1
|
Glas VFJ, Koenders MA, Kupka RW, Regeer EJ. How to study psychological mechanisms of mania? A systematic review on the methodology of experimental studies on manic mood dysregulation of leading theories on bipolar disorder. Bipolar Disord 2024; 26:646-660. [PMID: 39043623 DOI: 10.1111/bdi.13463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
INTRODUCTION Although there are several psychological theories on bipolar disorders (BD), the empirical evidence on these theories through experimental studies is still limited. The current study systematically reviews experimental methods used in studies on the main theories of BD: Reward Hypersensitivity Theory (RST) or Behavioral Activation System (BAS), Integrative Cognitive Model (ICM), Positive Emotion Persistence (PEP), Manic Defense theory (MD), and Mental Imagery (MI). The primary aim is to provide an overview of the used methods and to identify limitations and suggest areas of improvement. METHODS A systematic search of six databases until October 2023 was conducted. Study selection involved two independent reviewers extracting data on experimental study design and methodology. RESULTS A total of 84 experimental studies were reviewed. BAS and RST were the most frequently studied theories. The majority of these experimental studies focus on mechanisms of reward sensitivity. Other important elements of the reviewed theories, such as goal setting and-attainment, situation selection (avoidance or approach), activation, affective/emotional reactivity, and regulatory strategies, are understudied. Self-report and neuropsychological tasks are most often used, while mood induction and physiological measures are rarely used. CONCLUSION There is a need for more consensus on the operationalization of psychological theories of mania. Standardization of test batteries could improve comparability among studies and foster a more systematic approach to experimental research. Research on affective (activated) states is still underrepresented in comparison with studies on trait vulnerabilities.
Collapse
Affiliation(s)
- V F J Glas
- Altrecht Institute for Mental Health Care, Utrecht, The Netherlands
- Department of Psychiatry and Amsterdam Public Health Research Institute, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam, The Netherlands
| | - M A Koenders
- Clinical Psychology Unit, Leiden University, Leiden, The Netherlands
| | - R W Kupka
- Altrecht Institute for Mental Health Care, Utrecht, The Netherlands
- Department of Psychiatry and Amsterdam Public Health Research Institute, Amsterdam University Medical Center, Vrije Universiteit, Amsterdam, The Netherlands
| | - E J Regeer
- Altrecht Institute for Mental Health Care, Utrecht, The Netherlands
| |
Collapse
|
2
|
Canzian J, Borba JV, Ames J, Silva RM, Resmim CM, Pretzel CW, Duarte MCF, Storck TR, Mohammed KA, Adedara IA, Loro VL, Gerlai R, Rosemberg DB. The influence of acute dopamine transporter inhibition on manic-, depressive-like phenotypes, and brain oxidative status in adult zebrafish. Prog Neuropsychopharmacol Biol Psychiatry 2024; 131:110961. [PMID: 38325745 DOI: 10.1016/j.pnpbp.2024.110961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/03/2024] [Accepted: 02/04/2024] [Indexed: 02/09/2024]
Abstract
Functional changes in dopamine transporter (DAT) are related to various psychiatric conditions, including bipolar disorder (BD) symptoms. In experimental research, the inhibition of DAT induces behavioral alterations that recapitulate symptoms found in BD patients, including mania and depressive mood. Thus, developing novel animal models that mimic BD-related conditions by pharmacologically modulating the dopaminergic signaling is relevant. The zebrafish (Danio rerio) has been considered a suitable vertebrate system for modeling BD-like responses, due to the well-characterized behavioral responses and evolutionarily conservation of the dopaminergic system of this species. Here, we investigate whether GBR 12909, a selective inhibitor of DAT, causes neurobehavioral alterations in zebrafish similar to those observed in BD patients. Behaviors were recorded after a single intraperitoneal (i.p.) administration of GBR 12909 at different doses (3.75, 7.5, 15 and 30 mg/kg). To observe temporal effects on behavior, swim path parameters were measured immediately after the administration period during 30 min. Locomotion, anxiety-like behavior, social preference, aggression, despair-like behavior, and oxidative stress-related biomarkers in the brain were measured 30 min post administration. GBR 12909 induced prominent effects on locomotor activity and vertical exploration during the 30-min period. Hyperactivity was observed in GBR 30 group after 25 min, while all doses markedly reduced vertical drifts. GBR 12909 elicited hyperlocomotion, anxiety-like behavior, decreased social preference, aggression, and induced depressive-like behavior in a behavioral despair task. Depending on the dose, GBR 12909 also decreased SOD activity and TBARS levels, as well as increased GR activity and NPSH content. Collectively, our novel findings show that a single GBR 12909 administration evokes neurobehavioral changes that recapitulate manic- and depressive-like states observed in rodents, fostering the use of zebrafish models to explore BD-like responses in translational neuroscience research.
Collapse
Affiliation(s)
- Julia Canzian
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil.
| | - João V Borba
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil
| | - Jaíne Ames
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil; Laboratory of Aquatic Toxicology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Rossano M Silva
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil
| | - Cássio M Resmim
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil
| | - Camilla W Pretzel
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil
| | - Maria Cecília F Duarte
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil
| | - Tamiris R Storck
- Graduate Program in Environmental Engineering, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil
| | - Khadija A Mohammed
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil
| | - Isaac A Adedara
- Department of Food Science and Technology, Center of Rural Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil
| | - Vania L Loro
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil; Laboratory of Aquatic Toxicology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada; Department of Cell and System Biology, University of Toronto, Toronto, ON, Canada
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA.
| |
Collapse
|
3
|
Dormegny-Jeanjean LC, Mainberger OAE, de Crespin de Billy C, Obrecht A, Danila V, Erb A, Arcay HM, Weibel S, Blanc F, Meyer G, Tomsa M, Bertschy G, Duval F, Foucher JR. Safety and tolerance of combination of monoamine oxidase inhibitors and direct dopamine agonists in adults and older adults with highly resistant depression. L'ENCEPHALE 2024; 50:137-142. [PMID: 37005193 DOI: 10.1016/j.encep.2023.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/09/2023] [Accepted: 01/27/2023] [Indexed: 04/03/2023]
Abstract
INTRODUCTION Dopamine (DA) is likely to be involved in some depressive dimensions, such as anhedonia and amotivation, which account for a part of treatment-resistant forms. Monoamine oxidase inhibitors (MAOI) and direct D2 and D3 receptors agonists (D2/3r-dAG) are known to help, but we lack safety data about their combined usage. We report on safety and tolerance of the MAOI+D2r-dAG combination in a clinical series. METHOD All patients referred to our recourse center for depression between 2013 and 2021 were screened to select those who did receive the combo. Data were extracted from clinical files. RESULTS Sixteen patients of 60±17 years of age (8 women, 7 with age>65years, all suffered from treatment resistant depression, 7 with bipolar disorder) received the combo. There were no life-threatening adverse effects (AE). However, AE were reported by 14 patients (88%) most of which were mild and consisted of insomnia, nausea, nervousness, confusion, impulse control disorder and/or "sleep attacks". One patient presented a serious AE requiring a short hospitalization for confusion. Intolerance led to failure to introduce treatment in two patients (13%). The retrospective non-interventional design, the variety of molecules, and the modest sample size limited the scope of these results. CONCLUSION There was no life-threatening safety issue in combining MAOI and D2/3r-dAG, especially regarding cardiovascular side effects. The systematic screening of AE might account for their frequency, but these precluded the treatment in only two patients. Comparative studies are needed to assess the efficacy of this new combination.
Collapse
Affiliation(s)
- L C Dormegny-Jeanjean
- Non-Invasive neuroModulation Center of Strasbourg (CEMNIS), University Hospital of Strasbourg, 67000 Strasbourg, France; CNRS UMR 7357 iCube, neurophysiology, FMTS, University of Strasbourg, 67000 Strasbourg, France.
| | - O A E Mainberger
- Non-Invasive neuroModulation Center of Strasbourg (CEMNIS), University Hospital of Strasbourg, 67000 Strasbourg, France; CNRS UMR 7357 iCube, neurophysiology, FMTS, University of Strasbourg, 67000 Strasbourg, France
| | - C de Crespin de Billy
- Non-Invasive neuroModulation Center of Strasbourg (CEMNIS), University Hospital of Strasbourg, 67000 Strasbourg, France; CNRS UMR 7357 iCube, neurophysiology, FMTS, University of Strasbourg, 67000 Strasbourg, France
| | - A Obrecht
- Non-Invasive neuroModulation Center of Strasbourg (CEMNIS), University Hospital of Strasbourg, 67000 Strasbourg, France; CNRS UMR 7357 iCube, neurophysiology, FMTS, University of Strasbourg, 67000 Strasbourg, France
| | - V Danila
- Department of Psychiatry "pole 8/9", Rouffach Psychiatric Hospital, 68250 Rouffach, France
| | - A Erb
- Department of Psychiatry "pole 8/9", Rouffach Psychiatric Hospital, 68250 Rouffach, France
| | - H M Arcay
- CNRS UMR 7357 iCube, neurophysiology, FMTS, University of Strasbourg, 67000 Strasbourg, France
| | - S Weibel
- Department of Psychiatry and Mental Health-University Hospital of Strasbourg, University of Strasbourg, 67000 Strasbourg, France; Inserm UMR 1114, Physiopathology and Cognitive Psychopathology of Schizophrenia, University of Strasbourg, 67000 Strasbourg, France
| | - F Blanc
- CNRS UMR 7357 iCube, neurophysiology, FMTS, University of Strasbourg, 67000 Strasbourg, France; Geriatrics Department and Expert Center for Neurocognitive Disorders, University Hospital of Strasbourg, University of Strasbourg, 67000 Strasbourg, France
| | - G Meyer
- Pharmacopsy Alsace, Clinical Pharmacy Department, Établissement Public de Santé Alsace Nord, Brumath, France; Pharmacy Department, University Hospital of Strasbourg, 67000 Strasbourg, France
| | - M Tomsa
- Department of Psychiatry "pole 8/9", Rouffach Psychiatric Hospital, 68250 Rouffach, France
| | - G Bertschy
- Department of Psychiatry and Mental Health-University Hospital of Strasbourg, University of Strasbourg, 67000 Strasbourg, France; Inserm UMR 1114, Physiopathology and Cognitive Psychopathology of Schizophrenia, University of Strasbourg, 67000 Strasbourg, France
| | - F Duval
- Department of Psychiatry "pole 8/9", Rouffach Psychiatric Hospital, 68250 Rouffach, France
| | - J R Foucher
- Non-Invasive neuroModulation Center of Strasbourg (CEMNIS), University Hospital of Strasbourg, 67000 Strasbourg, France; CNRS UMR 7357 iCube, neurophysiology, FMTS, University of Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
4
|
Petri A, Sullivan A, Allen K, Sachs BD. Genetic loss of the dopamine transporter significantly impacts behavioral and molecular responses to sub-chronic stress in mice. Front Mol Neurosci 2024; 17:1315366. [PMID: 38486964 PMCID: PMC10937361 DOI: 10.3389/fnmol.2024.1315366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/13/2024] [Indexed: 03/17/2024] Open
Abstract
Dopaminergic neurotransmission has emerged as a critical determinant of stress susceptibility and resilience. Although the dopamine transporter (DAT) is known to play a key role in maintaining dopamine (DA) homeostasis, its importance for the regulation of stress susceptibility remains largely unknown. Indeed, while numerous studies have examined the neurochemical and behavioral consequences of genetic loss of DAT, very few have compared responses to stress in wild-type and DAT-knockout (KO) animals. The current study compared the responses of male and female WT and DAT-KO mice to a model of sub-chronic stress. Our results reveal that DAT-KO mice are resistant to stress-induced increases in the latency to enter the light chamber of the light-dark emergence test and demonstrate that DAT-KO mice exhibit baseline reductions in forced swim test immobility and grooming time in the splash test of grooming behavior. In addition to these behavioral changes, our results highlight the importance of sex and dopaminergic neurotransmission on stress-induced changes in the expression and phosphorylation of several signal transduction molecules in the nucleus accumbens that have previously been implicated in the regulation of stress susceptibility, including ERK, GSK3β, and ΔFosB. Overall, these results provide further evidence of the importance of dopaminergic neurotransmission in regulating stress susceptibility and suggest that genetic loss of DAT prevents stress-induced increases in anxiety-like behavior.
Collapse
Affiliation(s)
| | | | | | - Benjamin D. Sachs
- Department of Psychological and Brain Sciences, Villanova University, Villanova, PA, United States
| |
Collapse
|
5
|
Guo W, Zhao Y, Liu J, Zhou J, Wang X. Evaluation of bidirectional relationships between risk preference and mood disorders: A 2-sample Mendelian randomization study. J Affect Disord 2024; 347:526-532. [PMID: 38065478 DOI: 10.1016/j.jad.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/08/2023] [Accepted: 12/02/2023] [Indexed: 01/08/2024]
Abstract
BACKGROUND Risk preference is often defined as the tendency to engage in risky activities. Increasing evidence shows that risk preference is associated with mood disorders. However, the causality and direction of this association are not clear. METHODS Genome-wide association study summary data of risk preference in 939,908 participants from UK Biobank and 23andMe were used to identify general risk preference. Data for 413,466 individuals taken from The Psychiatric Genomics Consortium were used to identify bipolar disorder (BP). Data for 807,553 individuals taken from The Psychiatric Genomics Consortium were used to identify major depressive disorder (MDD). The weighted median, inverse-variance weighting, and Mendelian randomization-Egger methods were used for the Mendelian randomization analysis to estimate a causal effect and detect directional pleiotropy. RESULTS GWAS summary data were obtained from three combined samples, containing 939,908, 413,466 and 807,553 individuals of European ancestry. Mendelian randomization evidence suggested that risk preference increased the onset of BP, and BP also increased risk preference (P < 0.001). In contrast, there were no reliable results to describe the relationship of risk preference with MDD (P > 0.05). Furthermore, there was no significant relationship between MDD and risk preference. CONCLUSION Using large-scale GWAS data, robust evidence supports a mutual relationship between risk preference and BP, but no relationship between risk preference and MDD was observed. This study indicates a potential marker for the early identification of MDD and BP. Additionally, it shows that reducing risk preferences for patients with BP may be a valuable intervention for treating BP.
Collapse
Affiliation(s)
- Weilong Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yixin Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jin Liu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| | - Jiansong Zhou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| | - Xiaoping Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
6
|
Petrenko CLM, Hamre KM, Brigman JL, Parnell S. Proceedings of the 2022 annual meeting of the Fetal Alcohol Spectrum Disorders study group. Alcohol 2023; 113:11-20. [PMID: 37572729 PMCID: PMC10836604 DOI: 10.1016/j.alcohol.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/14/2023]
Abstract
The 2022 Fetal Alcohol Spectrum Disorders Study Group (FASDSG) meeting was held in coordination with the 45th annual Research Society on Alcoholism conference on June 25th, 2022. The theme of the meeting was "Enhancing the Relevance of Research for the Community." The program began with a moderated panel discussion on the value of community-engaged research, which included two self-advocates and a clinical and pre-clinical researcher. Invited plenary speakers included Jill Locke, Ph.D., who provided an engaging introduction to implementation science, and Jared Young, Ph.D., who discussed cross-species domain task specificity. The meeting also included updates from three government agencies, short presentations by junior and senior investigators showcasing late-breaking FASD research, trainee award winners, and a presentation on the Toward Health Outcomes intervention roadmap by Jacqueline Pei, Ph.D.
Collapse
Affiliation(s)
| | - Kristin M Hamre
- Department of Anatomy and Neurobiology, University of Tennessee Health Sciences Center, Memphis, TN, United States
| | - Jonathan L Brigman
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Scott Parnell
- Bowles Center for Alcohol Studies, Department of Cell Biology & Physiology, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
7
|
Pacholko AG, Bekar LK. Different pharmacokinetics of lithium orotate inform why it is more potent, effective, and less toxic than lithium carbonate in a mouse model of mania. J Psychiatr Res 2023; 164:192-201. [PMID: 37356352 DOI: 10.1016/j.jpsychires.2023.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 05/09/2023] [Accepted: 06/15/2023] [Indexed: 06/27/2023]
Abstract
Lithium carbonate (LiCO) is a mainstay therapeutic for the prevention of mood-episode recurrences in bipolar disorder (BD). Unfortunately, its narrow therapeutic index is associated with complications that may lead to treatment non-compliance. Intriguingly, lithium orotate (LiOr) is suggested to possess unique uptake characteristics that would allow for reduced dosing and mitigation of toxicity concerns. We hypothesized that due to differences in pharmacokinetics, LiOr is more potent with reduced adverse effects. Dose responses were established for LiOr and LiCO in male and female mice using an amphetamine-induced hyperlocomotion (AIH) model; AIH captures manic elements of BD and is sensitive to a dose-dependent lithium blockade. LiCO induced a partial block of AIH at doses of 15 mg/kg in males and 20 mg/kg in females. In contrast, LiOr elicited a near complete blockade at concentrations of just 1.5 mg/kg in both sexes, indicating improved efficacy and potency. Prior application of organic anion transport inhibitors, or inhibition of orotate uptake into the pentose pathway, completely blocked the effects of LiOr on AIH while sparing LiCO effects, confirming differences in transport and compartmentalization between the two compounds. Next, the relative toxicities of LiOr and LiCO were contrasted after 14 consecutive daily administrations. LiCO, but not LiOr, elicited polydipsia in both sexes, elevated serum creatinine levels in males, and increased serum TSH expression in females. LiOr demonstrates superior efficacy, potency, and tolerability to LiCO in both male and female mice because of select transport-mediated uptake and pentose pathway incorporation.
Collapse
Affiliation(s)
- Anthony G Pacholko
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E5, Canada.
| | - Lane K Bekar
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E5, Canada.
| |
Collapse
|
8
|
Sanchez-Roige S, Jennings MV, Thorpe HHA, Mallari JE, van der Werf LC, Bianchi SB, Huang Y, Lee C, Mallard TT, Barnes SA, Wu JY, Barkley-Levenson AM, Boussaty EC, Snethlage CE, Schafer D, Babic Z, Winters BD, Watters KE, Biederer T, Mackillop J, Stephens DN, Elson SL, Fontanillas P, Khokhar JY, Young JW, Palmer AA. CADM2 is implicated in impulsive personality and numerous other traits by genome- and phenome-wide association studies in humans and mice. Transl Psychiatry 2023; 13:167. [PMID: 37173343 PMCID: PMC10182097 DOI: 10.1038/s41398-023-02453-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Impulsivity is a multidimensional heritable phenotype that broadly refers to the tendency to act prematurely and is associated with multiple forms of psychopathology, including substance use disorders. We performed genome-wide association studies (GWAS) of eight impulsive personality traits from the Barratt Impulsiveness Scale and the short UPPS-P Impulsive Personality Scale (N = 123,509-133,517 23andMe research participants of European ancestry), and a measure of Drug Experimentation (N = 130,684). Because these GWAS implicated the gene CADM2, we next performed single-SNP phenome-wide studies (PheWAS) of several of the implicated variants in CADM2 in a multi-ancestral 23andMe cohort (N = 3,229,317, European; N = 579,623, Latin American; N = 199,663, African American). Finally, we produced Cadm2 mutant mice and used them to perform a Mouse-PheWAS ("MouseWAS") by testing them with a battery of relevant behavioral tasks. In humans, impulsive personality traits showed modest chip-heritability (~6-11%), and moderate genetic correlations (rg = 0.20-0.50) with other personality traits, and various psychiatric and medical traits. We identified significant associations proximal to genes such as TCF4 and PTPRF, and also identified nominal associations proximal to DRD2 and CRHR1. PheWAS for CADM2 variants identified associations with 378 traits in European participants, and 47 traits in Latin American participants, replicating associations with risky behaviors, cognition and BMI, and revealing novel associations including allergies, anxiety, irritable bowel syndrome, and migraine. Our MouseWAS recapitulated some of the associations found in humans, including impulsivity, cognition, and BMI. Our results further delineate the role of CADM2 in impulsivity and numerous other psychiatric and somatic traits across ancestries and species.
Collapse
Affiliation(s)
- Sandra Sanchez-Roige
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Mariela V Jennings
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Hayley H A Thorpe
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Jazlene E Mallari
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | | | - Sevim B Bianchi
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Yuye Huang
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Calvin Lee
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Travis T Mallard
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Samuel A Barnes
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Jin Yi Wu
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | | | - Ely C Boussaty
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Cedric E Snethlage
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Danielle Schafer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Zeljana Babic
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Boyer D Winters
- Department of Psychology, University of Guelph, Guelph, ON, Canada
| | - Katherine E Watters
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Thomas Biederer
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - James Mackillop
- Peter Boris Centre for Addictions Research, McMaster University and St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada and Homewood Research Institute, Guelph, ON, Canada
| | - David N Stephens
- Laboratory of Behavioural and Clinical Neuroscience, School of Psychology, University of Sussex, Brighton, UK
| | | | | | - Jibran Y Khokhar
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Jared W Young
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
9
|
Young JW. Development of cross-species translational paradigms for psychiatric research in the Research Domain Criteria era. Neurosci Biobehav Rev 2023; 148:105119. [PMID: 36889561 DOI: 10.1016/j.neubiorev.2023.105119] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Abstract
The past 30 years of IBNS has included research attempting to treat the cognitive and behavioral deficits observed in people with psychiatric conditions. Early work utilized drugs identified from tests thought to be cognition-relevant, however the high failure rate crossing the translational-species barrier led to focus on developing valid cross-species translational tests. The face, predictive, and neurobiological validities used to assess animal models of psychiatry can be used to validate these tests. Clinical sensitivity is another important aspect however, for if the clinical population targeted for treatment does not exhibit task deficits, then why develop treatments? This review covers some work validating cross-species translational tests and suggests future directions. Also covered is the contribution IBNS made to fostering such research and my role in IBNS, making it more available to all including fostering mentor/mentee programs plus spearheading diversity and inclusivity initiatives. All science needs support and IBNS has supported research recreating the behavioral abnormalities that define psychiatric conditions with the aim to improve the lives of people with such conditions.
Collapse
Affiliation(s)
- Jared W Young
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA; Research Service, VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
10
|
Translational cognitive systems: focus on attention. Emerg Top Life Sci 2022; 6:529-539. [PMID: 36408755 DOI: 10.1042/etls20220009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/22/2022]
Abstract
Cognitive dysfunction, particularly attentional impairment, is a core feature of many psychiatric disorders, yet is inadequately addressed by current treatments. Development of targeted therapeutics for the remediation of attentional deficits requires knowledge of underlying neurocircuit, cellular, and molecular mechanisms that cannot be directly assayed in the clinic. This level of detail can only be acquired by testing animals in cross-species translatable attentional paradigms, in combination with preclinical neuroscience techniques. The 5-choice continuous performance test (5C-CPT) and rodent continuous performance test (rCPT) represent the current state of the art of preclinical assessment of the most commonly studied subtype of attention: sustained attention, or vigilance. These tasks present animals with continuous streams of target stimuli to which they must respond (attention), in addition to non-target stimuli from which they must withhold responses (behavioral inhibition). The 5C-CPT and rCPT utilize the same measures as gold-standard clinical continuous performance tests and predict clinical efficacy of known pro-attentional drugs. They also engage common brain regions across species, although efforts to definitively establish neurophysiological construct validity are ongoing. The validity of these tasks as translational vigilance assessments enables their use in characterizing the neuropathology underlying attentional deficits of animal models of psychiatric disease, and in determining therapeutic potential of drugs ahead of clinical testing. Here, we briefly review the development and validation of such tests of attentional functioning, as well as the data they have generated pertaining to inattention, disinhibition, and impulsivity in psychiatric disorders.
Collapse
|
11
|
Abstract
Many patients under treatment for mood disorders, in particular patients with bipolar mood disorders, experience episodes of mood switching from one state to another. Various hypotheses have been proposed to explain the mechanism of mood switching, spontaneously or induced by drug treatment. Animal models have also been used to test the role of psychotropic drugs in the switching of mood states. We examine the possible relationship between the pharmacology of psychotropic drugs and their reported incidents of induced mood switching, with reference to the various hypotheses of mechanisms of mood switching.
Collapse
|
12
|
Yates JR, Horchar MJ, Kappesser JL, Broderick MR, Ellis AL, Wright MR. The association between risky decision making and cocaine conditioned place preference is moderated by sex. Drug Alcohol Depend 2021; 228:109079. [PMID: 34600260 PMCID: PMC8595855 DOI: 10.1016/j.drugalcdep.2021.109079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Excessive risk taking is a characteristic trait of several psychiatric conditions, including substance use disorders. High risk-taking (HiR) rats self-administer more cocaine compared to low risk-taking (LoR) rats. However, research has not determined if risk taking is associated with enhanced cocaine conditioned place preference (CPP). METHODS Male and female Sprague Dawley rats (n = 48 each sex) were first tested in the risky decision task (RDT), in which a response on one lever resulted in safe delivery of one food pellet, and a response on a different lever resulted in delivery of two pellets and probabilistic delivery of foot shock. Following RDT training, rats were tested for cocaine CPP. The first session was a pretest that measured rats' preference for three compartments that provided different visual and tactile cues. Rats then learned to associate one compartment with cocaine (either 10.0 mg/kg or 20.0 mg/kg; i.p.) and one compartment with saline (1.0 ml/kg; i.p.) across eight conditioning sessions. Finally, rats explored all three compartments in a drug-free state. RESULTS Sex significantly moderated the association between risky decision making and cocaine CPP. While increased risk aversion was somewhat positively associated with cocaine CPP in males, increased risk taking was positively correlated with cocaine CPP in females. CONCLUSIONS These results highlight the moderating role of sex on the relationship between risky decision making and cocaine reward.
Collapse
Affiliation(s)
- Justin R. Yates
- Department of Psychological Science, Northern Kentucky University, 1 Nunn Drive, Highland Heights, KY, 41099, USA
| | - Matthew J. Horchar
- Department of Psychological Science, Northern Kentucky University, 1 Nunn Drive, Highland Heights, KY, 41099, USA
| | - Joy L. Kappesser
- Department of Biological Sciences, Northern Kentucky University, 1 Nunn Drive, Highland Heights, KY, 41099, USA
| | - Maria R. Broderick
- Department of Biological Sciences, Northern Kentucky University, 1 Nunn Drive, Highland Heights, KY, 41099, USA
| | - Alexis L. Ellis
- Department of Psychological Science, Northern Kentucky University, 1 Nunn Drive, Highland Heights, KY, 41099, USA
| | - Makayla R. Wright
- Department of Biological Sciences, Northern Kentucky University, 1 Nunn Drive, Highland Heights, KY, 41099, USA
| |
Collapse
|
13
|
Rafiei D, Kolla NJ. DAT1 polymorphism associated with poor decision-making in males with antisocial personality disorder and high psychopathic traits. BEHAVIORAL SCIENCES & THE LAW 2021; 39:583-596. [PMID: 34636082 DOI: 10.1002/bsl.2537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/26/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Studies suggest that abnormalities of the dopaminergic system underlie decision-making deficits, a hallmark of antisocial personality disorder (ASPD) and psychopathy. The dopamine transporter gene (DAT1) is of particular interest due to a polymorphism that controls dopamine transporter (DAT) activity. However, the association between DAT1 genotypes and decision-making in ASPD has never been studied. The current study investigated the effect of DAT1 genotype on decision-making, as measured by the Iowa Gambling Task (IGT), in ASPD and healthy controls. A total of 17 participants with ASPD and 16 healthy control participants without ASPD were sampled. The Hare Psychopathy Checklist-Revised and the IGT were administered to all participants. All participants provided blood samples for genotyping. Data revealed a novel interaction effect between DAT1 genotype and diagnosis, whereby ASPD participants with low DAT activity genotypes performed significantly worse on the IGT and selected from disadvantageous decks more often, whereas the low DAT activity genotype in the healthy control group was associated with better performance on the IGT, and they selected from disadvantageous decks less often. We demonstrate, for the first time, that low DAT activity genotypes in ASPD with high psychopathic traits contribute to poor decision-making.
Collapse
Affiliation(s)
- Dorsa Rafiei
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Nathan J Kolla
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Waypoint Centre for Mental Health Care, Penetanguishene, Ontario, Canada
| |
Collapse
|
14
|
Cavanagh JF, Gregg D, Light GA, Olguin SL, Sharp RF, Bismark AW, Bhakta SG, Swerdlow NR, Brigman JL, Young JW. Electrophysiological biomarkers of behavioral dimensions from cross-species paradigms. Transl Psychiatry 2021; 11:482. [PMID: 34535625 PMCID: PMC8448772 DOI: 10.1038/s41398-021-01562-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/20/2021] [Accepted: 08/11/2021] [Indexed: 02/08/2023] Open
Abstract
There has been a fundamental failure to translate preclinically supported research into clinically efficacious treatments for psychiatric disorders. One of the greatest impediments toward improving this species gap has been the difficulty of identifying translatable neurophysiological signals that are related to specific behavioral constructs. Here, we present evidence from three paradigms that were completed by humans and mice using analogous procedures, with each task eliciting candidate a priori defined electrophysiological signals underlying effortful motivation, reinforcement learning, and cognitive control. The effortful motivation was assessed using a progressive ratio breakpoint task, yielding a similar decrease in alpha-band activity over time in both species. Reinforcement learning was assessed via feedback in a probabilistic learning task with delta power significantly modulated by reward surprise in both species. Additionally, cognitive control was assessed in the five-choice continuous performance task, yielding response-locked theta power seen across species, and modulated by difficulty in humans. Together, these successes, and also the teachings from these failures, provide a roadmap towards the use of electrophysiology as a method for translating findings from the preclinical assays to the clinical settings.
Collapse
Affiliation(s)
- James F. Cavanagh
- grid.266832.b0000 0001 2188 8502Psychology Department, University of New Mexico, Albuquerque, NM USA
| | - David Gregg
- grid.266832.b0000 0001 2188 8502Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131 USA
| | - Gregory A. Light
- grid.266100.30000 0001 2107 4242Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804 USA ,grid.410371.00000 0004 0419 2708VISN-22 Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System, San Diego, CA USA
| | - Sarah L. Olguin
- grid.266832.b0000 0001 2188 8502Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131 USA
| | - Richard F. Sharp
- grid.266100.30000 0001 2107 4242Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804 USA
| | - Andrew W. Bismark
- grid.410371.00000 0004 0419 2708VISN-22 Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System, San Diego, CA USA
| | - Savita G. Bhakta
- grid.266100.30000 0001 2107 4242Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804 USA
| | - Neal R. Swerdlow
- grid.266100.30000 0001 2107 4242Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804 USA
| | - Jonathan L. Brigman
- grid.266832.b0000 0001 2188 8502Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131 USA
| | - Jared W. Young
- grid.266100.30000 0001 2107 4242Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804 USA ,grid.410371.00000 0004 0419 2708VISN-22 Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System, San Diego, CA USA
| |
Collapse
|
15
|
Enlightened: addressing circadian and seasonal changes in photoperiod in animal models of bipolar disorder. Transl Psychiatry 2021; 11:373. [PMID: 34226504 PMCID: PMC8257630 DOI: 10.1038/s41398-021-01494-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/16/2021] [Accepted: 06/23/2021] [Indexed: 12/15/2022] Open
Abstract
Bipolar disorders (BDs) exhibit high heritability and symptoms typically first occur during late adolescence or early adulthood. Affected individuals may experience alternating bouts of mania/hypomania and depression, with euthymic periods of varying lengths interspersed between these extremes of mood. Clinical research studies have consistently demonstrated that BD patients have disturbances in circadian and seasonal rhythms, even when they are free of symptoms. In addition, some BD patients display seasonal patterns in the occurrence of manic/hypomanic and depressive episodes as well as the time of year when symptoms initially occur. Finally, the age of onset of BD symptoms is strongly influenced by the distance one lives from the equator. With few exceptions, animal models useful in the study of BD have not capitalized on these clinical findings regarding seasonal patterns in BD to explore molecular mechanisms associated with the expression of mania- and depression-like behaviors in laboratory animals. In particular, animal models would be especially useful in studying how rates of change in photoperiod that occur during early spring and fall interact with risk genes to increase the occurrence of mania- and depression-like phenotypes, respectively. Another unanswered question relates to the ways in which seasonally relevant changes in photoperiod affect responses to acute and chronic stressors in animal models. Going forward, we suggest ways in which translational research with animal models of BD could be strengthened through carefully controlled manipulations of photoperiod to enhance our understanding of mechanisms underlying seasonal patterns of BD symptoms in humans. In addition, we emphasize the value of incorporating diurnal rodent species as more appropriate animal models to study the effects of seasonal changes in light on symptoms of depression and mania that are characteristic of BD in humans.
Collapse
|
16
|
Jordan Walter T, Pocuca N, Young JW, Geyer MA, Minassian A, Perry W. The relationship between cannabis use and cognition in people with bipolar disorder: A systematic scoping review. Psychiatry Res 2021; 297:113695. [PMID: 33545431 PMCID: PMC7914198 DOI: 10.1016/j.psychres.2020.113695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 12/26/2020] [Indexed: 10/22/2022]
Abstract
Bipolar disorder (BD) and cannabis use are highly comorbid and are each associated with cognitive impairment. Given the prevalence of cannabis use in people with BD, it is important to understand whether the two interact to impact cognitive function. We performed a systematic scoping review to determine what is currently known in this field. We systematically searched PubMed, Embase, CINAHL, Web of Science, and PsycINFO for studies on the relationship between cannabis use and cognition in people with BD or relevant animal models. Six observational human studies and no animal studies met inclusion criteria. Two studies found cannabis use in BD was associated with better performance in some cognitive domains, while three studies found no association. One study found cannabis use in BD was associated with worse overall cognition. Overall, most identified studies suggest cannabis use is not associated with significant cognitive impairment in BD; however, the scope of knowledge in this field is limited, and more systematic studies are clearly required. Future studies should focus on longitudinal and experimental trials, and well-controlled observational studies with rigorous quantification of the onset, frequency, quantity, duration, and type of cannabis use, as well as BD illness features.
Collapse
Affiliation(s)
- T Jordan Walter
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Nina Pocuca
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Jared W Young
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Research Services, Veterans Administration San Diego HealthCare System, 3350 La Jolla Village Drive, San Diego CA, 92161, USA
| | - Mark A Geyer
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Research Services, Veterans Administration San Diego HealthCare System, 3350 La Jolla Village Drive, San Diego CA, 92161, USA
| | - Arpi Minassian
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; VA Center of Excellence for Stress and Mental Health, Veterans Administration San Diego HealthCare System, 3350 La Jolla Village Drive, San Diego CA, 92161, USA
| | - William Perry
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
17
|
Jenkins BW, Khokhar JY. Cannabis Use and Mental Illness: Understanding Circuit Dysfunction Through Preclinical Models. Front Psychiatry 2021; 12:597725. [PMID: 33613338 PMCID: PMC7892618 DOI: 10.3389/fpsyt.2021.597725] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/11/2021] [Indexed: 12/27/2022] Open
Abstract
Patients with a serious mental illness often use cannabis at higher rates than the general population and are also often diagnosed with cannabis use disorder. Clinical studies reveal a strong association between the psychoactive effects of cannabis and the symptoms of serious mental illnesses. Although some studies purport that cannabis may treat mental illnesses, others have highlighted the negative consequences of use for patients with a mental illness and for otherwise healthy users. As epidemiological and clinical studies are unable to directly infer causality or examine neurobiology through circuit manipulation, preclinical animal models remain a valuable resource for examining the causal effects of cannabis. This is especially true considering the diversity of constituents in the cannabis plant contributing to its effects. In this mini-review, we provide an updated perspective on the preclinical evidence of shared neurobiological mechanisms underpinning the dual diagnosis of cannabis use disorder and a serious mental illness. We present studies of cannabinoid exposure in otherwise healthy rodents, as well as rodent models of schizophrenia, depression, and bipolar disorder, and the resulting impact on electrophysiological indices of neural circuit activity. We propose a consolidated neural circuit-based understanding of the preclinical evidence to generate new hypotheses and identify novel therapeutic targets.
Collapse
Affiliation(s)
| | - Jibran Y. Khokhar
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
18
|
Leenaars CH, Van der Mierden S, Joosten RN, Van der Weide MA, Schirris M, Dematteis M, Meijboom FL, Feenstra MG, Bleich A. Risk-Based Decision Making: A Systematic Scoping Review of Animal Models and a Pilot Study on the Effects of Sleep Deprivation in Rats. Clocks Sleep 2021; 3:31-52. [PMID: 33498259 PMCID: PMC7838799 DOI: 10.3390/clockssleep3010003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
Animals, including humans, frequently make decisions involving risk or uncertainty. Different strategies in these decisions can be advantageous depending the circumstances. Short sleep duration seems to be associated with more risky decisions in humans. Animal models for risk-based decision making can increase mechanistic understanding, but very little data is available concerning the effects of sleep. We combined primary- and meta-research to explore the relationship between sleep and risk-based decision making in animals. Our first objective was to create an overview of the available animal models for risky decision making. We performed a systematic scoping review. Our searches in Pubmed and Psychinfo retrieved 712 references, of which 235 were included. Animal models for risk-based decision making have been described for rodents, non-human primates, birds, pigs and honey-bees. We discuss task designs and model validity. Our second objective was to apply this knowledge and perform a pilot study on the effect of sleep deprivation. We trained and tested male Wistar rats on a probability discounting task; a “safe” lever always resulted in 1 reward, a “risky” lever resulted in 4 or no rewards. Rats adapted their preferences to variations in reward probabilities (p < 0.001), but 12 h of sleep deprivation during the light phase did not clearly alter risk preference (p = 0.21).
Collapse
Affiliation(s)
- Cathalijn H.C. Leenaars
- Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany; (S.V.d.M.); (A.B.)
- Department for Health Evidence (Section HTA), SYRCLE, Radboud University Medical Centre, 6600 Nijmegen, The Netherlands
- Unit Animals in Science and Society, Population Health Sciences, Utrecht University, 3500 Utrecht, The Netherlands;
- Correspondence: ; Tel.: +49-511-532-1368
| | - Stevie Van der Mierden
- Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany; (S.V.d.M.); (A.B.)
- Department for Health Evidence (Section HTA), SYRCLE, Radboud University Medical Centre, 6600 Nijmegen, The Netherlands
| | - Ruud N.J.M.A. Joosten
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, 1000 Amsterdam, The Netherlands; (R.N.J.M.A.J.); (M.A.V.d.W.); (M.S.); (M.G.P.F.)
| | - Marnix A. Van der Weide
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, 1000 Amsterdam, The Netherlands; (R.N.J.M.A.J.); (M.A.V.d.W.); (M.S.); (M.G.P.F.)
| | - Mischa Schirris
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, 1000 Amsterdam, The Netherlands; (R.N.J.M.A.J.); (M.A.V.d.W.); (M.S.); (M.G.P.F.)
| | - Maurice Dematteis
- Department of Addiction Medicine, Grenobles Alpes University Hospital, Faculty of Medicine, Grenoble Alpes University, 38400 Grenoble, France;
| | - Franck L.B. Meijboom
- Unit Animals in Science and Society, Population Health Sciences, Utrecht University, 3500 Utrecht, The Netherlands;
| | - Matthijs G.P. Feenstra
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, 1000 Amsterdam, The Netherlands; (R.N.J.M.A.J.); (M.A.V.d.W.); (M.S.); (M.G.P.F.)
| | - André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany; (S.V.d.M.); (A.B.)
| |
Collapse
|
19
|
Beyer DKE, Horn L, Klinker N, Freund N. Risky decision-making following prefrontal D1 receptor manipulation. Transl Neurosci 2021; 12:432-443. [PMID: 34760299 PMCID: PMC8569284 DOI: 10.1515/tnsci-2020-0187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022] Open
Abstract
The prefrontal dopamine D1 receptor (D1R) is involved in cognitive processes. Viral overexpression of this receptor in rats further increases the reward-related behaviors and even its termination induces anhedonia and helplessness. In this study, we investigated the risky decision-making during D1R overexpression and its termination. Rats conducted the rodent version of the Iowa gambling task daily. In addition, the methyl CpG–binding protein-2 (MeCP2), one regulator connecting the dopaminergic system, cognitive processes, and mood-related behavior, was investigated after completion of the behavioral tasks. D1R overexpressing subjects exhibited maladaptive risky decision-making and risky decisions returned to control levels following termination of D1R overexpression; however, after termination, animals earned less reward compared to control subjects. In this phase, MeCP2-positive cells were elevated in the right amygdala. Our results extend the previously reported behavioral changes in the D1R-manipulated animal model to increased risk-taking and revealed differential MeCP2 expression adding further evidence for a bipolar disorder-like phenotype of this model.
Collapse
Affiliation(s)
- Dominik K. E. Beyer
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University, 44801 Bochum, Germany
| | - Lisa Horn
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University, 44801 Bochum, Germany
| | - Nadine Klinker
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University, 44801 Bochum, Germany
| | - Nadja Freund
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University, 44801 Bochum, Germany
| |
Collapse
|
20
|
Elsilä LV, Korhonen N, Hyytiä P, Korpi ER. Acute Lysergic Acid Diethylamide Does Not Influence Reward-Driven Decision Making of C57BL/6 Mice in the Iowa Gambling Task. Front Pharmacol 2020; 11:602770. [PMID: 33343373 PMCID: PMC7745734 DOI: 10.3389/fphar.2020.602770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/09/2020] [Indexed: 12/25/2022] Open
Abstract
While interest in psychedelic drugs in the fields of psychiatry and neuroscience has re-emerged in recent last decades, the general understanding of the effects of these drugs remains deficient. In particular, there are gaps in knowledge on executive functions and goal-directed behaviors both in humans and in commonly used animal models. The effects of acute doses of psychedelic lysergic acid diethylamide (LSD) on reward-driven decision making were explored using the mouse version of the Iowa Gambling Task. A total of 15 mice were trained to perform in a touch-screen adaptation of the rodent version of the Iowa Gambling Task, after which single acute doses of LSD (0.025, 0.1, 0.2, 0.4 mg/kg), serotonin 2A receptor-selective agonist 25CN-NBOH (1.5 mg/kg), d-amphetamine (2.0 mg/kg), and saline were administered before the trial. 25CN-NBOH and the three lowest doses of LSD showed no statistically significant changes in option selection or in general functioning during the gambling task trials. The highest dose of LSD (0.4 mg/kg) significantly decreased premature responding and increased the omission rate, but had no effect on option selection in comparison with the saline control. Amphetamine significantly decreased the correct responses and premature responding while increasing the omission rate. In conclusion, mice can perform previously learned, reward-driven decision-making tasks while under the acute influence of LSD at a commonly used dose range.
Collapse
Affiliation(s)
- Lauri V Elsilä
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Nuppu Korhonen
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Petri Hyytiä
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Esa R Korpi
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
21
|
Exploring dopaminergic transmission in gambling addiction: A systematic translational review. Neurosci Biobehav Rev 2020; 119:481-511. [DOI: 10.1016/j.neubiorev.2020.09.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/16/2020] [Accepted: 09/26/2020] [Indexed: 12/15/2022]
|
22
|
Ramírez-Martín A, Ramos-Martín J, Mayoral-Cleries F, Moreno-Küstner B, Guzman-Parra J. Impulsivity, decision-making and risk-taking behaviour in bipolar disorder: a systematic review and meta-analysis. Psychol Med 2020; 50:2141-2153. [PMID: 32878660 DOI: 10.1017/s0033291720003086] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite the robust body of work on cognitive aspects of bipolar disorder (BD), a clear profile of associated impairments in impulsivity, decision-making and risk-taking from studies that use behavioural measures has yet to be established. A systematic review, across four electronic databases (PsycINFO, MEDLINE/PubMed, ScienceDirect and Scopus), of literature published between January 1999 and December 2018 was carried out in accordance with the PRISMA statement. The protocol was registered on PROSPERO (CRD42018114684). A fixed-effect and random-effects meta-analysis using the Hedges' g (ES) estimate was performed. The analysis revealed significant impairment in BD individuals with medium effect sizes in various aspects of impulsivity - response inhibition (ES = 0.49; p < 0.0001), delay of gratification (ES = 0.54; p < 0.0001) and inattention (ES = 0.49; p < 0.0001) - and in decision-making (ES = 0.61, p = 0.0002), but no significant impairment in risk-taking behaviour (ES = 0.41; p = 0.0598). Furthermore, we found significant heterogeneity between studies for decision-making and risk-taking behaviour but not for impulsivity. Impaired risk-taking behaviour was significant in a subgroup of BD-I and euthymic individuals (ES = 0.92; p < 0.0001) with no significant heterogeneity. A stratification analysis revealed comparable results in euthymic and non-euthymic individuals for impulsivity. Our findings suggest that behaviour impulsivity is elevated in all phases of BD, representing a core and clinically relevant feature that persists beyond mood symptoms. More studies about decision-making and risk-taking are necessary to establish if they are impaired in BD and to analyze the role of mood state.
Collapse
Affiliation(s)
- Almudena Ramírez-Martín
- Departamento de Personalidad, Evaluación y Tratamiento Psicológico, Grupo GAP, Facultad de Psicología, Universidad de Málaga, Malaga, Spain
| | - Javier Ramos-Martín
- Departamento de Personalidad, Evaluación y Tratamiento Psicológico, Grupo GAP, Facultad de Psicología, Universidad de Málaga, Malaga, Spain
| | - Fermin Mayoral-Cleries
- Department of Mental Health, University General Hospital of Malaga. Biomedical Research Institute of Malaga (IBIMA), Malaga, Spain
| | - Berta Moreno-Küstner
- Departamento de Personalidad, Evaluación y Tratamiento Psicológico, Grupo GAP, Facultad de Psicología, Universidad de Málaga, Malaga, Spain
| | - Jose Guzman-Parra
- Department of Mental Health, University General Hospital of Malaga. Biomedical Research Institute of Malaga (IBIMA), Malaga, Spain
| |
Collapse
|
23
|
Honda T, Takata Y, Cherasse Y, Mizuno S, Sugiyama F, Takahashi S, Funato H, Yanagisawa M, Lazarus M, Oishi Y. Ablation of Ventral Midbrain/Pons GABA Neurons Induces Mania-like Behaviors with Altered Sleep Homeostasis and Dopamine D 2R-mediated Sleep Reduction. iScience 2020; 23:101240. [PMID: 32563157 PMCID: PMC7305386 DOI: 10.1016/j.isci.2020.101240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/04/2020] [Accepted: 06/02/2020] [Indexed: 11/12/2022] Open
Abstract
Individuals with the neuropsychiatric disorder mania exhibit hyperactivity, elevated mood, and a decreased need for sleep. The brain areas and neuronal populations involved in mania-like behaviors, however, have not been elucidated. In this study, we found that ablating the ventral medial midbrain/pons (VMP) GABAergic neurons induced mania-like behaviors in mice, including hyperactivity, anti-depressive behaviors, reduced anxiety, increased risk-taking behaviors, distractibility, and an extremely shortened sleep time. Strikingly, these mice also showed no rebound sleep after sleep deprivation, suggesting abnormal sleep homeostatic regulation. Dopamine D2 receptor deficiency largely abolished the sleep reduction induced by ablating the VMP GABAergic neurons without affecting the hyperactivity and anti-depressive behaviors. Our data demonstrate that VMP GABAergic neurons are involved in the expression of mania-like behaviors, which can be segregated to the short-sleep and other phenotypes on the basis of the dopamine D2 receptors. Hyperactivity and anti-depressive behaviors are induced by loss of VMP GABA neurons Homeostatic sleep rebound is lost together with largely shorten daily sleep Dopamine D2 receptors mediate the daytime sleep loss
Collapse
Affiliation(s)
- Takato Honda
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA.
| | - Yohko Takata
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yoan Cherasse
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center and Trans-border Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Fumihiro Sugiyama
- Laboratory Animal Resource Center and Trans-border Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Satoru Takahashi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Laboratory Animal Resource Center and Trans-border Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Hiromasa Funato
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Department of Anatomy, Faculty of Medicine, Toho University, Ota, Tokyo 143-8540, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Life Science Center for Survival Dynamics (TARA), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; R&D Center for Frontiers of Mirai in Policy and Technology (F-MIRAI), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Michael Lazarus
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.
| | - Yo Oishi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.
| |
Collapse
|
24
|
Gondré-Lewis MC, Bassey R, Blum K. Pre-clinical models of reward deficiency syndrome: A behavioral octopus. Neurosci Biobehav Rev 2020; 115:164-188. [PMID: 32360413 DOI: 10.1016/j.neubiorev.2020.04.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/08/2020] [Accepted: 04/20/2020] [Indexed: 12/15/2022]
Abstract
Individuals with mood disorders or with addiction, impulsivity and some personality disorders can share in common a dysfunction in how the brain perceives reward, where processing of natural endorphins or the response to exogenous dopamine stimulants is impaired. Reward Deficiency Syndrome (RDS) is a polygenic trait with implications that suggest cross-talk between different neurological systems that include the known reward pathway, neuroendocrine systems, and motivational systems. In this review we evaluate well-characterized animal models for their construct validity and as potential models for RDS. Animal models used to study substance use disorder, major depressive disorder (MDD), early life stress, immune dysregulation, attention deficit hyperactivity disorder (ADHD), post traumatic stress disorder (PTSD), compulsive gambling and compulsive eating disorders are discussed. These disorders recruit underlying reward deficiency mechanisms in multiple brain centers. Because of the widespread and remarkable array of associated/overlapping behavioral manifestations with a common root of hypodopaminergia, the basic endophenotype recognized as RDS is indeed likened to a behavioral octopus. We conclude this review with a look ahead on how these models can be used to investigate potential therapeutics that target the underlying common deficiency.
Collapse
Affiliation(s)
- Marjorie C Gondré-Lewis
- Department of Anatomy, Howard University College of Medicine, 520 W Street, NW, Washington D.C., 20059, United States; Developmental Neuropsychopharmacology Laboratory, Howard University College of Medicine, 520 W Street, NW, Washington D.C., 20059, United States.
| | - Rosemary Bassey
- Developmental Neuropsychopharmacology Laboratory, Howard University College of Medicine, 520 W Street, NW, Washington D.C., 20059, United States; Department of Science Education, Donald and Barbara Zucker School of Medicine at Hofstra/ Northwell, 500 Hofstra University, Hempstead, NY 11549, United States
| | - Kenneth Blum
- Western University Health Sciences, Graduate College of Biomedical Sciences, Pomona, California, United States
| |
Collapse
|
25
|
Young JW, Geyer MA, Halberstadt AL, van Enkhuizen J, Minassian A, Khan A, Perry W, Eyler LT. Convergent neural substrates of inattention in bipolar disorder patients and dopamine transporter-deficient mice using the 5-choice CPT. Bipolar Disord 2020; 22:46-58. [PMID: 31025493 PMCID: PMC6815232 DOI: 10.1111/bdi.12786] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVES Bipolar disorder (BD) is a debilitating psychiatric illness affecting 2%-5% of the population. Although mania is the cardinal feature of BD, inattention and related cognitive dysfunction are observed across all stages. Since cognitive dysfunction confers poor functional outcome in patients, understanding the relevant neural mechanisms remains key to developing novel-targeted therapeutics. METHODS The 5-choice continuous performance test (5C-CPT) is a mouse and fMRI-compatible human attentional task, requiring responding to target stimuli while inhibiting responding to nontarget stimuli, as in clinical CPTs. This task was used to delineate systems-level neural deficits in BD contributing to inattentive performance in human subjects with BD as well as mouse models with either parietal cortex (PC) lesions or reduced dopamine transporter (DAT) expression. RESULTS Mania BD participants exhibited severe 5C-CPT impairment. Euthymic BD patients exhibited modestly impaired 5C-CPT. High impulsivity BD subjects exhibited reduced PC activation during target and nontarget responding compared with healthy participants. In mice, bilateral PC lesions impaired both target and nontarget responding. In the DAT knockdown mouse model of BD mania, knockdown mice exhibited severely impaired 5C-CPT performance versus wildtype littermates. CONCLUSIONS These data support the role of the PC in inattention in BD-specifically regarding identifying the appropriate response to target vs nontarget stimuli. Moreover, the findings indicate that severely reduced DAT function/hyperdopaminergia recreates the attentional deficits observed in BD mania patients. Determining the contribution of DAT in the PC to attention may provide a future target for treatment development.
Collapse
Affiliation(s)
- Jared W. Young
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804
- Desert-Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System, San Diego, CA
| | - Mark A. Geyer
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804
- Desert-Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System, San Diego, CA
| | - Adam L. Halberstadt
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804
| | - Jordy van Enkhuizen
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Arpi Minassian
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804
| | - Asma Khan
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804
| | - William Perry
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804
| | - Lisa T. Eyler
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804
- Desert-Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System, San Diego, CA
| |
Collapse
|
26
|
Cabeza L, Giustiniani J, Chabin T, Ramadan B, Joucla C, Nicolier M, Pazart L, Haffen E, Fellmann D, Gabriel D, Peterschmitt Y. Modelling decision-making under uncertainty: A direct comparison study between human and mouse gambling data. Eur Neuropsychopharmacol 2020; 31:58-68. [PMID: 31837913 DOI: 10.1016/j.euroneuro.2019.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 11/15/2019] [Accepted: 11/20/2019] [Indexed: 02/04/2023]
Abstract
Decision-making is a conserved evolutionary process enabling us to choose one option among several alternatives, and relies on reward and cognitive control systems. The Iowa Gambling Task allows the assessment of human decision-making under uncertainty by presenting four card decks with various cost-benefit probabilities. Participants seek to maximise their monetary gain by developing long-term optimal-choice strategies. Animal versions have been adapted with nutritional rewards, but interspecies data comparisons are scarce. Our study directly compares the non-pathological decision-making performance between humans and wild-type C57BL/6 mice. Human participants completed an electronic Iowa Gambling Task version, while mice a maze-based adaptation with four arms baited in a probabilistic way. Our data shows closely matching performance between both species with similar patterns of choice behaviours. However, mice showed a faster learning rate than humans. Moreover, both populations were clustered into good, intermediate and poor decision-making categories with similar proportions. Remarkably, mice characterised as good decision-makers behaved the same as humans of the same category, but slight differences among species are evident for the other two subpopulations. Overall, our direct comparative study confirms the good face validity of the rodent gambling task. Extended behavioural characterisation and pathological animal models should help strengthen its construct validity and disentangle the determinants in animals and humans decision-making.
Collapse
Affiliation(s)
- Lidia Cabeza
- EA-481 Laboratoire de Neurosciences Intégratives et Cliniques de Besançon, Université Bourgogne - Franche-Comté, France
| | - Julie Giustiniani
- EA-481 Laboratoire de Neurosciences Intégratives et Cliniques de Besançon, Université Bourgogne - Franche-Comté, France; Department of Clinical Psychiatry, University Hospital, Besançon, France; CIC-1431 Inserm, University Hospital, Besançon, France
| | - Thibault Chabin
- EA-481 Laboratoire de Neurosciences Intégratives et Cliniques de Besançon, Université Bourgogne - Franche-Comté, France
| | - Bahrie Ramadan
- EA-481 Laboratoire de Neurosciences Intégratives et Cliniques de Besançon, Université Bourgogne - Franche-Comté, France
| | - Coralie Joucla
- EA-481 Laboratoire de Neurosciences Intégratives et Cliniques de Besançon, Université Bourgogne - Franche-Comté, France
| | - Magali Nicolier
- EA-481 Laboratoire de Neurosciences Intégratives et Cliniques de Besançon, Université Bourgogne - Franche-Comté, France; Department of Clinical Psychiatry, University Hospital, Besançon, France; CIC-1431 Inserm, University Hospital, Besançon, France
| | - Lionel Pazart
- CIC-1431 Inserm, University Hospital, Besançon, France
| | - Emmanuel Haffen
- EA-481 Laboratoire de Neurosciences Intégratives et Cliniques de Besançon, Université Bourgogne - Franche-Comté, France; Department of Clinical Psychiatry, University Hospital, Besançon, France; CIC-1431 Inserm, University Hospital, Besançon, France
| | - Dominique Fellmann
- EA-481 Laboratoire de Neurosciences Intégratives et Cliniques de Besançon, Université Bourgogne - Franche-Comté, France
| | - Damien Gabriel
- EA-481 Laboratoire de Neurosciences Intégratives et Cliniques de Besançon, Université Bourgogne - Franche-Comté, France; CIC-1431 Inserm, University Hospital, Besançon, France
| | - Yvan Peterschmitt
- EA-481 Laboratoire de Neurosciences Intégratives et Cliniques de Besançon, Université Bourgogne - Franche-Comté, France.
| |
Collapse
|
27
|
|
28
|
Pittaras E, Rabat A, Granon S. The Mouse Gambling Task: Assessing Individual Decision-making Strategies in Mice. Bio Protoc 2020; 10:e3479. [PMID: 33654712 DOI: 10.21769/bioprotoc.3479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 10/22/2019] [Accepted: 11/26/2019] [Indexed: 11/02/2022] Open
Abstract
Decision-making is a complex cognitive process which consists of choosing one option among several alternatives. In humans, this process is featured in the Iowa gambling task (IGT), a decision-making task that mimics real life situations by reproducing uncertain conditions based on probabilistic rewards or penalties (see Background). Several authors wanted to adapt the IGT in rodents with subtle differences in protocols that match various aspects of the human task. Here we propose, for the first time in mice, a protocol that contains the most important characteristics of the IGT: 4 different options, choices based on 4 ambiguous outcomes with immediate and long term rewards, a total of 100 trials, no learning of the contingency before the task, and presence of both a certain reward and a probable penalty. During this task, mice have to choose between options more or less advantageous in the short and long term by developing a decision-making strategy that differs between individuals. Therefore, the strength of this protocol is that it is one of the first to enable the study of decision-making in a complex situation, and demonstrates inter-individual differences regarding decision-making strategies in mice.
Collapse
Affiliation(s)
- Elsa Pittaras
- Biology Department, Stanford University, Stanford, CA 94305-5020, USA
| | - Arnaud Rabat
- Unité Fatigue et Vigilance, Département Environnements Opérationnels, Institut de Recherche Biomédicale des armées, 1 place du Général Valérie ANDRE, BP 73, 91223 Bretigny-sur-Orge cedex, France.,Equipe d'accueil 7330 «VIFASOM», Hôtel Dieu AP-HP, Université Paris 5 Descartes, 1 place du Parvis Notre Dame, 75181 Paris cedex 04, France
| | - Sylvie Granon
- Neurobiology of decision making, Paris-Saclay Institute of Neuroscience (Neuro-PSI), CNRS UMR 9197, 91400 Orsay, France
| |
Collapse
|
29
|
Chang PK, Chu J, Tsai YT, Lai YH, Chen JC. Dopamine D 3 receptor and GSK3β signaling mediate deficits in novel object recognition memory within dopamine transporter knockdown mice. J Biomed Sci 2020; 27:16. [PMID: 31900153 PMCID: PMC6942274 DOI: 10.1186/s12929-019-0613-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 12/29/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Over-stimulation of dopamine signaling is thought to underlie the pathophysiology of a list of mental disorders, such as psychosis, mania and attention-deficit/hyperactivity disorder. These disorders are frequently associated with cognitive deficits in attention or learning and memory, suggesting that persistent activation of dopamine signaling may change neural plasticity to induce cognitive or emotional malfunction. METHODS Dopamine transporter knockdown (DAT-KD) mice were used to mimic a hyper-dopamine state. Novel object recognition (NOR) task was performed to assess the recognition memory. To test the role of dopamine D3 receptor (D3R) on NOR, DAT-KD mice were treated with either a D3R antagonist, FAUC365 or by deletion of D3R. Total or phospho-GSK3 and -ERK1/2 signals in various brain regions were measured by Western blot analyses. To examine the impact of GSK3 signal on NOR, wild-type mice were systemically treated with GSK3 inhibitor SB216763 or, micro-injected with lentiviral shRNA of GSK3β or GSK3α in the medial prefrontal cortex (mPFC). RESULTS We confirmed our previous findings that DAT-KD mice displayed a deficit in NOR memory, which could be prevented by deletion of D3R or exposure to FAUC365. In WT mice, p-GSK3α and p-GSK3β were significantly decreased in the mPFC after exposure to novel objects; however, the DAT-KD mice exhibited no such change in mPFC p-GSK3α/β levels. DAT-KD mice treated with FAUC365 or with D3R deletion exhibited restored novelty-induced GSK3 dephosphorylation in the mPFC. Moreover, inhibition of GSK3 in WT mice diminished NOR performance and impaired recognition memory. Lentiviral shRNA knockdown of GSK3β, but not GSK3α, in the mPFC of WT mice also impaired NOR. CONCLUSION These findings suggest that D3R acts via GSK3β signaling in the mPFC to play a functional role in NOR memory. In addition, treatment with D3R antagonists may be a reasonable approach for ameliorating cognitive impairments or episodic memory deficits in bipolar disorder patients.
Collapse
Affiliation(s)
- Pi-Kai Chang
- Department of Physiology and Pharmacology, Graduate Institute of Biomedical Sciences, School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jung Chu
- Department of Biomedical Sciences, School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ya-Ting Tsai
- Department of Biomedical Sciences, School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yan-Heng Lai
- Department of Medical Imaging and Radiological Sciences, School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jin-Chung Chen
- Department of Physiology and Pharmacology, Graduate Institute of Biomedical Sciences, School of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Healthy Ageing Research Center, Chang Gung University, Taoyuan, Taiwan. .,Neuroscience Research Center, Chang Gung Memorial Hospital, Linko, Taiwan.
| |
Collapse
|
30
|
Miskowiak KW, Seeberg I, Kjaerstad HL, Burdick KE, Martinez-Aran A, Del Mar Bonnin C, Bowie CR, Carvalho AF, Gallagher P, Hasler G, Lafer B, López-Jaramillo C, Sumiyoshi T, McIntyre RS, Schaffer A, Porter RJ, Purdon S, Torres IJ, Yatham LN, Young AH, Kessing LV, Van Rheenen TE, Vieta E. Affective cognition in bipolar disorder: A systematic review by the ISBD targeting cognition task force. Bipolar Disord 2019; 21:686-719. [PMID: 31491048 DOI: 10.1111/bdi.12834] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Impairments in affective cognition are part of the neurocognitive profile and possible treatment targets in bipolar disorder (BD), but the findings are heterogeneous. The International Society of Bipolar Disorder (ISBD) Targeting Cognition Task Force conducted a systematic review to (i) identify the most consistent findings in affective cognition in BD, and (ii) provide suggestions for affective cognitive domains for future study and meta-analyses. METHODS The review included original studies reporting behavioral measures of affective cognition in BD patients vs controls following the procedures of the Preferred Reporting Items for Systematic reviews and Meta-Analysis (PRISMA) statement. Searches were conducted on PubMed/MEDLINE, EMBASE, and PsychInfo from inception until November 2018. RESULTS A total of 106 articles were included (of which nine included data for several affective domains); 41 studies assessed emotional face processing; 23 studies investigated reactivity to emotional words and images; 3 investigated explicit emotion regulation; 17 assessed implicit emotion regulation; 31 assessed reward processing and affective decision making. In general, findings were inconsistent. The most consistent findings were trait-related difficulties in facial emotion recognition and implicit emotion regulation, and impairments in reward processing and affective decision making during mood episodes. Studies using eye-tracking and facial emotion analysis revealed subtle trait-related abnormalities in emotional reactivity. CONCLUSION The ISBD Task Force recommends facial expression recognition, implicit emotion regulation, and reward processing as domains for future research and meta-analyses. An important step to aid comparability between studies in the field would be to reach consensus on an affective cognition test battery for BD.
Collapse
Affiliation(s)
- Kamilla W Miskowiak
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Ida Seeberg
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Hanne L Kjaerstad
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Katherine E Burdick
- Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Anabel Martinez-Aran
- Clinical Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Spain
| | - Caterina Del Mar Bonnin
- Clinical Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Spain
| | | | - Andre F Carvalho
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Peter Gallagher
- Institute of Neuroscience, Newcastle University, Newcastle-upon-Tyne, UK
| | - Gregor Hasler
- Psychiatry Research Unit, University of Fribourg, Fribourg, Switzerland
| | - Beny Lafer
- Bipolar Disorder Research Program, Departamento de Psiquiatria, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Carlos López-Jaramillo
- Research Group in Psychiatry, Department of Psychiatry, Universidad de Antioquia, Medellín, Colombia
| | - Tomiki Sumiyoshi
- Department of Clinical Epidemiology, Translational Medical Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit Brain and Cognition Discovery Foundation, University of Toronto, Toronto, Canada
| | - Ayal Schaffer
- Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Richard J Porter
- Department of Psychological Medicine, University of Otago, Christchurch, New Zealand
| | - Scot Purdon
- Department of Psychiatry, University of Alberta, Edmonton, Canada
| | - Ivan J Torres
- Department of Psychiatry, University of British Columbia, Vancouver, Canada
| | - Lakshmi N Yatham
- Department of Psychiatry, University of British Columbia, Vancouver, Canada
| | - Allan H Young
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Lars V Kessing
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Tamsyn E Van Rheenen
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Carlton, Australia.,Centre for Mental Health, Faculty of Health, Arts and Design, Swinburne University, Australia
| | - Eduard Vieta
- Clinical Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Spain
| |
Collapse
|
31
|
Azechi H, Hakamada K, Yamamoto T. A new inbred strain of Fawn-Hooded rats demonstrates mania-like behavioural and monoaminergic abnormalities. IBRO Rep 2019; 7:98-106. [PMID: 31763490 PMCID: PMC6861655 DOI: 10.1016/j.ibror.2019.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 11/02/2019] [Indexed: 01/06/2023] Open
Abstract
The Fawn-Hooded (FH) rat carries a gene mutation that results in a dysfunctional serotoninergic system. However, previous studies have reported differing features between the FH/Wjd and FH/Har strains. We aimed to compare the behavioural and neurobiological features of FH/HamSlc rats with those of Fischer 344 rats. We performed the open field, elevated minus-maze, Y-maze spontaneous alternation, and forced swim tests to investigate behavioural alterations. We also assessed neurobiological characteristics by quantifying monoamines and their related compounds in the prefrontal cortex, hippocampus, and striatum using high-performance liquid chromatography with an electrochemical detection system. FH/HamSlc rats showed hyperactivity and a high impulsivity tendency in the open field and the elevated minus maze test, but no cognitive dysfunction. In addition, the hyperactivity was suppressed immediately after the forced swim test. FH/HamSlc rats showed low dopamine levels, but high dopamine turnover in the striatum. Serotonin and noradrenaline levels were low in the prefrontal cortex and the hippocampus of FH/HamSlc rats, but high serotonin turnover was observed in the prefrontal cortex, hippocampus, and striatum. FH/HamSlc rats show (1) mania-like behavioural characteristics that are different from those of other strains of FH rats; (2) stimulus dependent suppression of hyperactivity similar to the clinical findings that exercise alleviates the symptoms of bipolar disorder; and (3) monoaminergic dysregulation such as monoamine imbalance and hyperturnover that may be associated with mania-related behavioural characteristics. Thus, the FH/HamSlc rat is a new animal model for mania including bipolar disorder.
Collapse
Key Words
- 5-HIAA, 5-hydroxyindoleacetic acid
- 5-HT, serotonin
- ADHD, attention-deficit hyperactivity disorder
- Bipolar mania model
- DA, dopamine
- DOPAC, 3,4-dihydroxyphenylacetic acid
- FH, Fawn-Hooded
- Fawn-Hooded rat
- HPLC, high-performance liquid chromatography
- HVA, homovanillic acid
- Hyperactivity
- Impulsivity
- MAO-A, monoamine oxidase A
- MHPG, 3-methoxy-4-hydroxyphenylglycol
- Monoaminergic dysregulation
- NA, noradrenaline
- PCA, perchloric acid
- SEM, standard error of the mean
- Stimulus responsivity
- TPH2, tryptophan hydroxylase 2
Collapse
Affiliation(s)
- Hirotsugu Azechi
- Department of Psychology, Tezukayama University, Nara 631-8585, Japan
| | - Kōsuke Hakamada
- Department of Neurophysiology and Cognitive Neuroscience, Graduate School of Psychological Sciences, Tezukayama University, Nara 631-8585, Japan
| | - Takanobu Yamamoto
- Department of Psychology, Tezukayama University, Nara 631-8585, Japan.,Department of Neurophysiology and Cognitive Neuroscience, Graduate School of Psychological Sciences, Tezukayama University, Nara 631-8585, Japan
| |
Collapse
|
32
|
Pettorruso M, Martinotti G, Cocciolillo F, De Risio L, Cinquino A, Di Nicola M, Camardese G, Migliara G, Moccia L, Conte E, Janiri L, Di Giuda D. Striatal presynaptic dopaminergic dysfunction in gambling disorder: A 123 I-FP-CIT SPECT study. Addict Biol 2019; 24:1077-1086. [PMID: 30226290 DOI: 10.1111/adb.12677] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 05/11/2018] [Accepted: 08/01/2018] [Indexed: 01/17/2023]
Abstract
Although the involvement of dopamine in gambling disorder (GD) has long been hypothesized, its precise role remains unclear. The action of dopamine in the synapses is regulated by the dopamine transporter (DAT). We hereinafter present significant differences between a sample of 15 treatment-seeking GD subjects and 17 healthy controls in terms of striatal DAT availability, and we explore its association with reward-based decision making. We performed 123 I-FP-CIT Single-photon emission computed tomography (SPECT) and correlated DAT binding ratios in the bilateral caudate and putamen with gambling symptoms (G-SAS, PG-YBOCS) and behaviors, as well as other psychometric variables (anhedonia and impulsivity). Gambling disorder (GD) subjects were also administered a computerized version of the Iowa gambling task (IGT) to assess reward-based decision making. We found reduced DAT availability in GD subjects compared with healthy controls (-13.30% in right caudate, -11.11% in right putamen, -11.44% in left caudate, and -11.46% in the left putamen). We also found that striatal DAT availability was inversely correlated with days spent gambling and IGT performance in GD subjects. These results provide evidence for a presynaptic dopaminergic dysfunction in striatal regions of GD subjects. Functional DAT down-regulation possibly sustains the transition towards compulsive gambling addiction, characterized both by hyperdopaminergic and hypodopaminergic states in the context of a sensitized dopaminergic system.
Collapse
Affiliation(s)
- Mauro Pettorruso
- Institute of Psychiatry and Psychology; Fondazione Policlinico Universitario “A. Gemelli” Università Cattolica del Sacro Cuore; Rome Italy
| | - Giovanni Martinotti
- Department of Neuroscience Imaging and Clinical Science, “G. d'Annunzio” University of Chieti, Italy; Department of Pharmacy, Pharmacology and Clinical Science; University of Hertfordshire; Herts UK
| | - Fabrizio Cocciolillo
- Institute of Nuclear Medicine; Fondazione Policlinico Universitario “A. Gemelli” Università Cattolica del Sacro Cuore; Rome Italy
| | - Luisa De Risio
- Institute of Psychiatry and Psychology; Fondazione Policlinico Universitario “A. Gemelli” Università Cattolica del Sacro Cuore; Rome Italy
| | - Annarita Cinquino
- Institute of Nuclear Medicine; Fondazione Policlinico Universitario “A. Gemelli” Università Cattolica del Sacro Cuore; Rome Italy
| | - Marco Di Nicola
- Institute of Psychiatry and Psychology; Fondazione Policlinico Universitario “A. Gemelli” Università Cattolica del Sacro Cuore; Rome Italy
| | - Giovanni Camardese
- Institute of Psychiatry and Psychology; Fondazione Policlinico Universitario “A. Gemelli” Università Cattolica del Sacro Cuore; Rome Italy
| | - Giuseppe Migliara
- Department of Public Health and Infectious Diseases; Sapienza University of Rome; Rome Italy
| | - Lorenzo Moccia
- Institute of Psychiatry and Psychology; Fondazione Policlinico Universitario “A. Gemelli” Università Cattolica del Sacro Cuore; Rome Italy
| | - Eliana Conte
- Institute of Psychiatry and Psychology; Fondazione Policlinico Universitario “A. Gemelli” Università Cattolica del Sacro Cuore; Rome Italy
| | - Luigi Janiri
- Institute of Psychiatry and Psychology; Fondazione Policlinico Universitario “A. Gemelli” Università Cattolica del Sacro Cuore; Rome Italy
| | - Daniela Di Giuda
- Institute of Nuclear Medicine; Fondazione Policlinico Universitario “A. Gemelli” Università Cattolica del Sacro Cuore; Rome Italy
| |
Collapse
|
33
|
Kwiatkowski MA, Hellemann G, Sugar CA, Cope ZA, Minassian A, Perry W, Geyer MA, Young JW. Dopamine transporter knockdown mice in the behavioral pattern monitor: A robust, reproducible model for mania-relevant behaviors. Pharmacol Biochem Behav 2019; 178:42-50. [PMID: 29289701 PMCID: PMC10014035 DOI: 10.1016/j.pbb.2017.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/18/2017] [Accepted: 12/27/2017] [Indexed: 12/16/2022]
Abstract
Efforts to replicate results from both basic and clinical models have highlighted problems with reproducibility in science. In psychiatry, reproducibility issues are compounded because the complex behavioral syndromes make many disorders challenging to model. We develop translatable tasks that quantitatively measure psychiatry-relevant behaviors across species. The behavioral pattern monitor (BPM) was designed to analyze exploratory behaviors, which are altered in patients with bipolar disorder (BD), especially during mania episodes. We have repeatedly assessed the behavioral effects of reduced dopamine transporter (DAT) expression in the BPM using a DAT knockdown (KD) mouse line (~10% normal expression). DAT KD mice exhibit a profile in the BPM consistent with acutely manic BD patients in the human version of the task-hyperactivity, increased exploratory behavior, and reduced spatial d (Perry et al., 2009). We collected data from multiple DAT KD BPM experiments in our laboratory to assess the reproducibility of behavioral outcomes across experiments. The four outcomes analyzed were: 1) transitions (amount of locomotor activity); 2) rearings (exploratory activity); 3) holepokes (exploratory activity); and 4) spatial d (geometrical pattern of locomotor activity). By comparing DAT KD mice to wildtype (WT) littermates in every experiment, we calculated effect sizes for each of the four outcomes and then calculated a mean effect size using a random effects model. DAT KD mice exhibited robust, reproducible changes in each of the four outcomes, including increased transitions, rearings, and holepokes, and reduced spatial d, vs. WT littermates. Our results demonstrate that the DAT KD mouse line in the BPM is a consistent, reproducible model of mania-relevant behaviors. More work must be done to assess reproducibility of behavioral outcomes across experiments in order to advance the field of psychiatry and develop more effective therapeutics for patients.
Collapse
Affiliation(s)
| | - Gerhard Hellemann
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, USA
| | - Catherine A Sugar
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, USA.; Department of Biostatistics, University of California Los Angeles, USA
| | - Zackary A Cope
- Department of Psychiatry, University of California San Diego, USA
| | - Arpi Minassian
- Department of Psychiatry, University of California San Diego, USA
| | - William Perry
- Department of Psychiatry, University of California San Diego, USA
| | - Mark A Geyer
- Department of Psychiatry, University of California San Diego, USA.; Research Service, VA San Diego Healthcare System, USA
| | - Jared W Young
- Department of Psychiatry, University of California San Diego, USA.; Research Service, VA San Diego Healthcare System, USA..
| |
Collapse
|
34
|
Kim W, Won SY, Yoon BJ. CRMP2 mediates GSK3β actions in the striatum on regulating neuronal structure and mania-like behavior. J Affect Disord 2019; 245:1079-1088. [PMID: 30699850 DOI: 10.1016/j.jad.2018.10.371] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/29/2018] [Accepted: 10/05/2018] [Indexed: 11/20/2022]
Abstract
BACKGROUND Genetic and physiological studies have implicated the striatum in bipolar disorder (BD). Although Glycogen synthase kinase 3 beta (GSK3β) has been suggested to play a role in the pathophysiology of BD since it is inhibited by lithium, it remains unknown how GSK3β activity might be involved. Therefore we examined the functional roles of GSK3β and one of its substrates, CRMP2, within the striatum. METHODS Using CRISPR-Cas9 system, we specifically ablated GSK3β in the striatal neurons in vivo and in vitro. Sholl analysis was performed for the structural studies of medium spiny neurons (MSNs) and amphetamine-induced hyperlocomotion was measured to investigate the effects of gene ablations on the mania-like symptom of BD. RESULTS GSK3β deficiency in cultured neurons and in neurons of adult mouse brain caused opposite patterns of neurite changes. Furthermore, specific knockout of GSK3β in the MSNs of the indirect pathway significantly suppressed amphetamine-induced hyperlocomotion. We demonstrated that these phenotypes of GSK3β ablation were mediated by CRMP2, a major substrate of GSK3β. LIMITATIONS Amphetamine-induced hyperlocomotion only partially recapitulate the symptoms of BD. It requires further study to examine whether abnormality in GSK3β or CRMP2 is also involved in depression phase of BD. Additionally, we could not confirm whether the behavioral changes observed in GSK3β-ablated mice were indeed caused by the cellular structural changes observed in the striatal neurons. CONCLUSION Our results demonstrate that GSK3β and its substrate CRMP2 critically regulate the neurite structure of MSNs and their functions specifically within the indirect pathway of the basal ganglia network play a critical role in manifesting mania-like behavior of BD. Moreover, our data also suggest lithium may exert its effect on BD through a GSK3β-independent mechanism, in addition to the GSK3β inhibition-mediated mechanism.
Collapse
Affiliation(s)
- Wonju Kim
- Division of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Seong-Yeon Won
- Division of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Bong-June Yoon
- Division of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
35
|
Abstract
Characterized by the switch of manic and depressive phases, bipolar disorder was described as early as the fifth century BC. Nevertheless up to date, the underlying neurobiology is still largely unclear, assuming a multifactor genesis with both biological-genetic and psychosocial factors. Significant process has been achieved in recent years in researching the causes of bipolar disorder with modern molecular biological (e.g., genetic and epigenetic studies) and imaging techniques (e.g., positron emission tomography (PET) and functional magnetic resonance imaging (fMRI)). In this chapter we will first summarize our recent knowledge on the etiology of bipolar disorder. We then discuss how several factors observed to contribute to bipolar disorder in human patients can be manipulated to generate rodent models for bipolar disorder. Finally, we will give an overview on behavioral test that can be used to assess bipolar-disorder-like behavior in rodents.
Collapse
Affiliation(s)
- Nadja Freund
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University, Bochum, Germany.
| | - Georg Juckel
- Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University, Bochum, Germany
| |
Collapse
|
36
|
Jiménez E, Solé B, Arias B, Mitjans M, Varo C, Reinares M, Bonnín CM, Salagre E, Ruíz V, Torres I, Tomioka Y, Sáiz PA, García-Portilla MP, Burón P, Bobes J, Martínez-Arán A, Torrent C, Vieta E, Benabarre A. Characterizing decision-making and reward processing in bipolar disorder: A cluster analysis. Eur Neuropsychopharmacol 2018; 28:863-874. [PMID: 29807846 DOI: 10.1016/j.euroneuro.2018.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/22/2018] [Accepted: 04/30/2018] [Indexed: 11/25/2022]
Abstract
The presence of abnormalities in emotional decision-making and reward processing among bipolar patients (BP) has been well rehearsed. These disturbances are not limited to acute phases and are common even during remission. In recent years, the existence of discrete cognitive profiles in this psychiatric population has been replicated. However, emotional decision making and reward processing domains have barely been studied. Therefore, our aim was to explore the existence of different profiles on the aforementioned cognitive dimensions in BP. The sample consisted of 126 euthymic BP. Main sociodemographic, clinical, functioning, and neurocognitive variables were gathered. A hierarchical-clustering technique was used to identify discrete neurocognitive profiles based on the performance in the Iowa Gambling Task. Afterward, the resulting clusters were compared using ANOVA or Chi-squared Test, as appropriate. Evidence for the existence of three different profiles was provided. Cluster 1 was mainly characterized by poor decision ability. Cluster 2 presented the lowest sensitivity to punishment. Finally, cluster 3 presented the best decision-making ability and the highest levels of punishment sensitivity. Comparison between the three clusters indicated that cluster 2 was the most functionally impaired group. The poorest outcomes in attention, executive function domains, and social cognition were also observed within the same group. In conclusion, similarly to that observed in "cold cognitive" domains, our results suggest the existence of three discrete cognitive profiles concerning emotional decision making and reward processing. Amongst all the indexes explored, low punishment sensitivity emerge as a potential correlate of poorer cognitive and functional outcomes in bipolar disorder.
Collapse
Affiliation(s)
- E Jiménez
- Bipolar Disorder Unit, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain
| | - B Solé
- Bipolar Disorder Unit, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain
| | - B Arias
- Departament Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, CIBERSAM, Barcelona, Spain
| | - M Mitjans
- Departament Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, CIBERSAM, Barcelona, Spain; Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - C Varo
- Bipolar Disorder Unit, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain
| | - M Reinares
- Bipolar Disorder Unit, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain
| | - C M Bonnín
- Bipolar Disorder Unit, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain
| | - E Salagre
- Bipolar Disorder Unit, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain
| | - V Ruíz
- Institut Clinic de Neurociencies, Hospital Clinic, Barcelona, Catalonia, Spain
| | - I Torres
- Bipolar Disorder Unit, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain
| | - Y Tomioka
- Bipolar Disorder Unit, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain
| | - P A Sáiz
- Department of Psychiatry, School of Medicine, University of Oviedo, CIBERSAM, Instituto de Neurociencias del Principado de Asturias, INEUROPA, Oviedo, Spain; Servicio de Salud del Principado de Asturias (SESPA), Oviedo, Spain
| | - M P García-Portilla
- Department of Psychiatry, School of Medicine, University of Oviedo, CIBERSAM, Instituto de Neurociencias del Principado de Asturias, INEUROPA, Oviedo, Spain; Servicio de Salud del Principado de Asturias (SESPA), Oviedo, Spain
| | - P Burón
- Department of Psychiatry, School of Medicine, University of Oviedo, CIBERSAM, Instituto de Neurociencias del Principado de Asturias, INEUROPA, Oviedo, Spain
| | - J Bobes
- Department of Psychiatry, School of Medicine, University of Oviedo, CIBERSAM, Instituto de Neurociencias del Principado de Asturias, INEUROPA, Oviedo, Spain; Servicio de Salud del Principado de Asturias (SESPA), Oviedo, Spain
| | - A Martínez-Arán
- Bipolar Disorder Unit, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain
| | - C Torrent
- Bipolar Disorder Unit, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain.
| | - E Vieta
- Bipolar Disorder Unit, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain.
| | - A Benabarre
- Bipolar Disorder Unit, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain
| |
Collapse
|
37
|
Dopaminergic Drug Effects on Probability Weighting during Risky Decision Making. eNeuro 2018; 5:eN-NWR-0330-17. [PMID: 29632870 PMCID: PMC5889481 DOI: 10.1523/eneuro.0330-18.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 02/23/2018] [Accepted: 02/26/2018] [Indexed: 02/01/2023] Open
Abstract
Dopamine has been associated with risky decision-making, as well as with pathological gambling, a behavioral addiction characterized by excessive risk-taking behavior. However, the specific mechanisms through which dopamine might act to foster risk-taking and pathological gambling remain elusive. Here we test the hypothesis that this might be achieved, in part, via modulation of subjective probability weighting during decision making. Human healthy controls (n = 21) and pathological gamblers (n = 16) played a decision-making task involving choices between sure monetary options and risky gambles both in the gain and loss domains. Each participant played the task twice, either under placebo or the dopamine D2/D3 receptor antagonist sulpiride, in a double-blind counterbalanced design. A prospect theory modelling approach was used to estimate subjective probability weighting and sensitivity to monetary outcomes. Consistent with prospect theory, we found that participants presented a distortion in the subjective weighting of probabilities, i.e., they overweighted low probabilities and underweighted moderate to high probabilities, both in the gain and loss domains. Compared with placebo, sulpiride attenuated this distortion in the gain domain. Across drugs, the groups did not differ in their probability weighting, although gamblers consistently underweighted losing probabilities in the placebo condition. Overall, our results reveal that dopamine D2/D3 receptor antagonism modulates the subjective weighting of probabilities in the gain domain, in the direction of more objective, economically rational decision making.
Collapse
|
38
|
Di Ciano P, Le Foll B. The Rat Gambling Task as a model for the preclinical development of treatments for gambling disorder. INTERNATIONAL GAMBLING STUDIES 2018. [DOI: 10.1080/14459795.2018.1448428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Patricia Di Ciano
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health (CAMH) , Toronto, Canada
| | - Bernard Le Foll
- Addiction Division, Centre for Addiction and Mental Health (CAMH) , Toronto, Canada
- Departments of Pharmacology and Toxicology, Psychiatry, Family and Community Medicine, Institute of Medical Sciences, University of Toronto , Toronto, Canada
| |
Collapse
|
39
|
Salatino-Oliveira A, Rohde LA, Hutz MH. The dopamine transporter role in psychiatric phenotypes. Am J Med Genet B Neuropsychiatr Genet 2018; 177:211-231. [PMID: 28766921 DOI: 10.1002/ajmg.b.32578] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 06/26/2017] [Accepted: 07/18/2017] [Indexed: 01/06/2023]
Abstract
The dopamine transporter (DAT) is one of the most relevant and investigated neurotransmitter transporters. DAT is a plasma membrane protein which plays a homeostatic role, controlling both extracellular and intracellular concentrations of dopamine (DA). Since unbalanced DA levels are known to be involved in numerous mental disorders, a wealth of investigations has provided valuable insights concerning DAT role into normal brain functioning and pathological processes. Briefly, this extensive but non-systematic review discusses what is recently known about the role of SLC6A3 gene which encodes the dopamine transporter in psychiatric phenotypes. DAT protein, SLC6A3 gene, animal models, neuropsychology, and neuroimaging investigations are also concisely discussed. To conclude, current challenges are reviewed in order to provide perspectives for future studies.
Collapse
Affiliation(s)
| | - Luis A Rohde
- Division of Child and Adolescent Psychiatry, Hospital de Clinicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Institute for Developmental Psychiatry for Children and Adolescents, São Paulo, Brazil
| | - Mara H Hutz
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
40
|
Chang PK, Yu L, Chen JC. Dopamine D3 receptor blockade rescues hyper-dopamine activity-induced deficit in novel object recognition memory. Neuropharmacology 2018; 133:216-223. [PMID: 29407766 DOI: 10.1016/j.neuropharm.2018.01.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/07/2017] [Accepted: 01/29/2018] [Indexed: 12/29/2022]
Abstract
Patients afflicted with bipolar disorder demonstrate significant impairments in recognition and episodic memory during acute depressive and manic episodes. These impairments and the related pathophysiology may result from over-activation of the brain dopamine (DA) system. In order to model overactive DA transmission in a well-established novel object recognition (NOR) memory test, we used DA transporter knockdown (DAT-KD) mice, which exhibit reduced DAT expression and display hyper-dopaminergic phenotypes. DAT-KD mice exhibited impaired NOR memory compared to wild-type (WT) mice. This impairment was prevented by administration of FAUC365, a DA D3 receptor (D3R) selective antagonist, prior to object learning. Similarly, D3R knockout (KO)/DAT-KD double mutant mice displayed performance in the NOR test that was comparable to WT mice, suggesting that deficiencies in NOR performance in DAT-KD mice can be compensated by diminishing D3R signaling. GBR12909, a DAT blocker, also impaired NOR performance in WT mice, but not in D3R KO mice. Impaired NOR performance in GBR12909-treated WT mice was also prevented by pretreatment with FAUC365. Together, these findings indicate that reduced DAT activity can impair recognition memory in the NOR test, and D3R appears to be necessary to mediate this effect.
Collapse
Affiliation(s)
- Pi-Kai Chang
- Department of Physiology and Pharmacology, Graduate Institute of Biomedical Sciences and Healthy Ageing Reserch Center, Chang Gung University, Taoyuan City 33302, Taiwan, ROC.
| | - Lung Yu
- Department of Physiology and Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 70101, Taiwan, ROC.
| | - Jin-Chung Chen
- Department of Physiology and Pharmacology, Graduate Institute of Biomedical Sciences and Healthy Ageing Reserch Center, Chang Gung University, Taoyuan City 33302, Taiwan, ROC; Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou 333, Taiwan and Chang Gung Memorial Hospital, Keelung 204, Taiwan, ROC.
| |
Collapse
|
41
|
Beyer DKE, Freund N. Animal models for bipolar disorder: from bedside to the cage. Int J Bipolar Disord 2017; 5:35. [PMID: 29027157 PMCID: PMC5638767 DOI: 10.1186/s40345-017-0104-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/11/2017] [Indexed: 12/28/2022] Open
Abstract
Bipolar disorder is characterized by recurrent manic and depressive episodes. Patients suffering from this disorder experience dramatic mood swings with a wide variety of typical behavioral facets, affecting overall activity, energy, sexual behavior, sense of self, self-esteem, circadian rhythm, cognition, and increased risk for suicide. Effective treatment options are limited and diagnosis can be complicated. To overcome these obstacles, a better understanding of the neurobiology underlying bipolar disorder is needed. Animal models can be useful tools in understanding brain mechanisms associated with certain behavior. The following review discusses several pathological aspects of humans suffering from bipolar disorder and compares these findings with insights obtained from several animal models mimicking diverse facets of its symptomatology. Various sections of the review concentrate on specific topics that are relevant in human patients, namely circadian rhythms, neurotransmitters, focusing on the dopaminergic system, stressful environment, and the immune system. We then explain how these areas have been manipulated to create animal models for the disorder. Even though several approaches have been conducted, there is still a lack of adequate animal models for bipolar disorder. Specifically, most animal models mimic only mania or depression and only a few include the cyclical nature of the human condition. Future studies could therefore focus on modeling both episodes in the same animal model to also have the possibility to investigate the switch from mania-like behavior to depressive-like behavior and vice versa. The use of viral tools and a focus on circadian rhythms and the immune system might make the creation of such animal models possible.
Collapse
Affiliation(s)
- Dominik K. E. Beyer
- Experimental and Molecular Psychiatry, LWL University Hospital, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Nadja Freund
- Experimental and Molecular Psychiatry, LWL University Hospital, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| |
Collapse
|
42
|
The correlation between DNA methylation and transcriptional expression of human dopamine transporter in cell lines. Neurosci Lett 2017; 662:91-97. [PMID: 29030220 DOI: 10.1016/j.neulet.2017.10.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 10/07/2017] [Accepted: 10/09/2017] [Indexed: 01/03/2023]
Abstract
This study aims to investigate the relationship between DNA methylation and expression of human dopamine transporter (hDAT). We examined methylation status of hDAT in cells with various hDAT expression levels, including two dopaminergic neural cell lines (SK-N-AS and SH-SY-5Y) and one non-dopaminergic cell line (HEK293) by bisulfite sequencing PCR(BSP). The effects of DNA methyltransferase inhibitor 5-aza-dC or/and histone deacetylase inhibitor (HDACi, sodium butyrate, NaB) on the DNA methylation status and mRNA expression levels of hDAT were examined. The results revealed marked hypomethylation of the two promoter regions (-1214 to -856bp and -48 to 439bp, the first base of exon 1 was taken as +1 bp)of hDAT in SK-N-AS (4.7%±2.0mC and 3.5%±1.0mC, respectively) compared with SH-SY-5Y (88.0%±4.4%mC and 81.1%±8.8%mC) and HEK293 (90.7%±2.4mC and 84.4%±8.6% mC) cell lines, indicating a cell-specific methylation regulation of hDAT. 5-aza-dC and NaB decreased hypermethylation,while increase hDAT expression in SH-SY-5Y cells and recovered hDAT mRNA expression in HEK293 cells. DNA methylation enabled the cell-specific differential expression of the hDAT gene. hDAT silencing was reversed by the introduction of DNA hypomethylation via 5-aza-dC or/and NaB.
Collapse
|
43
|
Milienne-Petiot M, Groenink L, Minassian A, Young JW. Blockade of dopamine D 1-family receptors attenuates the mania-like hyperactive, risk-preferring, and high motivation behavioral profile of mice with low dopamine transporter levels. J Psychopharmacol 2017; 31:1334-1346. [PMID: 28950781 PMCID: PMC10773978 DOI: 10.1177/0269881117731162] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Patients with bipolar disorder mania exhibit poor cognition, impulsivity, risk-taking, and goal-directed activity that negatively impact their quality of life. To date, existing treatments for bipolar disorder do not adequately remediate cognitive dysfunction. Reducing dopamine transporter expression recreates many bipolar disorder mania-relevant behaviors (i.e. hyperactivity and risk-taking). The current study investigated whether dopamine D1-family receptor blockade would attenuate the risk-taking, hypermotivation, and hyperactivity of dopamine transporter knockdown mice. METHODS Dopamine transporter knockdown and wild-type littermate mice were tested in mouse versions of the Iowa Gambling Task (risk-taking), Progressive Ratio Breakpoint Test (effortful motivation), and Behavioral Pattern Monitor (activity). Prior to testing, the mice were treated with the dopamine D1-family receptor antagonist SCH 23390 hydrochloride (0.03, 0.1, or 0.3 mg/kg), or vehicle. RESULTS Dopamine transporter knockdown mice exhibited hyperactivity and hyperexploration, hypermotivation, and risk-taking preference compared with wild-type littermates. SCH 23390 hydrochloride treatment decreased premature responding in dopamine transporter knockdown mice and attenuated their hypermotivation. SCH 23390 hydrochloride flattened the safe/risk preference, while reducing activity and exploratory levels of both genotypes similarly. CONCLUSIONS Dopamine transporter knockdown mice exhibited mania-relevant behavior compared to wild-type mice. Systemic dopamine D1-family receptor antagonism attenuated these behaviors in dopamine transporter knockdown, but not all effects were specific to only the knockdown mice. The normalization of behavior via blockade of dopamine D1-family receptors supports the hypothesis that D1 and/or D5 receptors could contribute to the mania-relevant behaviors of dopamine transporter knockdown mice.
Collapse
Affiliation(s)
- Morgane Milienne-Petiot
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804, United States of America
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Lucianne Groenink
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Arpi Minassian
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804, United States of America
| | - Jared W. Young
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804, United States of America
- Research Service, VA San Diego Healthcare System, San Diego, CA, United States of America
| |
Collapse
|
44
|
Kirlic N, Young J, Aupperle RL. Animal to human translational paradigms relevant for approach avoidance conflict decision making. Behav Res Ther 2017; 96:14-29. [PMID: 28495358 DOI: 10.1016/j.brat.2017.04.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 04/17/2017] [Accepted: 04/20/2017] [Indexed: 12/29/2022]
Abstract
Avoidance behavior in clinical anxiety disorders is often a decision made in response to approach-avoidance conflict, resulting in a sacrifice of potential rewards to avoid potential negative affective consequences. Animal research has a long history of relying on paradigms related to approach-avoidance conflict to model anxiety-relevant behavior. This approach includes punishment-based conflict, exploratory, and social interaction tasks. There has been a recent surge of interest in the translation of paradigms from animal to human, in efforts to increase generalization of findings and support the development of more effective mental health treatments. This article briefly reviews animal tests related to approach-avoidance conflict and results from lesion and pharmacologic studies utilizing these tests. We then provide a description of translational human paradigms that have been developed to tap into related constructs, summarizing behavioral and neuroimaging findings. Similarities and differences in findings from analogous animal and human paradigms are discussed. Lastly, we highlight opportunities for future research and paradigm development that will support the clinical utility of this translational work.
Collapse
Affiliation(s)
- Namik Kirlic
- Laureate Institute for Brain Research, 6655 S Yale Ave, Tulsa, OK 74136, United States.
| | - Jared Young
- Department of Psychiatry, School of Medicine, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093, United States; VA San Diego Healthcare System, 3350 La Jolla Village Dr, San Diego, CA 92161, United States.
| | - Robin L Aupperle
- Laureate Institute for Brain Research, 6655 S Yale Ave, Tulsa, OK 74136, United States; School of Community Medicine, University of Tulsa, 800 S Tucker Dr, Tulsa, OK 74104, United States.
| |
Collapse
|
45
|
Nautiyal KM, Okuda M, Hen R, Blanco C. Gambling disorder: an integrative review of animal and human studies. Ann N Y Acad Sci 2017; 1394:106-127. [PMID: 28486792 PMCID: PMC5466885 DOI: 10.1111/nyas.13356] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 03/08/2017] [Accepted: 03/22/2017] [Indexed: 11/29/2022]
Abstract
Gambling disorder (GD), previously called pathological gambling and classified as an impulse control disorder in DSM-III and DSM-IV, has recently been reclassified as an addictive disorder in the DSM-5. It is widely recognized as an important public health problem associated with substantial personal and social costs, high rates of psychiatric comorbidity, poor physical health, and elevated suicide rates. A number of risk factors have been identified, including some genetic polymorphisms. Animal models have been developed in order to study the underlying neural basis of GD. Here, we discuss recent advances in our understanding of the risk factors, disease course, and pathophysiology. A focus on a phenotype-based dissection of the disorder is included in which known neural correlates from animal and human studies are reviewed. Finally, current treatment approaches are discussed, as well as future directions for GD research.
Collapse
Affiliation(s)
- Katherine M. Nautiyal
- New York State Psychiatric Institute, New York, New York
- Department of Psychiatry, Columbia University, New York, New York
| | - Mayumi Okuda
- New York State Psychiatric Institute, New York, New York
- Department of Psychiatry, Columbia University, New York, New York
| | - Rene Hen
- New York State Psychiatric Institute, New York, New York
- Department of Psychiatry, Columbia University, New York, New York
- Departments of Neuroscience and Pharmacology, Columbia University, New York, New York
| | - Carlos Blanco
- National Institute on Drug Abuse, Rockville, Maryland
| |
Collapse
|
46
|
Milienne-Petiot M, Geyer MA, Arnt J, Young JW. Brexpiprazole reduces hyperactivity, impulsivity, and risk-preference behavior in mice with dopamine transporter knockdown-a model of mania. Psychopharmacology (Berl) 2017; 234:1017-1028. [PMID: 28160035 PMCID: PMC5391249 DOI: 10.1007/s00213-017-4543-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 01/20/2017] [Indexed: 02/07/2023]
Abstract
RATIONALE Bipolar disorder (BD) is a unique mood disorder defined by periods of depression and mania. The defining diagnosis of BD is the presence of mania/hypomania, with symptoms including hyperactivity and risk-taking. Since current treatments do not ameliorate cognitive deficits such as risky decision-making, and impulsivity that can negatively affect a patient's quality of life, better treatments are needed. OBJECTIVES Here, we tested whether acute treatment with brexpiprazole, a serotonin-dopamine activity modulator with partial agonist activity at D2/3 and 5-HT1A receptors, would attenuate the BD mania-relevant behaviors of the dopamine transporter (DAT) knockdown mouse model of mania. METHODS The effects of brexpiprazole on DAT knockdown and wild-type littermate mice were examined in the behavioral pattern monitor (BPM) and Iowa gambling task (IGT) to quantify activity/exploration and impulsivity/risk-taking behavior respectively. RESULTS DAT knockdown mice exhibited hyper-exploratory behavior in the BPM and made fewer safe choices in the IGT. Brexpiprazole attenuated the mania-like hyper-exploratory phenotype and increased safe choices in risk-preferring DAT knockdown mice. Brexpiprazole also reduced safe choices in safe-preferring mice irrespective of genotype. Finally, brexpiprazole reduced premature (impulsive-like) responses in both groups of mice. CONCLUSIONS Consistent with earlier reports, DAT knockdown mice exhibited hyper-exploratory, risk-preferring, and impulsive-like profiles consistent with patients with BD mania in these tasks. These behaviors were attenuated after brexpiprazole treatment. These data therefore indicate that brexpiprazole could be a novel treatment for BD mania and/or risk-taking/impulsivity disorders, since it remediates some relevant behavioral abnormalities in this mouse model.
Collapse
Affiliation(s)
- Morgane Milienne-Petiot
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, The Netherlands
| | - Mark A Geyer
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Jørn Arnt
- Sunred Pharma Consulting, Solrod Strand, Denmark
- Synaptic Transmission, Neuroscience Drug Discovery, H. Lundbeck A/S, Ottiliavej 9, 2500, Valby, DK, Denmark
| | - Jared W Young
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA.
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
47
|
The habenula in psychiatric disorders: More than three decades of translational investigation. Neurosci Biobehav Rev 2017; 83:721-735. [PMID: 28223096 DOI: 10.1016/j.neubiorev.2017.02.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/11/2017] [Accepted: 02/09/2017] [Indexed: 12/20/2022]
Abstract
The habenula is an epithalamic structure located at the center of the dorsal diencephalic conduction system, a pathway involved in linking forebrain to midbrain regions. Composed of a medial and lateral subdivisions, the habenula receives inputs from the limbic system and basal ganglia mainly through the stria medullaris (SM), and projects to midbrain regions through the fasciculus retroflexus (FR). An increasing number of studies have implicated this structure in psychiatric disorders associated with dysregulated reward circuitry function, notably mood disorders, schizophrenia, and substance use disorder. However, despite significant progress in research, the mechanisms underlying the relationship between the habenula and the pathophysiology of psychiatric disorders are far from being fully understood, and still need further investigation. This review provides a closer look at key findings from animal and human studies illustrating the role of the habenula in mood disorders, schizophrenia, and substance use disorder, and discusses the clinical potential of using this structure as a therapeutic target.
Collapse
|
48
|
Ryu V, Ha RY, Lee SJ, Ha K, Cho HS. Behavioral and Electrophysiological Alterations for Reinforcement Learning in Manic and Euthymic Patients with Bipolar Disorder. CNS Neurosci Ther 2017; 23:248-256. [PMID: 28098430 DOI: 10.1111/cns.12671] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 11/28/2016] [Accepted: 12/09/2016] [Indexed: 12/28/2022] Open
Abstract
AIMS Bipolar disorder is characterized by behavioral changes such as risk-taking and increasing goal-directed activities, which may result from altered reward processing. Patients with bipolar disorder show impaired reward learning in situations that require the integration of reinforced feedback over time. In this study, we examined the behavioral and electrophysiological characteristics of reward learning in manic and euthymic patients with bipolar disorder using a probabilistic reward task. METHODS Twenty-four manic and 20 euthymic patients with bipolar I disorder and 24 healthy control subjects performed the probabilistic reward task. We assessed response bias (RB) as a preference for the stimulus paired with the more frequent reward and feedback-related negativity (FRN) to correct identification of the rich stimulus. RESULTS Both manic and euthymic patients showed significantly lower RB scores in the early learning stage (block 1) in comparison with the late learning stage (block 2 or block 3) of the task, as well as significantly lower RB scores in the early stage compared to healthy subjects. Relatively more negative FRN amplitude is elicited by no presentation of an expected reward, compared to that elicited by presentation of expected feedback. The FRN became significantly more negative from the early (block 1) to the later stages (blocks 2 and 3) in both manic and euthymic patients, but not in healthy subjects. Changes in RB scores and FRN amplitudes between blocks 2 and 3 and block 1 correlated positively in healthy controls, but correlated negatively in manic and euthymic patients. The severity of manic symptoms correlated positively with reward learning scores and negatively with the FRN. CONCLUSIONS These findings suggest that patients with bipolar disorder during euthymic or manic states have behavioral and electrophysiological alterations in reward learning compared to healthy subjects. This dysfunctional reward processing may be related to the abnormal decision-making or altered goal-directed activities frequently seen in patients with bipolar disorder.
Collapse
Affiliation(s)
- Vin Ryu
- Department of Psychiatry, National Center for Mental Health, Seoul, South Korea
| | - Ra Yeon Ha
- Department of Psychiatry, Seoul Bukbu Hospital, Seoul, South Korea
| | - Su Jin Lee
- Institute of Behavioral Science in Medicine, College of Medicine, Yonsei University, Seoul, South Korea
| | - Kyooseob Ha
- Department of Neuropsychiatry, College of Medicine, Seoul National University, Seoul, South Korea
| | - Hyun-Sang Cho
- Institute of Behavioral Science in Medicine, College of Medicine, Yonsei University, Seoul, South Korea.,Department of Psychiatry, College of Medicine, Yonsei University, Seoul, South Korea
| |
Collapse
|
49
|
Research Domain Criteria versus DSM V: How does this debate affect attempts to model corticostriatal dysfunction in animals? Neurosci Biobehav Rev 2016; 76:301-316. [PMID: 27826070 DOI: 10.1016/j.neubiorev.2016.10.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 09/03/2016] [Accepted: 10/31/2016] [Indexed: 01/29/2023]
Abstract
For decades, the nosology of mental illness has been based largely upon the descriptions in the Diagnostic and Statistical Manual of the American Psychiatric Association (DSM). A recent challenge to the DSM approach to psychiatric nosology from the National Institute on Mental Health (USA) defines Research Domain Criteria (RDoC) as an alternative. For RDoC, psychiatric illnesses are not defined as discrete categories, but instead as specific behavioral dysfunctions irrespective of DSM diagnostic categories. This approach was driven by two primary weaknesses noted in the DSM: (1) the same symptoms occur in very different disease states; and (2) DSM criteria lack grounding in the underlying biological causes of mental illness. RDoC intends to ground psychiatric nosology in those underlying mechanisms. This review addresses the suitability of RDoC vs. DSM from the view of modeling mental illness in animals. A consideration of all types of psychiatric dysfunction is beyond the scope of this review, which will focus on models of conditions associated with frontostriatal dysfunction.
Collapse
|
50
|
Cope ZA, Powell SB, Young JW. Modeling neurodevelopmental cognitive deficits in tasks with cross-species translational validity. GENES BRAIN AND BEHAVIOR 2016; 15:27-44. [PMID: 26667374 DOI: 10.1111/gbb.12268] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/14/2015] [Accepted: 10/27/2015] [Indexed: 12/24/2022]
Abstract
Numerous psychiatric disorders whose cognitive dysfunction links to functional outcome have neurodevelopmental origins including schizophrenia, autism and bipolar disorder. Treatments are needed for these cognitive deficits, which require development using animal models. Models of neurodevelopmental disorders are as varied and diverse as the disorders themselves, recreating some but not all aspects of the disorder. This variety may in part underlie why purported procognitive treatments translated from these models have failed to restore functioning in the targeted patient populations. Further complications arise from environmental factors used in these models that can contribute to numerous disorders, perhaps only impacting specific domains, while diagnostic boundaries define individual disorders, limiting translational efficacy. The Research Domain Criteria project seeks to 'develop new ways to classify mental disorders based on behavioral dimensions and neurobiological measures' in hopes of facilitating translational research by remaining agnostic toward diagnostic borders derived from clinical presentation in humans. Models could therefore recreate biosignatures of cognitive dysfunction irrespective of disease state. This review highlights work within the field of neurodevelopmental models of psychiatric disorders tested in cross-species translational cognitive paradigms that directly inform this newly developing research strategy. By expounding on this approach, the hopes are that a fuller understanding of each model may be attainable in terms of the cognitive profile elicited by each manipulation. Hence, conclusions may begin to be drawn on the nature of cognitive neuropathology on neurodevelopmental and other disorders, increasing the chances of procognitive treatment development for individuals affected in specific cognitive domains.
Collapse
Affiliation(s)
- Z A Cope
- Department of Psychiatry, University of California San Diego, La Jolla
| | - S B Powell
- Department of Psychiatry, University of California San Diego, La Jolla.,Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - J W Young
- Department of Psychiatry, University of California San Diego, La Jolla.,Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|