1
|
Zhai Y, Zhang W, Wang J, Kong Y, Rong R, Lang T, Zheng C, Wang Y, Yu Y, Zhu HH, Cai Y, Zhang P, Li Y. Interleukin 15-Presenting Nanovesicles with Doxorubicin-Loaded Ferritin Cores for Cancer Immunochemotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409194. [PMID: 39625860 DOI: 10.1002/advs.202409194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/13/2024] [Indexed: 01/30/2025]
Abstract
Interleukin 15 (IL15) is crucial for fostering the survival and proliferation of nature killer (NK) cells and cytotoxic T lymphocytes (CTLs), playing a pivotal role in tumor control. However, IL15 supplementary therapy encounters challenges such as systemic inflammation and non-specific stimulation of cancer cells. Herein, a nanovesicle termed DoxFILN, comprising a membrane presenting IL15/IL15 receptor α complexes (IL15c) and a core of doxorubicin-loaded ferritin (Dox-Fn) are reported. The DoxFILN significantly enhances the densities and activities of intratumoral CTLs and NK cells. Mechanistically, DoxFILN undergoes deshelling in the acidic tumor microenvironment, releasing Dox-Fn and membrane-bound IL15c. Dox-Fn selectively target transferrin receptors on cancerous cells, facilitating intracellular Dox release and inducing immunogenic cell death. Concurrently, membrane-bound IL15c recognizes and activates IL15 receptor β/γc heterodimers, leading to a remarkable increase in the proliferation and activation of CTLs (16-fold and 28-fold) and NK cells (37-fold and 50-fold). The IL15-displaying nanovesicle introduced here holds promise as a potential platform for immunochemotherapy in the treatment of cancer.
Collapse
Affiliation(s)
- Yihui Zhai
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen Zhang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
| | - Jinming Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Ying Kong
- Yantai Institute of Materia Medica, Shandong, 264000, China
| | - Rong Rong
- Yantai Institute of Materia Medica, Shandong, 264000, China
| | - Tianqun Lang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Zheng
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
| | - Yanke Wang
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai, 201210, China
| | - Yang Yu
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai, 201210, China
| | - Helen He Zhu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Ying Cai
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong, 264000, China
| | - Pengcheng Zhang
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Clinical Research and Trial Center, Shanghai, 201203, China
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong, 264000, China
| |
Collapse
|
2
|
Sandys O, Stokkers PCF, Te Velde AA. DAMP-ing IBD: Extinguish the Fire and Prevent Smoldering. Dig Dis Sci 2025; 70:49-73. [PMID: 38963463 PMCID: PMC11761125 DOI: 10.1007/s10620-024-08523-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/04/2024] [Indexed: 07/05/2024]
Abstract
In inflammatory bowel diseases (IBD), the most promising therapies targeting cytokines or immune cell trafficking demonstrate around 40% efficacy. As IBD is a multifactorial inflammation of the intestinal tract, a single-target approach is unlikely to solve this problem, necessitating an alternative strategy that addresses its variability. One approach often overlooked by the pharmaceutically driven therapeutic options is to address the impact of environmental factors. This is somewhat surprising considering that IBD is increasingly viewed as a condition heavily influenced by such factors, including diet, stress, and environmental pollution-often referred to as the "Western lifestyle". In IBD, intestinal responses result from a complex interplay among the genetic background of the patient, molecules, cells, and the local inflammatory microenvironment where danger- and microbe-associated molecular patterns (D/MAMPs) provide an adjuvant-rich environment. Through activating DAMP receptors, this array of pro-inflammatory factors can stimulate, for example, the NLRP3 inflammasome-a major amplifier of the inflammatory response in IBD, and various immune cells via non-specific bystander activation of myeloid cells (e.g., macrophages) and lymphocytes (e.g., tissue-resident memory T cells). Current single-target biological treatment approaches can dampen the immune response, but without reducing exposure to environmental factors of IBD, e.g., by changing diet (reducing ultra-processed foods), the adjuvant-rich landscape is never resolved and continues to drive intestinal mucosal dysregulation. Thus, such treatment approaches are not enough to put out the inflammatory fire. The resultant smoldering, low-grade inflammation diminishes physiological resilience of the intestinal (micro)environment, perpetuating the state of chronic disease. Therefore, our hypothesis posits that successful interventions for IBD must address the complexity of the disease by simultaneously targeting all modifiable aspects: innate immunity cytokines and microbiota, adaptive immunity cells and cytokines, and factors that relate to the (micro)environment. Thus the disease can be comprehensively treated across the nano-, meso-, and microscales, rather than with a focus on single targets. A broader perspective on IBD treatment that also includes options to adapt the DAMPing (micro)environment is warranted.
Collapse
Affiliation(s)
- Oliver Sandys
- Tytgat Institute for Liver and Intestinal Research, AmsterdamUMC, AGEM, University of Amsterdam, Amsterdam, The Netherlands
| | - Pieter C F Stokkers
- Department of Gastroenterology and Hepatology, OLVG West, Amsterdam, The Netherlands
| | - Anje A Te Velde
- Tytgat Institute for Liver and Intestinal Research, AmsterdamUMC, AGEM, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Jiang J, Yang M, Yang B, Wu H, Lu Q. Elevated IL-15 levels in systemic lupus erythematosus: potential pathogenesis insight and therapeutic target. Int Immunopharmacol 2024; 142:112973. [PMID: 39217881 DOI: 10.1016/j.intimp.2024.112973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by persistent immune cell activation and the overproduction of autoantibodies, affecting various organs such as joints, kidneys, and skin. Interleukin-15 (IL-15) is a pleiotropic cytokine that modulates immune cells of the innate and adaptive immune systems, playing a crucial role in the development of inflammatory and protective immune responses. However, the role of IL-15 in SLE pathogenesis and the therapeutic effects of IL-15 blockade on SLE remain unknown. In this study, we conducted flow cytometry analysis and identified a significant increase in the frequencies of IL-15+ and IL-15R+ cells in peripheral blood CD4+ T cells, CD8+ T cells, dendritic cells (DCs), monocytes, and natural killer (NK) cells of patients with SLE compared to healthy controls (HCs). Besides, we found elevated levels of serum IL-15 in SLE patients compared to HCs. Furthermore, we evaluted the effectiveness of IL-15 mAb treatment in a chronic graft-versus-host disease (cGVHD) mouse model of SLE. We observed that the IL-15 mAb treatment effectively reduced the frequencies of CD4+CD44hiCD62LloPD-1+CD153+ senescent CD4+ T cells, B220+CD11c+T-bet+ age-associated B cells (ABCs), Tfh cells, and germinal center (GC) B cells, alleviated lupus-associated manifestations such as serum anti-double-stranded DNA antibody (anti-dsDNA) and kidney injury in the SLE mouse model of cGVHD. These findings provide compelling preclinical evidence suggesting the pathogenic role of IL-15 in SLE and the therapeutic potential of IL-15 blockade in the treatment of SLE.
Collapse
Affiliation(s)
- Jiao Jiang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, China; Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu, China
| | - Ming Yang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Bingyi Yang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Qianjin Lu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, China; Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu, China.
| |
Collapse
|
4
|
Fiz-López A, De Prado Á, Arribas-Rodríguez E, García-Alonso FJ, Izquierdo S, Martín-Muñoz Á, Garrote JA, Arranz E, Barrio J, Fernández-Salazar L, Bernardo D. Biological variability of human intraepithelial lymphocytes throughout the human gastrointestinal tract in health and coeliac disease. Eur J Clin Invest 2024; 54:e14304. [PMID: 39210517 DOI: 10.1111/eci.14304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Intraepithelial lymphocytes are the first line of defence of the human intestinal immune system. Besides, their composition is altered on patients with coeliac disease (CD), so they are considered as biomarkers with utility on their diagnose and/or monitoring. Our aim is to address their variability through the human gastrointestinal tract in health and characterized them in further depth in the coeliac duodenum. METHODS Intraepithelial lymphocytes were isolated from human gastric, duodenal, ileal and colonic biopsies, then stained with specific antibodies and acquired by flow cytometry. RESULTS Our results confirmed that the profile of Intraepithelial lymphocytes change through the length of the human gastrointestinal tract. Besides and given the central role that Interleukin-15 (IL-15) elicits on CD pathogenesis; we also assessed the expression of its receptor revealing that there was virtually no functional IL-15 receptor on duodenal Intraepithelial lymphocytes. Nevertheless and contrary to our expectations, the active IL-15 receptor was not increased either on Intraepithelial lymphocytes from CD patients. CONCLUSIONS IL-15 might require additional stimulus to activate intraepithelial lymphocytes. These findings may provide novel tools to aid on a CD diagnosis and/or monitoring, at the time that provide the bases to perform functional studies in order of getting a deeper insight in the specific function that Intraepithelial lymphocytes elicit on CD pathogenesis.
Collapse
Affiliation(s)
- Aida Fiz-López
- Mucosal Immunology Lab, Unidad de Excelencia Instituto Biomedicina y Genética Molecular (IBGM), Universidad de Valladolid-CSIC, Valladolid, Spain
| | - Ángel De Prado
- Mucosal Immunology Lab, Unidad de Excelencia Instituto Biomedicina y Genética Molecular (IBGM), Universidad de Valladolid-CSIC, Valladolid, Spain
- Servicio de Gastroenterología, Hospital Universitario Río Hortega, Valladolid, Spain
| | - Elisa Arribas-Rodríguez
- Mucosal Immunology Lab, Unidad de Excelencia Instituto Biomedicina y Genética Molecular (IBGM), Universidad de Valladolid-CSIC, Valladolid, Spain
| | | | - Sandra Izquierdo
- Servicio de Gastroenterología, Hospital Clínico Universitario, Valladolid, Spain
| | - Álvaro Martín-Muñoz
- Cytometry Facility, Unidad de Excelencia Instituto Biomedicina y Genética Molecular (IBGM, Universidad de Valladolid-CSIC), Valladolid, Spain
| | - José A Garrote
- Mucosal Immunology Lab, Unidad de Excelencia Instituto Biomedicina y Genética Molecular (IBGM), Universidad de Valladolid-CSIC, Valladolid, Spain
| | - Eduardo Arranz
- Mucosal Immunology Lab, Unidad de Excelencia Instituto Biomedicina y Genética Molecular (IBGM), Universidad de Valladolid-CSIC, Valladolid, Spain
| | - Jesús Barrio
- Servicio de Gastroenterología, Hospital Universitario Río Hortega, Valladolid, Spain
| | - Luis Fernández-Salazar
- Servicio de Gastroenterología, Hospital Clínico Universitario, Valladolid, Spain
- Departamento de Medicina, Dermatología y Toxicología, Universidad de Valladolid, Valladolid, Spain
| | - David Bernardo
- Mucosal Immunology Lab, Unidad de Excelencia Instituto Biomedicina y Genética Molecular (IBGM), Universidad de Valladolid-CSIC, Valladolid, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| |
Collapse
|
5
|
Abubaker M, Stanton JE, Mahon O, Grabrucker AM, Newport D, Mulvihill JJE. Amyloid beta-induced signalling in leptomeningeal cells and its impact on astrocyte response. Mol Cell Biochem 2024:10.1007/s11010-024-05151-5. [PMID: 39499391 DOI: 10.1007/s11010-024-05151-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/25/2024] [Indexed: 11/07/2024]
Abstract
The pathological signature of Alzheimer's disease (AD) includes the accumulation of toxic protein aggregates, mainly consisting of amyloid beta (Aβ). Recent strides in fundamental research underscore the pivotal role of waste clearance mechanisms in the brain suggesting it may be an early indication of early onset AD. This study delves into the involvement of leptomeningeal cells (LMCs), crucial components forming integral barriers within the clearance system, in the context of AD. We examined the inflammatory cytokine responses of LMCs in the presence of Aβ, alongside assessments of LMC growth response, viability, oxidative stress, and changes in vimentin expression. The LMCs showed no changes in growth, viability, oxidative stress, or vimentin expression in the presence of Aβ, indicating that LMCs are less susceptible to Aβ damage compared to other CNS cells. However, LMCs exhibited a unique pro-inflammatory response to Aβ when compared to an LPS inflammatory control, showing an mRNA expression of pro-inflammatory cytokines such IL-6, IL-10 and IL-33 but no changes in IL-1α and IL-1β. Furthermore, LMCs influenced the astrocyte response to Aβ, as conditioned media from Aβ-treated LMCs was observed to downregulate somatic S100β in astrocytes. We also investigated whether the JAK/STAT3 pathway was involved in the Aβ response of the LMCs, as this pathway has been shown to be activated in astrocytes and neurons in the presence of Aβ. JAK/STAT3 activation was assessed through phosphorylated STAT3, revealing that JAK/STAT3 was not active in the cells when in the presence of Aβ. However, when JAK1 and JAK2 were inhibited, cytokine protein levels of IL7, IL10, IL15 and IL33 levels, which had shown alteration when LMCs were treated with Aβ, returned to base levels. This indicates that although JAK1/STAT3 and JAK2/STAT3 are not the direct pathway for Aβ response in LMCs, JAK1 and JAK2 may still play a role in regulating cytokine levels, potentially through indirect means or crosstalk. Overall, our findings reveal that LMCs are resilient to Aβ toxicity and suggest that JAK1/STAT3 and JAK2/STAT3 does not play a central role in the inflammatory response, providing new insights into the cellular mechanisms underlying AD.
Collapse
Affiliation(s)
- Mannthalah Abubaker
- School of Engineering, Bernal Institute, University of Limerick, Limerick, Ireland
- Bernal Institute, University of Limerick, Limerick, Ireland
| | - Janelle E Stanton
- Bernal Institute, University of Limerick, Limerick, Ireland
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
| | - Olwyn Mahon
- School of Engineering, Bernal Institute, University of Limerick, Limerick, Ireland
- Bernal Institute, University of Limerick, Limerick, Ireland
| | - Andreas M Grabrucker
- Bernal Institute, University of Limerick, Limerick, Ireland
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - David Newport
- School of Engineering, Bernal Institute, University of Limerick, Limerick, Ireland
- Bernal Institute, University of Limerick, Limerick, Ireland
| | - John J E Mulvihill
- School of Engineering, Bernal Institute, University of Limerick, Limerick, Ireland.
- Bernal Institute, University of Limerick, Limerick, Ireland.
- Health Research Institute, University of Limerick, Limerick, Ireland.
| |
Collapse
|
6
|
Rahmani S, Galipeau HJ, Clarizio AV, Wang X, Hann A, Rueda GH, Kirtikar UN, Constante M, Wulczynski M, Su HM, Burchett R, Bramson JL, Pinto-Sanchez MI, Stefanolo JP, Niveloni S, Surette MG, Murray JA, Anderson RP, Bercik P, Caminero A, Chirdo FG, F Didar T, Verdu EF. Gluten-Dependent Activation of CD4 + T Cells by MHC Class II-Expressing Epithelium. Gastroenterology 2024; 167:1113-1128. [PMID: 39128638 DOI: 10.1053/j.gastro.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 06/28/2024] [Accepted: 07/07/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND & AIMS Intestinal epithelial cell (IEC) damage is a hallmark of celiac disease (CeD); however, its role in gluten-dependent T-cell activation is unknown. We investigated IEC-gluten-T-cell interactions in organoid monolayers expressing human major histocompatibility complex class II (HLA-DQ2.5), which facilitates gluten antigen recognition by CD4+ T cells in CeD. METHODS Epithelial major histocompatibility complex class II (MHCII) was determined in active and treated CeD, and in nonimmunized and gluten-immunized DR3-DQ2.5 transgenic mice, lacking mouse MHCII molecules. Organoid monolayers from DR3-DQ2.5 mice were treated with or without interferon (IFN)-γ, and MHCII expression was evaluated by flow cytometry. Organoid monolayers and CD4+ T-cell co-cultures were incubated with gluten, predigested, or not by elastase-producing Pseudomonas aeruginosa or its lasB mutant. T-cell function was assessed based on proliferation, expression of activation markers, and cytokine release in the co-culture supernatants. RESULTS Patients with active CeD and gluten-immunized DR3-DQ2.5 mice demonstrated epithelial MHCII expression. Organoid monolayers derived from gluten-immunized DR3-DQ2.5 mice expressed MHCII, which was upregulated by IFN-γ. In organoid monolayer T-cell co-cultures, gluten increased the proliferation of CD4+ T cells, expression of T-cell activation markers, and the release of interleukin-2, IFN-γ, and interleukin-15 in co-culture supernatants. Gluten metabolized by P aeruginosa, but not the lasB mutant, enhanced CD4+ T-cell proliferation and activation. CONCLUSIONS Gluten antigens are efficiently presented by MHCII-expressing IECs, resulting in the activation of gluten-specific CD4+ T cells, which is enhanced by gluten predigestion with microbial elastase. Therapeutics directed at IECs may offer a novel approach for modulating both adaptive and innate immunity in patients with CeD.
Collapse
Affiliation(s)
- Sara Rahmani
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada; Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Heather J Galipeau
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Alexandra V Clarizio
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Xuanyu Wang
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Amber Hann
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Gaston H Rueda
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Utkarshini N Kirtikar
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Marco Constante
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Mark Wulczynski
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Hsuan-Ming Su
- Department of Mechanical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Rebecca Burchett
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | - Maria Ines Pinto-Sanchez
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | | | - Michael G Surette
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Joseph A Murray
- Division of Gastroenterology and Hepatology, Department of Immunology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | | | - Premysl Bercik
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Alberto Caminero
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Fernando G Chirdo
- Instituto de Estudios Inmunológicos y Fisiopatológicos - IIFP (UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina.
| | - Tohid F Didar
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada; Department of Mechanical Engineering, McMaster University, Hamilton, Ontario, Canada.
| | - Elena F Verdu
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
7
|
Kalinoski H, Daoud A, Rusinkevich V, Jurčová I, Talor MV, Welsh RA, Hughes D, Zemanová K, Stříž I, Hooper JE, Kautzner J, Peichl P, Melenovský V, Won T, Čiháková D. Injury-induced myosin-specific tissue-resident memory T cells drive immune checkpoint inhibitor myocarditis. Proc Natl Acad Sci U S A 2024; 121:e2323052121. [PMID: 39378095 PMCID: PMC11494310 DOI: 10.1073/pnas.2323052121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 09/10/2024] [Indexed: 10/10/2024] Open
Abstract
Cardiac myosin-specific (MyHC) T cells drive the disease pathogenesis of immune checkpoint inhibitor-associated myocarditis (ICI-myocarditis). To determine whether MyHC T cells are tissue-resident memory T (TRM) cells, we characterized cardiac TRM cells in naive mice and established that they have a distinct phenotypic and transcriptional profile that can be defined by their upregulation of CD69, PD-1, and CXCR6. We then investigated the effects of cardiac injury through a modified experimental autoimmune myocarditis mouse model and an ischemia-reperfusion injury mouse model and determined that cardiac inflammation induces the recruitment of autoreactive MyHC TRM cells, which coexpress PD-1 and CD69. To investigate whether the recruited MyHC TRM cells could increase susceptibility to ICI-myocarditis, we developed a two-hit ICI-myocarditis mouse model where cardiac injury was induced, mice were allowed to recover, and then were treated with anti-PD-1 antibodies. We determined that mice who recover from cardiac injury are more susceptible to ICI-myocarditis development. We found that murine and human TRM cells share a similar location in the heart and aggregate along the perimyocardium. We phenotyped cells obtained from pericardial fluid from patients diagnosed with dilated cardiomyopathy and ischemic cardiomyopathy and established that pericardial T cells are predominantly CD69+ TRM cells that up-regulate PD-1. Finally, we determined that human pericardial macrophages produce IL-15, which supports and maintains pericardial TRM cells.
Collapse
Affiliation(s)
- Hannah Kalinoski
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD21205
| | - Abdel Daoud
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD21205
| | - Vitali Rusinkevich
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD21205
| | - Ivana Jurčová
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague140 21, Czech Republic
| | - Monica V. Talor
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD21205
| | - Robin A. Welsh
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD21205
| | - David Hughes
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD21205
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD21205
| | - Kateřina Zemanová
- Department of Clinical and Transplant Immunology, Institute for Clinical and Experimental Medicine, Prague140 21, Czech Republic
| | - Ilja Stříž
- Department of Clinical and Transplant Immunology, Institute for Clinical and Experimental Medicine, Prague140 21, Czech Republic
| | - Jody E. Hooper
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD21205
| | - Josef Kautzner
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague140 21, Czech Republic
| | - Petr Peichl
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague140 21, Czech Republic
| | - Vojtěch Melenovský
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague140 21, Czech Republic
| | - Taejoon Won
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD21205
| | - Daniela Čiháková
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD21205
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD21205
| |
Collapse
|
8
|
Sung CJ, Whitmore LS, Smith E, Chang J, Tisoncik-Go J, Barber-Axthelm A, Selseth A, Feltham S, Ojha S, Hansen SG, Picker LJ, Gale M. Functional genomic analysis of the 68-1 RhCMV- Mycobacteria tuberculosis vaccine reveals an IL-15 response signature that is conserved with vector attenuation. Front Immunol 2024; 15:1460344. [PMID: 39474415 PMCID: PMC11518738 DOI: 10.3389/fimmu.2024.1460344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/26/2024] [Indexed: 11/14/2024] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) is a deadly infectious disease having a major impact on global health. Using the CMV vector for development of novel vaccines is a promising new strategy that elicits strong and durable, high frequency memory T cell responses against heterologous immunogens. We conducted functional transcriptomic analysis of whole blood samples collected from cohorts of rhesus (Rh) macaques that were administered RhCMV/TB vector using a prime-boost strategy. Two modified CMV vectors were used in this study, including 68-1 RhCMV/TB-6Ag (encoding 6 Mtb protein immunogens, including Ag85A, ESAT-6, Rv3407, Rv2626, Rpf A, and Rpf D) and its attenuated variant, 68-1 RhCMV/Δpp71-TB-6Ag (a cell-to-cell spread-deficient vaccine vector lacking the Rh110 gene encoding the pp71 tegument protein). Bulk mRNA sequencing, differential gene expression, and functional enrichment analyses showed that these RhCMV/TB vaccines induce the innate and adaptive immune responses with specific transcriptomic signatures, including the IL-15-induced protective gene signature previously defined to be linked with protection against simian immunodeficiency virus (SIV) by the 68-1 RhCMV/SIV vaccine. While both vectors exhibited a transcriptomic response of the IL-15 protective signature in whole blood, we show that lack of pp71 does not maintain induction of the protective signature for the full duration of the study compared to the parental non-attenuated vector. Our observations indicate that RhCMV vector vaccines induce a transcriptomic response in whole blood that include a conserved IL-15 signature of which vector-encoded pp71 is an important component of response durability that upon future Mtb challenge may define specific vaccine protection outcomes against Mtb infection.
Collapse
Affiliation(s)
- Cheng-Jung Sung
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, United States
| | - Leanne S. Whitmore
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, United States
| | - Elise Smith
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, United States
| | - Jean Chang
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, United States
| | - Jennifer Tisoncik-Go
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, United States
- Washington National Primate Research Center, Seattle, WA, United States
| | - Aaron Barber-Axthelm
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Andrea Selseth
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Shana Feltham
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Sohita Ojha
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Scott G. Hansen
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Louis J. Picker
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, United States
- Washington National Primate Research Center, Seattle, WA, United States
| |
Collapse
|
9
|
Xu H, Yue M, Zhou R, Wang P, Wong MYC, Wang J, Huang H, Chen B, Mo Y, Tam RCY, Zhou B, Du Z, Huang H, Liu L, Tan Z, Yuen KY, Song Y, Chen H, Chen Z. A Prime-Boost Vaccination Approach Induces Lung Resident Memory CD8+ T Cells Derived from Central Memory T Cells That Prevent Tumor Lung Metastasis. Cancer Res 2024; 84:3173-3188. [PMID: 39350665 PMCID: PMC11443216 DOI: 10.1158/0008-5472.can-23-3257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/15/2024] [Accepted: 07/16/2024] [Indexed: 10/04/2024]
Abstract
Memory T cells play a key role in immune protection against cancer. Vaccine-induced tissue-resident memory T (TRM) cells in the lung have been shown to protect against lung metastasis. Identifying the source of lung TRM cells can help to improve strategies, preventing tumor metastasis. Here, we found that a prime-boost vaccination approach using intramuscular DNA vaccine priming, followed by intranasal live-attenuated influenza-vectored vaccine (LAIV) boosting induced higher frequencies of lung CD8+ TRM cells compared with other vaccination regimens. Vaccine-induced lung CD8+ TRM cells, but not circulating memory T cells, conferred significant protection against metastatic melanoma and mesothelioma. Central memory T (TCM) cells induced by the DNA vaccination were major precursors of lung TRM cells established after the intranasal LAIV boost. Single-cell RNA sequencing analysis indicated that transcriptional reprogramming of TCM cells for differentiation into TRM cells in the lungs started as early as day 2 post the LAIV boost. Intranasal LAIV altered the mucosal microenvironment to recruit TCM cells via CXCR3-dependent chemotaxis and induced CD8+ TRM-associated transcriptional programs. These results identified TCM cells as the source of vaccine-induced CD8+ TRM cells that protect against lung metastasis. Significance: Prime-boost vaccination shapes the mucosal microenvironment and reprograms central memory T cells to generate lung resident memory T cells that protect against lung metastasis, providing insights for the optimization of vaccine strategies.
Collapse
Affiliation(s)
- Haoran Xu
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Ming Yue
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, People's Republic of China
- School of Biomedical Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Runhong Zhou
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Pui Wang
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Michael Yik-Chun Wong
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Jinlin Wang
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Huarong Huang
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Bohao Chen
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Yufei Mo
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Rachel Chun-Yee Tam
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Biao Zhou
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Zhenglong Du
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Haode Huang
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Li Liu
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Zhiwu Tan
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Kwok-Yung Yuen
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, People's Republic of China
- Center for Virology, Vaccinology and Therapeutics, Hong Kong, People's Republic of China
| | - Youqiang Song
- School of Biomedical Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Honglin Chen
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, People's Republic of China
- Center for Virology, Vaccinology and Therapeutics, Hong Kong, People's Republic of China
| | - Zhiwei Chen
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, People's Republic of China
- Center for Virology, Vaccinology and Therapeutics, Hong Kong, People's Republic of China
| |
Collapse
|
10
|
Levescot A, Cerf-Bensussan N. Loss of tolerance to dietary proteins: From mouse models to human model diseases. Immunol Rev 2024; 326:173-190. [PMID: 39295093 DOI: 10.1111/imr.13395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
The critical importance of the immunoregulatory mechanisms, which prevent adverse responses to dietary proteins is demonstrated by the consequences of their failure in two common but distinct human pathological conditions, food allergy and celiac disease. The mechanisms of tolerance to dietary proteins have been extensively studied in mouse models but the extent to which the results in mice can be extrapolated to humans remains unclear. Here, after summarizing the mechanisms known to control oral tolerance in mouse models, we discuss how the monogenic immune disorders associated with food allergy on the one hand, and celiac disease, on the other hand, represent model diseases to gain insight into the key immunoregulatory pathways that control immune responses to food antigens in humans. The spectrum of monogenic disorders, in which the dysfunction of a single gene, is strongly associated with TH2-mediated food allergy suggests an important overlap between the mechanisms that regulate TH2 and IgE responses to food antigens in humans and mice. In contrast, celiac disease provides a unique example of the link between autoimmunity and loss of tolerance to a food antigen.
Collapse
Affiliation(s)
- Anais Levescot
- Laboratory of Intestinal Immunity, INSERM UMR 1163 and Imagine Institute, Université Paris Cité, Paris, France
| | - Nadine Cerf-Bensussan
- Laboratory of Intestinal Immunity, INSERM UMR 1163 and Imagine Institute, Université Paris Cité, Paris, France
| |
Collapse
|
11
|
Catassi G, Lener E, Grattagliano MM, Motuz S, Zavarella MA, Bibbò S, Cammarota G, Gasbarrini A, Ianiro G, Catassi C. The role of microbiome in the development of gluten-related disorders. Best Pract Res Clin Gastroenterol 2024; 72:101951. [PMID: 39645285 DOI: 10.1016/j.bpg.2024.101951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/07/2024] [Accepted: 09/03/2024] [Indexed: 12/09/2024]
Abstract
Gluten-related disorders (GRD) include celiac disease (CD), non celiac gluten sensitivity (NCGS) and wheat allergy (WA), conditions that are associated with the ingestion of gluten-containing food. Gut microbiota composition and function may be involved in the pathogenesis of GRD. In untreated CD the microbiota is characterized by a reduction in beneficial microbes like Lactobacillus and Bifidobacterium and an increase in pathogenic ones such as Bacteroides and E. coli. Dysbiosis is a hallmark of CD, persists across various disease stages and is only partially corrected by a gluten-free diet. NCGS patients show a different microbial profile, with a notable decrease in microbial richness, and an increase of Ruminococcaceae and decrease of Bacteroidetes and Fusobacteria. The increase of certain bacterial groups such as Clostridium and Anaerobacter, in contrast with the decline of Bacteroides and Clostridium XVIII, marks a distinctive microbial signature associated with allergic responses to food. Mechanisms linking the gut microbiota to the development of GRD include effects on the gut barrier function, microbiota-mediated immune response to gluten, and an impact of microbial metabolites on gluten digestion and tolerance. Although the gluten-free diet is the primary therapy of GRDs, treatment with probiotics may contribute to improve the natural history of these disorders, for instance by minimizing the damaging effects of gluten contamination and accelerating the catch-up growth at the beginning of the dietary treatment of CD. Additional high-quality trials are still needed to identify and standardize the use of probiotics/prebiotics in GRDs.
Collapse
Affiliation(s)
- Giulia Catassi
- Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy; Pediatric Gastroenterology and Liver Unit, Sapienza University of Rome - Umberto I Hospital, Rome, Italy
| | - Elena Lener
- Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Maria Maddalena Grattagliano
- Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Sofya Motuz
- Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Maria Antonietta Zavarella
- Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Stefano Bibbò
- Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Giovanni Cammarota
- Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Gianluca Ianiro
- Department of Translational Medicine and Surgery, Università Cattolica Del Sacro Cuore, Rome, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Carlo Catassi
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, USA.
| |
Collapse
|
12
|
Chu X, Li X, Zhang Y, Dang G, Miao Y, Xu W, Wang J, Zhang Z, Cheng S. Integrative single-cell analysis of human colorectal cancer reveals patient stratification with distinct immune evasion mechanisms. NATURE CANCER 2024; 5:1409-1426. [PMID: 39147986 DOI: 10.1038/s43018-024-00807-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 07/16/2024] [Indexed: 08/17/2024]
Abstract
The tumor microenvironment (TME) considerably influences colorectal cancer (CRC) progression, therapeutic response and clinical outcome, but studies of interindividual heterogeneities of the TME in CRC are lacking. Here, by integrating human colorectal single-cell transcriptomic data from approximately 200 donors, we comprehensively characterized transcriptional remodeling in the TME compared to noncancer tissues and identified a rare tumor-specific subset of endothelial cells with T cell recruitment potential. The large sample size enabled us to stratify patients based on their TME heterogeneity, revealing divergent TME subtypes in which cancer cells exploit different immune evasion mechanisms. Additionally, by associating single-cell transcriptional profiling with risk genes identified by genome-wide association studies, we determined that stromal cells are major effector cell types in CRC genetic susceptibility. In summary, our results provide valuable insights into CRC pathogenesis and might help with the development of personalized immune therapies.
Collapse
Affiliation(s)
| | | | - Yu Zhang
- Changping Laboratory, Beijing, China
| | - Guohui Dang
- Changping Laboratory, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | | | - Wenbin Xu
- Changping Laboratory, Beijing, China
| | | | - Zemin Zhang
- BIOPIC, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| | | |
Collapse
|
13
|
Kądziela M, Kutwin M, Karp P, Woźniacka A. Role of Cytokines and Chemokines in Vitiligo and Their Therapeutic Implications. J Clin Med 2024; 13:4919. [PMID: 39201060 PMCID: PMC11355229 DOI: 10.3390/jcm13164919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/02/2024] Open
Abstract
Vitiligo is a persistent autoimmune disease characterized by progressive depigmentation of the skin caused by the selective destruction of melanocytes. Although its etiopathogenesis remains unclear, multiple factors are involved in the development of this disease, from genetic and metabolic factors to cellular oxidative stress, melanocyte adhesion defects, and innate and adaptive immunity. This review presents a comprehensive summary of the existing knowledge on the role of different cellular mechanisms, including cytokines and chemokines interactions, in the pathogenesis of vitiligo. Although there is no definitive cure for vitiligo, notable progress has been made, and several treatments have shown favorable results. A thorough understanding of the basis of the disease uncovers promising drug targets for future research, providing clinical researchers with valuable insights for developing improved treatment options.
Collapse
Affiliation(s)
| | | | | | - Anna Woźniacka
- Department of Dermatology and Venereology, Medical University of Lodz, pl. Hallera 1, 90-647 Lodz, Poland; (M.K.); (M.K.); (P.K.)
| |
Collapse
|
14
|
Santos AJM, van Unen V, Lin Z, Chirieleison SM, Ha N, Batish A, Chan JE, Cedano J, Zhang ET, Mu Q, Guh-Siesel A, Tomaske M, Colburg D, Varma S, Choi SS, Christophersen A, Baghdasaryan A, Yost KE, Karlsson K, Ha A, Li J, Dai H, Sellers ZM, Chang HY, Dunn JCY, Zhang BM, Mellins ED, Sollid LM, Fernandez-Becker NQ, Davis MM, Kuo CJ. A human autoimmune organoid model reveals IL-7 function in coeliac disease. Nature 2024; 632:401-410. [PMID: 39048815 PMCID: PMC11747932 DOI: 10.1038/s41586-024-07716-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/14/2024] [Indexed: 07/27/2024]
Abstract
In vitro models of autoimmunity are constrained by an inability to culture affected epithelium alongside the complex tissue-resident immune microenvironment. Coeliac disease (CeD) is an autoimmune disease in which dietary gluten-derived peptides bind to the major histocompatibility complex (MHC) class II human leukocyte antigen molecules (HLA)-DQ2 or HLA-DQ8 to initiate immune-mediated duodenal mucosal injury1-4. Here, we generated air-liquid interface (ALI) duodenal organoids from intact fragments of endoscopic biopsies that preserve epithelium alongside native mesenchyme and tissue-resident immune cells as a unit without requiring reconstitution. The immune diversity of ALI organoids spanned T cells, B and plasma cells, natural killer (NK) cells and myeloid cells, with extensive T-cell and B-cell receptor repertoires. HLA-DQ2.5-restricted gluten peptides selectively instigated epithelial destruction in HLA-DQ2.5-expressing organoids derived from CeD patients, and this was antagonized by blocking MHC-II or NKG2C/D. Gluten epitopes stimulated a CeD organoid immune network response in lymphoid and myeloid subsets alongside anti-transglutaminase 2 (TG2) autoantibody production. Functional studies in CeD organoids revealed that interleukin-7 (IL-7) is a gluten-inducible pathogenic modulator that regulates CD8+ T-cell NKG2C/D expression and is necessary and sufficient for epithelial destruction. Furthermore, endogenous IL-7 was markedly upregulated in patient biopsies from active CeD compared with remission disease from gluten-free diets, predominantly in lamina propria mesenchyme. By preserving the epithelium alongside diverse immune populations, this human in vitro CeD model recapitulates gluten-dependent pathology, enables mechanistic investigation and establishes a proof of principle for the organoid modelling of autoimmunity.
Collapse
MESH Headings
- Humans
- Autoantibodies/immunology
- Autoimmunity
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Biopsy
- Celiac Disease/immunology
- Celiac Disease/pathology
- Celiac Disease/metabolism
- Duodenum/immunology
- Duodenum/pathology
- Duodenum/metabolism
- Epitopes/immunology
- Glutens/immunology
- Glutens/metabolism
- GTP-Binding Proteins/metabolism
- GTP-Binding Proteins/immunology
- HLA-DQ Antigens/immunology
- HLA-DQ Antigens/metabolism
- Interleukin-7/metabolism
- Intestinal Mucosa/immunology
- Intestinal Mucosa/metabolism
- Intestinal Mucosa/pathology
- Killer Cells, Natural/immunology
- Models, Biological
- Myeloid Cells/immunology
- Organoids/immunology
- Organoids/metabolism
- Organoids/pathology
- Protein Glutamine gamma Glutamyltransferase 2/immunology
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- António J M Santos
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Vincent van Unen
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Zhongqi Lin
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Steven M Chirieleison
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Nhi Ha
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Arpit Batish
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Joshua E Chan
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Jose Cedano
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Elisa T Zhang
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Qinghui Mu
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Alexander Guh-Siesel
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Madeline Tomaske
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Deana Colburg
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sushama Varma
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Shannon S Choi
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Asbjørn Christophersen
- K. G. Jebsen Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- Department of Rheumatology, Dermatology and Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Ani Baghdasaryan
- Department of Chemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Kathryn E Yost
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kasper Karlsson
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Andrew Ha
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Jing Li
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Hongjie Dai
- Department of Chemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Zachary M Sellers
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - James C Y Dunn
- Department of Pediatric Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Bing M Zhang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Elizabeth D Mellins
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Ludvig M Sollid
- K. G. Jebsen Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Nielsen Q Fernandez-Becker
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Mark M Davis
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Calvin J Kuo
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
15
|
Garcinuño S, Lalueza A, Gil-Etayo FJ, Díaz-Simón R, Lizasoain I, Moraga A, Diaz-Benito B, Naranjo L, Cabrera-Marante O, Pleguezuelo DE, Ruiz-Ruigomez M, Ayuso B, Arrieta E, Folgueira D, Paz-Artal E, Cueto C, Lumbreras C, Serrano A, Serrano M. Immune dysregulation is an important factor in the underlying complications in Influenza infection. ApoH, IL-8 and IL-15 as markers of prognosis. Front Immunol 2024; 15:1443096. [PMID: 39176097 PMCID: PMC11339618 DOI: 10.3389/fimmu.2024.1443096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/15/2024] [Indexed: 08/24/2024] Open
Abstract
Introduction Influenza virus infection can cause a range of clinical symptoms, including respiratory failure (RF) and even death. The mechanisms responsible for the most severe forms of the disease are not yet well understood. The objective is to assess the initial immune response upon admission and its potential impact on infection progression. Methods We conducted a prospective observational study of patients with influenza virus infection who required admission to a tertiary hospital in the 2017/18 and 2018/19 flu seasons. Immune markers, surrogate markers of neutrophil activation, and blood levels of DNase I and Apolipoprotein-H (ApoH) were determined in the first serum sample available during hospital care. Patients were followed until hospital discharge or death. Initially, 792 patients were included. From this group, 107 patients with poor evolution were selected, and a random control group was matched by day of admission. Results Patients with poor outcomes had significantly reduced ApoH levels, a soluble protein that regulate both complement and coagulation pathways. In multivariate analysis, low plasma levels of ApoH (OR:5.43; 2.21-13.4), high levels of C- reactive protein (OR:2.73: 1.28-5.4), hyperferritinemia (OR:2.83; 1.28-5.4) and smoking (OR:3.41; 1.04-11.16), were significantly associated with a worse prognosis. RF was independently associated with low levels of ApoH (OR: 5.12; 2.02-1.94), while high levels of IL15 behaved as a protective factor (OR:0.30; 0.12-0.71). Discussion Therefore, in hospitalized influenza patients, a dysregulated early immune response is associated with a worse outcome. Adequate plasma levels of ApoH are protective against severe influenza and RF and High levels of IL15 protect against RF.
Collapse
Affiliation(s)
- Sara Garcinuño
- Healthcare Research Institute Hospital 12 de Octubre (imas12), Hospital Universitario 12 de Octubre, Madrid, Spain
- Immunology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Antonio Lalueza
- Healthcare Research Institute Hospital 12 de Octubre (imas12), Hospital Universitario 12 de Octubre, Madrid, Spain
- Internal Medicine Department, Hospital Universitario 12 de Octubre, Madrid, Spain
- Faculty of Medicine, Universidad Complutense, Madrid, Spain
- Red de Infecciones en Inmunodeprimidos no VIH e infecciones relacionadas con la asistencia sanitaria (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco Javier Gil-Etayo
- Healthcare Research Institute Hospital 12 de Octubre (imas12), Hospital Universitario 12 de Octubre, Madrid, Spain
- Immunology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Raquel Díaz-Simón
- Healthcare Research Institute Hospital 12 de Octubre (imas12), Hospital Universitario 12 de Octubre, Madrid, Spain
- Internal Medicine Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Ignacio Lizasoain
- Healthcare Research Institute Hospital 12 de Octubre (imas12), Hospital Universitario 12 de Octubre, Madrid, Spain
- Faculty of Medicine, Universidad Complutense, Madrid, Spain
| | - Ana Moraga
- Healthcare Research Institute Hospital 12 de Octubre (imas12), Hospital Universitario 12 de Octubre, Madrid, Spain
- Cell Biology Department, Faculty of Medicine, Universidad Complutense, Madrid, Spain
| | - Blanca Diaz-Benito
- Healthcare Research Institute Hospital 12 de Octubre (imas12), Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Laura Naranjo
- Healthcare Research Institute Hospital 12 de Octubre (imas12), Hospital Universitario 12 de Octubre, Madrid, Spain
- Immunology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Oscar Cabrera-Marante
- Healthcare Research Institute Hospital 12 de Octubre (imas12), Hospital Universitario 12 de Octubre, Madrid, Spain
- Immunology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Daniel Enrique Pleguezuelo
- Healthcare Research Institute Hospital 12 de Octubre (imas12), Hospital Universitario 12 de Octubre, Madrid, Spain
- Immunology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Maria Ruiz-Ruigomez
- Healthcare Research Institute Hospital 12 de Octubre (imas12), Hospital Universitario 12 de Octubre, Madrid, Spain
- Internal Medicine Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Blanca Ayuso
- Internal Medicine Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Estibaliz Arrieta
- Internal Medicine Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Dolores Folgueira
- Healthcare Research Institute Hospital 12 de Octubre (imas12), Hospital Universitario 12 de Octubre, Madrid, Spain
- Faculty of Medicine, Universidad Complutense, Madrid, Spain
- Microbiology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Estela Paz-Artal
- Healthcare Research Institute Hospital 12 de Octubre (imas12), Hospital Universitario 12 de Octubre, Madrid, Spain
- Immunology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
- Faculty of Medicine, Universidad Complutense, Madrid, Spain
| | - Cecilia Cueto
- Biochemistry Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Carlos Lumbreras
- Healthcare Research Institute Hospital 12 de Octubre (imas12), Hospital Universitario 12 de Octubre, Madrid, Spain
- Internal Medicine Department, Hospital Universitario 12 de Octubre, Madrid, Spain
- Faculty of Medicine, Universidad Complutense, Madrid, Spain
- Red de Infecciones en Inmunodeprimidos no VIH e infecciones relacionadas con la asistencia sanitaria (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Serrano
- Healthcare Research Institute Hospital 12 de Octubre (imas12), Hospital Universitario 12 de Octubre, Madrid, Spain
- Immunology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
- Red de Centros de Investigación Biomédica en Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Manuel Serrano
- Healthcare Research Institute Hospital 12 de Octubre (imas12), Hospital Universitario 12 de Octubre, Madrid, Spain
- Immunology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| |
Collapse
|
16
|
Al-Mansori A, Al-Sbiei A, Bashir GH, Qureshi MM, Tariq S, Altahrawi A, al-Ramadi BK, Fernandez-Cabezudo MJ. Effect of acetylcholinesterase inhibition on immune cells in the murine intestinal mucosa. Heliyon 2024; 10:e33849. [PMID: 39071679 PMCID: PMC11283160 DOI: 10.1016/j.heliyon.2024.e33849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
The gastrointestinal tract (GI) is the largest immune organ whose function is controlled by a complex network of neurons from the enteric nervous system (ENS) as well as the sympathetic and parasympathetic system. Evolving evidence indicates that cross-communication between gut-innervating neurons and immune cells regulates many essential physiological functions including protection against mucosal infections. We previously demonstrated that following paraoxon treatment, 70 % of the mice were able to survive an oral infection with S. typhimurium, a virulent strain of Salmonella enterica serovar Typhimurium. The present study aims to investigate the effect that rivastigmine, a reversible AChE inhibitor used for the treatment of neurodegenerative diseases, has on the murine immune defenses of the intestinal mucosa. Our findings show that, similar to what is observed with paraoxon, administration of rivastigmine promoted the release of secretory granules from goblet and Paneth cells, resulting in increased mucin layer. Surprisingly, however, and unlike paraoxon, rivastigmine treatment did not affect overall mortality of infected mice. In order to investigate the mechanistic basis for the differential effects observed between paraoxon and rivastigmine, we used multi-color flowcytometric analysis to characterize the immune cell landscape in the intraepithelial (IE) and lamina propria (LP) compartments of intestinal mucosa. Our data indicate that treatment with paraoxon, but not rivastigmine, led to an increase of resident CD3+CD8+ T lymphocytes in the ileal mucosa (epithelium and lamina propria) and CD11b- CD11c+ dendritic cells in the LP. Our findings indicate the requirement for persistent cholinergic pathway engagement to effect a change in the cellular landscape of the mucosal tissue that is necessary for protection against lethal bacterial infections. Moreover, optimal protection requires a collaboration between innate and adaptive mucosal immune responses in the intestine.
Collapse
Affiliation(s)
- Alreem Al-Mansori
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab University, Al-Ain, United Arab Emirates
| | - Ashraf Al-Sbiei
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab University, Al-Ain, United Arab Emirates
| | - Ghada H. Bashir
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab University, Al-Ain, United Arab Emirates
| | - Mohammed M. Qureshi
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab University, Al-Ain, United Arab Emirates
| | - Saeed Tariq
- Department of Anatomy, College of Medicine and Health Sciences, United Arab University, Al-Ain, United Arab Emirates
| | - Abeer Altahrawi
- Department of Pathology, College of Medicine and Health Sciences, United Arab University, Al-Ain, United Arab Emirates
| | - Basel K. al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab University, Al-Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Maria J. Fernandez-Cabezudo
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab University, Al-Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
17
|
González-Castro AM, Fernández-Bañares F, Zabana Y, Farago-Pérez G, Ortega-Barrionuevo J, Expósito E, Guagnozzi D. Microscopic Colitis and Celiac Disease: Sharing More than a Diagnostic Overlap. Nutrients 2024; 16:2233. [PMID: 39064676 PMCID: PMC11279699 DOI: 10.3390/nu16142233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Microscopic colitis (MC) is an emergent group of chronic inflammatory diseases of the colon, and celiac disease (CD) is a chronic gluten-induced immune-mediated enteropathy affecting the small bowel. We performed a narrative review to provide an overview regarding the relationship between both disorders, analyzing the most recent studies published at the epidemiological, clinical and pathophysiological levels. In fact, MC and CD are concomitantly prevalent in approximately 6% of the cases, mainly in the subset of refractory patients. Thus, physicians should screen refractory patients with CD against MC and vice versa. Both disorders share more than a simple epidemiological association, being multifactorial diseases involving innate and adaptive immune responses to known or unknown luminal factors based on a rather common genetic ground. Moreover, autoimmunity is a shared characteristic between the patients with MC and those with CD, with autoimmunity in the latter being quite well-established. Furthermore, CD and MC share some common clinical symptoms and risk factors and overlap with other gastrointestinal diseases, but some differences exist between both disorders. More studies are therefore needed to better understand the complex mechanisms involving the common pathogenetic ground contributing to the CD and MC epidemiological association.
Collapse
Affiliation(s)
- Ana María González-Castro
- Translational Mucosal Immunology Laboratory, Vall d’Hebron Institut de Recerca, 08035 Barcelona, Spain; (A.M.G.-C.); (E.E.)
- Neuro-Immuno-Gastroenterology Laboratory, Vall d’Hebron Institut de Recerca, 08035 Barcelona, Spain
| | - Fernando Fernández-Bañares
- Gastroenterology Department, University Hospital Mútua Terrassa, 08221 Terrassa, Spain (Y.Z.)
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd, Instituto Carlos III), 28029 Madrid, Spain
| | - Yamile Zabana
- Gastroenterology Department, University Hospital Mútua Terrassa, 08221 Terrassa, Spain (Y.Z.)
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd, Instituto Carlos III), 28029 Madrid, Spain
| | - Georgina Farago-Pérez
- Translational Mucosal Immunology Laboratory, Vall d’Hebron Institut de Recerca, 08035 Barcelona, Spain; (A.M.G.-C.); (E.E.)
| | - Jonathan Ortega-Barrionuevo
- Translational Mucosal Immunology Laboratory, Vall d’Hebron Institut de Recerca, 08035 Barcelona, Spain; (A.M.G.-C.); (E.E.)
| | - Elba Expósito
- Translational Mucosal Immunology Laboratory, Vall d’Hebron Institut de Recerca, 08035 Barcelona, Spain; (A.M.G.-C.); (E.E.)
- Neuro-Immuno-Gastroenterology Laboratory, Vall d’Hebron Institut de Recerca, 08035 Barcelona, Spain
| | - Danila Guagnozzi
- Translational Mucosal Immunology Laboratory, Vall d’Hebron Institut de Recerca, 08035 Barcelona, Spain; (A.M.G.-C.); (E.E.)
- Neuro-Immuno-Gastroenterology Laboratory, Vall d’Hebron Institut de Recerca, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd, Instituto Carlos III), 28029 Madrid, Spain
- Gastroenterology Department, University Hospital Vall d’Hebron, 08035 Barcelona, Spain
| |
Collapse
|
18
|
Maurice NJ, Erickson JR, DeJong CS, Mair F, Taber AK, Frutoso M, Islas LV, Vigil ALB, Lawler RL, McElrath MJ, Newell EW, Sullivan LB, Shree R, McCartney SA. Converging cytokine and metabolite networks shape asymmetric T cell fate at the term human maternal-fetal interface. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.598377. [PMID: 38915597 PMCID: PMC11195144 DOI: 10.1101/2024.06.10.598377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Placentation presents immune conflict between mother and fetus, yet in normal pregnancy maternal immunity against infection is maintained without expense to fetal tolerance. This is believed to result from adaptations at the maternal-fetal interface (MFI) which affect T cell programming, but the identities (i.e., memory subsets and antigenic specificities) of T cells and the signals that mediate T cell fates and functions at the MFI remain poorly understood. We found intact recruitment programs as well as pro-inflammatory cytokine networks that can act on maternal T cells in an antigen-independent manner. These inflammatory signals elicit T cell expression of co-stimulatory receptors necessary for tissue retention, which can be engaged by local macrophages. Although pro-inflammatory molecules elicit T cell effector functions, we show that additional cytokine (TGF-β1) and metabolite (kynurenine) networks may converge to tune T cell function to those of sentinels. Together, we demonstrate an additional facet of fetal tolerance, wherein T cells are broadly recruited and restrained in an antigen-independent, cytokine/metabolite-dependent manner. These mechanisms provide insight into antigen-nonspecific T cell regulation, especially in tissue microenvironments where they are enriched.
Collapse
Affiliation(s)
- Nicholas J Maurice
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Jami R Erickson
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Caitlin S DeJong
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Florian Mair
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Alexis K Taber
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Marie Frutoso
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Laura V Islas
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | | | - Richard L Lawler
- Immune Monitoring Core, Fred Hutchinson Cancer Center, Seattle, WA
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
| | - Evan W Newell
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Lucas B Sullivan
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Raj Shree
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Washington, Seattle, WA
| | - Stephen A McCartney
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Washington, Seattle, WA
| |
Collapse
|
19
|
Cloutier M, Variya B, Akbari SA, Rexhepi F, Ilangumaran S, Ramanathan S. Profibrogenic role of IL-15 through IL-15 receptor alpha-mediated trans-presentation in the carbon tetrachloride-induced liver fibrosis model. Front Immunol 2024; 15:1404891. [PMID: 38919611 PMCID: PMC11196400 DOI: 10.3389/fimmu.2024.1404891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
Background Inflammatory cytokines play key pathogenic roles in liver fibrosis. IL-15 is a proinflammatory cytokine produced by myeloid cells. IL-15 promotes pathogenesis of several chronic inflammatory diseases. However, increased liver fibrosis has been reported in mice lacking IL-15 receptor alpha chain (IL-15Rα), suggesting an anti-fibrogenic role for IL-15. As myeloid cells are key players in liver fibrosis and IL-15 signaling can occur independently of IL-15Rα, we investigated the requirement of IL-15 and IL-15Rα in liver fibrosis. Methods We induced liver fibrosis in Il15-/- , Il15ra-/- and wildtype C57BL/6 mice by the administration of carbon tetrachloride (CCl4). Liver fibrosis was evaluated by Sirius red and Mason's trichrome staining and α-smooth muscle acting immunostaining of myofibroblasts. Gene expression of collagens, matrix modifying enzymes, cytokines and chemokines was quantified by RT-qPCR. The phenotype and the numbers of intrahepatic lymphoid and myeloid cell subsets were evaluated by flow cytometry. Results Both Il15-/- and Il15ra-/- mice developed markedly reduced liver fibrosis compared to wildtype control mice, as revealed by reduced collagen deposition and myofibroblast content. Il15ra-/- mice showed further reduction in collagen deposition compared to Il15-/- mice. However, Col1a1 and Col1a3 genes were similarly induced in the fibrotic livers of wildtype, Il15-/- and Il15ra-/- mice, although notable variations were observed in the expression of matrix remodeling enzymes and chemokines. As expected, Il15-/- and Il15ra-/- mice showed markedly reduced numbers of NK cells compared to wildtype mice. They also showed markedly less staining of CD45+ immune cells and CD68+ macrophages, and significantly reduced inflammatory cell infiltration into the liver, with fewer pro-inflammatory and anti-inflammatory monocyte subsets compared to wildtype mice. Conclusion Our findings indicate that IL-15 exerts its profibrogenic role in the liver by promoting macrophage activation and that this requires trans-presentation of IL-15 by IL-15Rα.
Collapse
|
20
|
Long J, You X, Yang Q, Wang SR, Zhou M, Zhou W, Wang C, Xie H, Zhang Y, Wang S, Lian ZX, Li L. Bone marrow CD8 + Trm cells induced by IL-15 and CD16 + monocytes contribute to HSPC destruction in human severe aplastic anemia. Clin Immunol 2024; 263:110223. [PMID: 38636890 DOI: 10.1016/j.clim.2024.110223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Idiopathic severe aplastic anemia (SAA) is a disease of bone marrow failure caused by T-cell-induced destruction of hematopoietic stem and progenitor cells (HSPCs), however the mechanism remains unclear. We performed single-cell RNA sequencing of PBMCs and BMMCs from SAA patients and healthy donors and identified a CD8+ T cell subset with a tissue residency phenotype (Trm) in bone marrow that exhibit high IFN-γ and FasL expression and have a higher ability to induce apoptosis in HSPCs in vitro through FasL expression. CD8+ Trm cells were induced by IL-15 presented by IL-15Rα on monocytes, especially CD16+ monocytes, which were increased in SAA patients. CD16+ monocytes contributed to IL-15-induced CD38+CXCR6+ pre-Trm differentiation into CD8+ Trm cells, which can be inhibited by the CD38 inhibitor 78c. Our results demonstrate that IL-15-induced CD8+ Trm cells are pathogenic cells that mediate HSPC destruction in SAA patients and are therapeutic targets for future treatments.
Collapse
Affiliation(s)
- Jie Long
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xing You
- School of Medicine South China University of Technology, Guangzhou, China; Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Qiong Yang
- School of Medicine South China University of Technology, Guangzhou, China
| | - Song-Rong Wang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Ming Zhou
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Wei Zhou
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Caixia Wang
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Huafeng Xie
- Center for Medical Research on Innovation and Translation, Institute of Clinical Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yuping Zhang
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Shunqing Wang
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.
| | - Zhe-Xiong Lian
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| | - Liang Li
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| |
Collapse
|
21
|
Abstract
The intestinal epithelium, which segregates the highly stimulatory lumen from the underlying tissue, harbors one of the largest lymphocyte populations in the body, intestinal intraepithelial lymphocytes (IELs). IELs must balance tolerance, resistance, and tissue protection to maintain epithelial homeostasis and barrier integrity. This review discusses the ontogeny, environmental imprinting, T cell receptor (TCR) repertoire, and function of intestinal IELs. Despite distinct developmental pathways, IEL subsets share core traits including an epithelium-adapted profile, innate-like properties, cytotoxic potential, and limited TCR diversity. IELs also receive important developmental and functional cues through interactions with epithelial cells, microbiota, and dietary components. The restricted TCR diversity of IELs suggests that a limited set of intestinal antigens drives IEL responses, with potential functional consequences. Finally, IELs play a key role in promoting homeostatic immunity and epithelial barrier integrity but can become pathogenic upon dysregulation. Therefore, IELs represent intriguing but underexamined therapeutic targets for inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Ainsley Lockhart
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA; ,
- Current affiliation: Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel Mucida
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA; ,
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Angelina M Bilate
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA; ,
| |
Collapse
|
22
|
Abadie V, Han AS, Jabri B, Sollid LM. New Insights on Genes, Gluten, and Immunopathogenesis of Celiac Disease. Gastroenterology 2024; 167:4-22. [PMID: 38670280 PMCID: PMC11283582 DOI: 10.1053/j.gastro.2024.03.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 04/28/2024]
Abstract
Celiac disease (CeD) is a gluten-induced enteropathy that develops in genetically susceptible individuals upon consumption of cereal gluten proteins. It is a unique and complex immune disorder to study as the driving antigen is known and the tissue targeted by the immune reaction can be interrogated. This review integrates findings gained from genetic, biochemical, and immunologic studies, which together have revealed mechanisms of gluten peptide modification and HLA binding, thereby enabling a maladapted anti-gluten immune response. Observations in human samples combined with experimental mouse models have revealed that the gluten-induced immune response involves CD4+ T cells, cytotoxic CD8+ T cells, and B cells; their cross-talks are critical for the tissue-damaging response. The emergence of high-throughput technologies is increasing our understanding of the phenotype, location, and presumably function of the gluten-specific cells, which are all required to identify novel therapeutic targets and strategies for CeD.
Collapse
Affiliation(s)
- Valérie Abadie
- Department of Medicine, University of Chicago, Chicago, Illinois; Section of Gastroenterology, Nutrition and Hepatology, University of Chicago, Chicago, Illinois; Committee on Immunology, University of Chicago, Chicago, Illinois.
| | - Arnold S Han
- Columbia Center for Translational Immunology, Columbia University, New York, New York; Department of Microbiology and Immunology, Columbia University, New York, New York; Department of Medicine, Digestive and Liver Diseases, Columbia University, New York, New York
| | - Bana Jabri
- Department of Medicine, University of Chicago, Chicago, Illinois; Section of Gastroenterology, Nutrition and Hepatology, University of Chicago, Chicago, Illinois; Committee on Immunology, University of Chicago, Chicago, Illinois; Department of Pathology, University of Chicago, Chicago, Illinois; Department of Pediatrics, University of Chicago, Chicago, Illinois
| | - Ludvig M Sollid
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| |
Collapse
|
23
|
Šutić Udović I, Hlača N, Massari LP, Brajac I, Kaštelan M, Vičić M. Deciphering the Complex Immunopathogenesis of Alopecia Areata. Int J Mol Sci 2024; 25:5652. [PMID: 38891839 PMCID: PMC11172390 DOI: 10.3390/ijms25115652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Alopecia areata (AA) is an autoimmune-mediated disorder in which the proximal hair follicle (HF) attack results in non-scarring partial to total scalp or body hair loss. Despite the growing knowledge about AA, its exact cause still needs to be understood. However, immunity and genetic factors are affirmed to be critical in AA development. While the genome-wide association studies proved the innate and acquired immunity involvement, AA mouse models implicated the IFN-γ- and cytotoxic CD8+ T-cell-mediated immune response as the main drivers of disease pathogenesis. The AA hair loss is caused by T-cell-mediated inflammation in the HF area, disturbing its function and disrupting the hair growth cycle without destroying the follicle. Thus, the loss of HF immune privilege, autoimmune HF destruction mediated by cytotoxic mechanisms, and the upregulation of inflammatory pathways play a crucial role. AA is associated with concurrent systemic and autoimmune disorders such as atopic dermatitis, vitiligo, psoriasis, and thyroiditis. Likewise, the patient's quality of life (QoL) is significantly impaired by morphologic disfigurement caused by the illness. The patients experience a negative impact on psychological well-being and self-esteem and may be more likely to suffer from psychiatric comorbidities. This manuscript aims to present the latest knowledge on the pathogenesis of AA, which involves genetic, epigenetic, immunological, and environmental factors, with a particular emphasis on immunopathogenesis.
Collapse
Affiliation(s)
| | | | - Larisa Prpić Massari
- Department of Dermatovenereology, Clinical Hospital Centre Rijeka, Medical Faculty, University of Rijeka, Krešimirova 42, 51000 Rijeka, Croatia; (I.Š.U.); (N.H.); (I.B.); (M.K.); (M.V.)
| | | | | | | |
Collapse
|
24
|
Saeed MA, Peng B, Kim K, Rawat K, Kuehm LM, Siegel ZR, Borkowski A, Habib N, Van Tine B, Sheikh N, Tuyen V, Thorek DLJ, Fehniger TA, Pachynski RK. High-Dimensional Analyses Reveal IL15 Enhances Activation of Sipuleucel-T Lymphocyte Subsets and Reverses Immunoresistance. Cancer Immunol Res 2024; 12:559-574. [PMID: 38407894 DOI: 10.1158/2326-6066.cir-23-0652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/21/2023] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
Sipuleucel-T (sip-T) is the only FDA-approved autologous cellular immunotherapy for metastatic castration-resistant prostate cancer (mCRPC). To elucidate parameters of the response profile to this therapy, we report high-dimensional analyses of sip-T using cytometry by time of flight (CyTOF) and show a lymphoid predominance, with CD3+ T cells constituting the highest proportion (median ∼60%) of sip-T, followed by B cells, and natural killer (NK) and NKT cells. We hypothesized that treatment of sip-T with homeostatic cytokines known to activate/expand effector lymphocytes could augment efficacy against prostate tumors. Of the cytokines tested, IL15 was the most effective at enhancing activation and proliferation of effector lymphocytes, as well as augmenting tumor cytotoxicity in vitro. Co-culture of sip-T with IL15 and control or prostate-relevant antigens showed substantial activation and expansion of CD8+ T cells and NKT cells in an antigen-specific manner. Adoptive transfer of IL15-treated sip-T into NSG mice resulted in more potent prostate tumor growth inhibition compared with control sip-T. Evaluation of tumor-infiltrating lymphocytes revealed a 2- to 14-fold higher influx of sip-T and a significant increase in IFNγ producing CD8+ T cells and NKT cells within the tumor microenvironment in the IL15 group. In conclusion, we put forward evidence that IL15 treatment can enhance the functional antitumor immunity of sip-T, providing rationale for combining IL15 or IL15 agonists with sip-T to treat patients with mCRPC.
Collapse
Affiliation(s)
- Muhammad A Saeed
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Bo Peng
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Kevin Kim
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Kavita Rawat
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Lindsey M Kuehm
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Zoe R Siegel
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Ariel Borkowski
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Nabih Habib
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Brian Van Tine
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
| | | | - Vu Tuyen
- Dendreon Pharmaceuticals LLC, Seattle, Washington
| | - Daniel L J Thorek
- Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Missouri
| | - Todd A Fehniger
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
- Bursky Center for Human Immunology and Immunotherapy, Washington University School of Medicine, St Louis, Missouri
| | - Russell K Pachynski
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
- Bursky Center for Human Immunology and Immunotherapy, Washington University School of Medicine, St Louis, Missouri
| |
Collapse
|
25
|
Konecny AJ, Huang Y, Setty M, Prlic M. Signals that control MAIT cell function in healthy and inflamed human tissues. Immunol Rev 2024; 323:138-149. [PMID: 38520075 DOI: 10.1111/imr.13325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
Mucosal-associated invariant T (MAIT) cells have a semi-invariant T-cell receptor that allows recognition of antigen in the context of the MHC class I-related (MR1) protein. Metabolic intermediates of the riboflavin synthesis pathway have been identified as MR1-restricted antigens with agonist properties. As riboflavin synthesis occurs in many bacterial species, but not human cells, it has been proposed that the main purpose of MAIT cells is antibacterial surveillance and protection. The majority of human MAIT cells secrete interferon-gamma (IFNg) upon activation, while some MAIT cells in tissues can also express IL-17. Given that MAIT cells are present in human barrier tissues colonized by a microbiome, MAIT cells must somehow be able to distinguish colonization from infection to ensure effector functions are only elicited when necessary. Importantly, MAIT cells have additional functional properties, including the potential to contribute to restoring tissue homeostasis by expression of CTLA-4 and secretion of the cytokine IL-22. A recent study provided compelling data indicating that the range of human MAIT cell functional properties is explained by plasticity rather than distinct lineages. This further underscores the necessity to better understand how different signals regulate MAIT cell function. In this review, we highlight what is known in regards to activating and inhibitory signals for MAIT cells with a specific focus on signals relevant to healthy and inflamed tissues. We consider the quantity, quality, and the temporal order of these signals on MAIT cell function and discuss the current limitations of computational tools to extrapolate which signals are received by MAIT cells in human tissues. Using lessons learned from conventional CD8 T cells, we also discuss how TCR signals may integrate with cytokine signals in MAIT cells to elicit distinct functional states.
Collapse
Affiliation(s)
- Andrew J Konecny
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Yin Huang
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Herbold Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, USA
| | - Manu Setty
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Herbold Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Martin Prlic
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Immunology, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|
26
|
Hu S, Meng K, Wang T, Qu R, Wang B, Xi Y, Yu T, Yuan Z, Cai Z, Tian Y, Zeng C, Wang X, Zou W, Fu X, Li L. Lung cancer cell-intrinsic IL-15 promotes cell migration and sensitizes murine lung tumors to anti-PD-L1 therapy. Biomark Res 2024; 12:40. [PMID: 38637902 PMCID: PMC11027539 DOI: 10.1186/s40364-024-00586-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/29/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND IL-15 plays a vital role in enhancing NK cell- and T-cell-mediated antitumor immune responses; however, the direct effect of IL-15 on tumor cells has not been fully elucidated. Herein, we investigated the effect of IL-15 on lung adenocarcinoma cells. METHODS Silencing and overexpression techniques were used to modify endogenous IL-15 expression in tumor cells. Transwell assays were used to assess tumor cell migration and invasion; a live-cell analysis system was used to evaluate cell motility; cellular morphological changes were quantified by confocal fluorescence microscopy; the molecular mechanisms underlying the effect of IL-15 on tumor cells were analyzed by western blotting; and RhoA and Cdc42 activities were evaluated by a pulldown assay. NCG and C57BL/6 mouse models were used to evaluate the functions of IL-15 in vivo. RESULTS Cancer cell-intrinsic IL-15 promoted cell motility and migration in vitro and metastasis in vivo via activation of the AKT-mTORC1 pathway; however, exogenous IL-15 inhibited cell motility and migration via suppression of the RhoA-MLC2 axis. Mechanistic analysis revealed that both the intracellular and extracellular IL-15-mediated effects required the expression of IL-15Rα by tumor cells. Detailed analyses revealed that the IL-2/IL-15Rβ and IL-2Rγ chains were undetected in the complex formed by intracellular IL-15 and IL-15Rα. However, when exogenous IL-15 engaged tumor cells, a complex containing the IL-15Rα, IL-2/IL-15Rβ, and IL-2Rγ chains was formed, indicating that the differential actions of intracellular and extracellular IL-15 on tumor cells might be caused by their distinctive modes of IL-15 receptor engagement. Using a Lewis lung carcinoma (LLC) metastasis model, we showed that although IL-15 overexpression facilitated the lung metastasis of LLC cells, IL-15-overexpressing LLC tumors were more sensitive to anti-PD-L1 therapy than were IL-15-wild-type LLC tumors via an enhanced antitumor immune response, as evidenced by their increased CD8+ T-cell infiltration compared to that of their counterparts. CONCLUSIONS Cancer cell-intrinsic IL-15 and exogenous IL-15 differentially regulate cell motility and migration. Thus, cancer cell-intrinsic IL-15 acts as a double-edged sword in tumor progression. Additionally, high levels of IL-15 expressed by tumor cells might improve the responsiveness of tumors to immunotherapies.
Collapse
Affiliation(s)
- Shaojie Hu
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, 430030, Wuhan, Hubei, China
| | - Kelin Meng
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, 430030, Wuhan, Hubei, China
| | - Tianlai Wang
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, 430030, Wuhan, Hubei, China
| | - Rirong Qu
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, 430030, Wuhan, Hubei, China
| | - Boyu Wang
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, 430030, Wuhan, Hubei, China
| | - Yu Xi
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, 430030, Wuhan, Hubei, China
| | - Taiyan Yu
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, 430030, Wuhan, Hubei, China
| | - Zhiwei Yuan
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, 430030, Wuhan, Hubei, China
| | - Zihao Cai
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, 430030, Wuhan, Hubei, China
| | - Yitao Tian
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, 430030, Wuhan, Hubei, China
| | - Chenxi Zeng
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, 430030, Wuhan, Hubei, China
| | - Xue Wang
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, 430030, Wuhan, Hubei, China
| | - Wenbin Zou
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, 430030, Wuhan, Hubei, China
| | - Xiangning Fu
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, 430030, Wuhan, Hubei, China.
| | - Lequn Li
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, 430030, Wuhan, Hubei, China.
| |
Collapse
|
27
|
Zhu HX, Yang SH, Gao CY, Bian ZH, Chen XM, Huang RR, Meng QL, Li X, Jin H, Tsuneyama K, Han Y, Li L, Zhao ZB, Gershwin ME, Lian ZX. Targeting pathogenic CD8 + tissue-resident T cells with chimeric antigen receptor therapy in murine autoimmune cholangitis. Nat Commun 2024; 15:2936. [PMID: 38580644 PMCID: PMC10997620 DOI: 10.1038/s41467-024-46654-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 03/01/2024] [Indexed: 04/07/2024] Open
Abstract
Primary biliary cholangitis (PBC) is a cholestatic autoimmune liver disease characterized by autoreactive T cell response against intrahepatic small bile ducts. Here, we use Il12b-/-Il2ra-/- mice (DKO mice) as a model of autoimmune cholangitis and demonstrate that Cd8a knockout or treatment with an anti-CD8α antibody prevents/reduces biliary immunopathology. Using single-cell RNA sequencing analysis, we identified CD8+ tissue-resident memory T (Trm) cells in the livers of DKO mice, which highly express activation- and cytotoxicity-associated markers and induce apoptosis of bile duct epithelial cells. Liver CD8+ Trm cells also upregulate the expression of several immune checkpoint molecules, including PD-1. We describe the development of a chimeric antigen receptor to target PD-1-expressing CD8+ Trm cells. Treatment of DKO mice with PD-1-targeting CAR-T cells selectively depleted liver CD8+ Trm cells and alleviated autoimmune cholangitis. Our work highlights the pathogenic role of CD8+ Trm cells and the potential therapeutic usage of PD-1-targeting CAR-T cells.
Collapse
Affiliation(s)
- Hao-Xian Zhu
- Chronic Disease Laboratory, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), School of Medicine, South China University of Technology, Guangzhou, China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Shu-Han Yang
- Chronic Disease Laboratory, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), School of Medicine, South China University of Technology, Guangzhou, China
| | - Cai-Yue Gao
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Zhen-Hua Bian
- Chronic Disease Laboratory, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), School of Medicine, South China University of Technology, Guangzhou, China
| | - Xiao-Min Chen
- Chronic Disease Laboratory, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), School of Medicine, South China University of Technology, Guangzhou, China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Rong-Rong Huang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Qian-Li Meng
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xin Li
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Haosheng Jin
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Ying Han
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, China
| | - Liang Li
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| | - Zhi-Bin Zhao
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis, Davis, CA, USA.
| | - Zhe-Xiong Lian
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| |
Collapse
|
28
|
Lee H, Park SH, Shin EC. IL-15 in T-Cell Responses and Immunopathogenesis. Immune Netw 2024; 24:e11. [PMID: 38455459 PMCID: PMC10917573 DOI: 10.4110/in.2024.24.e11] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 03/09/2024] Open
Abstract
IL-15 belongs to the common gamma chain cytokine family and has pleiotropic immunological functions. IL-15 is a homeostatic cytokine essential for the development and maintenance of NK cells and memory CD8+ T cells. In addition, IL-15 plays a critical role in the activation, effector functions, tissue residency, and senescence of CD8+ T cells. IL-15 also activates virtual memory T cells, mucosal-associated invariant T cells and γδ T cells. Recently, IL-15 has been highlighted as a major trigger of TCR-independent activation of T cells. This mechanism is involved in T cell-mediated immunopathogenesis in diverse diseases, including viral infections and chronic inflammatory diseases. Deeper understanding of IL-15-mediated T-cell responses and their underlying mechanisms could optimize therapeutic strategies to ameliorate host injury by T cell-mediated immunopathogenesis. This review highlights recent advancements in comprehending the role of IL-15 in relation to T cell responses and immunopathogenesis under various host conditions.
Collapse
Affiliation(s)
- Hoyoung Lee
- The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Korea
| | - Su-Hyung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Eui-Cheol Shin
- The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
29
|
Skariah N, James OJ, Swamy M. Signalling mechanisms driving homeostatic and inflammatory effects of interleukin-15 on tissue lymphocytes. DISCOVERY IMMUNOLOGY 2024; 3:kyae002. [PMID: 38405398 PMCID: PMC10883678 DOI: 10.1093/discim/kyae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/19/2023] [Accepted: 01/26/2024] [Indexed: 02/27/2024]
Abstract
There is an intriguing dichotomy in the function of cytokine interleukin-15-at low levels, it is required for the homeostasis of the immune system, yet when it is upregulated in response to pathogenic infections or in autoimmunity, IL-15 drives inflammation. IL-15 associates with the IL-15Rα within both myeloid and non-haematopoietic cells, where IL-15Rα trans-presents IL-15 in a membrane-bound form to neighboring cells. Alongside homeostatic maintenance of select lymphocyte populations such as NK cells and tissue-resident T cells, when upregulated, IL-15 also promotes inflammatory outcomes by driving effector function and cytotoxicity in NK cells and T cells. As chronic over-expression of IL-15 can lead to autoimmunity, IL-15 expression is tightly regulated. Thus, blocking dysregulated IL-15 and its downstream signalling pathways are avenues for immunotherapy. In this review we discuss the molecular pathways involved in IL-15 signalling and how these pathways contribute to both homeostatic and inflammatory functions in IL-15-dependent mature lymphoid populations, focusing on innate, and innate-like lymphocytes in tissues.
Collapse
Affiliation(s)
- Neema Skariah
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Olivia J James
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Mahima Swamy
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
30
|
Abstract
Strategies that modulate antigen delivery are being tested to reverse autoimmunity.
Collapse
Affiliation(s)
- Bana Jabri
- Section of Gastroenterology, Hepatology and Nutrition, University of Chicago Department of Medicine, Chicago, IL, USA
- University of Chicago Celiac Disease Center, Chicago, IL, USA
- University of Chicago Committee on Immunology, Chicago, IL, USA
- University of Chicago Department of Pathology, Chicago, IL, USA
| | - Valérie Abadie
- Section of Gastroenterology, Hepatology and Nutrition, University of Chicago Department of Medicine, Chicago, IL, USA
- University of Chicago Celiac Disease Center, Chicago, IL, USA
- University of Chicago Committee on Immunology, Chicago, IL, USA
| |
Collapse
|
31
|
Di Castro MA, Garofalo S, Mormino A, Carbonari L, Di Pietro E, De Felice E, Catalano M, Maggi L, Limatola C. Interleukin-15 alters hippocampal synaptic transmission and impairs episodic memory formation in mice. Brain Behav Immun 2024; 115:652-666. [PMID: 37992787 DOI: 10.1016/j.bbi.2023.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/09/2023] [Accepted: 11/12/2023] [Indexed: 11/24/2023] Open
Abstract
Cytokines are potent immunomodulators exerting pleiotropic effects in the central nervous system (CNS). They influence neuronal functions and circuit activities with effects on memory processes and behaviors. Here, we unravel a neuromodulatory activity of interleukin-15 (IL-15) in mouse brain. Acute exposure of hippocampal slices to IL-15 enhances gamma-aminobutyricacid (GABA) release and reduces glutamatergic currents, while chronic treatment with IL-15 increases the frequency of hippocampal miniature inhibitory synaptic transmission and impairs memory formation in the novel object recognition (NOR) test. Moreover, we describe that serotonin is involved in mediating the hippocampal effects of IL-15, because a selective 5-HT3A receptor antagonist prevents the effects on inhibitory neurotransmission and ameliorates mice performance in the NOR test. These findings provide new insights into the modulatory activities of cytokines in the CNS, with implications on behavior.
Collapse
Affiliation(s)
- Maria Amalia Di Castro
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Stefano Garofalo
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Alessandro Mormino
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Laura Carbonari
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Erika Di Pietro
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Eleonora De Felice
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Myriam Catalano
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Laura Maggi
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Cristina Limatola
- IRCCS Neuromed Via Atinese 18, 86077 Pozzilli, Italy; Department of Physiology and Pharmacology, Sapienza University, Laboratory affiliated to Istituto Pasteur, Italy.
| |
Collapse
|
32
|
Banerjee P, Chaudhary R, Singh AK, Parulekar P, Kumar S, Senapati S. Specific Genetic Polymorphisms Contributing in Differential Binding of Gliadin Peptides to HLA-DQ and TCR to Elicit Immunogenicity in Celiac Disease. Biochem Genet 2023; 61:2457-2480. [PMID: 37103600 DOI: 10.1007/s10528-023-10377-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 04/01/2023] [Indexed: 04/28/2023]
Abstract
Immunogenicity of gliadin peptides in celiac disease (CD) is majorly determined by the pattern of molecular interactions with HLA-DQ and T-cell receptors (TCR). Investigation of the interactions between immune-dominant gliadin peptides, DQ protein, and TCR are warranted to unravel the basis of immunogenicity and variability contributed by the genetic polymorphisms. Homology modeling of HLA and TCR done using Swiss Model and iTASSER, respectively. Molecular interactions of eight common deamidated immune-dominant gliadin with HLA-DQ allotypes and specific TCR gene pairs were evaluated. Docking of the three structures was performed with ClusPro2.0 and ProDiGY was used to predict binding energies. Effects of known allelic polymorphisms and reported susceptibility SNPs were predicted on protein-protein interactions. CD susceptible allele, HLA-DQ2.5 was shown to have considerable binding affinity to 33-mer gliadin (ΔG = - 13.9; Kd = 1.5E - 10) in the presence of TRAV26/TRBV7. Higher binding affinity was predicted (ΔG = - 14.3, Kd = 8.9E - 11) when TRBV28 was replaced with TRBV20 paired with TRAV4 suggesting its role in CD predisposition. SNP rs12722069 at HLA-DQ8 that codes Arg76α forms three H-bonds with Glu12 and two H-bonds with Asn13 of DQ2 restricted gliadin in the presence of TRAV8-3/TRBV6. None of the HLA-DQ polymorphisms was found to be in linkage disequilibrium with reported CD susceptibility markers. Haplotypic presentations of rs12722069-G, rs1130392-C, rs3188043-C and rs4193-A with CD reported SNPs were observed in sub-ethnic groups. Highly polymorphic sites of HLA alleles and TCR variable regions could be utilized for better risk prediction models in CD. Therapeutic strategies by identifying inhibitors or blockers targeting specific gliadin:HLA-DQ:TCR binding sites could be investigated.
Collapse
Affiliation(s)
- Pratibha Banerjee
- Immunogenomics Laboratory, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, 151401, India
| | - Ramprasad Chaudhary
- Immunogenomics Laboratory, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, 151401, India
| | - Atul Kumar Singh
- Molecular Signaling and Drug Discovery Laboratory, Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, 151401, India
| | - Pratima Parulekar
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, 711103, India
| | - Shashank Kumar
- Molecular Signaling and Drug Discovery Laboratory, Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, 151401, India.
| | - Sabyasachi Senapati
- Immunogenomics Laboratory, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, 151401, India.
| |
Collapse
|
33
|
Han M, Hu L, Wu D, Zhang Y, Li P, Zhao X, Zeng Y, Ren G, Hou Z, Pang Y, Zhao T, Zhong C. IL-21R-STAT3 signalling initiates a differentiation program in uterine tissue-resident NK cells to support pregnancy. Nat Commun 2023; 14:7109. [PMID: 37925507 PMCID: PMC10625623 DOI: 10.1038/s41467-023-42990-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/26/2023] [Indexed: 11/06/2023] Open
Abstract
Tissue-resident Natural Killer (trNK) cells are crucial components of local immunity that activate rapidly upon infection. However, under steady state conditions, their responses are tightly controlled to prevent unwanted tissue damage. The mechanisms governing their differentiation and activation are not fully understood. Here, we characterise uterine trNK cells longitudinally during pregnancy by single cell RNA sequencing and find that the combined expression pattern of 4-1BB and CD55 defines their three distinct stages of differentiation in mice. Mechanistically, an IL-21R-STAT3 axis is essential for initiating the trNK cell differentiation. The fully differentiated trNK cells demonstrate enhanced functionality, which is necessary for remodelling spiral arteries in the decidua. We identify an apoptotic program that is specific to the terminal differentiation stage, which may preclude tissue damage by these highly activated trNK cells. In summary, uterine trNK cells become intensely active and effective during pregnancy, but tightly controlled via a differentiation program that also limits potential harm, suggesting an intricate mechanism for harnessing trNK cells in maintaining pregnancy.
Collapse
Affiliation(s)
- Mengwei Han
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Luni Hu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Di Wu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Yime Zhang
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Peng Li
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Xingyu Zhao
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Yanyu Zeng
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Guanqun Ren
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Zhiyuan Hou
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Yanli Pang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Tongbiao Zhao
- National Stem Cell Resource Center, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Chao Zhong
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China.
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191, China.
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, 100191, China.
| |
Collapse
|
34
|
Devarajan P, Vong AM, Castonguay CH, Silverstein NJ, Kugler-Umana O, Bautista BL, Kelly KA, Luban J, Swain SL. Cytotoxic CD4 development requires CD4 effectors to concurrently recognize local antigen and encounter type I IFN-induced IL-15. Cell Rep 2023; 42:113182. [PMID: 37776519 PMCID: PMC10842051 DOI: 10.1016/j.celrep.2023.113182] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 07/30/2023] [Accepted: 09/13/2023] [Indexed: 10/02/2023] Open
Abstract
Cytotoxic CD4 T cell effectors (ThCTLs) kill virus-infected major histocompatibility complex (MHC) class II+ cells, contributing to viral clearance. We identify key factors by which influenza A virus infection drives non-cytotoxic CD4 effectors to differentiate into lung tissue-resident ThCTL effectors. We find that CD4 effectors must again recognize cognate antigen on antigen-presenting cells (APCs) within the lungs. Both dendritic cells and B cells are sufficient as APCs, but CD28 co-stimulation is not needed. Optimal generation of ThCTLs requires signals induced by the ongoing infection independent of antigen presentation. Infection-elicited type I interferon (IFN) induces interleukin-15 (IL-15), which, in turn, supports CD4 effector differentiation into ThCTLs. We suggest that these multiple spatial, temporal, and cellular requirements prevent excessive lung ThCTL responses when virus is already cleared but ensure their development when infection persists. This supports a model where continuing infection drives the development of multiple, more differentiated subsets of CD4 effectors by distinct pathways.
Collapse
Affiliation(s)
| | - Allen M Vong
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Catherine H Castonguay
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Noah J Silverstein
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Olivia Kugler-Umana
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Bianca L Bautista
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Karen A Kelly
- Department of Animal Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jeremy Luban
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Susan L Swain
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
35
|
Weinhofer I, Rommer P, Gleiss A, Ponleitner M, Zierfuss B, Waidhofer-Söllner P, Fourcade S, Grabmeier-Pfistershammer K, Reinert MC, Göpfert J, Heine A, Yska HAF, Casasnovas C, Cantarín V, Bergner CG, Mallack E, Forss-Petter S, Aubourg P, Bley A, Engelen M, Eichler F, Lund TC, Pujol A, Köhler W, Kühl JS, Berger J. Biomarker-based risk prediction for the onset of neuroinflammation in X-linked adrenoleukodystrophy. EBioMedicine 2023; 96:104781. [PMID: 37683329 PMCID: PMC10497986 DOI: 10.1016/j.ebiom.2023.104781] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/21/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND X-linked adrenoleukodystrophy (X-ALD) is highly variable, ranging from slowly progressive adrenomyeloneuropathy to severe brain demyelination and inflammation (cerebral ALD, CALD) affecting males with childhood peak onset. Risk models integrating blood-based biomarkers to indicate CALD onset, enabling timely interventions, are lacking. Therefore, we evaluated the prognostic value of blood biomarkers in addition to current neuroimaging predictors for early detection of CALD. METHODS We measured blood biomarkers in a retrospective, male CALD risk-assessment cohort consisting of 134 X-ALD patients and 66 controls and in a phenotype-blinded validation set (25 X-ALD boys, 4-13 years) using Simoa®and Luminex® technologies. FINDINGS Among 25 biomarkers indicating axonal damage, astrocye/microglia activation, or immune-cell recruitment, neurofilament light chain (NfL) had the highest prognostic value for early indication of childhood/adolescent CALD. A plasma NfL cut-off level of 8.33 pg/mL, determined in the assessment cohort, correctly discriminated CALD with an accuracy of 96% [95% CI: 80-100] in the validation group. Multivariable logistic regression models revealed that combining NfL with GFAP or cytokines/chemokines (IL-15, IL-12p40, CXCL8, CCL11, CCL22, and IL-4) that were significantly elevated in CALD vs healthy controls had no additional benefit for detecting neuroinflammation. Some cytokines/chemokines were elevated only in childhood/adolescent CALD and already upregulated in asymptomatic X-ALD children (IL-15, IL-12p40, and CCL7). In adults, NfL levels distinguished CALD but were lower than in childhood/adolescent CALD patients with similar (MRI) lesion severity. Blood GFAP did not differentiate CALD from non-inflammatory X-ALD. INTERPRETATION Biomarker-based risk prediction with a plasma NfL cut-off value of 8.33 pg/mL, determined by ROC analysis, indicates CALD onset with high sensitivity and specificity in childhood X-ALD patients. A specific pro-inflammatory cytokine/chemokine profile in asymptomatic X-ALD boys may indicate a primed, immanent inflammatory state aligning with peak onset of CALD. Age-related differences in biomarker levels in adult vs childhood CALD patients warrants caution in predicting onset and progression of CALD in adults. Further evaluations are needed to assess clinical utility of the NfL cut-off for risk prognosis of CALD onset. FUNDING Austrian Science Fund, European Leukodystrophy Association.
Collapse
Affiliation(s)
- Isabelle Weinhofer
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria.
| | - Paulus Rommer
- Department of Neurology, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Andreas Gleiss
- Institute of Clinical Biometrics, Center for Medical Data Science, Medical University of Vienna, Vienna, Austria
| | - Markus Ponleitner
- Department of Neurology, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Bettina Zierfuss
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria; Department of Neuroscience, Centre de Recherche du CHUM, Université de Montréal, Montréal, Canada
| | - Petra Waidhofer-Söllner
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria
| | - Stéphane Fourcade
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain; Biomedical Research Networking Center on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Katharina Grabmeier-Pfistershammer
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria
| | - Marie-Christine Reinert
- Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, Göttingen, Germany
| | - Jens Göpfert
- Applied Biomarkers and Immunoassays Working Group, NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Anne Heine
- Applied Biomarkers and Immunoassays Working Group, NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Hemmo A F Yska
- Department of Pediatric Neurology, Amsterdam Public Health, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Carlos Casasnovas
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain; Biomedical Research Networking Center on Rare Diseases (CIBERER), ISCIII, Madrid, Spain; Neuromuscular Unit, Neurology Department, Hospital Universitario Bellvitge, Bellvitge Biomedical Research Unit, Barcelona, Spain
| | - Verónica Cantarín
- Infant Jesus Children´s Hospital and Biomedical Research Networking Center on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Caroline G Bergner
- Department of Neurology, Leukodystrophy Clinic, University of Leipzig Medical Center, Leipzig, Germany
| | - Eric Mallack
- Leukodystrophy Center, Division of Child Neurology, Department of Pediatrics, Weill Cornell Medical College, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Sonja Forss-Petter
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Patrick Aubourg
- Kremlin-Bicêtre-Hospital, University Paris-Saclay, Paris, France
| | - Annette Bley
- Department of Pediatrics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Marc Engelen
- Department of Pediatric Neurology, Amsterdam Public Health, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Florian Eichler
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Troy C Lund
- Pediatric Blood and Marrow Transplant Program, Global Pediatrics, Division of Pediatric Blood and Marrow Transplantation, MCRB, University of Minnesota, Minneapolis, MN, USA
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain; Biomedical Research Networking Center on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Wolfgang Köhler
- Department of Neurology, Leukodystrophy Clinic, University of Leipzig Medical Center, Leipzig, Germany
| | - Jörn-Sven Kühl
- Department of Pediatric Oncology, Hematology and Hemostaseology, University Hospital Leipzig, Leipzig, Germany
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
36
|
Mahadevan KK, LeBleu VS, Ramirez EV, Chen Y, Li B, Sockwell AM, Gagea M, Sugimoto H, Sthanam LK, Tampe D, Zeisberg M, Ying H, Jain AK, DePinho RA, Maitra A, McAndrews KM, Kalluri R. Elimination of oncogenic KRAS in genetic mouse models eradicates pancreatic cancer by inducing FAS-dependent apoptosis by CD8 + T cells. Dev Cell 2023; 58:1562-1577.e8. [PMID: 37625403 PMCID: PMC10810082 DOI: 10.1016/j.devcel.2023.07.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/02/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023]
Abstract
Oncogenic KRASG12D (KRAS∗) is critical for the initiation and maintenance of pancreatic ductal adenocarcinoma (PDAC) and is a known repressor of tumor immunity. Conditional elimination of KRAS∗ in genetic mouse models of PDAC leads to the reactivation of FAS, CD8+ T cell-mediated apoptosis, and complete eradication of tumors. KRAS∗ elimination recruits activated CD4+ and CD8+ T cells and promotes the activation of antigen-presenting cells. Mechanistically, KRAS∗-mediated immune evasion involves the epigenetic regulation of Fas death receptor in cancer cells, via methylation of its promoter region. Furthermore, analysis of human RNA sequencing identifies that high KRAS expression in PDAC tumors shows a lower proportion of CD8+ T cells and demonstrates shorter survival compared with tumors with low KRAS expression. This study highlights the role of CD8+ T cells in the eradication of PDAC following KRAS∗ elimination and provides a rationale for the combination of KRAS∗ targeting with immunotherapy to control PDAC.
Collapse
Affiliation(s)
- Krishnan K Mahadevan
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Valerie S LeBleu
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Elena V Ramirez
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yang Chen
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bingrui Li
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amari M Sockwell
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mihai Gagea
- Department of Veterinary Medicine and Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hikaru Sugimoto
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lakshmi Kavitha Sthanam
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Desiree Tampe
- Department of Nephrology and Rheumatology, Göttingen University Medical Center, Georg August University, Göttingen, Germany
| | - Michael Zeisberg
- Department of Nephrology and Rheumatology, Göttingen University Medical Center, Georg August University, Göttingen, Germany
| | - Haoqiang Ying
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Abhinav K Jain
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ronald A DePinho
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anirban Maitra
- Department of Translational Molecular Pathology, Ahmad Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kathleen M McAndrews
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Bioengineering, Rice University, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
37
|
Farzam-Kia N, Moratalla AC, Lemaître F, Levert A, Da Cal S, Margarido C, Carpentier Solorio Y, Arbour N. GM-CSF distinctly impacts human monocytes and macrophages via ERK1/2-dependent pathways. Immunol Lett 2023; 261:47-55. [PMID: 37516253 DOI: 10.1016/j.imlet.2023.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 07/31/2023]
Abstract
Human monocytes and macrophages are two major myeloid cell subsets with similar and distinct functions in tissue homeostasis and immune responses. GM-CSF plays a fundamental role in myeloid cell differentiation and activation. Hence, we compared the effects of GM-CSF on the expression of several immune mediators by human monocytes and monocyte-derived macrophages obtained from healthy donors. We report that GM-CSF similarly elevated the expression of CD80 and ICAM-1 and reduced HLA-DR levels on both myeloid cell subsets. However, GM-CSF increased the percentage of macrophages expressing surface IL-15 but reduced the proportion of monocytes carrying surface IL-15. Moreover, GM-CSF significantly increased the secretion of IL-4, IL-6, TNF, CXCL10, and IL-27 by macrophages while reducing the secretion of IL-4 and CXCL10 by monocytes. We show that GM-CSF triggered ERK1/2, STAT3, STAT5, and SAPK/JNK pathways in both myeloid subsets. Using a pharmacological inhibitor (U0126) preventing ERK phosphorylation, we demonstrated that this pathway was involved in both the GM-CSF-induced increase and decrease of the percentage of IL-15+ macrophages and monocytes, respectively. Moreover, ERK1/2 contributed to GM-CSF-triggered secretion of IL-4, IL-6, TNF, IL-27 and CXCL10 by macrophages. However, the ERK1/2 pathway exhibited different roles in monocytes and macrophages for the GM-CSF-mediated impact on surface makers (CD80, HLA-DR, and ICAM-1). Our data demonstrate that GM-CSF stimulation induces differential responses by human monocytes and monocyte-derived macrophages and that some but not all of these effects are ERK-dependent.
Collapse
Affiliation(s)
- Negar Farzam-Kia
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, QC, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Ana Carmena Moratalla
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, QC, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Florent Lemaître
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, QC, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Annie Levert
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Sandra Da Cal
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Clara Margarido
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Yves Carpentier Solorio
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, QC, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Nathalie Arbour
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, QC, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada.
| |
Collapse
|
38
|
Gunst JD, Goonetilleke N, Rasmussen TA, Søgaard OS. Immunomodulation with IL-7 and IL-15 in HIV-1 infection. J Virus Erad 2023; 9:100347. [PMID: 37767312 PMCID: PMC10520363 DOI: 10.1016/j.jve.2023.100347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Immunomodulating agents are substances that modify the host immune responses in diseases such as infections, autoimmune conditions and cancers. Immunomodulators can be divided into two main groups: 1) immunostimulators that activate the immune system such as cytokines, toll-like receptor agonists and immune checkpoint blockers; and 2) immunosuppressors that dampen an overactive immune system such as corticosteroids and cytokine-blocking antibodies. In this review, we have focussed on the two primarily T and natural killer (NK) cell homeostatic cytokines: interleukin-7 (IL-7) and -15 (IL-15). These cytokines are immunostimulators which act on immune cells independently of the presence or absence of antigen. In vivo studies have shown that IL-7 administration enhances proliferation of circulating T cells whereas IL-15 agonists enhance the proliferation and function of NK and CD8+ T cells. Both IL-7 and IL-15 therapies have been tested as single interventions in HIV-1 cure-related clinical trials. In this review, we explore whether IL-7 and IL-15 could be part of the therapeutic approaches towards HIV-1 remission.
Collapse
Affiliation(s)
- Jesper D. Gunst
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Nilu Goonetilleke
- Department of Microbiology & Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Thomas A. Rasmussen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Ole S. Søgaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
39
|
Abstract
T cells play critical roles in the immune system, including in responses to cancer, autoimmunity, and tissue regeneration. T cells arise from common lymphoid progenitors (CLPs) that differentiate from hematopoietic stem cells in the bone marrow. CLPs then traffic to the thymus, where they undergo thymopoiesis through a number of selection steps, resulting in mature single positive naive CD4 helper or CD8 cytotoxic T cells. Naive T cells are home to secondary lymphoid organs like lymph nodes and are primed by antigen-presenting cells, which scavenge for both foreign and self-antigens. Effector T cell function is multifaceted, including direct target cell lysis and secretion of cytokines, which regulate the functions of other immune cells (refer to "Graphical Abstract"). This review will discuss T cell development and function, from the development of lymphoid progenitors in the bone marrow to principles that govern T cell effector function and dysfunction, specifically within the context of cancer.
Collapse
Affiliation(s)
- Kwasi Adu-Berchie
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
- The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
| | - Favour O. Obuseh
- The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
- Harvard-MIT Health Sciences and Technology, Cambridge, Massachusetts, USA
| | - David J. Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
- The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
| |
Collapse
|
40
|
Chauhan SK, Bartolomé Casado R, Landsverk OJB, Johannessen H, Phung D, Nilsen HR, Sætre F, Jahnsen J, Horneland R, Yaqub S, Aandahl EM, Lundin KEA, Bækkevold ES, Jahnsen FL. Human small intestine contains 2 functionally distinct regulatory T-cell subsets. J Allergy Clin Immunol 2023; 152:278-289.e6. [PMID: 36893861 DOI: 10.1016/j.jaci.2023.02.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 03/09/2023]
Abstract
BACKGROUND Regulatory T (Treg) CD4 cells in mouse gut are mainly specific for intestinal antigens and play an important role in the suppression of immune responses against harmless dietary antigens and members of the microbiota. However, information about the phenotype and function of Treg cells in the human gut is limited. OBJECTIVE We performed a detailed characterization of Foxp3+ CD4 Treg cells in human normal small intestine (SI) as well as from transplanted duodenum and celiac disease lesions. METHODS Treg cells and conventional CD4 T cells derived from SI were subjected to extensive immunophenotyping and their suppressive activity and ability to produce cytokines assessed. RESULTS SI Foxp3+ CD4 T cells were CD45RA-CD127-CTLA-4+ and suppressed proliferation of autologous T cells. Approximately 60% of Treg cells expressed the transcription factor Helios. When stimulated, Helios-negative Treg cells produced IL-17, IFN-γ, and IL-10, whereas Helios-positive Treg cells produced very low levels of these cytokines. By sampling mucosal tissue from transplanted human duodenum, we demonstrated that donor Helios-negative Treg cells persisted for at least 1 year after transplantation. In normal SI, Foxp3+ Treg cells constituted only 2% of all CD4 T cells, while in active celiac disease, both Helios-negative and Helios-positive subsets expanded 5- to 10-fold. CONCLUSION The SI contains 2 subsets of Treg cells with different phenotypes and functional capacities. Both subsets are scarce in healthy gut but increase dramatically in active celiac disease.
Collapse
Affiliation(s)
- Sudhir Kumar Chauhan
- Department of Pathology, Oslo University Hospital-Rikshospitalet, Oslo, Norway; Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
| | - Raquel Bartolomé Casado
- Department of Pathology, Oslo University Hospital-Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ole J B Landsverk
- Department of Pathology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Hanna Johannessen
- Department of Pathology, Oslo University Hospital-Rikshospitalet, Oslo, Norway; Department of Gastrointestinal and Pediatric Surgery, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Danh Phung
- Department of Pathology, Oslo University Hospital-Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Hogne Røed Nilsen
- Department of Pathology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Frank Sætre
- Department of Pathology, Oslo University Hospital-Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Jørgen Jahnsen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Gastroenterology, Akershus University Hospital, Lørenskog, Norway
| | - Rune Horneland
- Department of Transplantation Medicine, Section for Transplant Surgery, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Sheraz Yaqub
- Department of Gastrointestinal Surgery, Oslo University Hospital-Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Einar Martin Aandahl
- Department of Transplantation Medicine, Section for Transplant Surgery, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Knut E A Lundin
- Department of Gastroenterology, Oslo University Hospital-Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Espen S Bækkevold
- Department of Pathology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Frode L Jahnsen
- Department of Pathology, Oslo University Hospital-Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
41
|
Maenaka A, Kinoshita K, Hara H, Cooper DKC. The case for the therapeutic use of mechanistic/mammalian target of rapamycin (mTOR) inhibitors in xenotransplantation. Xenotransplantation 2023; 30:e12802. [PMID: 37029499 PMCID: PMC11286223 DOI: 10.1111/xen.12802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/23/2023] [Indexed: 04/09/2023]
Abstract
The mechanistic/mammalian target of rapamycin (mTOR) is one of the systems that are necessary to maintain cell homeostasis, such as survival, proliferation, and differentiation. mTOR inhibitors (mTOR-Is) are utilized as immunosuppressants and anti-cancer drugs. In organ allotransplantation, current regimens infrequently include an mTOR-I, which are positioned more commonly as alternative immunosuppressants. In clinical allotransplantation, long-term efficacy has been established, but there is a significant incidence of adverse events, for example, inhibition of wound healing, buccal ulceration, anemia, hyperglycemia, dyslipidemia, and thrombocytopenia, some of which are dose-dependent. mTOR-Is have properties that may be especially beneficial in xenotransplantation. These include suppression of T cell proliferation, increases in the number of T regulatory cells, inhibition of pig graft growth, and anti-inflammatory, anti-viral, and anti-cancer effects. We here review the potential benefits and risks of mTOR-Is in xenotransplantation and suggest that the benefits exceed the adverse effects.
Collapse
Affiliation(s)
- Akihiro Maenaka
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Kohei Kinoshita
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Hidetaka Hara
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, China
| | - David K. C. Cooper
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
42
|
Tieu R, Zeng Q, Zhao D, Zhang G, Feizi N, Manandhar P, Williams AL, Popp B, Wood-Trageser MA, Demetris AJ, Tso JY, Johnson AJ, Kane LP, Abou-Daya KI, Shlomchik WD, Oberbarnscheidt MH, Lakkis FG. Tissue-resident memory T cell maintenance during antigen persistence requires both cognate antigen and interleukin-15. Sci Immunol 2023; 8:eadd8454. [PMID: 37083450 PMCID: PMC10334460 DOI: 10.1126/sciimmunol.add8454] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 03/29/2023] [Indexed: 04/22/2023]
Abstract
Our understanding of tissue-resident memory T (TRM) cell biology has been largely developed from acute infection models in which antigen is cleared and sterilizing immunity is achieved. Less is known about TRM cells in the context of chronic antigen persistence and inflammation. We investigated factors that underlie TRM maintenance in a kidney transplantation model in which TRM cells drive rejection. In contrast to acute infection, we found that TRM cells declined markedly in the absence of cognate antigen, antigen presentation, or antigen sensing by the T cells. Depletion of graft-infiltrating dendritic cells or interruption of antigen presentation after TRM cells were established was sufficient to disrupt TRM maintenance and reduce allograft pathology. Likewise, removal of IL-15 transpresentation or of the IL-15 receptor on T cells during TRM maintenance led to a decline in TRM cells, and IL-15 receptor blockade prevented chronic rejection. Therefore, antigen and IL-15 presented by dendritic cells play nonredundant key roles in CD8 TRM cell maintenance in settings of antigen persistence and inflammation. These findings provide insights that could lead to improved treatment of chronic transplant rejection and autoimmunity.
Collapse
Affiliation(s)
- Roger Tieu
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Thomas E. Starzl Transplantation Institute, Department of Surgery, Pittsburgh, PA 15213, USA
| | - Qiang Zeng
- Nationwide Children’s Hospital, Columbus, Ohio 43205, USA
| | - Daqiang Zhao
- Thomas E. Starzl Transplantation Institute, Department of Surgery, Pittsburgh, PA 15213, USA
| | - Gang Zhang
- Thomas E. Starzl Transplantation Institute, Department of Surgery, Pittsburgh, PA 15213, USA
| | - Neda Feizi
- Thomas E. Starzl Transplantation Institute, Department of Surgery, Pittsburgh, PA 15213, USA
| | - Priyanka Manandhar
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Amanda L. Williams
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Thomas E. Starzl Transplantation Institute, Department of Surgery, Pittsburgh, PA 15213, USA
| | - Benjamin Popp
- Thomas E. Starzl Transplantation Institute, Department of Surgery, Pittsburgh, PA 15213, USA
- Division of Transplant Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Michelle A. Wood-Trageser
- Thomas E. Starzl Transplantation Institute, Department of Surgery, Pittsburgh, PA 15213, USA
- Division of Transplant Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Anthony J. Demetris
- Thomas E. Starzl Transplantation Institute, Department of Surgery, Pittsburgh, PA 15213, USA
- Division of Transplant Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - J. Yun Tso
- JN Biosciences, Mountain View, California 94043, USA
| | - Aaron J. Johnson
- Departments of Immunology, Neurology, and Molecular Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Lawrence P. Kane
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Khodor I. Abou-Daya
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Thomas E. Starzl Transplantation Institute, Department of Surgery, Pittsburgh, PA 15213, USA
| | - Warren D. Shlomchik
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Thomas E. Starzl Transplantation Institute, Department of Surgery, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Martin H. Oberbarnscheidt
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Thomas E. Starzl Transplantation Institute, Department of Surgery, Pittsburgh, PA 15213, USA
| | - Fadi G. Lakkis
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Thomas E. Starzl Transplantation Institute, Department of Surgery, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
43
|
Picker LJ, Lifson JD, Gale M, Hansen SG, Früh K. Programming cytomegalovirus as an HIV vaccine. Trends Immunol 2023; 44:287-304. [PMID: 36894436 PMCID: PMC10089689 DOI: 10.1016/j.it.2023.02.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 03/09/2023]
Abstract
The initial development of cytomegalovirus (CMV) as a vaccine vector for HIV/simian immunodeficiency virus (SIV) was predicated on its potential to pre-position high-frequency, effector-differentiated, CD8+ T cells in tissues for immediate immune interception of nascent primary infection. This goal was achieved and also led to the unexpected discoveries that non-human primate (NHP) CMVs can be programmed to differentially elicit CD8+ T cell responses that recognize viral peptides via classical MHC-Ia, and/or MHC-II, and/or MHC-E, and that MHC-E-restricted CD8+ T cell responses can uniquely mediate stringent arrest and subsequent clearance of highly pathogenic SIV, an unprecedented type of vaccine-mediated protection. These discoveries delineate CMV vector-elicited MHC-E-restricted CD8+ T cells as a functionally distinct T cell response with the potential for superior efficacy against HIV-1, and possibly other infectious agents or cancers.
Collapse
Affiliation(s)
- Louis J Picker
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA.
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD, USA
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, USA
| | - Scott G Hansen
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Klaus Früh
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| |
Collapse
|
44
|
Gan L, Zhao Y, Fu Y, Chen Q. The potential role of m6A modifications on immune cells and immunotherapy. Biomed Pharmacother 2023; 160:114343. [PMID: 36758318 DOI: 10.1016/j.biopha.2023.114343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/10/2023] Open
Abstract
N6-methyladenosine (m6A), is the most prevalent and reversible post-transcriptional epigenetic modification of RNA in mammals. Dysregulation of m6A modifications impacts RNA procession, degradation, translocation, and translation, disrupting immune cell homeostasis and promoting tumor initiation and development. Here, we discuss an -up-to-date summary of the mechanisms by which m6A modifications regulate immune cell anti-tumor as well as self-homeostasis. We also present how the dysregulation of m6A modifications intrinsic to tumor cells regulates the function of immune cells in the tumor microenvironment. Meanwhile, we described some specific inhibitors targeting m6A modulators and discussed their potential use in cancer treatments.
Collapse
Affiliation(s)
- Linchuan Gan
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, PR China
| | - Yuxiang Zhao
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, PR China
| | - Yajuan Fu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, PR China.
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, PR China.
| |
Collapse
|
45
|
Abstract
Among human leukocyte antigen (HLA)-associated disorders, celiac disease has an immunopathogenesis that is particularly well understood. The condition is characterized by hypersensitivity to cereal gluten proteins, and the disease lesion is localized in the gut. Still, the diagnosis can be made by detection of highly disease-specific autoantibodies to transglutaminase 2 in the blood. We now have mechanistic insights into how the disease-predisposing HLA-DQ molecules, via presentation of posttranslationally modified gluten peptides, are connected to the generation of these autoantibodies. This review presents our current understanding of the immunobiology of this common disorder that is positioned in the border zone between food hypersensitivity and autoimmunity.
Collapse
Affiliation(s)
- Rasmus Iversen
- KG Jebsen Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; .,Department of Immunology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Ludvig M Sollid
- KG Jebsen Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; .,Department of Immunology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| |
Collapse
|
46
|
Farzam-Kia N, Lemaître F, Carmena Moratalla A, Carpentier Solorio Y, Da Cal S, Jamann H, Klement W, Antel J, Duquette P, Girard JM, Prat A, Larochelle C, Arbour N. Granulocyte-macrophage colony-stimulating factor-stimulated human macrophages demonstrate enhanced functions contributing to T-cell activation. Immunol Cell Biol 2023; 101:65-77. [PMID: 36260372 DOI: 10.1111/imcb.12600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/10/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022]
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) has been implicated in numerous chronic inflammatory diseases, including multiple sclerosis (MS). GM-CSF impacts multiple properties and functions of myeloid cells via species-specific mechanisms. Therefore, we assessed the effect of GM-CSF on different human myeloid cell populations found in MS lesions: monocyte-derived macrophages (MDMs) and microglia. We previously reported a greater number of interleukin (IL)-15+ myeloid cells in the brain of patients with MS than in controls. Therefore, we investigated whether GM-CSF exerts its deleterious effects in MS by increasing IL-15 expression on myeloid cells. We found that GM-CSF increased the proportion of IL-15+ cells and/or IL-15 levels on nonpolarized, M1-polarized and M2-polarized MDMs from healthy donors and patients with MS. GM-CSF also increased IL-15 levels on human adult microglia. When cocultured with GM-CSF-stimulated MDMs, activated autologous CD8+ T lymphocytes secreted and expressed significantly higher levels of effector molecules (e.g. interferon-γ and GM-CSF) compared with cocultures with unstimulated MDMs. However, neutralizing IL-15 did not attenuate enhanced effector molecule expression on CD8+ T lymphocytes triggered by GM-CSF-stimulated MDMs. We showed that GM-CSF stimulation of MDMs increased their expression of CD80 and ICAM-1 and their secretion of IL-6, IL-27 and tumor necrosis factor. These molecules could participate in boosting the effector properties of CD8+ T lymphocytes independently of IL-15. By contrast, GM-CSF did not alter CD80, IL-27, tumor necrosis factor and chemokine (C-X-C motif) ligand 10 expression/secretion by human microglia. Therefore, our results underline the distinct impact of GM-CSF on human myeloid cells abundantly present in MS lesions.
Collapse
Affiliation(s)
- Negar Farzam-Kia
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, QC, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Florent Lemaître
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, QC, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Ana Carmena Moratalla
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, QC, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Yves Carpentier Solorio
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, QC, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Sandra Da Cal
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Hélène Jamann
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, QC, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Wendy Klement
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Jack Antel
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Pierre Duquette
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, QC, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Multiple Sclerosis Clinic-CHUM, Montréal, QC, Canada
| | - Jean Marc Girard
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, QC, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Multiple Sclerosis Clinic-CHUM, Montréal, QC, Canada
| | - Alexandre Prat
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, QC, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Multiple Sclerosis Clinic-CHUM, Montréal, QC, Canada
| | - Catherine Larochelle
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, QC, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Multiple Sclerosis Clinic-CHUM, Montréal, QC, Canada
| | - Nathalie Arbour
- Department of Neurosciences, Faculty of Medicine, Université de Montréal, QC, Canada.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| |
Collapse
|
47
|
Vidard L. 4-1BB and cytokines trigger human NK, γδ T, and CD8 + T cell proliferation and activation, but are not required for their effector functions. Immun Inflamm Dis 2023; 11:e749. [PMID: 36705415 PMCID: PMC9753824 DOI: 10.1002/iid3.749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION This study was designed to compare the costimulatory molecules and cytokines required to trigger the proliferation and activation of natural killer (NK), γδ T, and CD8+ T cells, and gain in-depth insight into the mechanisms shifting tolerance to immunity. METHODS K562-derived artificial antigen-presenting cells (aAPCs); that is, K562 forced to express CD86 and 4-1BBL costimulatory receptors, in the presence of cytokines, were used to mimic dendritic cells (DCs) and provide signals to support the proliferation and activation of NK, γδ T, and CD8+ T cells. RESULTS Three signals are required to trigger optimal proliferation in MART-1-specific CD8+ T cells: activation of T-cell receptors (TCRs) by the major histocompatibility complex (MHC) I/peptide complexes (signal 1); 4-1BB engagement (signal 2); and IL-15 and IL-21 receptor co-signaling (signal 3). NK and γδ T cell proliferation also require three signals, but the precise nature of signal 1 involving cell-to-cell contact was not determined. Once they become effectors, only signal 1 determines the sensitivity or resistance of the target cells to cytolysis by killer lymphocytes. When freshly purified, none had effector functions, except the NK cells, which could be activated by CD16 engagement. CONCLUSIONS Therefore, lymphocytes committed to kill are produced as inactive precursors, and the license to kill is delivered by three signals, allowing for extensive proliferation and effector function acquisition. This data challenges the paradigm of anergy and supports the danger signal theory originally proposed by Polly Matzinger, which states that killer cells are tolerant by default, thereby protecting the mammalian body from autoimmunity.
Collapse
Affiliation(s)
- Laurent Vidard
- Department of Immuno‐OncologySanofiVitry‐sur‐SeineFrance
| |
Collapse
|
48
|
Madi A, Wu J, Ma S, Weisshaar N, Mieg A, Hering M, Ming Y, Zettl F, Mohr K, Ten Bosch N, Schlimbach T, Hertel F, Cui G. Regulatory T cell-derived interleukin-15 promotes the diversity of immunological memory. Eur J Immunol 2023; 53:e2149400. [PMID: 36263815 DOI: 10.1002/eji.202149400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/07/2022] [Accepted: 10/18/2022] [Indexed: 02/02/2023]
Abstract
While the immunosuppressive function of regulatory T (Treg) cells has been extensively studied, their immune-supportive roles have been less well investigated. Using a lymphocytic choriomeningitis virus (LCMV) Armstrong infection mouse model, we found that Treg cell-derived interleukin (IL)-15 is required for long-term maintenance of the KLRG1+ IL-7Rα- CD62L- terminal effector memory CD8+ T (tTEM) cell subset, but dispensable for the suppressive function of Treg cells themselves. In contrast, deletion of Il15 from other sources, including myeloid cells and muscles, did not affect the composition of the memory CD8+ T cell pool. Our findings identify Treg cells as an essential IL-15 source maintaining tTEM cells and suggest that Treg cells promote the diversity of immunological memory.
Collapse
Affiliation(s)
- Alaa Madi
- T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - Jingxia Wu
- T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Sicong Ma
- T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Nina Weisshaar
- T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Alessa Mieg
- T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - Marvin Hering
- T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - Yanan Ming
- T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Ferdinand Zettl
- T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - Kerstin Mohr
- T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Nora Ten Bosch
- T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Helmholtz Institute for Translational Oncology (HI-TRON), Mainz, Germany
| | - Tilo Schlimbach
- T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Franziska Hertel
- T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Guoliang Cui
- T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany.,Helmholtz Institute for Translational Oncology (HI-TRON), Mainz, Germany
| |
Collapse
|
49
|
The Cytokine Network in Colorectal Cancer: Implications for New Treatment Strategies. Cells 2022; 12:cells12010138. [PMID: 36611932 PMCID: PMC9818504 DOI: 10.3390/cells12010138] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 01/01/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most frequent tumor entities worldwide with only limited therapeutic options. CRC is not only a genetic disease with several mutations in specific oncogenes and/or tumor suppressor genes such as APC, KRAS, PIC3CA, BRAF, SMAD4 or TP53 but also a multifactorial disease including environmental factors. Cancer cells communicate with their environment mostly via soluble factors such as cytokines, chemokines or growth factors to generate a favorable tumor microenvironment (TME). The TME, a heterogeneous population of differentiated and progenitor cells, plays a critical role in regulating tumor development, growth, invasion, metastasis and therapy resistance. In this context, cytokines from cancer cells and cells of the TME influence each other, eliciting an inflammatory milieu that can either enhance or suppress tumor growth and metastasis. Additionally, several lines of evidence exist that the composition of the microbiota regulates inflammatory processes, controlled by cytokine secretion, that play a role in carcinogenesis and tumor progression. In this review, we discuss the cytokine networks between cancer cells and the TME and microbiome in colorectal cancer and the related treatment strategies, with the goal to discuss cytokine-mediated strategies that could overcome the common therapeutic resistance of CRC tumors.
Collapse
|
50
|
Masle-Farquhar E, Jackson KJL, Peters TJ, Al-Eryani G, Singh M, Payne KJ, Rao G, Avery DT, Apps G, Kingham J, Jara CJ, Skvortsova K, Swarbrick A, Ma CS, Suan D, Uzel G, Chua I, Leiding JW, Heiskanen K, Preece K, Kainulainen L, O'Sullivan M, Cooper MA, Seppänen MRJ, Mustjoki S, Brothers S, Vogel TP, Brink R, Tangye SG, Reed JH, Goodnow CC. STAT3 gain-of-function mutations connect leukemia with autoimmune disease by pathological NKG2D hi CD8 + T cell dysregulation and accumulation. Immunity 2022; 55:2386-2404.e8. [PMID: 36446385 DOI: 10.1016/j.immuni.2022.11.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/30/2022] [Accepted: 11/03/2022] [Indexed: 11/30/2022]
Abstract
The association between cancer and autoimmune disease is unexplained, exemplified by T cell large granular lymphocytic leukemia (T-LGL) where gain-of-function (GOF) somatic STAT3 mutations correlate with co-existing autoimmunity. To investigate whether these mutations are the cause or consequence of CD8+ T cell clonal expansions and autoimmunity, we analyzed patients and mice with germline STAT3 GOF mutations. STAT3 GOF mutations drove the accumulation of effector CD8+ T cell clones highly expressing NKG2D, the receptor for stress-induced MHC-class-I-related molecules. This subset also expressed genes for granzymes, perforin, interferon-γ, and Ccl5/Rantes and required NKG2D and the IL-15/IL-2 receptor IL2RB for maximal accumulation. Leukocyte-restricted STAT3 GOF was sufficient and CD8+ T cells were essential for lethal pathology in mice. These results demonstrate that STAT3 GOF mutations cause effector CD8+ T cell oligoclonal accumulation and that these rogue cells contribute to autoimmune pathology, supporting the hypothesis that somatic mutations in leukemia/lymphoma driver genes contribute to autoimmune disease.
Collapse
Affiliation(s)
- Etienne Masle-Farquhar
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia.
| | | | - Timothy J Peters
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Ghamdan Al-Eryani
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Mandeep Singh
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Kathryn J Payne
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
| | - Geetha Rao
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
| | - Danielle T Avery
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
| | - Gabrielle Apps
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; Australian BioResources, Moss Vale, NSW 2577, Australia
| | - Jennifer Kingham
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; Australian BioResources, Moss Vale, NSW 2577, Australia
| | - Christopher J Jara
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Ksenia Skvortsova
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Alexander Swarbrick
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Cindy S Ma
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Daniel Suan
- Westmead Clinical School, The University of Sydney, Westmead, Sydney, NSW, Australia
| | - Gulbu Uzel
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Ignatius Chua
- Canterbury Health Laboratories, Christchurch, New Zealand
| | - Jennifer W Leiding
- Division of Allergy and Immunology, Department of Pediatrics, University of South Florida, Tampa, FL, USA; Division of Allergy and Immunology, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Kaarina Heiskanen
- Children's Immunodeficiency Unit, Hospital for Children and Adolescents, and Pediatric Research Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Kahn Preece
- Department of Immunology, John Hunter Children's Hospital, Newcastle, NSW, Australia
| | - Leena Kainulainen
- Department of Pediatrics, Turku University Hospital, University of Turku, Turku, Finland
| | | | - Megan A Cooper
- Department of Pedatrics, Division of Rheumatology/Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Mikko R J Seppänen
- Rare Disease and Pediatric Research Centers, Hospital for Children and Adolescents, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | | | - Tiphanie P Vogel
- Department of Pedatrics, Division of Rheumatology/Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Robert Brink
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Stuart G Tangye
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Joanne H Reed
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Christopher C Goodnow
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; Cellular Genomics Futures Institute, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|