1
|
Woodward CH, Solieva SO, Hwang D, De Paula VS, Fabilane CS, Young MC, Trent T, Teeley EC, Majumdar A, Spangler JB, Bowman GR, Sgourakis NG. Regulating IL-2 Immune Signaling Function Via A Core Allosteric Structural Network. J Mol Biol 2025; 437:168892. [PMID: 39662679 DOI: 10.1016/j.jmb.2024.168892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/16/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024]
Abstract
Human interleukin-2 (IL-2) is a crucial cytokine for T cell regulation, with therapeutic potential in cancer and autoimmune diseases. However, IL-2's pleiotropic effects across different immune cell types often lead to toxicity and limited efficacy. Previous efforts to enhance IL-2's therapeutic profile have focused on modifying its receptor binding sites. Yet, the underlying dynamics and intramolecular networks contributing to IL-2 receptor recognition remain unexplored. This study presents a detailed characterization of IL-2 dynamics compared to two engineered IL-2 mutants, "superkines" S15 and S1, which exhibit biased signaling towards effector T cells. Using NMR spectroscopy and molecular dynamics simulations, we demonstrate significant variations in core dynamic pathways and conformational exchange rates across these three IL-2 variants. We identify distinct allosteric networks and minor state conformations in the superkines, despite their structural similarity to wild-type IL-2. Furthermore, we rationally design a mutation (L56A) in the S1 superkine's core network, which partially reverts its dynamics, receptor binding affinity, and T cell signaling behavior towards that of wild-type IL-2. Our results reveal that IL-2 superkine core dynamics play a critical role in their enhanced receptor binding and function, suggesting that modulating IL-2 dynamics and core allostery represents an untapped approach for designing immunotherapies with improved immune cell selectivity profiles.
Collapse
Affiliation(s)
- Claire H Woodward
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA; Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Shahlo O Solieva
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel Hwang
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA; Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Viviane S De Paula
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA; Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Charina S Fabilane
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD, USA; Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - Michael C Young
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA; Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Tony Trent
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Ella C Teeley
- Department of Chemical & Biomolecular Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Ananya Majumdar
- Biomolecular NMR Center, Johns Hopkins University, Baltimore, MD, USA
| | - Jamie B Spangler
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Chemical & Biomolecular Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Gregory R Bowman
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Nikolaos G Sgourakis
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA; Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Zheng S, Che X, Zhang K, Bai Y, Deng H. Potentiating CAR-T cell function in the immunosuppressive tumor microenvironment by inverting the TGF-β signal. Mol Ther 2024:S1525-0016(24)00813-X. [PMID: 39673127 DOI: 10.1016/j.ymthe.2024.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/05/2024] [Accepted: 12/10/2024] [Indexed: 12/16/2024] Open
Abstract
The immunosuppressive tumor microenvironment represents a key challenge for chimeric antigen receptor (CAR) T cells in solid tumors and includes the production of the inhibitory cytokine transforming growth factor β (TGF-β), which limits CAR-T cell persistence and function. Current strategies involving the blockade of TGF-β signaling have little benefit for solid tumor treatment. Here, we demonstrate a novel inverted cytokine receptor (ICR)-modified CAR-T cell strategy not only TGF-β signal blockade but also antitumor efficacy enhancement. The newly designed T cells carry an ICR construct that fuses the TGF-β receptor II extracellular domain to the interleukin-15 (IL-15) receptor α cytoplasmic domain (named TB15) and is directed to the tumor antigen epidermal growth factor receptor by a CAR construct. In mice with high TGF-β solid tumors, our signal-inverted CAR/TB15 T cells effectively treat tumors by blocking TGF-β and repurposing IL-15 stimulative signaling, resulting in enhanced CAR-T cell persistence and function. As a proof of concept, our study results extend synthetic receptor signaling beyond CAR-directed killing, which could endow adoptively transferred T cells with new functions that overcome major barriers in the treatment of solid tumors by using a chimeric ICR.
Collapse
Affiliation(s)
- Shen Zheng
- Department of Cell Biology and Stem Cell Research Center, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Peking University, Beijing 100191, China
| | - Xuan Che
- Department of Cell Biology and Stem Cell Research Center, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Peking University, Beijing 100191, China
| | - Kai Zhang
- Department of Dermatology and Venerology, Peking University First Hospital, National Clinical Research Center for Skin and Immune Diseases, Beijing Key Laboratory of Molecular Diagnosis of Dermatoses, Peking University, Beijing, China; Institute of Advanced Clinical Medicine, Peking University, Beijing, China
| | - Yun Bai
- Department of Cell Biology and Stem Cell Research Center, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Peking University, Beijing 100191, China.
| | - Hongkui Deng
- Department of Cell Biology and Stem Cell Research Center, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Peking University, Beijing 100191, China; MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100191, China; Shenzhen Stem Cell Engineering Laboratory, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
3
|
Adachi Y, Terakura S, Osaki M, Okuno Y, Sato Y, Sagou K, Takeuchi Y, Yokota H, Imai K, Steinberger P, Leitner J, Hanajiri R, Murata M, Kiyoi H. Cullin-5 deficiency promotes chimeric antigen receptor T cell effector functions potentially via the modulation of JAK/STAT signaling pathway. Nat Commun 2024; 15:10376. [PMID: 39658572 PMCID: PMC11631977 DOI: 10.1038/s41467-024-54794-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 11/21/2024] [Indexed: 12/12/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cell is a promising therapy for cancer, but factors that enhance the efficacy of CAR T cell remain elusive. Here we perform a genome-wide CRISPR screening to probe genes that regulate the proliferation and survival of CAR T cells following repetitive antigen stimulations. We find that genetic ablation of CUL5, encoding a core element of the multi-protein E3 ubiquitin-protein ligase complex, cullin-RING ligase 5, enhances human CD19 CAR T cell expansion potential and effector functions, potentially via the Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway. In this regard, CUL5 knockout CD19 CAR T cells show sustained STAT3 and STAT5 phosphorylation, as well as delayed phosphorylation and degradation of JAK1 and JAK3. In vivo, shRNA-mediated knockdown of CUL5 enhances CD19 CAR T treatment outcomes in tumor-bearing mice. Our findings thus imply that targeting CUL5 in the ubiquitin system may enhance CAR T cell effector functions to enhance immunotherapy efficacy.
Collapse
Affiliation(s)
- Yoshitaka Adachi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Seitaro Terakura
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Masahide Osaki
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yusuke Okuno
- Department of Virology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yoshitaka Sato
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ken Sagou
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuki Takeuchi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hirofumi Yokota
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kanae Imai
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Peter Steinberger
- Division for Immune Receptors and T Cell Activation, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Judith Leitner
- Division for Immune Receptors and T Cell Activation, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Ryo Hanajiri
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Makoto Murata
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hitoshi Kiyoi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
4
|
Han J, Wang H. Cytokine-overexpressing dendritic cells for cancer immunotherapy. Exp Mol Med 2024; 56:2559-2568. [PMID: 39617785 DOI: 10.1038/s12276-024-01353-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/11/2024] [Indexed: 12/28/2024] Open
Abstract
Dendritic cells (DCs), the main type of antigen-presenting cells in the body, act as key mediators of adaptive immunity by sampling antigens from diseased cells for the subsequent priming of antigen-specific T and B cells. While DCs can secrete a diverse array of cytokines that profoundly shape the immune milieu, exogenous cytokines are often needed to maintain the survival, proliferation, and differentiation of DCs, T cells, and B cells. However, conventional cytokine therapies for cancer treatment are limited by their low therapeutic benefit and severe side effects. The overexpression of cytokines in DCs, followed by paracrine release or membrane display, has emerged as a viable approach for controlling the exposure of cytokines to interacting DCs and T/B cells. This approach can potentially reduce the necessary dose of cytokines and associated side effects to achieve comparable or enhanced antitumor efficacy. Various strategies have been developed to enable the overexpression or chemical conjugation of cytokines on DCs for the subsequent modulation of DC-T/B-cell interactions. This review provides a brief overview of strategies that enable the overexpression of cytokines in or on DCs via genetic engineering or chemical modification methods and discusses the promise of cytokine-overexpressing DCs for the development of new-generation cancer immunotherapy.
Collapse
Affiliation(s)
- Joonsu Han
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hua Wang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Cancer Center at Illinois (CCIL), Urbana, IL, USA.
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Carle College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
5
|
Wang K, Nie Y, Maguire C, Syphurs C, Sheen H, Karoly M, Lapp L, Gygi JP, Jayavelu ND, Patel RK, Hoch A, Corry D, Kheradmand F, McComsey GA, Fernandez-Sesma A, Simon V, Metcalf JP, Higuita NIA, Messer WB, Davis MM, Nadeau KC, Kraft M, Bime C, Schaenman J, Erle D, Calfee CS, Atkinson MA, Brackenridge SC, Hafler DA, Shaw A, Rahman A, Hough CL, Geng LN, Ozonoff A, Haddad EK, Reed EF, van Bakel H, Kim-Schultz S, Krammer F, Wilson M, Eckalbar W, Bosinger S, Langelier CR, Sekaly RP, Montgomery RR, Maecker HT, Krumholz H, Melamed E, Steen H, Pulendran B, Augustine AD, Cairns CB, Rouphael N, Becker PM, Fourati S, Shannon CP, Smolen KK, Peters B, Kleinstein SH, Levy O, Altman MC, Iwasaki A, Diray-Arce J, Ehrlich LIR, Guan L. Unraveling SARS-CoV-2 Host-Response Heterogeneity through Longitudinal Molecular Subtyping. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.22.624784. [PMID: 39651165 PMCID: PMC11623532 DOI: 10.1101/2024.11.22.624784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Hospitalized COVID-19 patients exhibit diverse immune responses during acute infection, which are associated with a wide range of clinical outcomes. However, understanding these immune heterogeneities and their links to various clinical complications, especially long COVID, remains a challenge. In this study, we performed unsupervised subtyping of longitudinal multi-omics immunophenotyping in over 1,000 hospitalized patients, identifying two critical subtypes linked to mortality or mechanical ventilation with prolonged hospital stay and three severe subtypes associated with timely acute recovery. We confirmed that unresolved systemic inflammation and T-cell dysfunctions were hallmarks of increased severity and further distinguished patients with similar acute respiratory severity by their distinct immune profiles, which correlated with differences in demographic and clinical complications. Notably, one critical subtype (SubF) was uniquely characterized by early excessive inflammation, insufficient anticoagulation, and fatty acid dysregulation, alongside higher incidences of hematologic, cardiac, and renal complications, and an elevated risk of long COVID. Among the severe subtypes, significant differences in viral clearance and early antiviral responses were observed, with one subtype (SubC) showing strong early T-cell cytotoxicity but a poor humoral response, slower viral clearance, and greater risks of chronic organ dysfunction and long COVID. These findings provide crucial insights into the complex and context-dependent nature of COVID-19 immune responses, highlighting the importance of personalized therapeutic strategies to improve both acute and long-term outcomes.
Collapse
|
6
|
Guo Y, Xie F, Liu X, Ke S, Chen J, Zhao Y, Li N, Wang Z, Yi G, Shen Y, Li D, Zhu C, Zhang Z, Zhao G, Lu H, Li B, Zhao W. Blockade of TNF-α/TNFR2 signalling suppresses colorectal cancer and enhances the efficacy of anti-PD1 immunotherapy by decreasing CCR8+T regulatory cells. J Mol Cell Biol 2024; 16:mjad067. [PMID: 37935468 PMCID: PMC11587560 DOI: 10.1093/jmcb/mjad067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 05/05/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023] Open
Abstract
The enrichment of regulatory T cells (Tregs) in the tumour microenvironment (TME) has been recognized as one of the major factors in the initiation and development of resistance to immune checkpoint inhibitors. C-C motif chemokine receptor 8 (CCR8), a marker of activated suppressive Tregs, has a significant impact on the functions of Tregs in the TME. However, the regulatory mechanism of CCR8 in Tregs remains unclear. Here, we revealed that a high level of TNF-α in the colorectal cancer (CRC) microenvironment upregulated CCR8 expression in Tregs via the TNFR2/NF-κB signalling pathway and the FOXP3 transcription factor. Furthermore, in both anti-programmed cell death protein 1 (anti-PD1)-responsive and anti-PD1-unresponsive tumour models, PD1 blockade induced CCR8+ Treg infiltration. In both models, Tnfr2 depletion or TNFR2 blockade suppressed tumour progression by reducing CCR8+ Treg infiltration and thus augmented the efficacy of anti-PD1 therapy. Finally, we identified that TNFR2+CCR8+ Tregs but not total Tregs were positively correlated with adverse prognosis in patients with CRC and gastric cancer. Our work reveals the regulatory mechanisms of CCR8 in Tregs and identifies TNFR2 as a promising target for immunotherapy.
Collapse
Affiliation(s)
- Yixian Guo
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Feng Xie
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xu Liu
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shouyu Ke
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jieqiong Chen
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yi Zhao
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ning Li
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine Shanghai 200025, China
| | - Zeyu Wang
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Gang Yi
- Biotheus Inc., Zhuhai 519080, China
| | - Yanying Shen
- Department of Pathology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Dan Li
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chunchao Zhu
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zizhen Zhang
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Gang Zhao
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hong Lu
- GI Division, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Bin Li
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wenyi Zhao
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
7
|
Ma B, Li H, Huang Y, Guo Y, Xu C, Li W. Design, synthesis and activity screening of cedrol derivatives as small molecule JAK3 inhibitors. Bioorg Chem 2024; 152:107762. [PMID: 39222556 DOI: 10.1016/j.bioorg.2024.107762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/17/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
The JAK-STAT signalling pathway is considered to be a significant role involved in the regulation of inflammatory diseases and immune responses, which indicate that specific inhibition of JAK-STAT pathway would be a potential key strategy for RA (Rheumatoid arthritis) treatment. Cedrol (CE), found from ginger by our group earlier, has been proven to play an excellent role in ameliorating RA via acting on JAK3. In this study, 27 new (1, 3-28), along with one known (2) derivatives of CE were synthesized by using chloroacetic acid and acryloyl chloride as intermediate ligands. In vitro, the inhibition effect on JAK kinases were performed using HTRF (Homogenous Time-Resolved Fluorescence) detection technology, which is more convenient and stable than traditional methods. The results compared with the secretion of LPS-induced p-JAK3 can better reflect the true kinase-selective effect of the compounds. Compound 22 was identified as a potent inhibitor to reduce the secretion of LPS-induced p-JAK3 with a dose-dependent manner. Given these results, compound 22 could serve as a favourable inhibitor of JAK3 for further research.
Collapse
Affiliation(s)
- Bingjing Ma
- Department of Traditional Chinese Material Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hua Li
- Department of Traditional Chinese Material Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuan Huang
- Liaoning Inspection, Examination & Certification Centre, Shenyang 110170, China
| | - Yaming Guo
- Department of Functional Food and Wine, Shenyang pharmaceutical university, Shenyang 110016, China
| | - Caizhu Xu
- Department of Functional Food and Wine, Shenyang pharmaceutical university, Shenyang 110016, China
| | - Wei Li
- Department of Functional Food and Wine, Shenyang pharmaceutical university, Shenyang 110016, China.
| |
Collapse
|
8
|
Lu D, Faizi M, Drown B, Simerzin A, François J, Bradshaw G, Kelleher N, Jambhekar A, Gunawardena J, Lahav G. Temporal regulation of gene expression through integration of p53 dynamics and modifications. SCIENCE ADVANCES 2024; 10:eadp2229. [PMID: 39454005 PMCID: PMC11506164 DOI: 10.1126/sciadv.adp2229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 09/20/2024] [Indexed: 10/27/2024]
Abstract
The master regulator of the DNA damage response, the transcription factor p53, orchestrates multiple downstream responses and coordinates repair processes. In response to double-strand DNA breaks, p53 exhibits pulses of expression, but how it achieves temporal coordination of downstream responses remains unclear. Here, we show that p53's posttranslational modification state is altered between its first and second pulses of expression. We show that acetylations at two sites, K373 and K382, were reduced in the second pulse, and these acetylations differentially affected p53 target genes, resulting in changes in gene expression programs over time. This interplay between dynamics and modification may offer a strategy for cellular hubs like p53 to temporally organize multiple processes in individual cells.
Collapse
Affiliation(s)
- Dan Lu
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Marjan Faizi
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Bryon Drown
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Alina Simerzin
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Joshua François
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Gary Bradshaw
- Laboratory of Systems Pharmacology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Neil Kelleher
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Ashwini Jambhekar
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
- Ludwig Center at Harvard Medical School, Boston, MA 02115, USA
| | - Jeremy Gunawardena
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Galit Lahav
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
- Ludwig Center at Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
9
|
Mubarak A, Alqoufail M, Almutairi S, Alrfaei B, Almotairi A, Aziz I, Almanaa TN, Abdel-Maksoud MA, Farrag MA, Aldreiwish AD, Awadalla ME, Alosaimi B, Alturaiki W. MERS-CoV Infection and Its Impact on the Expression of TSLP Cytokine and IgG Antibodies: An In Vivo and In Vitro Study. Infect Drug Resist 2024; 17:4589-4598. [PMID: 39469096 PMCID: PMC11513571 DOI: 10.2147/idr.s483133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024] Open
Abstract
Purpose Thymic stromal lymphopoietin (TSLP) is a proinflammatory cytokine produced by epithelial cells that is involved in the activation of allergic disorders. To date, no study has examined TSLP induction during Middle East respiratory syndrome coronavirus (MERS-CoV) infection. Herein, we aimed to study the effects of the recombinant spike protein of MERS-CoV on TSLP production. Additionally, the effects of recombinant human TSLP (rhTSLP) on B cell survival and antibody production were investigated. Patients and Methods B cells were separated using the Human B Cell Enrichment Kit, and B cell survival was measured using the WST-1 Assay Kit. Enzyme-linked immunosorbent assay (ELISA) was used to measure TSLP levels in the sera of both MERS-CoV-infected (n=4; median age, 53 years) and healthy individuals (n=5; median age, 35 years). Results We showed that the group of infected patients had significantly higher levels of TSLP than healthy controls (37.6 pg/mL vs 19.8 pg/mL, *p<0.05). The levels of TSLP in A549 cells were remarkably increased after 48 h of stimulation with recombinant full-length spike protein (rSP) (32.2 pg/mL, p=0.01). B cell survival was greatly enhanced by rhTSLP alone or in combination with rSP (0.02 vs 0.046, and 0.045; **p<0.01, respectively). Our data also showed a significant synergistic effect of rhTSLP and rSP on the augmented response of IgG antibodies against the spike protein of MERS-CoV compared with unstimulated cells (0.156 vs 0.22; *p<0.05). Conclusion TSLP production is induced in vivo after MERS-CoV infection and in vitro after treatment with the rSP of MERS-CoV, which has a significant effect on the survival of B cells. Our data suggest that TSLP can be used as a strong mucosal adjuvant for vaccine development against MERS-CoV infection. However, further investigation is required to study the functional role of TSLP in MERS-CoV infection.
Collapse
Affiliation(s)
- Ayman Mubarak
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mahfoudh Alqoufail
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Saeedah Almutairi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Bahauddeen Alrfaei
- Stem Cells Unit, Department of Cellular Therapy, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Science, MNGHA, Riyadh, Saudi Arabia
| | | | - Ibrahim Aziz
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Taghreed N Almanaa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mostafa A Abdel-Maksoud
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohamed A Farrag
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Allolo D Aldreiwish
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, 11952, Saudi Arabia
| | - Maaweya E Awadalla
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh, Saudi Arabia
| | - Bandar Alosaimi
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh, Saudi Arabia
| | - Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, 11952, Saudi Arabia
| |
Collapse
|
10
|
Woodward CH, Solieva SO, Hwang D, De Paula VS, Fabilane CS, Young MC, Trent T, Teeley EC, Majumdar A, Spangler JB, Bowman GR, Sgourakis NG. Regulating IL-2 immune signaling function via a core allosteric structural network. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.07.617024. [PMID: 39416199 PMCID: PMC11482754 DOI: 10.1101/2024.10.07.617024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Human interleukin-2 (IL-2) is a crucial cytokine for T cell regulation, with therapeutic potential in cancer and autoimmune diseases. However, IL-2's pleiotropic effects across different immune cell types often lead to toxicity and limited efficacy. Previous efforts to enhance IL-2's therapeutic profile have focused on modifying its receptor binding sites. Yet, the underlying dynamics and intramolecular networks contributing to IL-2 receptor recognition remain unexplored. This study presents a detailed characterization of IL-2 dynamics compared to two engineered IL-2 mutants, "superkines" S15 and S1, which exhibit biased signaling towards effector T cells. Using NMR spectroscopy and molecular dynamics simulations, we demonstrate significant variations in core dynamic pathways and conformational exchange rates across these three IL-2 variants. We identify distinct allosteric networks and excited state conformations in the superkines, despite their structural similarity to wild-type IL-2. Furthermore, we rationally design a mutation (L56A) in the S1 superkine's core network, which partially reverts its dynamics, receptor binding affinity, and T cell signaling behavior towards that of wild-type IL-2. Our results reveal that IL-2 superkine core dynamics play a critical role in their enhanced receptor binding and function, suggesting that modulating IL-2 dynamics and core allostery represents an untapped approach for designing immunotherapies with improved immune cell selectivity profiles. Highlights NMR and molecular dynamics simulations revealed distinct conformational dynamics and allosteric networks in computationally re-designed IL-2 superkines compared to wild-type IL-2, despite their similar crystal structures.The superkines S1 and S15 exhibit altered sampling of excited state conformations at an intermediate timescale, with slower conformational exchange rates compared to wild-type IL-2.A rationally designed mutation (L56A) in the S1 superkine's core allosteric network partially reverted its dynamics, receptor binding affinity, and T cell signaling behavior towards that of wild-type IL-2.Our study demonstrates that IL-2 core dynamics play a critical role in receptor binding and signaling function, providing a foundation for engineering more selective IL-2-based immunotherapies.
Collapse
|
11
|
Beatty AE, Barnes-Tompkins TM, Long KM, Tobiansky DJ. Comparative analysis of meningeal transcriptomes in birds: Potential pathways of resilience to repeated impacts. Anat Rec (Hoboken) 2024. [PMID: 39376204 DOI: 10.1002/ar.25583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/18/2024] [Accepted: 09/09/2024] [Indexed: 10/09/2024]
Abstract
The meninges and associated vasculature (MAV) play a crucial role in maintaining cerebral integrity and homeostasis. Recent advances in transcriptomic analysis have illuminated the significance of the MAV in understanding the complex physiological interactions at the interface between the skull and the brain after exposure to mechanical stress. To investigate how physiological responses may confer resilience against repetitive mechanical stress, we performed the first transcriptomic analysis of avian MAV tissues using the Downy Woodpecker (Dryobates pubescens) and Tufted Titmouse (Baeolophus bicolor) as the comparison species. Our findings reveal divergences in gene expression profiles related to immune response, cellular stress management, and protein translation machinery. The male woodpeckers exhibit a tailored immune modulation strategy that potentially dampens neuroinflammation while preserving protective immunity. Overrepresented genes involved in cellular stress responses suggest enhanced mechanisms for mitigating damage and promoting repair. Additionally, the enrichment of translation-associated pathways hints at increased capacity for protein turnover and cellular remodeling vital for recovery. Our study not only fills a critical gap in avian neurobiology but also lays the groundwork for research in comparative neuroprotection.
Collapse
Affiliation(s)
- Abby E Beatty
- Department of Biology, St. Mary's College of Maryland, St. Mary's City, Maryland, USA
| | | | - Kira M Long
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois Urbana-Champaign, Urbana-Champaign, Illinois, USA
- Department of Fish and Wildlife Sciences, University of Idaho, Moscow, Idaho, USA
| | - Daniel J Tobiansky
- Department of Biology, St. Mary's College of Maryland, St. Mary's City, Maryland, USA
- Program in Neuroscience, St. Mary's College of Maryland, St. Mary's City, Maryland, USA
| |
Collapse
|
12
|
Martínez-Sáez L, Amato A, Cavallo C, Marín-García PJ, Liotta L, Llobat L. Adaptive and innate immune response of Leishmania infantum infection in Cirneco dell'Etna dog breed. Comp Immunol Microbiol Infect Dis 2024; 113:102232. [PMID: 39217909 DOI: 10.1016/j.cimid.2024.102232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Leishmania spp. are an intracellular protozoa present in many countries around the world. In Europe, both the parasite and the disease it causes, leishmaniasis, are endemic in the Mediterranean basin. Clinical signs and severity of disease are highly variable depending on the host in both humans and dogs, traditionally considered the main reservoir of the parasite. The reason for these differences is not known, but it has been speculated that some hosts present immune response, related to activation of Th1 and Th17, capable of controlling the spread of the parasite, and that these immune responses are related to the genetic background of the host. The Ibizan hound, an autochthonous canine breed of the Mediterranean basin, has been postulated as a breed resistant to infection, but other canine breeds evolutionarily close to it and native to this region have not been studied. One of them is the Cirneco dell'Etna, native to the island of Sicily in southern Italy. In this study, the immune response against L. infantum infection in this canine breed was analysed. The results showed that infected dogs of this breed present high levels of several cytokines related to Th1 and Th17 immune response, and significant correlation between serum levels of cytokines related to disease resistance. Further studies are necessary in this canine breed to determine the mechanisms of immune response and genetic background related to L. infantum infection control.
Collapse
Affiliation(s)
- Lola Martínez-Sáez
- Molecular Mechanisms of Zoonotic Diseases (MMOPS) Research Group, Departamento Producción y Sanidad Animal, Salud Pública y Ciencia y Tecnología de los Alimentos (PASAPTA), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia 46113, Spain
| | - Annalisa Amato
- Department of Veterinary Sciences, University of Messina, Messina 98168, Italy
| | - Carmelo Cavallo
- Department of Veterinary Sciences, University of Messina, Messina 98168, Italy
| | - Pablo Jesús Marín-García
- Departamento Producción y Sanidad Animal, Salud Pública y Ciencia y Tecnología de los Alimentos (PASAPTA), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia 46113, Spain
| | - Luigi Liotta
- Department of Veterinary Sciences, University of Messina, Messina 98168, Italy.
| | - Lola Llobat
- Molecular Mechanisms of Zoonotic Diseases (MMOPS) Research Group, Departamento Producción y Sanidad Animal, Salud Pública y Ciencia y Tecnología de los Alimentos (PASAPTA), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia 46113, Spain.
| |
Collapse
|
13
|
Haridevamuthu B, Raj D, Arshad A, Arockiaraj J. Comprehensive review of Argulus infestations in aquaculture: Biological impacts and advanced management strategies. FISH & SHELLFISH IMMUNOLOGY 2024; 153:109851. [PMID: 39173980 DOI: 10.1016/j.fsi.2024.109851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
The aquaculture industry is hindered by various factors. One of the most noticeable factors is infection by parasites and pathogens. Argulus stands out as a prominent and economically significant ectoparasite in freshwater aquaculture. Argulus infestation causes severe immunomodulatory effects on its hosts by promoting argulosis, causing inflammation, extensive tissue damage, and death. Indian aquaculture sector faced a loss of 62.5 million USD due to Argulus infection. However, current control methods, such as pesticides, cause serious environmental damage. Herbal treatment methods are ineffective and have limitations. Hence, a more efficient and cost-effective control method is needed. In recent years, vaccine development has emerged as a promising avenue of research. Understanding the effect of the host-parasite relationship in the host immune system is essential to develop strategies for prevention, control, and management of argulosis. These interactions provide insights into the co-evolutionary dynamics between hosts and parasites. This review provides an overview of the current knowledge on the host-searching behaviour of Argulus, host-parasite interaction and control strategies. This review also highlights the need for further research and the development of sustainable control measures for Argulus infection.
Collapse
Affiliation(s)
- B Haridevamuthu
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - David Raj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Aziz Arshad
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
14
|
Bai Z, Feng B, McClory SE, de Oliveira BC, Diorio C, Gregoire C, Tao B, Yang L, Zhao Z, Peng L, Sferruzza G, Zhou L, Zhou X, Kerr J, Baysoy A, Su G, Yang M, Camara PG, Chen S, Tang L, June CH, Melenhorst JJ, Grupp SA, Fan R. Single-cell CAR T atlas reveals type 2 function in 8-year leukaemia remission. Nature 2024; 634:702-711. [PMID: 39322664 PMCID: PMC11485231 DOI: 10.1038/s41586-024-07762-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 06/27/2024] [Indexed: 09/27/2024]
Abstract
Despite a high response rate in chimeric antigen receptor (CAR) T cell therapy for acute lymphocytic leukaemia (ALL)1-3, approximately 50% of patients relapse within the first year4-6, representing an urgent question to address in the next stage of cellular immunotherapy. Here, to investigate the molecular determinants of ultralong CAR T cell persistence, we obtained a single-cell multi-omics atlas from 695,819 pre-infusion CAR T cells at the basal level or after CAR-specific stimulation from 82 paediatric patients with ALL enrolled in the first two CAR T ALL clinical trials and 6 healthy donors. We identified that elevated type 2 functionality in CAR T infusion products is significantly associated with patients maintaining a median B cell aplasia duration of 8.4 years. Analysis of ligand-receptor interactions revealed that type 2 cells regulate a dysfunctional subset to maintain whole-population homeostasis, and the addition of IL-4 during antigen-specific activation alleviates CAR T cell dysfunction while enhancing fitness at both transcriptomic and epigenomic levels. Serial proteomic profiling of sera after treatment revealed a higher level of circulating type 2 cytokines in 5-year or 8-year relapse-free responders. In a leukaemic mouse model, type 2high CAR T cell products demonstrated superior expansion and antitumour activity, particularly after leukaemia rechallenge. Restoring antitumour efficacy in type 2low CAR T cells was attainable by enhancing their type 2 functionality, either through incorporating IL-4 into the manufacturing process or by priming manufactured CAR T products with IL-4 before infusion. Our findings provide insights into the mediators of durable CAR T therapy response and suggest potential therapeutic strategies to sustain long-term remission by boosting type 2 functionality in CAR T cells.
Collapse
Affiliation(s)
- Zhiliang Bai
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Bing Feng
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Materials Science & Engineering, EPFL, Lausanne, Switzerland
| | - Susan E McClory
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Caroline Diorio
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Céline Gregoire
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Bo Tao
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Luojia Yang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Ziran Zhao
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Lei Peng
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Giacomo Sferruzza
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Liqun Zhou
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Xiaolei Zhou
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Materials Science & Engineering, EPFL, Lausanne, Switzerland
| | - Jessica Kerr
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Alev Baysoy
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Graham Su
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Mingyu Yang
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Pablo G Camara
- Department of Genetics and Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Sidi Chen
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Li Tang
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Institute of Materials Science & Engineering, EPFL, Lausanne, Switzerland.
| | - Carl H June
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA.
| | | | - Stephan A Grupp
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA.
- Human and Translational Immunology, Yale University School of Medicine, New Haven, CT, USA.
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
15
|
Juan HY, Sheu SJ, Hwang DK. Review of Janus Kinase Inhibitors as Therapies for Noninfectious Uveitis. J Ocul Pharmacol Ther 2024. [PMID: 39315932 DOI: 10.1089/jop.2024.0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
Uveitis remains one of the leading causes of blindness worldwide, with different etiologies requiring separate approaches to treatment. For over a decade, oral, topical, and local injection of corticosteroids as well as systemic conventional disease-modifying antirheumatic drugs (DMARDs) have remained the most effective treatment for noninfectious uveitis (NIU). Systemic administration of antitumor necrosis factor-α and other biological DMARDs have been used for treating cases that responded inadequately to conventional treatments. Unfortunately, some refractory patients still suffer from frequent attacks despite the combination of multiple treatments. Recently, there has been promising evidence for Janus kinase (JAK) inhibitors as the next-generation therapy for NIU. The JAK/signal transducers and activators of the transcription (STAT) signaling pathway mediate the downstream events involved in immune fitness, tissue repair, inflammation, apoptosis, and adipogenesis by binding various ligands, such as cytokines, growth hormones, and growth factors. The mutation or loss of JAK/STAT components is implicated in autoimmune diseases, thus inhibition of such pathways has been an important area of research in therapeutic development.1 In this review, we provide a comprehensive overview of the efficacy and safety of JAK inhibitors for the management of NIU, with evidence from current trials and case reports.
Collapse
Affiliation(s)
- Hui Yu Juan
- Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Shwu-Jiuan Sheu
- Department of Ophthalmology, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - De-Kuang Hwang
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Ophthalmology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
16
|
Roškar Z, Dreisinger M, Homšak E, Avčin T, Bevc S, Goropevšek A. Increased Frequency of Circulating Activated FOXP3 + Regulatory T Cell Subset in Patients with Chronic Lymphocytic Leukemia Is Associated with the Estimate of the Size of the Tumor Mass, STAT5 Signaling and Disease Course during Follow-Up of Patients on Therapy. Cancers (Basel) 2024; 16:3228. [PMID: 39335199 PMCID: PMC11430700 DOI: 10.3390/cancers16183228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
INTRODUCTION Advanced chronic lymphocytic leukemia (CLL) is accompanied by increased circulating regulatory T cells (Tregs) and increased susceptibility to severe infections, which were also shown to entail a striking induction of FOXP3 expression in Tregs. As homeostasis of the most suppressive CD45RA-FOXP3high activated Treg (aTreg) subset differs, it is critical to analyse homeostatic signalling in Treg subsets. MATERIALS AND METHODS In this study, by using conventional and imaging flow cytometry, we monitored STAT5 signalling/phosphorylation (pSTAT5) and investigated Treg subsets in relation to the Binet stage, the total tumor mass score (TTM) and the disease course during a follow-up of 37 patients with CLL. RESULTS The aTreg percentage was significantly increased among CD4+ T cells from patients with advanced disease and significantly correlated with the TTM. A subgroup of patients with higher aTreg percentages among CD4+FOXP3+ T cells at the start of therapy was characterised by more frequent episodes of severe infections during follow-up. CONCLUSIONS The results suggesting that an aTreg fraction could represent a possible marker of a severe disease course with infectious complications. Augmented homeostatic STAT5 signalling could support aTreg expansion, as higher pSTAT5 levels were significantly correlated with an increased aTreg frequency among CD4+FOXP3+ T cells during the follow-up of patients on therapy, as well as following SARS-CoV-2 antigen-specific stimulation in vitro.
Collapse
Affiliation(s)
- Zlatko Roškar
- Department of Haematology, University Medical Centre Maribor, 2000 Maribor, Slovenia
| | - Mojca Dreisinger
- Department of Haematology, University Medical Centre Maribor, 2000 Maribor, Slovenia
| | - Evgenija Homšak
- Department of Laboratory Diagnostics, University Medical Centre Maribor, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| | - Tadej Avčin
- Department of Allergology, Rheumatology and Clinical Immunology, Children's Hospital, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Department of Pediatrics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Sebastjan Bevc
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
- Department of Nephrology, University Medical Centre Maribor, 2000 Maribor, Slovenia
| | - Aleš Goropevšek
- Department of Laboratory Diagnostics, University Medical Centre Maribor, 2000 Maribor, Slovenia
| |
Collapse
|
17
|
Golden GJ, Wu VH, Hamilton JT, Amses KR, Shapiro MR, Japp AS, Liu C, Pampena MB, Kuri-Cervantes L, Knox JJ, Gardner JS, Atkinson MA, Brusko TM, Prak ETL, Kaestner KH, Naji A, Betts MR. Immune perturbations in human pancreas lymphatic tissues prior to and after type 1 diabetes onset. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.23.590798. [PMID: 39345402 PMCID: PMC11429609 DOI: 10.1101/2024.04.23.590798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Autoimmune destruction of pancreatic β cells results in type 1 diabetes (T1D), with pancreatic immune infiltrate representing a key feature in this process. Studies of human T1D immunobiology have predominantly focused on circulating immune cells in the blood, while mouse models suggest diabetogenic lymphocytes primarily reside in pancreas-draining lymph nodes (pLN). A comprehensive study of immune cells in human T1D was conducted using pancreas draining lymphatic tissues, including pLN and mesenteric lymph nodes, and the spleen from non-diabetic control, β cell autoantibody positive non-diabetic (AAb+), and T1D organ donors using complementary approaches of high parameter flow cytometry and CITEseq. Immune perturbations suggestive of a proinflammatory environment were specific for T1D pLN and AAb+ pLN. In addition, certain immune populations correlated with high T1D genetic risk independent of disease state. These datasets form an extensive resource for profiling human lymphatic tissue immune cells in the context of autoimmunity and T1D.
Collapse
Affiliation(s)
- Gregory J Golden
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Vincent H Wu
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jacob T Hamilton
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kevin R Amses
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Melanie R Shapiro
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL 32610, USA
| | - Alberto Sada Japp
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Chengyang Liu
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Maria Betina Pampena
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Leticia Kuri-Cervantes
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - James J Knox
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jay S Gardner
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Mark A Atkinson
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL 32610, USA
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, College of Medicine, Gainesville, FL 32610, USA
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Eline T Luning Prak
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ali Naji
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Michael R Betts
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Institute for Immunology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
18
|
Kim JY, Mayatepek E, Seyfarth J, Jacobsen M. High common-γ cytokine receptor levels promote expression of Interleukin-2/Interleukin-7 receptor α-chains with implications on T-cell differentiation and function. Immunology 2024; 173:93-105. [PMID: 38778445 DOI: 10.1111/imm.13800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Cytokines of the common-γ receptor chain (γc) family are crucial for T-cell differentiation and dysregulation of γc cytokine pathways is involved in the pathogenesis of autoimmune diseases. There is increasing evidence that the availability of the γc receptor (CD132) for the associated receptor chains has implications for T-cell functions. Here we studied the influence of differential γc expression on the expression of the IL-2Rα (CD25), the IL-7Rα (CD127) and the differentiation of activated naïve T cells. We fine-tuned the regulation of γc expression in human primary naïve T cells by lentiviral transduction using small hairpin (sh)RNAs and γc cDNA. Differential γc levels were then analysed for effects on T-cell phenotype and function after activation. Differential γc expression markedly affected IL-2Rα and IL-7Rα expression on activated naïve T cells. High γc expression (γc-high) induced significantly higher expression of IL-2Rα and re-expression of IL-7Rα after activation. Inhibition of γc caused lower IL-2Rα/IL-7Rα expression and impaired proliferation of activated naïve T cells. In contrast, γc-high T cells secreted significantly higher concentrations of effector cytokines (i.e., IFN-γ, IL-6) and showed higher cytokine-receptor induced STAT5 phosphorylation during initial stages as well as persistently higher pSTAT1 and pSTAT3 levels after activation. Finally, accelerated transition towards a CD45RO expressing effector/memory phenotype was seen especially for CD4+ γc-high naïve T cells. These results suggested that high expression of γc promotes expression of IL-2Rα and IL-7Rα on activated naïve T cells with significant effects on differentiation and effector cytokine expression.
Collapse
Affiliation(s)
- Ju-Young Kim
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Julia Seyfarth
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Marc Jacobsen
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
19
|
Vorri SC, Holl NJ, Leeming M, Apostolova P, Marple A, Ravich JW, Canbaz A, Rahnama R, Choe J, Modi A, Fearnow AD, Walsh ST, Pearce EL, Varadhan R, Bonifant CL. Activation of Cell-Intrinsic Signaling in CAR-T Cells via a Chimeric IL7R Domain. CANCER RESEARCH COMMUNICATIONS 2024; 4:2359-2373. [PMID: 39186002 PMCID: PMC11382189 DOI: 10.1158/2767-9764.crc-24-0286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/01/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Chimeric antigen receptor (CAR) T cells can effectively treat leukemias, but sustained antitumor responses can be hindered by a lack of CAR T-cell persistence. Cytotoxic effector T cells are short-lived, and establishment of CAR-T cells with memory to ensure immune surveillance is important. Memory T cells depend on cytokine support, with IL7 activation of the IL7 receptor (IL7R) being critical. However, IL7R surface expression is negatively regulated by exposure to IL7. We aimed to support CAR T-cell persistence by equipping CAR-T cells with a sustained IL7Rα signal. We engineered T cells to constitutively secrete IL7 or to express an anti-acute myeloid leukemia-targeted IL7Rα-chimeric cytokine receptor (CCR) and characterized the phenotype of these cell types. Canonical downstream signaling was activated in CCR-T cells with IL7R activation. When coexpressed with a cytotoxic CAR, functionality of both the CCR and CAR was maintained. We designed hybrid CAR-CCR and noted membrane proximity of the intracellular domains as vital for signaling. These data show cell-intrinsic cytokine support with canonical signaling, and functionality can be provided via expression of an IL7Rα domain whether independently expressed or incorporated into a cytotoxic CAR for use in anticancer therapy. SIGNIFICANCE To improve the phenotype of tumor-directed T-cell therapy, we show that provision of cell-intrinsic IL7R-mediated signaling is preferable to activation of cells with exogenous IL7. We engineer this signaling via independent receptor engineering and incorporation into a CAR and validate maintained antigen-specific cytotoxic activity.
Collapse
MESH Headings
- Humans
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Signal Transduction
- Immunotherapy, Adoptive/methods
- Interleukin-7/metabolism
- Interleukin-7/genetics
- Receptors, Interleukin-7/metabolism
- Receptors, Interleukin-7/genetics
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Cell Line, Tumor
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Interleukin-7 Receptor alpha Subunit
Collapse
Affiliation(s)
- Stamatia C. Vorri
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Natalie J. Holl
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Michael Leeming
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia.
| | - Petya Apostolova
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Division of Hematology, University Hospital Basel, Basel, Switzerland.
| | - Andrew Marple
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Jonas W. Ravich
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Ata Canbaz
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Ruyan Rahnama
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Jun Choe
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Arjun Modi
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Adam D. Fearnow
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Scott T.R. Walsh
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, Maryland.
| | - Erika L. Pearce
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Ravi Varadhan
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Challice L. Bonifant
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
20
|
Li J, Zhou W, Wang W. Artificial antigen-presenting cells: the booster for the obtaining of functional adoptive cells. Cell Mol Life Sci 2024; 81:378. [PMID: 39215816 PMCID: PMC11365909 DOI: 10.1007/s00018-024-05412-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Adoptive cell therapy (ACT) achieves substantial efficacy in the treatment of hematological malignancies and solid tumours, while enormous endeavors have been made to reduce relapse and extend the remission duration after ACT. For the genetically engineered T cells, their functionality and long-term anti-tumour potential depend on the specificity of the T cell receptor (TCR) or chimeric antigen receptor (CAR). In addition, the therapeutic benefit is directly to sufficient activation and proliferation of engineered T cells. Artificial antigen-presenting cells (aAPCs), as powerful boosters for ACT, have been applied to provide sustained stimulation of the cognate antigen and facilitate the expansion of sufficient T cells for infusion. In this review, we summarize the aAPCs used to generate effector cells for ACT and underline the mechanism by which aAPCs enhance the functionality of the effector cells. The manuscript includes investigations ranging from basic research to clinical trials, which we hope will highlight the importance of aAPCs and provide guidance for novel strategies to improve the effectiveness of ACT.
Collapse
Affiliation(s)
- Jing Li
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Weilin Zhou
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Wei Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
21
|
Lin JX, Ge M, Liu CY, Holewinski R, Andresson T, Yu ZX, Gebregiorgis T, Spolski R, Li P, Leonard WJ. Tyrosine phosphorylation of both STAT5A and STAT5B is necessary for maximal IL-2 signaling and T cell proliferation. Nat Commun 2024; 15:7372. [PMID: 39191751 PMCID: PMC11349758 DOI: 10.1038/s41467-024-50925-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Cytokine-mediated STAT5 protein activation is vital for lymphocyte development and function. In vitro tyrosine phosphorylation of a C-terminal tyrosine is critical for activation of STAT5A and STAT5B; however, the importance of STAT5 tyrosine phosphorylation in vivo has not been assessed. Here we generate Stat5a and Stat5b tyrosine-to-phenylalanine mutant knockin mice and find they have greatly reduced CD8+ T-cell numbers and profoundly diminished IL-2-induced proliferation of these cells, and this correlates with reduced induction of Myc, pRB, a range of cyclins and CDKs, and a partial G1→S phase-transition block. These mutant CD8+ T cells also exhibit decreased IL-2-mediated activation of pERK and pAKT, which we attribute in part to diminished expression of IL-2Rβ and IL-2Rγ. Our findings thus demonstrate that tyrosine phosphorylation of both STAT5A and STAT5B is essential for maximal IL-2 signaling. Moreover, our transcriptomic and proteomic analyses elucidate the molecular basis of the IL-2-induced proliferation of CD8+ T cells.
Collapse
Affiliation(s)
- Jian-Xin Lin
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892-1674, USA.
| | - Meili Ge
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892-1674, USA
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, PR China
| | - Cheng-Yu Liu
- Transgenic Mouse Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892-8018, USA
| | - Ronald Holewinski
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21701, USA
| | - Thorkell Andresson
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21701, USA
| | - Zu-Xi Yu
- Pathology Core, National Heart Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tesfay Gebregiorgis
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892-1674, USA
| | - Rosanne Spolski
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892-1674, USA
| | - Peng Li
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892-1674, USA
- Amgen, Inc., 2301 Research Blvd., Rockville, MD, 20850, USA
| | - Warren J Leonard
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892-1674, USA.
| |
Collapse
|
22
|
Sierro-Martínez B, Escamilla-Gómez V, Pérez-Ortega L, Guijarro-Albaladejo B, Hernández-Díaz P, de la Rosa-Garrido M, Lara-Chica M, Rodríguez-Gil A, Reguera-Ortega JL, Sanoja-Flores L, Arribas-Arribas B, Montiel-Aguilera MÁ, Carmona G, Robles MJ, Caballero-Velázquez T, Briones J, Einsele H, Hudecek M, Pérez-Simón JA, García-Guerrero E. Next-generation BCMA-targeted chimeric antigen receptor CARTemis-1: the impact of manufacturing procedure on CAR T-cell features. Cell Oncol (Dordr) 2024:10.1007/s13402-024-00984-0. [PMID: 39192092 DOI: 10.1007/s13402-024-00984-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2024] [Indexed: 08/29/2024] Open
Abstract
PURPOSE CAR therapy targeting BCMA is under investigation as treatment for multiple myeloma. However, given the lack of plateau in most studies, pursuing more effective alternatives is imperative. We present the preclinical and clinical validation of a new optimized anti-BCMA CAR (CARTemis-1). In addition, we explored how the manufacturing process could impact CAR-T cell product quality and fitness. METHODS CARTemis-1 optimizations were evaluated at the preclinical level both, in vitro and in vivo. CARTemis-1 generation was validated under GMP conditions, studying the dynamics of the immunophenotype from leukapheresis to final product. Here, we studied the impact of the manufacturing process on CAR-T cells to define optimal cell culture protocol and expansion time to increase product fitness. RESULTS Two different versions of CARTemis-1 with different spacers were compared. The longer version showed increased cytotoxicity. The incorporation of the safety-gene EGFRt into the CARTemis-1 structure can be used as a monitoring marker. CARTemis-1 showed no inhibition by soluble BCMA and presents potent antitumor effects both in vitro and in vivo. Expansion with IL-2 or IL-7/IL-15 was compared, revealing greater proliferation, less differentiation, and less exhaustion with IL-7/IL-15. Three consecutive batches of CARTemis-1 were produced under GMP guidelines meeting all the required specifications. CARTemis-1 cells manufactured under GMP conditions showed increased memory subpopulations, reduced exhaustion markers and selective antitumor efficacy against MM cell lines and primary myeloma cells. The optimal release time points for obtaining the best fit product were > 6 and < 10 days (days 8-10). CONCLUSIONS CARTemis-1 has been rationally designed to increase antitumor efficacy, overcome sBCMA inhibition, and incorporate the expression of a safety-gene. The generation of CARTemis-1 was successfully validated under GMP standards. A phase I/II clinical trial for patients with multiple myeloma will be conducted (EuCT number 2022-503063-15-00).
Collapse
Affiliation(s)
- Belén Sierro-Martínez
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Virginia Escamilla-Gómez
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Laura Pérez-Ortega
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Beatriz Guijarro-Albaladejo
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Paola Hernández-Díaz
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - María de la Rosa-Garrido
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Maribel Lara-Chica
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Alfonso Rodríguez-Gil
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Juan Luis Reguera-Ortega
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Luzalba Sanoja-Flores
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Blanca Arribas-Arribas
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC)-Planta CTTC Campus Virgen del Rocío de Sevilla, Red Andaluza de diseño y traslación de Terapias Avanzadas, Seville, Spain
- Programa doctorado Tecnología y Ciencias del Medicamento, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Miguel Ángel Montiel-Aguilera
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC)-Planta CTTC Campus Virgen del Rocío de Sevilla, Red Andaluza de diseño y traslación de Terapias Avanzadas, Seville, Spain
| | - Gloria Carmona
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC)-Planta CTTC Campus Virgen del Rocío de Sevilla, Red Andaluza de diseño y traslación de Terapias Avanzadas, Seville, Spain
| | - Maria Jose Robles
- Unidad de Patología Comparada, Biobanco Virgen del Rocío-IBiS, Unidad de Gestión Clínica de Anatomía Patológica, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Teresa Caballero-Velázquez
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Javier Briones
- Servicio de Hematología, Instituto de Investigación Biomédica Sant Pau (IIB-Sant Pau), Barcelona, Spain
| | - Hermann Einsele
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II and Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Michael Hudecek
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II and Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Jose Antonio Pérez-Simón
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain.
| | - Estefanía García-Guerrero
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain.
| |
Collapse
|
23
|
Santos AJM, van Unen V, Lin Z, Chirieleison SM, Ha N, Batish A, Chan JE, Cedano J, Zhang ET, Mu Q, Guh-Siesel A, Tomaske M, Colburg D, Varma S, Choi SS, Christophersen A, Baghdasaryan A, Yost KE, Karlsson K, Ha A, Li J, Dai H, Sellers ZM, Chang HY, Dunn JCY, Zhang BM, Mellins ED, Sollid LM, Fernandez-Becker NQ, Davis MM, Kuo CJ. A human autoimmune organoid model reveals IL-7 function in coeliac disease. Nature 2024; 632:401-410. [PMID: 39048815 DOI: 10.1038/s41586-024-07716-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/14/2024] [Indexed: 07/27/2024]
Abstract
In vitro models of autoimmunity are constrained by an inability to culture affected epithelium alongside the complex tissue-resident immune microenvironment. Coeliac disease (CeD) is an autoimmune disease in which dietary gluten-derived peptides bind to the major histocompatibility complex (MHC) class II human leukocyte antigen molecules (HLA)-DQ2 or HLA-DQ8 to initiate immune-mediated duodenal mucosal injury1-4. Here, we generated air-liquid interface (ALI) duodenal organoids from intact fragments of endoscopic biopsies that preserve epithelium alongside native mesenchyme and tissue-resident immune cells as a unit without requiring reconstitution. The immune diversity of ALI organoids spanned T cells, B and plasma cells, natural killer (NK) cells and myeloid cells, with extensive T-cell and B-cell receptor repertoires. HLA-DQ2.5-restricted gluten peptides selectively instigated epithelial destruction in HLA-DQ2.5-expressing organoids derived from CeD patients, and this was antagonized by blocking MHC-II or NKG2C/D. Gluten epitopes stimulated a CeD organoid immune network response in lymphoid and myeloid subsets alongside anti-transglutaminase 2 (TG2) autoantibody production. Functional studies in CeD organoids revealed that interleukin-7 (IL-7) is a gluten-inducible pathogenic modulator that regulates CD8+ T-cell NKG2C/D expression and is necessary and sufficient for epithelial destruction. Furthermore, endogenous IL-7 was markedly upregulated in patient biopsies from active CeD compared with remission disease from gluten-free diets, predominantly in lamina propria mesenchyme. By preserving the epithelium alongside diverse immune populations, this human in vitro CeD model recapitulates gluten-dependent pathology, enables mechanistic investigation and establishes a proof of principle for the organoid modelling of autoimmunity.
Collapse
MESH Headings
- Humans
- Autoantibodies/immunology
- Autoimmunity
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Biopsy
- Celiac Disease/immunology
- Celiac Disease/pathology
- Celiac Disease/metabolism
- Duodenum/immunology
- Duodenum/pathology
- Duodenum/metabolism
- Epitopes/immunology
- Glutens/immunology
- Glutens/metabolism
- GTP-Binding Proteins/metabolism
- GTP-Binding Proteins/immunology
- HLA-DQ Antigens/immunology
- HLA-DQ Antigens/metabolism
- Interleukin-7/metabolism
- Intestinal Mucosa/immunology
- Intestinal Mucosa/metabolism
- Intestinal Mucosa/pathology
- Killer Cells, Natural/immunology
- Models, Biological
- Myeloid Cells/immunology
- Organoids/immunology
- Organoids/metabolism
- Organoids/pathology
- Protein Glutamine gamma Glutamyltransferase 2/immunology
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- António J M Santos
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Vincent van Unen
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Zhongqi Lin
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Steven M Chirieleison
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Nhi Ha
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Arpit Batish
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Joshua E Chan
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Jose Cedano
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Elisa T Zhang
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Qinghui Mu
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Alexander Guh-Siesel
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Madeline Tomaske
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Deana Colburg
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sushama Varma
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Shannon S Choi
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Asbjørn Christophersen
- K. G. Jebsen Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- Department of Rheumatology, Dermatology and Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Ani Baghdasaryan
- Department of Chemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Kathryn E Yost
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kasper Karlsson
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Andrew Ha
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Jing Li
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Hongjie Dai
- Department of Chemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Zachary M Sellers
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - James C Y Dunn
- Department of Pediatric Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Bing M Zhang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Elizabeth D Mellins
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Ludvig M Sollid
- K. G. Jebsen Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Nielsen Q Fernandez-Becker
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Mark M Davis
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Calvin J Kuo
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
24
|
Russell J, Chen L, Liu A, Wang J, Ghosh S, Zhong X, Shi H, Beutler B, Nair-Gill E. Lrp10 suppresses IL7R limiting CD8 T cell homeostatic expansion and anti-tumor immunity. EMBO Rep 2024; 25:3601-3626. [PMID: 38956225 PMCID: PMC11315911 DOI: 10.1038/s44319-024-00191-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024] Open
Abstract
Signals emanating from the T-cell receptor (TCR), co-stimulatory receptors, and cytokine receptors each influence CD8 T-cell fate. Understanding how these signals respond to homeostatic and microenvironmental cues can reveal new ways to therapeutically direct T-cell function. Through forward genetic screening in mice, we discover that loss-of-function mutations in LDL receptor-related protein 10 (Lrp10) cause naive and central memory CD8 T cells to accumulate in peripheral lymphoid organs. Lrp10 encodes a conserved cell surface protein of unknown immunological function. T-cell activation induces Lrp10 expression, which post-translationally suppresses IL7 receptor (IL7R) levels. Accordingly, Lrp10 deletion enhances T-cell homeostatic expansion through IL7R signaling. Lrp10-deficient mice are also intrinsically resistant to syngeneic tumors. This phenotype depends on dense tumor infiltration of CD8 T cells, which display increased memory cell characteristics, reduced terminal exhaustion, and augmented responses to immune checkpoint inhibition. Here, we present Lrp10 as a new negative regulator of CD8 T-cell homeostasis and a host factor that controls tumor resistance with implications for immunotherapy.
Collapse
Affiliation(s)
- Jamie Russell
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-8505, USA
| | - Luming Chen
- Medical Scientist Training Program, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-8505, USA
| | - Aijie Liu
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-8505, USA
| | - Jianhui Wang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-8505, USA
| | - Subarna Ghosh
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-8505, USA
| | - Xue Zhong
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-8505, USA
| | - Hexin Shi
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-8505, USA
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-8505, USA
| | - Evan Nair-Gill
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-8505, USA.
- Department of Internal Medicine, Division of Rheumatic Diseases, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-8505, USA.
| |
Collapse
|
25
|
Tani-Ichi S, Obwegs D, Yoshikawa A, Watanabe H, Kitano S, Ejima A, Hatano S, Miyachi H, Cui G, Shimba A, Abe S, Hori S, Kondoh G, Sagar, Yoshikai Y, Ikuta K. A RORE-dependent Intronic Enhancer in the IL-7 Receptor-α Locus Controls Glucose Metabolism via Vγ4+ γδT17 Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:283-295. [PMID: 39140825 DOI: 10.4049/jimmunol.2300450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 05/22/2024] [Indexed: 08/15/2024]
Abstract
The IL-7R regulates the homeostasis, activation, and distribution of T cells in peripheral tissues. Although several transcriptional enhancers that regulate IL-7Rα expression in αβ T cells have been identified, enhancers active in γδ T cells remain unknown. In this article, we discovered an evolutionarily conserved noncoding sequence (CNS) in intron 2 of the IL-7Rα-chain (IL-7Rα) locus and named this region CNS9. CNS9 contained a conserved retinoic acid receptor-related orphan receptor (ROR)-responsive element (RORE) and exerted RORγt-dependent enhancer activity in vitro. Mice harboring point mutations in the RORE in CNS9 (CNS9-RORmut) showed reduced IL-7Rα expression in IL-17-producing Vγ4+ γδ T cells. In addition, the cell number and IL-17A production of Vγ4+ γδ T cells were reduced in the adipose tissue of CNS9-RORmut mice. Consistent with the reduction in IL-17A, CNS9-RORmut mice exhibited decreased IL-33 expression in the adipose tissue, resulting in fewer regulatory T cells and glucose intolerance. The CNS9-ROR motif was partially responsible for IL-7Rα expression in RORγt+ regulatory T cells, whereas IL-7Rα expression was unaffected in RORγt-expressing Vγ2+ γδ T cells, Th17 cells, type 3 innate lymphoid cells, and invariant NKT cells. Our results indicate that CNS9 is a RORΕ-dependent, Vγ4+ γδ T cell-specific IL-7Rα enhancer that plays a critical role in adipose tissue homeostasis via regulatory T cells, suggesting that the evolutionarily conserved RORΕ in IL-7Rα intron 2 may influence the incidence of type 2 diabetes.
Collapse
MESH Headings
- Animals
- Mice
- Introns/genetics
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Enhancer Elements, Genetic/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Glucose/metabolism
- Receptors, Interleukin-7/genetics
- Receptors, Interleukin-7/metabolism
- Mice, Inbred C57BL
- Th17 Cells/immunology
- Interleukin-17/metabolism
- Interleukin-17/genetics
- Humans
- Adipose Tissue/metabolism
- Adipose Tissue/immunology
Collapse
Affiliation(s)
- Shizue Tani-Ichi
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - David Obwegs
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Germany
| | - Alice Yoshikawa
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hitomi Watanabe
- Laboratory of Integrative Biological Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Satsuki Kitano
- Reproductive Engineering Team, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Aki Ejima
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Shinya Hatano
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hitoshi Miyachi
- Reproductive Engineering Team, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Guangwei Cui
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Akihiro Shimba
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinya Abe
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Shohei Hori
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Gen Kondoh
- Laboratory of Integrative Biological Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Sagar
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Yasunobu Yoshikai
- Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Koichi Ikuta
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
26
|
Saeed MA, Peng B, Kim K, Rawat K, Kuehm LM, Siegel ZR, Borkowski A, Habib N, Van Tine B, Sheikh N, Tuyen V, Thorek DLJ, Fehniger TA, Pachynski RK. High-Dimensional Analyses Reveal IL15 Enhances Activation of Sipuleucel-T Lymphocyte Subsets and Reverses Immunoresistance. Cancer Immunol Res 2024; 12:559-574. [PMID: 38407894 DOI: 10.1158/2326-6066.cir-23-0652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/21/2023] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
Sipuleucel-T (sip-T) is the only FDA-approved autologous cellular immunotherapy for metastatic castration-resistant prostate cancer (mCRPC). To elucidate parameters of the response profile to this therapy, we report high-dimensional analyses of sip-T using cytometry by time of flight (CyTOF) and show a lymphoid predominance, with CD3+ T cells constituting the highest proportion (median ∼60%) of sip-T, followed by B cells, and natural killer (NK) and NKT cells. We hypothesized that treatment of sip-T with homeostatic cytokines known to activate/expand effector lymphocytes could augment efficacy against prostate tumors. Of the cytokines tested, IL15 was the most effective at enhancing activation and proliferation of effector lymphocytes, as well as augmenting tumor cytotoxicity in vitro. Co-culture of sip-T with IL15 and control or prostate-relevant antigens showed substantial activation and expansion of CD8+ T cells and NKT cells in an antigen-specific manner. Adoptive transfer of IL15-treated sip-T into NSG mice resulted in more potent prostate tumor growth inhibition compared with control sip-T. Evaluation of tumor-infiltrating lymphocytes revealed a 2- to 14-fold higher influx of sip-T and a significant increase in IFNγ producing CD8+ T cells and NKT cells within the tumor microenvironment in the IL15 group. In conclusion, we put forward evidence that IL15 treatment can enhance the functional antitumor immunity of sip-T, providing rationale for combining IL15 or IL15 agonists with sip-T to treat patients with mCRPC.
Collapse
Affiliation(s)
- Muhammad A Saeed
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Bo Peng
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Kevin Kim
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Kavita Rawat
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Lindsey M Kuehm
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Zoe R Siegel
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Ariel Borkowski
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Nabih Habib
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Brian Van Tine
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
| | | | - Vu Tuyen
- Dendreon Pharmaceuticals LLC, Seattle, Washington
| | - Daniel L J Thorek
- Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Missouri
| | - Todd A Fehniger
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
- Bursky Center for Human Immunology and Immunotherapy, Washington University School of Medicine, St Louis, Missouri
| | - Russell K Pachynski
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
- Bursky Center for Human Immunology and Immunotherapy, Washington University School of Medicine, St Louis, Missouri
| |
Collapse
|
27
|
Chen Y, Song Y, Peng H, Li J, Zhao C, Liu D, Tan J, Liu Y. Changes in Thymic Size and Immunity Are Associated with Bronchopulmonary Dysplasia. Am J Perinatol 2024; 41:e1732-e1739. [PMID: 37192653 DOI: 10.1055/s-0043-1768704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
OBJECTIVE Preterm infants with bronchopulmonary dysplasia (BPD) are at increased risk for dysfunctional immune responses in the postnatal period. This study aimed to verify the hypothesis that thymic function is altered in infants with BPD and changes in the expression of thymic function-related genes affect thymic development. STUDY DESIGN Included in the study were infants who had a gestational age ≤32 weeks and survived to a postmenstrual age of ≥36 weeks. The clinical features and thymic size were comparatively studied between infants with and without BPD. Thymic function and the expression of thymic function-related genes were determined in BPD infants at birth, week 2, and 4 of life. The thymic size was ultrasonographically assessed in terms of the thymic index (TI) and thymic weight index (TWI). T-cell receptor excision circles (TRECs) and gene expression were quantitatively determined by real-time quantitative reverse transcription polymerase chain reaction. RESULTS Compared to non-BPD infants, their BPD counterparts had a shorter GA, lower birth weight, lower Apgar scores at birth, and were more likely to be of the male gender. BPD infants had an elevated incidence of respiratory distress syndrome and sepsis. TI was 1.73 ± 0.68 versus 2.87 ± 0.70 cm3 and TWI was 1.38 ± 0.45 versus 1.72 ± 0.28 cm3/kg in the BPD group versus the non-BPD group (p < 0.05). In BPD infants, no significant changes were observed in thymic size, lymphocyte counts, and TREC copy numbers at the first 2 weeks (p > 0.05), but they all exhibited a significant increase at week 4 (p < 0.05). BPD infants presented a trend toward increased expression of transforming growth factor-β1 and decreased expression of forkhead box protein 3 (Foxp3) from birth to week 4 (p < 0.05). Nonetheless, no significant difference was found in IL-2 or IL-7 expression at all time points (p > 0.05). CONCLUSION For preterm infants with BPD, reduced thymic size at birth might be associated with impaired thymic function. Thymic function was developmentally regulated in the BPD process. KEY POINTS · For preterm infants with BPD, reduced thymic size at birth might be associated with impaired thymic.. · BPD infants had an elevated incidence of respiratory distress syndrome and sepsis.. · Thymic function was developmentally regulated in the BPD process..
Collapse
Affiliation(s)
- Yan Chen
- Department of Pediatric, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Song
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Lab of Molecular Imaging, China
| | - Hua Peng
- Department of Pediatric, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Li
- Department of Pediatric, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cong Zhao
- Department of Pediatric, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ding Liu
- Department of Pediatric, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Tan
- Department of Pediatric, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yalan Liu
- Department of Pediatric, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
28
|
Xu MY, Zeng N, Liu CQ, Sun JX, An Y, Zhang SH, Xu JZ, Zhong XY, Ma SY, He HD, Hu J, Xia QD, Wang SG. Enhanced cellular therapy: revolutionizing adoptive cellular therapy. Exp Hematol Oncol 2024; 13:47. [PMID: 38664743 PMCID: PMC11046957 DOI: 10.1186/s40164-024-00506-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 03/31/2024] [Indexed: 04/28/2024] Open
Abstract
Enhanced cellular therapy has emerged as a novel concept following the basis of cellular therapy. This treatment modality applied drugs or biotechnology to directly enhance or genetically modify cells to enhance the efficacy of adoptive cellular therapy (ACT). Drugs or biotechnology that enhance the killing ability of immune cells include immune checkpoint inhibitors (ICIs) / antibody drugs, small molecule inhibitors, immunomodulatory factors, proteolysis targeting chimera (PROTAC), oncolytic virus (OV), etc. Firstly, overcoming the inhibitory tumor microenvironment (TME) can enhance the efficacy of ACT, which can be achieved by blocking the immune checkpoint. Secondly, cytokines or cytokine receptors can be expressed by genetic engineering or added directly to adoptive cells to enhance the migration and infiltration of adoptive cells to tumor cells. Moreover, multi-antigen chimeric antigen receptors (CARs) can be designed to enhance the specific recognition of tumor cell-related antigens, and OVs can also stimulate antigen release. In addition to inserting suicide genes into adoptive cells, PROTAC technology can be used as a safety switch or degradation agent of immunosuppressive factors to enhance the safety and efficacy of adoptive cells. This article comprehensively summarizes the mechanism, current situation, and clinical application of enhanced cellular therapy, describing potential improvements to adoptive cellular therapy.
Collapse
Affiliation(s)
- Meng-Yao Xu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China
| | - Na Zeng
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China
| | - Chen-Qian Liu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China
| | - Jian-Xuan Sun
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China
| | - Ye An
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China
| | - Si-Han Zhang
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China
| | - Jin-Zhou Xu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China
| | - Xing-Yu Zhong
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China
| | - Si-Yang Ma
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China
| | - Hao-Dong He
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China
| | - Jia Hu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China
| | - Qi-Dong Xia
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China.
| | - Shao-Gang Wang
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030, China.
| |
Collapse
|
29
|
Lu HF, Zhou YC, Luo DD, Yang DH, Wang XJ, Cheng BH, Zeng XH. ILC2s: Unraveling the innate immune orchestrators in allergic inflammation. Int Immunopharmacol 2024; 131:111899. [PMID: 38513576 DOI: 10.1016/j.intimp.2024.111899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/05/2024] [Accepted: 03/17/2024] [Indexed: 03/23/2024]
Abstract
The prevalence rate of allergic diseases including asthma, atopic rhinitis (AR) and atopic dermatitis (AD) has been significantly increasing in recent decades due to environmental changes and social developments. With the study of innate lymphoid cells, the crucial role played by type 2 innate lymphoid cells (ILC2s) have been progressively unveiled in allergic diseases. ILC2s, which are a subset of innate lymphocytes initiate allergic responses. They respond swiftly during the onset of allergic reactions and produce type 2 cytokines, working in conjunction with T helper type 2 (Th2) cells to induce and sustain type 2 immune responses. The role of ILC2s represents an intriguing frontier in immunology; however, the intricate immune mechanisms of ILC2s in allergic responses remain relatively poorly understood. To gain a comphrehensive understanding of the research progress of ILC2, we summarize recent advances in ILC2s biology in pathologic allergic inflammation to inspire novel approaches for managing allergic diseases.
Collapse
Affiliation(s)
- Hui-Fei Lu
- Department of Graduate and Scientific Research, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China; Department of Otolaryngology, Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen Longgang Otolaryngology Hospital, Shenzhen, 518172, China
| | - Yi-Chi Zhou
- Department of Gastroenterology, Beijing University of Chinese Medicine Shenzhen Hospital (Longgang), Shenzhen 518172, China
| | - Dan-Dan Luo
- Department of Graduate and Scientific Research, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China
| | - Dun-Hui Yang
- Department of Otolaryngology, Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen Longgang Otolaryngology Hospital, Shenzhen, 518172, China
| | - Xi-Jia Wang
- Department of Graduate and Scientific Research, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China
| | - Bao-Hui Cheng
- Department of Otolaryngology, Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen Longgang Otolaryngology Hospital, Shenzhen, 518172, China.
| | - Xian-Hai Zeng
- Department of Graduate and Scientific Research, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China; Department of Otolaryngology, Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen Longgang Otolaryngology Hospital, Shenzhen, 518172, China.
| |
Collapse
|
30
|
Phoon YP, Lopes JE, Pfannenstiel LW, Marcela Diaz-Montero C, Tian YF, Ernstoff MS, Funchain P, Ko JS, Winquist R, Losey HC, Melenhorst JJ, Gastman BR. Autologous human preclinical modeling of melanoma interpatient clinical responses to immunotherapeutics. J Immunother Cancer 2024; 12:e008066. [PMID: 38604813 PMCID: PMC11015209 DOI: 10.1136/jitc-2023-008066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND Despite recent advances in immunotherapy, a substantial population of late-stage melanoma patients still fail to achieve sustained clinical benefit. Lack of translational preclinical models continues to be a major challenge in the field of immunotherapy; thus, more optimized translational models could strongly influence clinical trial development. To address this unmet need, we designed a preclinical model reflecting the heterogeneity in melanoma patients' clinical responses that can be used to evaluate novel immunotherapies and synergistic combinatorial treatment strategies. Using our all-autologous humanized melanoma mouse model, we examined the efficacy of a novel engineered interleukin 2 (IL-2)-based cytokine variant immunotherapy. METHODS To study immune responses and antitumor efficacy for human melanoma tumors, we developed an all-autologous humanized melanoma mouse model using clinically annotated, matched patient tumor cells and peripheral blood mononuclear cells (PBMCs). After inoculating immunodeficient NSG mice with patient tumors and an adoptive cell transfer of autologous PBMCs, mice were treated with anti-PD-1, a novel investigational engineered IL-2-based cytokine (nemvaleukin), or recombinant human IL-2 (rhIL-2). The pharmacodynamic effects and antitumor efficacy of these treatments were then evaluated. We used tumor cells and autologous PBMCs from patients with varying immunotherapy responses to both model the diversity of immunotherapy efficacy observed in the clinical setting and to recapitulate the heterogeneous nature of melanoma. RESULTS Our model exhibited long-term survival of engrafted human PBMCs without developing graft-versus-host disease. Administration of an anti-PD-1 or nemvaleukin elicited antitumor responses in our model that were patient-specific and were found to parallel clinical responsiveness to checkpoint inhibitors. An evaluation of nemvaleukin-treated mice demonstrated increased tumor-infiltrating CD4+ and CD8+ T cells, preferential expansion of non-regulatory T cell subsets in the spleen, and significant delays in tumor growth compared with vehicle-treated controls or mice treated with rhIL-2. CONCLUSIONS Our model reproduces differential effects of immunotherapy in melanoma patients, capturing the inherent heterogeneity in clinical responses. Taken together, these data demonstrate our model's translatability for novel immunotherapies in melanoma patients. The data are also supportive for the continued clinical investigation of nemvaleukin as a novel immunotherapeutic for the treatment of melanoma.
Collapse
Affiliation(s)
- Yee Peng Phoon
- Center for Immunotherapy and Precision Immuno-Oncology (CITI), Cleveland Clinic, Cleveland, Ohio, USA
| | | | | | - Claudia Marcela Diaz-Montero
- Center for Immunotherapy and Precision Immuno-Oncology (CITI), Cleveland Clinic, Cleveland, Ohio, USA
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ye F Tian
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Pauline Funchain
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | | | | | | | - Jan Joseph Melenhorst
- Center for Immunotherapy and Precision Immuno-Oncology (CITI), Cleveland Clinic, Cleveland, Ohio, USA
| | - Brian R Gastman
- Center for Immunotherapy and Precision Immuno-Oncology (CITI), Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
31
|
Liao Y, Yan J, Beri NR, Giulino-Roth L, Cesarman E, Gewurz BE. Germinal center cytokine driven epigenetic control of Epstein-Barr virus latency gene expression. PLoS Pathog 2024; 20:e1011939. [PMID: 38683861 PMCID: PMC11081508 DOI: 10.1371/journal.ppat.1011939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/09/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
Epstein-Barr virus (EBV) persistently infects 95% of adults worldwide and is associated with multiple human lymphomas that express characteristic EBV latency programs used by the virus to navigate the B-cell compartment. Upon primary infection, the EBV latency III program, comprised of six Epstein-Barr Nuclear Antigens (EBNA) and two Latent Membrane Protein (LMP) antigens, drives infected B-cells into germinal center (GC). By incompletely understood mechanisms, GC microenvironmental cues trigger the EBV genome to switch to the latency II program, comprised of EBNA1, LMP1 and LMP2A and observed in GC-derived Hodgkin lymphoma. To gain insights into pathways and epigenetic mechanisms that control EBV latency reprogramming as EBV-infected B-cells encounter microenvironmental cues, we characterized GC cytokine effects on EBV latency protein expression and on the EBV epigenome. We confirmed and extended prior studies highlighting GC cytokine effects in support of the latency II transition. The T-follicular helper cytokine interleukin 21 (IL-21), which is a major regulator of GC responses, and to a lesser extent IL-4 and IL-10, hyper-induced LMP1 expression, while repressing EBNA expression. However, follicular dendritic cell cytokines including IL-15 and IL-27 downmodulate EBNA but not LMP1 expression. CRISPR editing highlighted that STAT3 and STAT5 were necessary for cytokine mediated EBNA silencing via epigenetic effects at the EBV genomic C promoter. By contrast, STAT3 was instead necessary for LMP1 promoter epigenetic remodeling, including gain of activating histone chromatin marks and loss of repressive polycomb repressive complex silencing marks. Thus, EBV has evolved to coopt STAT signaling to oppositely regulate the epigenetic status of key viral genomic promoters in response to GC cytokine cues.
Collapse
Affiliation(s)
- Yifei Liao
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Integrated Solutions to Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jinjie Yan
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Integrated Solutions to Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Nina R. Beri
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Integrated Solutions to Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lisa Giulino-Roth
- Weill Cornell Medical College, New York, New York, United States of America
| | - Ethel Cesarman
- Weill Cornell Medical College, New York, New York, United States of America
| | - Benjamin E. Gewurz
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Integrated Solutions to Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Harvard Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
32
|
Racca NM, Dontu A, Riley K, Yolcu ES, Shirwan H, Coronel MM. Bending the Rules: Amplifying PD-L1 Immunoregulatory Function Through Flexible Polyethylene Glycol Synthetic Linkers. Tissue Eng Part A 2024; 30:299-313. [PMID: 38318841 DOI: 10.1089/ten.tea.2023.0274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
Immune checkpoint signaling, such as programmed cell death protein-1 (PD-1), is a key target for immunotherapy due to its role in dampening immune responses. PD-1 signaling in T cells is regulated by complex physicochemical and mechanical cues. However, how these mechanical forces are integrated with biochemical responses remains poorly understood. Our previous work demonstrated that the use of an immobilizing polyethylene glycol (PEG) linker on synthetic microgels for the presentation of a chimeric form of PD-L1, SA-PD-L1, lead to local regulatory responses capable of abrogating allograft rejection in a model of cell-based transplantation. We herein provide evidence that enhanced immune regulating function can be obtained when presentation of SA-PD-L1 is achieved through a longer more flexible PEG chain. Presentation of SA-PD-L1 through a linker of high molecular weight, and thus longer length (10 kDa, 60 nm in length), led to enhance conversion of naive T cells into T regulatory cells (Tregs) in vitro. In addition, using a subcutaneous implant model and protein tethered through three different linker sizes (6, 30, and 60 nm) to the surface of PEG hydrogels, we demonstrated that longer linkers promoted PD-1 immunomodulatory role in vivo through three main functions: (1) augmenting immune cell recruitment at the transplant site; (2) promoting the accumulation of naive Tregs expressing migratory markers; and (3) dampening CD8+ cytolytic molecule production while augmenting expression of exhaustion phenotypes locally. Notably, accumulation of Treg cells at the implant site persisted for over 30 days postimplantation, an effect not observed when protein was presented with the shorter version of the linkers (6 and 30 nm). Collectively, these studies reveal a facile approach by which PD-L1 function can be modulated through external tuning of synthetic presenting linkers. Impact statement Recently, there has been a growing interest in immune checkpoint molecules as potential targets for tolerance induction, including programmed cell death protein-1 (PD-1). However, how the mechanics of ligand binding to PD-1 receptor affect downstream activation signaling pathways remains unresolved. By taking advantage of the effect of polyethylene glycol chain length on molecule kinetics in an aqueous solution, we herein show that PD-L1 function can be amplified by adjusting the length of the grafting linker. Our results uncover a potential facile mechanism that can be exploited to advance the role of immune checkpoint ligands, in particular PD-L1, in tolerance induction for immunosuppression-free cell-based therapies.
Collapse
Affiliation(s)
- Nicole M Racca
- Department of Biomedical Engineering and Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
- Elizabeth Caswell Diabetes Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Alexander Dontu
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Kayle Riley
- Department of Biomedical Engineering and Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
- Elizabeth Caswell Diabetes Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Esma S Yolcu
- Department of Pediatrics and University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
| | - Haval Shirwan
- Department of Pediatrics and University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
- Associate Director, Immunomodulation and Regenerative Medicine Program, Ellis Fischel Cancer Center, Columbia, Missouri, USA
| | - María M Coronel
- Department of Biomedical Engineering and Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
- Elizabeth Caswell Diabetes Institute, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
33
|
Liu R, Li HF, Li S. PD-1-mediated inhibition of T cell activation: Mechanisms and strategies for cancer combination immunotherapy. CELL INSIGHT 2024; 3:100146. [PMID: 38425643 PMCID: PMC10901852 DOI: 10.1016/j.cellin.2024.100146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
The programmed cell death 1 (PD-1) immune checkpoint of co-inhibitory signaling plays crucial roles in controlling the magnitude and duration of T cell activation to limit tissue damage and maintain self-tolerance. Cancer cells hijack the co-inhibitory pathway and escape immune surveillance by overexpressing the PD-1 ligand PD-L1. Immune checkpoint inhibitors, such as PD-1 blocking antibody have been approved for tumor immunotherapy. However, not all patients can benefit from PD-1 monotherapy. Combination immunotherapy based on PD-1 axis blockade substantially improves clinical anti-tumor efficacy. In this review, we briefly summarize the current progress on the mechanisms of PD-1-mediated inhibition of T cell activation and strategies for cancer combination immunotherapy.
Collapse
Affiliation(s)
- Rui Liu
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan, 430071, China
- Medical Research Institute, Wuhan, 430071, China
- Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan, 430071, China
- Wuhan University, Wuhan, 430071, China
| | - Hui-Fang Li
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan, 430071, China
- Medical Research Institute, Wuhan, 430071, China
- Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan, 430071, China
- Wuhan University, Wuhan, 430071, China
| | - Shu Li
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan, 430071, China
- Medical Research Institute, Wuhan, 430071, China
- Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences, Wuhan, 430071, China
- Wuhan University, Wuhan, 430071, China
| |
Collapse
|
34
|
Tindall RR, Bailey-Lundberg JM, Cao Y, Ko TC. The TGF-β superfamily as potential therapeutic targets in pancreatic cancer. Front Oncol 2024; 14:1362247. [PMID: 38500662 PMCID: PMC10944957 DOI: 10.3389/fonc.2024.1362247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/15/2024] [Indexed: 03/20/2024] Open
Abstract
The transforming growth factor (TGF)-β superfamily has important physiologic roles and is dysregulated in many pathologic processes, including pancreatic cancer. Pancreatic cancer is one of the most lethal cancer diagnoses, and current therapies are largely ineffective due to tumor resistance and late-stage diagnosis with poor prognosis. Recent efforts are focused on the potential of immunotherapies in improving therapeutic results for patients with pancreatic cancer, among which TGF-β has been identified as a promising target. This review focuses on the role of TGF-β in the diseased pancreas and pancreatic cancer. It also aims to summarize the current status of therapies targeting the TGF-β superfamily and postulate potential future directions in targeting the TGF-β signaling pathways.
Collapse
Affiliation(s)
- Rachel R. Tindall
- McGovern Medical School, Department of Surgery, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jennifer M. Bailey-Lundberg
- McGovern Medical School, Department of Anesthesiology, Critical Care, and Pain Medicine, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Yanna Cao
- McGovern Medical School, Department of Surgery, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Tien C. Ko
- McGovern Medical School, Department of Surgery, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
35
|
Bak I, Choi M, Yu E, Yoo KW, Jeong SY, Lee J, Jo M, Moon KS, Yu DY. The Effects of Busulfan on Xenogeneic Transplantation of Human Peripheral Blood Mononuclear Cells in Recipient Mice. Transplant Proc 2024; 56:440-447. [PMID: 38368129 DOI: 10.1016/j.transproceed.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/28/2023] [Indexed: 02/19/2024]
Abstract
BACKGROUND Humanized mouse models with engraftment of human peripheral blood mononuclear cells (PBMCs) or hematopoietic stem cells (HSCs) are effective tools for the study of human immunity. Busulfan has been used as a substitute for irradiation in human hematopoietic stem cell (HSC) transplantation models, but it has not been tested in human peripheral blood mononuclear cell (PBMC) transplantation models. METHODS This study evaluated PBMC engraftment using cytometry and enzyme-linked immunosorbent assay (ELISA) in female NOD.CB17/Prkdcscid/JKrb/ IL2 receptor γ-/- (NIG) mice treated with busulfan. RESULTS In this model, the percentage of human CD3+ T cell engraftment in the blood was 28.2%, with dominant infiltration of CD8+ cells in the spleen 3 weeks post PBMC transplantation. Production of human cytokines, including Interleukin (IL)-12p70, IL-4, IL-5, IFN-γ, IL-6, IL-8, IL-22, Tumor Necrosis Factor alpha, and IL-10, was determined in mice treated with busulfan. CONCLUSIONS Our findings demonstrate that busulfan treatment is a beneficial alternative for simple and efficient PBMC engraftment in a rodent model, possibly helping to evaluate human immunity in preclinical studies.
Collapse
Affiliation(s)
- Inseon Bak
- GHBIO Inc. (Genes & Health Biotechnology), Yuseong-gu, Daejeon, Republic of Korea; Immunology and Immunopharmacology Laboratory, College of Pharmacy, Chungnam National University, Yuseong-gu, Daejeon, Republic of Korea
| | - Myeongjin Choi
- Korea Institute of Toxicology, Yuseong-gu, Daejeon, Republic of Korea
| | - Eunhye Yu
- GHBIO Inc. (Genes & Health Biotechnology), Yuseong-gu, Daejeon, Republic of Korea
| | - Kyeong-Won Yoo
- GHBIO Inc. (Genes & Health Biotechnology), Yuseong-gu, Daejeon, Republic of Korea
| | - Seo Yule Jeong
- Korea Institute of Toxicology, Yuseong-gu, Daejeon, Republic of Korea
| | - Jungyun Lee
- Korea Institute of Toxicology, Yuseong-gu, Daejeon, Republic of Korea
| | - Minseong Jo
- Korea Institute of Toxicology, Yuseong-gu, Daejeon, Republic of Korea
| | - Kyoung-Sik Moon
- Korea Institute of Toxicology, Yuseong-gu, Daejeon, Republic of Korea.
| | - Dae-Yeul Yu
- GHBIO Inc. (Genes & Health Biotechnology), Yuseong-gu, Daejeon, Republic of Korea.
| |
Collapse
|
36
|
Yang Y, Li J, Li D, Zhou W, Yan F, Wang W. Humanized mouse models: A valuable platform for preclinical evaluation of human cancer. Biotechnol Bioeng 2024; 121:835-852. [PMID: 38151887 DOI: 10.1002/bit.28618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/26/2023] [Indexed: 12/29/2023]
Abstract
Animal models are routinely employed to assess the treatments for human cancer. However, due to significant differences in genetic backgrounds, traditional animal models are unable to meet bioresearch needs. To overcome this restriction, researchers have generated and optimized immunodeficient mice, and then engrafted human genes, cells, tissues, or organs in mice so that the responses in the model mice could provide a more reliable reference for treatments. As a bridge connecting clinical application and basic research, humanized mice are increasingly used in the preclinical evaluation of cancer treatments, particularly after gene interleukin 2 receptor gamma mutant mice were generated. Human cancer models established in humanized mice support exploration of the mechanism of cancer occurrence and provide an efficient platform for drug screening. However, it is undeniable that the further application of humanized mice still faces multiple challenges. This review summarizes the construction approaches for humanized mice and their existing limitations. We also report the latest applications of humanized mice in preclinical evaluation for the treatment of cancer and point out directions for future optimization of these models.
Collapse
Affiliation(s)
- Yuening Yang
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jiaqian Li
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Li
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Weilin Zhou
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Feiyang Yan
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Wang
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
37
|
Qian X, Jin M, Bei Y, Zhou C, Fang S, Liu K. SLC20A1 is a prospective prognostic and therapy response predictive biomarker in head and neck squamous cell carcinoma. Aging (Albany NY) 2024; 16:4423-4444. [PMID: 38412319 PMCID: PMC10968711 DOI: 10.18632/aging.205597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 01/11/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND SLC20A1, a prominent biomarker in several cancers, has been understudied in its predictive role in head and neck squamous cell carcinoma (HNSCC). METHODS The Cancer Genome Atlas (TCGA) database was used to analyze HNSCC prognosis, SLC20A1 overexpression, and clinical characteristics. Quantitative real-time PCR and Western blot analysis confirmed SLC20A1 expression in HNSCC tissues. Cellular behaviors such as invasion, migration and proliferation were assessed using Transwell, wound healing and colony formation assays. Immune system data were obtained from the Tumor Immune Estimation Resource (TIMER) and CIBERSORT databases. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) were used to explore biological parameters and pathways associated with SLC20A1 overexpression in HNSCC. RESULTS In 499 HNSCC samples, SLC20A1 mRNA and protein expression were significantly higher than in 44 normal counterparts, confirmed by 24 paired samples. Patients were categorized based on SLC20A1 levels, survival status and overall survival. High SLC20A1 expression correlated with advanced T stage, increased risk scores and decreased survival. Stage, age and SLC20A1 expression emerged as independent predictive factors for HNSCC in univariate and multivariate analyses. SLC20A1 overexpression, which is associated with poor prognosis, may influence cell proliferation, migration, invasion, chemotherapy response, and the immune milieu. CONCLUSIONS SLC20A1 overexpression in HNSCC, characterized by increased cellular invasion, migration and proliferation, is a potential prognostic biomarker and therapeutic response indicator.
Collapse
Affiliation(s)
- Xiajing Qian
- Department of Radiation Oncology, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Ming Jin
- Department of Radiation Oncology, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Yanping Bei
- Department of Radiation Oncology, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Chongchang Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Shuai Fang
- Department of Thoracic Surgery, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Kaitai Liu
- Department of Radiation Oncology, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
38
|
Taheri M, Tehrani HA, Daliri F, Alibolandi M, Soleimani M, Shoari A, Arefian E, Ramezani M. Bioengineering strategies to enhance the interleukin-18 bioactivity in the modern toolbox of cancer immunotherapy. Cytokine Growth Factor Rev 2024; 75:65-80. [PMID: 37813764 DOI: 10.1016/j.cytogfr.2023.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023]
Abstract
Cytokines are the first modern immunotherapeutic agents used for activation immunotherapy. Interleukin-18 (IL-18) has emerged as a potent anticancer immunostimulatory cytokine over the past three decades. IL-18, structurally is a stable protein with very low toxicity at biological doses. IL-18 promotes the process of antigen presentation and also enhances innate and acquired immune responses. It can induce the production of proinflammatory cytokines and increase tumor infiltration of effector immune cells to revert the immunosuppressive milieu of tumors. Furthermore, IL-18 can reduce tumorigenesis, suppress tumor angiogenesis, and induce tumor cell apoptosis. These characteristics present IL-18 as a promising option for cancer immunotherapy. Although several preclinical studies have reported the immunotherapeutic potential of IL-18, clinical trials using it as a monotherapy agent have reported disappointing results. These results may be due to some biological characteristics of IL-18. Several bioengineering approaches have been successfully used to correct its defects as a bioadjuvant. Currently, the challenge with this anticancer immunotherapeutic agent is mainly how to use its capabilities in a rational combinatorial therapy for clinical applications. The present study discussed the strengths and weaknesses of IL-18 as an immunotherapeutic agent, followed by comprehensive review of various promising bioengineering approaches that have been used to overcome its disadvantages. Finally, this study highlights the promising application of IL-18 in modern combinatorial therapies, such as chemotherapy, immune checkpoint blockade therapy, cell-based immunotherapy and cancer vaccines to guide future studies, circumventing the barriers to administration of IL-18 for clinical applications, and bring it to fruition as a potent immunotherapy agent in cancer treatment.
Collapse
Affiliation(s)
- Mojtaba Taheri
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Abdul Tehrani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | | | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoud Soleimani
- Department of Hematology and Cell Therapy, Faculty of Medical Sciences, Tarbiat Modares University, Iran
| | - Alireza Shoari
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran; Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
39
|
Bonelli M, Kerschbaumer A, Kastrati K, Ghoreschi K, Gadina M, Heinz LX, Smolen JS, Aletaha D, O'Shea J, Laurence A. Selectivity, efficacy and safety of JAKinibs: new evidence for a still evolving story. Ann Rheum Dis 2024; 83:139-160. [PMID: 37923366 PMCID: PMC10850682 DOI: 10.1136/ard-2023-223850] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/18/2023] [Indexed: 11/07/2023]
Abstract
Fundamental insight gained over the last decades led to the discovery of cytokines as pivotal drivers of inflammatory diseases such as rheumatoid arthritis, psoriasis/psoriasis arthritis, inflammatory bowel diseases, atopic dermatitis and spondylarthritis. A deeper understanding of the pro-inflammatory and anti-inflammatory effects of various cytokines has prompted new cytokine-targeting therapies, which revolutionised the treatment options in the last years for patients with inflammatory disorders. Disease-associated immune responses typically involve a complex interplay of multiple cytokines. Therefore, blockade of one single cytokine does not necessarily lead to a persistent remission in all patients with inflammatory disorders and fostered new therapeutic strategies targeting intracellular pathways shared by multiple cytokines. By inhibiting JAK-STAT signalling pathways common to families of cytokines, JAK-inhibitors (JAKinibs) have created a new paradigm for the treatment of inflammatory diseases. Multiple agents have been approved for various disorders and more are being investigated for several new indications. Second-generation selective JAKinibs have been devised with the aim to achieve an increased selectivity and a possible reduced risk of side effects. In the current review, we will summarise the current body of evidence of pan versus selective JAKinibs and the most recent insights on new side effects and indications, including COVID-19.
Collapse
Affiliation(s)
- Michael Bonelli
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Andreas Kerschbaumer
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Kastriot Kastrati
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Kamran Ghoreschi
- Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Massimo Gadina
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Leonhard X Heinz
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Josef S Smolen
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Daniel Aletaha
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - John O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Arian Laurence
- Translational Gastroenterology Unit, Department of Haematology, University College Hospital, UCLH Hospitals NHS Trust, University of Oxford, Oxford, UK
| |
Collapse
|
40
|
Ma M, Xie Y, Liu J, Wu L, Liu Y, Qin X. Biological effects of IL-21 on immune cells and its potential for cancer treatment. Int Immunopharmacol 2024; 126:111154. [PMID: 37977064 DOI: 10.1016/j.intimp.2023.111154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/28/2023] [Accepted: 10/29/2023] [Indexed: 11/19/2023]
Abstract
Interleukin-21 (IL-21), a member of the IL-2 cytokine family, is one of the most important effector and messenger molecules in the immune system. Produced by various immune cells, IL-21 has pleiotropic effects on innate and adaptive immune responses via regulation of natural killer, T, and B cells. An anti-tumor role of IL-21 has also been reported in the literature, as it may support cell proliferation or on the contrary induce growth arrest or apoptosis of the tumor cell. Anti-tumor effect of IL-21 enhances when combined with other agents that target tumor cells, immune regulatory circuits, or other immune-enhancing molecules. Therefore, understanding the biology of IL-21 in the tumor microenvironment (TME) and reducing its systemic toxic and side effects is crucial to ensure the maximum benefits of anti-tumor treatment strategies. In this review, we provide a comprehensive overview on the biological functions, roles in tumors, and the recent advances in preclinical and clinical research of IL-21 in tumor immunotherapy.
Collapse
Affiliation(s)
- Meichen Ma
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanyuan Xie
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jianhua Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lina Wu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yong Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaosong Qin
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
41
|
Yifei L, Jinjie Y, Beri NR, Roth LG, Ethel C, Benjamin E. G. Germinal Center Cytokines Driven Epigenetic Control of Epstein-Barr Virus Latency Gene Expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.02.573986. [PMID: 38260430 PMCID: PMC10802360 DOI: 10.1101/2024.01.02.573986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Epstein-Barr virus (EBV) persistently infects 95% of adults worldwide and is associated with multiple human lymphomas that express characteristic EBV latency programs used by the virus to navigate the B-cell compartment. Upon primary infection, the EBV latency III program, comprised of six Epstein-Barr Nuclear Antigens (EBNA) and two Latent Membrane Protein (LMP) antigens, drives infected B-cells into germinal center (GC). By incompletely understood mechanisms, GC microenvironmental cues trigger the EBV genome to switch to the latency II program, comprised of EBNA1, LMP1 and LMP2A and observed in GC-derived Hodgkin lymphoma. To gain insights into pathways and epigenetic mechanisms that control EBV latency reprogramming as EBV-infected B-cells encounter microenvironmental cues, we characterized GC cytokine effects on EBV latency protein expression and on the EBV epigenome. We confirmed and extended prior studies highlighting GC cytokine effects in support of the latency II transition. The T-follicular helper cytokine interleukin 21 (IL-21), which is a major regulator of GC responses, and to a lesser extent IL-4 and IL-10, hyper-induced LMP1 expression, while repressing EBNA expression. However, follicular dendritic cell cytokines including IL-15 and IL-27 downmodulate EBNA but not LMP1 expression. CRISPR editing highlighted that STAT3 and STAT5 were necessary for cytokine mediated EBNA silencing via epigenetic effects at the EBV genomic C promoter. By contrast, STAT3 was instead necessary for LMP1 promoter epigenetic remodeling, including gain of activating histone chromatin marks and loss of repressive polycomb repressive complex silencing marks. Thus, EBV has evolved to coopt STAT signaling to oppositely regulate the epigenetic status of key viral genomic promoters in response to GC cytokine cues.
Collapse
Affiliation(s)
- Liao Yifei
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Center for Integrated Solutions to Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115
| | - Yan Jinjie
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Center for Integrated Solutions to Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115
| | - Nina R. Beri
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Center for Integrated Solutions to Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115
| | - Lisa G. Roth
- Weill Cornell Medical College, New York, NY 10065
| | | | - Gewurz Benjamin E.
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Center for Integrated Solutions to Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115
- Harvard Program in Virology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
42
|
Cui A, Huang T, Li S, Ma A, Pérez JL, Sander C, Keskin DB, Wu CJ, Fraenkel E, Hacohen N. Dictionary of immune responses to cytokines at single-cell resolution. Nature 2024; 625:377-384. [PMID: 38057668 PMCID: PMC10781646 DOI: 10.1038/s41586-023-06816-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 11/01/2023] [Indexed: 12/08/2023]
Abstract
Cytokines mediate cell-cell communication in the immune system and represent important therapeutic targets1-3. A myriad of studies have highlighted their central role in immune function4-13, yet we lack a global view of the cellular responses of each immune cell type to each cytokine. To address this gap, we created the Immune Dictionary, a compendium of single-cell transcriptomic profiles of more than 17 immune cell types in response to each of 86 cytokines (>1,400 cytokine-cell type combinations) in mouse lymph nodes in vivo. A cytokine-centric view of the dictionary revealed that most cytokines induce highly cell-type-specific responses. For example, the inflammatory cytokine interleukin-1β induces distinct gene programmes in almost every cell type. A cell-type-centric view of the dictionary identified more than 66 cytokine-driven cellular polarization states across immune cell types, including previously uncharacterized states such as an interleukin-18-induced polyfunctional natural killer cell state. Based on this dictionary, we developed companion software, Immune Response Enrichment Analysis, for assessing cytokine activities and immune cell polarization from gene expression data, and applied it to reveal cytokine networks in tumours following immune checkpoint blockade therapy. Our dictionary generates new hypotheses for cytokine functions, illuminates pleiotropic effects of cytokines, expands our knowledge of activation states of each immune cell type, and provides a framework to deduce the roles of specific cytokines and cell-cell communication networks in any immune response.
Collapse
Affiliation(s)
- Ang Cui
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Faculty of Medicine, Harvard University, Boston, MA, USA.
| | - Teddy Huang
- Translational Immunogenomics Lab, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Shuqiang Li
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Translational Immunogenomics Lab, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Aileen Ma
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jorge L Pérez
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Chris Sander
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- cBio Center, Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Derin B Keskin
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Translational Immunogenomics Lab, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Catherine J Wu
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ernest Fraenkel
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nir Hacohen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
43
|
Martin-Salgado M, Ochoa-Echeverría A, Mérida I. Diacylglycerol kinases: A look into the future of immunotherapy. Adv Biol Regul 2024; 91:100999. [PMID: 37949728 DOI: 10.1016/j.jbior.2023.100999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
Cancer still represents the second leading cause of death right after cardiovascular diseases. According to the World Health Organization (WHO), cancer provoked around 10 million deaths in 2020, with lung and colon tumors accounting for the deadliest forms of cancer. As tumor cells become resistant to traditional therapeutic approaches, immunotherapy has emerged as a novel strategy for tumor control. T lymphocytes are key players in immune responses against tumors. Immunosurveillance allows identification, targeting and later killing of cancerous cells. Nevertheless, tumors evolve through different strategies to evade the immune response and spread in a process called metastasis. The ineffectiveness of traditional strategies to control tumor growth and expansion has led to novel approaches considering modulation of T cell activation and effector functions. Program death receptor 1 (PD-1) and cytotoxic T-lymphocyte antigen 4 (CTLA-4) showed promising results in the early 90s and nowadays are still being exploited together with other drugs for several cancer types. Other negative regulators of T cell activation are diacylglycerol kinases (DGKs) a family of enzymes that catalyze the conversion of diacylglycerol (DAG) into phosphatidic acid (PA). In T cells, DGKα and DGKζ limit the PLCγ/Ras/ERK axis thus attenuating DAG mediated signaling and T cell effector functions. Upregulation of either of both isoforms results in impaired Ras activation and anergy induction, whereas germline knockdown mice showed enhanced antitumor properties and more effective immune responses against pathogens. Here we review the mechanisms used by DGKs to ameliorate T cell activation and how inhibition could be used to reinvigorate T cell functions in cancer context. A better knowledge of the molecular mechanisms involved upon T cell activation will help to improve current therapies with DAG promoting agents.
Collapse
Affiliation(s)
- Miguel Martin-Salgado
- Department of Immunology and Oncology. National Centre for Biotechnology. Spanish Research Council (CNB-CSIC), Spain
| | - Ane Ochoa-Echeverría
- Department of Immunology and Oncology. National Centre for Biotechnology. Spanish Research Council (CNB-CSIC), Spain
| | - Isabel Mérida
- Department of Immunology and Oncology. National Centre for Biotechnology. Spanish Research Council (CNB-CSIC), Spain.
| |
Collapse
|
44
|
Kim J, Ham J, Kang HR, Bae YS, Kim T, Kim HY. JAK3 inhibitor suppresses multipotent ILC2s and attenuates steroid-resistant asthma. SCIENCE ADVANCES 2023; 9:eadi3770. [PMID: 38117887 PMCID: PMC10732531 DOI: 10.1126/sciadv.adi3770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 11/17/2023] [Indexed: 12/22/2023]
Abstract
Steroids are the standard treatment for allergic airway inflammation in asthma, but steroid-refractory asthma poses a challenge. Group 2 innate lymphoid cells (ILC2s), such as T helper 2 (TH2) cells, produce key asthma-related type 2 cytokines. Recent insights from mouse and human studies indicate a potential connection between ILC2s and steroid-resistant asthma. Here, we highlight that lung ILC2s, rather than TH2 cells, can develop steroid resistance, allowing them to persist and maintain their disease-driving activity even during steroid treatment. The emergence of multipotent IL-5+IL-13+IL-17A+ ILC2s is associated with steroid-resistant ILC2s. The Janus kinase 3 (JAK3)/signal transducer and activator of transcription (STAT) 3, 5, and 6 pathways contribute to the acquisition of steroid-resistant ILC2s. The JAK3 inhibitor reduces ILC2 survival, proliferation, and cytokine production in vitro and ameliorates ILC2-driven Alternaria-induced asthma. Furthermore, combining a JAK3 inhibitor with steroids results in the inhibition of steroid-resistant asthma. These findings suggest a potential therapeutic approach for addressing this challenging condition in chronic asthma.
Collapse
Affiliation(s)
- Jihyun Kim
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, South Korea
| | - Jongho Ham
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, South Korea
- Department of Biological Sciences, SRC Center for Immune Research on Non-lymphoid Organs, Sungkyunkwan University, Suwon, South Korea
| | - Hye Ryun Kang
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, South Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Yong-Soo Bae
- Department of Biological Sciences, SRC Center for Immune Research on Non-lymphoid Organs, Sungkyunkwan University, Suwon, South Korea
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - TaeSoo Kim
- Department of Life Science, Multitasking Macrophage Research Center, Ewha Womans University, Seoul, South Korea
| | - Hye Young Kim
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, South Korea
- Department of Biological Sciences, SRC Center for Immune Research on Non-lymphoid Organs, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
45
|
Russell J, Chen L, Liu A, Wang J, Ghosh S, Zhong X, Shi H, Beutler B, Nair-Gill E. Lrp10 suppresses IL7R limiting CD8 T cell homeostatic expansion and anti-tumor immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.08.570738. [PMID: 38106103 PMCID: PMC10723380 DOI: 10.1101/2023.12.08.570738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Signals emanating from the T cell receptor (TCR), co-stimulatory receptors, and cytokine receptors each influence CD8 T cell fate. Understanding how these signals respond to homeostatic and microenvironmental cues can reveal new ways to therapeutically direct T cell function. Through forward genetic screening in mice, we discovered that loss-of-function mutations in LDL receptor related protein 10 ( Lrp10 ) caused naïve and central memory CD8 T cells to accumulate in peripheral lymphoid organs. Lrp10 encodes a conserved cell surface protein of unknown immunological function. Lrp10 was induced with T cell activation and its expression post-translationally suppressed IL7 receptor (IL7R) levels. Accordingly, Lrp10 deletion enhanced T cell homeostatic expansion through IL7R signaling. Lrp10 -deficient mice were also intrinsically resistant to syngeneic tumors. This phenotype depended on dense tumor infiltration of CD8 T cells that displayed increased memory cell characteristics, reduced terminal exhaustion, and augmented responses to immune checkpoint inhibition. Here, we present Lrp10 as a new negative regulator of CD8 T cell homeostasis and a host factor that controls tumor resistance with implications for immunotherapy.
Collapse
|
46
|
Liu R, Zeng LW, Li HF, Shi JG, Zhong B, Shu HB, Li S. PD-1 signaling negatively regulates the common cytokine receptor γ chain via MARCH5-mediated ubiquitination and degradation to suppress anti-tumor immunity. Cell Res 2023; 33:923-939. [PMID: 37932447 PMCID: PMC10709454 DOI: 10.1038/s41422-023-00890-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/16/2023] [Indexed: 11/08/2023] Open
Abstract
Combination therapy with PD-1 blockade and IL-2 substantially improves anti-tumor efficacy comparing to monotherapy. The underlying mechanisms responsible for the synergistic effects of the combination therapy remain enigmatic. Here we show that PD-1 ligation results in BATF-dependent transcriptional induction of the membrane-associated E3 ubiquitin ligase MARCH5, which mediates K27-linked polyubiquitination and lysosomal degradation of the common cytokine receptor γ chain (γc). PD-1 ligation also activates SHP2, which dephosphorylates γcY357, leading to impairment of γc family cytokine-triggered signaling. Conversely, PD-1 blockade restores γc level and activity, thereby sensitizing CD8+ T cells to IL-2. We also identified Pitavastatin Calcium as an inhibitor of MARCH5, which combined with PD-1 blockade and IL-2 significantly improves the efficacy of anti-tumor immunotherapy in mice. Our findings uncover the mechanisms by which PD-1 signaling antagonizes γc family cytokine-triggered immune activation and demonstrate that the underlying mechanisms can be exploited for increased efficacy of combination immunotherapy of cancer.
Collapse
Affiliation(s)
- Rui Liu
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism; Medical Research Institute; Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences; Wuhan University, Wuhan, Hubei, China
| | - Lin-Wen Zeng
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism; Medical Research Institute; Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences; Wuhan University, Wuhan, Hubei, China
| | - Hui-Fang Li
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism; Medical Research Institute; Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences; Wuhan University, Wuhan, Hubei, China
| | - Jun-Ge Shi
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism; Medical Research Institute; Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences; Wuhan University, Wuhan, Hubei, China
| | - Bo Zhong
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism; Medical Research Institute; Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences; Wuhan University, Wuhan, Hubei, China
| | - Hong-Bing Shu
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism; Medical Research Institute; Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences; Wuhan University, Wuhan, Hubei, China.
| | - Shu Li
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism; Medical Research Institute; Research Unit of Innate Immune and Inflammatory Diseases (2019RU063), Chinese Academy of Medical Sciences; Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
47
|
Stakišaitis D, Kapočius L, Kilimaitė E, Gečys D, Šlekienė L, Balnytė I, Palubinskienė J, Lesauskaitė V. Preclinical Study in Mouse Thymus and Thymocytes: Effects of Treatment with a Combination of Sodium Dichloroacetate and Sodium Valproate on Infectious Inflammation Pathways. Pharmaceutics 2023; 15:2715. [PMID: 38140056 PMCID: PMC10747708 DOI: 10.3390/pharmaceutics15122715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/17/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
The research presents data from a preclinical study on the anti-inflammatory effects of a sodium dichloroacetate and sodium valproate combination (DCA-VPA). The 2-week treatment with a DCA 100 mg/kg/day and VPA 150 mg/kg/day combination solution in drinking water's effects on the thymus weight, its cortex/medulla ratio, Hassall's corpuscles (HCs) number in the thymus medulla, and the expression of inflammatory and immune-response-related genes in thymocytes of male Balb/c mice were studied. Two groups of mice aged 6-7 weeks were investigated: a control (n = 12) and a DCA-VPA-treated group (n = 12). The treatment did not affect the body weight gain (p > 0.05), the thymus weight (p > 0.05), the cortical/medulla ratio (p > 0.05), or the number of HCs (p > 0.05). Treatment significantly increased the Slc5a8 gene expression by 2.1-fold (p < 0.05). Gene sequence analysis revealed a significant effect on the expression of inflammation-related genes in thymocytes by significantly altering the expression of several genes related to the cytokine activity pathway, the inflammatory response pathway, and the Il17 signaling pathway in thymocytes. Data suggest that DCA-VPA exerts an anti-inflammatory effect by inhibiting the inflammatory mechanisms in the mouse thymocytes.
Collapse
Affiliation(s)
- Donatas Stakišaitis
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.K.); (L.Š.); (I.B.); (J.P.)
- Laboratory of Molecular Oncology, National Cancer Institute, 08660 Vilnius, Lithuania
| | - Linas Kapočius
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.K.); (L.Š.); (I.B.); (J.P.)
| | - Evelina Kilimaitė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.K.); (L.Š.); (I.B.); (J.P.)
| | - Dovydas Gečys
- Laboratory of Molecular Cardiology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu Ave., 50161 Kaunas, Lithuania;
| | - Lina Šlekienė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.K.); (L.Š.); (I.B.); (J.P.)
| | - Ingrida Balnytė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.K.); (L.Š.); (I.B.); (J.P.)
| | - Jolita Palubinskienė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.K.); (L.Š.); (I.B.); (J.P.)
| | - Vaiva Lesauskaitė
- Laboratory of Molecular Cardiology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu Ave., 50161 Kaunas, Lithuania;
| |
Collapse
|
48
|
Lee SY, Lee DH, Sun W, Cervantes-Contreras F, Basom RS, Wu F, Liu S, Rai R, Mirzaei HR, O'Steen S, Green DJ, Shadman M, Till BG. CD8 + chimeric antigen receptor T cells manufactured in absence of CD4 + cells exhibit hypofunctional phenotype. J Immunother Cancer 2023; 11:e007803. [PMID: 38251688 PMCID: PMC10660840 DOI: 10.1136/jitc-2023-007803] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND Cell culture conditions during manufacturing can impact the clinical efficacy of chimeric antigen receptor (CAR) T cell products. Production methods have not been standardized because the optimal approach remains unknown. Separate CD4+ and CD8+ cultures offer a potential advantage but complicate manufacturing and may affect cell expansion and function. In a phase 1/2 clinical trial, we observed poor expansion of separate CD8+ cell cultures and hypothesized that coculture of CD4+ cells and CD8+ cells at a defined ratio at culture initiation would enhance CD8+ cell expansion and simplify manufacturing. METHODS We generated CAR T cells either as separate CD4+ and CD8+ cells, or as combined cultures mixed in defined CD4:CD8 ratios at culture initiation. We assessed CAR T cell expansion, phenotype, function, gene expression, and in vivo activity of CAR T cells and compared these between separately expanded or mixed CAR T cell cultures. RESULTS We found that the coculture of CD8+ CAR T cells with CD4+ cells markedly improves CD8+ cell expansion, and further discovered that CD8+ cells cultured in isolation exhibit a hypofunctional phenotype and transcriptional signature compared with those in mixed cultures with CD4+ cells. Cocultured CAR T cells also confer superior antitumor activity in vivo compared with separately expanded cells. The positive impact of CD4+ cells on CD8+ cells was mediated through both cytokines and direct cell contact, including CD40L-CD40 and CD70-CD27 interactions. CONCLUSIONS Our data indicate that CD4+ cell help during cell culture maintains robust CD8+ CAR T cell function, with implications for clinical cell manufacturing.
Collapse
Affiliation(s)
- Sang Yun Lee
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Dong Hoon Lee
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Wei Sun
- Public Health Science Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | | | - Ryan S Basom
- Genomics and Bioinformatics Shared Resource, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Feinan Wu
- Genomics and Bioinformatics Shared Resource, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Si Liu
- Public Health Science Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Richa Rai
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Hamid R Mirzaei
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Shyril O'Steen
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Damian J Green
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Mazyar Shadman
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Brian G Till
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
49
|
Shim JA, Lee SM, Jeong JW, Kim H, Son WJ, Park JH, Song P, Im SH, Bae S, Park JH, Jo Y, Hong C. NFAT1 and NFκB regulates expression of the common γ-chain cytokine receptor in activated T cells. Cell Commun Signal 2023; 21:309. [PMID: 37904191 PMCID: PMC10617197 DOI: 10.1186/s12964-023-01326-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/18/2023] [Indexed: 11/01/2023] Open
Abstract
INTRODUCTION Cytokines of the common γ chain (γc) family are critical for the development, differentiation, and survival of T lineage cells. Cytokines play key roles in immunodeficiencies, autoimmune diseases, allergies, and cancer. Although γc is considered an assistant receptor to transmit cytokine signals and is an indispensable receptor in the immune system, its regulatory mechanism is not yet well understood. OBJECTIVE This study focused on the molecular mechanisms that γc expression in T cells is regulated under T cell receptor (TCR) stimulation. METHODS The γc expression in TCR-stimulated T cells was determined by flow cytometry, western blot and quantitative RT-PCR. The regulatory mechanism of γc expression in activated T cells was examined by promoter-luciferase assay and chromatin immunoprecipitation assays. NFAT1 and NFκB deficient cells generated using CRISPR-Cas9 and specific inhibitors were used to examine their role in regulation of γc expression. Specific binding motif was confirmed by γc promotor mutant cells generated using CRISPR-Cas9. IL-7TgγcTg mice were used to examine regulatory role of γc in cytokine signaling. RESULTS We found that activated T cells significantly upregulated γc expression, wherein NFAT1 and NFκB were key in transcriptional upregulation via T cell receptor stimulation. Also, we identified the functional binding site of the γc promoter and the synergistic effect of NFAT1 and NFκB in the regulation of γc expression. Increased γc expression inhibited IL-7 signaling and rescued lymphoproliferative disorder in an IL-7Tg animal model, providing novel insights into T cell homeostasis. CONCLUSION Our results indicate functional cooperation between NFAT1 and NFκB in upregulating γc expression in activated T cells. As γc expression also regulates γc cytokine responsiveness, our study suggests that γc expression should be considered as one of the regulators in γc cytokine signaling and the development of T cell immunotherapies. Video Abstract.
Collapse
Affiliation(s)
- Ju A Shim
- Department of Anatomy, Pusan National University School of Medicine, Room 504, 49 Busandaehak-Ro, Yangsan, Gyeongsangnam-Do, 50612, South Korea
- Department of Convergence Medical Science, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
| | - So Min Lee
- Department of Anatomy, Pusan National University School of Medicine, Room 504, 49 Busandaehak-Ro, Yangsan, Gyeongsangnam-Do, 50612, South Korea
- Department of Convergence Medical Science, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
- PNU GRAND Convergence Medical Science Education Research Center, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
| | - Jin Woo Jeong
- Department of Anatomy, Pusan National University School of Medicine, Room 504, 49 Busandaehak-Ro, Yangsan, Gyeongsangnam-Do, 50612, South Korea
- Department of Convergence Medical Science, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
- PNU GRAND Convergence Medical Science Education Research Center, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
| | - Hyori Kim
- Department of Anatomy, Pusan National University School of Medicine, Room 504, 49 Busandaehak-Ro, Yangsan, Gyeongsangnam-Do, 50612, South Korea
- Department of Convergence Medical Science, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
- PNU GRAND Convergence Medical Science Education Research Center, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
| | - Woo Jae Son
- Department of Chemistry, Hanyang University, Seoul, 04763, Republic of Korea
| | - Jun Hong Park
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, 58245, Republic of Korea
- University of Science & Technology (UST), KIOM Campus, Korean Convergence Medicine Major, Daejeon, 34054, Republic of Korea
| | - Parkyong Song
- Department of Convergence Medical Science, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
- PNU GRAND Convergence Medical Science Education Research Center, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea
| | - Sin-Hyeog Im
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Sangsu Bae
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jung-Hyun Park
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Yuna Jo
- Department of Convergence Medical Science, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea.
- Department of Anatomy, Pusan National University School of Medicine, Room 515, 49 Busandaehak-Ro, Yangsan, Gyeongsangnam-Do, 50612, South Korea.
| | - Changwan Hong
- Department of Anatomy, Pusan National University School of Medicine, Room 504, 49 Busandaehak-Ro, Yangsan, Gyeongsangnam-Do, 50612, South Korea.
- Department of Convergence Medical Science, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea.
- PNU GRAND Convergence Medical Science Education Research Center, Pusan National University School of Medicine, Yangsan, 50612, Republic of Korea.
| |
Collapse
|
50
|
Li Q, Yang Z, Ling X, Ye J, Wu J, Wang Y, Yao C, Zheng J. Correlation Analysis of Prognostic Gene Expression, Tumor Microenvironment, and Tumor-Infiltrating Immune Cells in Ovarian Cancer. DISEASE MARKERS 2023; 2023:9672158. [PMID: 37841886 PMCID: PMC10575750 DOI: 10.1155/2023/9672158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/24/2023] [Accepted: 09/07/2023] [Indexed: 10/17/2023]
Abstract
Objective Tumor microenvironment (TME) research can provide a crucial direction for the innovation and continuous improvement of novel biologic therapies for cancer. This study examined the relationship between the TME, expression profiles of the tumor-infiltrating immune cell, and prognostic gene expression in ovarian cancer (OC). Materials and Methods Screening of CD3E, CD3G, CD2, CD3D, CCL19, and IL2RG was performed using the bioinformatics methods. Results All six genes were found to participate in immune-related molecular mechanisms and could regulate the expression of tumor-infiltrating cells. A Kaplan-Meier survival analysis results demonstrated a strong association between overall survival and all gene expressions in patients with OC. CIBERSORT analysis results showed that the expression level of all genes was positively correlated with γδ T cell proportions. Conclusion Therefore, in the OC microenvironment, CD3E, CD3G, CD2, CD3D, CCL19, and IL2RG can be potential immunotherapy targets and prognostic markers.
Collapse
Affiliation(s)
- Qing Li
- Guangxi University of Chinese Medicine, Nanning 530000, Guangxi, China
| | - Zongjing Yang
- Guangxi University of Chinese Medicine, Nanning 530000, Guangxi, China
| | - Xingqing Ling
- Guangxi University of Chinese Medicine, Nanning 530000, Guangxi, China
| | - Junming Ye
- Guangxi University of Chinese Medicine, Nanning 530000, Guangxi, China
| | - Jiaying Wu
- Guangxi University of Chinese Medicine, Nanning 530000, Guangxi, China
| | - Yu Wang
- Department of Geriatrics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530011, Guangxi, China
| | - Chun Yao
- Guangxi University of Chinese Medicine, Nanning 530000, Guangxi, China
| | - Jinghui Zheng
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530011, Guangxi, China
| |
Collapse
|