1
|
Liu Z, Pan C, Huang H. The role of axon guidance molecules in the pathogenesis of epilepsy. Neural Regen Res 2025; 20:1244-1257. [PMID: 39075893 DOI: 10.4103/nrr.nrr-d-23-01620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/21/2024] [Indexed: 07/31/2024] Open
Abstract
Current treatments for epilepsy can only manage the symptoms of the condition but cannot alter the initial onset or halt the progression of the disease. Consequently, it is crucial to identify drugs that can target novel cellular and molecular mechanisms and mechanisms of action. Increasing evidence suggests that axon guidance molecules play a role in the structural and functional modifications of neural networks and that the dysregulation of these molecules is associated with epilepsy susceptibility. In this review, we discuss the essential role of axon guidance molecules in neuronal activity in patients with epilepsy as well as the impact of these molecules on synaptic plasticity and brain tissue remodeling. Furthermore, we examine the relationship between axon guidance molecules and neuroinflammation, as well as the structural changes in specific brain regions that contribute to the development of epilepsy. Ample evidence indicates that axon guidance molecules, including semaphorins and ephrins, play a fundamental role in guiding axon growth and the establishment of synaptic connections. Deviations in their expression or function can disrupt neuronal connections, ultimately leading to epileptic seizures. The remodeling of neural networks is a significant characteristic of epilepsy, with axon guidance molecules playing a role in the dynamic reorganization of neural circuits. This, in turn, affects synapse formation and elimination. Dysregulation of these molecules can upset the delicate balance between excitation and inhibition within a neural network, thereby increasing the risk of overexcitation and the development of epilepsy. Inflammatory signals can regulate the expression and function of axon guidance molecules, thus influencing axonal growth, axon orientation, and synaptic plasticity. The dysregulation of neuroinflammation can intensify neuronal dysfunction and contribute to the occurrence of epilepsy. This review delves into the mechanisms associated with the pathogenicity of axon guidance molecules in epilepsy, offering a valuable reference for the exploration of therapeutic targets and presenting a fresh perspective on treatment strategies for this condition.
Collapse
Affiliation(s)
- Zheng Liu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | | | | |
Collapse
|
2
|
Duff IT, Likar R, Perruchoud C, Kampusch S, Köstenberger M, Sator S, Stremnitzer C, Wolf A, Neuwersch-Sommeregger S, Abd-Elsayed A. Clinical Efficacy of Auricular Vagus Nerve Stimulation in the Treatment of Chronic and Acute Pain: A Systematic Review and Meta-analysis. Pain Ther 2024; 13:1407-1427. [PMID: 39382792 PMCID: PMC11543973 DOI: 10.1007/s40122-024-00657-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/29/2024] [Indexed: 10/10/2024] Open
Abstract
INTRODUCTION Current guidelines for pain treatment recommend a personalized, multimodal and interdisciplinary approach as well as the use of a combination of drug and non-drug therapies. Risk factors for chronification should already be reduced in patients with acute pain, e.g., after surgery or trauma. Auricular vagus nerve stimulation (aVNS) could be an effective non-drug therapy in the multimodal treatment of chronic and acute pain. The aim of this systematic review and meta-analysis is to evaluate the clinical efficacy and safety of aVNS in treating chronic and acute pain conditions. METHODS A systematic literature search was performed regarding the application of auricular electrical stimulation in chronic and acute pain. Studies were classified according to their level of evidence (Jadad scale), scientific validity and risk of bias (RoB 2 tool) and analyzed regarding indication, method, stimulation parameters, duration of treatment and efficacy and safety. A meta-analysis on (randomized) controlled trials (using different comparators) was performed for chronic and acute pain conditions, respectively, including subgroup analysis for percutaneous (pVNS-needle electrodes) and transcutaneous (tVNS-surface electrodes) aVNS. The visual analog pain scale (VAS) was defined as primary efficacy endpoint. RESULTS A total of n = 1496 patients were treated with aVNS in 23 identified and analyzed studies in chronic pain, 12 studies in acute postoperative pain and 7 studies in experimental acute pain. Of these, seven studies for chronic pain and six studies for acute postoperative pain were included in the meta-analysis. In chronic pain conditions, including back pain, migraine and abdominal pain, a statistically significant reduction in VAS pain intensity for active compared to sham aVNS or control treatment with an effect size Hedges' g/mean difference of - 1.95 (95% confidence interval [CI]: - 3.94 to 0.04, p = 0.008) could be shown and a more favorable effect in pVNS compared to tVNS (- 5.40 [- 8.94; - 1.85] vs. - 1.00 [- 1.55; - 0.44]; p = 0.015). In acute pain conditions, single studies showed significant improvements with aVNS, e.g., in kidney donor surgery or tonsillectomy but, overall, a non-statistically significant reduction in VAS pain intensity for active compared to sham aVNS or control with - 0.70 [- 2.34; 0.93] (p = 0.15) could be observed in the meta-analysis. In acute pain results vary greatly between studies depending especially on co-medication and timepoints of assessment after surgery. A significant reduction in analgesics or opiate intake was documented in most studies evaluating this effect in chronic and acute pain. In 3 of the 12 randomized controlled trials in patients with chronic pain, a sustainable pain reduction over a period of up to 12 months was shown. Overall, aVNS was very well tolerated. CONCLUSION This systematic review and meta-analysis indicate that aVNS can be an effective and safe non-drug treatment in patients with specific chronic and acute postoperative pain conditions. Further research is needed to identify the influence of simulation parameters and find optimal and standardized treatment protocols while considering quality-of-life outcome parameters and prolonged follow-up periods. A more standardized approach and harmonization in study designs would improve comparability and robustness of outcomes.
Collapse
Affiliation(s)
- Irina T Duff
- Neurosurgery Department, Johns Hopkins University, Baltimore, MD, USA
| | - Rudolf Likar
- Department for Anesthesia and Critical Care, Klinikum Klagenfurt am Wörthersee, Klagenfurt, Austria
- Sigmund Freud University, Vienna, Austria
| | | | | | - Markus Köstenberger
- Department for Anesthesia and Critical Care, Klinikum Klagenfurt am Wörthersee, Klagenfurt, Austria
- Medical University of Graz, Graz, Austria
| | - Sabine Sator
- Department for Anesthesia, Critical Care and Pain Medicine, Medical University of Vienna, Vienna, Austria
| | | | - Andreas Wolf
- Department of Anesthesia, Krankenhaus St. Vinzenz, Zams, Austria
| | - Stefan Neuwersch-Sommeregger
- Medical University of Graz, Graz, Austria
- Department for Anesthesiology and Intensive Care, Krankenhaus der Barmherzigen Brüder, St. Veit/Glan, Austria
| | - Alaa Abd-Elsayed
- Department of Anesthesiology, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
3
|
Yang T, Liu X, Cao R, Zhou X, Li W, Wu W, Yu W, Zhang X, Guo Z, Cui S. Establishment of a Magnetically Controlled Scalable Nerve Injury Model. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405265. [PMID: 39287118 PMCID: PMC11538664 DOI: 10.1002/advs.202405265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/21/2024] [Indexed: 09/19/2024]
Abstract
Animal models of peripheral nerve injury (PNI) serve as the fundamental basis for the investigations of nerve injury, regeneration, and neuropathic pain. The injury properties of such models, including the intensity and duration, significantly influence the subsequent pathological changes, pain development, and therapeutic efficacy. However, precise control over the intensity and duration of nerve injury remains challenging within existing animal models, thereby impeding accurate and comparative assessments of relevant cases. Here, a new model that provides quantitative and off-body controllable injury properties via a magnetically controlled clamp, is presented. The clamp can be implanted onto the rat sciatic nerve and exert varying degrees of compression under the control of an external magnetic field. It is demonstrated that this model can accurately simulate various degrees of pathology of human patients by adjusting the magnetic control and reveal specific pathological changes resulting from intensity heterogeneity that are challenging to detect previously. The controllability and quantifiability of this model may significantly reduce the uncertainty of central response and inter-experimenter variability, facilitating precise investigations into nerve injury, regeneration, and pain mechanisms.
Collapse
Affiliation(s)
- Tuo Yang
- Department of Hand and Foot SurgeryChina‐Japan Union Hospital of Jilin UniversityNo.126, Xiantai StreetChangchun130033China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin ProvinceNo.126, Xiantai StreetChangchun130033China
| | - Xilin Liu
- Department of Hand and Foot SurgeryChina‐Japan Union Hospital of Jilin UniversityNo.126, Xiantai StreetChangchun130033China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin ProvinceNo.126, Xiantai StreetChangchun130033China
| | - Rangjuan Cao
- Department of Hand and Foot SurgeryChina‐Japan Union Hospital of Jilin UniversityNo.126, Xiantai StreetChangchun130033China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin ProvinceNo.126, Xiantai StreetChangchun130033China
| | - Xiongyao Zhou
- Department of Hand and Foot SurgeryChina‐Japan Union Hospital of Jilin UniversityNo.126, Xiantai StreetChangchun130033China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin ProvinceNo.126, Xiantai StreetChangchun130033China
| | - Weizhen Li
- Department of Hand and Foot SurgeryChina‐Japan Union Hospital of Jilin UniversityNo.126, Xiantai StreetChangchun130033China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin ProvinceNo.126, Xiantai StreetChangchun130033China
| | - Wenzheng Wu
- School of Mechanical and Aerospace Engineering of Jilin University5988 Renmin StreetChangchun130025China
| | - Wei Yu
- Department of Wound Repair, Plastic and Reconstructive MicrosurgeryChina‐Japan Union Hospital of Jilin UniversityNo.126, Xiantai StreetChangchun130033China
| | - Xianyu Zhang
- Department of Hand and Foot SurgeryChina‐Japan Union Hospital of Jilin UniversityNo.126, Xiantai StreetChangchun130033China
| | - Zhengxiao Guo
- Department of ChemistryThe University of Hong KongHong Kong999077China
| | - Shusen Cui
- Department of Hand and Foot SurgeryChina‐Japan Union Hospital of Jilin UniversityNo.126, Xiantai StreetChangchun130033China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin ProvinceNo.126, Xiantai StreetChangchun130033China
| |
Collapse
|
4
|
Loggia ML. "Neuroinflammation": does it have a role in chronic pain? Evidence from human imaging. Pain 2024; 165:S58-S67. [PMID: 39560416 DOI: 10.1097/j.pain.0000000000003342] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/06/2024] [Indexed: 11/20/2024]
Abstract
ABSTRACT Despite hundreds of studies demonstrating the involvement of neuron-glia-immune interactions in the establishment and/or maintenance of persistent pain behaviors in animals, the role (or even occurrence) of so-called "neuroinflammation" in human pain has been an object of contention for decades. Here, I present the results of multiple positron emission tomography (PET) studies measuring the levels of the 18 kDa translocator protein (TSPO), a putative neuroimmune marker, in individuals with various pain conditions. Overall, these studies suggest that brain TSPO PET signal: (1) is elevated, compared to healthy volunteers, in individuals with chronic low back pain (with additional elevations in spinal cord and neuroforamina), fibromyalgia, migraine and other conditions characterized by persistent pain; (2) has a spatial distribution exhibiting a degree of disorder specificity; (3) is parametrically linked to pain characteristics or comorbid symptoms (eg, nociplastic pain, fatigue, depression), as well as measures of brain function (ie, functional connectivity), in a regionally-specific manner. In this narrative, I also discuss important caveats to consider in the interpretation of this work (eg, regarding the cellular source of the signal and the complexities inherent in its acquisition and analysis). While the biological and clinical significance of these findings awaits further work, this emerging preclinical literature supports a role of neuron-glia-immune interactions as possible pathophysiological underpinnings of human chronic pain. Gaining a deeper understanding of the role of neuroimmune function in human pain would likely have important practical implications, possibly paving the way for novel interventions.
Collapse
Affiliation(s)
- Marco L Loggia
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
5
|
Lin K, Stiles J, Tambo W, Ajmal E, Piao Q, Powell K, Li C. Bimodal functions of calcitonin gene-related peptide in the brain. Life Sci 2024; 359:123177. [PMID: 39486618 DOI: 10.1016/j.lfs.2024.123177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024]
Abstract
AIMS Calcitonin gene-related peptide (CGRP) is a pluripotent neuropeptide crucial for maintaining vascular homeostasis, yet its full therapeutic potential remains incompletely exploited. Within the brain, CGRP demonstrates a distinct bimodal effect, contributing to neuroprotection in ischemic conditions while inducing neuronal sensitization and inflammation in non-ischemic settings. Despite extensive research on CGRP, the absence of a definitive determinant for this observed dichotomy has limited its potential for therapeutic applications in the brain. This review examines the effects of CGRP in both physiological and pathological conditions, aiming to identify a unifying factor that could enhance its therapeutic applicability. MATERIALS AND METHODS This comprehensive literature review analyzes the molecular pathways associated with CGRP and the specific cellular responses observed in these contexts. Additionally, the review investigates the psychological implications of CGRP in relation to cerebral perfusion levels, aiming to elucidate its underlying factors. KEY FINDINGS Reviewing the literature reveals that, elevated levels of CGRP in non-ischemic conditions exert detrimental effects on brain function, while they confer protective effects in the context of ischemia. These encompass anti-oxidative, anti-inflammatory, anti-apoptotic, and angiogenic properties, along with behavioral normalization. Current findings indicate promising therapeutic avenues for CGRP beyond the acute phases of cerebral injury, extending to neurodegenerative and psychological disorders associated with cerebral hypoperfusion, as well as chronic recovery following acute cerebral injuries. SIGNIFICANCE Improved understanding of CGRP's bimodal properties, alongside advancements in CGRP delivery methodologies and brain ischemia detection technologies, paves the way for realizing its untapped potential and broad therapeutic benefits in diverse pathological conditions.
Collapse
Affiliation(s)
- Kanheng Lin
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Emory University, Atlanta, GA, USA
| | - Jacob Stiles
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; The College of William & Mary, Williamsburg, VA, USA
| | - Willians Tambo
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA
| | - Erum Ajmal
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Division of Neurosurgery, SUNY Downstate College of Medicine, Brooklyn, NY, USA
| | - Quanyu Piao
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Keren Powell
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Chunyan Li
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA; Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| |
Collapse
|
6
|
Verma A, Kumar A, Chauhan S, Sharma N, Kalani A, Gupta PC. Interconnections of screen time with neuroinflammation. Mol Cell Biochem 2024:10.1007/s11010-024-05123-9. [PMID: 39316324 DOI: 10.1007/s11010-024-05123-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/14/2024] [Indexed: 09/25/2024]
Abstract
The increasing prevalence of screen time among modern citizens has raised concerns regarding its potential impact on neuroinflammation and overall brain health. This review examines the complex interconnections between screen time and neuroinflammatory processes, particularly in children and adolescents. We analyze existing literature that explores how excessive digital media use can lead to alterations in neurobiological pathways, potentially exacerbating inflammatory responses in the brain. Key findings suggest that prolonged exposure to screens may contribute to neuroinflammation through mechanisms such as disrupted sleep patterns, diminished cognitive engagement, and increased stress levels. Similarly, we discuss the implications of these findings for mental health and cognitive development, emphasizing the need for a balanced approach to screen time. This review highlights the necessity for further research to elucidate the causal relationships and underlying mechanisms linking screen time and neuroinflammation, thereby informing guidelines for healthy media consumption.
Collapse
Affiliation(s)
- Ashish Verma
- School of Pharmaceutical Sciences, Chhatrapati Shahu Ji Maharaj University, Kanpur, Uttar Pradesh, 208024, India
| | - Anmol Kumar
- School of Pharmaceutical Sciences, Chhatrapati Shahu Ji Maharaj University, Kanpur, Uttar Pradesh, 208024, India
| | - Satendra Chauhan
- School of Pharmaceutical Sciences, Chhatrapati Shahu Ji Maharaj University, Kanpur, Uttar Pradesh, 208024, India
| | - Nisha Sharma
- School of Pharmaceutical Sciences, Chhatrapati Shahu Ji Maharaj University, Kanpur, Uttar Pradesh, 208024, India
| | - Anuradha Kalani
- Disease Biology Lab, School of Life Sciences and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur, Uttar Pradesh, 208024, India
| | - Prakash Chandra Gupta
- School of Pharmaceutical Sciences, Chhatrapati Shahu Ji Maharaj University, Kanpur, Uttar Pradesh, 208024, India.
| |
Collapse
|
7
|
Xie W, Koppula S, Kale MB, Ali LS, Wankhede NL, Umare MD, Upaganlawar AB, Abdeen A, Ebrahim EE, El-Sherbiny M, Behl T, Shen B, Singla RK. Unraveling the nexus of age, epilepsy, and mitochondria: exploring the dynamics of cellular energy and excitability. Front Pharmacol 2024; 15:1469053. [PMID: 39309002 PMCID: PMC11413492 DOI: 10.3389/fphar.2024.1469053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/20/2024] [Indexed: 09/25/2024] Open
Abstract
Epilepsy, a complex neurological condition marked by recurring seizures, is increasingly recognized for its intricate relationship with mitochondria, the cellular powerhouses responsible for energy production and calcium regulation. This review offers an in-depth examination of the interplay between epilepsy, mitochondrial function, and aging. Many factors might account for the correlation between epilepsy and aging. Mitochondria, integral to cellular energy dynamics and neuronal excitability, perform a critical role in the pathophysiology of epilepsy. The mechanisms linking epilepsy and mitochondria are multifaceted, involving mitochondrial dysfunction, reactive oxygen species (ROS), and mitochondrial dynamics. Mitochondrial dysfunction can trigger seizures by compromising ATP production, increasing glutamate release, and altering ion channel function. ROS, natural byproducts of mitochondrial respiration, contribute to oxidative stress and neuroinflammation, critical factors in epileptogenesis. Mitochondrial dynamics govern fusion and fission processes, influence seizure threshold and calcium buffering, and impact seizure propagation. Energy demands during seizures highlight the critical role of mitochondrial ATP generation in maintaining neuronal membrane potential. Mitochondrial calcium handling dynamically modulates neuronal excitability, affecting synaptic transmission and action potential generation. Dysregulated mitochondrial calcium handling is a hallmark of epilepsy, contributing to excitotoxicity. Epigenetic modifications in epilepsy influence mitochondrial function through histone modifications, DNA methylation, and non-coding RNA expression. Potential therapeutic avenues targeting mitochondria in epilepsy include mitochondria-targeted antioxidants, ketogenic diets, and metabolic therapies. The review concludes by outlining future directions in epilepsy research, emphasizing integrative approaches, advancements in mitochondrial research, and ethical considerations. Mitochondria emerge as central players in the complex narrative of epilepsy, offering profound insights and therapeutic potential for this challenging neurological disorder.
Collapse
Affiliation(s)
- Wen Xie
- Department of Pharmacy and Institutes for Systems Genetics, Center for High Altitude Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University, Chungju-Si, Republic of Korea
| | - Mayur B. Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, India
| | - Lashin S. Ali
- Department of Basic Medical Sciences, Faculty of Dentistry, Al-Ahliyya Amman University, Amman, Jordan
| | | | - Mohit D. Umare
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, India
| | | | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Elturabi E. Ebrahim
- Medical-Surgical Nursing Department, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, India
| | - Bairong Shen
- Institutes for Systems Genetics, West China Tianfu Hospital, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Rajeev K. Singla
- Department of Pharmacy and Institutes for Systems Genetics, Center for High Altitude Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| |
Collapse
|
8
|
Keifi Bajestani A, Alavi MS, Etemad L, Roohbakhsh A. Role of orphan G-protein coupled receptors in tissue ischemia: A comprehensive review. Eur J Pharmacol 2024; 978:176762. [PMID: 38906238 DOI: 10.1016/j.ejphar.2024.176762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 06/23/2024]
Abstract
Ischemic events lead to many diseases and deaths worldwide. Ischemia/reperfusion (I/R) occurs due to reduced blood circulation in tissues followed by blood reflow. Reoxygenation of ischemic tissues is characterized by oxidative stress, inflammation, energy distress, and endoplasmic reticulum stress. There are still no adequate clinical protocols or pharmacological approaches to address the consequences of I/R damage. G protein-coupled receptors (GPCRs) are important therapeutic targets. They compose a large family of seven transmembrane-spanning proteins that are involved in many biological functions. Orphan GPCRs are a large subgroup of these receptors expressed in different organs. In the present review, we summarized the literature regarding the role of orphan GPCRs in I/R in different organs. We focused on the effect of these receptors on modulating cellular and molecular processes underlying ischemia including apoptosis, inflammation, and autophagy. The study showed that GPR3, GPR4, GPR17, GPR30, GPR31, GPR35, GPR37, GPR39, GPR55, GPR65, GPR68, GPR75, GPR81, and GPR91 are involved in ischemic events, mainly in the brain and heart. These receptors offer new possibilities for treating I/R injuries in the body.
Collapse
Affiliation(s)
- Alireza Keifi Bajestani
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh Sadat Alavi
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Etemad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Roohbakhsh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Chen CC, Ke CH, Wu CH, Lee HF, Chao Y, Tsai MC, Shyue SK, Chen SF. Transient receptor potential vanilloid 1 inhibition reduces brain damage by suppressing neuronal apoptosis after intracerebral hemorrhage. Brain Pathol 2024; 34:e13244. [PMID: 38308041 PMCID: PMC11328348 DOI: 10.1111/bpa.13244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/19/2024] [Indexed: 02/04/2024] Open
Abstract
Intracerebral hemorrhage (ICH) induces a complex sequence of apoptotic cascades and inflammatory responses, leading to neurological impairment. Transient receptor potential vanilloid 1 (TRPV1), a nonselective cation channel with high calcium permeability, has been implicated in neuronal apoptosis and inflammatory responses. This study used a mouse ICH model and neuronal cultures to examine whether TRPV1 activation exacerbates brain damage and neurological deficits by promoting neuronal apoptosis and neuroinflammation. ICH was induced by injecting collagenase in both wild-type (WT) C57BL/6 mice and TRPV1-/- mice. Capsaicin (CAP; a TRPV1 agonist) or capsazepine (a TRPV1 antagonist) was administered by intracerebroventricular injection 30 min before ICH induction in WT mice. The effects of genetic deletion or pharmacological inhibition of TRPV1 using CAP or capsazepine on motor deficits, histological damage, apoptotic responses, blood-brain barrier (BBB) permeability, and neuroinflammatory reactions were explored. The antiapoptotic mechanisms and calcium influx induced by TRPV1 inactivation were investigated in cultured hemin-stimulated neurons. TRPV1 expression was upregulated in the hemorrhagic brain, and TRPV1 was expressed in neurons, microglia, and astrocytes after ICH. Genetic deletion of TRPV1 significantly attenuated motor deficits and brain atrophy for up to 28 days. Deletion of TRPV1 also reduced brain damage, neurodegeneration, microglial activation, cytokine expression, and cell apoptosis at 1 day post-ICH. Similarly, the administration of CAP ameliorated brain damage, neurodegeneration, brain edema, BBB permeability, and cytokine expression at 1 day post-ICH. In primary neuronal cultures, pharmacological inactivation of TRPV1 by CAP attenuated neuronal vulnerability to hemin-induced injury, suppressed apoptosis, and preserved mitochondrial integrity in vitro. Mechanistically, CAP reduced hemin-stimulated calcium influx and prevented the phosphorylation of CaMKII in cultured neurons, which was associated with reduced activation of P38 and c-Jun NH2-terminal kinase mitogen-activated protein kinase signaling. Our results suggest that TRPV1 inhibition may be a potential therapy for ICH by suppressing mitochondria-related neuronal apoptosis.
Collapse
Affiliation(s)
- Chien-Cheng Chen
- Department of Physical Medicine and Rehabilitation, Cheng Hsin General Hospital, Taipei, Taiwan, Republic of China
- Graduate Institute of Gerontology and Health Care Management, Chang Gung University of Science and Technology, Taoyuan, Taiwan, Republic of China
| | - Chia-Hua Ke
- Department of Physical Medicine and Rehabilitation, Cheng Hsin General Hospital, Taipei, Taiwan, Republic of China
| | - Chun-Hu Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Hung-Fu Lee
- Department of Neurosurgery, Cheng Hsin General Hospital, Taipei, Taiwan, Republic of China
- National Taipei University of Nursing and Health Sciences, Taipei, Taiwan, Republic of China
| | - Yuan Chao
- Department of Medical Education, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan, Republic of China
| | - Min-Chien Tsai
- Department of Physiology and Biophysics, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Song-Kun Shyue
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Szu-Fu Chen
- Department of Physical Medicine and Rehabilitation, Cheng Hsin General Hospital, Taipei, Taiwan, Republic of China
- Department of Physiology and Biophysics, National Defense Medical Center, Taipei, Taiwan, Republic of China
| |
Collapse
|
10
|
Malinowski MN, Gish BE, Moreira AM, Karcz M, Bracero LA, Deer TR. Electrical neuromodulation for the treatment of chronic pain: derivation of the intrinsic barriers, outcomes and considerations of the sustainability of implantable spinal cord stimulation therapies. Expert Rev Med Devices 2024; 21:741-753. [PMID: 39044340 DOI: 10.1080/17434440.2024.2382234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024]
Abstract
INTRODUCTION For over 60 years, spinal cord stimulation has endured as a therapy through innovation and novel developments. Current practice of neuromodulation requires proper patient selection, risk mitigation and use of innovation. However, there are tangible and intangible challenges in physiology, clinical science and within society. AREAS COVERED We provide a narrative discussion regarding novel topics in the field especially over the last decade. We highlight the challenges in the patient care setting including selection, as well as economic and socioeconomic challenges. Physician training challenges in neuromodulation is explored as well as other factors related to the use of neuromodulation such as novel indications and economics. We also discuss the concepts of technology and healthcare data. EXPERT OPINION Patient safety and durable outcomes are the mainstay goal for neuromodulation. Substantial work is needed to assimilate data for larger and more relevant studies reflecting a population. Big data and global interconnectivity efforts provide substantial opportunity to reinvent our scientific approach, data analysis and its management to maximize outcomes and minimize risk. As improvements in data analysis become the standard of innovation and physician training meets demand, we expect to see an expansion of novel indications and its use in broader cohorts.
Collapse
Affiliation(s)
| | - Brandon E Gish
- Lexington Clinic Interventional Pain, Lexington, KY, USA
| | - Alexandra M Moreira
- Department of Anesthesiology, Rush University Medical Center, Chicago, IL, USA
| | - Marcin Karcz
- The Spine and Nerve Centers of the Virginias, Charleston, WV, USA
| | - Lucas A Bracero
- The Spine and Nerve Centers of the Virginias, Charleston, WV, USA
| | - Timothy R Deer
- The Spine and Nerve Centers of the Virginias, Charleston, WV, USA
| |
Collapse
|
11
|
Likar R, Perruchoud C, Kampusch S, Köstenberger M, Sator S, Stremnitzer C, Wolf A, Neuwersch-Sommeregger S. [Clinical efficacy of auricular vagus nerve stimulation in the treatment of chronic and acute pain : A systematic review]. Schmerz 2024; 38:267-278. [PMID: 36592212 PMCID: PMC11271441 DOI: 10.1007/s00482-022-00686-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2022] [Indexed: 01/03/2023]
Abstract
BACKGROUND Current guidelines recommend a personalized, multimodal, and interdisciplinary approach for the treatment of chronic pain. Already in the acute treatment of postoperative pain, it can be useful to minimize risk factors for chronification. Auricular vagus nerve stimulation (aVNS) could be an effective non-drug therapy for the treatment of chronic and acute pain. AIM OF THE WORK The aim of this systematic review is to evaluate the clinical efficacy of aVNS in chronic and acute pain as well as its effect on medication intake. MATERIALS AND METHODS A systematic literature search was carried out on the application of auricular electrical stimulation in chronic and acute pain. Studies were classified according to their level of evidence and evaluated via the Jadad scale as well as their scientific validity, and then analyzed in terms of indication, method, stimulation parameters, duration of treatment, efficacy, and safety. RESULTS Twenty studies on chronic pain indications, ten studies on acute postoperative pain, as well as seven studies on experimental acute pain were identified and analyzed. The search revealed a total of n = 1105 aVNS-treated patients. The best evidence on the efficacy of aVNS is available for the indications chronic low back pain, chronic cervical syndrome, chronic abdominal pain, and chronic migraine as well as acute postoperative pain in oocyte aspiration, laparoscopic nephrectomy, and open colorectal surgery. Additionally a significant reduction in analgesic or opiate intake was evident in most studies. In three randomized controlled trials in chronic pain patients, a sustainable pain reduction over a period of up to 12 months was shown. Overall, aVNS was very well tolerated. CONCLUSION This review indicates that aVNS can be a complementary and effective non-drug treatment for patients with chronic and acute postoperative pain. Future studies in these indications should focus on standardizing and optimizing treatment parameters, inclusion of quality-of-life outcome parameters, and longer follow-up periods to better understand the sustainable therapeutic effect of aVNS.
Collapse
Affiliation(s)
- Rudolf Likar
- Abteilung für Anästhesiologie und Intensivmedizin, Klinikum Klagenfurt am Wörthersee, Feschnigstraße 11, 9020, Klagenfurt, Österreich.
- Paracelsus Medizinische Privatuniversität, Salzburg, Österreich.
| | | | | | - Markus Köstenberger
- Abteilung für Anästhesiologie und Intensivmedizin, Klinikum Klagenfurt am Wörthersee, Feschnigstraße 11, 9020, Klagenfurt, Österreich
| | - Sabine Sator
- Universitätsklinik für Anästhesie, allgemeine Intensivmedizin und Schmerztherapie, Medizinische Universität Wien, Wien, Österreich
| | | | - Andreas Wolf
- Abteilung für Anästhesie, Krankenhaus St. Vinzenz Zams, Zams, Österreich
| | - Stefan Neuwersch-Sommeregger
- Abteilung für Anästhesiologie und Intensivmedizin, Klinikum Klagenfurt am Wörthersee, Feschnigstraße 11, 9020, Klagenfurt, Österreich
- Medizinische Universität Graz, Graz, Österreich
| |
Collapse
|
12
|
Liang W, Zhang T, Zhang M, Gao J, Huang R, Huang X, Chen J, Cheng L, Zhang L, Huang Z, Tan Q, Jia Z, Zhang S. Daphnetin Ameliorates Neuropathic Pain via Regulation of Microglial Responses and Glycerophospholipid Metabolism in the Spinal Cord. Pharmaceuticals (Basel) 2024; 17:789. [PMID: 38931456 PMCID: PMC11207025 DOI: 10.3390/ph17060789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Neuropathic pain (NP) is a common type of chronic pain caused by a lesion or disease of the somatosensory nervous system. This condition imposes a considerable economic burden on society and patients. Daphnetin (DAP) is a natural product isolated from a Chinese medicinal herb with various pharmacological activities, such as anti-inflammatory and analgesic properties. However, the underlying mechanisms of these effects are not fully understood. In the present study, we aimed to investigate DAP's anti-inflammatory and analgesic effects and explore the underlying mechanisms of action. The NP model was established as chronic constrictive injury (CCI) of the sciatic nerve, and pain sensitivity was evaluated by measuring the mechanical withdrawal threshold (MWT) and thermal withdrawal threshold (TWT). The activation of microglia in the spinal dorsal horn was measured via immunofluorescence staining. Protein levels were measured using a western blot assay. Using a mass-spectrometry proteomics platform and an LC-MS/MS-based metabolomics platform, proteins and metabolites in spinal cord tissues were extracted and analyzed. DAP treatment ameliorated the MWT and TWT in CCI rats. The expression of IL-1β, IL-6, and TNF-α was inhibited by DAP treatment in the spinal cords of CCI rats. Moreover, the activation of microglia was suppressed after DAP treatment. The elevation in the levels of P2X4, IRF8, IRF5, BDNF, and p-P38/P38 in the spinal cord caused by CCI was inhibited by DAP. Proteomics and metabolomics results indicated that DAP ameliorated the imbalance of glycerophospholipid metabolism in the spinal cords of CCI rats. DAP can potentially ameliorate NP by regulating microglial responses and glycerophospholipid metabolism in the CCI model. This study provides a pharmacological justification for using DAP in the management of NP.
Collapse
Affiliation(s)
- Wulin Liang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Tianrui Zhang
- Shanxi Provincial Key Laboratory of Drug Toxicology and Preclinical Research of Radiopharmaceuticals, Key Laboratory of Radiotoxicology and Preclinical Evaluation of Radiopharmaceuticals in China, National Atomic Energy Agency Nuclear Technology Research and Development Center, Institute of Radiology and Environmental Medicine, China Institute For Radiation Protection, Taiyuan 030006, China
| | - Mingqian Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jiahui Gao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Rikang Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiyan Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jianhua Chen
- Shanxi Provincial Key Laboratory of Drug Toxicology and Preclinical Research of Radiopharmaceuticals, Key Laboratory of Radiotoxicology and Preclinical Evaluation of Radiopharmaceuticals in China, National Atomic Energy Agency Nuclear Technology Research and Development Center, Institute of Radiology and Environmental Medicine, China Institute For Radiation Protection, Taiyuan 030006, China
| | - Lu Cheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Liyuan Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhishan Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Qiling Tan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhanhong Jia
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Shuofeng Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| |
Collapse
|
13
|
de Lima AMDL, de Lima Rosa G, Guzzo EFM, Padilha RB, de Araujo MC, da Silva RC, Coitinho AS, Van Der Sand ST. Effect of prednisolone in a kindling model of epileptic seizures in rats on cytokine and intestinal microbiota diversity. Epilepsy Behav 2024; 155:109800. [PMID: 38657485 DOI: 10.1016/j.yebeh.2024.109800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/26/2024] [Accepted: 04/14/2024] [Indexed: 04/26/2024]
Abstract
Epilepsy is a neurological disease characterized by spontaneous and recurrent seizures. Epileptic seizures can be initiated and facilitated by inflammatory mechanisms. As the dysregulation of the immune system would be involved in epileptogenesis, it is suggested that anti-inflammatory medications could impact epileptic seizures. These medications could potentially have a side effect by altering the structure and composition of the intestinal microbiota. These changes can disrupt microbial homeostasis, leading to dysbiosis and potentially exacerbating intestinal inflammation. We hypothesize that prednisolone may affect the development of epileptic seizures, potentially influencing the diversity of the intestinal microbiota and the regulation of pro-inflammatory cytokines in intestinal tissue. This study aimed to evaluate the effects of prednisolone treatment on epileptic seizures and investigate the effect of this drug on the bacterial diversity of the intestinal microbiota and markers of inflammatory processes in intestinal tissue. We used Male Wistar rat littermates (n = 31, 90-day-old) divided into four groups: positive control treated with 2 mg/kg of diazepam (n = 6), negative control treated with 0.9 g% sodium chloride (n = 6), and the remaining two groups were subjected to treatment with prednisolone, with one receiving 1 mg/kg (n = 9) and the other 5 mg/kg (n = 10). All administrations were performed intraperitoneally (i.p.) over 14 days. To induce the chronic model of epileptic seizures, we administered pentylenetetrazole (PTZ) 25 mg/kg i.p. on alternate days. Seizure latency (n = 6 - 10) and TNF-α and IL-1β concentrations from intestinal samples were measured by ELISA (n = 6 per group), and intestinal microbiota was evaluated with intergenic ribosomal RNA (rRNA) spacer (RISA) analysis (n = 6 per group). The prednisolone treatment demonstrated an increase in the latency time of epileptic seizures and TNF-α and IL-1β concentrations compared to controls. There was no statistically significant difference in intestinal microbiota diversity between the different treatments. However, there was a strong positive correlation between microbial diversity and TNF-α and IL-1β concentrations. The administration of prednisolone yields comparable results to diazepam on increasing latency between seizures, exhibiting promise for its use in clinical studies. Although there were no changes in intestinal microbial diversity, the increase in the TNF-α and IL-1β cytokines in intestinal tissue may be linked to immune system signaling pathways involving the intestinal microbiota. Additional research is necessary to unravel the intricacies of these pathways and to understand their implications for clinical practice.
Collapse
Affiliation(s)
- Amanda Muliterno Domingues Lourenço de Lima
- Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Ramiro Barcelos Street, 2.600, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Ramiro Barcelos Street, 2.600, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Ramiro Barcelos Street, 2.600, Porto Alegre, RS, Brazil
| | - Gabriel de Lima Rosa
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Ramiro Barcelos Street, 2.600, Porto Alegre, RS, Brazil
| | - Edson Fernando Müller Guzzo
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Ramiro Barcelos Street, 2.600, Porto Alegre, RS, Brazil
| | - Rafael Bremm Padilha
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Ramiro Barcelos Street, 2.600, Porto Alegre, RS, Brazil
| | - Milena Conci de Araujo
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Ramiro Barcelos Street, 2.600, Porto Alegre, RS, Brazil
| | - Rodrigo Costa da Silva
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Ramiro Barcelos Street, 2.600, Porto Alegre, RS, Brazil
| | - Adriana Simon Coitinho
- Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Ramiro Barcelos Street, 2.600, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Ramiro Barcelos Street, 2.600, Porto Alegre, RS, Brazil; Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Ramiro Barcelos Street, 2.600, Porto Alegre, RS, Brazil.
| | - Sueli Teresinha Van Der Sand
- Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Ramiro Barcelos Street, 2.600, Porto Alegre, RS, Brazil; Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Ramiro Barcelos Street, 2.600, Porto Alegre, RS, Brazil
| |
Collapse
|
14
|
Qiu Y, Song B, Xie M, Tao Y, Yin Z, Wang M, Ma C, Chen Z, Wang Z. Causal links between gut microbiomes, cytokines and risk of different subtypes of epilepsy: a Mendelian randomization study. Front Neurosci 2024; 18:1397430. [PMID: 38855442 PMCID: PMC11157073 DOI: 10.3389/fnins.2024.1397430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/13/2024] [Indexed: 06/11/2024] Open
Abstract
Objective Recent research suggests a potential link between the gut microbiome (GM) and epilepsy. We undertook a Mendelian randomization (MR) study to determine the possible causal influence of GM on epilepsy and its various subtypes, and explore whether cytokines act as mediators. Methods We utilized Genome-Wide Association Study (GWAS) summary statistics to examine the causal relationships between GM, cytokines, and four epilepsy subtypes. Furthermore, we assessed whether cytokines mediate the relationship between GM and epilepsy. Significant GMs were further investigated using transcriptomic MR analysis with genes mapped from the FUMA GWAS. Sensitivity analyses and reverse MR were conducted for validation, and false discovery rate (FDR) correction was applied for multiple comparisons. Results We pinpointed causal relationships between 30 GMs and various epilepsy subtypes. Notably, the Family Veillonellaceae (OR:1.03, 95%CI:1.02-1.05, p = 0.0003) consistently showed a strong positive association with child absence epilepsy, and this causal association endured even after FDR correction (p-FDR < 0.05). Seven cytokines were significantly associated with epilepsy and its subtypes. A mediating role for cytokines has not been demonstrated. Sensitivity tests validated the primary MR analysis outcomes. Additionally, no reverse causality was detected between significant GMs and epilepsy. Of the mapped genes of notable GMs, genes like BLK, FDFT1, DOK2, FAM167A, ZSCAN9, RNGTT, RBM47, DNAJC21, SUMF1, TCF20, GLO1, TMTC1, VAV2, and RNF14 exhibited a profound correlation with the risk factors of epilepsy subtypes. Conclusion Our research validates the causal role of GMs and cytokines in various epilepsy subtypes, and there has been no evidence that cytokines play a mediating role between GM and epilepsy. This could provide fresh perspectives for the prevention and treatment of epilepsy.
Collapse
Affiliation(s)
- Youjia Qiu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Bingyi Song
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Minjia Xie
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuchen Tao
- Suzhou Medical College of Soochow University, Suzhou, China
| | - Ziqian Yin
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Menghan Wang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chao Ma
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhouqing Chen
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhong Wang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
15
|
Chen TB, Yang CC, Tsai IJ, Yang HW, Hsu YC, Chang CM, Yang CP. Neuroimmunological effects of omega-3 fatty acids on migraine: a review. Front Neurol 2024; 15:1366372. [PMID: 38770523 PMCID: PMC11103013 DOI: 10.3389/fneur.2024.1366372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/12/2024] [Indexed: 05/22/2024] Open
Abstract
Migraine is a highly prevalent disease worldwide, imposing enormous clinical and economic burdens on individuals and societies. Current treatments exhibit limited efficacy and acceptability, highlighting the need for more effective and safety prophylactic approaches, including the use of nutraceuticals for migraine treatment. Migraine involves interactions within the central and peripheral nervous systems, with significant activation and sensitization of the trigeminovascular system (TVS) in pain generation and transmission. The condition is influenced by genetic predispositions and environmental factors, leading to altered sensory processing. The neuroinflammatory response is increasingly recognized as a key event underpinning the pathophysiology of migraine, involving a complex neuro-glio-vascular interplay. This interplay is partially mediated by neuropeptides such as calcitonin gene receptor peptide (CGRP), pituitary adenylate cyclase activating polypeptide (PACAP) and/or cortical spreading depression (CSD) and involves oxidative stress, mitochondrial dysfunction, nucleotide-binding domain-like receptor family pyrin domain containing-3 (NLRP3) inflammasome formation, activated microglia, and reactive astrocytes. Omega-3 polyunsaturated fatty acids (PUFAs), particularly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), crucial for the nervous system, mediate various physiological functions. Omega-3 PUFAs offer cardiovascular, neurological, and psychiatric benefits due to their potent anti-inflammatory, anti-nociceptive, antioxidant, and neuromodulatory properties, which modulate neuroinflammation, neurogenic inflammation, pain transmission, enhance mitochondrial stability, and mood regulation. Moreover, specialized pro-resolving mediators (SPMs), a class of PUFA-derived lipid mediators, regulate pro-inflammatory and resolution pathways, playing significant anti-inflammatory and neurological roles, which in turn may be beneficial in alleviating the symptomatology of migraine. Omega-3 PUFAs impact various neurobiological pathways and have demonstrated a lack of major adverse events, underscoring their multifaceted approach and safety in migraine management. Although not all omega-3 PUFAs trials have shown beneficial in reducing the symptomatology of migraine, further research is needed to fully establish their clinical efficacy and understand the precise molecular mechanisms underlying the effects of omega-3 PUFAs and PUFA-derived lipid mediators, SPMs on migraine pathophysiology and progression. This review highlights their potential in modulating brain functions, such as neuroimmunological effects, and suggests their promise as candidates for effective migraine prophylaxis.
Collapse
Affiliation(s)
- Ting-Bin Chen
- Department of Neurology, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Cheng-Chia Yang
- Department of Healthcare Administration, Asia University, Taichung, Taiwan
| | - I-Ju Tsai
- Department of Neurology, Kuang Tien General Hospital, Taichung, Taiwan
- Department of Medical Research, Kuang Tien General Hospital, Taichung, Taiwan
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
| | - Hao-Wen Yang
- Department of Family Medicine, Kuang Tien General Hospital, Taichung, Taiwan
| | - Yung-Chu Hsu
- Division of Neurology, Department of Internal Medicine, Ditmanson Medical Foundation ChiaYi Chistian Hospital, Chiayi, Taiwan
| | - Ching-Mao Chang
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chun-Pai Yang
- Department of Neurology, Kuang Tien General Hospital, Taichung, Taiwan
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
16
|
Ravizza T, Scheper M, Di Sapia R, Gorter J, Aronica E, Vezzani A. mTOR and neuroinflammation in epilepsy: implications for disease progression and treatment. Nat Rev Neurosci 2024; 25:334-350. [PMID: 38531962 DOI: 10.1038/s41583-024-00805-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 03/28/2024]
Abstract
Epilepsy remains a major health concern as anti-seizure medications frequently fail, and there is currently no treatment to stop or prevent epileptogenesis, the process underlying the onset and progression of epilepsy. The identification of the pathological processes underlying epileptogenesis is instrumental to the development of drugs that may prevent the generation of seizures or control pharmaco-resistant seizures, which affect about 30% of patients. mTOR signalling and neuroinflammation have been recognized as critical pathways that are activated in brain cells in epilepsy. They represent a potential node of biological convergence in structural epilepsies with either a genetic or an acquired aetiology. Interventional studies in animal models and clinical studies give strong support to the involvement of each pathway in epilepsy. In this Review, we focus on available knowledge about the pathophysiological features of mTOR signalling and the neuroinflammatory brain response, and their interactions, in epilepsy. We discuss mitigation strategies for each pathway that display therapeutic effects in experimental and clinical epilepsy. A deeper understanding of these interconnected molecular cascades could enhance our strategies for managing epilepsy. This could pave the way for new treatments to fill the gaps in the development of preventative or disease-modifying drugs, thus overcoming the limitations of current symptomatic medications.
Collapse
Affiliation(s)
- Teresa Ravizza
- Department of Acute Brain and Cardiovascular Injury, Mario Negri Institute for Pharmacological Research IRCCS, Milano, Italy
| | - Mirte Scheper
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Rossella Di Sapia
- Department of Acute Brain and Cardiovascular Injury, Mario Negri Institute for Pharmacological Research IRCCS, Milano, Italy
| | - Jan Gorter
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands.
| | - Annamaria Vezzani
- Department of Acute Brain and Cardiovascular Injury, Mario Negri Institute for Pharmacological Research IRCCS, Milano, Italy.
| |
Collapse
|
17
|
He Y, Ouyang K, Yang H, Wang L, Wang X, Li D, Li L. The impact of ammonia and microcystin-LR on neurobehavior and glutamate/gamma-aminobutyric acid balance in female zebrafish (Danio rerio): ROS and inflammation as key pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170914. [PMID: 38354808 DOI: 10.1016/j.scitotenv.2024.170914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/25/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024]
Abstract
Ammonia and microcystin-LR (MC-LR) are both toxins that can be in eutrophic waters during cyanobacterial blooms. While previous studies have focused on the effects of ammonia exposure on fish neurobehavioral toxicity, little attention has been given to the effects of MC-LR and combined exposures to both. This study exposed adult female zebrafish to ammonia (30 mg/L) and MC-LR (10 μg/L) alone and in combination for 30 days to investigate their neurotoxic effects and underlying mechanisms. Behavioral results showed that exposure to ammonia and MC-LR, both alone and in combination, led to decreased locomotor activity and increased anxiety in fish. Histomorphological analysis revealed the formation of thrombi and vacuolization in the brain across all exposure groups. Exposure to ammonia and MC-LR resulted in significant increases in MDA contents, decreases in Mn-SOD activities, and alterations in GSH contents compared to the control. Single and combined exposure to ammonia and MC-LR also induced the release of inflammatory factors (IL-1β and TNF-α) by activating the NOD/NF-κB signaling pathway. Furthermore, both ammonia and MC-LR significantly changed the expression of genes related to the glutamatergic and GABAergic systems, elevated Glu and GABA contents, as well as increased the Glu/GABA ratio, indicating that a shift towards increased Glu levels. Overall, these findings suggested that exposure to MC-LR and ammonia, individually and in combination, could decrease locomotor activity and increase anxiety of female zebrafish. This was likely due to brain damage from over-activated ROS and the release of pro-inflammatory cytokines, which led to a disruption in the balance of glutamatergic and GABAergic systems. However, there was no significant interaction between MC-LR and ammonia in fish neurobehavioral toxicity.
Collapse
Affiliation(s)
- Ya He
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Kang Ouyang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Hui Yang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Liangmou Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xinyu Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Dapeng Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China
| | - Li Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China.
| |
Collapse
|
18
|
Sanz P, Rubio T, Garcia-Gimeno MA. Neuroinflammation and Epilepsy: From Pathophysiology to Therapies Based on Repurposing Drugs. Int J Mol Sci 2024; 25:4161. [PMID: 38673747 PMCID: PMC11049926 DOI: 10.3390/ijms25084161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Neuroinflammation and epilepsy are different pathologies, but, in some cases, they are so closely related that the activation of one of the pathologies leads to the development of the other. In this work, we discuss the three main cell types involved in neuroinflammation, namely (i) reactive astrocytes, (ii) activated microglia, and infiltration of (iii) peripheral immune cells in the central nervous system. Then, we discuss how neuroinflammation and epilepsy are interconnected and describe the use of different repurposing drugs with anti-inflammatory properties that have been shown to have a beneficial effect in different epilepsy models. This review reinforces the idea that compounds designed to alleviate seizures need to target not only the neuroinflammation caused by reactive astrocytes and microglia but also the interaction of these cells with infiltrated peripheral immune cells.
Collapse
Affiliation(s)
- Pascual Sanz
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Jaime Roig 11, 46010 Valencia, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - Teresa Rubio
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Jaime Roig 11, 46010 Valencia, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
- Faculty of Health Science, Universidad Europea de Valencia, 46010 Valencia, Spain
| | - Maria Adelaida Garcia-Gimeno
- Department of Biotechnology, Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural, Universitat Politécnica de València, 46022 Valencia, Spain;
| |
Collapse
|
19
|
Smith PA. BDNF in Neuropathic Pain; the Culprit that Cannot be Apprehended. Neuroscience 2024; 543:49-64. [PMID: 38417539 DOI: 10.1016/j.neuroscience.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/20/2024] [Indexed: 03/01/2024]
Abstract
In males but not in females, brain derived neurotrophic factor (BDNF) plays an obligatory role in the onset and maintenance of neuropathic pain. Afferent terminals of injured peripheral nerves release colony stimulating factor (CSF-1) and other mediators into the dorsal horn. These transform the phenotype of dorsal horn microglia such that they express P2X4 purinoceptors. Activation of these receptors by neuron-derived ATP promotes BDNF release. This microglial-derived BDNF increases synaptic activation of excitatory dorsal horn neurons and decreases that of inhibitory neurons. It also alters the neuronal chloride gradient such the normal inhibitory effect of GABA is converted to excitation. By as yet undefined processes, this attenuated inhibition increases NMDA receptor function. BDNF also promotes the release of pro-inflammatory cytokines from astrocytes. All of these actions culminate in the increase dorsal horn excitability that underlies many forms of neuropathic pain. Peripheral nerve injury also alters excitability of structures in the thalamus, cortex and mesolimbic system that are responsible for pain perception and for the generation of co-morbidities such as anxiety and depression. The weight of evidence from male rodents suggests that this preferential modulation of excitably of supra-spinal pain processing structures also involves the action of microglial-derived BDNF. Possible mechanisms promoting the preferential release of BDNF in pain signaling structures are discussed. In females, invading T-lymphocytes increase dorsal horn excitability but it remains to be determined whether similar processes operate in supra-spinal structures. Despite its ubiquitous role in pain aetiology neither BDNF nor TrkB receptors represent potential therapeutic targets.
Collapse
Affiliation(s)
- Peter A Smith
- Neuroscience and Mental Health Institute and Department of Pharmacology, University of Alberta, Edmonton, Canada.
| |
Collapse
|
20
|
Liu Y, Gong Z, Zhai D, Yang C, Lu G, Wang S, Xiao S, Li C, Chen L, Lin X, Zhang S, Yu S, Dong Z. Unveiling the therapeutic potential of Dl-3-n-butylphthalide in NTG-induced migraine mouse: activating the Nrf2 pathway to alleviate oxidative stress and neuroinflammation. J Headache Pain 2024; 25:50. [PMID: 38565987 PMCID: PMC10986135 DOI: 10.1186/s10194-024-01750-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/12/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Migraine stands as a prevalent primary headache disorder, with prior research highlighting the significant involvement of oxidative stress and inflammatory pathways in its pathogenesis and chronicity. Existing evidence indicates the capacity of Dl-3-n-butylphthalide (NBP) to mitigate oxidative stress and inflammation, thereby conferring neuroprotective benefits in many central nervous system diseases. However, the specific therapeutic implications of NBP in the context of migraine remain to be elucidated. METHODS We established a C57BL/6 mouse model of chronic migraine (CM) using recurrent intraperitoneal injections of nitroglycerin (NTG, 10 mg/kg), and prophylactic treatment was simulated by administering NBP (30 mg/kg, 60 mg/kg, 120 mg/kg) by gavage prior to each NTG injection. Mechanical threshold was assessed using von Frey fibers, and photophobia and anxious behaviours were assessed using a light/dark box and elevated plus maze. Expression of c-Fos, calcitonin gene-related peptide (CGRP), Nucleus factor erythroid 2-related factor 2 (Nrf2) and related pathway proteins in the spinal trigeminal nucleus caudalis (SP5C) were detected by Western blotting (WB) or immunofluorescence (IF). The expression of IL-1β, IL-6, TNF-α, Superoxide dismutase (SOD) and malondialdehyde (MDA) in SP5C and CGRP in plasma were detected by ELISA. A reactive oxygen species (ROS) probe was used to detect the expression of ROS in the SP5C. RESULTS At the end of the modelling period, chronic migraine mice showed significantly reduced mechanical nociceptive thresholds, as well as photophobic and anxious behaviours. Pretreatment with NBP attenuated nociceptive sensitization, photophobia, and anxiety in the model mice, reduced expression levels of c-Fos and CGRP in the SP5C and activated Nrf2 and its downstream proteins HO-1 and NQO-1. By measuring the associated cytokines, we also found that NBP reduced levels of oxidative stress and inflammation. Most importantly, the therapeutic effect of NBP was significantly reduced after the administration of ML385 to inhibit Nrf2. CONCLUSIONS Our data suggest that NBP may alleviate migraine by activating the Nrf2 pathway to reduce oxidative stress and inflammation in migraine mouse models, confirming that it may be a potential drug for the treatment of migraine.
Collapse
Affiliation(s)
- Yingyuan Liu
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Zihua Gong
- Department of Neurology, Bethune International Peace Hospital, Shijiazhuang, Hebei 050082, Hebei, China
| | - Deqi Zhai
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Chunxiao Yang
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Guangshuang Lu
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Shuqing Wang
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Shaobo Xiao
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Chenhao Li
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Ludan Chen
- Clinical School of Anhui Medical University, The Third Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Xiaoxue Lin
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Shuhua Zhang
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Shengyuan Yu
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China.
- Medical School of Chinese PLA, Beijing, 100853, China.
| | - Zhao Dong
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China.
- Medical School of Chinese PLA, Beijing, 100853, China.
| |
Collapse
|
21
|
Abdulsahib WK, Al-Radeef MY. Effect of quercetin against pilocarpine-induced epilepsy in mice. J Adv Pharm Technol Res 2024; 15:63-69. [PMID: 38903552 PMCID: PMC11186541 DOI: 10.4103/japtr.japtr_496_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 06/22/2024] Open
Abstract
Globally, an estimated 50 million people are affected by epilepsy, a persistent, noncommunicable neurological ailment. Quercetin (QR) is a prevalent flavonoid substance extensively dispersed throughout agricultural life. In a pilocarpine (PILO)-induced epilepsy model in mice, this investigation aimed to determine whether QR has an antiepileptic effect and explore its putative mechanism of action. Fifty mice were allocated into seven groups, with six in every group. The first group received physiological saline, the second group was given diazepam (1 mg/kg), and four groups were administered QR at 50, 100, 150, and 200 mg/kg, respectively. The seventh group (the induction group) received normal saline. After 30 min, all groups were injected intraperitoneally with PILO. The impact of QR on motor coordination was assessed using the rotarod test, while measures such as latency to first seizure, generalized tonic-clonic seizures (GTCS), number of convulsions, and mortality were recorded. Serum samples were collected through the retro-orbital route to measure prostaglandin E2 (PGE2) and interleukin 1 beta (IL-1β) levels. QR showed no significant difference in motor impairment, but increased duration until the initial seizure occurred and declined the mortality rate, duration of GTCS, and incidence of convulsions. All doses of QR significantly reduced PGE2 levels (P ≤ 0.05). However, QR's effect on IL-1β reduction was statistically insignificant (P > 0.05). QR's capacity to inhibit PILO-induced epilepsy by decreasing IL-1 and PGE2 levels is supported by this study. The results of this work indicate that QR could have a function to treat acute epilepsy.
Collapse
Affiliation(s)
- Waleed K. Abdulsahib
- Department of Pharmacology and Toxicology, College of Pharmacy, Al Farahidi University, Baghdad, Iraq
| | - Mohanad Y. Al-Radeef
- Department of Clinical Pharmacy, College of Pharmacy, Tikrit University, Tikrit, Iraq
| |
Collapse
|
22
|
Rittmannsberger H, Barth M, Lamprecht B, Malik P, Yazdi-Zorn K. [Interaction of somatic findings and psychiatric symptoms in COVID-19. A scoping review]. NEUROPSYCHIATRIE : KLINIK, DIAGNOSTIK, THERAPIE UND REHABILITATION : ORGAN DER GESELLSCHAFT OSTERREICHISCHER NERVENARZTE UND PSYCHIATER 2024; 38:1-23. [PMID: 38055146 DOI: 10.1007/s40211-023-00487-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 10/24/2023] [Indexed: 12/07/2023]
Abstract
An infection with SARS-CoV‑2 can affect the central nervous system, leading to neurological as well as psychiatric symptoms. In this respect, mechanisms of inflammation seem to be of much greater importance than the virus itself. This paper deals with the possible contributions of organic changes to psychiatric symptomatology and deals especially with delirium, cognitive symptoms, depression, anxiety, posttraumatic stress disorder and psychosis. Processes of neuroinflammation with infection of capillary endothelial cells and activation of microglia and astrocytes releasing high amounts of cytokines seem to be of key importance in all kinds of disturbances. They can lead to damage in grey and white matter, impairment of cerebral metabolism and loss of connectivity. Such neuroimmunological processes have been described as a organic basis for many psychiatric disorders, as affective disorders, psychoses and dementia. As the activation of the glia cells can persist for a long time after the offending agent has been cleared, this can contribute to long term sequalae of the infection.
Collapse
Affiliation(s)
- Hans Rittmannsberger
- Abteilung Psychiatrie und psychotherapeutische Medizin, Pyhrn-Eisenwurzen Klinikum Steyr, Steyr, Österreich.
| | - Martin Barth
- Abteilung Psychiatrie und psychotherapeutische Medizin, Pyhrn-Eisenwurzen Klinikum Steyr, Steyr, Österreich
| | - Bernd Lamprecht
- Med Campus III, Universitätsklinik für Innere Medizin mit Schwerpunkt Pneumologie, Kepler Universitätsklinikum GmbH, Linz, Österreich
- Medizinische Fakultät, Johannes Kepler Universität Linz, Linz, Österreich
| | - Peter Malik
- Abteilung Psychiatrie und psychotherapeutische Medizin, Pyhrn-Eisenwurzen Klinikum Steyr, Steyr, Österreich
| | - Kurosch Yazdi-Zorn
- Neuromed Campus, Klinik für Psychiatrie mit Schwerpunkt Suchtmedizin, Kepler Universitätsklinikum GmbH, Linz, Österreich
- Medizinische Fakultät, Johannes Kepler Universität Linz, Linz, Österreich
| |
Collapse
|
23
|
Chaudhary A, Mehra P, Keshri AK, Rawat SS, Mishra A, Prasad A. The Emerging Role of Toll-Like Receptor-Mediated Neuroinflammatory Signals in Psychiatric Disorders and Acquired Epilepsy. Mol Neurobiol 2024; 61:1527-1542. [PMID: 37725212 DOI: 10.1007/s12035-023-03639-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/05/2023] [Indexed: 09/21/2023]
Abstract
The new and evolving paradigms of psychiatric disorders pathogenesis are deeply inclined toward chronic inflammation that leads to disturbances in the neuronal networks of patients. A strong association has been established between the inflammation and neurobiology of depression which is mediated by different toll-like receptors (TLRs). TLRs and associated signalling pathways are identified as key immune regulators to stress and infections in neurobiology. They are a special class of transmembrane proteins, which are one of the broadly studied members of the Pattern Recognition Patterns family. This review focuses on summarizing the important findings on the role of TLRs associated with psychotic disorders and acquired epilepsy. This review also shows the promising potential of TLRs in immune response mediated through antidepressant therapies and TLRs polymorphism associated with various psychotic disorders. Moreover, this also sheds light on future directions to further target TLRs as a therapeutic approach for psychiatric disorders.
Collapse
Affiliation(s)
- Anubha Chaudhary
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175005, India
| | - Parul Mehra
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175005, India
| | - Anand K Keshri
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175005, India
| | - Suraj S Rawat
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175005, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, 342011, India
| | - Amit Prasad
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175005, India.
- Indian Knowledge System and Mental Health Application Centre, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175005, India.
- Human Computer Interface Centre, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175005, India.
| |
Collapse
|
24
|
Karan AA, Spivak YS, Suleymanova EM, Gerasimov KA, Bolshakov AP, Vinogradova LV. Distant neuroinflammation acutely induced by focal brain injury and its control by endocannabinoid system. Exp Neurol 2024; 373:114679. [PMID: 38190933 DOI: 10.1016/j.expneurol.2024.114679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/16/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024]
Abstract
INTRODUCTION We studied spatiotemporal features of acute transcriptional inflammatory response induced by a focal brain injury in distant uninjured neuronal tissue and a role of endocannabinoid (eCB) system in its control. MATERIALS AND METHODS A focal excitotoxic lesion was induced by a unilateral injection of kainate in the dorsal hippocampus of awake Wistar rats. During acute post-injury period (3 h and 24 h post-injection), mRNA levels of genes associated with neuroinflammation (Il1b, Il6, Tnf, Ccl2; Cx3cl1, Zc3 h12a, Tgfb1) and eCB receptors of CB1 and CB2 types (Cnr1 and Cnr2) in intact regions of the hippocampus and neocortex were measured using qPCR. Occurrence of acute symptomatic seizures was controlled electrographically. To modulate eCB signaling during injury and acute post-injury period, antagonists (AM251, AM630) and agonist (WIN55-212-2) of eCB receptors were administered before the injury induction. RESULTS Local intrahippocampal injury triggered widespread time- and region-dependent neuroinflammation in undamaged brain regions remote from the lesion site. The distant areas of the hippocampus and hippocampal meninges exhibited early (3 h) transient upregulation of pro- and anti-inflammatory cytokines simultaneously with occurrence of acute symptomatic seizures. The neocortex and its meninges showed minor neuroinflammation early after injury (3 h) but later (24 h) significantly upregulated several genes, mainly with anti-inflammatory properties. Focal lesion also changed expression of eCB receptors in the distant extra-lesional regions - CB1 receptors at 3 h and both CB1 and CB2 receptors at 24 h. Within the hippocampus, significant regional differences in constitutive and post-injury expression CB1 receptors were found. Pharmacological blockade of eCB receptors during injury and early post-injury period lengthened hippocampal neuroinflammation and reversed upregulation of anti-inflammatory molecules in the neocortex. CONCLUSION The findings show that focal brain injury rapidly triggers widespread parenchymal and extraparenchymal neuroinflammation. The early injury-induced response is likely to represent neurogenic neuroinflammation produced by network hyperexcitability (acute symptomatic seizures). Activation of eCB signaling during acute phase of the brain injury is important for initiation of adaptive anti-inflammatory processes and prevention of chronic pathologic neuroinflammation in distant uninjured structures. However, the beneficial role of injury-induced eCB activity appears to depend on many factors including time, brain region, eCB tone etc.
Collapse
Affiliation(s)
- Anna A Karan
- Department of Molecular Neurobiology, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova Street 5A, Moscow 117485, Russia
| | - Yulia S Spivak
- Department of Molecular Neurobiology, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova Street 5A, Moscow 117485, Russia
| | - Elena M Suleymanova
- Department of Molecular Neurobiology, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova Street 5A, Moscow 117485, Russia
| | - Konstantin A Gerasimov
- Department of Molecular Neurobiology, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova Street 5A, Moscow 117485, Russia; Pirogov Russian National Research Medical University, Ostrovityanova street 1, Moscow 117997, Russia
| | - Alex P Bolshakov
- Department of Molecular Neurobiology, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova Street 5A, Moscow 117485, Russia
| | - Lyudmila V Vinogradova
- Department of Molecular Neurobiology, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova Street 5A, Moscow 117485, Russia.
| |
Collapse
|
25
|
Portugal CC. Ascorbate and its transporter SVCT2: The dynamic duo's integrated roles in CNS neurobiology and pathophysiology. Free Radic Biol Med 2024; 212:448-462. [PMID: 38182073 DOI: 10.1016/j.freeradbiomed.2023.12.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/11/2023] [Accepted: 12/27/2023] [Indexed: 01/07/2024]
Abstract
Ascorbate is a small antioxidant molecule essential for the proper development and function of the brain. Ascorbate is transported into the brain and between brain cells via the Sodium vitamin C co-transporter 2 (SVCT2). This review provides an in-depth analysis of ascorbate's physiology, including how ascorbate is absorbed from food into the CNS, emphasizing cellular mechanisms of ascorbate recycling and release in different CNS compartments. Additionally, the review delves into the various functions of ascorbate in the CNS, including its impact on epigenetic modulation, synaptic plasticity, and neurotransmission. It also emphasizes ascorbate's role on neuromodulation and its involvement in neurodevelopmental processes and disorders. Furthermore, it analyzes the relationship between the duo ascorbate/SVCT2 in neuroinflammation, particularly its effects on microglial activation, cytokine release, and oxidative stress responses, highlighting its association with neurodegenerative diseases, such as Alzheimer's disease (AD). Overall, this review emphasizes the crucial role of the dynamic duo ascorbate/SVCT2 in CNS physiology and pathology and the need for further research to fully comprehend its significance in a neurobiological context and its potential therapeutic applications.
Collapse
Affiliation(s)
- Camila C Portugal
- I3s - Instituto de Investigação e Inovação em Saúde da Universidade do Porto and IBMC - Instituto de Biologia Molecular e Celular, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.
| |
Collapse
|
26
|
Lisek M, Tomczak J, Boczek T, Zylinska L. Calcium-Associated Proteins in Neuroregeneration. Biomolecules 2024; 14:183. [PMID: 38397420 PMCID: PMC10887043 DOI: 10.3390/biom14020183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/27/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
The dysregulation of intracellular calcium levels is a critical factor in neurodegeneration, leading to the aberrant activation of calcium-dependent processes and, ultimately, cell death. Ca2+ signals vary in magnitude, duration, and the type of neuron affected. A moderate Ca2+ concentration can initiate certain cellular repair pathways and promote neuroregeneration. While the peripheral nervous system exhibits an intrinsic regenerative capability, the central nervous system has limited self-repair potential. There is evidence that significant variations exist in evoked calcium responses and axonal regeneration among neurons, and individual differences in regenerative capacity are apparent even within the same type of neurons. Furthermore, some studies have shown that neuronal activity could serve as a potent regulator of this process. The spatio-temporal patterns of calcium dynamics are intricately controlled by a variety of proteins, including channels, ion pumps, enzymes, and various calcium-binding proteins, each of which can exert either positive or negative effects on neural repair, depending on the cellular context. In this concise review, we focus on several calcium-associated proteins such as CaM kinase II, GAP-43, oncomodulin, caldendrin, calneuron, and NCS-1 in order to elaborate on their roles in the intrinsic mechanisms governing neuronal regeneration following traumatic damage processes.
Collapse
Affiliation(s)
| | | | | | - Ludmila Zylinska
- Department of Molecular Neurochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (M.L.); (J.T.); (T.B.)
| |
Collapse
|
27
|
Amaya-Rodriguez CA, Carvajal-Zamorano K, Bustos D, Alegría-Arcos M, Castillo K. A journey from molecule to physiology and in silico tools for drug discovery targeting the transient receptor potential vanilloid type 1 (TRPV1) channel. Front Pharmacol 2024; 14:1251061. [PMID: 38328578 PMCID: PMC10847257 DOI: 10.3389/fphar.2023.1251061] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/14/2023] [Indexed: 02/09/2024] Open
Abstract
The heat and capsaicin receptor TRPV1 channel is widely expressed in nerve terminals of dorsal root ganglia (DRGs) and trigeminal ganglia innervating the body and face, respectively, as well as in other tissues and organs including central nervous system. The TRPV1 channel is a versatile receptor that detects harmful heat, pain, and various internal and external ligands. Hence, it operates as a polymodal sensory channel. Many pathological conditions including neuroinflammation, cancer, psychiatric disorders, and pathological pain, are linked to the abnormal functioning of the TRPV1 in peripheral tissues. Intense biomedical research is underway to discover compounds that can modulate the channel and provide pain relief. The molecular mechanisms underlying temperature sensing remain largely unknown, although they are closely linked to pain transduction. Prolonged exposure to capsaicin generates analgesia, hence numerous capsaicin analogs have been developed to discover efficient analgesics for pain relief. The emergence of in silico tools offered significant techniques for molecular modeling and machine learning algorithms to indentify druggable sites in the channel and for repositioning of current drugs aimed at TRPV1. Here we recapitulate the physiological and pathophysiological functions of the TRPV1 channel, including structural models obtained through cryo-EM, pharmacological compounds tested on TRPV1, and the in silico tools for drug discovery and repositioning.
Collapse
Affiliation(s)
- Cesar A. Amaya-Rodriguez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Departamento de Fisiología y Comportamiento Animal, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Ciudad de Panamá, Panamá
| | - Karina Carvajal-Zamorano
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Daniel Bustos
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado Universidad Católica del Maule, Talca, Chile
- Laboratorio de Bioinformática y Química Computacional, Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca, Chile
| | - Melissa Alegría-Arcos
- Núcleo de Investigación en Data Science, Facultad de Ingeniería y Negocios, Universidad de las Américas, Santiago, Chile
| | - Karen Castillo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado Universidad Católica del Maule, Talca, Chile
| |
Collapse
|
28
|
Smith PA. The Known Biology of Neuropathic Pain and Its Relevance to Pain Management. Can J Neurol Sci 2024; 51:32-39. [PMID: 36799022 DOI: 10.1017/cjn.2023.10] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Patients with neuropathic pain are heterogeneous in pathophysiology, etiology, and clinical presentation. Signs and symptoms are determined by the nature of the injury and factors such as genetics, sex, prior injury, age, culture, and environment. Basic science has provided general information about pain etiology by studying the consequences of peripheral injury in rodent models. This is associated with the release of inflammatory cytokines, chemokines, and growth factors that sensitize sensory nerve endings, alter gene expression, promote post-translational modification of proteins, and alter ion channel function. This leads to spontaneous activity in primary afferent neurons that is crucial for the onset and persistence of pain and the release of secondary mediators such as colony-stimulating factor 1 from primary afferent terminals. These promote the release of tertiary mediators such as brain-derived neurotrophic factor and interleukin-1β from microglia and astrocytes. Tertiary mediators facilitate the transmission of nociceptive information at the spinal, thalamic, and cortical levels. For the most part, these findings have failed to identify new therapeutic approaches. More recent basic science has better mirrored the clinical situation by addressing the pathophysiology associated with specific types of injury, refinement of methodology, and attention to various contributory factors such as sex. Improved quantification of sensory profiles in each patient and their distribution into defined clusters may improve translation between basic science and clinical practice. If such quantification can be traced back to cellular and molecular aspects of pathophysiology, this may lead to personalized medicine approaches that dictate a rational therapeutic approach for each individual.
Collapse
Affiliation(s)
- Peter A Smith
- Neuroscience and Mental Health Institute and Department of Pharmacology, University of Alberta, Edmonton, Canada
| |
Collapse
|
29
|
Beach SR, Luccarelli J, Praschan N, Fusunyan M, Fricchione GL. Molecular and immunological origins of catatonia. Schizophr Res 2024; 263:169-177. [PMID: 36966063 PMCID: PMC10517087 DOI: 10.1016/j.schres.2023.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/27/2023]
Abstract
Catatonia occurs secondary to both primary psychiatric and neuromedical etiologies. Emerging evidence suggests possible linkages between causes of catatonia and neuroinflammation. These include obvious infectious and inflammatory etiologies, common neuromedical illnesses such as delirium, and psychiatric entities such as depression and autism-spectrum disorders. Symptoms of sickness behavior, thought to be a downstream effect of the cytokine response, are common in many of these etiologies and overlap significantly with symptoms of catatonia. Furthermore, there are syndromes that overlap with catatonia that some would consider variants, including neuroleptic malignant syndrome (NMS) and akinetic mutism, which may also have neuroinflammatory underpinnings. Low serum iron, a common finding in NMS and malignant catatonia, may be caused by the acute phase response. Cellular hits involving either pathogen-associated molecular patterns (PAMP) danger signals or the damage-associated molecular patterns (DAMP) danger signals of severe psychosocial stress may set the stage for a common pathway immunoactivation state that could lower the threshold for a catatonic state in susceptible individuals. Immunoactivation leading to dysfunction in the anterior cingulate cortex (ACC)/mid-cingulate cortex (MCC)/medial prefrontal cortex (mPFC)/paralimbic cortico-striato-thalamo-cortical (CSTC) circuit, involved in motivation and movement, may be particularly important in generating the motor and behavioral symptoms of catatonia.
Collapse
Affiliation(s)
- Scott R Beach
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - James Luccarelli
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Nathan Praschan
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Mark Fusunyan
- Department of Psychiatry, Santa Clara Valley Medical Center, San Jose, CA, USA
| | - Gregory L Fricchione
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
30
|
Zhang X, Tang B, Guo J. Parkinson's disease and gut microbiota: from clinical to mechanistic and therapeutic studies. Transl Neurodegener 2023; 12:59. [PMID: 38098067 PMCID: PMC10722742 DOI: 10.1186/s40035-023-00392-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Abstract
Parkinson's disease (PD) is one of the most prevalent neurodegenerative diseases. The typical symptomatology of PD includes motor symptoms; however, a range of nonmotor symptoms, such as intestinal issues, usually occur before the motor symptoms. Various microorganisms inhabiting the gastrointestinal tract can profoundly influence the physiopathology of the central nervous system through neurological, endocrine, and immune system pathways involved in the microbiota-gut-brain axis. In addition, extensive evidence suggests that the gut microbiota is strongly associated with PD. This review summarizes the latest findings on microbial changes in PD and their clinical relevance, describes the underlying mechanisms through which intestinal bacteria may mediate PD, and discusses the correlations between gut microbes and anti-PD drugs. In addition, this review outlines the status of research on microbial therapies for PD and the future directions of PD-gut microbiota research.
Collapse
Affiliation(s)
- Xuxiang Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China.
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China.
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China.
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
31
|
Siriratnam P, Huda S, Butzkueven H, van der Walt A, Jokubaitis V, Monif M. A comprehensive review of the advances in neuromyelitis optica spectrum disorder. Autoimmun Rev 2023; 22:103465. [PMID: 37852514 DOI: 10.1016/j.autrev.2023.103465] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/13/2023] [Indexed: 10/20/2023]
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is a rare relapsing neuroinflammatory autoimmune astrocytopathy, with a predilection for the optic nerves and spinal cord. Most cases are characterised by aquaporin-4-antibody positivity and have a relapsing disease course, which is associated with accrual of disability. Although the prognosis in NMOSD has improved markedly over the past few years owing to advances in diagnosis and therapeutics, it remains a severe disease. In this article, we review the evolution of our understanding of NMOSD, its pathogenesis, clinical features, disease course, treatment options and associated symptoms. We also address the gaps in knowledge and areas for future research focus.
Collapse
Affiliation(s)
- Pakeeran Siriratnam
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Saif Huda
- Department of Neurology, Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Helmut Butzkueven
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Anneke van der Walt
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Vilija Jokubaitis
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Mastura Monif
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, Victoria, Australia; Department of Neurology, The Royal Melbourne Hospital, Parkville, VIC, Australia.
| |
Collapse
|
32
|
Luinenburg MJ, Scheper M, Sørensen FNF, Anink JJ, Van Hecke W, Korshunova I, Jansen FE, Riney K, van Eijsden P, Gosselaar P, Mills JD, Kalf RS, Zimmer TS, Broekaart DWM, Khodosevich K, Aronica E, Mühlebner A. Loss of maturity and homeostatic functions in Tuberous Sclerosis Complex-derived astrocytes. Front Cell Neurosci 2023; 17:1284394. [PMID: 38089143 PMCID: PMC10713821 DOI: 10.3389/fncel.2023.1284394] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/24/2023] [Indexed: 10/15/2024] Open
Abstract
INTRODUCTION Constitutive activation of the mTOR pathway, as observed in Tuberous Sclerosis Complex (TSC), leads to glial dysfunction and subsequent epileptogenesis. Although astrocytes are considered important mediators for synaptic clearance and phagocytosis, little is known on how astrocytes contribute to the epileptogenic network. METHODS We employed singlenuclei RNA sequencing and a hybrid fetal calf serum (FCS)/FCS-free cell culture model to explore the capacity of TSC-derived astrocytes to maintain glutamate homeostasis and clear debris in their environment. RESULTS We found that TSC astrocytes show reduced maturity on RNA and protein level as well as the inability to clear excess glutamate through the loss of both enzymes and transporters complementary to a reduction of phagocytic capabilities. DISCUSSION Our study provides evidence of mechanistic alterations in TSC astrocytes, underscoring the significant impairment of their supportive functions. These insights enhance our understanding of TSC pathophysiology and hold potential implications for future therapeutic interventions.
Collapse
Affiliation(s)
- Mark J Luinenburg
- Amsterdam Neuroscience, Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Mirte Scheper
- Amsterdam Neuroscience, Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Frederik N F Sørensen
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jasper J Anink
- Amsterdam Neuroscience, Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Wim Van Hecke
- ERN EpiCare, Department of Pathology, Brain Center, University Medical Center, Utrecht, Netherlands
| | - Irina Korshunova
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Floor E Jansen
- ERN EpiCare, Department of Child Neurology, Brain Center, University Medical Center, Utrecht, Netherlands
| | - Kate Riney
- Faculty of Medicine, The University of Queensland, Herston, QLD, Australia
- Neurosciences Unit, Queensland Children's Hospital, South Brisbane, QLD, Australia
| | - Pieter van Eijsden
- Department of Neurosurgery, University Medical Center, Utrecht, Netherlands
| | - Peter Gosselaar
- Department of Neurosurgery, University Medical Center, Utrecht, Netherlands
| | - James D Mills
- Amsterdam Neuroscience, Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- UCL Queen Square Institute of Neurology, London, United Kingdom
- Chalfont Centre for Epilepsy, Buckinghamshire, United Kingdom
| | - Rozemarijn S Kalf
- Amsterdam Neuroscience, Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Till S Zimmer
- Amsterdam Neuroscience, Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Diede W M Broekaart
- Amsterdam Neuroscience, Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Konstantin Khodosevich
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Eleonora Aronica
- Amsterdam Neuroscience, Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, Netherlands
| | - Angelika Mühlebner
- ERN EpiCare, Department of Pathology, Brain Center, University Medical Center, Utrecht, Netherlands
| |
Collapse
|
33
|
Shehata AH, Anter AF, Ahmed ASF. Role of SIRT1 in sepsis-induced encephalopathy: Molecular targets for future therapies. Eur J Neurosci 2023; 58:4211-4235. [PMID: 37840012 DOI: 10.1111/ejn.16167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/17/2023]
Abstract
Sepsis induces neuroinflammation, BBB disruption, cerebral hypoxia, neuronal mitochondrial dysfunction, and cell death causing sepsis-associated encephalopathy (SAE). These pathological consequences lead to short- and long-term neurobehavioural deficits. Till now there is no specific treatment that directly improves SAE and its associated behavioural impairments. In this review, we discuss the underlying mechanisms of sepsis-induced brain injury with a focus on the latest progress regarding neuroprotective effects of SIRT1 (silent mating type information regulation-2 homologue-1). SIRT1 is an NAD+ -dependent class III protein deacetylase. It is able to modulate multiple downstream signals (including NF-κB, HMGB, AMPK, PGC1α and FoxO), which are involved in the development of SAE by its deacetylation activity. There are multiple recent studies showing the neuroprotective effects of SIRT1 in neuroinflammation related diseases. The proposed neuroprotective action of SIRT1 is meant to bring a promising therapeutic strategy for managing SAE and ameliorating its related behavioural deficits.
Collapse
Affiliation(s)
- Alaa H Shehata
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Aliaa F Anter
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Al-Shaimaa F Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
34
|
Paula DD, França M, Leão L, Maciel A, Moura T, de Moraes S, Bahia C, Borges R, Batista E, Passos A, Oliveira K, Herculano A. Total rupture of Achilles tendon induces inflammatory response and glial activation on the spinal cord of mice. Braz J Med Biol Res 2023; 56:e12391. [PMID: 37851789 PMCID: PMC10578131 DOI: 10.1590/1414-431x2023e12391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 09/02/2023] [Indexed: 10/20/2023] Open
Abstract
Rupture of Achilles tendon is a common accident affecting professional and recreational athletes. Acute and chronic pain are symptoms commonly observed in patients with rupture. However, few studies have investigated whether Achilles tendon rupture is able to promote disorders in the central nervous system (CNS). Therefore, the current study aimed to evaluate nociceptive alterations and inflammatory response in the L5 lumbar segment of Balb/c mice spinal cord after Achilles tendon rupture. We found increased algesia in the paw of the ruptured group on the 7th and 14th days post-tenotomy compared with the control group. This phenomenon was accompanied by overexpression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase-2 (NOS-2) as well as hyperactivation of astrocytes and microglia in nociceptive areas of L5 spinal cord as evidenced by intense GFAP and IBA-1 immunostaining, respectively. Biochemical studies also demonstrated increased levels of nitrite in the L5 spinal cord of tenotomized animals compared with the control group. Thus, we have demonstrated for the first time that total rupture of the Achilles tendon induced inflammatory response and nitrergic and glial activation in the CNS in the L5 spinal cord region.
Collapse
Affiliation(s)
- D.R. De Paula
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
| | - M.S. França
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
| | - L.K.R. Leão
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
| | - A.A. Maciel
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
| | - T.A.A. Moura
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
| | - S.A.S. de Moraes
- Instituto de Ciências da Saúde, Universidade Federal do Pará, Belém, PA, Brasil
| | - C.P. Bahia
- Instituto de Ciências da Saúde, Universidade Federal do Pará, Belém, PA, Brasil
| | - R.S. Borges
- Instituto de Ciências da Saúde, Universidade Federal do Pará, Belém, PA, Brasil
| | - E.J.O. Batista
- Núcleo de Medicina Tropical, Universidade Federal do Pará, Belém, PA, Brasil
| | - A.C.F. Passos
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
| | - K.R.H.M. Oliveira
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
| | - A.M. Herculano
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
| |
Collapse
|
35
|
Chen O, Luo X, Ji RR. Macrophages and microglia in inflammation and neuroinflammation underlying different pain states. MEDICAL REVIEW (2021) 2023; 3:381-407. [PMID: 38283253 PMCID: PMC10811354 DOI: 10.1515/mr-2023-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/26/2023] [Indexed: 01/30/2024]
Abstract
Pain is a main symptom in inflammation, and inflammation induces pain via inflammatory mediators acting on nociceptive neurons. Macrophages and microglia are distinct cell types, representing immune cells and glial cells, respectively, but they share similar roles in pain regulation. Macrophages are key regulators of inflammation and pain. Macrophage polarization plays different roles in inducing and resolving pain. Notably, macrophage polarization and phagocytosis can be induced by specialized pro-resolution mediators (SPMs). SPMs also potently inhibit inflammatory and neuropathic pain via immunomodulation and neuromodulation. In this review, we discuss macrophage signaling involved in pain induction and resolution, as well as in maintaining physiological pain. Microglia are macrophage-like cells in the central nervous system (CNS) and drive neuroinflammation and pathological pain in various inflammatory and neurological disorders. Microglia-produced inflammatory cytokines can potently regulate excitatory and inhibitory synaptic transmission as neuromodulators. We also highlight sex differences in macrophage and microglial signaling in inflammatory and neuropathic pain. Thus, targeting macrophage and microglial signaling in distinct locations via pharmacological approaches, including immunotherapies, and non-pharmacological approaches will help to control chronic inflammation and chronic pain.
Collapse
Affiliation(s)
- Ouyang Chen
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Xin Luo
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, USA
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Ru-Rong Ji
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
36
|
Nazari S, Pourmand SM, Motevaseli E, Hassanzadeh G. Mesenchymal stem cells (MSCs) and MSC-derived exosomes in animal models of central nervous system diseases: Targeting the NLRP3 inflammasome. IUBMB Life 2023; 75:794-810. [PMID: 37278718 DOI: 10.1002/iub.2759] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/02/2023] [Indexed: 06/07/2023]
Abstract
The NLRP3 (NOD-, LRR-, and pyrin domain-containing protein 3) inflammasome is a multimeric protein complex that is engaged in the innate immune system and plays a vital role in inflammatory reactions. Activation of the NLRP3 inflammasome and subsequent release of proinflammatory cytokines can be triggered by microbial infection or cellular injury. The NLRP3 inflammasome has been implicated in the pathogenesis of many disorders affecting the central nervous system (CNS), ranging from stroke, traumatic brain injury, and spinal cord injury to Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, and depression. Furthermore, emerging evidence has suggested that mesenchymal stem cells (MSCs) and their exosomes may modulate NLRP3 inflammasome activation in a way that might be promising for the therapeutic management of CNS diseases. In the present review, particular focus is placed on highlighting and discussing recent scientific evidence regarding the regulatory effects of MSC-based therapies on the NLRP3 inflammasome activation and their potential to counteract proinflammatory responses and pyroptotic cell death in the CNS, thereby achieving neuroprotective impacts and improvement in behavioral impairments.
Collapse
Affiliation(s)
- Shahrzad Nazari
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mahmoud Pourmand
- School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Hassanzadeh
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
Smith PA. Neuropathic pain; what we know and what we should do about it. FRONTIERS IN PAIN RESEARCH 2023; 4:1220034. [PMID: 37810432 PMCID: PMC10559888 DOI: 10.3389/fpain.2023.1220034] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Neuropathic pain can result from injury to, or disease of the nervous system. It is notoriously difficult to treat. Peripheral nerve injury promotes Schwann cell activation and invasion of immunocompetent cells into the site of injury, spinal cord and higher sensory structures such as thalamus and cingulate and sensory cortices. Various cytokines, chemokines, growth factors, monoamines and neuropeptides effect two-way signalling between neurons, glia and immune cells. This promotes sustained hyperexcitability and spontaneous activity in primary afferents that is crucial for onset and persistence of pain as well as misprocessing of sensory information in the spinal cord and supraspinal structures. Much of the current understanding of pain aetiology and identification of drug targets derives from studies of the consequences of peripheral nerve injury in rodent models. Although a vast amount of information has been forthcoming, the translation of this information into the clinical arena has been minimal. Few, if any, major therapeutic approaches have appeared since the mid 1990's. This may reflect failure to recognise differences in pain processing in males vs. females, differences in cellular responses to different types of injury and differences in pain processing in humans vs. animals. Basic science and clinical approaches which seek to bridge this knowledge gap include better assessment of pain in animal models, use of pain models which better emulate human disease, and stratification of human pain phenotypes according to quantitative assessment of signs and symptoms of disease. This can lead to more personalized and effective treatments for individual patients. Significance statement: There is an urgent need to find new treatments for neuropathic pain. Although classical animal models have revealed essential features of pain aetiology such as peripheral and central sensitization and some of the molecular and cellular mechanisms involved, they do not adequately model the multiplicity of disease states or injuries that may bring forth neuropathic pain in the clinic. This review seeks to integrate information from the multiplicity of disciplines that seek to understand neuropathic pain; including immunology, cell biology, electrophysiology and biophysics, anatomy, cell biology, neurology, molecular biology, pharmacology and behavioral science. Beyond this, it underlines ongoing refinements in basic science and clinical practice that will engender improved approaches to pain management.
Collapse
Affiliation(s)
- Peter A. Smith
- Neuroscience and Mental Health Institute and Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
38
|
Wen B, Pan Y, Cheng J, Xu L, Xu J. The Role of Neuroinflammation in Complex Regional Pain Syndrome: A Comprehensive Review. J Pain Res 2023; 16:3061-3073. [PMID: 37701560 PMCID: PMC10493102 DOI: 10.2147/jpr.s423733] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/26/2023] [Indexed: 09/14/2023] Open
Abstract
Complex Regional Pain Syndrome (CRPS) is an excess and/or prolonged pain and inflammation condition that follows an injury to a limb. The pathogenesis of CRPS is multifaceted that remains incompletely understood. Neuroinflammation is an inflammatory response in the peripheral and central nervous systems. Dysregulated neuroinflammation plays a crucial role in the initiation and maintenance of pain and nociceptive neuronal sensitization, which may contribute to the transition from acute to chronic pain and the perpetuation of chronic pain in CRPS. The key features of neuroinflammation encompass infiltration and activation of inflammatory cells and the production of inflammatory mediators in both the central and peripheral nervous systems. This article reviews the role of neuroinflammation in the onset and progression of CRPS from six perspectives: neurogenic inflammation, neuropeptides, glial cells, immune cells, cytokines, and keratinocytes. The objective is to provide insights that can inform future research and development of therapeutic targets for CRPS.
Collapse
Affiliation(s)
- Bei Wen
- Department of Anesthesiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, People’s Republic of China
| | - Yinbing Pan
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People’s Republic of China
| | - Jianguo Cheng
- Department of Pain Management, Cleveland Clinic, Cleveland, OH, 44195, USA
- Department of Neuroscience, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Li Xu
- Department of Anesthesiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, People’s Republic of China
| | - Jijun Xu
- Department of Pain Management, Cleveland Clinic, Cleveland, OH, 44195, USA
- Department of Inflammation and Immunity; Cleveland Clinic, Cleveland, OH, 44195, USA
| |
Collapse
|
39
|
Yu C, Deng XJ, Xu D. Microglia in epilepsy. Neurobiol Dis 2023; 185:106249. [PMID: 37536386 DOI: 10.1016/j.nbd.2023.106249] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/07/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023] Open
Abstract
Epilepsy is one of most common chronic neurological disorders, and the antiseizure medications developed by targeting neurocentric mechanisms have not effectively reduced the proportion of patients with drug-resistant epilepsy. Further exploration of the cellular or molecular mechanism of epilepsy is expected to provide new options for treatment. Recently, more and more researches focus on brain network components other than neurons, among which microglia have attracted much attention for their diverse biological functions. As the resident immune cells of the central nervous system, microglia have highly plastic transcription, morphology and functional characteristics, which can change dynamically in a context-dependent manner during the progression of epilepsy. In the pathogenesis of epilepsy, highly reactive microglia interact with other components in the epileptogenic network by performing crucial functions such as secretion of soluble factors and phagocytosis, thus continuously reshaping the landscape of the epileptic brain microenvironment. Indeed, microglia appear to be both pro-epileptic and anti-epileptic under the different spatiotemporal contexts of disease, rendering interventions targeting microglia biologically complex and challenging. This comprehensive review critically summarizes the pathophysiological role of microglia in epileptic brain homeostasis alterations and explores potential therapeutic or modulatory targets for epilepsy targeting microglia.
Collapse
Affiliation(s)
- Cheng Yu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China
| | - Xue-Jun Deng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China
| | - Da Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China.
| |
Collapse
|
40
|
Pirro M, Ferri L, Piccioni L, Bellucci AM, Bartolucci F, Russo A, Piga A, Ciaramaglia PL, Lucangeli M, Russo AM, Cuzzocrea S, Evangelista M. What Is the Role of Palmitoylethanolamide Co-Ultramicronized with Luteolin on the Symptomatology Reported by Patients Suffering from Long COVID? A Retrospective Analysis Performed by a Group of General Practitioners in a Real-Life Setting. Nutrients 2023; 15:3701. [PMID: 37686733 PMCID: PMC10490268 DOI: 10.3390/nu15173701] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Long COVID is a recognized post-viral syndrome characterized by neurological, somatic and neuropsychiatric symptoms that might last for long time after SARS-CoV-2 infection. An ever-growing number of patients come to the observation of General Practitioners complaining of mild or moderate symptoms after the resolution of the acute infection. Nine General Practitioners from the Rome area (Italy) performed a retrospective analysis in order to evaluate the role of the supplementation with Palmitoylethanolamide co-ultramicronized with Luteolin (PEALUT) on neurologic and clinical symptoms reported by their patients after COVID-19 resolution. Supplementation with PEALUT helped to improve all patient-reported symptoms, especially pain, anxiety and depression, fatigue, brain fog, anosmia and dysgeusia, leading to an overall improvement in patients' health status. To our knowledge these are the first data presented on Long COVID patients collected in a territorial setting. Despite their preliminary nature, these results highlight the pathogenetic role of "non-resolving" neuroinflammation in Long COVID development and consequently the importance of its control in the resolution of the pathology and put the focus on the General Practitioner as the primary figure for early detection and management of Long COVID syndrome in a real-life setting. Future randomized, controlled, perspective clinical trials are needed to confirm this preliminary observation.
Collapse
Affiliation(s)
- Maurizio Pirro
- Azienda Sanitaria Locale (ASL), Sistema Sanitario Regionale, 00012 Rome, Italy
| | - Luana Ferri
- Azienda Sanitaria Locale (ASL), Sistema Sanitario Regionale, 00012 Rome, Italy
| | - Licia Piccioni
- Azienda Sanitaria Locale (ASL), Sistema Sanitario Regionale, 00012 Rome, Italy
| | - Anna Maria Bellucci
- Azienda Sanitaria Locale (ASL), Sistema Sanitario Regionale, 00012 Rome, Italy
| | - Federica Bartolucci
- Azienda Sanitaria Locale (ASL), Sistema Sanitario Regionale, 00012 Rome, Italy
| | - Arianna Russo
- Azienda Sanitaria Locale (ASL), Sistema Sanitario Regionale, 00012 Rome, Italy
| | - Andrea Piga
- Azienda Sanitaria Locale (ASL), Sistema Sanitario Regionale, 00012 Rome, Italy
| | | | - Marco Lucangeli
- Azienda Sanitaria Locale (ASL), Sistema Sanitario Regionale, 00012 Rome, Italy
| | - Anna Maria Russo
- Institute of Anaesthesiology and Reanimation, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Maurizio Evangelista
- Institute of Anaesthesiology and Reanimation, Catholic University of Sacred Heart, 00168 Rome, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
- Department of Clinical and Experimental Medicine, University of Messina, 98166 Messina, Italy
| |
Collapse
|
41
|
Luarte A, Nardocci G, Chakraborty A, Batiz LF, Pino-Lagos K, Wyneken Ú. Astrocyte-derived extracellular vesicles in stress-associated mood disorders. Does the immune system get astrocytic? Pharmacol Res 2023; 194:106833. [PMID: 37348692 DOI: 10.1016/j.phrs.2023.106833] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
Life stressors can wreak havoc on our health, contributing to mood disorders like major depressive disorder (MDD), a widespread and debilitating condition. Unfortunately, current treatments and diagnostic strategies fall short of addressing these disorders, highlighting the need for new approaches. In this regard, the relationship between MDD, brain inflammation (neuroinflammation), and systemic inflammation in the body may offer novel insights. Recent research has uncovered the crucial role of astrocytes in coordinating the inflammatory response through the release of extracellular vesicles (ADEVs) during different neuroinflammatory conditions. While the contribution of ADEVs to stress and MDD remains largely unexplored, their potential to modulate immune cells and contribute to MDD pathogenesis is significant. In this article, we delve into the immunomodulatory role of ADEVs, their potential impact on peripheral immune cells, and how their microRNA (miRNA) landscape may hold the key to controlling immune cell activity. Together, these mechanisms may constitute an opportunity to develop novel therapeutic pharmacological approaches to tackle mood disorders.
Collapse
Affiliation(s)
- Alejandro Luarte
- Faculty of Medicine, Universidad de los Andes, Santiago 7620001, Chile; Program in Neuroscience, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago 7620001, Chile.
| | - Gino Nardocci
- Faculty of Medicine, Universidad de los Andes, Santiago 7620001, Chile; Molecular Biology and Bioinformatics Lab, Program in Molecular Biology and Bioinformatics, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago 7620001, Chile; IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago 7620001, Chile
| | - Ankush Chakraborty
- Program in Neuroscience, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago 7620001, Chile
| | - Luis Federico Batiz
- Faculty of Medicine, Universidad de los Andes, Santiago 7620001, Chile; Program in Neuroscience, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago 7620001, Chile; IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago 7620001, Chile
| | - Karina Pino-Lagos
- Faculty of Medicine, Universidad de los Andes, Santiago 7620001, Chile; Program in Immunology, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago 7620001, Chile
| | - Úrsula Wyneken
- Faculty of Medicine, Universidad de los Andes, Santiago 7620001, Chile; Program in Neuroscience, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago 7620001, Chile; IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago 7620001, Chile.
| |
Collapse
|
42
|
Schmidt H, Blechschmidt V. [Nociplastic pain in research and practice : Overview of biopsychosocial principles, possibilities and difficulties]. Schmerz 2023:10.1007/s00482-023-00734-5. [PMID: 37432482 DOI: 10.1007/s00482-023-00734-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 07/12/2023]
Abstract
Traditionally, two mechanistic pain categories were distinguished: nociceptive and neuropathic pain. After the definitions of these two mechanistic descriptors were refined more precisely in the International Association for the Study of Pain (IASP) taxonomy in 2011, a large group of patients remained whose pain could not be assigned to either of the two categories. Nociplastic pain was therefore proposed as a third mechanistic descriptor in 2016. This review article presents the current state of the integration of nociplastic pain into research and clinical practice. In particular, the possibilities and difficulties of applying this concept are addressed from a human and animal experimental research perspective.
Collapse
Affiliation(s)
- Hannah Schmidt
- Abteilung für Neurophysiologie, Mannheimer Zentrum für Translationale Neurowissenschaft, Universität Heidelberg, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Deutschland
| | - Vivian Blechschmidt
- Abteilung für Neurophysiologie, Mannheimer Zentrum für Translationale Neurowissenschaft, Universität Heidelberg, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Deutschland.
| |
Collapse
|
43
|
Song ZH, Song XJ, Yang CL, Cao P, Mao Y, Jin Y, Xu MY, Wang HT, Zhu X, Wang W, Zhang Z, Tao WJ. Up-regulation of microglial chemokine CXCL12 in anterior cingulate cortex mediates neuropathic pain in diabetic mice. Acta Pharmacol Sin 2023; 44:1337-1349. [PMID: 36697977 PMCID: PMC10310783 DOI: 10.1038/s41401-022-01046-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/23/2022] [Indexed: 01/26/2023] Open
Abstract
Diabetic patients frequently experience neuropathic pain, which currently lacks effective treatments. The mechanisms underlying diabetic neuropathic pain remain unclear. The anterior cingulate cortex (ACC) is well-known to participate in the processing and transformation of pain information derived from internal and external sensory stimulation. Accumulating evidence shows that dysfunction of microglia in the central nervous system contributes to many diseases, including chronic pain and neurodegenerative diseases. In this study, we investigated the role of microglial chemokine CXCL12 and its neuronal receptor CXCR4 in diabetic pain development in a mouse diabetic model established by injection of streptozotocin (STZ). Pain sensitization was assessed by the left hindpaw pain threshold in von Frey filament test. Iba1+ microglia in ACC was examined using combined immunohistochemistry and three-dimensional reconstruction. The activity of glutamatergic neurons in ACC (ACCGlu) was detected by whole-cell recording in ACC slices from STZ mice, in vivo multi-tetrode electrophysiological and fiber photometric recordings. We showed that microglia in ACC was significantly activated and microglial CXCL12 expression was up-regulated at the 7-th week post-injection, resulting in hyperactivity of ACCGlu and pain sensitization. Pharmacological inhibition of microglia or blockade of CXCR4 in ACC by infusing minocycline or AMD3100 significantly alleviated diabetic pain through preventing ACCGlu hyperactivity in STZ mice. In addition, inhibition of microglia by infusing minocycline markedly decreased STZ-induced upregulation of microglial CXCL12. Together, this study demonstrated that microglia-mediated ACCGlu hyperactivity drives the development of diabetic pain via the CXCL12/CXCR4 signaling, thus revealing viable therapeutic targets for the treatment of diabetic pain.
Collapse
Affiliation(s)
- Zi-Hua Song
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing, 100071, China
| | - Xiang-Jie Song
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Chen-Ling Yang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230022, China
- College & Hospital of stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230022, China
| | - Peng Cao
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Yu Mao
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yan Jin
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Meng-Yun Xu
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Department of Endocrinology and Laboratory for Diabetes, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Hai-Tao Wang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Xia Zhu
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Wei Wang
- Department of Endocrinology and Laboratory for Diabetes, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| | - Zhi Zhang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Wen-Juan Tao
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230022, China.
- College & Hospital of stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230022, China.
| |
Collapse
|
44
|
Zhu J, Huang F, Hu Y, Qiao W, Guan Y, Zhang ZJ, Liu S, Liu Y. Non-Coding RNAs Regulate Spinal Cord Injury-Related Neuropathic Pain via Neuroinflammation. J Inflamm Res 2023; 16:2477-2489. [PMID: 37334347 PMCID: PMC10276590 DOI: 10.2147/jir.s413264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/02/2023] [Indexed: 06/20/2023] Open
Abstract
Secondary chronic neuropathic pain (NP) in addition to sensory, motor, or autonomic dysfunction can significantly reduce quality of life after spinal cord injury (SCI). The mechanisms of SCI-related NP have been studied in clinical trials and with the use of experimental models. However, in developing new treatment strategies for SCI patients, NP poses new challenges. The inflammatory response following SCI promotes the development of NP. Previous studies suggest that reducing neuroinflammation following SCI can improve NP-related behaviors. Intensive studies of the roles of non-coding RNAs in SCI have discovered that ncRNAs bind target mRNA, act between activated glia, neuronal cells, or other immunocytes, regulate gene expression, inhibit inflammation, and influence the prognosis of NP.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, JiangSu Province, 226001, People’s Republic of China
| | - Fei Huang
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, JiangSu Province, 226001, People’s Republic of China
- Department of Rehabilitation Medicine, Nantong Health College of Jiangsu Province, Nantong, JiangSu Province, 226010, People’s Republic of China
| | - Yonglin Hu
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, JiangSu Province, 226001, People’s Republic of China
- Affiliated Nantong Rehabilitation Hospital of Nantong University, Nantong, JiangSu Province, 226001, People’s Republic of China
| | - Wei Qiao
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, JiangSu Province, 226001, People’s Republic of China
| | - Yingchao Guan
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, JiangSu Province, 226001, People’s Republic of China
| | - Zhi-Jun Zhang
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, JiangSu Province, 226001, People’s Republic of China
| | - Su Liu
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, JiangSu Province, 226001, People’s Republic of China
| | - Ying Liu
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, JiangSu Province, 226001, People’s Republic of China
| |
Collapse
|
45
|
Jiang W, Cheng Y, Wang Y, Wu J, Rong Z, Sun L, Zhou Y, Zhang K. Involvement of Abnormal p-α-syn Accumulation and TLR2-Mediated Inflammation of Schwann Cells in Enteric Autonomic Nerve Dysfunction of Parkinson's Disease: an Animal Model Study. Mol Neurobiol 2023:10.1007/s12035-023-03345-4. [PMID: 37148524 DOI: 10.1007/s12035-023-03345-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 04/10/2023] [Indexed: 05/08/2023]
Abstract
The study was designed to investigate the pathogenesis of gastrointestinal (GI) impairment in Parkinson's disease (PD). We utilized 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, 20 mg/kg) and probenecid (250 mg/kg) to prepare a PD mice model. MPTP modeling was first confirmed. GI motility was measured using stool collection test and enteric plexus loss was also detected. Intestinal phosphorylated α-synuclein (p-α-syn), inflammation, and S100 were assessed using western blotting. Association between Toll-like receptor 2(TLR2) and GI function was validated by Pearson's correlations. Immunofluorescence was applied to show co-localizations of intestinal p-α-syn, inflammation, and Schwann cells (SCs). CU-CPT22 (3 mg/kg, a TLR1/TLR2 inhibitor) was adopted then. Success in modeling, damaged GI neuron and function, and activated intestinal p-α-syn, inflammation, and SCs responses were observed in MPTP group, with TLR2 related to GI damage. Increased p-α-syn and inflammatory factors were shown in SCs of myenteron for MPTP mice. Recovered fecal water content and depression of inflammation, p-α-syn deposition, and SCs activity were noticed after TLR2 suppression. The study investigates a novel mechanism of PD GI autonomic dysfunction, demonstrating that p-α-syn accumulation and TLR2 signaling of SCs were involved in disrupted gut homeostasis and treatments targeting TLR2-mediated pathway might be a possible therapy for PD.
Collapse
Affiliation(s)
- Wenwen Jiang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yue Cheng
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Ye Wang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jing Wu
- Department of Neurology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212000, China
| | - Zhe Rong
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Li Sun
- Department of Neurology, Suzhou Ninth People's Hospital, Suzhou, 215200, China
| | - Yan Zhou
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China.
| | - Kezhong Zhang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
46
|
Stöber TM, Batulin D, Triesch J, Narayanan R, Jedlicka P. Degeneracy in epilepsy: multiple routes to hyperexcitable brain circuits and their repair. Commun Biol 2023; 6:479. [PMID: 37137938 PMCID: PMC10156698 DOI: 10.1038/s42003-023-04823-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 04/06/2023] [Indexed: 05/05/2023] Open
Abstract
Due to its complex and multifaceted nature, developing effective treatments for epilepsy is still a major challenge. To deal with this complexity we introduce the concept of degeneracy to the field of epilepsy research: the ability of disparate elements to cause an analogous function or malfunction. Here, we review examples of epilepsy-related degeneracy at multiple levels of brain organisation, ranging from the cellular to the network and systems level. Based on these insights, we outline new multiscale and population modelling approaches to disentangle the complex web of interactions underlying epilepsy and to design personalised multitarget therapies.
Collapse
Affiliation(s)
- Tristan Manfred Stöber
- Frankfurt Institute for Advanced Studies, 60438, Frankfurt am Main, Germany
- Institute for Neural Computation, Faculty of Computer Science, Ruhr University Bochum, 44801, Bochum, Germany
- Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Goethe University, 60590, Frankfurt, Germany
| | - Danylo Batulin
- Frankfurt Institute for Advanced Studies, 60438, Frankfurt am Main, Germany
- CePTER - Center for Personalized Translational Epilepsy Research, Goethe University, 60590, Frankfurt, Germany
- Faculty of Computer Science and Mathematics, Goethe University, 60486, Frankfurt, Germany
| | - Jochen Triesch
- Frankfurt Institute for Advanced Studies, 60438, Frankfurt am Main, Germany
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Peter Jedlicka
- ICAR3R - Interdisciplinary Centre for 3Rs in Animal Research, Faculty of Medicine, Justus Liebig University Giessen, 35390, Giessen, Germany.
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University, 60590, Frankfurt am Main, Germany.
| |
Collapse
|
47
|
Mussetto V, Moen A, Trofimova L, Sandkühler J, Hogri R. Differential activation of spinal and parabrachial glial cells in a neuropathic pain model. Front Cell Neurosci 2023; 17:1163171. [PMID: 37082205 PMCID: PMC10110840 DOI: 10.3389/fncel.2023.1163171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/17/2023] [Indexed: 04/22/2023] Open
Abstract
The clinical burden faced by chronic pain patients is compounded by affective comorbidities, such as depression and anxiety disorders. Emerging evidence suggests that reactive glial cells in the spinal cord dorsal horn play a key role in the chronification of pain, while supraspinal glia are important for psychological aspects of chronic pain. The lateral parabrachial nucleus (LPBN) in the brainstem is a key node in the ascending pain system, and is crucial for the emotional dimension of pain. Yet, whether astrocytes and microglia in the LPBN are activated during chronic pain is unknown. Here, we evaluated the occurrence of glial activation in the LPBN of male Sprague-Dawley rats 1, 4, and 7 weeks after inducing a chronic constriction injury (CCI) of the sciatic nerve, a prevalent neuropathic pain model. CCI animals developed mechanical and thermal hypersensitivity that persisted for at least 4 weeks, and was mostly reversed after 7 weeks. Using immunohistochemical staining and confocal imaging, we found that CCI caused a strong increase in the expression of the astrocytic marker GFAP and the microglial marker Iba1 in the ipsilateral spinal dorsal horn, with peak expression observed 1 week post-injury. Moreover, morphology analysis revealed changes in microglial phenotype, indicative of microglia activation. In contrast, CCI did not induce any detectable changes in either astrocytes or microglia in the LPBN, at any time point. Thus, our results indicate that while neuropathic pain induces a robust glial reaction in the spinal dorsal horn, it fails to activate glial cells in the LPBN.
Collapse
Affiliation(s)
| | | | | | | | - Roni Hogri
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
48
|
Mancini M, Natoli S, Gardoni F, Di Luca M, Pisani A. Dopamine Transmission Imbalance in Neuroinflammation: Perspectives on Long-Term COVID-19. Int J Mol Sci 2023; 24:ijms24065618. [PMID: 36982693 PMCID: PMC10056044 DOI: 10.3390/ijms24065618] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Dopamine (DA) is a key neurotransmitter in the basal ganglia, implicated in the control of movement and motivation. Alteration of DA levels is central in Parkinson’s disease (PD), a common neurodegenerative disorder characterized by motor and non-motor manifestations and deposition of alpha-synuclein (α-syn) aggregates. Previous studies have hypothesized a link between PD and viral infections. Indeed, different cases of parkinsonism have been reported following COVID-19. However, whether SARS-CoV-2 may trigger a neurodegenerative process is still a matter of debate. Interestingly, evidence of brain inflammation has been described in postmortem samples of patients infected by SARS-CoV-2, which suggests immune-mediated mechanisms triggering the neurological sequelae. In this review, we discuss the role of proinflammatory molecules such as cytokines, chemokines, and oxygen reactive species in modulating DA homeostasis. Moreover, we review the existing literature on the possible mechanistic interplay between SARS-CoV-2-mediated neuroinflammation and nigrostriatal DAergic impairment, and the cross-talk with aberrant α-syn metabolism.
Collapse
Affiliation(s)
- Maria Mancini
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
- IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Silvia Natoli
- Department of Clinical Science and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
- IRCCS Maugeri Pavia, 27100 Pavia, Italy
| | - Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, University of Milan, 20133 Milan, Italy; (F.G.); (M.D.L.)
| | - Monica Di Luca
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, University of Milan, 20133 Milan, Italy; (F.G.); (M.D.L.)
| | - Antonio Pisani
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
- IRCCS Mondino Foundation, 27100 Pavia, Italy
- Correspondence: ; Tel.: +39-0382-380-247
| |
Collapse
|
49
|
Sonnefeld L, Rohmann N, Geisler C, Laudes M. Is human obesity an inflammatory disease of the hypothalamus? Eur J Endocrinol 2023; 188:R37-R45. [PMID: 36883605 DOI: 10.1093/ejendo/lvad030] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/23/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Obesity and its comorbidities are long-standing, challenging global health problems. Lack of exercise, overnutrition, and especially the consumption of fat-rich foods are some of the most important factors leading to an increase in prevalence in modern society. The pathophysiology of obesity as a metabolic inflammatory disease has moved into focus since new therapeutic approaches are required. The hypothalamus, a brain area responsible for energy homeostasis, has recently received special attention in this regard. Hypothalamic inflammation was identified to be associated with diet-induced obesity and new evidence suggests that it may be, beyond that, a pathological mechanism of the disease. This inflammation impairs the local signaling of insulin and leptin leading to dysfunction of the regulation of energy balance and thus, weight gain. After a high-fat diet consumption, activation of inflammatory mediators such as the nuclear factor κB or c-Jun N-terminal kinase pathway can be observed, accompanied by elevated secretion of pro-inflammatory interleukins and cytokines. Brain resident glia cells, especially microglia and astrocytes, initiate this release in response to the flux of fatty acids. The gliosis occurs rapidly before the actual weight gain. Dysregulated hypothalamic circuits change the interaction between neuronal and non-neuronal cells, contributing to the establishment of inflammatory processes. Several studies have reported reactive gliosis in obese humans. Although there is evidence for a causative role of hypothalamic inflammation in the obesity development, data on underlying molecular pathways in humans are limited. This review discusses the current state of knowledge on the relationship between hypothalamic inflammation and obesity in humans.
Collapse
Affiliation(s)
- Lena Sonnefeld
- Institute of Diabetes and Clinical Metabolic Research, University Medical Centre Schleswig-Holstein, Kiel 24105, Germany
| | - Nathalie Rohmann
- Institute of Diabetes and Clinical Metabolic Research, University Medical Centre Schleswig-Holstein, Kiel 24105, Germany
| | - Corinna Geisler
- Institute of Diabetes and Clinical Metabolic Research, University Medical Centre Schleswig-Holstein, Kiel 24105, Germany
| | - Matthias Laudes
- Institute of Diabetes and Clinical Metabolic Research, University Medical Centre Schleswig-Holstein, Kiel 24105, Germany
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine 1, University Medical Centre Schleswig-Holstein, Kiel 24105, Germany
| |
Collapse
|
50
|
Tanelian A, Nankova B, Cheriyan A, Arens C, Hu F, Sabban EL. Differences in gut microbiota associated with stress resilience and susceptibility to single prolonged stress in female rodents. Neurobiol Stress 2023; 24:100533. [PMID: 36970450 PMCID: PMC10034505 DOI: 10.1016/j.ynstr.2023.100533] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
Exposure to traumatic stress is a major risk factor for the development of neuropsychiatric disorders in a subpopulation of individuals, whereas others remain resilient. The determinants of resilience and susceptibility remain unclear. Here, we aimed to characterize the microbial, immunological, and molecular differences between stress-susceptible and stress-resilient female rats before and after exposure to a traumatic experience. Animals were randomly divided into unstressed controls (n = 10) and experimental groups (n = 16) exposed to Single Prolonged Stress (SPS), an animal model of PTSD. Fourteen days later, all rats underwent a battery of behavioral tests and were sacrificed the following day to collect different organs. Stool samples were collected before and after SPS. Behavioral analyses revealed divergent responses to SPS. The SPS treated animals were further subdivided into SPS-resilient (SPS-R) and SPS-susceptible (SPS-S) subgroups. Comparative analysis of fecal 16S sequencing before and after SPS exposure indicated significant differences in the gut microbial composition, functionality, and metabolites of the SPS-R and SPS-S subgroups. In line with the observed distinct behavioral phenotypes, the SPS-S subgroup displayed higher blood-brain barrier permeability and neuroinflammation relative to the SPS-R and/or controls. These results indicate, for the first time, pre-existing and trauma-induced differences in the gut microbial composition and functionality of female rats that relate to their ability to cope with traumatic stress. Further characterization of these factors will be crucial for understanding susceptibility and fostering resilience, especially in females, who are more likely than males to develop mood disorders.
Collapse
|