1
|
Zhang R, Yao X, Li Q, Li X, Ma Q, Huang W, Hu Y, Shi X, Yang Y, Liu H. Self-assembled nanoparticles of rapamycin prodrugs for the treatment of multiple sclerosis. J Colloid Interface Sci 2025; 683:448-459. [PMID: 39740562 DOI: 10.1016/j.jcis.2024.12.195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/02/2025]
Abstract
Optimizing the design of nanoparticulate co-delivery systems of antigens and immunomodulators to induce antigen-specific immune tolerance effectively remains a challenge, constrained by low drug loading capacity and premature leakage of active ingredients. Here, we report a prodrug self-assembled nanoparticles (NPs) strategy to synergistically deliver antigen and rapamycin (RAPA) into antigen-presenting cells (APCs) by simply conjugating rapamycin with an aliphatic chain. These prodrug NPs can be efficiently taken up by APCs and then release rapamycin through cleavage of the linker by intracellular esterase. Compared to other nanocarriers, rapamycin prodrug NPs exhibit high drug loading capacity and high stability, providing more rational intracellular synchronous delivery of drugs. The prodrug NPs also demonstrate improved therapeutic efficacy in experimental autoimmune encephalomyelitis (EAE) model mice compared with free antigen and rapamycin. Our findings provide new insights into the design of tolerogenic NPs for treating multiple sclerosis (MS). This delivery platform is also applicable for the alleviation of other autoimmune diseases.
Collapse
Affiliation(s)
- Rui Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Xiaoxuan Yao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Qing Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Ximu Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Qing Ma
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Weijia Huang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Yuxin Hu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Xianbao Shi
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, PR China.
| | - Yang Yang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China.
| | - Hongzhuo Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China.
| |
Collapse
|
2
|
Guo Q, Huang L, Liu Y, Qi C, Shao H, Peng J, Zhang H, Zang Y, Luo M, Shen X, Wang D, Liu L, Xu Q, Zheng Y, Dong X, Xu X. PcoCas12a: A novel CRISPR enzyme from Prevotella copri enhancing TCR-T-cell tumor suppression. Int J Biol Macromol 2025; 298:139740. [PMID: 39800033 DOI: 10.1016/j.ijbiomac.2025.139740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/31/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Genome editing technologies have been widely utilized in cell engineering, demonstrating immense potential in cell and gene therapy. However, an optimal gene-editing enzyme for immune cell editing remains unidentified. In this study, we identified a novel gene editing enzyme, termed CRISPR/PcoCas12a, derived from Prevotella copri, which recognizes a 5'-YYN PAM sequence. We demonstrated that CRISPR/PcoCas12a offers a broader range of editing sites and superior editing efficiency at specific loci compared to AsCas12a. Furthermore, we illustrated its capability to enhance tumor suppression by targeting DGKα in TCR-T cells. DGKα functions as a negative regulator of T cell function, and its knockout significantly boosts the antitumor efficacy of TCR-T cells. The knockout efficiency and tumor suppressor ability of PcoCas12a targeting DGKα were markedly higher than those achieved with AsCas12a. Single-cell sequencing data confirmed that PcoCas12a-mediated DGKα gene knockout improves the tumor suppressive capabilities of T cells by promoting T-cell activation and strengthening immune regulatory responses. These findings establish PcoCas12a as a highly efficient enzyme for T cell editing, indicating its potential application in T-cell therapy.
Collapse
Affiliation(s)
- Qiang Guo
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China
| | - Lei Huang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yi Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China
| | - Chen Qi
- Guangdong Provincial Key Laboratory of Interdisciplinary Research and Application for Data Science, BNU-HKBU United International College, Zhuhai 519087, China
| | - Huishan Shao
- BGI Research, Shenzhen 518083, China; College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Jianfang Peng
- BGI Research, Shenzhen 518083, China; College of Life Sciences Northwest University, Xi'an, Shaanxi 710069, PR China
| | - Haibo Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China
| | - Yupeng Zang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China
| | - Mei Luo
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China
| | - Xuechun Shen
- BGI Research, Hangzhou 310030, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Dan Wang
- Guangdong Provincial Key Laboratory of Interdisciplinary Research and Application for Data Science, BNU-HKBU United International College, Zhuhai 519087, China
| | - Longqi Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China
| | - Qumiao Xu
- BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China; Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen 518083, China.
| | - Yue Zheng
- BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China.
| | - Xuan Dong
- BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China; Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen 518083, China.
| | - Xun Xu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI Research, Shenzhen 518083, China.
| |
Collapse
|
3
|
Chen Y, Sun Q, Zou Q, Zhu X, Wen T, Li X, Li S, He J, Wei F, Xie K. FOXM1-Cx31 Axis Drives Pancreatic Cancer Stem Cell-Like Properties and Chemoresistance. Mol Carcinog 2025; 64:565-579. [PMID: 39757875 DOI: 10.1002/mc.23870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 01/07/2025]
Abstract
Pancreatic cancer is a highly lethal malignancy with few effective treatment options. Connexin 31 (Cx31) is a membrane protein capable of forming hexameric channels to facilitate the exchange of metabolites and signaling molecules. Yet, the contribution of Cx31 to the onset and progression of pancreatic cancer remains to be understood. We analyzed Cx31 expression in pancreatic cancer tissues and cell lines using public databases and experimental models. The correlation between Cx31 expression and clinical outcomes was evaluated. The effects of Cx31 on pancreatic cancer cell proliferation, stemness, migration, chemoresistance, and immune infiltration were investigated. Transcriptome analysis and bioinformatics tools were employed to explore the underlying mechanisms. Cx31 was found to be upregulated in pancreatic cancer tissues compared to normal tissues, and its high expression correlated with shorter overall survival and higher mortality risk. Cx31 promoted acinar-to-ductal metaplasia (ADM), stemness, proliferation, migration, metastasis, and chemoresistance in pancreatic cancer cells. Bioinformatics analysis suggested a positive correlation between Cx31 and stemness-related genes. Cx31 knockdown altered the expression of genes involved in stemness and chemoresistance pathways, such as Wnt and Notch. Additionally, Cx31 was identified as a direct target of the transcription factor FOXM1, which upregulated its expression. Cx31 plays a multifaceted role in pancreatic cancer, influencing processes from initiation to metastasis and chemoresistance. It may serve as a potential therapeutic target to combat the aggressive nature of pancreatic cancer. The FOXM1-Cx31 axis could be a promising target for overcoming treatment resistance in pancreatic cancer.
Collapse
Affiliation(s)
- Yang Chen
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, Guangdong, China
| | - Qihui Sun
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, Guangdong, China
| | - Qi Zou
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, Guangdong, China
- Guangzhou Digestive Disease Center, Guangzhou First People's Hospital and The Second Affiliated Hospital, South China University of Technology School of Medicine, Guangzhou, China
| | - Xiaoqi Zhu
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, Guangdong, China
- Guangzhou Digestive Disease Center, Guangzhou First People's Hospital and The Second Affiliated Hospital, South China University of Technology School of Medicine, Guangzhou, China
| | - Tingting Wen
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, Guangdong, China
| | - Xiaojia Li
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, Guangdong, China
| | - Shu Li
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, Guangdong, China
| | - Jie He
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, Guangdong, China
- Guangzhou Digestive Disease Center, Guangzhou First People's Hospital and The Second Affiliated Hospital, South China University of Technology School of Medicine, Guangzhou, China
| | - Fang Wei
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, Guangdong, China
- Guangzhou Digestive Disease Center, Guangzhou First People's Hospital and The Second Affiliated Hospital, South China University of Technology School of Medicine, Guangzhou, China
| | - Keping Xie
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Luca VC. LAG Time in the Era of Immunotherapy-New Molecular Insights Into the Immunosuppression Mechanism of Lymphocyte Activation Gene-3. Immunol Rev 2025; 330:e70002. [PMID: 39887765 DOI: 10.1111/imr.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 02/01/2025]
Abstract
The immune checkpoint receptor lymphocyte activation gene-3 (LAG3) inhibits T-cell activation and was recently validated as a target for cancer immunotherapy. Despite its emergence as a therapeutic target, a lack of molecular-level insight has obscured our understanding of the LAG3 immunosuppression mechanism. This review highlights a series of breakthroughs that have illuminated fundamental aspects of LAG3 molecular biology. Key discoveries include structural insights into LAG3 interactions with ligands and antibodies, mechanistic studies of LAG3 interference with T-cell receptor (TCR) signaling, and the development of novel therapeutics. A particular focus is placed on structure-function relationships for LAG3-targeting drugs, as it has become apparent that several distinct approaches to LAG3 antagonism are viable. In addition to LAG3 antagonists, agonistic LAG3 antibodies and immunostimulatory LAG3 extracellular domains (ECDs) are discussed in the context of current structural and mechanistic data. Collectively, these findings should provide an updated landscape for the design of optimal LAG3-based therapeutics for cancer and autoimmune diseases.
Collapse
Affiliation(s)
- Vincent C Luca
- Department of Immunology, Moffitt Cancer Center, Tampa, Florida, USA
| |
Collapse
|
5
|
Cui J, Hu Z, Jiang Y, Wang Y, Li C, Zhang S, Chen L, Zhang Z, Yang D, Shen H, Zheng P, Qiu L, Lu Z. Jiawei Yanghe Decoction alleviates pulmonary sarcoidosis by upregulating NR1D1/2 and suppressing Th17 cells. JOURNAL OF ETHNOPHARMACOLOGY 2025; 342:119372. [PMID: 39826790 DOI: 10.1016/j.jep.2025.119372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/03/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jiawei Yanghe Decoction (JWYHD) is a modified version traditional Chinese medicine formula Yanghe Decoction which has been used to treat various autoimmune diseases. However, the effect of JWYHD on pulmonary sarcoidosis remains unclear. AIM OF THE STUDY This study aimed to determine the therapeutic efficacy and potential mechanism of action of JWYHD in pulmonary sarcoidosis. MATERIALS AND METHODS A murine model of sarcoidosis was established by intravenous injection of inactivated Propionibacterium acnes and mature dendritic cells to assess the efficacy of JWYHD. Lung tissue mRNA sequencing was conducted to identify the targets of JWYHD's action. Molecular docking verified of the interaction between identified compounds and key targets. RESULTS JWYHD treatment alleviated the formation of granulomas in the lung tissue of sarcoidosis model mice. JWYHD significantly attenuated the pulmonary accumulation of macrophages and CD4+T lymphocytes in sarcoidosis mice, and effectively suppressed the proportion of Th17 cells and the levels of IL-17A and TNF-α in BALF, which are pivotal in the pathogenesis of granuloma formation and progression. The therapeutic efficacy of JWYHD was found to be equivalent to that of prednisone. RNA-seq revealed that JWYHD upregulated Nr1d1/2 expression in the lung tissue. Nr1d1/2 is highly expressed in Th17 cells and regulates their differentiation. The NR1D1/2 agonist SR9009 could inhibit Th17 cell proportion and reduce the formation of pulmonary granuloma, exhibiting effects similar to those of JWYHD. Molecular docking result showed that Cyclocephaloside II, Epimedin B, Glycyrrhetic acid, Glycyrrhizic acid, Uralsaponin B, and Uralsaponin U may be key compounds in JWYHD for the treatment of pulmonary sarcoidosis, which had a strong binding ability for NR1D1/2. CONCLUSIONS JWYHD might exert a therapeutic benefit in pulmonary sarcoidosis through upregulating NR1D1/2 and suppressing Th17 cells. NR1D1/2 might serve as a therapeutic target for the treatment of pulmonary sarcoidosis.
Collapse
Affiliation(s)
- Jie Cui
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Zhuannan Hu
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yuwei Jiang
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yu Wang
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Cui Li
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Shaoyan Zhang
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Linjin Chen
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Zhengyi Zhang
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Di Yang
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Huimin Shen
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Peiyong Zheng
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Lei Qiu
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Zhenhui Lu
- Institute of Respiratory Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
6
|
Dong M, Liu X, Zhao C, Fang Z, Wang Z, Guo X, Wang Y, Li Y, Ye M, Jia L. Temporal resolved multi-proteomic analysis enabled the systematic characterization of N-glycosylation pattern changes during Jurkat T cell activation. Anal Bioanal Chem 2025:10.1007/s00216-025-05805-3. [PMID: 39998645 DOI: 10.1007/s00216-025-05805-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025]
Abstract
Protein glycosylation plays essential roles in regulating innate and adaptive immune response. Previous studies only focused on individual protein-glycan interactions or specific glycoform changes during T cell activation, yet the systematic characterization of protein glycosylation alterations remains insufficiently elucidated. To address these limitations, we conducted temporally resolved quantitative analysis of glycoforms, site-specific glycans, glycoproteins, and glycosylation enzymes in activated Jurkat T cells, and successfully portrayed the dynamic landscape of protein glycosylation during Jurkat T cell activation. We found the heterogeneity and number of significantly upregulated glycopeptides increased along with activation. For most glycopeptides, their alteration patterns did not correlate with the abundance of their glycoprotein substrates. However, functional molecules including CD69, CD28, and PTPRC demonstrated co-upregulation at both the protein and glycosylation levels. Correlation analysis between glycopeptides and glycotransferases indicated that sialylated or fucosylated peptides were well correlated with enzymes involved in glycan branching and capping. Comparative analysis of global peptides, glycopeptides, and phosphopeptides revealed their distinctive changing patterns along Jurkat T cell activation, and only glycosylation demonstrated a steady increase trend with a large proportion of upregulated glycopeptides. Collectively, this integrated multi-proteomics characterization of activated Jurkat T cells provided insights for the development of novel therapeutic strategy targeting glycosylation.
Collapse
Affiliation(s)
- Mingming Dong
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116000, Liaoning, China.
| | - Xiaoyan Liu
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changrui Zhao
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116000, Liaoning, China
| | - Zheng Fang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zhongyu Wang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Guo
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116000, Liaoning, China
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yan Wang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yanan Li
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Mingliang Ye
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lingyun Jia
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116000, Liaoning, China
| |
Collapse
|
7
|
Shi Q, Luo Y, Xiang Q, Kang X, Feng Z. CD28 Superfamily Costimulatory Molecules in Chronic Pain: Focus on Immunomodulation. Mol Neurobiol 2025:10.1007/s12035-025-04746-3. [PMID: 39956885 DOI: 10.1007/s12035-025-04746-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/03/2025] [Indexed: 02/18/2025]
Abstract
Chronic pain has substantial effects on patients' quality of life and psychological well-being. It does not respond satisfactorily to available medicinal therapeutics because its mechanism remains unclear. Recent studies have shown a strong relationship between chronic pain and immunomodulation. As important members of the immune response, CD28 superfamily costimulatory molecules were demonstrated to have an analgesic effect on chronic pain. Based on research on the role of these molecules in chronic pain, new and highly effective analgesic medicines are anticipated that could be used in combination with some previous analgesic medicines to reduce substance abuse and side effects. This review of the literature will examine the pain-regulating mechanisms of CD28 superfamily costimulatory molecules, focusing on immunomodulation. In addition, this review will discuss the potential and difficulties of developing novel analgesic medicines targeting CD28 superfamily costimulatory molecules.
Collapse
Affiliation(s)
- Qinglu Shi
- Department of Pain Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Yujia Luo
- Department of Pain Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Qiaomin Xiang
- Department of Pain Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Department of Anesthesiology, Ninghai First Hospital, Ningbo, Zhejiang, China
| | - Xianhui Kang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| | - Zhiying Feng
- Department of Pain Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
8
|
Viramontes KM, Thone MN, De La Torre JJ, Neubert EN, DeRogatis JM, Garcia C, Henriquez ML, Tinoco R. Contrasting roles of PSGL-1 and PD-1 in regulating T-cell exhaustion and function during chronic viral infection. J Virol 2025:e0224224. [PMID: 39912665 DOI: 10.1128/jvi.02242-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/19/2025] [Indexed: 02/07/2025] Open
Abstract
Immune checkpoints are critical regulators of T-cell exhaustion, impairing their ability to eliminate antigens present during chronic viral infections. Current immune checkpoint inhibitors (ICIs) used in the clinic aim to reinvigorate exhausted T cells; yet, most patients fail to respond or develop resistance to these therapies, underscoring the need to better understand these immunosuppressive pathways. PSGL-1 (Selplg), a recently discovered immune checkpoint, negatively regulates T-cell function. We investigated the cell-intrinsic effects of PSGL-1, PD-1, and combined deletion on CD8+ T cells during chronic viral infection. We found that combined PSGL-1 and PD-1 (Selplg-/-Pdcd1-/-) deficiency in CD8+ T cells increased their frequencies and numbers throughout chronic infection compared to the wild type. This phenotype was primarily driven by PD-1 deficiency. Furthermore, while PD-1 deletion increased virus-specific T-cell frequencies, it was detrimental to their function. Conversely, PSGL-1 deletion improved T-cell function but resulted in lower frequencies and numbers. The primary mechanism behind these differences in cell maintenance was driven by proliferation rather than survival. Combined PSGL-1 and PD-1 deletion resulted in defective T-cell differentiation, driving cells from a progenitor self-renewal state to a more terminal dysfunctional state. These findings suggest that PD-1 and PSGL-1 have distinct, yet complementary, roles in regulating T-cell exhaustion and differentiation during chronic viral infection. Overall, this study provides novel insights into the individual and combined roles of PSGL-1 and PD-1 in CD8+ T-cell exhaustion. It underscores the potential of targeting these checkpoints in a more dynamic and sequential manner to optimize virus-specific T-cell responses, offering critical perspectives for improving therapeutic strategies aimed at reinvigorating exhausted CD8+ T cells.IMPORTANCEOur findings provide a comprehensive analysis of how the dual deletion of PD-1 and PSGL-1 impacts the response and function of virus-specific CD8+ T cells, revealing novel insights into their roles in chronic infection. Notably, our findings show that while PD-1 deletion enhances T-cell frequencies, it paradoxically reduces T-cell functionality. Conversely, PSGL-1 deletion improves T-cell function but reduces their survival. Whereas the combined deletion of PSGL-1 and PD-1 in CD8+ T cells improved their survival but decreased their function and progenitor-exhausted phenotypes during infection. We believe our study advances the understanding of immune checkpoint regulation in chronic infections and has significant implications for developing more effective immune checkpoint inhibitor (ICI) therapies.
Collapse
Affiliation(s)
- Karla M Viramontes
- Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California Irvine, Irvine, California, USA
| | - Melissa N Thone
- Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California Irvine, Irvine, California, USA
| | - Jamie-Jean De La Torre
- Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California Irvine, Irvine, California, USA
| | - Emily N Neubert
- Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California Irvine, Irvine, California, USA
| | - Julia M DeRogatis
- Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California Irvine, Irvine, California, USA
| | - Chris Garcia
- Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California Irvine, Irvine, California, USA
| | - Monique L Henriquez
- Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California Irvine, Irvine, California, USA
| | - Roberto Tinoco
- Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California Irvine, Irvine, California, USA
- Center for Virus Research, University of California Irvine, Irvine, California, USA
- Institute for Immunology, University of California Irvine, Irvine, California, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, California, USA
| |
Collapse
|
9
|
Xu L, Xu P, Wang J, Ji H, Zhang L, Tang Z. Advancements in clinical research and emerging therapies for triple-negative breast cancer treatment. Eur J Pharmacol 2025; 988:177202. [PMID: 39675457 DOI: 10.1016/j.ejphar.2024.177202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/30/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
Triple-negative breast cancer (TNBC), defined by the lack of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor 2 (HER2) expression, is acknowledged as the most aggressive form of breast cancer (BC), comprising 15%-20% of all primary cases. Despite the prevalence of TNBC, effective and well-tolerated targeted therapies remain limited, with chemotherapy continuing to be the mainstay of treatment. However, the horizon is brightened by recent advancements in immunotherapy and antibody-drug conjugates (ADCs), which have garnered the U.S. Food and Drug Administration (FDA) approval for various stages of TNBC. Poly (ADP-ribose) polymerase inhibitors (PARPi), particularly for TNBC with BRCA mutations, present a promising avenue, albeit with the challenge of resistance that must be addressed. The success of phosphoinositide-3 kinase (PI3K) pathway inhibitors in hormone receptor (HR)-positive BC suggests potential applicability in TNBC, spurring optimism within the research community. This review endeavors to offer a comprehensive synthesis of both established and cutting-edge targeted therapies for TNBC. We delve into the specifics of PARPi, androgen receptor (AR) inhibitors, Cancer stem cells (CSCs), PI3K/Protein Kinase B (AKT)/mammalian target of rapamycin (mTOR), the transforming growth factor-beta (TGF-β), Ntoch, Wnt/β-catenin, hedgehog (Hh) pathway inhibitors, Epigenetic target-mediated drug delivery, ADCs, immune checkpoint inhibitors (ICIs)and novel immunotherapeutic solutions, contextualizing TNBC within current treatment paradigms. By elucidating the mechanisms of these drugs and their prospective clinical applications, we aim to shed light on the challenges and underscore the beacon of hope that translational research and innovative therapies represent for the oncology field.
Collapse
Affiliation(s)
- Lili Xu
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| | - Pengtao Xu
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| | - Jingsong Wang
- Department of Pharmacy, Guangyuan Central Hospital, Guangyuan, Sichuan, 628000, China
| | - Hui Ji
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| | - Lin Zhang
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| | - Zhihua Tang
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China.
| |
Collapse
|
10
|
Wu X, Ye Z. Mechanoimmunology of T-Cell Activation. Scand J Immunol 2025; 101:e70009. [PMID: 39973081 DOI: 10.1111/sji.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/13/2025] [Accepted: 02/01/2025] [Indexed: 02/21/2025]
Abstract
T-cell activation, a pivotal process in the adaptive immune response, is initiated when the T cell receptor (TCR) recognises and binds to antigenic peptide-major histocompatibility complex (pMHC) molecules on the cell membrane. Emerging evidence indicates that mechanical cues regulate T-cell activation by modulating TCR signalling and mechanotransduction pathways, although the precise underlying mechanisms remain elusive. This review highlights recent findings suggesting that the TCR functions as a mechanosensor, capable of sensing and transmitting mechanical forces through conformational changes. Key steps in T-cell mechanotransduction are discussed, including the roles of the cytoskeleton, mechanosensitive channels such as Piezo 1 and microvilli in facilitating activation. Additionally, we analyse the mechanical responses of chimeric antigen receptor T cells. Understanding the mechanobiological mechanisms underlying T-cell activation offers novel insights and potential strategies for advancing immunotherapies and treating immune-related disorders.
Collapse
Affiliation(s)
- Xuelan Wu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing, China
| | - Zhiyi Ye
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing, China
| |
Collapse
|
11
|
Lu Y, Ma N, Cheng K, Liu G, Liang J, Xu C, Li D, Cao C, Gao X, Chen L, Wang X, Wang Y, Zhao X, Jiang K. An OMV-Based Nanovaccine as Antigen Presentation Signal Enhancer for Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413392. [PMID: 39811977 DOI: 10.1002/adma.202413392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/07/2025] [Indexed: 01/16/2025]
Abstract
Antigen-presenting cells (APCs) process tumor vaccines and present tumor antigens as the first signals to T cells to activate anti-tumor immunity, which process requires the assistance of co-stimulatory second signals on APCs. The immune checkpoint programmed death ligand 1 (PD-L1) not only mediates the immune escape of tumor cells but also acts as a co-inhibitory second signal on APCs. The serious dysfunction of second signals due to the high expression of PD-L1 on APCs in the tumor body results in the inefficiency of tumor vaccines. To overcome this challenge, a previously established Plug-and-Display tumor vaccine platform based on bacterial outer membrane vesicles (OMVs) is developed into an "Antigen Presentation Signal Enhancer" (APSE) by surface-modifying PD-L1 antibodies (αPD-L1). While delivering tumor antigens, APSE can activate the expression of co-stimulatory second signals in APCs due to the high immunogenicity of OMVs. More importantly, the surface-modified αPD-L1 binds to the co-inhibitory signals PD-L1, potentially restoring CD80 function and ensuring efficient co-stimulatory second signals and activation of anti-tumor immunity. The results reveal the importance of PD-L1 blockage in the initiation process of anti-tumor immunity, and the second signal modulation capability of APSE can expand the application potential of cancer vaccines to less immunogenic malignancies.
Collapse
Affiliation(s)
- Yichao Lu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No.11 Zhongguancun Beiyitiao, Beijing, 100190, China
- IGDB-NCNST Joint Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Nana Ma
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No.11 Zhongguancun Beiyitiao, Beijing, 100190, China
- IGDB-NCNST Joint Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Keman Cheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No.11 Zhongguancun Beiyitiao, Beijing, 100190, China
- IGDB-NCNST Joint Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guangna Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No.11 Zhongguancun Beiyitiao, Beijing, 100190, China
- IGDB-NCNST Joint Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No.11 Zhongguancun Beiyitiao, Beijing, 100190, China
- IGDB-NCNST Joint Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chen Xu
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Shenyang, 110001, China
| | - Danrui Li
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
| | - Cheng Cao
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
| | - Xiaoyu Gao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No.11 Zhongguancun Beiyitiao, Beijing, 100190, China
- IGDB-NCNST Joint Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Liting Chen
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Shenyang, 110001, China
| | - Xinwei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No.11 Zhongguancun Beiyitiao, Beijing, 100190, China
- IGDB-NCNST Joint Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yazhou Wang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
| | - Xiao Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No.11 Zhongguancun Beiyitiao, Beijing, 100190, China
- IGDB-NCNST Joint Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kuirong Jiang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu Province, 210029, China
| |
Collapse
|
12
|
Adler FR, Griffiths JI. Mathematical models of intercellular signaling in breast cancer. Semin Cancer Biol 2025; 109:91-100. [PMID: 39890041 PMCID: PMC11858920 DOI: 10.1016/j.semcancer.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 01/03/2025] [Accepted: 01/27/2025] [Indexed: 02/03/2025]
Abstract
BACKGROUND AND OBJECTIVES The development and regulation of healthy and cancerous breast tissue is guided by communication between cells. Diverse signals are exchanged between cancer cells and non-cancerous cells of the tumor microenvironment (TME), influencing all stages of tumor progression. Mathematical models are essential for understanding how this complex network determines cancer progression and the effectiveness of treatment. METHODOLOGY We reviewed the current dynamical mathematical models of intercellular signaling in breast cancer, examining models with cancer cells only, fibroblasts, endothelial cells, macrophages and the immune system as whole. We categorized the goals and complexity of these models, to highlight how they can explain many features of cancer emergence and progression. RESULTS We found that dynamical models of intercellular signaling can elucidate tissue-level dysregulation in cancer by explaining: i) maintenance of non-heritable intratumor phenotypic heterogeneity, ii) transitions between tumor dormancy and accelerated invasive growth, iii) stromal support of tumor vascularization and growth factor enrichment and iv) suppression of immune infiltration and cancer surveillance. These models also provide a framework to propose novel TME-targeting treatment strategies. However, most models were focused on a highly selected and small set of signaling interactions between a few cell types, and their translational applicability were severely limited by the availability of tumor-specific data for personalized model calibration. CONCLUSIONS AND IMPLICATIONS Mathematical models of breast cancer have many challenges and opportunities to incorporate signaling. The four key challenges are: 1) finding ways to treat signaling networks as a context-dependent language that incorporates non-linear and non-additive responses, 2) identifying the key cell phenotypes that signals control and understanding the feedbacks between signals and phenotype that determine the progression of cancer, (3) estimating parameters of specific patient tumors early in treatment, 4) linking models with novel data collection methods that have single cell and spatial resolution. As our approaches advance, it is our hope that dynamical mathematical models of inter-cellular signaling can play a central role in identifying and testing new treatment strategies as well as forecasting impacts of disease treatment.
Collapse
Affiliation(s)
- Frederick R Adler
- Department of Mathematics, University of Utah, 155 South 1400 East, Salt Lake City, UT 84112, USA; School of Biological Sciences, 257 South 1400 East, University of Utah, Salt Lake City, UT, 84112 USA..
| | - Jason I Griffiths
- Department of Mathematics, University of Utah, 155 South 1400 East, Salt Lake City, UT 84112, USA; Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010, USA
| |
Collapse
|
13
|
Ostroumov D, Benne N, Lozano Vigario F, Escalona-Rayo O, Dodz K, Sauer S, Suhl LL, Wedemeyer HH, Kühnel F, Slütter B, Wirth TC. Sequential STING and CD40 agonism drives massive expansion of tumor-specific T cells in liposomal peptide vaccines. Cell Mol Immunol 2025; 22:150-160. [PMID: 39741195 PMCID: PMC11782543 DOI: 10.1038/s41423-024-01249-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 11/12/2024] [Accepted: 11/27/2024] [Indexed: 01/02/2025] Open
Abstract
The clinical use of cancer vaccines is hampered by the low magnitude of induced T-cell responses and the need for repetitive antigen stimulation. Here, we demonstrate that liposomal formulations with incorporated STING agonists are optimally suited to deliver peptide antigens to dendritic cells in vivo and to activate dendritic cells in secondary lymphoid organs. One week after liposomal priming, systemic administration of peptides and a costimulatory agonistic CD40 antibody enables ultrarapid expansion of T cells, resulting in massive expansion of tumor-specific T cells in the peripheral blood two weeks after priming. In the MC-38 colon cancer model, this synthetic prime-boost regimen induces rapid regression and cure of large established subcutaneous cancers via the use of a single tumor-specific neoantigen. These experiments demonstrate the feasibility of liposome-based heterologous vaccination regimens to increase the therapeutic efficacy of peptide vaccines in the context of immunogenic adjuvants and costimulatory booster immunizations. Our results provide a rationale for the further development of modern liposomal peptide vaccines for cancer therapy.
Collapse
Affiliation(s)
- Dmitrij Ostroumov
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Naomi Benne
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Fernando Lozano Vigario
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Oscar Escalona-Rayo
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Ksenia Dodz
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Sarah Sauer
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Lena Luisa Suhl
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Hans Heiner Wedemeyer
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Florian Kühnel
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Bram Slütter
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Thomas Christian Wirth
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
14
|
Wang CM, Chen YJ, Yang BC, Yang JW, Wang W, Zeng Y, Jiang J. Supplementation with active vitamin D3 ameliorates experimental autoimmune thyroiditis in mice by modulating the differentiation and functionality of intrathyroidal T-cell subsets. Front Immunol 2025; 16:1528707. [PMID: 39949783 PMCID: PMC11821646 DOI: 10.3389/fimmu.2025.1528707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/15/2025] [Indexed: 02/16/2025] Open
Abstract
Objective People with Hashimoto's thyroiditis (HT) often have low vitamin D3 concentrations. Some research has suggested that vitamin D3 supplementation reduces thyroid inflammation, but this remains controversial. Methods EAT was induced in female NOD/ShiLtJ mice by giving them water containing 0.05% sodium iodide, and 1μg/kg of 1α,25-(OH)2D3 was injected intraperitoneally every other day. After 8 weeks, the morphological architecture of the mouse thyroid follicles was examined by histological sections, thyroid autoantibodies and thyroid hormone concentrations were determined by enzyme-linked immunosorbent assays (ELISAs), and the major functions and subsets of B- and T-lymphocytes in the mouse thyroid were determined by tissue multiple immunofluorescence technology and ELISA. Results EAT caused thyroiditis follicle destruction and interfollicular lymphocyte infiltration in mice, increased concentrations of circulating thyroid autoimmune antibodies TG-Ab and TPO-Ab, and abnormal thyroid hormone levels. EAT also increased the number and functionality of CD4+ Tfh, Th17,Th1 and Th2 cells in the thyroid, while decreasing the number and functionality of CD4+ Treg cells and CD19+B10 cells. Treatment with VD3 reversed these changes. Conclusion Vitamin D3 supplementation can effectively treat autoimmune thyroiditis in mice. VD3 reduces autoimmune thyroid damage and decreases serum thyroid antibody levels in mice by inhibiting the differentiation and functionality of pro-inflammatory Tfh, Th17, Th1 and Th2 cells and by facilitating the differentiation and functionality of anti-inflammatory B10 cells and Treg.
Collapse
Affiliation(s)
- Chun-Mei Wang
- Department of General Surgery (Thyroid Surgery), Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Ying-Jie Chen
- Department of General Surgery (Thyroid Surgery), Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Bo-Cheng Yang
- Department of General Surgery (Thyroid Surgery), Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jia-Wen Yang
- Department of General Surgery (Thyroid Surgery), Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Wei Wang
- Department of Thyroid, Head, Neck and Maxillofacial Surgery, Mianyang Third People’s Hospital, Mianyang, Sichuan, China
| | - Yang Zeng
- Department of Orthodontics, Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jun Jiang
- Department of General Surgery (Thyroid Surgery), Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
15
|
Salimi Asl A, Davari M, Ghorbani A, Seddighi N, Arabi K, Saburi E. Neoadjuvant immunotherapy and oncolytic virotherapy in HPV positive and HPV negative skin cancer: A comprehensive review. Int Immunopharmacol 2025; 146:113790. [PMID: 39673996 DOI: 10.1016/j.intimp.2024.113790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 12/16/2024]
Abstract
Skin cancer is the most common new cancer among Caucasians. This cancer has different types, of which non-melanoma skin cancer is the most common type. Various factors affect this disease, one of which is viral infections, including HPV. This virus plays an important role in skin cancer, especially cSCCs. There are various options for the treatment of skin cancer, and today special attention has been paid to treatments based on therapeutic goals, immunotherapy and combination therapy. In this study, we have investigated treatments based on immunotherapy and virotherapy and the effect of HPV virus on the effectiveness of these treatments in skin cancer. Treatments based on virotherapy are performed for a long time in combination with other common treatments such as radiotherapy and chemotherapy in order to have a greater effect and lower its side effects, which include: shortness of breath, tachycardia, lowering blood pressure in the patient. Also, the most important axis of immunotherapy is to focus on PD1-PDL1, despite abundant evidence on the importance of immunotherapy, many studies investigate the use of immunotherapy inhibitors in the adjuvant and neoadjuvant setting in various cancers. Also, previous findings show conflicting evidence of the effect of HPV status on the response to immunotherapy.
Collapse
Affiliation(s)
- Ali Salimi Asl
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Mohsen Davari
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Atousa Ghorbani
- Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran; Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Narjes Seddighi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Kimia Arabi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| | - Ehsan Saburi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Genetics and Molecular Medicine Department, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
16
|
Cheng C, Zha Q, Sun L, Cui T, Guo X, Xing C, Chen Z, Ji C, Liang S, Tao S, Chu J, Wu C, Chu Q, Gu X, Zhang N, Fu Y, Deng S, Zhu Y, Wang J, Liu Y, Liu L. VCP downstream metabolite glycerol-3-phosphate (G3P) inhibits CD8 +T cells function in the HCC microenvironment. Signal Transduct Target Ther 2025; 10:26. [PMID: 39848960 PMCID: PMC11758394 DOI: 10.1038/s41392-024-02120-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/25/2025] Open
Abstract
CD8+T cells within the tumor microenvironment (TME) are often functionally impaired, which limits their ability to mount effective anti-tumor responses. However, the molecular mechanisms behind this dysfunction remain incompletely understood. Here, we identified valosin-containing protein (VCP) as a key regulator of CD8+T cells suppression in hepatocellular carcinoma (HCC). Our findings reveal that VCP suppresses the activation, expansion, and cytotoxic capacity of CD8+T cells both in vitro and in vivo, significantly contributing to the immunosuppressive nature of the TME. Mechanistically, VCP stabilizes the expression of glycerol-3-phosphate dehydrogenase 1-like protein (GPD1L), leading to the accumulation of glycerol-3-phosphate (G3P), a downstream metabolite of GPD1L. The accumulated G3P diffuses into the TME and directly interacts with SRC-family tyrosine kinase LCK, a critical component of the T-cell receptor (TCR) signaling pathway in CD8+T cells. This interaction heightens the phosphorylation of Tyr505, a key inhibitory residue, ultimately reducing LCK activity and impairing downstream TCR signaling. Consequently, CD8+T cells lose their functional capacity, diminishing their ability to fight against HCC. Importantly, we demonstrated that targeting VCP in combination with anti-PD1 therapy significantly suppresses HCC tumor growth and restores the anti-tumor function of CD8+T cells, suggesting synergistic therapeutic potential. These findings highlight a previously unrecognized mechanism involving VCP and G3P in suppressing T-cell-mediated immunity in the TME, positioning VCP as a promising upstream target for enhancing immunotherapy in HCC.
Collapse
Affiliation(s)
- Cheng Cheng
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China
| | - Qingrui Zha
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China
| | - Linmao Sun
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China
| | - Tianming Cui
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China
| | - Xinyu Guo
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China
| | - Changjian Xing
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China
| | - Zhengxiang Chen
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China
| | - Changyong Ji
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China
| | - Shuhang Liang
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China
- Department of Gastrointestinal Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Shengwei Tao
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China
| | - Junhui Chu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China
| | - Chenghui Wu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China
| | - Qi Chu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China
| | - Xuetian Gu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China
| | - Ning Zhang
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China
| | - Yumin Fu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China
| | - Shumin Deng
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China
| | - Yitong Zhu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China
| | - Jiabei Wang
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China.
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China.
| | - Yao Liu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China.
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China.
| | - Lianxin Liu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China.
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China.
| |
Collapse
|
17
|
Hu Q, Xuan J, Wang L, Shen K, Gao Z, Zhou Y, Wei C, Gu J. Application of adoptive cell therapy in malignant melanoma. J Transl Med 2025; 23:102. [PMID: 39844295 PMCID: PMC11752767 DOI: 10.1186/s12967-025-06093-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/07/2025] [Indexed: 01/24/2025] Open
Abstract
Cutaneous melanoma is one of the most aggressive skin cancers originating from skin pigment cells. Patients with advanced melanoma suffer a poor prognosis and generally cannot benefit well from surgical resection and chemo/target therapy due to metastasis and drug resistance. Thus, adoptive cell therapy (ACT), employing immune cells with specific tumor-recognizing receptors, has emerged as a promising therapeutic approach to display on-tumor toxicity. This review discusses the application, efficacy, limitations, as well as future prospects of four commonly utilized approaches -including tumor-infiltrating lymphocytes, chimeric antigen receptor (CAR) T cell, engineered T-cell receptor T cells, and chimeric antigen receptor NK cells- in the context of malignant melanoma.
Collapse
Affiliation(s)
- Qianrong Hu
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Jiangying Xuan
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Lu Wang
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Kangjie Shen
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Zixu Gao
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Yuhong Zhou
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Chuanyuan Wei
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Jianying Gu
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
18
|
Steri M, Orrù V, Sidore C, Mulas A, Pitzalis M, Busonero F, Maschio A, Serra V, Dei M, Lai S, Virdis F, Lobina M, Loizedda A, Marongiu M, Masala M, Floris M, Curreli N, Balaci L, Loi F, Pilia MG, Delitala A, Fiorillo E, Schlessinger D, Zoledziewska M. TYK2:p.Pro1104Ala Variant Protects Against Autoimmunity by Modulating Immune Cell Levels. Immunology 2025. [PMID: 39835539 DOI: 10.1111/imm.13902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/23/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025] Open
Abstract
The TYK2:p.Pro1104Ala (rs34536443) hypomorph variant has been associated with protection against numerous autoimmune disorders. Thus, its mechanism of action becomes of great interest. Here, consistent with the participation of activated immune cells in autoimmunity, we show that the variant regulates the levels of immune cells at a human, general population level and is associated particularly with higher levels of T and B lymphocytes, especially the naïve (non-activated) compartment. Also, consistent with a protective function in autoimmunity, the level of regulatory CD4+ T cells was increased. Thus, this variant decreases immune activation thereby protecting from autoimmunity. Our work links the cellular mechanism regulated by the TYK2:p.Pro1104Ala variant to autoimmunity protection and supports TYK2 as a therapeutic target in autoimmunity.
Collapse
Affiliation(s)
- Maristella Steri
- Institute of Genetic and Biomedical Research (IRGB), Italian National Research Council (CNR), Monserrato, Sardinia, Italy
| | - Valeria Orrù
- Institute of Genetic and Biomedical Research (IRGB), Italian National Research Council (CNR), Monserrato, Sardinia, Italy
| | - Carlo Sidore
- Institute of Genetic and Biomedical Research (IRGB), Italian National Research Council (CNR), Monserrato, Sardinia, Italy
| | - Antonella Mulas
- Institute of Genetic and Biomedical Research (IRGB), Italian National Research Council (CNR), Monserrato, Sardinia, Italy
| | - Maristella Pitzalis
- Institute of Genetic and Biomedical Research (IRGB), Italian National Research Council (CNR), Monserrato, Sardinia, Italy
| | - Fabio Busonero
- Institute of Genetic and Biomedical Research (IRGB), Italian National Research Council (CNR), Monserrato, Sardinia, Italy
| | - Andrea Maschio
- Institute of Genetic and Biomedical Research (IRGB), Italian National Research Council (CNR), Monserrato, Sardinia, Italy
| | - Valentina Serra
- Institute of Genetic and Biomedical Research (IRGB), Italian National Research Council (CNR), Monserrato, Sardinia, Italy
| | - Mariano Dei
- Institute of Genetic and Biomedical Research (IRGB), Italian National Research Council (CNR), Monserrato, Sardinia, Italy
| | - Sandra Lai
- Institute of Genetic and Biomedical Research (IRGB), Italian National Research Council (CNR), Monserrato, Sardinia, Italy
| | - Francesca Virdis
- Institute of Genetic and Biomedical Research (IRGB), Italian National Research Council (CNR), Monserrato, Sardinia, Italy
| | - Monia Lobina
- Institute of Genetic and Biomedical Research (IRGB), Italian National Research Council (CNR), Monserrato, Sardinia, Italy
| | - Annalisa Loizedda
- Institute of Genetic and Biomedical Research (IRGB), Italian National Research Council (CNR), Monserrato, Sardinia, Italy
| | - Michele Marongiu
- Institute of Genetic and Biomedical Research (IRGB), Italian National Research Council (CNR), Monserrato, Sardinia, Italy
| | - Marco Masala
- Institute of Genetic and Biomedical Research (IRGB), Italian National Research Council (CNR), Monserrato, Sardinia, Italy
| | - Matteo Floris
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Nicolò Curreli
- Institute of Genetic and Biomedical Research (IRGB), Italian National Research Council (CNR), Monserrato, Sardinia, Italy
| | - Lenuta Balaci
- Institute of Genetic and Biomedical Research (IRGB), Italian National Research Council (CNR), Monserrato, Sardinia, Italy
| | - Francesco Loi
- Institute of Genetic and Biomedical Research (IRGB), Italian National Research Council (CNR), Monserrato, Sardinia, Italy
| | - Maria Grazia Pilia
- Institute of Genetic and Biomedical Research (IRGB), Italian National Research Council (CNR), Monserrato, Sardinia, Italy
| | - Alessandro Delitala
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Edoardo Fiorillo
- Institute of Genetic and Biomedical Research (IRGB), Italian National Research Council (CNR), Monserrato, Sardinia, Italy
| | - David Schlessinger
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Magdalena Zoledziewska
- Institute of Genetic and Biomedical Research (IRGB), Italian National Research Council (CNR), Monserrato, Sardinia, Italy
| |
Collapse
|
19
|
Guerra T, Iaffaldano P. A Window into New Insights on Progression Independent of Relapse Activity in Multiple Sclerosis: Role of Therapies and Current Perspective. Int J Mol Sci 2025; 26:884. [PMID: 39940654 PMCID: PMC11817336 DOI: 10.3390/ijms26030884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
In multiple sclerosis (MS), there is significant evidence indicating that both progression independent of relapse activity (PIRA) and relapse-related worsening events contribute to the accumulation of progressive disability from the onset of the disease and throughout its course. Understanding the compartmentalized pathophysiology of MS would enhance comprehension of disease progression mechanisms, overcoming the traditional distinction in phenotypes. Smoldering MS activity is thought to be maintained by a continuous interaction between the parenchymal chronic processes of neuroinflammation and neurodegeneration and the intrathecal compartment. This review provides a comprehensive and up-to-date overview of the neuropathological and immunological evidence related to the mechanisms underlying PIRA phenomena in MS, with a focus on studies investigating the impact of currently available therapies on these complex mechanisms.
Collapse
Affiliation(s)
| | - Pietro Iaffaldano
- Department of Translational Biomedicine and Neurosciences (DiBraiN), University of Bari “Aldo Moro”, 70121 Bari, Italy;
| |
Collapse
|
20
|
Wang M, Yu F, Zhang Y. Present and future of cancer nano-immunotherapy: opportunities, obstacles and challenges. Mol Cancer 2025; 24:26. [PMID: 39827147 PMCID: PMC11748575 DOI: 10.1186/s12943-024-02214-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/25/2024] [Indexed: 01/22/2025] Open
Abstract
Clinically, multimodal therapies are adopted worldwide for the management of cancer, which continues to be a leading cause of death. In recent years, immunotherapy has firmly established itself as a new paradigm in cancer care that activates the body's immune defense to cope with cancer. Immunotherapy has resulted in significant breakthroughs in the treatment of stubborn tumors, dramatically improving the clinical outcome of cancer patients. Multiple forms of cancer immunotherapy, including immune checkpoint inhibitors (ICIs), adoptive cell therapy and cancer vaccines, have become widely available. However, the effectiveness of these immunotherapies is not much satisfying. Many cancer patients do not respond to immunotherapy, and disease recurrence appears to be unavoidable because of the rapidly evolving resistance. Moreover, immunotherapies can give rise to severe off-target immune-related adverse events. Strategies to remove these hindrances mainly focus on the development of combinatorial therapies or the exploitation of novel immunotherapeutic mediations. Nanomaterials carrying anticancer agents to the target site are considered as practical approaches for cancer treatment. Nanomedicine combined with immunotherapies offers the possibility to potentiate systemic antitumor immunity and to facilitate selective cytotoxicity against cancer cells in an effective and safe manner. A myriad of nano-enabled cancer immunotherapies are currently under clinical investigation. Owing to gaps between preclinical and clinical studies, nano-immunotherapy faces multiple challenges, including the biosafety of nanomaterials and clinical trial design. In this review, we provide an overview of cancer immunotherapy and summarize the evidence indicating how nanomedicine-based approaches increase the efficacy of immunotherapies. We also discuss the key challenges that have emerged in the era of nanotechnology-based cancer immunotherapy. Taken together, combination nano-immunotherapy is drawing increasing attention, and it is anticipated that the combined treatment will achieve the desired success in clinical cancer therapy.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 38 Dengzhou Road, Qingdao, 266021, China.
| | - Fei Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 38 Dengzhou Road, Qingdao, 266021, China
| | - Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, 38 Dengzhou Road, Qingdao, 266021, China
| |
Collapse
|
21
|
Asashima H, Akao S, Matsumoto I. Emerging roles of checkpoint molecules on B cells. Immunol Med 2025:1-12. [PMID: 39819449 DOI: 10.1080/25785826.2025.2454045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 01/07/2025] [Indexed: 01/19/2025] Open
Abstract
Immune checkpoint molecules, including both co-inhibitory molecules and co-stimulatory molecules, are known to play critical roles in regulating T-cell responses. During the last decades, immunotherapies targeting these molecules (such as programmed cell death 1 (PD-1), and lymphocyte activation gene 3 (LAG-3)) have provided clinical benefits in many cancers. It is becoming apparent that not only T cells, but also B cells have a capacity to express some checkpoint molecules. These were originally thought to be only the markers for regulatory B cells which produce IL-10, but recent studies suggest that these molecules (especially T-cell immunoglobulin and mucin domain 1 (TIM-1), T cell immunoreceptor with Ig and ITIM domains (TIGIT), and PD-1) can regulate intrinsic B-cell activation and functions. Here, we focus on these molecules and summarize their characteristics, ligands, and functions on B cells.
Collapse
Affiliation(s)
- Hiromitsu Asashima
- Department of Rheumatology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Satoshi Akao
- Department of Rheumatology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Isao Matsumoto
- Department of Rheumatology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
22
|
Chen Y, Liu S, Yin X. Progress and prospects of the combination of BMI1-targeted therapy and immunotherapy in cervical cancer. Am J Cancer Res 2025; 15:217-232. [PMID: 39949922 PMCID: PMC11815372 DOI: 10.62347/qtwj8918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/14/2025] [Indexed: 02/16/2025] Open
Abstract
Cervical cancer is one of the most prevalent gynecologic malignancies, posing a significant threat to women's health and survival. Despite advancements in early screening and diagnosis, which have led to cervical cancer being termed a "preventable" cancer, treatment options for advanced and recurrent cervical cancer remain limited. Consequently, identifying new therapeutic targets and treatments is crucial for advancing the research and management of cervical cancer. In recent years, targeted therapy and immunotherapy have become focal points in oncology research, offering new avenues and directions for the treatment of cancer. Preclinical studies have demonstrated that targeting BMI1 can inhibit cervical cancer progression, while immunotherapy has advanced to phase III clinical trials, showing promising results. To date, there have been no reports on the combination of BMI1-targeted therapy and immunotherapy in cervical cancer. This review, therefore, elucidates the current state of research and explores the potential and perspectives of combining targeted therapy with immunotherapy for cervical cancer.
Collapse
Affiliation(s)
- Yingying Chen
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan UniversityChengdu, Sichuan, P. R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan UniversityChengdu, Sichuan, P. R. China
| | - Shiyu Liu
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan UniversityChengdu, Sichuan, P. R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan UniversityChengdu, Sichuan, P. R. China
| | - Xia Yin
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan UniversityChengdu, Sichuan, P. R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan UniversityChengdu, Sichuan, P. R. China
| |
Collapse
|
23
|
Rezaeifar M, Shahbaz S, Peters AC, Gibson SB, Elahi S. Polyfunctional CD8 +CD226 +RUNX2 hi effector T cells are diminished in advanced stages of chronic lymphocytic leukemia. Mol Oncol 2025. [PMID: 39777847 DOI: 10.1002/1878-0261.13793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 11/19/2024] [Accepted: 12/24/2024] [Indexed: 01/11/2025] Open
Abstract
CD8+ T cells, a subset of T cells identified by the surface glycoprotein CD8, particularly those expressing the co-stimulatory molecule CD226, play a crucial role in the immune response to malignancies. However, their role in chronic lymphocytic leukemia (CLL), an immunosuppressive disease, has not yet been explored. We studied 64 CLL patients and 25 age- and sex-matched healthy controls (HCs). We analyzed the proportion of CD226-expressing cells among different CD8+ T cell subsets (including naïve, central memory, effector memory, and effectors) in CLL patients, stratified by Rai stage and immunoglobulin heavy-chain variable region gene (IgHV) mutation status. Additionally, we compared the effector functions of CD8+CD226+ cells and their CD226- counterparts. We also quantified cytokine and chemokine levels in the plasma of CLL and HCs. Furthermore, we reanalyzed the publicly available bulk RNA-seq on CD226+ and CD226-CD8+ T cells. Finally, we evaluated the impact of elevated cytokines/chemokines on CD226 expression. Our results showed that CD226-expressing cells were significantly decreased within the effector memory and effector CD8+ T cell subsets in CLL patients with advanced Rai stages and unmutated IgHV, a marker of poor prognosis. These cells displayed robust effector functions, including cytokine production, cytolytic activity, degranulation, proliferation, and migration capacity. In contrast, CD8+CD226- T cells displayed an exhausted phenotype with reduced Runt-related transcription factor 2 (RUNX2) expression. Elevated levels of interleukin-6 (IL-6) and macrophage inflammatory protein-1 beta (MIP-1β) were inversely correlated with the frequency of CD8+CD226+ T cells and may contribute to the downregulation of CD226, possibly leading to T cell dysfunction in CLL. Our findings highlight the critical role of CD8+CD226+RUNX2hi T cells in CLL and suggest that their reduction is associated with disease progression and poor clinical outcomes. This study also underscores the potential of targeting IL-6 and MIP-1β to preserve polyfunctional CD8+CD226+ T cells as a promising immunotherapy strategy.
Collapse
Affiliation(s)
- Maryam Rezaeifar
- Division of Foundational Sciences, Mike Petryk School of Dentistry, University of Alberta, Edmonton, Canada
| | - Shima Shahbaz
- Division of Foundational Sciences, Mike Petryk School of Dentistry, University of Alberta, Edmonton, Canada
| | - Anthea C Peters
- Division of Medical Oncology, Department of Oncology, University of Alberta, Edmonton, Canada
| | - Spencer B Gibson
- Division of Medical Oncology, Department of Oncology, University of Alberta, Edmonton, Canada
- Department of Biochemistry and Medical Genetics, University of Alberta, Edmonton, Canada
| | - Shokrollah Elahi
- Division of Foundational Sciences, Mike Petryk School of Dentistry, University of Alberta, Edmonton, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Canada
- Women and Children Health Research Institute, University of Alberta, Edmonton, Canada
- Cancer Research Institute of Northern Alberta, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| |
Collapse
|
24
|
Zhang M, Huang K, Yin Q, Wu X, Zhu M, Li M. Spatial heterogeneity of the hepatocellular carcinoma microenvironment determines the efficacy of immunotherapy. Discov Oncol 2025; 16:15. [PMID: 39775241 PMCID: PMC11706828 DOI: 10.1007/s12672-025-01747-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025] Open
Abstract
Hepatocellular carcinoma (HCC) remains a global health challenge owing to its widespread incidence and high mortality. HCC has a specific immune tolerance function because of its unique physiological structure, which limits the efficacy of chemotherapy, radiotherapy, and molecular targeting. In recent years, new immune approaches, including adoptive cell therapy, tumor vaccines, and oncolytic virus therapy, have shown great potential. As the efficacy of immunotherapy mainly depends on the spatial heterogeneity of the tumor immune microenvironment, it is necessary to elucidate the crosstalk between the composition of the liver cancer immune environment, from which potential therapeutic targets can be selected to provide more appropriate individualized treatment programs. The role of spatial heterogeneity of immune cells in the microenvironment of HCC in the progression and influence of immunotherapy on improving the treatment and prognosis of HCC were comprehensively analyzed, providing new inspiration for the subsequent clinical treatment of liver cancer.
Collapse
Affiliation(s)
- Minni Zhang
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China
- The First Affiliated Hospital, Key Laboratory of Emergency and Trauma of Ministry of Education, Engineering Research Center for Hainan Biological Sample Resources of Major Diseases, The Hainan Branch of National Clinical Research Center for Cancer, Hainan Medical University, Haikou, 570102, Hainan, People's Republic of China
| | - Kailin Huang
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China
| | - Qiushi Yin
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China
| | - Xueqin Wu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China
| | - Mingyue Zhu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China.
| | - Mengsen Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China.
- Department of Medical Oncology, Second Affiliated Hospital, Hainan Medical University, Haikou, 570023, Hainan, People's Republic of China.
- Key Laboratory of Tropical Translational Medicine, Ministry of Education, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China.
| |
Collapse
|
25
|
Sun Z, Qin Y, Zhang X. Identification and validation of five ferroptosis-related molecular signatures in keloids based on multiple transcriptome data analysis. Front Mol Biosci 2025; 11:1490745. [PMID: 39834787 PMCID: PMC11743277 DOI: 10.3389/fmolb.2024.1490745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/27/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction Keloids are a common skin disorder characterized by excessive fibrous tissue proliferation, which can significantly impact patients' health. Ferroptosis, a form of regulated cell death, plays a crucial role in the development of fibrosis; however, its role in the mechanisms of keloid formation remains poorly understood. Methods This study aimed to identify key genes associated with ferroptosis in keloid formation. Data from the NCBI GEO database, including GSE145725, GSE7890, and GSE44270, were analyzed, comprising a total of 24 keloid and 17 normal skin samples. Additionally, single-cell data from GSE181316, which included 8 samples with complete expression profiles, were also evaluated. Differentially expressed genes were identified, and ferroptosis-related genes were extracted from the GeneCards database. LASSO regression was used to select key genes associated with keloids. Validation was performed using qRT-PCR and Western blot (WB) analysis on tissue samples from five keloid and five normal skin biopsies. Results A total of 471 differentially expressed genes were identified in the GSE145725 dataset, including 225 upregulated and 246 downregulated genes. Five ferroptosis-related genes were selected through gene intersection and LASSO regression. Two of these genes were upregulated, while three were downregulated in keloid tissue. Further analysis through GSEA pathway enrichment, GSVA gene set variation, immune cell infiltration analysis, and single-cell sequencing revealed that these genes were primarily involved in the fibrotic process. The qRT-PCR and WB results confirmed the expression patterns of these genes. Discussion This study provides novel insights into the molecular mechanisms of ferroptosis in keloid formation. The identified ferroptosis-related genes could serve as potential biomarkers or therapeutic targets for treating keloids.
Collapse
Affiliation(s)
| | - Yonghong Qin
- Department of Plastic Surgery, Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Xuanfen Zhang
- Department of Plastic Surgery, Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China
| |
Collapse
|
26
|
Nettersheim FS, Brunel S, Sinkovits RS, Armstrong SS, Roy P, Billitti M, Kobiyama K, Alimadadi A, Bombin S, Lu L, Zoccheddu M, Oliaeimotlagh M, Benedict CA, Sette A, Ley K. PD-1 and CD73 on naive CD4 + T cells synergistically limit responses to self. Nat Immunol 2025; 26:105-115. [PMID: 39572641 PMCID: PMC11697576 DOI: 10.1038/s41590-024-02021-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 10/17/2024] [Indexed: 12/11/2024]
Abstract
Vaccination with self- and foreign peptides induces weak and strong expansion of antigen-specific CD4+ T cells, respectively, but the mechanism is not known. In the present study, we used computational analysis of the entire mouse major histocompatibility complex class II peptidome to test how much of the naive CD4+ T cell repertoire specific for self-antigens was shaped by negative selection in the thymus and found that negative selection only partially explained the difference between responses to self and foreign. In naive uninfected and unimmunized mice, we identified higher expression of programmed cell death protein 1 (PD-1) and CD73 mRNA and protein on self-specific CD4+ T cells compared with foreign-specific CD4+ T cells. Pharmacological or genetic blockade of PD-1 and CD73 significantly increased the vaccine-induced expansion of self-specific CD4+ T cells and their transcriptomes were similar to those of foreign-specific CD4+ T cells. We concluded that PD-1 and CD73 synergistically limited CD4+ T cell responses to self. These observations have implications for the development of tolerogenic vaccines and cancer immunotherapy.
Collapse
Affiliation(s)
| | - Simon Brunel
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Robert S Sinkovits
- San Diego Supercomputer Center, University of California, La Jolla, CA, USA
| | | | - Payel Roy
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Immunology Center of Georgia, Augusta University, Augusta, GA, USA
| | | | - Kouji Kobiyama
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Division of Vaccine Science, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Ahmad Alimadadi
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Immunology Center of Georgia, Augusta University, Augusta, GA, USA
| | - Sergei Bombin
- Immunology Center of Georgia, Augusta University, Augusta, GA, USA
| | - Lihui Lu
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | | | | | | | - Klaus Ley
- La Jolla Institute for Immunology, La Jolla, CA, USA.
- Immunology Center of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
27
|
Huang X, Wang X, Sun Y, Xie X, Xiao L, Xu Y, Yan Q, Xu X, Li L, Xu W, Weng W, Wu W, Xie X, Dai C, Diao Y. Effective Reduction of Transgene-Specific Immune Response With rAAV Vectors Co-Expressing miRNA-UL112-5p or ERAP1 shRNA. J Cell Mol Med 2025; 29:e70308. [PMID: 39823241 PMCID: PMC11740984 DOI: 10.1111/jcmm.70308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/25/2024] [Accepted: 12/10/2024] [Indexed: 01/19/2025] Open
Abstract
Recombinant adeno-associated virus (rAAV) has emerged as one of the best gene delivery vectors for human gene therapy in vivo. However, the clinical efficacy of rAAV gene therapy is often hindered by the host immune response against its transgene products. Endoplasmic reticulum aminopeptidase 1 (ERAP1) is specialised to process peptides presented by class I molecules of major histocompatibility complex. Therefore, we hypothesise that modulation of the ERAP1 activity in rAAV transduced cells may be favoured to evade immune response against transgene products. In this study, we incorporated either miRNA-UL112-5p or ERAP1 shRNA into rAAV vectors expressing full-length ovalbumin (OVA) as a model antigen, and evaluated their effects for antigen presentation, cellular and humour immune response induced by OVA expression. The results indicated that silencing ERAP1 using miR-UL112-5p or ERAP1 shRNA did not affect the expression of OVA in cells, but inhibited the processing and presentation of OVA antigen peptide SIINFEKL in antigen presenting cells (APCs). Moreover, the rAAV vector co-expressing ERAP1 shRNA maintains stable and high expression of OVA in vivo, while simultaneously suppressing the humoral immunity of OVA. In addition, experimental results demonstrated that rAAV vectors incorporated ERAP1 shRNA efficiently repress costimulatory signals in dendritic cells (DCs), significantly attenuated the cytotoxic T-cell response, allowed for sustained transgene expression and reduced clearance of transduced muscle cells in mice. Moreover, our study suggested that the incorporation of miRNA-UL112-5p or ERAP1 shRNA into rAAV vectors effectively reduced transgene products induced immune response. The proposed method may potentially be applied in clinics to deliver therapeutic proteins safely and efficiently.
Collapse
Affiliation(s)
- Xiaoping Huang
- College of Chemical Engineering and Materials SciencesQuanzhou Normal UniversityQuanzhouChina
- Institute of Molecular MedicineHuaqiao UniversityQuanzhouChina
| | - Xiao Wang
- Institute of Molecular MedicineHuaqiao UniversityQuanzhouChina
| | - Yaqi Sun
- College of Chemical Engineering and Materials SciencesQuanzhou Normal UniversityQuanzhouChina
| | - Xinrui Xie
- College of Chemical Engineering and Materials SciencesQuanzhou Normal UniversityQuanzhouChina
| | - Luming Xiao
- College of Chemical Engineering and Materials SciencesQuanzhou Normal UniversityQuanzhouChina
| | - Yihang Xu
- College of Chemical Engineering and Materials SciencesQuanzhou Normal UniversityQuanzhouChina
| | - Qiongshi Yan
- College of Chemical Engineering and Materials SciencesQuanzhou Normal UniversityQuanzhouChina
| | - Xianxiang Xu
- Institute of Molecular MedicineHuaqiao UniversityQuanzhouChina
| | - Ling Li
- Institute of Molecular MedicineHuaqiao UniversityQuanzhouChina
| | - Wentao Xu
- College of Chemical Engineering and Materials SciencesQuanzhou Normal UniversityQuanzhouChina
| | - Wenting Weng
- College of Chemical Engineering and Materials SciencesQuanzhou Normal UniversityQuanzhouChina
| | - Wenlin Wu
- College of Marine and Food ScienceQuanzhou Normal UniversityQuanzhouChina
- Fujian Province Key Laboratory for the Development of Bioactive Material From Marine AlgaeQuanzhouChina
| | - Xiaolan Xie
- College of Chemical Engineering and Materials SciencesQuanzhou Normal UniversityQuanzhouChina
| | - Congjie Dai
- College of Marine and Food ScienceQuanzhou Normal UniversityQuanzhouChina
- Fujian Province Key Laboratory for the Development of Bioactive Material From Marine AlgaeQuanzhouChina
| | - Yong Diao
- Institute of Molecular MedicineHuaqiao UniversityQuanzhouChina
| |
Collapse
|
28
|
Wang K, Zhang Y, Su Z, Wang B, Zhou Y, Tong X, Xie C, Luo X, Zhang S, Zheng M. Mutation in CDC42 Gene Set as a Response Biomarker for Immune Checkpoint Inhibitor Therapy. Cancer Med 2025; 14:e70556. [PMID: 39791593 PMCID: PMC11719708 DOI: 10.1002/cam4.70556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/05/2024] [Accepted: 12/16/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have achieved great success; however, a subset of patients exhibits no response. Consequently, there is a critical need for reliable predictive biomarkers. Our focus is on CDC42, which stimulates multiple signaling pathways promoting tumor growth. We hypothesize that an impaired function of CDC42 may serve as an indicator of a patient's response to ICI therapy. METHODS We consider CDC42 and its downstream binding and effector proteins as a gene set, as mutations in these components could lead to defective CDC42 function. To elucidate the biomarker function of mutations within the CDC42 gene set, we curated a comprehensive discovery dataset that included seven ICI treatment cohorts. And we curated two ICI treatment cohorts for validation. We explored the mechanism based on The Cancer Genome Atlas database. We also examined whether combining a CDC42 inhibitor with ICI could enhance ICI's efficacy. RESULTS Mutations in the CDC42 gene set were associated with improved overall survival and progression-free survival. Furthermore, our analysis of immune response landscapes among different statuses of the CDC42 gene set supports its role as a biomarker. Animal experiments also revealed that the combination of the CDC42 inhibitor (ML141) with anti-PD-1 blockade can additively reduce tumor growth. CONCLUSIONS Our study suggests that the CDC42 gene set mutations could potentially serve as a novel biomarker for the clinical response to ICI treatment. This finding also provides insights into the potential of combining ICI and CDC42 inhibitor use for more efficient patient treatment.
Collapse
Affiliation(s)
- Kun Wang
- School of Life Sciences, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
- The First Affiliated Hospital of USTC (Anhui Provincial Hospital), division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
- Drug Discovery and Design Center, State Key Laboratory of Drug ResearchShanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
| | - Yingying Zhang
- School of Life Sciences, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
- The First Affiliated Hospital of USTC (Anhui Provincial Hospital), division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
- Drug Discovery and Design Center, State Key Laboratory of Drug ResearchShanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
| | - Zhaoming Su
- School of Chinese Materia Medica, Nanjing University of Chinese MedicineNanjingChina
| | - Bei Wang
- School of Chinese Materia Medica, Nanjing University of Chinese MedicineNanjingChina
| | - Yuanyang Zhou
- Drug Discovery and Design Center, State Key Laboratory of Drug ResearchShanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
| | - Xiaochu Tong
- Drug Discovery and Design Center, State Key Laboratory of Drug ResearchShanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
| | - Chengying Xie
- Drug Discovery and Design Center, State Key Laboratory of Drug ResearchShanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghaiChina
| | - Xiaomin Luo
- Drug Discovery and Design Center, State Key Laboratory of Drug ResearchShanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
| | - Sulin Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug ResearchShanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
| | - Mingyue Zheng
- School of Life Sciences, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
- The First Affiliated Hospital of USTC (Anhui Provincial Hospital), division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
- Drug Discovery and Design Center, State Key Laboratory of Drug ResearchShanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
- School of Chinese Materia Medica, Nanjing University of Chinese MedicineNanjingChina
| |
Collapse
|
29
|
Lin P, Lin Y, Mai Z, Zheng Y, Zheng J, Zhou Z, Zhao X, Cui L. Targeting cancer with precision: strategical insights into TCR-engineered T cell therapies. Theranostics 2025; 15:300-323. [PMID: 39744228 PMCID: PMC11667231 DOI: 10.7150/thno.104594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/11/2024] [Indexed: 01/11/2025] Open
Abstract
T cell receptor-engineered T (TCR-T) cell therapies are at the forefront of cancer immunotherapy, offering a transformative approach that significantly enhances the ability of T cells to recognize and eliminate cancer cells. This innovative method involves genetically modifying TCRs to increase their affinity for tumor-specific antigens. While these enhancements improve the ability of T cells to recognize and bind to antigens on cancer cells, rigorous assessment of specificity remains crucial to ensure safety and targeted responses. This dual focus on affinity and specificity holds significant promise for the treatment of solid tumors, enabling precise and efficient cancer cell recognition. Despite rapid advancements in TCR engineering and notable progress in TCR screening technologies, as evidenced by the growing number of specific TCRs entering clinical trials, several technical and clinical challenges remain. These challenges primarily pertain to the specificity, affinity, and safety of engineered TCRs. Moreover, the accurate identification and selection of TCRs that are both effective and safe are essential for the success of TCR-T cell therapies in cancer treatment. This review provides a comprehensive examination of the theoretical foundations of TCR therapy, explores strategies for screening specific TCRs and antigens, and highlights the ongoing challenges in this evolving therapeutic landscape.
Collapse
Affiliation(s)
- Pei Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Zizhao Mai
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Yucheng Zheng
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zihao Zhou
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
- School of Dentistry, University of California, Los Angeles, Los Angeles, 90095, CA, USA
| |
Collapse
|
30
|
Mestermann K, Garitano-Trojaola A, Hudecek M. Accelerating CAR-T Cell Therapies with Small-Molecule Inhibitors. BioDrugs 2025; 39:33-51. [PMID: 39589646 PMCID: PMC11750903 DOI: 10.1007/s40259-024-00688-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2024] [Indexed: 11/27/2024]
Abstract
Chimeric antigen receptor T-cell therapies have markedly improved the survival rates of patients with B-cell malignancies. However, their efficacy in other hematological cancers, such as acute myeloid leukemia, and in solid tumors has been limited. Key obstacles include the downregulation or loss of antigen expression on cancer cells, restricted accessibility to target cells, and the poor persistence of these "living drugs" because of the highly immunosuppressive tumor microenvironment. Additionally, manufacturing these immunotherapies presents significant challenges, and patients frequently experience side effects such as cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome. This review emphasizes the potential of small-molecule inhibitors, many of which are already approved for clinical use, to facilitate chimeric antigen receptor T-cell manufacturing, enhance their anti-tumor efficacy, and mitigate their side effects. Although substantial work remains, the robust pre-clinical data and the growing clinical interest suggest significant promise for using cancer signaling pathway inhibitors to enhance and refine chimeric antigen receptor T-cell therapy for both hematological and solid tumors. Exploring these combination strategies could lead to more effective therapies, offering new hope for patients with resistant forms of cancer.
Collapse
Affiliation(s)
- Katrin Mestermann
- Medizinische Klinik und Poliklinik II, Lehrstuhl für zelluläre Immuntherapie, Universitätsklinikum Würzburg, Haus E4-/Raum 4.06, Versbacher Straße 5, 97078, Würzburg, Germany.
- Fraunhofer-Institut für Zelltherapie und Immunologie, Außenstelle Zelluläre Immuntherapie, Würzburg, Germany.
| | - Andoni Garitano-Trojaola
- Medizinische Klinik und Poliklinik II, Lehrstuhl für zelluläre Immuntherapie, Universitätsklinikum Würzburg, Haus E4-/Raum 4.06, Versbacher Straße 5, 97078, Würzburg, Germany
| | - Michael Hudecek
- Medizinische Klinik und Poliklinik II, Lehrstuhl für zelluläre Immuntherapie, Universitätsklinikum Würzburg, Haus E4-/Raum 4.06, Versbacher Straße 5, 97078, Würzburg, Germany
- Fraunhofer-Institut für Zelltherapie und Immunologie, Außenstelle Zelluläre Immuntherapie, Würzburg, Germany
| |
Collapse
|
31
|
Gomaa B, Abdelhamed H, Banes M, Zinnurine S, Pinchuk L, Lawrence ML. Innate and adaptive immunity gene expression profiles induced by virulent Aeromonas hydrophila infection in the immune-related organs of channel catfish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 162:105276. [PMID: 39341476 DOI: 10.1016/j.dci.2024.105276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Aeromonas hydrophila causes motile Aeromonas septicemia (MAS) in freshwater fish. In recent years, MAS outbreaks due to virulent Aeromonas hydrophila (vAh) have been responsible for large-scale losses within commercial catfish farms in Mississippi and Alabama. The aim of this study was to evaluate immune gene expression in catfish immune-competent tissues during infection with vAh strain ML09-119. Specific pathogen-free catfish fingerlings were intraperitoneally infected with vAh strain ML09-119, and relative expression of thirteen immune-related genes was evaluated from head kidney, spleen, and liver. Our results revealed that vAh was detected 2 h post-infection (hpi) in the head kidney, liver, and spleen. The highest concentration of vAh was detected at 12 hpi, from which point concentrations decreased until clearance at 5 days post-infection (dpi). Gene expression analysis revealed upregulation of pro-inflammatory cytokines and innate immune response (TLR 4 and 5) in the first 24 hpi. Adaptive immune-related genes were upregulated at 7 dpi in the spleen and 14 dpi in the head kidney. Furthermore, immunoglobulin M showed significant upregulation at 14 dpi in the head kidney and 21 dpi in the spleen. In summary, vAh ML09-119 infection induced a strong inflammatory response involving multiple innate immunity genes, proinflammatory cytokines, and chemokines. Surviving catfish were able to clear the infection and produce antibodies and memory cells. Assessment of the immunological response to vAh infection is critical for understanding the pathogen's mechanisms of pathogenesis and developing means for MAS control, including vaccine development and improved treatments.
Collapse
Affiliation(s)
- Basant Gomaa
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, MS, 39762, USA
| | - Hossam Abdelhamed
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, MS, 39762, USA
| | - Michelle Banes
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, MS, 39762, USA
| | - Saida Zinnurine
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, MS, 39762, USA
| | - Lesya Pinchuk
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, MS, 39762, USA
| | - Mark L Lawrence
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, MS, 39762, USA.
| |
Collapse
|
32
|
Zhai Y, Liang X, Deng M. Myeloid cells meet CD8 + T cell exhaustion in cancer: What, why and how. Chin J Cancer Res 2024; 36:616-651. [PMID: 39802897 PMCID: PMC11724180 DOI: 10.21147/j.issn.1000-9604.2024.06.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
Exhausted T cell (Tex) is a specific state of T cell dysfunction, in which these T cells gradually lose their effector function and change their phenotype during chronic antigen stimulation. The enrichment of exhausted CD8+ T cell (CD8+ Tex) in the tumor microenvironment is one of the important reasons leading to the poor efficacy of immunotherapy. Recent studies have reported many reasons leading to the CD8+ T cell exhaustion. In addition to cancer cells, myeloid cells can also contribute to T cell exhaustion via many ways. In this review, we discuss the history of the concept of exhaustion, CD8+ T cell dysfunction states, the heterogeneity, origin, and characteristics of CD8+ Tex. We then focus on the effects of myeloid cells on CD8+ Tex, including tumor-associated macrophages (TAMs), dendritic cells (DCs) and neutrophils. Finally, we systematically summarize current strategies and recent advancements in therapies reversing and CD8+ T cell exhaustion.
Collapse
Affiliation(s)
- Yijie Zhai
- School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
- State Key Laboratory of Molecular Oncology, Peking University International Cancer Institute, Health Science Center, Peking University, Beijing 100191, China
| | - Xiaoting Liang
- School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
- State Key Laboratory of Molecular Oncology, Peking University International Cancer Institute, Health Science Center, Peking University, Beijing 100191, China
| | - Mi Deng
- School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
- State Key Laboratory of Molecular Oncology, Peking University International Cancer Institute, Health Science Center, Peking University, Beijing 100191, China
- Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
33
|
Jafri Z, Zhang J, O'Meara CH, Joshua AM, Parish CR, Khachigian LM. Interplay between CD28 and PD-1 in T cell immunotherapy. Vascul Pharmacol 2024; 158:107461. [PMID: 39734005 DOI: 10.1016/j.vph.2024.107461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/26/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024]
Abstract
Immune checkpoint therapy targeting the PD-1/PD-L1 axis has revolutionised the treatment of solid tumors. However, T cell exhaustion underpins resistance to current anti-PD-1 therapies, resulting in lower response rates in cancer patients. CD28 is a T cell costimulatory receptor that can influence the PD-1 signalling pathway (and vice versa). CD28 signalling has the potential to counter T cell exhaustion by serving as a potential complementary response to traditional anti-PD-1 therapies. Here we discuss the interplay between PD-1 and CD28 in T cell immunotherapy and additionally how CD28 transcriptionally modulates T cell exhaustion. We also consider clinical attempts at targeting CD28; the challenges faced by past attempts and recent promising developments.
Collapse
Affiliation(s)
- Zuhayr Jafri
- Vascular Biology and Translational Research, Department of Pathology, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jingwen Zhang
- Vascular Biology and Translational Research, Department of Pathology, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Connor H O'Meara
- Vascular Biology and Translational Research, Department of Pathology, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia; Division of Head & Neck Oncology and Microvascular Reconstruction, Department of Otolaryngology, Head & Neck Surgery, University of Virginia Health Services, Charlottesville, VA 22903, USA; Department of Otolaryngology, Head & Neck Surgery, Australian National University, Acton, ACT 0200, Australia
| | - Anthony M Joshua
- Kinghorn Cancer Centre, St Vincents Hospital, Sydney and Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; St Vincent's Clinical School, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Christopher R Parish
- Cancer and Vascular Biology Group, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
| | - Levon M Khachigian
- Vascular Biology and Translational Research, Department of Pathology, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
34
|
Eshaq AM, Flanagan TW, Ba Abbad AA, Makarem ZAA, Bokir MS, Alasheq AK, Al Asheikh SA, Almashhor AM, Binyamani F, Al-Amoudi WA, Bawzir AS, Haikel Y, Megahed M, Hassan M. Immune Checkpoint Inhibitor-Associated Cutaneous Adverse Events: Mechanisms of Occurrence. Int J Mol Sci 2024; 26:88. [PMID: 39795946 PMCID: PMC11719825 DOI: 10.3390/ijms26010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
Immunotherapy, particularly that based on blocking checkpoint proteins in many tumors, including melanoma, Merkel cell carcinoma, non-small cell lung cancer (NSCLC), triple-negative breast (TNB cancer), renal cancer, and gastrointestinal and endometrial neoplasms, is a therapeutic alternative to chemotherapy. Immune checkpoint inhibitor (ICI)-based therapies have the potential to target different pathways leading to the destruction of cancer cells. Although ICIs are an effective treatment strategy for patients with highly immune-infiltrated cancers, the development of different adverse effects including cutaneous adverse effects during and after the treatment with ICIs is common. ICI-associated cutaneous adverse effects include mostly inflammatory and bullous dermatoses, as well as severe cutaneous side reactions such as rash or inflammatory dermatitis encompassing erythema multiforme; lichenoid, eczematous, psoriasiform, and morbilliform lesions; and palmoplantar erythrodysesthesia. The development of immunotherapy-related adverse effects is a consequence of ICIs' unique molecular action that is mainly mediated by the activation of cytotoxic CD4+/CD8+ T cells. ICI-associated cutaneous disorders are the most prevalent effects induced in response to anti-programmed cell death 1 (PD-1), anti-cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4), and anti-programmed cell death ligand 1 (PD-L1) agents. Herein, we will elucidate the mechanisms regulating the occurrence of cutaneous adverse effects following treatment with ICIs.
Collapse
Affiliation(s)
- Abdulaziz M. Eshaq
- Department of Epidemiology and Biostatstics, Milken Institute School of Public Health, George Washington University Washington, Washington, DC 20052, USA;
- Research Laboratory of Surgery-Oncology, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Thomas W. Flanagan
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA 70112, USA;
| | - Abdulqader A. Ba Abbad
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.A.B.A.); (Z.A.A.M.); (M.S.B.); (A.K.A.); (A.M.A.); (F.B.); (W.A.A.-A.)
| | - Zain Alabden A. Makarem
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.A.B.A.); (Z.A.A.M.); (M.S.B.); (A.K.A.); (A.M.A.); (F.B.); (W.A.A.-A.)
| | - Mohammed S. Bokir
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.A.B.A.); (Z.A.A.M.); (M.S.B.); (A.K.A.); (A.M.A.); (F.B.); (W.A.A.-A.)
| | - Ahmed K. Alasheq
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.A.B.A.); (Z.A.A.M.); (M.S.B.); (A.K.A.); (A.M.A.); (F.B.); (W.A.A.-A.)
| | - Sara A. Al Asheikh
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.A.B.A.); (Z.A.A.M.); (M.S.B.); (A.K.A.); (A.M.A.); (F.B.); (W.A.A.-A.)
| | - Abdullah M. Almashhor
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.A.B.A.); (Z.A.A.M.); (M.S.B.); (A.K.A.); (A.M.A.); (F.B.); (W.A.A.-A.)
| | - Faroq Binyamani
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.A.B.A.); (Z.A.A.M.); (M.S.B.); (A.K.A.); (A.M.A.); (F.B.); (W.A.A.-A.)
| | - Waleed A. Al-Amoudi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.A.B.A.); (Z.A.A.M.); (M.S.B.); (A.K.A.); (A.M.A.); (F.B.); (W.A.A.-A.)
| | - Abdulaziz S. Bawzir
- Department of Radiology, King Saud Medical City, Riyadh 11533, Saudi Arabia;
| | - Youssef Haikel
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France;
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Mossad Megahed
- Clinic of Dermatology, University Hospital of Aachen, 52074 Aachen, Germany;
| | - Mohamed Hassan
- Research Laboratory of Surgery-Oncology, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France;
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
35
|
Pi JK, Chen XT, Zhang YJ, Chen XM, Wang YC, Xu JY, Zhou JH, Yu SS, Wu SS. Insight of immune checkpoint inhibitor related myocarditis. Int Immunopharmacol 2024; 143:113559. [PMID: 39536487 DOI: 10.1016/j.intimp.2024.113559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/20/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
As the understanding of immune-related mechanisms in the development and progression of cancer advances, immunotherapies, notably Immune Checkpoint Inhibitors (ICIs), have become integral in comprehensive cancer treatment strategies. ICIs reactivate T-cell cytotoxicity against tumors by blocking immune suppressive signals on T cells, such as Programmed Death-1 (PD-1) and Cytotoxic T-lymphocyte Antigen-4 (CTLA-4). Despite their beneficial effects, ICIs are associated with immune-related adverse events (irAEs), manifesting as autoimmune side effects across various organ systems. A particularly alarming irAE is life-threatening myocarditis. This rare but severe side effect of ICIs leads to significant long-term cardiac complications, including arrhythmias and heart failure, and has been observed to have a mortality rate of up to 50% in affected patients. This greatly limits the clinical application of ICI-based immunotherapy. In this review, we provide a comprehensive summary of the current knowledge regarding the diagnosis and management of ICI-related myocarditis. We also discuss the utility of preclinical mouse models in understanding and addressing this critical challenge.
Collapse
Affiliation(s)
- Jin-Kui Pi
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xiao-Ting Chen
- Animal Experimental Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yan-Jing Zhang
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xue-Mei Chen
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yin-Chan Wang
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Jia-Yi Xu
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Jin-Han Zhou
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Shuai-Shuai Yu
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Si-Si Wu
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
36
|
Arafat Hossain M. A comprehensive review of immune checkpoint inhibitors for cancer treatment. Int Immunopharmacol 2024; 143:113365. [PMID: 39447408 DOI: 10.1016/j.intimp.2024.113365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/28/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024]
Abstract
Immunology-based therapies are emerging as an effective cancer treatment, using the body's immune system to target tumors. Immune checkpoints, which regulate immune responses to prevent tissue damage and autoimmunity, are often exploited by cancer cells to avoid destruction. The discovery of checkpoint proteins like PD-1/PD-L1 and CTLA-4 was pivotal in developing cancer immunotherapy. Immune checkpoint inhibitors (ICIs) have shown great success, with FDA-approved drugs like PD-1 inhibitors (Nivolumab, Pembrolizumab, Cemiplimab), PD-L1 inhibitors (Atezolizumab, Durvalumab, Avelumab), and CTLA-4 inhibitors (Ipilimumab, Tremelimumab), alongside LAG-3 inhibitor Relatlimab. Research continues on new checkpoints like TIM-3, VISTA, B7-H3, BTLA, and TIGIT. Biomarkers like PDL-1 expression, tumor mutation burden, interferon-γ presence, microbiome composition, and extracellular matrix characteristics play a crucial role in predicting responses to immunotherapy with checkpoint inhibitors. Despite their effectiveness, not all patients experience the same level of benefit, and organ-specific immune-related adverse events (irAEs) such as rash or itching, colitis, diarrhea, hyperthyroidism, and hypothyroidism may occur. Given the rapid advancements in this field and the variability in patient outcomes, there is an urgent need for a comprehensive review that consolidates the latest findings on immune checkpoint inhibitors, covering their clinical status, biomarkers, resistance mechanisms, strategies to overcome resistance, and associated adverse effects. This review aims to fill this gap by providing an analysis of the current clinical status of ICIs, emerging biomarkers, mechanisms of resistance, strategies to enhance therapeutic efficacy, and assessment of adverse effects. This review is crucial to furthering our understanding of ICIs and optimizing their application in cancer therapy.
Collapse
Affiliation(s)
- Md Arafat Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh.
| |
Collapse
|
37
|
Liu YT, Cao LY, Sun ZJ. The emerging roles of liquid-liquid phase separation in tumor immunity. Int Immunopharmacol 2024; 143:113212. [PMID: 39353387 DOI: 10.1016/j.intimp.2024.113212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/02/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024]
Abstract
Recent advancements in tumor immunotherapy, particularly PD-1 targeted therapy, have shown significant promise, marking major progress in tumor treatment approaches. Despite this, the development of resistance to therapy and mechanisms of immune evasion by tumors pose considerable obstacles to the broad application of immunotherapy. This necessitates a deeper exploration of complex immune signaling pathways integral to tumor immunity. This review aims to critically analyze the role of liquid-liquid phase separation (LLPS) within tumor immunity, specifically its impact on immune signaling pathways and its potential to foster the development of novel cancer therapies. LLPS, a biophysical process newly recognized for its ability to spontaneously segregate and organize biomacromolecules into liquid-like condensates through weak multivalent interactions, offers a novel perspective on the formation of signaling clusters and the functionality of immune molecules. The review delves into the micromolecular mechanisms behind the creation of signaling condensates via LLPS and reviews recent progress in adjusting signaling pathways pertinent to tumor immunity, including the T cell receptor (TCR), B cell receptor (BCR), immune checkpoints, and innate immune pathways such as the cGAS-STING pathway, stress granules, and the ADP-heptose-ALPK1 signaling axis. Furthermore, it considers the prospects of utilizing LLPS to generate groundbreaking cancer therapies capable of navigating past current treatment barriers. Through an extensive examination of LLPS's impact on tumor immunity, the review seeks to highlight novel therapeutic strategies and address the challenges and future directions in this rapidly evolving field.
Collapse
Affiliation(s)
- Yuan-Tong Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China; Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Lin-Yu Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
38
|
Chantziou A, Brenna C, Ioannidou K, Chen OY, Korkolopoulou P, Antoniadou A, Psichogiou M, Papaioannou M, Tsirigotis P, Foukas PG, de Leval L, Petrovas C. HIV infection is associated with compromised tumor microenvironment adaptive immune reactivity in Hodgkin lymphoma. Blood Adv 2024; 8:6215-6231. [PMID: 39116294 PMCID: PMC11697195 DOI: 10.1182/bloodadvances.2023012116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
ABSTRACT The impact of HIV infection on the tumor microenvironment (TME) of classic Hodgkin lymphoma (cHL), one of the most common comorbidities after HIV infection, is not well understood. Here, we have used multiplexed immunofluorescence and spatial transcriptomic analysis to dissect the impact of viral infections (Epstein-Barr virus [EBV] and HIV/EBV) on cHL TME. HIV-EBV+ cHL TME was characterized by higher cell densities of CD8high T cells coexpressing inhibitory receptors (PD-1 and TIGIT), macrophage subsets, and an in situ inflammatory molecular profile associated with increased expression of T-cell receptor (TCR) and B-cell receptor cell signaling pathways than HIV-EBV- cHL TME. Compared with HIV-EBV+, HIV+EBV+ cHL TME was characterized by significantly less CD8high T cells coexpressing PD-1 and TIGIT, a profile concomitant with significantly increased cell densities of CD155high neoplastic cells. Significant downregulation of in situ TCR signaling and upregulation of extracellular matrix reorganization pathways were found in HIV+EBV+ cHL TME, in line with an altered topological organization of CXCL13 and heparan sulfate, an extracellular matrix glycosaminoglycan. Our data reveal the complexity of the cellular and molecular composition of cHL TME in the presence of viral infections, with possible implications for combinatorial immunotherapies. Furthermore, the data suggest specific molecular targets and pathways for further investigation that could improve our understanding of possible mechanistic links between HIV and lymphomagenesis.
Collapse
Affiliation(s)
- Amanda Chantziou
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital, Lausanne, Switzerland
| | - Cloe Brenna
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital, Lausanne, Switzerland
| | - Kalliopi Ioannidou
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital, Lausanne, Switzerland
| | - Oliver Y. Chen
- Department of Laboratory Medicine and Pathology, Lausanne University Hospital and Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Penelope Korkolopoulou
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasia Antoniadou
- Fourth Department of Internal Medicine, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Mina Psichogiou
- First Department of Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Papaioannou
- First Department of Internal Medicine, Hematology Unit, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, XX, Greece
| | - Panagiotis Tsirigotis
- Division of Hematology, Second Department of Internal Medicine, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Periklis G. Foukas
- Second Department of Pathology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Laurence de Leval
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital, Lausanne, Switzerland
| | - Constantinos Petrovas
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
39
|
Choubey RB, Sweta, Vibha, Sharma A, Rai AK. Immunotherapy to CD5, a T-cell antigen having roles from development to peripheral function: Future prospective and challenges. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 144:431-460. [PMID: 39978974 DOI: 10.1016/bs.apcsb.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
CD5 is a pan T-cell marker expressed by all T-cells and a subset of B-cells, i.e., B1a cells. The significance of CD5 is evident from its functions, starting from T-cell development, antigen priming, activation, and effector response to the maintenance of tolerance. Varying CD5 expression and signaling in response to TCR-pMHC complex avidity is associated with thymic selection, competency, and effector response. Altered CD5 expression is associated with immunological and diseased conditions such as CD5-/low infiltrating T-cells in solid tumors, CD5hi T-cells in anergy conditions, CD5-/low phenotype of leukemic T-cells, high CD5 expression by regulatory T-cells, CD5lowphenotype of autoreactive T-cells, etc. A low CD5 expression triggers activation-induced cell death upon antigenic stimulation. There are three forms of CD5: membrane CD5 (mCD5), intracellular CD5 (cCD5) and soluble CD5 (sCD5). mCD5 and cCD5 are generated from conventional and non-conventional mRNA variants, i.e., E1A and E1B, respectively. E1B variant encoding cCD5 is derived from a human endogenous retrovirus segment inserted 8.2 kb upstream to conventional E1A exon. Various conditions, such as leukemia, exposure to hydrocarbon, hypoxia, etc., can trigger E1B transcription and, thus, cCD5 expression. Blocking mCD5 with mAb can restore immune response, effectively targeting cancer. Understanding cCD5, linked to leukemogenesis, can offer new avenues of immunotherapy.
Collapse
Affiliation(s)
- Ranjeet Bahadur Choubey
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Allahabad, UP, India
| | - Sweta
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Allahabad, UP, India
| | - Vibha
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Allahabad, UP, India
| | - Avika Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Allahabad, UP, India
| | - Ambak Kumar Rai
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Allahabad, UP, India.
| |
Collapse
|
40
|
Paredes-Moscosso SR, Nathwani AC. 10 years of BiTE immunotherapy: an overview with a focus on pancreatic cancer. Front Oncol 2024; 14:1429330. [PMID: 39759138 PMCID: PMC11696039 DOI: 10.3389/fonc.2024.1429330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/30/2024] [Indexed: 01/07/2025] Open
Abstract
Various therapeutic strategies have been developed to treat Pancreatic Cancer (PaCa). Unfortunately, most efforts have proved unfruitful, as the poor prognosis observed in this disease has only attained little improvement in the past 40 years. Recently, deeper understanding of the immune system and its interaction with malignant tumors have allowed significant advances in immunotherapy. Consistent with this, some of the most promising approaches are those that involve T-cell redirection to the tumor site, such as bispecific T-cell engagers (BiTEs). These recombinant antibodies bridge cytotoxic T-cells to tumor cells, inducing target cell-dependent polyclonal T-cell activation/proliferation, which in turn results in elimination of bound tumor cells. Blinatumomab, an anti-CD19 BiTE, received FDA approval in 2014 for Precursor B-cell Acute Lymphoblastic Leukemia. In the past decade, it has demonstrated impressive clinical benefit in patients with B-cell leukemias; and other T-cell engagers have been FDA-approved for hematological malignancies and other diseases, yet limited effect has been observed with other BiTEs against solid cancers, including PaCa. Nevertheless, on May 2024, Tarlatamab, an anti-DLL3 BiTE was approved by the FDA for extensive small cell lung cancer, becoming the first BiTE for solid tumors. In this review, the generation of BiTEs, therapeutic features, manufacturing issues as well as the remaining challenges and novel strategies of BiTE therapy in the context of PaCa, including the lessons we can learn from the use of BiTEs on other types of cancer will be explored.
Collapse
Affiliation(s)
- Solange R. Paredes-Moscosso
- Centro de Genética y Biología Molecular, Instituto de Investigación, Facultad de Medicina Humana, Universidad de San Martín de Porres, Lima, Peru
- Facultad de Ciencias de la Salud, Universidad Peruana de Ciencias Aplicadas, Lima, Peru
| | - Amit C. Nathwani
- Research Department of Haematology, UCL Cancer Institute, University College London, London, United Kingdom
- Katharine Dormandy Haemophilia and Thrombosis Unit, Royal Free London National Health Service (NHS) Foundation Trust, London, United Kingdom
| |
Collapse
|
41
|
Wang J, Ye F, Chai H, Jiang Y, Wang T, Ran X, Xia Q, Xu Z, Fu Y, Zhang G, Wu H, Guo G, Guo H, Ruan Y, Wang Y, Xing D, Xu X, Zhang Z. Advances and applications in single-cell and spatial genomics. SCIENCE CHINA. LIFE SCIENCES 2024:10.1007/s11427-024-2770-x. [PMID: 39792333 DOI: 10.1007/s11427-024-2770-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/10/2024] [Indexed: 01/12/2025]
Abstract
The applications of single-cell and spatial technologies in recent times have revolutionized the present understanding of cellular states and the cellular heterogeneity inherent in complex biological systems. These advancements offer unprecedented resolution in the examination of the functional genomics of individual cells and their spatial context within tissues. In this review, we have comprehensively discussed the historical development and recent progress in the field of single-cell and spatial genomics. We have reviewed the breakthroughs in single-cell multi-omics technologies, spatial genomics methods, and the computational strategies employed toward the analyses of single-cell atlas data. Furthermore, we have highlighted the advances made in constructing cellular atlases and their clinical applications, particularly in the context of disease. Finally, we have discussed the emerging trends, challenges, and opportunities in this rapidly evolving field.
Collapse
Affiliation(s)
- Jingjing Wang
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Fang Ye
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Haoxi Chai
- Life Sciences Institute and The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310058, China
| | - Yujia Jiang
- BGI Research, Shenzhen, 518083, China
- BGI Research, Hangzhou, 310030, China
| | - Teng Wang
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Xia Ran
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310000, China
| | - Qimin Xia
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing, 100871, China
| | - Ziye Xu
- Department of Laboratory Medicine of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yuting Fu
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Guodong Zhang
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Hanyu Wu
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Guoji Guo
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Hangzhou, 310058, China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310000, China.
| | - Hongshan Guo
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310000, China.
| | - Yijun Ruan
- Life Sciences Institute and The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310058, China.
| | - Yongcheng Wang
- Department of Laboratory Medicine of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Dong Xing
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing, 100871, China.
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, 100871, China.
| | - Xun Xu
- BGI Research, Shenzhen, 518083, China.
- BGI Research, Hangzhou, 310030, China.
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, Shenzhen, 518083, China.
| | - Zemin Zhang
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
42
|
Jureczek J, Kałwak K, Dzięgiel P. Antibody-Based Immunotherapies for the Treatment of Hematologic Malignancies. Cancers (Basel) 2024; 16:4181. [PMID: 39766080 PMCID: PMC11674729 DOI: 10.3390/cancers16244181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 01/05/2025] Open
Abstract
Despite the great advancements in treatment strategies for hematological malignancies (HMs) over the years, their effective treatment remains challenging. Conventional treatment strategies are burdened with several serious drawbacks limiting their effectiveness and safety. Improved understanding of tumor immunobiology has provided novel anti-cancer strategies targeting selected immune response components. Currently, immunotherapy is counted as the fourth pillar of oncological treatment (together with surgery, chemo- and radiotherapy) and is becoming standard in the treatment regimen, alone or in combination therapy. Several categories of immunotherapies have been developed and are currently being assessed in clinical trials for the treatment of blood cancers, including immune checkpoint inhibitors, antigen-targeted antibodies, antibody-drug conjugates, tumor vaccines, and adoptive cell therapies. However, monoclonal antibodies (mAbs) and their derivatives have achieved the most notable clinical outcome so far. Since the approval of rituximab for treating B-cell malignancies, the availability of mAbs against tumor-specific surface molecules for clinical use has flourished. Antibody-based therapy has become one of the most successful strategies for immunotherapeutic cancer treatment in the last few decades, and many mAbs have already been introduced into standard treatment protocols for some hematologic malignancies. To further increase the efficacy of mAbs, they can be conjugated to radioisotopes or cytostatic drugs, so-called antibody-drug conjugates. Moreover, with the growing recognition of T-cell immunity's role in cancer development, strategies aimed at enhancing T cell activation and inhibiting mechanisms that suppress T cell function are actively being developed. This review provides a comprehensive overview of the current status of immunotherapeutic strategies based on monoclonal antibodies and their derivatives, including antibody-drug conjugates, bispecific T-cell engagers, and checkpoint inhibitors, approved for the treatment of various HMs.
Collapse
Affiliation(s)
- Justyna Jureczek
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Krzysztof Kałwak
- Clinical Department of Paediatric Bone Marrow Transplantation, Oncology and Haematology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| |
Collapse
|
43
|
Zhang R, Yang Y, Li X, Jiao C, Lou M, Mi W, Mao-Ying QL, Chu Y, Wang Y. Exploring shared targets in cancer immunotherapy and cancer-induced bone pain: Insights from preclinical studies. Cancer Lett 2024; 611:217399. [PMID: 39689823 DOI: 10.1016/j.canlet.2024.217399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/13/2024] [Accepted: 12/14/2024] [Indexed: 12/19/2024]
Abstract
Cancer casts a profound shadow on global health, with pain emerging as one of the dominant and severe complications, particularly in advanced stages. The effective management of cancer-induced pain remains an unmet need. Emerging preclinical evidence suggests that targets related to tumor immunotherapy may also modulate cancer-related pain pathways, thus offering a promising therapeutic direction. This review, focusing on more than ten molecular targets that link cancer immunotherapy and cancer-induced bone pain, underscores their potential to tackle both aspects in the context of comprehensive cancer care. Emphasizing factors such as types of cancer, drug administration methods, and sex differences in the analgesic efficacy of immunotherapeutic agents provides neuroscientific insights into personalized pain management for patients with cancer.
Collapse
Affiliation(s)
- Ruofan Zhang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yachen Yang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiang Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Chunmeng Jiao
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Mengping Lou
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Wenli Mi
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qi-Liang Mao-Ying
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yuxia Chu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yanqing Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
44
|
Sastri KT, Gupta NV, Kannan A, Dutta S, Ali M Osmani R, V B, Ramkishan A, S S. The next frontier in multiple sclerosis therapies: Current advances and evolving targets. Eur J Pharmacol 2024; 985:177080. [PMID: 39491741 DOI: 10.1016/j.ejphar.2024.177080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/11/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024]
Abstract
Recent advancements in research have significantly enhanced our comprehension of the intricate immune components that contribute to multiple sclerosis (MS) pathogenesis. By conducting an in-depth analysis of complex molecular interactions involved in the immunological cascade of the disease, researchers have successfully identified novel therapeutic targets, leading to the development of innovative therapies. Leveraging pioneering technologies in proteomics, genomics, and the assessment of environmental factors has expedited our understanding of the vulnerability and impact of these factors on the progression of MS. Furthermore, these advances have facilitated the detection of significant biomarkers for evaluating disease activity. By integrating these findings, researchers can design novel molecules to identify new targets, paving the way for improved treatments and enhanced patient care. Our review presents recent discoveries regarding the pathogenesis of MS, highlights their genetic implications, and proposes an insightful approach for engaging with newer therapeutic targets in effectively managing this debilitating condition.
Collapse
Affiliation(s)
- K Trideva Sastri
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Bannimantap, Mysuru, India.
| | - N Vishal Gupta
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Bannimantap, Mysuru, India.
| | - Anbarasu Kannan
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru, India
| | - Suman Dutta
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Bannimantap, Mysuru, India
| | - Balamuralidhara V
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Bannimantap, Mysuru, India
| | - A Ramkishan
- Deputy Drugs Controller (India), Central Drugs Standard Control Organization, Directorate General of Health Services, Ministry of Health & Family Welfare, Government of India, India
| | | |
Collapse
|
45
|
Wei C, Huang X, Xu T, Fang Y, Wang F, He Q, Zhang P, Yu Q, Zhang Y, Zheng B, Gao Y, Chen Y, Zhuge Q, Zhao A, Gao J, Jiang J. NECTIN-4-redirected T cell Antigen Coupler T cells bearing CD28 show superior antitumor responses against solid tumors. Front Immunol 2024; 15:1456443. [PMID: 39735536 PMCID: PMC11681620 DOI: 10.3389/fimmu.2024.1456443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/25/2024] [Indexed: 12/31/2024] Open
Abstract
Introduction T cell Antigen Coupler (TAC) T cells harness all signaling subunits of endogenous T cell receptor (TCR) to trigger T-cell activation and tumor cell lysis, with minimal release of cytokines. Some of the major obstacles to cellular immunotherapy in solid tumors include inefficient cell infiltration into tumors, lack of prolonged cellular persistence, and therapy-associated toxicity. Methods To boost the cytotoxic potential of TAC-T cells against solid tumors, we generated a novel NECTIN-4-targeted TAC-T variant, NECTIN-4 TAC28-T, which integrated the co-stimulatory CD28 cytoplasmic region, and compared the anti-tumor activities between NECTIN-4 TAC-T cells and NECTIN-4 TAC28-T cells in vitro and vivo. Results We demonstrated NECTIN-4 TAC28-Tcells could be effectively activated by NECTIN-4 protein-coated magnetic beads (NECTIN-4-beads), and further revealed that the incorporated CD28 co-stimulatory domain enhanced their activation and proliferation capabilities. Notably, NECTIN-4 TAC28-T cells exhibited better anti-tumor effects both in vitro and in vivo than the original NECTIN-4 TAC-T cells. Discussion Our data highlighted that NECTIN-4 TAC28-T cells may represent a promising, safe and effective cell therapy for NECTIN-4-overexpressing solid tumors.
Collapse
Affiliation(s)
- Cheng Wei
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xin Huang
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Tianlong Xu
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yinan Fang
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Fabao Wang
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qiaolin He
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Peiyuan Zhang
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qianjin Yu
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ying Zhang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Binjiao Zheng
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yue Gao
- Department of Geriatric, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongping Chen
- Hepatology Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University & Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, Zhejiang, China
| | - Qichuan Zhuge
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ai Zhao
- Department of Geriatric, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jimin Gao
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Zhejiang Qixin Biotech, Wenzhou, China
| | - Jinhong Jiang
- Hepatology Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University & Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, Zhejiang, China
- Department of Hematology, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
| |
Collapse
|
46
|
Cochrane RW, Robino RA, Granger B, Allen E, Vaena S, Romeo MJ, de Cubas AA, Berto S, Ferreira LM. High-affinity chimeric antigen receptor signaling induces an inflammatory program in human regulatory T cells. Mol Ther Methods Clin Dev 2024; 32:101385. [PMID: 39687729 PMCID: PMC11647616 DOI: 10.1016/j.omtm.2024.101385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024]
Abstract
Regulatory T cells (Tregs) are promising cellular therapies to induce immune tolerance in organ transplantation and autoimmune disease. The success of chimeric antigen receptor (CAR) T cell therapy for cancer has sparked interest in using CARs to generate antigen-specific Tregs. Here, we compared CAR with endogenous T cell receptor (TCR)/CD28 activation in human Tregs. Strikingly, CAR Tregs displayed increased cytotoxicity and diminished suppression of antigen-presenting cells and effector T (Teff) cells compared with TCR/CD28-activated Tregs. RNA sequencing revealed that CAR Tregs activate Teff cell gene programs. Indeed, CAR Tregs secreted high levels of inflammatory cytokines, with a subset of FOXP3+ CAR Tregs uniquely acquiring CD40L surface expression and producing IFN-γ. Interestingly, decreasing CAR antigen affinity reduced Teff cell gene expression and inflammatory cytokine production by CAR Tregs. Our findings showcase the impact of engineered receptor activation on Treg biology and support tailoring CAR constructs to Tregs for maximal therapeutic efficacy.
Collapse
Affiliation(s)
- Russell W. Cochrane
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Rob A. Robino
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Bryan Granger
- Bioinformatics Core, Medical University of South Carolina, Charleston, SC, USA
| | - Eva Allen
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Silvia Vaena
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Martin J. Romeo
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Aguirre A. de Cubas
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Stefano Berto
- Bioinformatics Core, Medical University of South Carolina, Charleston, SC, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Leonardo M.R. Ferreira
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
47
|
Xu L, Peng F, Luo Q, Ding Y, Yuan F, Zheng L, He W, Zhang SS, Fu X, Liu J, Mutlu AS, Wang S, Nehring RB, Li X, Tang Q, Li C, Lv X, Dobrolecki LE, Zhang W, Han D, Zhao N, Jaehnig E, Wang J, Wu W, Graham DA, Li Y, Chen R, Peng W, Chen Y, Catic A, Zhang Z, Zhang B, Mustoe AM, Koong AC, Miles G, Lewis MT, Wang MC, Rosenberg SM, O'Malley BW, Westbrook TF, Xu H, Zhang XHF, Osborne CK, Li JB, Ellis MJ, Rimawi MF, Rosen JM, Chen X. IRE1α silences dsRNA to prevent taxane-induced pyroptosis in triple-negative breast cancer. Cell 2024; 187:7248-7266.e34. [PMID: 39419025 PMCID: PMC11645245 DOI: 10.1016/j.cell.2024.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 07/10/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024]
Abstract
Chemotherapy is often combined with immune checkpoint inhibitor (ICIs) to enhance immunotherapy responses. Despite the approval of chemo-immunotherapy in multiple human cancers, many immunologically cold tumors remain unresponsive. The mechanisms determining the immunogenicity of chemotherapy are elusive. Here, we identify the ER stress sensor IRE1α as a critical checkpoint that restricts the immunostimulatory effects of taxane chemotherapy and prevents the innate immune recognition of immunologically cold triple-negative breast cancer (TNBC). IRE1α RNase silences taxane-induced double-stranded RNA (dsRNA) through regulated IRE1-dependent decay (RIDD) to prevent NLRP3 inflammasome-dependent pyroptosis. Inhibition of IRE1α in Trp53-/- TNBC allows taxane to induce extensive dsRNAs that are sensed by ZBP1, which in turn activates NLRP3-GSDMD-mediated pyroptosis. Consequently, IRE1α RNase inhibitor plus taxane converts PD-L1-negative, ICI-unresponsive TNBC tumors into PD-L1high immunogenic tumors that are hyper-sensitive to ICI. We reveal IRE1α as a cancer cell defense mechanism that prevents taxane-induced danger signal accumulation and pyroptotic cell death.
Collapse
Affiliation(s)
- Longyong Xu
- Department of Experimental Therapeutics, James P. Allison Institute, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Fanglue Peng
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Qin Luo
- Department of Experimental Therapeutics, James P. Allison Institute, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Yao Ding
- Department of Experimental Therapeutics, James P. Allison Institute, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Fei Yuan
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Liting Zheng
- Therapeutic Innovation Center (THINC), and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wei He
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sophie S Zhang
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| | - Xin Fu
- Department of Pathology, Xijing Hospital, Xi'an, Shaanxi 710032, China
| | - Jin Liu
- Department of Pathology, Xijing Hospital, Xi'an, Shaanxi 710032, China
| | - Ayse Sena Mutlu
- Therapeutic Innovation Center (THINC), and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shuyue Wang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ralf Bernd Nehring
- Therapeutic Innovation Center (THINC), and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xingyu Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qianzi Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Catherine Li
- Department of Experimental Therapeutics, James P. Allison Institute, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiangdong Lv
- Department of Experimental Therapeutics, James P. Allison Institute, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Lacey E Dobrolecki
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Weijie Zhang
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dong Han
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Na Zhao
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Eric Jaehnig
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jingyi Wang
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Weiche Wu
- Department of Experimental Therapeutics, James P. Allison Institute, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Davis A Graham
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yumei Li
- Therapeutic Innovation Center (THINC), and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rui Chen
- Therapeutic Innovation Center (THINC), and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Weiyi Peng
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Yiwen Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andre Catic
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhibin Zhang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bing Zhang
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anthony M Mustoe
- Therapeutic Innovation Center (THINC), and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Albert C Koong
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - George Miles
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael T Lewis
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Meng C Wang
- HHMI Janelia Research Campus, Ashburn, VA 20147, USA
| | - Susan M Rosenberg
- Therapeutic Innovation Center (THINC), and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Thomas F Westbrook
- Therapeutic Innovation Center (THINC), and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Han Xu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiang H-F Zhang
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - C Kent Osborne
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jin Billy Li
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Matthew J Ellis
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mothaffar F Rimawi
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jeffrey M Rosen
- Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xi Chen
- Department of Experimental Therapeutics, James P. Allison Institute, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Lester and Sue Smith Breast Center, Dun L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
48
|
Ghahramanipour Z, Naseri B, Mardi A, Sohrabi S, Masoumi J, Baghbani E, Karimzadeh H, Baradaran B. Arginine vasopressin (AVP) treatment increases the expression of inhibitory immune checkpoint molecules in monocyte-derived dendritic cells. Immunol Res 2024; 73:6. [PMID: 39661295 DOI: 10.1007/s12026-024-09579-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/03/2024] [Indexed: 12/12/2024]
Abstract
Arginine vasopressin (AVP) has disparate impacts on immune responses by divergent receptors on cells including DCs. This study was conducted with the aim of investigating the impact of AVP on the maturation and expression of the inhibitory immune checkpoint molecules in tolerogenic monocyte-derived DCs. CD14 marker was used to separate monocytes from peripheral blood mononuclear cells (PBMCs) by MACS method. To differentiate monocytes from DCs, we utilized GM-CSF and IL-4 cytokines. Tolerogenic DCs were generated using vitamin D3 and dexamethasone. We added LPS and AVP to the culture medium on day 6 after incubation of DCs at 37 °C. Finally, we assessed the surface molecules by flow cytometry and used real-time PCR to evaluate the expression of genes related to the inhibitory immune checkpoints. Based on the obtained data, AVP increased the expression of CD11c (P ≤ 0.0001), HLA-DR (P ≤ 0.01), and CD86 (P ≤ 0.01) in AVP-mDCs. Also, the expression of all the immune checkpoint genes including CTLA-4 (P ≤ 0.001), BTLA (P ≤ 0.001), PDL-1 (P ≤ 0.05), B7H7 (P ≤ 0.001), LAG3 (P ≤ 0.01), and VISTA (P ≤ 0.001) in AVP-mDCs was increased in comparison to the control group. Vasopressin caused the generation of mature and tolerogenic DCs. Our data may help to consider AVP-mDCs to take part in autoimmune disease therapy, transplanted tissue rejection impedance, and allergies.
Collapse
Affiliation(s)
| | - Bahar Naseri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhossein Mardi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Sohrabi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Masoumi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Baghbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Karimzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
49
|
Wu L, Bai R, Zhang Y, Chen H, Wu J, Chen Z, Wang H, Zhao L. METTL3-VISTA axis-based combination immunotherapy for APC truncation colorectal cancer. J Immunother Cancer 2024; 12:e009865. [PMID: 39653551 PMCID: PMC11629097 DOI: 10.1136/jitc-2024-009865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 11/17/2024] [Indexed: 12/12/2024] Open
Abstract
OBJECTIVE Although immune checkpoint blockade (ICB) therapy represents a bright spot in antitumor immunotherapy, its clinical benefits in colorectal cancer (CRC) are limited. Therefore, a new target for mediating CRC immunosuppression is urgently needed. Adenomatous polyposis coli (APC) mutations have been reported as early-stage characteristic events in CRC, but the role of truncated APC in the CRC immune microenvironment remains unclear and its clinical significance has yet to be explored. DESIGN Adenocarcinoma formation in the colon of the APCMin/+ mouse model, which displays features associated with the translation of truncated APC proteins, was induced by azoxymethane/dextran sodium sulfate. Multiplexed immunohistochemical consecutive staining on single slides and flow cytometry were used to explore the activation of immune cells and the expression of the immune checkpoint V-domain immunoglobulin suppressor of T-cell activation (VISTA) in the CRC tissues of APCWT and APCMin/+ mice. The construction of truncated APC vectors and an initial subserosal graft tumor mouse model was employed to mimic the tumor microenvironment (TME) during APC mutation. Methylated RNA immunoprecipitation-quantitative PCR assays were performed to investigate the N6-methyladenosine (m6A)-dependent transcriptional regulation of hypoxia-inducible factor-1 alpha (HIF1α) by methyltransferase-like protein 3 (METTL3). Mettl3fl/fl vil1-cre+/- mice were used to demonstrate that targeting METTL3 is a mediator that mitigates the deleterious effects of the APC978∆-HIF1α axis on antitumor immunity. A chimeric VISTA humanized mouse model was used to evaluate the drug efficacy of the VISTA-targeted compound onvatilimab. RESULTS We showed that APC978∆, a truncated APC protein, mediated overexpression of METTL3, resulting in m6A methylation of HIF1α messenger RNA and high expression of HIF1α. Furthermore, HIF1α promotes the migration of myeloid-derived suppressor cells to the TME by binding to the promoters of MCP-1 and MIF. In addition, HIF1α enhances the expression of the immune checkpoint VISTA on CRC cells, weakening tumor immune monitoring. CONCLUSIONS We elucidate that an underappreciated function of truncated APC in CRC is its ability to drive an immunosuppressive program that boosts tumor progression. Our work could provide a new perspective for the clinical application of immunotherapy in patients with CRC resistant to ICB therapy.
Collapse
Affiliation(s)
- Ling Wu
- Department of Pathology, Shunde Hospital of Southern Medical University, Foshan, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Rui Bai
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yujie Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Hao Chen
- Department of Pathology, Shunde Hospital of Southern Medical University, Foshan, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianghua Wu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Zetao Chen
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Hui Wang
- Department of Medical Oncology, Guangzhou Medical University Affiliated Cancer Hospital, Guangzhou, Guangdong, China
| | - Liang Zhao
- Department of Pathology, Shunde Hospital of Southern Medical University, Foshan, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
50
|
Xiong S, Li N, Shi S, Zhao Y, Chen J, Ruan M, Xu Y, Liu R, Wang S, Wang H. Structural characterization of a polysaccharide from Scutellaria baicalensis Georgi and its immune-enhancing properties on RAW264.7 cells. Int J Biol Macromol 2024; 283:137890. [PMID: 39571863 DOI: 10.1016/j.ijbiomac.2024.137890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/27/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024]
Abstract
A novel polysaccharide SPS01-2 (87.5 kDa) was isolated from the roots of Scutellaria baicalensis Georgi. Monosaccharide composition revealed that SPS01-2 consists of rhamnose, arabinose, galactose, galacturonic acid, and glucuronic acid in ratio of 4.4: 67.1: 22.2: 6.3: 1.2. Further investigations using methylation, NMR, and mass spectrometry indicated that SPS01-2 is classified as a type II arabinogalactan (AG-II) with a minor presence of type I rhamnogalacturonan (RG-I). The core structure alternates between 1,2/1,2,4-α-L-Rhap and 1,4-α-D-GalpA, with branches including 1,3,6-β-D-Galp, 1,3-β-D-Galp, T-β-D-Galp, and T-α-L-Rhap. The RG-I regions are linked to 1,6-β-D-Galp, and 1,3,6-β-D-Galp units. Numerous arabinan branches, featuring multiple branching points, are attached to the O-3 position of galactose. Additionally, T-β-D-Galp, 1,6-β-D-Galp, and T-β-D-4-OMe-GlcpA are also linked to galactose in the backbone. Furthermore, SPS01-2 demonstrated potential immune-enhancing properties by dose-dependently increasing proliferation, phagocytosis, and the production of nitric oxide and cytokines (TNF-α, IL-6, and IL-1β) in RAW264.7 cells. It also enhanced the expression of CD80, CD86, and MHC-II at concentrations ranging from 5 to 200 μg/mL. Moreover, the immunostimulatory activity of SPS01-2 was significantly reduced when branch linkages were removed through partial acid hydrolysis. Our findings indicate that SPS01-2 could serve as a natural immunostimulant in the food and pharmaceutical sectors.
Collapse
Affiliation(s)
- Si Xiong
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Mate ria Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Ning Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, China
| | - Songshan Shi
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Mate ria Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Yonglin Zhao
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Mate ria Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Jie Chen
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Mate ria Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Min Ruan
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, China
| | - Yongbin Xu
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Mate ria Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Ruimin Liu
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Mate ria Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Shunchun Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Mate ria Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China.
| | - Huijun Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Mate ria Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China.
| |
Collapse
|