immunologically-derived endogenous opioid circuit for nociceptive regulation with critical implications for pain biology and maternal health.
Collapse
Affiliation(s)
- Élora Midavaine
- Department of Anatomy, University of California San Francisco, San Francisco, California, USA
| | - Beatriz C. Moraes
- Department of Anatomy, University of California San Francisco, San Francisco, California, USA
| | - Jorge Benitez
- Department of Anatomy, University of California San Francisco, San Francisco, California, USA
| | - Sian R. Rodriguez
- Department of Anatomy, University of California San Francisco, San Francisco, California, USA
| | - Joao M. Braz
- Department of Anatomy, University of California San Francisco, San Francisco, California, USA
| | - Nathan P. Kochhar
- Department of Anatomy, University of California San Francisco, San Francisco, California, USA
| | - Walter L. Eckalbar
- Department of Anatomy, University of California San Francisco, San Francisco, California, USA
| | - Ana I. Domingos
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - John E. Pintar
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Allan I. Basbaum
- Department of Anatomy, University of California San Francisco, San Francisco, California, USA
| | - Sakeen W. Kashem
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
- Dermatology, Veterans Affairs Medical Center, San Francisco, California, USA
| |
Collapse
|
31
|
Liu Q, Radchenko M, Špinka M. Disentangling developmental effects of play aspects in rat rough-and-tumble play. Biol Lett 2024; 20:20240037. [PMID: 38808945 PMCID: PMC11285777 DOI: 10.1098/rsbl.2024.0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/11/2024] [Accepted: 04/12/2024] [Indexed: 05/30/2024] Open
Abstract
Animal play encompasses a variety of aspects, with kinematic and social aspects being particularly prevalent in mammalian play behaviour. While the developmental effects of play have been increasingly documented in recent decades, understanding the specific contributions of different play aspects remains crucial to understand the function and evolutionary benefit of animal play. In our study, developing male rats were exposed to rough-and-tumble play selectively reduced in either the kinematic or the social aspect. We then assessed the developmental effects of reduced play on their appraisal of standardized human-rat play ('tickling') by examining their emission of 50 kHz ultrasonic vocalizations (USVs). Using a deep learning framework, we efficiently classified five subtypes of these USVs across six behavioural states. Our results revealed that rats lacking the kinematic aspect in play emitted fewer USVs during tactile contacts by human and generally produced fewer USVs of positive valence compared with control rats. Rats lacking the social aspect did not differ from the control and the kinematically reduced group. These results indicate aspects of play have different developmental effects, underscoring the need for researchers to further disentangle how each aspect affects animals.
Collapse
Affiliation(s)
- Quanxiao Liu
- Department of Ethology and Companion Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czechia
| | - Mariia Radchenko
- Department of Ethology and Companion Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czechia
| | - Marek Špinka
- Department of Ethology and Companion Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czechia
| |
Collapse
|
32
|
Consolandi M, Floris M, Pecorelli N, Archibugi L, Macchini M, Rossi MG, Falconi M, Graffigna G, Arcidiacono PG, Reni M, Martini C, Capurso G. Communication, understanding and engagement of patients with pancreatic cancer at time of diagnosis. Pancreatology 2024; 24:437-444. [PMID: 38368219 DOI: 10.1016/j.pan.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND Objectives: To investigate communication clarity and understanding at the time of pancreatic adenocarcinoma (PDAC) diagnosis and whether they can influence patient engagement and compliance. METHODS Consecutive PDAC patients were enrolled at the time of diagnosis after obtaining informed consent in a single-center study. The patients completed a validated scale (PHE-s®), and the understanding rate was assessed using standardized tools. Patient compliance was evaluated, and the correlation between the PHE-s®, understanding, and compliance was calculated. RESULTS Thirty patients were enrolled (15 female) with a mean age 64.4, 13 were metastatic. The mean visit time was 31 min, being longer if visiting doctor was an oncologist (p = 0.002). The engagement level was high in 70% of the patients, and all but one were compliant. The analysis of doctor-patient interactions showed a median of 121 conversational turns for doctors, 75 for patients, and 20 for caregivers (p < 0.0001), and the median percentage of speaking time was 77% for doctors, 13% for patients, and 2% for caregivers (p < 0.0001). Female caregivers spent more time speaking than did male caregivers (median 11.6% vs. 1.3%; p = 0.06). There were 290 instances of problematic understanding, most of which occurred during the taking of patients' personal medical history for doctors, while for patients and caregivers, these occurred mainly during the discussion of diagnosis/treatment (p < 0.0001). In a multivariable analysis, only origin from central or southern Italy was associated with high engagement (p = 0.0087). CONCLUSION In this first attempt to measure clarity of communication and engagement in patients with PDAC, typical features of conversation and problematic understanding emerged, which deserves further investigation.
Collapse
Affiliation(s)
- Monica Consolandi
- Faculty of Philosophy, Vita-Salute San Raffaele University, Via Olgettina, 58, 20132, Milan, Italy; Fondazione Bruno Kessler (FBK), Center for Digital Health and Wellbeing, Intelligent Digital Agents Unit, via Sommarive, 18 Povo, 38123, Trento, Italy
| | - Mara Floris
- Faculty of Philosophy, Vita-Salute San Raffaele University, Via Olgettina, 58, 20132, Milan, Italy
| | - Nicolò Pecorelli
- Pancreatic Surgery Unit, Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute IRCCS, Via Olgettina, 58, 20132, Milan, Italy; Vita-Salute San Raffaele University, Via Olgettina, 58, 20132, Milan, Italy
| | - Livia Archibugi
- Pancreato-Biliary Endoscopy and Endosonography Unit, Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute IRCCS, Via Olgettina, 58, 20132, Milan, Italy
| | - Marina Macchini
- Oncology Unit, Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute IRCCS, Via Olgettina, 58, 20132, Milan, Italy
| | - Maria Grazia Rossi
- ArgLab - Instituto de Filosofia da Nova (IFILNOVA), Universidade Nova de Lisboa, Campus de Campolide - Colégio Almada Negreiros, 1099-032, Lisbon, Portugal
| | - Massimo Falconi
- Pancreatic Surgery Unit, Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute IRCCS, Via Olgettina, 58, 20132, Milan, Italy; Vita-Salute San Raffaele University, Via Olgettina, 58, 20132, Milan, Italy
| | - Guendalina Graffigna
- EngageMinds HUB - Consumer, Food & Health Engagement Research Center, Università Cattolica del Sacro Cuore, Milan and Cremona, Italy; Department of Psychology, Università Cattolica del Sacro Cuore, L.go Gemelli 1, 20123, Milan, Italy
| | - Paolo Giorgio Arcidiacono
- Pancreato-Biliary Endoscopy and Endosonography Unit, Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute IRCCS, Via Olgettina, 58, 20132, Milan, Italy; Vita-Salute San Raffaele University, Via Olgettina, 58, 20132, Milan, Italy
| | - Michele Reni
- Oncology Unit, Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute IRCCS, Via Olgettina, 58, 20132, Milan, Italy; Vita-Salute San Raffaele University, Via Olgettina, 58, 20132, Milan, Italy
| | - Carlo Martini
- Faculty of Philosophy, Vita-Salute San Raffaele University, Via Olgettina, 58, 20132, Milan, Italy
| | - Gabriele Capurso
- Pancreato-Biliary Endoscopy and Endosonography Unit, Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute IRCCS, Via Olgettina, 58, 20132, Milan, Italy; Vita-Salute San Raffaele University, Via Olgettina, 58, 20132, Milan, Italy.
| |
Collapse
|
33
|
Mitelut C, Diez Castro M, Peterson RE, Goncalves M, Li J, Gamer MM, Nilsson SRO, Pereira TD, Sanes DH. A behavioral roadmap for the development of agency in the rodent. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.10.566632. [PMID: 38014127 PMCID: PMC10680634 DOI: 10.1101/2023.11.10.566632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Behavioral interactions within the nuclear family play a pivotal role in the emergence of agency: the capacity to regulate physiological, psychological and social needs. While behaviors may develop over days or weeks in line with nervous system maturation, individual behaviors can occur on sub-second time scales making it challenging to track development in lab studies with brief observation periods, or in field studies with limited temporal precision and animal identification. Here we study development in families of gerbils, a highly social rodent, collecting tens of millions of behavior time points and implementing machine learning methods to track individual subjects. We provided maturing gerbils with a large, undisturbed environment between postnatal day 15 and the age at which they would typically disperse from the family unit (day 30). We identified complex and distinct developmental trajectories for food and water acquisition, solitary exploration, and social behaviors, some of which displayed sex differences and diurnal patterns. Our work supports the emergence of well-delineated autonomous and social behavior phenotypes that correlate with specific periods and loci of neural maturation.
Collapse
|
34
|
Goolsby BC, Fischer MT, Chen TG, Pareja-Mejía D, Shaykevich DA, Lewis AR, Raboisson G, Lacey MP, O’Connell LA. Home security cameras as a tool for behavior observations and science affordability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.17.537238. [PMID: 37131676 PMCID: PMC10153166 DOI: 10.1101/2023.04.17.537238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Reliably capturing transient animal behavior in the field and laboratory remains a logistical and financial challenge, especially for small ectotherms. Here, we present a camera system that is affordable, accessible, and suitable to monitor small, cold-blooded animals historically overlooked by commercial camera traps, such as small amphibians. The system is weather-resistant, can operate offline or online, and allows collection of time-sensitive behavioral data in laboratory and field conditions with continuous data storage for up to four weeks. The lightweight camera can also utilize phone notifications over Wi-Fi so that observers can be alerted when animals enter a space of interest, enabling sample collection at proper time periods. We present our findings, both technological and scientific, in an effort to elevate tools that enable researchers to maximize use of their research budgets. We discuss the relative affordability of our system for researchers in South America, home to the largest ectotherm diversity.
Collapse
Affiliation(s)
| | | | - Tony G. Chen
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Daniela Pareja-Mejía
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Graduate Program in Zoology, Universidade Estadual de Santa Cruz, Bahía, Brazil
| | | | - Amaris R. Lewis
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Gaelle Raboisson
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Madison P. Lacey
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | |
Collapse
|
35
|
Wang Y, Kim SH, Klein ME, Chen J, Gu E, Smith S, Bortsov A, Slade GD, Zhang X, Nackley AG. A mouse model of chronic primary pain that integrates clinically relevant genetic vulnerability, stress, and minor injury. Sci Transl Med 2024; 16:eadj0395. [PMID: 38598615 DOI: 10.1126/scitranslmed.adj0395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 03/15/2024] [Indexed: 04/12/2024]
Abstract
Chronic primary pain conditions (CPPCs) affect over 100 million Americans, predominantly women. They remain ineffectively treated, in large part because of a lack of valid animal models with translational relevance. Here, we characterized a CPPC mouse model that integrated clinically relevant genetic (catechol-O-methyltransferase; COMT knockdown) and environmental (stress and injury) factors. Compared with wild-type mice, Comt+/- mice undergoing repeated swim stress and molar extraction surgery intervention exhibited pronounced multisite body pain and depressive-like behavior lasting >3 months. Comt+/- mice undergoing the intervention also exhibited enhanced activity of primary afferent nociceptors innervating hindpaw and low back sites and increased plasma concentrations of norepinephrine and pro-inflammatory cytokines interleukin-6 (IL-6) and IL-17A. The pain and depressive-like behavior were of greater magnitude and longer duration (≥12 months) in females versus males. Furthermore, increases in anxiety-like behavior and IL-6 were female-specific. The effect of COMT genotype × stress interactions on pain, IL-6, and IL-17A was validated in a cohort of 549 patients with CPPCs, demonstrating clinical relevance. Last, we assessed the predictive validity of the model for analgesic screening and found that it successfully predicted the lack of efficacy of minocycline and the CB2 agonist GW842166X, which were effective in spared nerve injury and complete Freund's adjuvant models, respectively, but failed in clinical trials. Yet, pain in the CPPC model was alleviated by the beta-3 adrenergic antagonist SR59230A. Thus, the CPPC mouse model reliably recapitulates clinically and biologically relevant features of CPPCs and may be implemented to test underlying mechanisms and find new therapeutics.
Collapse
Affiliation(s)
- Yaomin Wang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Shin Hyung Kim
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Marguerita E Klein
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jiegen Chen
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Elizabeth Gu
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Shad Smith
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Andrey Bortsov
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Gary D Slade
- Center for Pain Research and Innovation, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Xin Zhang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Andrea G Nackley
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
36
|
Nikoohemmat M, Farmani D, Moteshakereh SM, Salehi S, Rezaee L, Haghparast A. Intra-accumbal orexinergic system contributes to the stress-induced antinociceptive behaviors in the animal model of acute pain in rats. Behav Pharmacol 2024; 35:92-102. [PMID: 38055726 DOI: 10.1097/fbp.0000000000000763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Stress and pain are interleaved at numerous levels - influencing each other. Stress can increase the nociception threshold in animals, long-known as stress-induced analgesia (SIA). Orexin is known as a neuropeptide that modulates pain. The effect of stress on the mesolimbic system in the modulation of pain is known. The role of the intra-accumbal orexin receptors in the modulation of acute pain by forced swim stress (FSS) is unclear. In this study, 117 adult male albino Wistar rats (270-300 g) were used. The animals were unilaterally implanted with cannulae above the NAc. The antagonist of the orexin-1 receptor (OX1r), SB334867, and antagonist of the orexin-2 receptor (OX2r), TCS OX2 29, were microinjected into the NAc in different doses (1, 3, 10, and 30 nmol/0.5 µl DMSO) before exposure to FSS for a 6-min period. The tail-flick test was carried out as an assay nociception of acute pain, and the nociceptive threshold [tail-flick latency (TFL)] was measured for 60-minute. The findings demonstrated that exposure to acute stress could remarkably increase the TFLs and antinociceptive responses. Moreover, intra-accumbal microinjection of SB334867 or TCS OX2 29 blocked the antinociceptive effect of stress in the tail-flick test. The contribution of orexin receptors was almost equally modulating SIA. The present study's findings suggest that OX1r and OX2r within the NAc modulate stress-induced antinociceptive responses. The intra-accumbal microinjection of orexin receptors antagonists declares inducing antinociceptive responses by FSS in acute pain. Proposedly, intra-accumbla orexinergic receptors have a role in the development of SIA.
Collapse
Affiliation(s)
- Mohammad Nikoohemmat
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences
| | - Danial Farmani
- Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences
| | | | - Sakineh Salehi
- Department of Medicine, Ardabil Medical Sciences Branch, Islamic Azad University, Ardabil, Iran
| | - Laleh Rezaee
- Institute of Pathophysiology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences
| |
Collapse
|
37
|
Boerner KE, Keogh E, Inkster AM, Nahman-Averbuch H, Oberlander TF. A developmental framework for understanding the influence of sex and gender on health: Pediatric pain as an exemplar. Neurosci Biobehav Rev 2024; 158:105546. [PMID: 38272336 DOI: 10.1016/j.neubiorev.2024.105546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 07/07/2023] [Accepted: 11/06/2023] [Indexed: 01/27/2024]
Abstract
Sex differences are a robust finding in many areas of adult health, including cardiovascular disease, psychiatric disorders, and chronic pain. However, many sex differences are not consistently observed until after the onset of puberty. This has led to the hypothesis that hormones are primary contributors to sex differences in health outcomes, largely ignoring the relative contributions of early developmental influences, emerging psychosocial factors, gender, and the interaction between these variables. In this paper, we argue that a comprehensive understanding of sex and gender contributions to health outcomes should start as early as conception and take an iterative biopsychosocial-developmental perspective that considers intersecting social positions. We present a conceptual framework, informed by a review of the literature in basic, clinical, and social science that captures how critical developmental stages for both sex and gender can affect children's health and longer-term outcomes. The literature on pediatric chronic pain is used as a worked example of how the framework can be applied to understanding different chronic conditions.
Collapse
Affiliation(s)
- Katelynn E Boerner
- Department of Pediatrics, University of British Columbia, and BC Children's Hospital Research Institute, Vancouver, BC, Canada.
| | - Edmund Keogh
- Department of Psychology & Centre for Pain Research, University of Bath, Bath, United Kingdom
| | - Amy M Inkster
- Department of Medical Genetics, University of British Columbia, and BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Hadas Nahman-Averbuch
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Tim F Oberlander
- Department of Pediatrics, University of British Columbia, and BC Children's Hospital Research Institute, Vancouver, BC, Canada; School of Population and Public Health, University of British Columbia, and BC Children's Hospital Research Institute, Vancouver, BC, Canada
| |
Collapse
|
38
|
Yang Z, Kubant R, Kranenburg E, Cho CE, Anderson GH. The Effect of Micronutrients on Obese Phenotype of Adult Mice Is Dependent on the Experimental Environment. Nutrients 2024; 16:696. [PMID: 38474824 DOI: 10.3390/nu16050696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/14/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
The environment of the test laboratory affects the reproducibility of treatment effects on physiological phenotypes of rodents and may be attributed to the plasticity of the epigenome due to nutrient-gene-environment interactions. Here, we explored the reproducibility of adding a multi-vitamin-mineral (MVM) mix to a nutrient-balanced high-fat (HF) diet on obesity, insulin resistance (IR), and gene expression in the tissues of adult male mice. Experiments of the same design were conducted in three independent animal facilities. Adult C57BL/6J male mice were fed an HF diet for 6 weeks (diet induced-obesity model) and then continued for 9-12 weeks on the HF diet with or without 5-fold additions of vitamins A, B1, B6, B12, Zn, and 2-fold Se. The addition of the MVM affected body weight, fat mass, gene expression, and markers of IR in all three locations (p < 0.05). However, the direction of the main effects was influenced by the interaction with the experimental location and its associated environmental conditions known to affect the epigenome. In conclusion, MVM supplementation influenced phenotypes and expression of genes related to adipose function in obese adult male mice, but the experimental location and its associated conditions were significant interacting factors. Preclinical studies investigating the relationship between diet and metabolic outcomes should acknowledge the plasticity of the epigenome and implement measures to reproduce studies in different locations.
Collapse
Affiliation(s)
- Zeyu Yang
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ruslan Kubant
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Eva Kranenburg
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Clara E Cho
- Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - G Harvey Anderson
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
39
|
Donovan LJ, Bridges CM, Nippert AR, Wang M, Wu S, Forman TE, Haight ES, Huck NA, Bond SF, Jordan CE, Gardner AM, Nair RV, Tawfik VL. Repopulated spinal cord microglia exhibit a unique transcriptome and contribute to pain resolution. Cell Rep 2024; 43:113683. [PMID: 38261512 PMCID: PMC10947777 DOI: 10.1016/j.celrep.2024.113683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/15/2023] [Accepted: 01/02/2024] [Indexed: 01/25/2024] Open
Abstract
Microglia are implicated as primarily detrimental in pain models; however, they exist across a continuum of states that contribute to homeostasis or pathology depending on timing and context. To clarify the specific contribution of microglia to pain progression, we take advantage of a temporally controlled transgenic approach to transiently deplete microglia. Unexpectedly, we observe complete resolution of pain coinciding with microglial repopulation rather than depletion. We find that repopulated mouse spinal cord microglia are morphologically distinct from control microglia and exhibit a unique transcriptome. Repopulated microglia from males and females express overlapping networks of genes related to phagocytosis and response to stress. We intersect the identified mouse genes with a single-nuclei microglial dataset from human spinal cord to identify human-relevant genes that may ultimately promote pain resolution after injury. This work presents a comprehensive approach to gene discovery in pain and provides datasets for the development of future microglial-targeted therapeutics.
Collapse
Affiliation(s)
- Lauren J Donovan
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Caldwell M Bridges
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Amy R Nippert
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Meng Wang
- Stanford Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Shaogen Wu
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Thomas E Forman
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Elena S Haight
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Nolan A Huck
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Sabrina F Bond
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Claire E Jordan
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Aysha M Gardner
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Ramesh V Nair
- Stanford Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Vivianne L Tawfik
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
40
|
Ozdemir Y, Nakamoto K, Boivin B, Bullock D, Andrews NA, González-Cano R, Costigan M. Quantification of stimulus-evoked tactile allodynia in free moving mice by the chainmail sensitivity test. Front Pharmacol 2024; 15:1352464. [PMID: 38464715 PMCID: PMC10920263 DOI: 10.3389/fphar.2024.1352464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/01/2024] [Indexed: 03/12/2024] Open
Abstract
Chronic pain occurs at epidemic levels throughout the population. Hypersensitivity to touch, is a cardinal symptom of chronic pain. Despite dedicated research for over a century, quantifying this hypersensitivity has remained impossible at scale. To address these issues, we developed the Chainmail Sensitivity Test (CST). Our results show that control mice spend significantly more time on the chainmail portion of the device than mice subject to neuropathy. Treatment with gabapentin abolishes this difference. CST-derived data correlate well with von Frey measurements and quantify hypersensitivity due to inflammation. Our study demonstrates the potential of the CST as a standardized tool for assessing mechanical hypersensitivity in mice with minimal operator input.
Collapse
Affiliation(s)
- Yildirim Ozdemir
- The Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Kazuo Nakamoto
- The Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University, Kobe, Japan
| | - Bruno Boivin
- The Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Daniel Bullock
- The Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Nick A. Andrews
- The Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- In Vivo Scientific Services, The Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Rafael González-Cano
- The Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Pharmacology, Faculty of Medicine and Biomedical Research Center (Neurosciences Institute), Biosanitary Research Institute ibs.GRANADA, University of Granada, Granada, Spain
| | - Michael Costigan
- The Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
41
|
Chernov G. The Alternative Factors Leading to Replication Crisis: Prediction and Evaluation. EVALUATION REVIEW 2024:193841X241229106. [PMID: 38379307 DOI: 10.1177/0193841x241229106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Most existing solutions to the current replication crisis in science address only the factors stemming from specific poor research practices. We introduce a novel mechanism that leverages the experts' predictive abilities to analyze the root causes of replication failures. It is backed by the principle that the most accurate predictor is the most qualified expert. This mechanism can be seamlessly integrated into the existing replication prediction market framework with minimal implementation costs. It relies on an objective rather than subjective process and unstructured expert opinions to effectively identify various influences contributing to the replication crisis.
Collapse
Affiliation(s)
- Gregory Chernov
- Department for Computational Neuroscience, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| |
Collapse
|
42
|
Ding SS, Fox JL, Gordus A, Joshi A, Liao JC, Scholz M. Fantastic beasts and how to study them: rethinking experimental animal behavior. J Exp Biol 2024; 227:jeb247003. [PMID: 38372042 PMCID: PMC10911175 DOI: 10.1242/jeb.247003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Humans have been trying to understand animal behavior at least since recorded history. Recent rapid development of new technologies has allowed us to make significant progress in understanding the physiological and molecular mechanisms underlying behavior, a key goal of neuroethology. However, there is a tradeoff when studying animal behavior and its underlying biological mechanisms: common behavior protocols in the laboratory are designed to be replicable and controlled, but they often fail to encompass the variability and breadth of natural behavior. This Commentary proposes a framework of 10 key questions that aim to guide researchers in incorporating a rich natural context into their experimental design or in choosing a new animal study system. The 10 questions cover overarching experimental considerations that can provide a template for interspecies comparisons, enable us to develop studies in new model organisms and unlock new experiments in our quest to understand behavior.
Collapse
Affiliation(s)
- Siyu Serena Ding
- Max Planck Institute of Animal Behavior, 78464 Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464 Konstanz, Germany
| | - Jessica L. Fox
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Andrew Gordus
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Abhilasha Joshi
- Departments of Physiology and Psychiatry, University of California, San Francisco, CA 94158, USA
| | - James C. Liao
- Department of Biology, The Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA
| | - Monika Scholz
- Max Planck Research Group Neural Information Flow, Max Planck Institute for Neurobiology of Behavior – caesar, 53175 Bonn, Germany
| |
Collapse
|
43
|
Karimi SA, Zahra FT, Martin LJ. IUPHAR review: Navigating the role of preclinical models in pain research. Pharmacol Res 2024; 200:107073. [PMID: 38232910 DOI: 10.1016/j.phrs.2024.107073] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/19/2024]
Abstract
Chronic pain is a complex and challenging medical condition that affects millions of people worldwide. Understanding the underlying mechanisms of chronic pain is a key goal of preclinical pain research so that more effective treatment strategies can be developed. In this review, we explore nociception, pain, and the multifaceted factors that lead to chronic pain by focusing on preclinical models. We provide a detailed look into inflammatory and neuropathic pain models and discuss the most used animal models for studying the mechanisms behind these conditions. Additionally, we emphasize the vital role of these preclinical models in developing new pain-relief drugs, focusing on biologics and the therapeutic potential of NMDA and cannabinoid receptor antagonists. We also discuss the challenges of TRPV1 modulation for pain treatment, the clinical failures of neurokinin (NK)- 1 receptor antagonists, and the partial success story of Ziconotide to provide valuable lessons for preclinical pain models. Finally, we highlight the overall success and limitations of current treatments for chronic pain while providing critical insights into the development of more effective therapies to alleviate the burden of chronic pain.
Collapse
Affiliation(s)
- Seyed Asaad Karimi
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Fatama Tuz Zahra
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Loren J Martin
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada.
| |
Collapse
|
44
|
Buatois A, Siddiqi Z, Naim S, Marawi T, Gerlai R. A simple semi-automated home-tank method and procedure to explore classical associative learning in adult zebrafish. Behav Res Methods 2024; 56:736-749. [PMID: 36814006 PMCID: PMC10830691 DOI: 10.3758/s13428-023-02076-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2023] [Indexed: 02/24/2023]
Abstract
The zebrafish is a laboratory species that gained increasing popularity the last decade in a variety of subfields of biology, including toxicology, ecology, medicine, and the neurosciences. An important phenotype often measured in these fields is behaviour. Consequently, numerous new behavioural apparati and paradigms have been developed for the zebrafish, including methods for the analysis of learning and memory in adult zebrafish. Perhaps the biggest obstacle in these methods is that zebrafish is particularly sensitive to human handling. To overcome this confound, automated learning paradigms have been developed with varying success. In this manuscript, we present a semi-automated home tank-based learning/memory test paradigm utilizing visual cues, and show that it is capable of quantifying classical associative learning performance in zebrafish. We demonstrate that in this task, zebrafish successfully acquire the association between coloured-light and food reward. The hardware and software components of the task are easy and cheap to obtain and simple to assemble and set up. The procedures of the paradigm allow the test fish to remain completely undisturbed by the experimenter for several days in their home (test) tank, eliminating human handling or human interference induced stress. We demonstrate that the development of cheap and simple automated home-tank-based learning paradigms for the zebrafish is feasible. We argue that such tasks will allow us to better characterize numerous cognitive and mnemonic features of the zebrafish, including elemental as well as configural learning and memory, which will, in turn, also enhance our ability to study neurobiological mechanisms underlying learning and memory using this model organism.
Collapse
Affiliation(s)
- Alexis Buatois
- Department of Psychology, University of Toronto Mississauga, Rm CCT4004, 3359 Mississauga Road, Mississauga, Ontario, L5L 1C6, Canada.
- Institute of Neuroscience and Physiology, Department of Neurochemistry and Psychiatry, University of Gothenburg, Su Sahlgrenska, 41345, Göteborg, Sweden.
| | - Zahra Siddiqi
- Department of Psychology, University of Toronto Mississauga, Rm CCT4004, 3359 Mississauga Road, Mississauga, Ontario, L5L 1C6, Canada
| | - Sadia Naim
- Department of Psychology, University of Toronto Mississauga, Rm CCT4004, 3359 Mississauga Road, Mississauga, Ontario, L5L 1C6, Canada
| | - Tulip Marawi
- Department of Psychology, University of Toronto Mississauga, Rm CCT4004, 3359 Mississauga Road, Mississauga, Ontario, L5L 1C6, Canada
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, Rm CCT4004, 3359 Mississauga Road, Mississauga, Ontario, L5L 1C6, Canada.
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord St, Toronto, Ontario, M5S 3G5, Canada.
| |
Collapse
|
45
|
Modi AD, Parekh A, Patel ZH. Methods for evaluating gait associated dynamic balance and coordination in rodents. Behav Brain Res 2024; 456:114695. [PMID: 37783346 DOI: 10.1016/j.bbr.2023.114695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/29/2023] [Accepted: 09/30/2023] [Indexed: 10/04/2023]
Abstract
Balance is the dynamic and unconscious control of the body's centre of mass to maintain postural equilibrium. Regulated by the vestibular system, head movement and acceleration are processed by the brain to adjust joints. Several conditions result in a loss of balance, including Alzheimer's Disease, Parkinson's Disease, Menière's Disease and cervical spondylosis, all of which are caused by damage to certain parts of the vestibular pathways. Studies about the impairment of the vestibular system are challenging to carry out in human trials due to smaller study sizes limiting applications of the results and a lacking understanding of the human balance control mechanism. In contrast, more controlled research can be performed in animal studies which have fewer confounding factors than human models and allow specific conditions that affect balance to be replicated. Balance control can be studied using rodent balance-related behavioural tests after spinal or brain lesions, such as the Basso, Beattie and Bresnahan (BBB) Locomotor Scale, Foot Fault Scoring System, Ledged Beam Test, Beam Walking Test, and Ladder Beam Test, which are discussed in this review article along with their advantages and disadvantages. These tests can be performed in preclinical rodent models of femoral nerve injury, stroke, spinal cord injury and neurodegenerative diseases.
Collapse
Affiliation(s)
- Akshat D Modi
- Department of Biological Sciences, University of Toronto, Scarborough, Ontario M1C 1A4, Canada; Department of Genetics and Development, Krembil Research Institute, Toronto, Ontario M5T 0S8, Canada.
| | - Anavi Parekh
- Department of Neuroscience, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Zeenal H Patel
- Department of Biological Sciences, University of Toronto, Scarborough, Ontario M1C 1A4, Canada; Department of Biochemistry, University of Toronto, Scarborough, Ontario M1C 1A4, Canada
| |
Collapse
|
46
|
Lipp HP, Krackow S, Turkes E, Benner S, Endo T, Russig H. IntelliCage: the development and perspectives of a mouse- and user-friendly automated behavioral test system. Front Behav Neurosci 2024; 17:1270538. [PMID: 38235003 PMCID: PMC10793385 DOI: 10.3389/fnbeh.2023.1270538] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/18/2023] [Indexed: 01/19/2024] Open
Abstract
IntelliCage for mice is a rodent home-cage equipped with four corner structures harboring symmetrical double panels for operant conditioning at each of the two sides, either by reward (access to water) or by aversion (non-painful stimuli: air-puffs, LED lights). Corner visits, nose-pokes and actual licks at bottle-nipples are recorded individually using subcutaneously implanted transponders for RFID identification of up to 16 adult mice housed in the same home-cage. This allows for recording individual in-cage activity of mice and applying reward/punishment operant conditioning schemes in corners using workflows designed on a versatile graphic user interface. IntelliCage development had four roots: (i) dissatisfaction with standard approaches for analyzing mouse behavior, including standardization and reproducibility issues, (ii) response to handling and housing animal welfare issues, (iii) the increasing number of mouse models had produced a high work burden on classic manual behavioral phenotyping of single mice. and (iv), studies of transponder-chipped mice in outdoor settings revealed clear genetic behavioral differences in mouse models corresponding to those observed by classic testing in the laboratory. The latter observations were important for the development of home-cage testing in social groups, because they contradicted the traditional belief that animals must be tested under social isolation to prevent disturbance by other group members. The use of IntelliCages reduced indeed the amount of classic testing remarkably, while its flexibility was proved in a wide range of applications worldwide including transcontinental parallel testing. Essentially, two lines of testing emerged: sophisticated analysis of spontaneous behavior in the IntelliCage for screening of new genetic models, and hypothesis testing in many fields of behavioral neuroscience. Upcoming developments of the IntelliCage aim at improved stimulus presentation in the learning corners and videotracking of social interactions within the IntelliCage. Its main advantages are (i) that mice live in social context and are not stressfully handled for experiments, (ii) that studies are not restricted in time and can run in absence of humans, (iii) that it increases reproducibility of behavioral phenotyping worldwide, and (iv) that the industrial standardization of the cage permits retrospective data analysis with new statistical tools even after many years.
Collapse
Affiliation(s)
- Hans-Peter Lipp
- Faculty of Medicine, Institute of Evolutionary Medicine, University of Zürich, Zürich, Switzerland
| | - Sven Krackow
- Institute of Pathology and Molecular Pathology, University Hospital Zürich, Zürich, Switzerland
| | - Emir Turkes
- Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Seico Benner
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Ibaraki, Japan
| | | | | |
Collapse
|
47
|
Badrulhisham F, Pogatzki-Zahn E, Segelcke D, Spisak T, Vollert J. Machine learning and artificial intelligence in neuroscience: A primer for researchers. Brain Behav Immun 2024; 115:470-479. [PMID: 37972877 DOI: 10.1016/j.bbi.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 10/16/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
Artificial intelligence (AI) is often used to describe the automation of complex tasks that we would attribute intelligence to. Machine learning (ML) is commonly understood as a set of methods used to develop an AI. Both have seen a recent boom in usage, both in scientific and commercial fields. For the scientific community, ML can solve bottle necks created by complex, multi-dimensional data generated, for example, by functional brain imaging or *omics approaches. ML can here identify patterns that could not have been found using traditional statistic approaches. However, ML comes with serious limitations that need to be kept in mind: their tendency to optimise solutions for the input data means it is of crucial importance to externally validate any findings before considering them more than a hypothesis. Their black-box nature implies that their decisions usually cannot be understood, which renders their use in medical decision making problematic and can lead to ethical issues. Here, we present an introduction for the curious to the field of ML/AI. We explain the principles as commonly used methods as well as recent methodological advancements before we discuss risks and what we see as future directions of the field. Finally, we show practical examples of neuroscience to illustrate the use and limitations of ML.
Collapse
Affiliation(s)
| | - Esther Pogatzki-Zahn
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - Daniel Segelcke
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - Tamas Spisak
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Medicine Essen, Essen, Germany; Center for Translational Neuro- and Behavioral Sciences, Department of Neurology, University Medicine Essen, Essen, Germany
| | - Jan Vollert
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom; Pain Research, Department of Surgery and Cancer, Imperial College London, London, United Kingdom.
| |
Collapse
|
48
|
von Kortzfleisch VT, Richter SH. Systematic heterogenization revisited: Increasing variation in animal experiments to improve reproducibility? J Neurosci Methods 2024; 401:109992. [PMID: 37884081 DOI: 10.1016/j.jneumeth.2023.109992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/10/2023] [Accepted: 10/22/2023] [Indexed: 10/28/2023]
Abstract
Life sciences are currently facing a reproducibility crisis. Originally, the crisis was born out of single alarming failures to reproduce findings at different times and locations. Nowadays, systematic studies indicate that the prevalence of irreproducible research does in fact exceed 50%. Viewed from a rather cynical perspective, Fett's law of the lab "Never replicate a successful experiment" has thus taken on a completely new meaning. In this respect, animal research has come under particular scrutiny, as the stakes are high in terms of both research ethics and societal impact. To counteract this, it is essential to identify sources of poor reproducibility as well as to iron out these failures. We here review the current debate, briefly discuss potential reasons, and summarize steps that have already been undertaken to improve reproducibility in animal research. By the example of classical behavioural phenotyping studies, we particularly highlight the role strict standardization plays in exacerbating the crisis, and review the concept of systematic heterogenization as an alternative strategy to deal with variation in animal studies. Briefly, we argue that systematic variation rather than strict homogenization of experimental conditions benefits the robustness of research findings, and hence their reproducibility. To this end, we will present concrete examples for systematically heterogenized experiments and provide a practical guide on how to apply systematic heterogenization in experimental practice.
Collapse
Affiliation(s)
| | - S Helene Richter
- Department of Behavioural Biology, University of Münster, Badestraße 13, 48149 Münster, Germany.
| |
Collapse
|
49
|
Jaric I, Voelkl B, Amrein I, Wolfer DP, Novak J, Detotto C, Weber-Stadlbauer U, Meyer U, Manuella F, Mansuy IM, Würbel H. Using mice from different breeding sites fails to improve replicability of results from single-laboratory studies. Lab Anim (NY) 2024; 53:18-22. [PMID: 38151528 PMCID: PMC10766513 DOI: 10.1038/s41684-023-01307-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 11/20/2023] [Indexed: 12/29/2023]
Abstract
Theoretical and empirical evidence indicates that low external validity due to rigorous standardization of study populations is a cause of poor replicability in animal research. Here we report a multi-laboratory study aimed at investigating whether heterogenization of study populations by using animals from different breeding sites increases the replicability of results from single-laboratory studies. We used male C57BL/6J mice from six different breeding sites to test a standardized against a heterogenized (HET) study design in six independent replicate test laboratories. For the standardized design, each laboratory ordered mice from a single breeding site (each laboratory from a different one), while for the HET design, each laboratory ordered proportionate numbers of mice from the five remaining breeding sites. To test our hypothesis, we assessed 14 outcome variables, including body weight, behavioral measures obtained from a single session on an elevated plus maze, and clinical blood parameters. Both breeding site and test laboratory affected variation in outcome variables, but the effect of test laboratory was more pronounced for most outcome variables. Moreover, heterogenization of study populations by breeding site (HET) did not reduce variation in outcome variables between test laboratories, which was most likely due to the fact that breeding site had only little effect on variation in outcome variables, thereby limiting the scope for HET to reduce between-lab variation. We conclude that heterogenization of study populations by breeding site has limited capacity for improving the replicability of results from single-laboratory animal studies.
Collapse
Affiliation(s)
- Ivana Jaric
- Animal Welfare Division, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| | - Bernhard Voelkl
- Animal Welfare Division, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Irmgard Amrein
- Institute of Anatomy, Division of Functional Neuroanatomy, University of Zürich, Zürich, Switzerland
| | - David P Wolfer
- Institute of Anatomy, Division of Functional Neuroanatomy, University of Zürich, Zürich, Switzerland
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Janja Novak
- Animal Welfare Division, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Carlotta Detotto
- Central Animal Facilities, Experimental Animal Center, University of Bern, Bern, Switzerland
| | - Ulrike Weber-Stadlbauer
- Institute of Pharmacology and Toxicology, Vetsuisse Faculty and Center of Neuroscience Zürich, University of Zürich, Zürich, Switzerland
| | - Urs Meyer
- Institute of Pharmacology and Toxicology, Vetsuisse Faculty and Center of Neuroscience Zürich, University of Zürich, Zürich, Switzerland
| | - Francesca Manuella
- Laboratory of Neuroepigenetics, Brain Research Institute, Medical Faculty, University of Zürich, Zürich, Switzerland
- Institute for Neuroscience, Department of Health Science and Technology, Swiss Federal Institute of Technology Zürich (ETHZ), Zurich, Switzerland
- Center for Neuroscience Zürich, University Zürich and ETHZ, Zürich, Switzerland
| | - Isabelle M Mansuy
- Laboratory of Neuroepigenetics, Brain Research Institute, Medical Faculty, University of Zürich, Zürich, Switzerland
- Institute for Neuroscience, Department of Health Science and Technology, Swiss Federal Institute of Technology Zürich (ETHZ), Zurich, Switzerland
- Center for Neuroscience Zürich, University Zürich and ETHZ, Zürich, Switzerland
| | - Hanno Würbel
- Animal Welfare Division, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| |
Collapse
|
50
|
David J, Mousset M, Trombetti K, Sayasouk B, Neilsen C, Suorsa P, Ruben M, Ruben E, Thiessen J, Pychewicz T, Chu P, Huynh TN. Chronic mild stress leads to anxiety-like behavior and decreased p70 S6K1 activity in the hippocampus of male mice. Physiol Behav 2024; 273:114377. [PMID: 37863347 DOI: 10.1016/j.physbeh.2023.114377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/29/2023] [Accepted: 10/15/2023] [Indexed: 10/22/2023]
Abstract
Major affective disorders are highly prevalent, however, current treatments are limited in their effectiveness due to a lack of understanding of underlying molecular mechanisms. Recent studies have shown that reduced activity of p70 S6 kinase 1 (S6K1), a downstream target of the mechanistic target of rapamycin complex 1 (mTORC1), is linked to anxiety-like behavior in both humans and rodents. The purpose of this study was to investigate the relationship between S6K1 and anxiety-like behavior following chronic mild stress (CMS) and drug-induced inhibition of S6K1. Following CMS, anxiety-like behavior was evaluated using an open field (OF) and elevated plus maze (EPM) in adult male C57/Bl6 mice. After behavior analysis, samples of the hippocampus were harvested for quantification of S6K1, S6 ribosomal protein, glycogen synthase kinase-3 β (GSK3β), and beta tubulin via western blot. Our results demonstrate that CMS mice exhibit anxiety-like behavior in the OF and EPM and reduced activity of S6K1 in the hippocampus (HPC). We measured phosphorylation levels of GSK3β and found that GSK3β phosphorylation was also reduced following CMS compared to control mice. Furthermore, pharmacological inhibition of S6K1 with PF-4708671 in male mice was sufficient to produce anxiety-like behavior in the OF and EPM. These results further support the significant role of S6K1 in the pathogenesis of anxiety and affective disorders.
Collapse
Affiliation(s)
- Jazmine David
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308 United States of America
| | - Marike Mousset
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308 United States of America
| | - Kirby Trombetti
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308 United States of America
| | - Beverly Sayasouk
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308 United States of America
| | - Calvin Neilsen
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308 United States of America
| | - Parker Suorsa
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308 United States of America
| | - Melissa Ruben
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308 United States of America
| | - Elias Ruben
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308 United States of America
| | - Jacob Thiessen
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308 United States of America
| | - Taylor Pychewicz
- Department of Biomedical Sciences, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, United States of America
| | - Ping Chu
- Department of Biochemistry and Molecular Genetics, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, United States of America
| | - Thu N Huynh
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308 United States of America; Department of Biochemistry and Molecular Genetics, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, United States of America.
| |
Collapse
|