1
|
Cyr Y, Gourvest M, Ciabattoni GO, Zhang T, Newman AA, Zahr T, Delbare S, Schlamp F, Dittmann M, Moore KJ, van Solingen C. lncRNA CARINH regulates expression and function of innate immune transcription factor IRF1 in macrophages. Life Sci Alliance 2025; 8:e202403021. [PMID: 39773901 PMCID: PMC11707381 DOI: 10.26508/lsa.202403021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/27/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025] Open
Abstract
The discovery of long non-coding RNAs (lncRNAs) has provided a new perspective on the centrality of RNA in gene regulation and genome organization. Here, we screened for lncRNAs with putative functions in the host response to single-stranded RNA respiratory viruses. We identify CARINH as a conserved cis-acting lncRNA up-regulated in three respiratory diseases to control the expression of its antisense gene IRF1, a key transcriptional regulator of the antiviral response. CARINH and IRF1 are coordinately increased in the circulation of patients infected with human metapneumovirus, influenza A virus, or SARS-CoV-2, and in macrophages in response to viral infection or TLR3 agonist treatment. Targeted depletion of CARINH or its mouse ortholog Carinh in macrophages reduces the expression of IRF1/Irf1 and their associated target gene networks, increasing susceptibility to viral infection. Accordingly, CRISPR-mediated deletion of Carinh in mice reduces antiviral immunity, increasing viral burden upon sublethal challenge with influenza A virus. Together, these findings identify a conserved role of lncRNA CARINH in coordinating interferon-stimulated genes and antiviral immune responses.
Collapse
Affiliation(s)
- Yannick Cyr
- https://ror.org/0190ak572 Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Morgane Gourvest
- https://ror.org/0190ak572 Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Grace O Ciabattoni
- https://ror.org/0190ak572 Department of Microbiology, New York University Langone Health, New York, NY, USA
| | - Tracy Zhang
- https://ror.org/0190ak572 Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Alexandra Ac Newman
- https://ror.org/0190ak572 Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Tarik Zahr
- https://ror.org/0190ak572 Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Sofie Delbare
- https://ror.org/0190ak572 Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Florencia Schlamp
- https://ror.org/0190ak572 Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Meike Dittmann
- https://ror.org/0190ak572 Department of Microbiology, New York University Langone Health, New York, NY, USA
| | - Kathryn J Moore
- https://ror.org/0190ak572 Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA
- https://ror.org/0190ak572 Department of Cell Biology, New York University Langone Health, New York, NY, USA
| | - Coen van Solingen
- https://ror.org/0190ak572 Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
2
|
Pozdnyakova V, Weber B, Cheng S, Ebinger JE. Review of Immunologic Manifestations of COVID-19 Infection and Vaccination. Rheum Dis Clin North Am 2025; 51:111-121. [PMID: 39550100 DOI: 10.1016/j.rdc.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2024]
Abstract
We herein summarize currently available and clinically relevant information regarding the human immune responses to SARS-CoV-2 infection and vaccination, in relation to COVID-19 outcomes with a focus on acute respiratory distress syndrome (ARDS) and myocarditis.
Collapse
Affiliation(s)
- Valeriya Pozdnyakova
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, D4005, Los Angeles, CA 90048, USA
| | - Brittany Weber
- Carl J. and Ruth Shapiro Cardiovascular Center, Brigham and Women's Hospital, 70 Francis Street, Boston, MA 02115, USA
| | - Susan Cheng
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, 127 South Vicente Boulevard, Suite A3100, Los Angeles, CA 90048, USA
| | - Joseph E Ebinger
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, 127 South Vicente Boulevard, Suite A3100, Los Angeles, CA 90048, USA.
| |
Collapse
|
3
|
Titusson C, Jansson L, Modin C, Lundmark A, Eriksson K, Adler L, Yucel‐Lindberg T. Salivary Inflammatory Mediator Profiles in Periodontal and Peri-Implant Health and Disease: A Cross-Sectional Study. Clin Implant Dent Relat Res 2025; 27:e70002. [PMID: 39876538 PMCID: PMC11775428 DOI: 10.1111/cid.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 01/30/2025]
Abstract
OBJECTIVE This cross-sectional study aimed to investigate the salivary profile of inflammatory mediators in individuals with periodontal and peri-implant disease as compared to individuals with periodontal and peri-implant health. MATERIALS AND METHODS Saliva samples were collected from 155 participants (mean age 63.3 ± 11.4 years), comprising individuals with periodontal and peri-implant health (N = 41), gingivitis and/or mucositis (N = 18), and periodontitis and/or peri-implantitis (N = 96). Samples were analyzed using multiplex-immunoassay panel consisting of inflammatory mediators in the tumor necrosis factor (TNF), interferon (IFN), interleukin (IL) superfamily, and matrix metalloproteinases. RESULTS The levels of B-cell activating factor (BAFF), sIL-6Rβ, IFN-β, and sIL-6Rα, sTNFR1, and Pentraxin-3 were significantly higher in patients with periodontitis and/or peri-implantitis compared to healthy subjects. Furthermore, among the investigated inflammatory mediators, Pentraxin-3 exhibited the highest diagnostic potential (AUC = 0.74) for distinguishing between subjects with periodontitis and/or peri-implantitis and healthy individuals. CONCLUSIONS Our findings demonstrated elevated salivary levels of BAFF, sIL-6Rβ, IFN-β, sIL-6Rα, sTNF-R1, and Pentraxin-3 in individuals with periodontitis and/or peri-implantitis in comparison to periodontal and peri-implant healthy controls.
Collapse
Affiliation(s)
- Carl Titusson
- Department of Dental Medicine, Division of Pediatric DentistryKarolinska InstitutetHuddingeSweden
| | - Leif Jansson
- Department of Dental Medicine, Division of PeriodontologyKarolinska InstitutetHuddingeSweden
- Folktandvården EastmaninstitutetStockholmSweden
| | - Carolina Modin
- Department of Dental Medicine, Division of PeriodontologyKarolinska InstitutetHuddingeSweden
- Folktandvården EastmaninstitutetStockholmSweden
| | - Anna Lundmark
- Department of Dental Medicine, Division of Pediatric DentistryKarolinska InstitutetHuddingeSweden
| | - Kaja Eriksson
- Department of Dental Medicine, Division of Pediatric DentistryKarolinska InstitutetHuddingeSweden
| | - Lottie Adler
- Department of Dental Medicine, Division of PeriodontologyKarolinska InstitutetHuddingeSweden
- Folktandvården EastmaninstitutetStockholmSweden
| | - Tülay Yucel‐Lindberg
- Department of Dental Medicine, Division of Pediatric DentistryKarolinska InstitutetHuddingeSweden
| |
Collapse
|
4
|
Kravets E, Poschmann G, Hänsch S, Raba V, Weidtkamp-Peters S, Degrandi D, Stühler K, Pfeffer K. mGBP2 engages Galectin-9 for immunity against Toxoplasma gondii. PLoS One 2025; 20:e0316209. [PMID: 39854420 PMCID: PMC11761162 DOI: 10.1371/journal.pone.0316209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/06/2024] [Indexed: 01/26/2025] Open
Abstract
Guanylate binding proteins (GBPs) are large interferon-inducible GTPases, executing essential host defense activities against Toxoplasma gondii, an invasive intracellular apicomplexan protozoan parasite of global importance. T. gondii establishes a parasitophorous vacuole (PV) which shields the parasite from the host's intracellular defense mechanisms. Murine GBPs (mGBPs) recognize T. gondii PVs and assemble into supramolecular mGBP homo- and heterocomplexes that are required for the disruption of the membrane of PVs eventually resulting in the cell-autonomous immune control of vacuole-resident pathogens. We have previously shown that mGBP2 plays an important role in T. gondii immune control. Here, to unravel mGBP2 functions, we report Galectin-9 (Gal9) as a critical mGBP2 interaction partner engaged for immunity to T. gondii. Interestingly, Gal9 also accumulates and colocalizes with mGBP2 at the T. gondii PV. Furthermore, we could prove the requirement of Gal9 for growth control of T. gondii by CRISPR/Cas9 mediated gene editing. These discoveries clearly indicate that Gal9 is a crucial factor for the mGBP2-coordinated cell-autonomous host defense mechanism against T. gondii.
Collapse
Affiliation(s)
- Elisabeth Kravets
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Gereon Poschmann
- Institute of Molecular Medicine, Proteome Research, Medical Faculty and University Hospital, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Sebastian Hänsch
- Center of Advanced Imaging, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Veronica Raba
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | - Daniel Degrandi
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Kai Stühler
- Institute of Molecular Medicine, Proteome Research, Medical Faculty and University Hospital, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Molecular Proteomics Laboratory, Biological and Medical Research Centre (BMFZ), Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Klaus Pfeffer
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
5
|
Zhang R, Zheng H. Luciferase Reporter Assay for Determining the Signaling Activity of Interferons. Methods Mol Biol 2025; 2854:19-28. [PMID: 39192114 DOI: 10.1007/978-1-0716-4108-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The classic dual luciferase reporter assay has been widely used to rapidly and accurately determine the transcriptional activity of a given promoter induced by certain signal pathways in the cells. In particular, the sensitive characteristics of luciferase highlight its significance in many experiments, such as weak promoter analysis, transfection studies using small amounts of DNA, and detection in cell lines with low transfection efficiency. This chapter presents detailed information and experimental procedures for measuring interferon (IFN)-induced Interferon-Stimulated Response Element (ISRE) promoter activity using the dual luciferase reporter assay.
Collapse
Affiliation(s)
- Renxia Zhang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Hui Zheng
- Institute/Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| |
Collapse
|
6
|
Zhao D, Zhuang J, Wang L, Wu L, Xu W, Zhao L, Hong J, Jin W, Miao C. Unveiling Key Biomarkers and Mechanisms in Septic Cardiomyopathy: A Comprehensive Transcriptome Analysis. J Inflamm Res 2024; 17:11451-11467. [PMID: 39735900 PMCID: PMC11675370 DOI: 10.2147/jir.s486763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 12/14/2024] [Indexed: 12/31/2024] Open
Abstract
Purpose Septic cardiomyopathy (SCM) is a significant global public health concern characterized by substantial morbidity and mortality, which has not been improved for decades due to lack of early diagnosis and effective therapies. This study aimed to identify hub biomarkers in SCM and explore their potential mechanisms. Methods We utilized the GSE53007 and GSE207363 datasets for transcriptome analysis of normal and SCM mice. Hub biomarkers were identified through a protein-protein interaction (PPI) network and validated using LPS-treated C57/BL6 mice. Functional enrichment analysis was performed to uncover relevant signaling pathways, while single-cell RNA sequencing was used to examine key genes and regulatory mechanisms associated with SCM. Results A total of 374 differentially expressed genes (DEGs) were identified, with 268 genes up-regulated and 106 genes down-regulated. Functional enrichment highlighted chemokine activity and receptor binding, with KEGG pathways revealing significant involvement of the TNF and IL-7 signaling pathways. Deterioration of cardiac function, elevated inflammatory markers such as IL-1β, IL-6, and increased cardiac injury biomarkers such as cTnI indicated the successful establishment of our SCM model. Subsequently, qPCR was conducted to validate the expression of the top 10 genes, through which we identified Cd40, Tlr2, Cxcl10, Ccl5, Cxcl1, Cd14, Gbp2, Ifit2, and Vegfa as key biomarkers. Single-cell sequencing indicated increased neutrophil and macrophage populations, with decreased B cells and cardiomyocytes. Additionally, transcription regulators Irf1 and Stat1 were found to potentially regulate the expression of Gbp2, Cxcl10, Ccl5, and Cd40, linking SCM to immune response, ferroptosis, pyroptosis, cuproptosis, and m6A RNA methylation modification. Conclusion This study identified nine hub biomarkers and two transcription regulators associated with SCM. Exploring the connections between SCM and immunity, ferroptosis, pyroptosis, cuproptosis, and m6A RNA methylation might provide insights into the underlying mechanisms. These findings enhanced our understanding of SCM's underlying mechanisms and might pave the way for novel therapeutic strategies to improve clinical outcomes.
Collapse
Affiliation(s)
- Dandan Zhao
- Department of Internal and Emergency Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Department of Emergency Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Jinqiang Zhuang
- Department of Emergency Intensive Care Unit (EICU), Affiliated Hospital of Yangzhou University, Yangzhou, People’s Republic of China
| | - Liping Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Lili Wu
- Department of Cardiology, Shanghai Songjiang District Central Hospital, Shanghai, People’s Republic of China
| | - Wangjie Xu
- Laboratory Animal Center, Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Lu Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Jiang Hong
- Department of Internal and Emergency Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Wei Jin
- Department of Internal and Emergency Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Congliang Miao
- Department of Internal and Emergency Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
7
|
Gillenwater LA, Galbraith MD, Rachubinski AL, Eduthan NP, Sullivan KD, Espinosa JM, Costello JC. Integrated analysis of immunometabolic interactions in Down syndrome. SCIENCE ADVANCES 2024; 10:eadq3073. [PMID: 39671500 PMCID: PMC11641111 DOI: 10.1126/sciadv.adq3073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 11/05/2024] [Indexed: 12/15/2024]
Abstract
Down syndrome (DS), caused by trisomy 21 (T21), results in immune and metabolic dysregulation. People with DS experience co-occurring conditions at higher rates than the euploid population. However, the interplay between immune and metabolic alterations and the clinical manifestations of DS are poorly understood. Here, we report an integrated analysis of immunometabolic pathways in DS. Using multi-omics data, we infered cytokine-metabolite relationships mediated by specific transcriptional programs. We observed increased mediation of immunometabolic interactions in those with DS compared to euploid controls by genes in interferon response, heme metabolism, and oxidative phosphorylation. Unsupervised clustering of immunometabolic relationships in people with DS revealed subgroups with different frequencies of co-occurring conditions. Across the subgroups, we observed distinct mediation by DNA repair, Hedgehog signaling, and angiogenesis. The molecular stratification associates with the clinical heterogeneity observed in DS, suggesting that integrating multiple omic profiles reveals axes of coordinated dysregulation specific to DS co-occurring conditions.
Collapse
Affiliation(s)
- Lucas A. Gillenwater
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Computational Bioscience Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Matthew D. Galbraith
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Angela L. Rachubinski
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pediatrics, Section of Developmental Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Neetha Paul Eduthan
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kelly D. Sullivan
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Joaquin M. Espinosa
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - James C. Costello
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Computational Bioscience Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
8
|
Torelli F, da Fonseca DM, Butterworth SW, Young JC, Treeck M. Paracrine rescue of MYR1-deficient Toxoplasma gondii mutants reveals limitations of pooled in vivo CRISPR screens. eLife 2024; 13:RP102592. [PMID: 39654402 PMCID: PMC11630813 DOI: 10.7554/elife.102592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Toxoplasma gondii is an intracellular parasite that subverts host cell functions via secreted virulence factors. Up to 70% of parasite-controlled changes in the host transcriptome rely on the MYR1 protein, which is required for the translocation of secreted proteins into the host cell. Mice infected with MYR1 knock-out (KO) strains survive infection, supporting a paramount function of MYR1-dependent secreted proteins in Toxoplasma virulence and proliferation. However, we have previously shown that MYR1 mutants have no growth defect in pooled in vivo CRISPR-Cas9 screens in mice, suggesting that the presence of parasites that are wild-type at the myr1 locus in pooled screens can rescue the phenotype. Here, we demonstrate that MYR1 is not required for the survival in IFN-γ-activated murine macrophages, and that parasites lacking MYR1 are able to expand during the onset of infection. While ΔMYR1 parasites have restricted growth in single-strain murine infections, we show that the phenotype is rescued by co-infection with wild-type (WT) parasites in vivo, independent of host functional adaptive immunity or key pro-inflammatory cytokines. These data show that the major function of MYR1-dependent secreted proteins is not to protect the parasite from clearance within infected cells. Instead, MYR-dependent proteins generate a permissive niche in a paracrine manner, which rescues ΔMYR1 parasites within a pool of CRISPR mutants in mice. Our results highlight an important limitation of otherwise powerful in vivo CRISPR screens and point towards key functions for MYR1-dependent Toxoplasma-host interactions beyond the infected cell.
Collapse
Affiliation(s)
- Francesca Torelli
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
- Host-Pathogen Interactions Laboratory, Gulbenkian Institute for Molecular MedicineOeirasPortugal
| | - Diogo M da Fonseca
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
- Host-Pathogen Interactions Laboratory, Gulbenkian Institute for Molecular MedicineOeirasPortugal
| | - Simon W Butterworth
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
- Whitehead Institute, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Joanna C Young
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
- Institute of Immunology and Infection Research, University of EdinburghEdinburghUnited Kingdom
| | - Moritz Treeck
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick InstituteLondonUnited Kingdom
- Host-Pathogen Interactions Laboratory, Gulbenkian Institute for Molecular MedicineOeirasPortugal
| |
Collapse
|
9
|
Dowell W, Dearborn J, Languon S, Miller Z, Kirch T, Paige S, Garvin O, Kjendal L, Harby E, Zuchowski AB, Clark E, Lescieur-Garcia C, Vix J, Schumer A, Mistri SK, Snoke DB, Doiron AL, Freeman K, Toth MJ, Poynter ME, Boyson JE, Majumdar D. Distinct Inflammatory Programs Underlie the Intramuscular Lipid Nanoparticle Response. ACS NANO 2024. [PMID: 39563529 DOI: 10.1021/acsnano.4c08490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Developments in mRNA/lipid nanoparticle (LNP) technology have advanced the fields of vaccinology and gene therapy, raising questions about immunogenicity. While some mRNA/LNPs generate an adjuvant-like environment in muscle tissue, other mRNA/LNPs are distinct in their capacity for multiple rounds of therapeutic delivery. We evaluate the adjuvancy of components of mRNA/LNPs by phenotyping cellular infiltrate at injection sites, tracking uptake by immune cells, and assessing the inflammatory state. Delivery of 9 common, but chemically distinct, LNPs to muscle revealed two classes of inflammatory gene expression programs: inflammatory (Class A) and noninflammatory (Class B). We find that intramuscular injection with Class A, but not Class B, empty LNPs (eLNPs) induce robust neutrophil infiltration into muscle within 2 h and a diverse myeloid population within 24 h. Single-cell RNA sequencing revealed SM-102-mediated expression of inflammatory chemokines by myeloid infiltrates within muscle 1 day after injection. Surprisingly, we found direct transfection of muscle infiltrating myeloid cells and splenocytes 24 h after intramuscular mRNA/LNP administration. Transfected myeloid cells within the muscle exhibit an activated phenotype 24 h after injection. Similarly, directly transfected splenic lymphocytes and dendritic cells (DCs) are differentially activated by Class A or Class B containing mRNA/LNP. Within the splenic DC compartment, type II conventional DCs (cDC2s) are directly transfected and activated by Class A mRNA/LNP. Together, we show that mRNA and LNPs work synergistically to provide the necessary innate immune stimuli required for effective vaccination. Importantly, this work provides a design framework for vaccines and therapeutics alike.
Collapse
Affiliation(s)
- William Dowell
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
- Cellular, Molecular, and Biomedical Sciences Program, Burlington, Vermont 05405, United States
| | - Jacob Dearborn
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
- Cellular, Molecular, and Biomedical Sciences Program, Burlington, Vermont 05405, United States
| | - Sylvester Languon
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
- Cellular, Molecular, and Biomedical Sciences Program, Burlington, Vermont 05405, United States
| | - Zachary Miller
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
- Cellular, Molecular, and Biomedical Sciences Program, Burlington, Vermont 05405, United States
| | - Tylar Kirch
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
- Cellular, Molecular, and Biomedical Sciences Program, Burlington, Vermont 05405, United States
| | - Stephen Paige
- Department of Electrical and Biomedical Engineering, University of Vermont, Burlington, Vermont 05405, United States
| | - Olivia Garvin
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Lily Kjendal
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Ethan Harby
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Adam B Zuchowski
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Emily Clark
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Carlos Lescieur-Garcia
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Jesse Vix
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Amy Schumer
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
- Department of Obstetrics, Gynecology and Reproductive Sciences, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Somen K Mistri
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Deena B Snoke
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Amber L Doiron
- Department of Electrical and Biomedical Engineering, University of Vermont, Burlington, Vermont 05405, United States
| | - Kalev Freeman
- Department of Emergency Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Michael J Toth
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Matthew E Poynter
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Jonathan E Boyson
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Devdoot Majumdar
- Department of Surgery; Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| |
Collapse
|
10
|
Jiang Z, Zhen J, Abulikena Y, Gao C, Huang L, Huang T, Xie J. Mycobacterium tuberculosis VII secretion system effector molecule Rv2347c blocks the maturation of phagosomes and activates the STING/TBK1 signaling pathway to inhibit cell autophagy. Microbiol Spectr 2024; 12:e0118824. [PMID: 39313213 PMCID: PMC11537087 DOI: 10.1128/spectrum.01188-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/01/2024] [Indexed: 09/25/2024] Open
Abstract
The VII secretion system is the main channel for Mycobacterium tuberculosis (MTB) to secrete virulence proteins. The ESAT-like proteins EsxA/B and EsxW/V in the RD region of its genome have been used as targets for vaccine antigens. However, the function of EsxO/P has not been explored, although it was predicted to potentially induce Th1 cell responses as a vaccine development target. In this study, the VII secretion system effector molecule Rv2347c was heterologously expressed in Mycobacterium smegmatis and found to inhibit the expression of the early marker RAB5 of phagosomes, thus preventing the maturation process of phagosomes toward lysosomes, and activated the host cytoplasmic sensing pathway. It inhibited autophagy and activated IFNβ transcription through the STING/TBK1 pathway promoting the host's survival. Therefore, Rv2347c plays an important role in the pathogenesis of MTB with the potential to be utilized as a new target for tuberculosis vaccine development. IMPORTANCE We found that the ESAT-like protein Rv2347c (EsxP) can inhibit the maturation of phagosomes, leading to mycobacterium escape from phagosomes into the cytoplasm, which triggers the host's cytoplasmic sensing pathway STING/TBK1, inhibiting autophagy and upregulating IFNβ transcription, which contributes to the survival of mycobacterium in the host cell. We also found that Rv2347c was able to activate host immunity by activating NF-κB via STING and promoting the transcription of downstream pro-inflammatory factors. Meanwhile, the host also produces IL-1β to repair phagosome maturation arrest via the STING-mediated non-NF-κB pathway.
Collapse
Affiliation(s)
- Zhiyong Jiang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Junfeng Zhen
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Yuerigu Abulikena
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Chaoyun Gao
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Lingxi Huang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Tingting Huang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
11
|
Tambekar A, Guhe V, Singh S. The cGAS-STING mediated crosstalk between innate immunity and autophagy in leishmaniasis using mathematical modeling: Uncovering new therapeutic avenues. Arch Biochem Biophys 2024; 762:110201. [PMID: 39486567 DOI: 10.1016/j.abb.2024.110201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/11/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024]
Abstract
The present paper deals with the investigation into the cGAS-STING pathway, focusing on the signaling of interferons through mathematical modeling and identifying a significant positive feedback loop regulated by STING for activation of type 1 interferons (IFN-1). Cyclic GMP-AMP synthase (cGAS) is responsible for detecting cytosolic DNA and initiating the STING (stimulator of interferon genes) pathway, which in turn causes the synthesis of pro-inflammatory cytokines and type I interferons. In addition to being crucial for pathogen identification, this route interacts with autophagy, a cellular mechanism that is necessary for immunological homeostasis and pathogen removal. In the context of Leishmania infection, the cGAS-STING signaling axis has come to light as a critical mediator of the crosstalk between innate immunity and autophagy. Further, the protein-protein interaction studies underscored the significance of two distinct domains in mediating interactions with IRF3 and LC3. Importantly, our findings suggest the possibility of manipulating STING concomitantly to regulate IRF3 and LC3 independently. This study remarkably advances our understanding of STING's multifaceted roles, particularly in regulating IFN-1 and autophagy, highlighting its pivotal role as a cross-talk point in leishmaniasis.
Collapse
Affiliation(s)
- Anil Tambekar
- Systems Medicine Laboratory, Biotechnology Research and Innovation Council-National Centre for Cell Science (BRIC-NCCS), NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune, 411007, India
| | - Vrushali Guhe
- Systems Medicine Laboratory, Biotechnology Research and Innovation Council-National Centre for Cell Science (BRIC-NCCS), NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune, 411007, India
| | - Shailza Singh
- Systems Medicine Laboratory, Biotechnology Research and Innovation Council-National Centre for Cell Science (BRIC-NCCS), NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune, 411007, India.
| |
Collapse
|
12
|
Marques-da-Silva C, Schmidt-Silva C, Bowers C, Charles-Chess E, Shiau JC, Park ES, Yuan Z, Kim BH, Kyle DE, Harty JT, MacMicking JD, Kurup SP. Type-I IFNs induce GBPs and lysosomal defense in hepatocytes to control malaria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619707. [PMID: 39484443 PMCID: PMC11526971 DOI: 10.1101/2024.10.22.619707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Plasmodium parasites undergo development and replication within the hepatocytes before infecting the erythrocytes and initiating clinical malaria. Although type-I interferons (IFNs) are known to hinder Plasmodium infection within the liver, the underlying mechanisms remain unclear. Here, we describe two IFN-I-driven hepatocyte antimicrobial programs controlling liver-stage malaria. First, oxidative defense by NADPH oxidases 2 and 4 triggers a pathway of lysosomal fusion with the parasitophorous vacuole (PV) to help clear Plasmodium . Second, guanylate-binding protein (GBP) 1 disruption of the PV activates caspase-1 inflammasome, inducing pyroptosis to remove the infected host cells. Remarkably, both human and mouse hepatocytes enlist these cell-autonomous immune programs to eliminate Plasmodium ; their pharmacologic or genetic inhibition led to profound malarial susceptibility, and are essential in vivo . In addition to identifying the IFN-I-mediated cell-autonomous immune circuits controlling Plasmodium infection in the hepatocytes, this study extends our understanding of how non-immune cells are integral to protective immunity against malaria.
Collapse
|
13
|
Fontanilla FL, Ibana JA, Carabeo RA, Brinkworth AJ. Chlamydia trachomatis modulates the expression of JAK-STAT signaling components to attenuate the type II interferon response of epithelial cells. mBio 2024; 15:e0183424. [PMID: 39194253 PMCID: PMC11481910 DOI: 10.1128/mbio.01834-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 08/29/2024] Open
Abstract
Chlamydia trachomatis has adapted to subvert signaling in epithelial cells to ensure successful intracellular development. Interferon-γ (IFNγ) produced by recruited lymphocytes signals through the JAK/STAT pathway to restrict chlamydial growth in the genital tract. However, during Chlamydia infection in vitro, addition of IFNγ does not fully induce nuclear localization of its transcription factor STAT1 and expression of its target gene, IDO1. We hypothesize that this altered interferon response is a result of Chlamydia targeting components of the IFNγ-JAK/STAT pathway. To assess the ability of replicating Chlamydia to dampen interferon signaling, HEp2 human epithelial cells were infected with C. trachomatis serovar L2 for 24 hours prior to exposure to physiologically relevant levels of IFNγ (500 pg/mL). This novel approach enabled us to observe reduced phospho-activation of both STAT1 and its kinase Janus Kinase 2 (JAK2) in infected cells compared with mock-infected cells. Importantly, basal JAK2 and STAT1 transcript and protein levels were dampened by infection even in the absence of interferon, which could have implications for cytokine signaling beyond IFNγ. Additionally, target genes IRF1, GBP1, APOL3, IDO1, and SOCS1 were not fully induced in response to IFNγ exposure. Infection-dependent decreases in transcript, protein, and phosphoprotein were rescued when de novo bacterial protein synthesis was inhibited with chloramphenicol, restoring expression of IFNγ-target genes. Similar Chlamydia-dependent dampening of STAT1 and JAK2 transcript levels was observed in infected HeLa and END1 endocervical cells and in HEp2s infected with C. trachomatis serovar D, suggesting a conserved mechanism of dampening the interferon response by reducing the availability of key signaling components. IMPORTANCE As an obligate intracellular pathogen that has evolved to infect the genital epithelium, Chlamydia has developed strategies to prevent detection and antimicrobial signaling in its host to ensure its survival and spread. A major player in clearing Chlamydia infections is the inflammatory cytokine interferon-γ (IFNγ), which is produced by immune cells that are recruited to the site of infection. Reports of IFNγ levels in endocervical specimens from Chlamydia-infected patients range from 1 to 350 pg/mL, while most in vitro studies of the effects of IFNγ on chlamydial growth have used 15-85-fold higher concentrations. By using physiologically relevant concentrations of IFNγ, we were able to assess Chlamydia's ability to modulate its signaling. We found that Chlamydia decreases the expression of multiple components that are required for inducing gene expression by IFNγ, providing a possible mechanism by which Chlamydia trachomatis can attenuate the immune response in the female genital tract to cause long-term infections.
Collapse
Affiliation(s)
- Francis L. Fontanilla
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Immunopharmacology Research Laboratory, Institute of Biology, College of Science, University of the Philippines, Diliman, Philippines
| | - Joyce A. Ibana
- Immunopharmacology Research Laboratory, Institute of Biology, College of Science, University of the Philippines, Diliman, Philippines
| | - Rey A. Carabeo
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Amanda J. Brinkworth
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
14
|
Henry B, Phillips AJ, Sibley LD, Rosenberg A. A combination of four Toxoplasma gondii nuclear-targeted effectors protects against interferon gamma-driven human host cell death. mBio 2024; 15:e0212424. [PMID: 39292011 PMCID: PMC11481881 DOI: 10.1128/mbio.02124-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
In both mice and humans, Type II interferon gamma (IFNγ) is crucial for the regulation of Toxoplasma gondii (T. gondii) infection, during acute or chronic phases. To thwart this defense, T. gondii secretes protein effectors hindering the host's immune response. For example, T. gondii relies on the MYR translocon complex to deploy soluble dense granule effectors (GRAs) into the host cell cytosol or nucleus. Recent genome-wide loss-of-function screens in IFNγ-primed primary human fibroblasts identified MYR translocon components as crucial for parasite resistance against IFNγ-driven vacuole clearance. However, these screens did not pinpoint specific MYR-dependent GRA proteins responsible for IFNγ signaling blockade, suggesting potential functional redundancy. Our study reveals that T. gondii depends on the MYR translocon complex to prevent parasite premature egress and host cell death in human cells stimulated with IFNγ post-infection, a unique phenotype observed in various human cell lines but not in murine cells. Intriguingly, inhibiting parasite egress did not prevent host cell death, indicating this mechanism is distinct from those described previously. Genome-wide loss-of-function screens uncovered TgIST, GRA16, GRA24, and GRA28 as effectors necessary for a complete block of IFNγ response. GRA24 and GRA28 directly influenced IFNγ-driven transcription, GRA24's action depended on its interaction with p38 MAPK, while GRA28 disrupted histone acetyltransferase activity of CBP/p300. Given the intricate nature of the immune response to T. gondii, it appears that the parasite has evolved equally elaborate mechanisms to subvert IFNγ signaling, extending beyond direct interference with the JAK/STAT1 pathway, to encompass other signaling pathways as well.IMPORTANCEToxoplasma gondii, an intracellular parasite, affects nearly one-third of the global human population, posing significant risks for immunocompromised patients and infants infected in utero. In murine models, the core mechanisms of IFNγ-mediated immunity against T. gondii are consistently preserved, showcasing a remarkable conservation of immune defense mechanisms. In humans, the recognized restriction mechanisms vary among cell types, lacking a universally applicable mechanism. This difference underscores a significant variation in the genes employed by T. gondii to shield itself against the IFNγ response in human vs murine cells. Here, we identified a specific combination of four parasite-secreted effectors deployed into the host cell nucleus, disrupting IFNγ signaling. This disruption is crucial in preventing premature egress of the parasite and host cell death. Notably, this phenotype is exclusive to human cells, highlighting the intricate and unique mechanisms T. gondii employs to modulate host responses in the human cellular environment.
Collapse
Affiliation(s)
- Brittany Henry
- Department of Infectious Diseases, Center for Tropical and Emerging Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - Aubrey J. Phillips
- Department of Infectious Diseases, Center for Tropical and Emerging Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - L. David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Alex Rosenberg
- Department of Infectious Diseases, Center for Tropical and Emerging Infectious Diseases, University of Georgia, Athens, Georgia, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
15
|
Jiang X, Shan X, Jia J, Yang X, Yang M, Hou S, Chen Y, Ni Z. The role of AbaI quorum sensing molecule synthase in host cell inflammation induced by Acinetobacter baumannii and its effect on zebrafish infection model. Int J Biol Macromol 2024; 278:134568. [PMID: 39116980 DOI: 10.1016/j.ijbiomac.2024.134568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Acinetobacter baumannii is currently one of the most important opportunistic pathogens causing severe nosocomial infections worldwide. Quorum Sensing (QS) system is a widespread mechanism in bacteria to coordinate group behavior by sensing the density of bacterial populations and affect eukaryotic host cell. In Acinetobacter baumannii, AbaI protein is used as QS molecule synthetase to synthesize N- acyl homoserine lactones (AHLs). Currently, QS has made great progress in the study of drug resistance, but there is still a lack of complete understanding of its damage to host cells after adhesion and invasion. Thus, in this study, we examined the effects of abaI mutant (ΔabaI) on the functions of adhesion and invasion, cell viability, inflammation, apoptosis in A. baumannii infected A549 cells, to evaluate the effects of ΔabaI in a zebrafish model. We found the group infected with ΔabaI increased cell viability, reduced adhesion and invasion, cell injury, inflammatory cytokine production and apoptosis. By RNA-Seq, we explored the possibility that abaI stimulated A549 cells inflammation by A. baumannii infection via TLR4/MAPK signaling pathway. In addition, the ΔabaI significantly reduced pathogenicity and recruitment to neutrophils in zebrafish. These observations suggest that abaI plays a major role in A. baumannii infection.
Collapse
Affiliation(s)
- Xingyu Jiang
- Department of Pathogen Biology, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xuchun Shan
- Department of Pathogen Biology, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Junzhen Jia
- Department of Pathogen Biology, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xiaomeng Yang
- Department of Pathogen Biology, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Ming Yang
- The Second Norman Bethune Clinical Medical College of Jilin University, Changchun, China
| | - Shiqi Hou
- The Second Norman Bethune Clinical Medical College of Jilin University, Changchun, China
| | - Yan Chen
- Department of Neurosurgery, The Second Hospital of Jilin University, Changchun, China.
| | - Zhaohui Ni
- Department of Pathogen Biology, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China.
| |
Collapse
|
16
|
Yan A, Tian J, Ye J, Gao C, Ye L, Zhang D, Song Q. Construction of Toxoplasma gondii SRS29C nucleic acid vaccine and comparative immunoprotective study of an SRS29C and SAG1 combination. Mol Biochem Parasitol 2024; 259:111630. [PMID: 38795969 DOI: 10.1016/j.molbiopara.2024.111630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/29/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Toxoplasma gondii is an intracellular protozoan parasite that infects all nucleated cells except the red blood cells. Currently, nucleic acid vaccines are being widely investigated in Toxoplasma gondii control, and several nucleic acid vaccine candidate antigens have shown good protection in various studies. The aim of this study was to construct a nucleic acid vaccine with Toxoplasma gondii SRS29C as the target gene. We explored the nucleic acid vaccine with Toxoplasma surface protein SRS29C and the combined gene of SRS29C and SAG1 and evaluated its immunoprotective effect against Toxoplasma gondii. To amplify the gene fragment and clone it to the expression vector, the recombinant plasmid pEGFP-SRS29C was constructed by PCR. Eukaryotic cells were transfected with the plasmid, and the expression of the target protein was assessed using the Western blot method. The level of serum IgG was determined via ELISA, and the splenic lymphocyte proliferation ability was detected using the CCK-8 method. The percentages of CD4+ and CD8+ T cells were measured by flow cytometry. Mice were immunised three times with single-gene nucleic acid vaccine and combination vaccine. Splenic lymphocytokine expression was determined using ELISA kits. The mice's survival time was monitored and recorded during an in vivo insect assault experiment, and the vaccine's protective power was assessed. The outcomes showed that PCR-amplification of an SRS29C gene fragment was successful. The 4,733-bp vector fragment and the 1,119-bp target segment were both recognised by double digestion. Additionally, after transfection of the recombinant plasmid pEGFP-SRS29C, Western blot examination of the extracted protein revealed the presence of a target protein strip at 66 kDa. The test results demonstrated that the IgG content in the serum of the pEGFP-SRS29C group and the co-immunization group was significantly higher than that of the PBS group and the empty vector group. The IgG potency induced by the co-immunization group was higher than that of the pEGFP-SRS29C group and the pEGFP-SAG1 group, the number of splenic lymphocyte proliferation number was higher than that of the PBS group and the empty vector group. The CD4+/CD8+ T ratio was higher than that of the PBS group and the empty vector group. The expression of IFN-γ and TNF-α in the splenocytes of the pEGFP-SRS29C group and the combined immunisation group was significantly higher following antigen stimulation. In the worm attack experiments, mice in the PBS and empty vector groups perished within 9 days of the worm attack, whereas mice in the pEGFP-SRS29C group survived for 18 days, mice in the pEGFP-SAG1 group survived for 21 days, and mice in the co-immunization group survived for 24 days. This demonstrates that the constructed Toxoplasma gondii nucleic acid vaccine pEGFP-SRS29C and the combined gene vaccine can induce mice to develop certain humoral and cellular immune responses, and enhance their ability to resist Toxoplasma gondii infection.
Collapse
MESH Headings
- Animals
- Toxoplasma/immunology
- Toxoplasma/genetics
- Vaccines, DNA/immunology
- Vaccines, DNA/genetics
- Vaccines, DNA/administration & dosage
- Protozoan Proteins/immunology
- Protozoan Proteins/genetics
- Protozoan Vaccines/immunology
- Protozoan Vaccines/genetics
- Mice
- Antibodies, Protozoan/blood
- Antibodies, Protozoan/immunology
- Antigens, Protozoan/immunology
- Antigens, Protozoan/genetics
- Immunoglobulin G/blood
- Immunoglobulin G/immunology
- Female
- Toxoplasmosis, Animal/prevention & control
- Toxoplasmosis, Animal/immunology
- Mice, Inbred BALB C
- CD8-Positive T-Lymphocytes/immunology
- Spleen/immunology
- Spleen/parasitology
- Cell Proliferation
- Plasmids/genetics
- Plasmids/immunology
- Cytokines/metabolism
Collapse
Affiliation(s)
- An Yan
- Agricultural Animal Breeding and Healthy Breeding Main Laboratory in Tianjin, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, China
| | - Jing Tian
- Agricultural Animal Breeding and Healthy Breeding Main Laboratory in Tianjin, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, China
| | - Jianjun Ye
- Agricultural Animal Breeding and Healthy Breeding Main Laboratory in Tianjin, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, China
| | - Chuanliang Gao
- Agricultural Animal Breeding and Healthy Breeding Main Laboratory in Tianjin, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, China
| | - Liying Ye
- Agricultural Animal Breeding and Healthy Breeding Main Laboratory in Tianjin, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, China
| | - Dongchao Zhang
- Agricultural Animal Breeding and Healthy Breeding Main Laboratory in Tianjin, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, China
| | - Qiqi Song
- Agricultural Animal Breeding and Healthy Breeding Main Laboratory in Tianjin, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, China.
| |
Collapse
|
17
|
Carter MJ, Carrol ED, Ranjit S, Mozun R, Kissoon N, Watson RS, Schlapbach LJ. Susceptibility to childhood sepsis, contemporary management, and future directions. THE LANCET. CHILD & ADOLESCENT HEALTH 2024; 8:682-694. [PMID: 39142742 DOI: 10.1016/s2352-4642(24)00141-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 08/16/2024]
Abstract
Sepsis disproportionally affects children across all health-care settings and is one of the leading causes of morbidity and mortality in neonatal and paediatric age groups. As shown in the first paper in this Series, the age-specific incidence of sepsis is highest during the first years of life, before approaching adult incidence rates during adolescence. In the second paper in this Series, we focus on the unique susceptibility of paediatric patients to sepsis and how the underlying dysregulated host response relates to developmental aspects of children's immune system, genetic, perinatal, and environmental factors, and comorbidities and socioeconomic determinants of health, which often differ between children and adults. State-of-the-art clinical management of paediatric sepsis is organised around three treatment pillars-diagnosis, early resuscitation, and titration of advanced care-and we examine available treatment guidelines and the limitations of their supporting evidence. Serious evidence gaps remain in key areas of paediatric sepsis care, especially surrounding recognition, common interventions, and survivor support, and to this end we offer a research roadmap for the next decade that could accelerate targeted diagnostics and personalised use of immunomodulation. However, improving outcomes for children with sepsis relies fundamentally on systematic quality improvement in both recognition and treatment, which is the theme of the third paper in this Series. Digital health, as shown in the fourth and final paper of this Series, holds promising potential in breaking down the barriers that hinder progress in paediatric sepsis care and, ultimately, global child health.
Collapse
Affiliation(s)
- Michael J Carter
- Centre for Human Genetics, University of Oxford, Oxford, UK; Paediatric Intensive Care unit, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Enitan D Carrol
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool Institute of Infection, Veterinary and Ecological Sciences, Liverpool, UK
| | | | - Rebeca Mozun
- Department of Intensive Care and Neonatology, and Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Niranjan Kissoon
- Global Child Health Department of Pediatrics and Emergency Medicine, British Columbia Women and Children's Hospital and the University of British Columbia, Vancouver, BC, Canada
| | - R Scott Watson
- Seattle Children's Hospital, University of Washington School of Medicine, Seattle, WA, USA
| | - Luregn J Schlapbach
- Department of Intensive Care and Neonatology, and Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland; Child Health Research Centre, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
18
|
Song Y, Lu J, Qin P, Chen H, Chen L. Interferon-I modulation and natural products: Unraveling mechanisms and therapeutic potential in severe COVID-19. Cytokine Growth Factor Rev 2024:S1359-6101(24)00066-2. [PMID: 39261232 DOI: 10.1016/j.cytogfr.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to pose a significant global public health threat, particularly to older adults, pregnant women, and individuals with underlying chronic conditions. Dysregulated immune responses to SARS-CoV-2 infection are believed to contribute to the progression of COVID-19 in severe cases. Previous studies indicates that a deficiency in type I interferon (IFN-I) immunity accounts for approximately 15 %-20 % of patients with severe pneumonia caused by COVID-19, highlighting the potential therapeutic importance of modulating IFN-I signals. Natural products and their derivatives, due to their structural diversity and novel scaffolds, play a crucial role in drug discovery. Some of these natural products targeting IFN-I have demonstrated applications in infectious diseases and inflammatory conditions. However, the immunomodulatory potential of IFN-I in critical COVID-19 pneumonia and the natural compounds regulating the related signal pathway remain not fully understood. In this review, we offer a comprehensive assessment of the association between IFN-I and severe COVID-19, exploring its mechanisms and integrating information on natural compounds effective for IFN-I regulation. Focusing on the primary targets of IFN-I, we also summarize the regulatory mechanisms of natural products, their impact on IFNs, and their therapeutic roles in viral infections. Collectively, by synthesizing these findings, our goal is to provide a valuable reference for future research and to inspire innovative treatment strategies for COVID-19.
Collapse
Affiliation(s)
- Yuheng Song
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiani Lu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Pengcheng Qin
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Henan University, Kaifeng 475001, China
| | - Hongzhuan Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai 200032, China
| | - Lili Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
19
|
Lv Y, Sun S, Zhang J, Wang C, Chen C, Zhang Q, Zhao J, Qi Y, Zhang W, Wang Y, Li M. Loss of RBM45 inhibits breast cancer progression by reducing the SUMOylation of IRF7 to promote IFNB1 transcription. Cancer Lett 2024; 596:216988. [PMID: 38797234 DOI: 10.1016/j.canlet.2024.216988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/11/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Type I interferons exhibit anti-proliferative and anti-cancer activities, but their detailed regulatory mechanisms in cancer have not been fully elucidated yet. RNA binding proteins are master orchestrators of gene regulation, which are closely related to tumor progression. Here we show that the upregulated RNA binding protein RBM45 correlates with poor prognosis in breast cancer. Depletion of RBM45 suppresses breast cancer progression both in cultured cells and xenograft mouse models. Mechanistically, RBM45 ablation inhibits breast cancer progression through regulating type I interferon signaling, particularly by elevating IFN-β production. Importantly, RBM45 recruits TRIM28 to IRF7 and stimulates its SUMOylation, thereby repressing IFNB1 transcription. Loss of RBM45 reduced the SUMOylation of IRF7 by reducing the interaction between TRIM28 and IRF7 to promote IFNB1 transcription, leading to the inhibition of breast cancer progression. Taken together, our finding uncovers a vital role of RBM45 in modulating type I interferon signaling and cancer aggressive progression, implicating RBM45 as a potential therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Yuesheng Lv
- Department of Oncology of the Second Affiliated Hospital of Dalian Medical University & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116023, China
| | - Siwen Sun
- Department of Oncology & Sino-US Research Center for Cancer Translational Medicine, The Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, China
| | - Jinrui Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Chong Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Chaoqun Chen
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Qianyi Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Jinyao Zhao
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yangfan Qi
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Wenjing Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China.
| | - Yang Wang
- Sino-US Research Center for Cancer Translational Medicine of the Second Affiliated Hospital of Dalian Medical University & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116023, China.
| | - Man Li
- Department of Oncology & Sino-US Research Center for Cancer Translational Medicine, The Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, China.
| |
Collapse
|
20
|
Sharmin Z, Jin K, Gong AY, Deng S, Pok C, Graham ML, Wang S, Mathy NW, Shibata A, Chen XM. LncRNA Nostrill promotes interferon-γ-stimulated gene transcription and facilitates intestinal epithelial cell-intrinsic anti- Cryptosporidium defense. Front Immunol 2024; 15:1397117. [PMID: 39040107 PMCID: PMC11260782 DOI: 10.3389/fimmu.2024.1397117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
Intestinal epithelial cells possess the requisite molecular machinery to initiate cell-intrinsic defensive responses against intracellular pathogens, including intracellular parasites. Interferons(IFNs) have been identified as cornerstones of epithelial cell-intrinsic defense against such pathogens in the gastrointestinal tract. Long non-coding RNAs (lncRNAs) are RNA transcripts (>200 nt) not translated into protein and represent a critical regulatory component of mucosal defense. We report here that lncRNA Nostrill facilitates IFN-γ-stimulated intestinal epithelial cell-intrinsic defense against infection by Cryptosporidium, an important opportunistic pathogen in AIDS patients and a common cause of diarrhea in young children. Nostrill promotes transcription of a panel of genes controlled by IFN-γ through facilitating Stat1 chromatin recruitment and thus, enhances expression of several genes associated with cell-intrinsic defense in intestinal epithelial cells in response to IFN-γ stimulation, including Igtp, iNos, and Gadd45g. Induction of Nostrill enhances IFN-γ-stimulated intestinal epithelial defense against Cryptosporidium infection, which is associated with an enhanced autophagy in intestinal epithelial cells. Our findings reveal that Nostrill enhances the transcription of a set of genes regulated by IFN-γ in intestinal epithelial cells. Moreover, induction of Nostrill facilitates the IFN-γ-mediated epithelial cell-intrinsic defense against cryptosporidial infections.
Collapse
Affiliation(s)
- Zinat Sharmin
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, United States
| | - Kehua Jin
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, United States
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Ai-Yu Gong
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, United States
| | - Silu Deng
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, United States
| | - Chansorena Pok
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, United States
| | - Marion L. Graham
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, United States
| | - Shuhong Wang
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, United States
| | - Nicholas W. Mathy
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, United States
| | - Annemarie Shibata
- Department of Biology, Creighton University College of Arts and Sciences, Creighton University, Omaha, NE, United States
| | - Xian-Ming Chen
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, United States
| |
Collapse
|
21
|
Huang Z, Mai Z, Kong C, You J, Lin S, Gao C, Zhang W, Chen X, Xie Q, Wang H, Tang S, Zhou P, Gong L, Zhang G. African swine fever virus pB475L evades host antiviral innate immunity via targeting STAT2 to inhibit IFN-I signaling. J Biol Chem 2024; 300:107472. [PMID: 38879005 PMCID: PMC11328877 DOI: 10.1016/j.jbc.2024.107472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/16/2024] [Accepted: 06/07/2024] [Indexed: 07/08/2024] Open
Abstract
African swine fever virus (ASFV) causes severe disease in domestic pigs and wild boars, seriously threatening the development of the global pig industry. Type I interferon (IFN-I) is an important component of innate immunity, inducing the transcription and expression of antiviral cytokines by activating Janus-activated kinase-signal transducer and activator of transcription (STAT). However, the underlying molecular mechanisms by which ASFV antagonizes IFN-I signaling have not been fully elucidated. Therefore, using coimmunoprecipitation, confocal microscopy, and dual luciferase reporter assay methods, we investigated these mechanisms and identified a novel ASFV immunosuppressive protein, pB475L, which interacts with the C-terminal domain of STAT2. Consequently, pB475L inhibited IFN-I signaling by inhibiting STAT1 and STAT2 heterodimerization and nuclear translocation. Furthermore, we constructed an ASFV-B475L7PM mutant strain by homologous recombination, finding that ASFV-B475L7PM attenuated the inhibitory effects on IFN-I signaling compared to ASFV-WT. In summary, this study reveals a new mechanism by which ASFV impairs host innate immunity.
Collapse
Affiliation(s)
- Zhao Huang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China; African Swine Fever Regional Laboratory of China, South China Agricultural University, Guangzhou, China
| | - Zhanzhuo Mai
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; African Swine Fever Regional Laboratory of China, South China Agricultural University, Guangzhou, China
| | - Cuiying Kong
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jianyi You
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; African Swine Fever Regional Laboratory of China, South China Agricultural University, Guangzhou, China
| | - Sizhan Lin
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; African Swine Fever Regional Laboratory of China, South China Agricultural University, Guangzhou, China
| | - Chenyang Gao
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; African Swine Fever Regional Laboratory of China, South China Agricultural University, Guangzhou, China
| | - WenBo Zhang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; African Swine Fever Regional Laboratory of China, South China Agricultural University, Guangzhou, China
| | - Xiongnan Chen
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China; African Swine Fever Regional Laboratory of China, South China Agricultural University, Guangzhou, China
| | - Qingmei Xie
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Heng Wang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; African Swine Fever Regional Laboratory of China, South China Agricultural University, Guangzhou, China; Research Center for African Swine Fever Prevention and Control, South China Agricultural University, Guangzhou, China
| | - Shengqiu Tang
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China
| | - Pei Zhou
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; African Swine Fever Regional Laboratory of China, South China Agricultural University, Guangzhou, China.
| | - Lang Gong
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; African Swine Fever Regional Laboratory of China, South China Agricultural University, Guangzhou, China.
| | - Guihong Zhang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Research Center for African Swine Fever Prevention and Control, South China Agricultural University, Guangzhou, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China.
| |
Collapse
|
22
|
Xu C, Gamil AAA, Wang X, Munang’andu HM, Evensen Ø. MAVS disruption impairs downstream signaling and results in higher virus replication levels of salmonid alphavirus subtype 3 but not infectious pancreatic necrosis virus in vitro. Front Immunol 2024; 15:1401086. [PMID: 38903507 PMCID: PMC11187282 DOI: 10.3389/fimmu.2024.1401086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/13/2024] [Indexed: 06/22/2024] Open
Abstract
The mitochondrial anti-viral signaling (MAVS) protein is an intermediary adaptor protein of retinoic acid-inducible gene-1 (RIG-I) like receptor (RLR) signaling, which activates the transcription factor interferon (IFN) regulatory factor 3 (IRF3) and NF-kB to produce type I IFNs. MAVS expression has been reported in different fish species, but few studies have shown its functional role in anti-viral responses to fish viruses. In this study, we used the transcription activator-like effector nuclease (TALEN) as a gene editing tool to disrupt the function of MAVS in Chinook salmon (Oncorhynchus tshawytscha) embryonic cells (CHSE) to understand its role in induction of interferon I responses to infections with the (+) RNA virus salmonid alphavirus subtype 3 (SAV-3), and the dsRNA virus infectious pancreatic necrosis virus (IPNV) infection. A MAVS-disrupted CHSE clone with a 7-aa polypeptide (GVFVSRV) deletion mutation at the N-terminal of the CARD domain infected with SAV-3 resulted in significantly lower expression of IRF3, IFNa, and ISGs and increased viral titer (1.5 log10) compared to wild-type. In contrast, the IPNV titer in MAVS-disrupted cells was not different from the wild-type. Furthermore, overexpression of salmon MAVS in MAVS-disrupted CHSE cells rescued the impaired type I IFN-mediated anti-viral effect against SAV-3.
Collapse
Affiliation(s)
- Cheng Xu
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Amr A. A. Gamil
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | | | | | - Øystein Evensen
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
23
|
Nishihara K, Villot C, Cangiano L, Guan LL, Steele M. Bacteria colonization and gene expression related to immune function in colon mucosa is associated with growth in neonatal calves regardless of live yeast supplementation. J Anim Sci Biotechnol 2024; 15:76. [PMID: 38835065 DOI: 10.1186/s40104-024-01030-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/01/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND As Holstein calves are susceptible to gastrointestinal disorders during the first week of life, understanding how intestinal immune function develops in neonatal calves is important to promote better intestinal health. Feeding probiotics in early life may contribute to host intestinal health by facilitating beneficial bacteria colonization and developing intestinal immune function. The objective of this study was to characterize the impact of early life yeast supplementation and growth on colon mucosa-attached bacteria and host immune function. RESULTS Twenty Holstein bull calves received no supplementation (CON) or Saccharomyces cerevisiae boulardii (SCB) from birth to 5 d of life. Colon tissue biopsies were taken within 2 h of life (D0) before the first colostrum feeding and 3 h after the morning feeding at d 5 of age (D5) to analyze mucosa-attached bacteria and colon transcriptome. Metagenome sequencing showed that there was no difference in α and β diversity of mucosa-attached bacteria between day and treatment, but bacteria related to diarrhea were more abundant in the colon mucosa on D0 compared to D5. In addition, qPCR indicated that the absolute abundance of Escherichia coli (E. coli) decreased in the colon mucosa on D5 compared to D0; however, that of Bifidobacterium, Lactobacillus, and Faecalibacterium prausnitzii, which could competitively exclude E. coli, increased in the colon mucosa on D5 compared to D0. RNA-sequencing showed that there were no differentially expressed genes between CON and SCB, but suggested that pathways related to viral infection such as "Interferon Signaling" were activated in the colon mucosa of D5 compared to D0. CONCLUSIONS Growth affected mucosa-attached bacteria and host immune function in the colon mucosa during the first 5 d of life in dairy calves independently of SCB supplementation. During early life, opportunistic pathogens may decrease due to intestinal environmental changes by beneficial bacteria and/or host immune function. Predicted activation of immune function-related pathways may be the result of host immune function development or suggest other antigens in the intestine during early life. Further studies focusing on the other antigens and host immune function in the colon mucosa are required to better understand intestinal immune function development.
Collapse
Affiliation(s)
- Koki Nishihara
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON, N1G 1Y2, Canada
| | - Clothilde Villot
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, T6G 2P5, Canada
- Lallemand SAS, Blagnac, F-31702, France
| | - Lautaro Cangiano
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Le Luo Guan
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Michael Steele
- Department of Animal Biosciences, Animal Science and Nutrition, University of Guelph, Guelph, ON, N1G 1Y2, Canada.
- Present Address: Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
24
|
Das S, Kaminski TW, Schlegel BT, Bain W, Hu S, Patel A, Kale SL, Chen K, Lee JS, Mallampalli RK, Kagan VE, Rajasundaram D, McVerry BJ, Sundd P, Kitsios GD, Ray A, Ray P. Neutrophils and galectin-3 defend mice from lethal bacterial infection and humans from acute respiratory failure. Nat Commun 2024; 15:4724. [PMID: 38830855 PMCID: PMC11148175 DOI: 10.1038/s41467-024-48796-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
Respiratory infection by Pseudomonas aeruginosa, common in hospitalized immunocompromised and immunocompetent ventilated patients, can be life-threatening because of antibiotic resistance. This raises the question of whether the host's immune system can be educated to combat this bacterium. Here we show that prior exposure to a single low dose of lipopolysaccharide (LPS) protects mice from a lethal infection by P. aeruginosa. LPS exposure trained the innate immune system by promoting expansion of neutrophil and interstitial macrophage populations distinguishable from other immune cells with enrichment of gene sets for phagocytosis- and cell-killing-associated genes. The cell-killing gene set in the neutrophil population uniquely expressed Lgals3, which encodes the multifunctional antibacterial protein, galectin-3. Intravital imaging for bacterial phagocytosis, assessment of bacterial killing and neutrophil-associated galectin-3 protein levels together with use of galectin-3-deficient mice collectively highlight neutrophils and galectin-3 as central players in LPS-mediated protection. Patients with acute respiratory failure revealed significantly higher galectin-3 levels in endotracheal aspirates (ETAs) of survivors compared to non-survivors, galectin-3 levels strongly correlating with a neutrophil signature in the ETAs and a prognostically favorable hypoinflammatory plasma biomarker subphenotype. Taken together, our study provides impetus for harnessing the potential of galectin-3-expressing neutrophils to protect from lethal infections and respiratory failure.
Collapse
Affiliation(s)
- Sudipta Das
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine and Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Tomasz W Kaminski
- VERSITI Blood Research Institute and Medical College of Wisconsin, Milwaukee, WI, 53233, USA
| | - Brent T Schlegel
- Department of Pediatrics, Division of Health Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15224, USA
| | - William Bain
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine and Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- Veteran's Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA
| | - Sanmei Hu
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine and Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Akruti Patel
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine and Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Sagar L Kale
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine and Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Kong Chen
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine and Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Janet S Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Rama K Mallampalli
- Department of Medicine, The Ohio State University (OSU), Columbus, OH, 43210, USA
| | - Valerian E Kagan
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Dhivyaa Rajasundaram
- Department of Pediatrics, Division of Health Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15224, USA
| | - Bryan J McVerry
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine and Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Prithu Sundd
- VERSITI Blood Research Institute and Medical College of Wisconsin, Milwaukee, WI, 53233, USA
| | - Georgios D Kitsios
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine and Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Anuradha Ray
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine and Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Prabir Ray
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine and Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
25
|
Ravi Sundar Jose Geetha A, Fischer K, Babadei O, Smesnik G, Vogt A, Platanitis E, Müller M, Farlik M, Decker T. Dynamic control of gene expression by ISGF3 and IRF1 during IFNβ and IFNγ signaling. EMBO J 2024; 43:2233-2263. [PMID: 38658796 PMCID: PMC11148166 DOI: 10.1038/s44318-024-00092-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/26/2024] Open
Abstract
Type I interferons (IFN-I, including IFNβ) and IFNγ produce overlapping, yet clearly distinct immunological activities. Recent data show that the distinctness of global transcriptional responses to the two IFN types is not apparent when comparing their immediate effects. By analyzing nascent transcripts induced by IFN-I or IFNγ over a period of 48 h, we now show that the distinctiveness of the transcriptomes emerges over time and is based on differential employment of the ISGF3 complex as well as of the second-tier transcription factor IRF1. The distinct transcriptional properties of ISGF3 and IRF1 correspond with a largely diverse nuclear protein interactome. Mechanistically, we describe the specific input of ISGF3 and IRF1 into enhancer activation and the regulation of chromatin accessibility at interferon-stimulated genes (ISG). We further report differences between the IFN types in altering RNA polymerase II pausing at ISG 5' ends. Our data provide insight how transcriptional regulators create immunological identities of IFN-I and IFNγ.
Collapse
Affiliation(s)
- Aarathy Ravi Sundar Jose Geetha
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, 1030, Austria
- University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, Vienna, 1030, Austria
| | - Katrin Fischer
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, 1030, Austria
- University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, Vienna, 1030, Austria
| | - Olga Babadei
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, 1030, Austria
- University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, Vienna, 1030, Austria
| | - Georg Smesnik
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, 1030, Austria
- University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, Vienna, 1030, Austria
| | | | - Ekaterini Platanitis
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, 1030, Austria
- University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, Vienna, 1030, Austria
| | - Mathias Müller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, 1210, Austria
| | - Matthias Farlik
- Department of Dermatology, Medical University of Vienna, Vienna, 1090, Austria
| | - Thomas Decker
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, 1030, Austria.
- University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, Vienna, 1030, Austria.
| |
Collapse
|
26
|
Marques-da-Silva C, Schmidt-Silva C, Kurup SP. Hepatocytes and the art of killing Plasmodium softly. Trends Parasitol 2024; 40:466-476. [PMID: 38714463 PMCID: PMC11156546 DOI: 10.1016/j.pt.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 05/09/2024]
Abstract
The Plasmodium parasites that cause malaria undergo asymptomatic development in the parenchymal cells of the liver, the hepatocytes, prior to infecting erythrocytes and causing clinical disease. Traditionally, hepatocytes have been perceived as passive bystanders that allow hepatotropic pathogens such as Plasmodium to develop relatively unchallenged. However, now there is emerging evidence suggesting that hepatocytes can mount robust cell-autonomous immune responses that target Plasmodium, limiting its progression to the blood and reducing the incidence and severity of clinical malaria. Here we discuss our current understanding of hepatocyte cell-intrinsic immune responses that target Plasmodium and how these pathways impact malaria.
Collapse
Affiliation(s)
- Camila Marques-da-Silva
- Department of Cellular Biology, University of Georgia, Athens, GA, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - Clyde Schmidt-Silva
- Department of Cellular Biology, University of Georgia, Athens, GA, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - Samarchith P Kurup
- Department of Cellular Biology, University of Georgia, Athens, GA, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA.
| |
Collapse
|
27
|
Bando H, Murata Y, Han Y, Sugi T, Fukuda Y, Bzik DJ, Fox BA, Kato K. Toxoplasma gondii chitinase-like protein TgCLP1 regulates the parasite cyst burden. Front Cell Infect Microbiol 2024; 14:1359888. [PMID: 38828265 PMCID: PMC11140023 DOI: 10.3389/fcimb.2024.1359888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/23/2024] [Indexed: 06/05/2024] Open
Abstract
Toxoplasma, an important intracellular parasite of humans and animals, causes life-threatening toxoplasmosis in immunocompromised individuals. Although Toxoplasma secretory proteins during acute infection (tachyzoite, which divides rapidly and causes inflammation) have been extensively characterized, those involved in chronic infection (bradyzoite, which divides slowly and is surrounded by a cyst wall) remain uncertain. Regulation of the cyst wall is essential to the parasite life cycle, and polysaccharides, such as chitin, in the cyst wall are necessary to sustain latent infection. Toxoplasma secretory proteins during the bradyzoite stage may have important roles in regulating the cyst wall via polysaccharides. Here, we focused on characterizing the hypothetical T. gondii chitinase, chitinase-like protein 1 (TgCLP1). We found that the chitinase-like domain containing TgCLP1 is partially present in the bradyzoite microneme and confirmed, albeit partially, its previous identification in the tachyzoite microneme. Furthermore, although parasites lacking TgCLP1 could convert from tachyzoites to bradyzoites and make an intact cyst wall, they failed to convert from bradyzoites to tachyzoites, indicating that TgCLP1 is necessary for bradyzoite reactivation. Taken together, our findings deepen our understanding of the molecular basis of recrudescence and could contribute to the development of novel strategies for the control of toxoplasmosis.
Collapse
Affiliation(s)
- Hironori Bando
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Osaki, Miyagi, Japan
- Department of Parasitology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Yuho Murata
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Yongmei Han
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Tatsuki Sugi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
- Division of Collaboration and Education, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yasuhiro Fukuda
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Osaki, Miyagi, Japan
| | - David J. Bzik
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Barbara A. Fox
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Kentaro Kato
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Osaki, Miyagi, Japan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| |
Collapse
|
28
|
Juárez Rodríguez MD, Marquette M, Youngblood R, Dhungel N, Torres Escobar A, Ivanov SS, Dragoi AM. Characterization of Neisseria gonorrhoeae colonization of macrophages under distinct polarization states and nutrients environment. Front Cell Infect Microbiol 2024; 14:1384611. [PMID: 38808065 PMCID: PMC11130388 DOI: 10.3389/fcimb.2024.1384611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/23/2024] [Indexed: 05/30/2024] Open
Abstract
Neisseria gonorrhoeae (Ng) is a uniquely adapted human pathogen and the etiological agent of gonorrhea, a sexually transmitted disease. Ng has developed numerous mechanisms to avoid and actively suppress innate and adaptive immune responses. Ng successfully colonizes and establishes topologically distinct colonies in human macrophages and avoids phagocytic killing. During colonization, Ng manipulates the actin cytoskeleton to invade and create an intracellular niche supportive of bacterial replication. The cellular reservoir(s) supporting bacterial replication and persistence in gonorrhea infections are poorly defined. The manner in which gonococci colonize macrophages points to this innate immune phagocyte as a strong candidate for a cellular niche during natural infection. Here we investigate whether nutrients availability and immunological polarization alter macrophage colonization by Ng. Differentiation of macrophages in pro-inflammatory (M1-like) and tolerogenic (M2-like) phenotypes prior to infection reveals that Ng can invade macrophages in all activation states, albeit with lower efficiency in M1-like macrophages. These results suggest that during natural infection, bacteria could invade and grow within macrophages regardless of the nutrients availability and the macrophage immune activation status.
Collapse
Affiliation(s)
| | - Madison Marquette
- LSU Health Shreveport, School of Medicine, Louisiana, LA, United States
| | - Reneau Youngblood
- Department of Molecular and Cellular Physiology, LSUHSC-Shreveport, Louisiana, LA, United States
| | - Nilu Dhungel
- Department of Molecular and Cellular Physiology, LSUHSC-Shreveport, Louisiana, LA, United States
| | | | - Stanimir S. Ivanov
- Department of Microbiology and Immunology, LSUHSC-Shreveport, Louisiana, LA, United States
| | - Ana-Maria Dragoi
- Department of Molecular and Cellular Physiology, LSUHSC-Shreveport, Louisiana, LA, United States
- Feist-Weiller Cancer Center, LSUHSC-Shreveport, Louisiana, LA, United States
| |
Collapse
|
29
|
Kong X, Wang Q, Wang X, Yang K, Nie S, Li Y, Lao W, Yu X, Zhang Y, Li Z, Liu Y, Ning J, Wang Y, Bi C, Wu C, Zhai A. LINC01002 functions as a ceRNA to regulate FRMD8 by sponging miR-4324 for the development of COVID-19. Virol J 2024; 21:109. [PMID: 38734674 PMCID: PMC11088083 DOI: 10.1186/s12985-024-02382-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/03/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Syndrome coronavirus-2 (SARS-CoV-2) has developed various strategies to evade the antiviral impact of type I IFN. Non-structural proteins and auxiliary proteins have been extensively researched on their role in immune escape. Nevertheless, the detailed mechanisms of structural protein-induced immune evasion have not been well elucidated. METHODS Human alveolar basal epithelial carcinoma cell line (A549) was stimulated with polyinosinic-polycytidylic acid (PIC) and independently transfected with four structural proteins expression plasmids, including nucleocapsid (N), spike (S), membrane (M) and envelope (E) proteins. By RT-qPCR and ELISA, the structural protein with the most pronounced inhibitory effects on IFN-β induction was screened. RNA-sequencing (RNA-Seq) and two differential analysis strategies were used to obtain differentially expressed genes associated with N protein inhibition of IFN-β induction. Based on DIANA-LncBase and StarBase databases, the interactive competitive endogenous RNA (ceRNA) network for N protein-associated genes was constructed. By combining single-cell sequencing data (GSE158055), lncRNA-miRNA-mRNA axis was further determined. Finally, RT-qPCR was utilized to illustrate the regulatory functions among components of the ceRNA axis. RESULTS SARS-CoV-2 N protein inhibited IFN-β induction in human alveolar epithelial cells most significantly compared with other structural proteins. RNA-Seq data analysis revealed genes related to N protein inhibiting IFNs induction. The obtained 858 differentially expressed genes formed the reliable ceRNA network. The function of LINC01002-miR-4324-FRMD8 axis in the IFN-dominated immune evasion was further demonstrated through integrating single-cell sequencing data. Moreover, we validated that N protein could reverse the effect of PIC on LINC01002, FRMD8 and miR-4324 expression, and subsequently on IFN-β expression level. And LINC01002 could regulate the production of FRMD8 by inhibiting miR-4324. CONCLUSION SARS-CoV-2 N protein suppressed the induction of IFN-β by regulating LINC01002 which was as a ceRNA, sponging miR-4324 and participating in the regulation of FRMD8 mRNA. Our discovery provides new insights into early intervention therapy and drug development on SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Xinyi Kong
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Qinjin Wang
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Xumeng Wang
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China
| | - Kaming Yang
- Department of Endocrinology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Shuping Nie
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Yuetong Li
- Department of Endocrinology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Wanwen Lao
- Department of Endocrinology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Xin Yu
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Yanping Zhang
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Zhenlin Li
- Department of Endocrinology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Yang Liu
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Jie Ning
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Yan Wang
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China.
| | - Changlong Bi
- Department of Endocrinology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China.
| | - Chao Wu
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China.
| | - Aixia Zhai
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China.
| |
Collapse
|
30
|
Woo Y, Ma M, Okawa M, Saito T. Hepatocyte Intrinsic Innate Antiviral Immunity against Hepatitis Delta Virus Infection: The Voices of Bona Fide Human Hepatocytes. Viruses 2024; 16:740. [PMID: 38793622 PMCID: PMC11126147 DOI: 10.3390/v16050740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/24/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
The pathogenesis of viral infection is attributed to two folds: intrinsic cell death pathway activation due to the viral cytopathic effect, and immune-mediated extrinsic cellular injuries. The immune system, encompassing both innate and adaptive immunity, therefore acts as a double-edged sword in viral infection. Insufficient potency permits pathogens to establish lifelong persistent infection and its consequences, while excessive activation leads to organ damage beyond its mission to control viral pathogens. The innate immune response serves as the front line of defense against viral infection, which is triggered through the recognition of viral products, referred to as pathogen-associated molecular patterns (PAMPs), by host cell pattern recognition receptors (PRRs). The PRRs-PAMPs interaction results in the induction of interferon-stimulated genes (ISGs) in infected cells, as well as the secretion of interferons (IFNs), to establish a tissue-wide antiviral state in an autocrine and paracrine manner. Cumulative evidence suggests significant variability in the expression patterns of PRRs, the induction potency of ISGs and IFNs, and the IFN response across different cell types and species. Hence, in our understanding of viral hepatitis pathogenesis, insights gained through hepatoma cell lines or murine-based experimental systems are uncertain in precisely recapitulating the innate antiviral response of genuine human hepatocytes. Accordingly, this review article aims to extract and summarize evidence made possible with bona fide human hepatocytes-based study tools, along with their clinical relevance and implications, as well as to identify the remaining gaps in knowledge for future investigations.
Collapse
Affiliation(s)
- Yein Woo
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Muyuan Ma
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Masashi Okawa
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- R&D Department, PhoenixBio USA Corporation, New York, NY 10006, USA
| | - Takeshi Saito
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- USC Research Center for Liver Diseases, Los Angeles, CA 90033, USA
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
31
|
Wu D, Yan R, Song S, Swansiger AK, Li Y, Prell JS, Zhou Q, Robinson CV. The complete assembly of human LAT1-4F2hc complex provides insights into its regulation, function and localisation. Nat Commun 2024; 15:3711. [PMID: 38697966 PMCID: PMC11065870 DOI: 10.1038/s41467-024-47948-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 04/17/2024] [Indexed: 05/05/2024] Open
Abstract
The LAT1-4F2hc complex (SLC7A5-SLC3A2) facilitates uptake of essential amino acids, hormones and drugs. Its dysfunction is associated with many cancers and immune/neurological disorders. Here, we apply native mass spectrometry (MS)-based approaches to provide evidence of super-dimer formation (LAT1-4F2hc)2. When combined with lipidomics, and site-directed mutagenesis, we discover four endogenous phosphatidylethanolamine (PE) molecules at the interface and C-terminus of both LAT1 subunits. We find that interfacial PE binding is regulated by 4F2hc-R183 and is critical for regulation of palmitoylation on neighbouring LAT1-C187. Combining native MS with mass photometry (MP), we reveal that super-dimerization is sensitive to pH, and modulated by complex N-glycans on the 4F2hc subunit. We further validate the dynamic assemblies of LAT1-4F2hc on plasma membrane and in the lysosome. Together our results link PTM and lipid binding with regulation and localisation of the LAT1-4F2hc super-dimer.
Collapse
Affiliation(s)
- Di Wu
- Department of Chemistry, University of Oxford, Oxford, OX1 3QZ, UK.
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU, UK.
| | - Renhong Yan
- Department of Biochemistry, Key University Laboratory of Metabolism and Health of Guangdong, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong Province, China
| | - Siyuan Song
- Department of Chemistry, University of Oxford, Oxford, OX1 3QZ, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU, UK
| | - Andrew K Swansiger
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, Oregon, 97403-1253, USA
| | - Yaning Li
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - James S Prell
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, Oregon, 97403-1253, USA
| | - Qiang Zhou
- Research Center for Industries of the Future, Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang Province, China
| | - Carol V Robinson
- Department of Chemistry, University of Oxford, Oxford, OX1 3QZ, UK.
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU, UK.
| |
Collapse
|
32
|
Leite-Aguiar R, Cristina-Rodrigues F, Ciarlini-Magalhães R, Dantas DP, Alves VS, Gavino-Leopoldino D, Neris RLS, Schmitz F, Silveira JS, Kurtenbach E, Wyse ATS, Clarke JR, Figueiredo CP, Assunção-Miranda I, Pimentel-Coelho PM, Coutinho-Silva R, Savio LEB. ATP-P2X7 signaling mediates brain pathology while contributing to viral control in perinatal Zika virus infection. Brain Behav Immun 2024; 118:318-333. [PMID: 38460804 DOI: 10.1016/j.bbi.2024.02.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/24/2024] [Accepted: 02/27/2024] [Indexed: 03/11/2024] Open
Abstract
Zika virus (ZIKV), the causative agent of Zika fever, is a flavivirus transmitted by mosquitoes of the Aedes genus. Zika virus infection has become an international concern due to its association with severe neurological complications such as fetal microcephaly. Viral infection can induce the release of ATP in the extracellular environment, activating receptors sensitized by extracellular nucleotides, such as the P2X7 receptor. This receptor is the primary purinergic receptor involved in neuroinflammation, neurodegeneration, and immunity. In this work, we investigated the role of ATP-P2X7 receptor signaling in Zika-related brain abnormalities. Wild-type mice (WT) and P2X7 receptor-deficient (P2X7-/-) C57BL/6 newborn mice were subcutaneously inoculated with 5 × 106plaque-forming units of ZIKV or mock solution. P2X7 receptor expression increased in the brain of Zika virus-infected mice compared to the mock group. Comparative analyses of the hippocampi from WT and P2X7-/-mice revealed that the P2X7 receptor increased hippocampal damage in CA1/CA2 and CA3 regions. Doublecortin expression decreased significantly in the brains of ZIKV-infected mice. WT ZIKV-infected mice showed impaired motor performance compared to P2X7-/- infected mice. WT ZIKV-infected animals showed increased expression of glial markers GFAP (astrocytes) and IBA-1 (microglia) compared to P2X7-/- infected mice. Although the P2X7 receptor contributes to neuronal loss and neuroinflammation, WT mice were more efficient in controlling the viral load in the brain than P2X7 receptor-deficient mice. This result was associated with higher induction of TNF-α, IFN-β, and increased interferon-stimulated gene expression in WT mice than P2X7-/-ZIKV-infected. Finally, we found that the P2X7 receptor contributes to inhibiting the neuroprotective signaling pathway AKT/mTOR while stimulating the caspase-3 activation, possibly two distinct pathways contributing to neurodegeneration. These findings suggest that ATP-P2X7 receptor signaling contributes to the antiviral response in the brain of ZIKV-infected mice while increasing neuronal loss, neuroinflammation, and related brain abnormalities.
Collapse
Affiliation(s)
- Raíssa Leite-Aguiar
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabiana Cristina-Rodrigues
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Roberta Ciarlini-Magalhães
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Danillo Pereira Dantas
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vinícius Santos Alves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniel Gavino-Leopoldino
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Rômulo Leão Silva Neris
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Felipe Schmitz
- Departamento de Bioquímica, Instituto de Ciências Básicas de Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Josiane Silva Silveira
- Departamento de Bioquímica, Instituto de Ciências Básicas de Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Eleonora Kurtenbach
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Angela T S Wyse
- Departamento de Bioquímica, Instituto de Ciências Básicas de Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Julia Rosauro Clarke
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | | | - Iranaia Assunção-Miranda
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Robson Coutinho-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Luiz Eduardo Baggio Savio
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
33
|
Pardy RD, Walzer KA, Wallbank BA, Byerly JH, O’Dea KM, Cohn IS, Haskins BE, Roncaioli JL, Smith EJ, Buenconsejo GY, Striepen B, Hunter CA. Analysis of intestinal epithelial cell responses to Cryptosporidium highlights the temporal effects of IFN-γ on parasite restriction. PLoS Pathog 2024; 20:e1011820. [PMID: 38718306 PMCID: PMC11078546 DOI: 10.1371/journal.ppat.1011820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 04/14/2024] [Indexed: 05/12/2024] Open
Abstract
The production of IFN-γ is crucial for control of multiple enteric infections, but its impact on intestinal epithelial cells (IEC) is not well understood. Cryptosporidium parasites exclusively infect epithelial cells and the ability of interferons to activate the transcription factor STAT1 in IEC is required for parasite clearance. Here, the use of single cell RNA sequencing to profile IEC during infection revealed an increased proportion of mid-villus enterocytes during infection and induction of IFN-γ-dependent gene signatures that was comparable between uninfected and infected cells. These analyses were complemented by in vivo studies, which demonstrated that IEC expression of the IFN-γ receptor was required for parasite control. Unexpectedly, treatment of Ifng-/- mice with IFN-γ showed the IEC response to this cytokine correlates with a delayed reduction in parasite burden but did not affect parasite development. These data sets provide insight into the impact of IFN-γ on IEC and suggest a model in which IFN-γ signalling to uninfected enterocytes is important for control of Cryptosporidium.
Collapse
Affiliation(s)
- Ryan D. Pardy
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Katelyn A. Walzer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Bethan A. Wallbank
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jessica H. Byerly
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Keenan M. O’Dea
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ian S. Cohn
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Breanne E. Haskins
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Justin L. Roncaioli
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Eleanor J. Smith
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Gracyn Y. Buenconsejo
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Christopher A. Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
34
|
Morito D. Molecular structure and function of mysterin/RNF213. J Biochem 2024; 175:495-505. [PMID: 38378744 DOI: 10.1093/jb/mvae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/22/2024] Open
Abstract
Mysterin is a large intracellular protein harboring a RING finger ubiquitin ligase domain and is also referred to as RING finger protein 213 (RNF213). The author performed the first molecular cloning of the mysterin gene as the final step in genetic exploration of cerebrovascular moyamoya disease (MMD) and initiated the next round of exploration to understand its molecular and cellular functions. Although much remains unknown, accumulating findings suggest that mysterin functions in cells by targeting massive intracellular structures, such as lipid droplets (LDs) and various invasive pathogens. In the latter case, mysterin appears to directly surround and ubiquitylate the surface of pathogens and stimulate cell-autonomous antimicrobial reactions, such as xenophagy and inflammatory response. To date, multiple mutations causing MMD have been identified within and near the RING finger domain of mysterin; however, their functional relevance remains largely unknown. Besides the RING finger, mysterin harbors a dynein-like ATPase core and an RZ finger, another ubiquitin ligase domain unique to mysterin, while functional exploration of these domains has also just commenced. In this review, the author attempts to summarize the core findings regarding the molecular structure and function of the mysterin protein, with an emphasis on the perspective of MMD research.
Collapse
Affiliation(s)
- Daisuke Morito
- Department of Biochemistry, Showa University School of Medicine, Hatanodai 1-5-8, Shinagawa, Tokyo 142-0064, Japan
| |
Collapse
|
35
|
Zannikou M, Fish EN, Platanias LC. Signaling by Type I Interferons in Immune Cells: Disease Consequences. Cancers (Basel) 2024; 16:1600. [PMID: 38672681 PMCID: PMC11049350 DOI: 10.3390/cancers16081600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/08/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
This review addresses interferon (IFN) signaling in immune cells and the tumor microenvironment (TME) and examines how this affects cancer progression. The data reveal that IFNs exert dual roles in cancers, dependent on the TME, exhibiting both anti-tumor activity and promoting cancer progression. We discuss the abnormal IFN signaling induced by cancerous cells that alters immune responses to permit their survival and proliferation.
Collapse
Affiliation(s)
- Markella Zannikou
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, 303 East Superior Ave., Chicago, IL 60611, USA
| | - Eleanor N. Fish
- Toronto General Hospital Research Institute, University Health Network, 67 College Street, Toronto, ON M5G 2M1, Canada;
- Department of Immunology, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Leonidas C. Platanias
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, 303 East Superior Ave., Chicago, IL 60611, USA
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, 820 S. Damen Ave., Chicago, IL 60612, USA
| |
Collapse
|
36
|
Challagundla N, Shah D, Dalai SK, Agrawal-Rajput R. IFNγ insufficiency during mouse intra-vaginal Chlamydia trachomatis infection exacerbates alternative activation in macrophages with compromised CD40 functions. Int Immunopharmacol 2024; 131:111821. [PMID: 38484664 DOI: 10.1016/j.intimp.2024.111821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 04/10/2024]
Abstract
Chlamydia trachomatis (C.tr), an obligate intracellular pathogen, causes asymptomatic genital infections in women and is a leading cause of preventable blindness. We have developed in vivo mouse models of acute and chronic C. trachomatis genital infection to explore the significance of macrophage-directed response in mediating immune activation/suppression. Our findings reveal that during chronic and repeated C. trachomatis infections, Th1 response is abated while Treg response is enhanced. Additionally, an increase in exhaustion (PD1, CTLA4) and anergic (Klrg3, Tim3) T cell markers is observed during chronic infection. We have also observed that M2 macrophages with low CD40 expression promote Th2 and Treg differentiation leading to sustained C. trachomatis genital infection. Macrophages infected with C. trachomatis or treated with supernatant of infected epithelial cells drive them to an M2 phenotype. C. trachomatis infection prevents the increase in CD40 expression as observed in western blots and flow cytometric analysis. Insufficient IFNγ, as observed during chronic infection, leads to incomplete clearance of bacteria and poor immune activation. C. trachomatis decapacitates IFNγ responsiveness in macrophages via hampering IFNγRI and IFNγRII expression which can be correlated with poor expression of MHC-II, CD40, iNOS and NO release even following IFNγ supplementation. M2 macrophages during C. trachomatis infection express low CD40 rendering immunosuppressive, Th2 and Treg differentiation which could not be reverted even by IFNγ supplementation. The alternative macrophages also harbour high bacterial load and are poor responders to IFNγ, thus promoting immunosuppression. In summary, C. trachomatis modulates the innate immune cells, attenuating the anti-chlamydial functions of T cells in a manner that involves decreased CD40 expression on macrophages.
Collapse
Affiliation(s)
- Naveen Challagundla
- Immunology Lab, Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, Gujarat, India.
| | - Dhruvi Shah
- Immunology Lab, Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, Gujarat, India.
| | - Sarat K Dalai
- Institute of Science, Nirma University, S.G. Highway, Ahmedabad, Gujarat, India.
| | - Reena Agrawal-Rajput
- Immunology Lab, Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, Gujarat, India.
| |
Collapse
|
37
|
Casanova JL, MacMicking JD, Nathan CF. Interferon- γ and infectious diseases: Lessons and prospects. Science 2024; 384:eadl2016. [PMID: 38635718 DOI: 10.1126/science.adl2016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/13/2024] [Indexed: 04/20/2024]
Abstract
Infectious diseases continue to claim many lives. Prevention of morbidity and mortality from these diseases would benefit not just from new medicines and vaccines but also from a better understanding of what constitutes protective immunity. Among the major immune signals that mobilize host defense against infection is interferon-γ (IFN-γ), a protein secreted by lymphocytes. Forty years ago, IFN-γ was identified as a macrophage-activating factor, and, in recent years, there has been a resurgent interest in IFN-γ biology and its role in human defense. Here we assess the current understanding of IFN-γ, revisit its designation as an "interferon," and weigh its prospects as a therapeutic against globally pervasive microbial pathogens.
Collapse
Affiliation(s)
- Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, Paris Cité University, 75015 Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, 75015 Paris, France
| | - John D MacMicking
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
- Yale Systems Biology Institute, Yale University, West Haven, CT 06477, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Carl F Nathan
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
38
|
Pradeu T, Thomma BPHJ, Girardin SE, Lemaitre B. The conceptual foundations of innate immunity: Taking stock 30 years later. Immunity 2024; 57:613-631. [PMID: 38599162 DOI: 10.1016/j.immuni.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/23/2024] [Accepted: 03/06/2024] [Indexed: 04/12/2024]
Abstract
While largely neglected over decades during which adaptive immunity captured most of the attention, innate immune mechanisms have now become central to our understanding of immunology. Innate immunity provides the first barrier to infection in vertebrates, and it is the sole mechanism of host defense in invertebrates and plants. Innate immunity also plays a critical role in maintaining homeostasis, shaping the microbiota, and in disease contexts such as cancer, neurodegeneration, metabolic syndromes, and aging. The emergence of the field of innate immunity has led to an expanded view of the immune system, which is no longer restricted to vertebrates and instead concerns all metazoans, plants, and even prokaryotes. The study of innate immunity has given rise to new concepts and language. Here, we review the history and definition of the core concepts of innate immunity, discussing their value and fruitfulness in the long run.
Collapse
Affiliation(s)
- Thomas Pradeu
- CNRS UMR 5164 ImmunoConcept, University of Bordeaux, Bordeaux, France; Department of Biological and Medical Sciences, University of Bordeaux, Bordeaux, France; Presidential Fellow, Chapman University, Orange, CA, USA.
| | - Bart P H J Thomma
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - Stephen E Girardin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Bruno Lemaitre
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
39
|
Jacques C, Marchand F, Chatelais M, Albinet V, Coustal C, Floris I. The Micro-Immunotherapy Medicine 2LPAPI ® Displays Immune-Modulatory Effects in a Model of Human Papillomavirus Type-16 L1-Protein Capsid-Treated Human Peripheral Blood Mononuclear Cells and Antiproliferative Effects in a Model of Cervical Cancer Cells. Cancers (Basel) 2024; 16:1421. [PMID: 38611099 PMCID: PMC11010933 DOI: 10.3390/cancers16071421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Human papillomavirus (HPV) is the second most common infectious agent causing cancer. Persistent infection with high-risk (HR)-HPV can lead to cervical intra-epithelial neoplasia and cervical carcinomas (CC). While host immune response is necessary for viral clearance, chronic immune activation contributes to a low-grade inflammation that can ultimately lead to carcinogenesis. The micro-immunotherapy medicine (MIM) 2LPAPI® could be a valuable tool to manage the clearance of the virus and reduce the risk of developing CC. In this in vitro study, we aimed to investigate its mode of action. We showed that actives from the MIM increased the IL-6, IFN-γ, and IP-10 secretion in human peripheral blood mononuclear cells (PBMCs) exposed to peptides derived from the HPV-16 capsid (HPV16(L1)). This could reflect an increase in the immune activity toward HPV-16. At the same time, some active substances reduced the lympho-proliferation and the expression of T-cell activation markers. Finally, some of the MIM actives displayed antiproliferative effects in CC-derived HeLa cells under serum-starvation conditions. Altogether, this body of data highlighted for the first time the dual effect of MIM in the framework of HR-HPV infections as a potential (i) immune modulator of HPV16(L1)-treated PBMCs and (ii) antiproliferative agent of HPV-positive CC cells.
Collapse
Affiliation(s)
- Camille Jacques
- Preclinical Research Department, Labo’Life France, Pescalis-Les Magnys, 79320 Moncoutant-sur-Sevre, France;
| | - Flora Marchand
- ProfileHIT, 7 rue du Buisson, 44680 Sainte-Pazanne, France; (F.M.); (M.C.)
| | - Mathias Chatelais
- ProfileHIT, 7 rue du Buisson, 44680 Sainte-Pazanne, France; (F.M.); (M.C.)
| | - Virginie Albinet
- Imavita S.A.S., Canal Biotech 1&2, 3 rue des Satellites, Parc Technologique du Canal, 31400 Toulouse, France; (V.A.); (C.C.)
| | - Claire Coustal
- Imavita S.A.S., Canal Biotech 1&2, 3 rue des Satellites, Parc Technologique du Canal, 31400 Toulouse, France; (V.A.); (C.C.)
| | - Ilaria Floris
- Preclinical Research Department, Labo’Life France, Pescalis-Les Magnys, 79320 Moncoutant-sur-Sevre, France;
| |
Collapse
|
40
|
Juárez Rodríguez MD, Marquette M, Youngblood R, Dhungel N, Escobar AT, Ivanov S, Dragoi AM. Characterization of Neisseria gonorrhoeae colonization of macrophages under distinct polarization states and nutrients environment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.08.579566. [PMID: 38370795 PMCID: PMC10871323 DOI: 10.1101/2024.02.08.579566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Neisseria gonorrhoeae (Ng) is a uniquely adapted human pathogen and the etiological agent of gonorrhea, a sexually transmitted disease. Ng has developed numerous mechanisms to avoid and actively suppress innate and adaptive immune responses. Ng successfully colonizes and establishes topologically distinct colonies in human macrophages and avoids phagocytic killing. During colonization, Ng manipulates the actin cytoskeleton to invade and create an intracellular niche supportive of bacterial replication. The cellular reservoir(s) supporting bacterial replication and persistence in gonorrhea infections are poorly defined. The manner in which gonococci colonize macrophages points to this innate immune phagocyte as a strong candidate for a cellular niche during natural infection. Here we investigate whether nutrients availability and immunological polarization alter macrophage colonization by Ng . Differentiation of macrophages in pro-inflammatory (M1-like) and tolerogenic (M2-like) phenotypes prior to infection reveals that Ng can invade macrophages in all activation states, albeit with lower efficiency in M1-like macrophages. These results suggest that during natural infection, bacteria could invade and grow within macrophages regardless of the nutrients availability and the macrophage immune activation status.
Collapse
|
41
|
Pardy RD, Wallbank BA, Striepen B, Hunter CA. Immunity to Cryptosporidium: insights into principles of enteric responses to infection. Nat Rev Immunol 2024; 24:142-155. [PMID: 37697084 DOI: 10.1038/s41577-023-00932-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2023] [Indexed: 09/13/2023]
Abstract
Cryptosporidium parasites replicate within intestinal epithelial cells and are an important cause of diarrhoeal disease in young children and in patients with primary and acquired defects in T cell function. This Review of immune-mediated control of Cryptosporidium highlights advances in understanding how intestinal epithelial cells detect this infection, the induction of innate resistance and the processes required for activation of T cell responses that promote parasite control. The development of a genetic tool set to modify Cryptosporidium combined with tractable mouse models provide new opportunities to understand the principles that govern the interface between intestinal epithelial cells and the immune system that mediate resistance to enteric pathogens.
Collapse
Affiliation(s)
- Ryan D Pardy
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bethan A Wallbank
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
42
|
Weismehl M, Chu X, Kutsch M, Lauterjung P, Herrmann C, Kudryashev M, Daumke O. Structural insights into the activation mechanism of antimicrobial GBP1. EMBO J 2024; 43:615-636. [PMID: 38267655 PMCID: PMC10897159 DOI: 10.1038/s44318-023-00023-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 01/26/2024] Open
Abstract
The dynamin-related human guanylate-binding protein 1 (GBP1) mediates host defenses against microbial pathogens. Upon GTP binding and hydrolysis, auto-inhibited GBP1 monomers dimerize and assemble into soluble and membrane-bound oligomers, which are crucial for innate immune responses. How higher-order GBP1 oligomers are built from dimers, and how assembly is coordinated with nucleotide-dependent conformational changes, has remained elusive. Here, we present cryo-electron microscopy-based structural data of soluble and membrane-bound GBP1 oligomers, which show that GBP1 assembles in an outstretched dimeric conformation. We identify a surface-exposed helix in the large GTPase domain that contributes to the oligomerization interface, and we probe its nucleotide- and dimerization-dependent movements that facilitate the formation of an antimicrobial protein coat on a gram-negative bacterial pathogen. Our results reveal a sophisticated activation mechanism for GBP1, in which nucleotide-dependent structural changes coordinate dimerization, oligomerization, and membrane binding to allow encapsulation of pathogens within an antimicrobial protein coat.
Collapse
Affiliation(s)
- Marius Weismehl
- Structural Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany
| | - Xiaofeng Chu
- In Situ Structural Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
| | - Miriam Kutsch
- Institute of Molecular Pathogenicity, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- Institute of Biochemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- Department of Molecular Genetics and Microbiology, Duke University, 27710, Durham, NC, USA
| | - Paul Lauterjung
- Faculty of Chemistry and Biochemistry, Physical Chemistry I, Ruhr-University Bochum, 44801, Bochum, Germany
- Institute of Molecular Physical Chemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Christian Herrmann
- Faculty of Chemistry and Biochemistry, Physical Chemistry I, Ruhr-University Bochum, 44801, Bochum, Germany
| | - Misha Kudryashev
- In Situ Structural Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
- Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Oliver Daumke
- Structural Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany.
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany.
| |
Collapse
|
43
|
Rinkenberger N, Rosenberg A, Radke JB, Bhushan J, Tomita T, Weiss LM, Sibley LD. Susceptibility of Toxoplasma gondii to autophagy in human cells relies on multiple interacting parasite loci. mBio 2024; 15:e0259523. [PMID: 38095418 PMCID: PMC10790690 DOI: 10.1128/mbio.02595-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/06/2023] [Indexed: 01/04/2024] Open
Abstract
IMPORTANCE Autophagy is a process used by cells to recycle organelles and macromolecules and to eliminate intracellular pathogens. Previous studies have shown that some stains of Toxoplasma gondii are resistant to autophagy-dependent growth restriction, while others are highly susceptible. Although it is known that autophagy-mediated control requires activation by interferon gamma, the basis for why parasite strains differ in their susceptibility is unknown. Our findings indicate that susceptibility involves at least five unlinked parasite genes on different chromosomes, including several secretory proteins targeted to the parasite-containing vacuole and exposed to the host cell cytosol. Our findings reveal that susceptibility to autophagy-mediated growth restriction relies on differential recognition of parasite proteins exposed at the host-pathogen interface, thus identifying a new mechanism for cell-autonomous control of intracellular pathogens.
Collapse
Affiliation(s)
- Nicholas Rinkenberger
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Alex Rosenberg
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Joshua B. Radke
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Jaya Bhushan
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Tadakimi Tomita
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Louis M. Weiss
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - L. David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
44
|
Sun N, Cai Q, Zhang Y, Zhang RR, Jiang J, Yang H, Qin CF, Cheng G. The aldehyde dehydrogenase ALDH1B1 exerts antiviral effects through the aggregation of the adaptor MAVS. Sci Signal 2024; 17:eadf8016. [PMID: 38194477 DOI: 10.1126/scisignal.adf8016] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/13/2023] [Indexed: 01/11/2024]
Abstract
Type I interferons (IFNs) are produced by almost all cell types and play a vital role in host defense against viral infection. Infection with an RNA virus activates receptors such as RIG-I, resulting in the recruitment of the adaptor protein MAVS to the RIG-I-like receptor (RLR) signalosome and the formation of prion-like functional aggregates of MAVS, which leads to IFN-β production. Here, we identified the aldehyde dehydrogenase 1B1 (ALDH1B1) as a previously uncharacterized IFN-stimulated gene (ISG) product with critical roles in the antiviral response. Knockout of ALDH1B1 increased, whereas overexpression of ALDH1B1 restricted, the replication of RNA viruses, such as vesicular stomatitis virus (VSV), Zika virus (ZIKV), dengue virus (DENV), and influenza A virus (IAV). We found that ALDH1B1 localized to mitochondria, where it interacted with the transmembrane domain of MAVS to promote MAVS aggregation. ALDH1B1 was recruited to MAVS aggregates. In addition, ALDH1B1 also enhanced the interaction between activated RIG-I and MAVS, thus increasing IFN-β production and the antiviral response. Furthermore, Aldh1b1-/- mice developed more severe symptoms than did wild-type mice upon IAV infection. Together, these data identify an aldehyde dehydrogenase in mitochondria that functionally regulates MAVS-mediated signaling and the antiviral response.
Collapse
Affiliation(s)
- Nina Sun
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China
| | - Qiaomei Cai
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China
| | - Yurui Zhang
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China
| | - Rong-Rong Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Jingmei Jiang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Heng Yang
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, Jiangsu, China
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Genhong Cheng
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
45
|
Matta SK, Kohio HP, Chandra P, Brown A, Doench JG, Philips JA, Ding S, Sibley LD. Genome-wide and targeted CRISPR screens identify RNF213 as a mediator of interferon gamma-dependent pathogen restriction in human cells. Proc Natl Acad Sci U S A 2024; 121:e2315865120. [PMID: 38147552 PMCID: PMC10769850 DOI: 10.1073/pnas.2315865120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/15/2023] [Indexed: 12/28/2023] Open
Abstract
To define cellular immunity to the intracellular pathogen Toxoplasma gondii, we performed a genome-wide CRISPR loss-of-function screen to identify genes important for (interferon gamma) IFN-γ-dependent growth restriction. We revealed a role for the tumor suppressor NF2/Merlin for maximum induction of Interferon Stimulated Genes (ISG), which are positively regulated by the transcription factor IRF-1. We then performed an ISG-targeted CRISPR screen that identified the host E3 ubiquitin ligase RNF213 as necessary for IFN-γ-mediated control of T. gondii in multiple human cell types. RNF213 was also important for control of bacterial (Mycobacterium tuberculosis) and viral (Vesicular Stomatitis Virus) pathogens in human cells. RNF213-mediated ubiquitination of the parasitophorous vacuole membrane (PVM) led to growth restriction of T. gondii in response to IFN-γ. Moreover, overexpression of RNF213 in naive cells also impaired growth of T. gondii. Surprisingly, growth inhibition did not require the autophagy protein ATG5, indicating that RNF213 initiates restriction independent of a previously described noncanonical autophagy pathway. Mutational analysis revealed that the ATPase domain of RNF213 was required for its recruitment to the PVM, while loss of a critical histidine in the RZ finger domain resulted in partial reduction of recruitment to the PVM and complete loss of ubiquitination. Both RNF213 mutants lost the ability to restrict growth of T. gondii, indicating that both recruitment and ubiquitination are required. Collectively, our findings establish RNF213 as a critical component of cell-autonomous immunity that is both necessary and sufficient for control of intracellular pathogens in human cells.
Collapse
Affiliation(s)
- Sumit K. Matta
- Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St Louis, MO63130
| | - Hinissan P. Kohio
- Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St Louis, MO63130
| | - Pallavi Chandra
- Department of Medicine, Division of Infectious Diseases, School of Medicine, Washington University in St. Louis, St Louis, MO63130
| | - Adam Brown
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA02142
| | - John G. Doench
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA02142
| | - Jennifer A. Philips
- Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St Louis, MO63130
- Department of Medicine, Division of Infectious Diseases, School of Medicine, Washington University in St. Louis, St Louis, MO63130
| | - Siyuan Ding
- Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St Louis, MO63130
| | - L. David Sibley
- Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St Louis, MO63130
| |
Collapse
|
46
|
Okuma H, Saijo-Hamano Y, Yamada H, Sherif AA, Hashizaki E, Sakai N, Kato T, Imasaki T, Kikkawa S, Nitta E, Sasai M, Abe T, Sugihara F, Maniwa Y, Kosako H, Takei K, Standley DM, Yamamoto M, Nitta R. Structural basis of Irgb6 inactivation by Toxoplasma gondii through the phosphorylation of switch I. Genes Cells 2024; 29:17-38. [PMID: 37984375 PMCID: PMC11448365 DOI: 10.1111/gtc.13080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/12/2023] [Accepted: 10/29/2023] [Indexed: 11/22/2023]
Abstract
Irgb6 is a priming immune-related GTPase (IRG) that counteracts Toxoplasma gondii. It is known to be recruited to the low virulent type II T. gondii parasitophorous vacuole (PV), initiating cell-autonomous immunity. However, the molecular mechanism by which immunity-related GTPases become inactivated after the parasite infection remains obscure. Here, we found that Thr95 of Irgb6 is prominently phosphorylated in response to low virulent type II T. gondii infection. We observed that a phosphomimetic T95D mutation in Irgb6 impaired its localization to the PV and exhibited reduced GTPase activity in vitro. Structural analysis unveiled an atypical conformation of nucleotide-free Irgb6-T95D, resulting from a conformational change in the G-domain that allosterically modified the PV membrane-binding interface. In silico docking corroborated the disruption of the physiological membrane binding site. These findings provide novel insights into a T. gondii-induced allosteric inactivation mechanism of Irgb6.
Collapse
Affiliation(s)
- Hiromichi Okuma
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yumiko Saijo-Hamano
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroshi Yamada
- Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Aalaa Alrahman Sherif
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka, Japan
- Laboratory of Systems Immunology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Emi Hashizaki
- Laboratory of Immunoparasitology, Osaka University, Osaka, Japan
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka, Japan
| | | | - Takaaki Kato
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tsuyoshi Imasaki
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Satoshi Kikkawa
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Eriko Nitta
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Miwa Sasai
- Laboratory of Immunoparasitology, Osaka University, Osaka, Japan
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka, Japan
| | - Tadashi Abe
- Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Fuminori Sugihara
- Core Instrumentation Facility, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yoshimasa Maniwa
- Division of Thoracic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Tokushima University, Tokushima, Japan
| | - Kohji Takei
- Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Daron M Standley
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka, Japan
- Laboratory of Systems Immunology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Masahiro Yamamoto
- Laboratory of Immunoparasitology, Osaka University, Osaka, Japan
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka, Japan
| | - Ryo Nitta
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
47
|
Henry B, Sibley LD, Rosenberg A. A Combination of Four Nuclear Targeted Effectors Protects Toxoplasma Against Interferon Gamma Driven Human Host Cell Death During Acute Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.24.573224. [PMID: 38234811 PMCID: PMC10793417 DOI: 10.1101/2023.12.24.573224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
In both mice and humans, Type II interferon-gamma (IFNγ) is crucial for regulation of Toxoplasma gondii (T. gondii) infection, during acute or chronic phases. To thwart this defense, T. gondii secretes protein effectors hindering the hosťs immune response. For example, T. gondii relies on the MYR translocon complex to deploy soluble dense granule effectors (GRAs) into the host cell cytosol or nucleus. Recent genome-wide loss-of-function screens in IFNγ-primed primary human fibroblasts identified MYR translocon components as crucial for parasite resistance against IFNγ driven vacuole clearance. However, these screens did not pinpoint specific MYR-dependent GRA proteins responsible for IFNγ signaling blockade, suggesting potential functional redundancy. Our study reveals that T. gondii depends on the MYR translocon complex to prevent host cell death and parasite premature egress in human cells stimulated with IFNγ postinfection, a unique phenotype observed in various human cell lines but not in murine cells. Intriguingly, inhibiting parasite egress did not prevent host cell death, indicating this mechanism is distinct from those described previously. Genome-wide loss-of-function screens uncovered TgIST, GRA16, GRA24, and GRA28 as effectors necessary for a complete block of IFNγ response. GRA24 and GRA28 directly influenced IFNγ driven transcription, GRA24's action depended on its interaction with p38 MAPK, while GRA28 disrupted histone acetyltransferase activity of CBP/p300. Given the intricate nature of the immune response to T. gondii, it appears that the parasite has evolved equally elaborate mechanisms to subvert IFNγ signaling, extending beyond direct interference with the JAK/STAT1 pathway, to encompass other signaling pathways as well.
Collapse
Affiliation(s)
- Brittany Henry
- Department of Infectious Diseases, Center for Tropical and Emerging Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - L. David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Alex Rosenberg
- Department of Infectious Diseases, Center for Tropical and Emerging Infectious Diseases, University of Georgia, Athens, Georgia, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
48
|
Mercer HM, Nair AM, Ridgel A, Piontkivska H. Alterations in RNA editing in skeletal muscle following exercise training in individuals with Parkinson's disease. PLoS One 2023; 18:e0287078. [PMID: 38134032 PMCID: PMC10745226 DOI: 10.1371/journal.pone.0287078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/01/2023] [Indexed: 12/24/2023] Open
Abstract
Parkinson's Disease (PD) is the second most common neurodegenerative disease behind Alzheimer's Disease, currently affecting more than 10 million people worldwide and 1.5 times more males than females. The progression of PD results in the loss of function due to neurodegeneration and neuroinflammation. The etiology of PD is multifactorial, including both genetic and environmental origins. Here we explored changes in RNA editing, specifically editing through the actions of the Adenosine Deaminases Acting on RNA (ADARs), in the progression of PD. Analysis of ADAR editing of skeletal muscle transcriptomes from PD patients and controls, including those that engaged in a rehabilitative exercise training program revealed significant differences in ADAR editing patterns based on age, disease status, and following rehabilitative exercise. Further, deleterious editing events in protein coding regions were identified in multiple genes with known associations to PD pathogenesis. Our findings of differential ADAR editing complement findings of changes in transcriptional networks identified by a recent study and offer insights into dynamic ADAR editing changes associated with PD pathogenesis.
Collapse
Affiliation(s)
- Heather Milliken Mercer
- Department of Biological Sciences, Kent State University, Kent, OH, United States of America
- Department of Biological and Environmental Sciences, University of Mount Union, Alliance, OH, United States of America
- Healthy Communities Research Institute, Kent State University, Kent, OH, United States of America
| | - Aiswarya Mukundan Nair
- Department of Biological Sciences, Kent State University, Kent, OH, United States of America
| | - Angela Ridgel
- School of Health Sciences, Kent State University, Kent, OH, United States of America
- Brain Health Research Institute, Kent State University, Kent, OH, United States of America
- Healthy Communities Research Institute, Kent State University, Kent, OH, United States of America
| | - Helen Piontkivska
- Department of Biological Sciences, Kent State University, Kent, OH, United States of America
- Brain Health Research Institute, Kent State University, Kent, OH, United States of America
- Healthy Communities Research Institute, Kent State University, Kent, OH, United States of America
| |
Collapse
|
49
|
Ji L, Li T, Chen H, Yang Y, Lu E, Liu J, Qiao W, Chen H. The crucial regulatory role of type I interferon in inflammatory diseases. Cell Biosci 2023; 13:230. [PMID: 38124132 PMCID: PMC10734085 DOI: 10.1186/s13578-023-01188-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023] Open
Abstract
Type I interferon (IFN-I) plays crucial roles in the regulation of inflammation and it is associated with various inflammatory diseases including systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and periodontitis, impacting people's health and quality of life. It is well-established that IFN-Is affect immune responses and inflammatory factors by regulating some signaling. However, currently, there is no comprehensive overview of the crucial regulatory role of IFN-I in distinctive pathways as well as associated inflammatory diseases. This review aims to provide a narrative of the involvement of IFN-I in different signaling pathways, mainly mediating the related key factors with specific targets in the pathways and signaling cascades to influence the progression of inflammatory diseases. As such, we suggested that IFN-Is induce inflammatory regulation through the stimulation of certain factors in signaling pathways, which displays possible efficient treatment methods and provides a reference for the precise control of inflammatory diseases.
Collapse
Affiliation(s)
- Ling Ji
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, SAR, People's Republic of China
| | - Tianle Li
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, SAR, People's Republic of China
| | - Huimin Chen
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, SAR, People's Republic of China
| | - Yanqi Yang
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, SAR, People's Republic of China
- Division of Pediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, SAR, People's Republic of China
| | - Eryi Lu
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, China
| | - Jieying Liu
- Department of Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Qiao
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, SAR, People's Republic of China.
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Level 3, 34 Hospital Road, Sai Ying Pun, Hong Kong, SAR, People's Republic of China.
| | - Hui Chen
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, SAR, People's Republic of China.
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Level 3, 34 Hospital Road, Sai Ying Pun, Hong Kong, SAR, People's Republic of China.
| |
Collapse
|
50
|
Silva BJDA, Krogstad PA, Teles RMB, Andrade PR, Rajfer J, Ferrini MG, Yang OO, Bloom BR, Modlin RL. IFN-γ-mediated control of SARS-CoV-2 infection through nitric oxide. Front Immunol 2023; 14:1284148. [PMID: 38162653 PMCID: PMC10755032 DOI: 10.3389/fimmu.2023.1284148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction The COVID-19 pandemic has highlighted the need to identify mechanisms of antiviral host defense against SARS-CoV-2. One such mediator is interferon-g (IFN-γ), which, when administered to infected patients, is reported to result in viral clearance and resolution of pulmonary symptoms. IFN-γ treatment of a human lung epithelial cell line triggered an antiviral activity against SARS-CoV-2, yet the mechanism for this antiviral response was not identified. Methods Given that IFN-γ has been shown to trigger antiviral activity via the generation of nitric oxide (NO), we investigated whether IFN-γ induction of antiviral activity against SARS-CoV-2 infection is dependent upon the generation of NO in human pulmonary epithelial cells. We treated the simian epithelial cell line Vero E6 and human pulmonary epithelial cell lines, including A549-ACE2, and Calu-3, with IFN-γ and observed the resulting induction of NO and its effects on SARS-CoV-2 replication. Pharmacological inhibition of inducible nitric oxide synthase (iNOS) was employed to assess the dependency on NO production. Additionally, the study examined the effect of interleukin-1b (IL-1β) on the IFN-g-induced NO production and its antiviral efficacy. Results Treatment of Vero E6 cells with IFN-γ resulted in a dose-responsive induction of NO and an inhibitory effect on SARS-CoV-2 replication. This antiviral activity was blocked by pharmacologic inhibition of iNOS. IFN-γ also triggered a NO-mediated antiviral activity in SARS-CoV-2 infected human lung epithelial cell lines A549-ACE2 and Calu-3. IL-1β enhanced IFN-γ induction of NO, but it had little effect on antiviral activity. Discussion Given that IFN-g has been shown to be produced by CD8+ T cells in the early response to SARS-CoV-2, our findings in human lung epithelial cell lines, of an IFN-γ-triggered, NO-dependent, links the adaptive immune response to an innate antiviral pathway in host defense against SARS-CoV-2. These results underscore the importance of IFN-γ and NO in the antiviral response and provide insights into potential therapeutic strategies for COVID-19.
Collapse
Affiliation(s)
- Bruno J. de Andrade Silva
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine at University of California (UCLA), Los Angeles, CA, United States
| | - Paul A. Krogstad
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA, United States
| | - Rosane M. B. Teles
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine at University of California (UCLA), Los Angeles, CA, United States
| | - Priscila R. Andrade
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine at University of California (UCLA), Los Angeles, CA, United States
| | - Jacob Rajfer
- Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Monica G. Ferrini
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- Department of Health and Life Sciences, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
| | - Otto O. Yang
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Barry R. Bloom
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Robert L. Modlin
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine at University of California (UCLA), Los Angeles, CA, United States
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|