1
|
Gong W, Guo P, Liu L, Yan R, Liu S, Wang S, Xue F, Zhou X, Sun X, Yuan Z. Genomics-driven integrative analysis highlights immune-related plasma proteins for psychiatric disorders. J Affect Disord 2025; 370:124-133. [PMID: 39491680 DOI: 10.1016/j.jad.2024.10.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/21/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Genome-wide association studies (GWAS) have identified numerous variants associated with psychiatric disorders. However, it remains largely unknown on how GWAS risk variants contribute to psychiatric disorders. METHODS Through integrating two largest, publicly available, independent protein quantitative trait loci datasets of plasma protein and nine large-scale GWAS summary statistics of psychiatric disorders, we first performed proteome-wide association study (PWAS) to identify psychiatric disorders-associated plasma proteins, followed by enrichment analysis to reveal the underlying biological processes and pathways. Then, we conducted Mendelian randomization (MR) and Bayesian colocalization (COLOC) analyses, with both discovery and parallel replication datasets, to further identify protein-disorder pairs with putatively causal relationships. We finally prioritized the potential drug targets using Drug Gene Interaction Database. RESULTS PWAS totally identified 112 proteins, which were significantly enriched in biological processes relevant to immune regulation and response to stimulus including regulation of immune system process (adjusted P = 1.69 × 10-7) and response to external stimulus (adjusted P = 4.13 × 10-7), and viral infection related pathways, including COVID-19 (adjusted P = 2.94 × 10-2). MR and COLOC analysis further identified 26 potentially causal protein-disorder pairs in both discovery and replication analysis. Notably, eight protein-coding genes were immune-related, such as IRF3, CSK, and ACE, five among 16 druggable genes were reported to interact with drugs, including ACE, CSK, PSMB4, XPNPEP1, and MICB. CONCLUSIONS Our findings highlighted the immunological hypothesis and identified potentially causal plasma proteins for psychiatric disorders, providing biological insights into the pathogenesis and benefit the development of preventive or therapeutic drugs for psychiatric disorders.
Collapse
Affiliation(s)
- Weiming Gong
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Institute for Medical Dataology, Shandong University, Jinan, Shandong, China
| | - Ping Guo
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Institute for Medical Dataology, Shandong University, Jinan, Shandong, China
| | - Lu Liu
- Department of Biostatistics, University of Michigan, Ann Arbor, USA; Center for Statistical Genetics, University of Michigan, Ann Arbor, USA
| | - Ran Yan
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Institute for Medical Dataology, Shandong University, Jinan, Shandong, China
| | - Shuai Liu
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Institute for Medical Dataology, Shandong University, Jinan, Shandong, China
| | - Shukang Wang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Institute for Medical Dataology, Shandong University, Jinan, Shandong, China
| | - Fuzhong Xue
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Institute for Medical Dataology, Shandong University, Jinan, Shandong, China
| | - Xiang Zhou
- Department of Biostatistics, University of Michigan, Ann Arbor, USA; Center for Statistical Genetics, University of Michigan, Ann Arbor, USA
| | - Xiubin Sun
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Institute for Medical Dataology, Shandong University, Jinan, Shandong, China.
| | - Zhongshang Yuan
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Institute for Medical Dataology, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
2
|
Unsal V, Yıldız R, Korkmaz A, Mert BD, Calıskan CG, Oner E. Evaluation of extra virgin olive oil compounds using computational methods: in vitro, ADMET, DFT, molecular docking and human gene network analysis study. BMC Chem 2025; 19:3. [PMID: 39754213 PMCID: PMC11699718 DOI: 10.1186/s13065-024-01369-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/20/2024] [Indexed: 01/06/2025] Open
Abstract
This study investigates the phenolic compounds (PC), volatile compounds (VC), and fatty acids (FA) of extra virgin olive oil (EVOO) derived from the Turkish olive variety "Sarı Ulak", along with ADMET, DFT, molecular docking, and gene network analyses of significant molecules identified within the EVOO. Chromatographic methods (GC-FID, HPLC) were employed to characterize FA, PC, and VC profiles, while quality parameters, antioxidant activities (TAC, ABTS, DPPH) were assessed via spectrophotometry. The analysis revealed a complex composition of 40 volatile compounds, with estragole, 7-hydroxyheptene-1, and 3-methoxycinnamaldehyde as the primary components. Hydroxytyrosol, tyrosol, oleuropein, apigenin, ferulic acid, and vanillic acid emerged as main phenolic constituents, with hydroxytyrosol and apigenin exhibiting high bioavailability. Molecular docking highlighted oleuropein and pinoresinol as compounds with strong binding affinities, though only hydroxytyrosol, apigenin, and pinoresinol fully met Lipinski and other drug-likeness criteria. DFT analysis showed that oleuropein and pinoresinol have notable dipole moments, reflecting polar and asymmetrical structures. KEGG enrichment analysis further linked key molecules like oleuropein and apigenin with pathways related to lipid metabolism and atherosclerosis, underscoring their potential bioactivity and relevance in health-related applications.
Collapse
Affiliation(s)
- Velid Unsal
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Mardin Artuklu University, 47100, Mardin, Türkiye.
| | - Reşit Yıldız
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Mardin Artuklu University, 47100, Mardin, Türkiye
| | - Aziz Korkmaz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Mardin Artuklu University, 47100, Mardin, Türkiye
| | - Başak Doğru Mert
- Energy Systems Engineering Department, Engineering Faculty, Adana Alparslan Türkeş Science and Technology University, 01250, Adana, Türkiye
| | - Cemile Gunbegi Calıskan
- Department of Medical Services and Techniques, Vocational Higher School of Health Services, Mardin Artuklu University, 47100, Mardin, Türkiye
| | - Erkan Oner
- Department of Biochemistry, Faculty of Pharmacy, Adıyaman University, Adıyaman, 02000, Türkiye
| |
Collapse
|
3
|
Subbarayan K, Al-Samadi A, Schäfer H, Massa C, Salo T, Biehl K, Vaxevanis CK, Ulagappan K, Wahbi W, Reimers M, Drexler F, Moreira-Soto A, Bachmann M, Seliger B. Altered ACE2 and interferon landscape in the COVID-19 microenvironment correlate with the anti-PD-1 response in solid tumors. Cell Mol Life Sci 2024; 81:473. [PMID: 39625479 PMCID: PMC11615173 DOI: 10.1007/s00018-024-05520-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/03/2024] [Accepted: 11/18/2024] [Indexed: 12/06/2024]
Abstract
Angiotensensin-converting enzyme-2 (ACE2) is a receptor for SARS-CoV-2, allowing the virus to enter cells. Although tumor patients infected by SARS-CoV-2 often have a worse outcome, the expression, function and clinical relevance of ACE2 in tumors has not yet been thoroughly analyzed. In this study, RNA sequencing (RNA-seq) data from tumors, adjacent tissues and whole blood samples of COVID-19 patients from genome databases and from tumor cell lines and endothelial cells infected with different SARS-CoV-2 variants or transfected with an ACE2 expression vector (ACE2high) or mock (ACE2low) were analyzed for the expression of ACE2 and immune response relevant molecules in silico or by qPCR, flow cytometry, Western blot and/or RNA-seq. The differential expression profiles in ACE2high vs. ACE2low cells correlated with available SARS-CoV-2 RNA-seq datasets. ACE2high cells demonstrated upregulated mRNA and/or protein levels of HLA class I, programmed death ligand 1 (PD-L1), components of the antigen processing machinery (APM) and the interferon (IFN) signaling pathway compared to ACE2low cells. Co-cultures of ACE2high cells with peripheral blood mononuclear cells increased immune cell migration and infiltration towards ACE2high cells, apoptosis of ACE2high cells, release of innate immunity-related cytokines and altered NK cell-mediated cytotoxicity. Thus, ACE2 expression was associated in different model systems and upon SARS-CoV-2 infection with an altered host immunogenicity, which might influence the efficacy of immune checkpoint inhibitors. These results provide novel insights into the (patho)physiological role of ACE2 on immune response-relevant mechanisms and suggest an alternative strategy to reduce COVID-19 severity in infected tumor patients targeting the ACE2-induced IFN-PD-L1 axis.
Collapse
Affiliation(s)
- Karthikeyan Subbarayan
- Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Ahmed Al-Samadi
- Institute of Dentistry, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Joensuu, Finland
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, Helsinki, Finland
| | - Helene Schäfer
- Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Chiara Massa
- Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
- Institute of Translational Immunology, Brandenburg an der Havel, Germany
| | - Tuula Salo
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, Helsinki, Finland
- Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, 90014, Finland
| | - Katharina Biehl
- Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Christoforos K Vaxevanis
- Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Kamatchi Ulagappan
- Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Wafa Wahbi
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, Helsinki, Finland
| | - Matthias Reimers
- Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | | | | | - Michael Bachmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Barbara Seliger
- Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany.
- Institute of Translational Immunology, Brandenburg an der Havel, Germany.
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany.
- Institute of Translational Medicine, Medical School Theodor Fontane, Hochstr. 29, 14770, Brandenburg an der Havel, Germany.
| |
Collapse
|
4
|
Yan T, Sun J, Zheng J, Yang J. An analysis combining proteomics and transcriptomics revealed a regulation target of sea cucumber autolysis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101274. [PMID: 38906042 DOI: 10.1016/j.cbd.2024.101274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/05/2024] [Accepted: 06/09/2024] [Indexed: 06/23/2024]
Abstract
Sea cucumber is a valuable seafood product and autolysis is the main concern for the aquaculture industry. This study employed proteomics and transcriptomics to investigate the autolysis mechanism of sea cucumbers. The fresh sea cucumber was exposed to UV light to induce autolysis. The body wall samples were cut off to analyze by proteomics and transcriptomics. The angiotensin-converting enzyme (ACE) inhibitor of teprotide and the activator of imatinib were gastric gavage to live sea cucumbers, respectively, to identify the regulation target. Autolysis occurrence was evaluated by appearance, soluble peptide, and hydroxyproline content. Four gene-protein pairs were ACE, AJAP10923, Heme-binding protein 2-like, and Ficolin-2-like. Only the ACE protein and gene changed synchronously and a significant down-regulation of ACE occurred in the autolysis sea cucumbers. Teprotide led to a 1.58-fold increase in the TCA-soluble protein content and a 1.57-fold increase in hydroxyproline content. No significant differences were observed between imatinib-treated sea cucumbers and fresh ones regarding TCA-soluble protein content or hydroxyproline levels (P > 0.05). ACE inhibitor accelerated the autolysis of sea cucumber, but ACE activator inhibited the autolysis. Therefore, ACE can serve as a regulatory target for autolysis in sea cucumbers.
Collapse
Affiliation(s)
- Tingting Yan
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jinghe Sun
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jie Zheng
- Liaoning Ocean and Fisheries Science Research Institute, Dalian, China
| | - Jingfeng Yang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
5
|
van Stigt AC, Gualtiero G, Cinetto F, Dalm VA, IJspeert H, Muscianisi F. The biological basis for current treatment strategies for granulomatous disease in common variable immunodeficiency. Curr Opin Allergy Clin Immunol 2024; 24:479-487. [PMID: 39431514 PMCID: PMC11537477 DOI: 10.1097/aci.0000000000001032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
PURPOSE OF REVIEW The pathogenesis of granulomatous disease in common variable immunodeficiency (CVID) is still largely unknown, which hampers effective treatment. This review describes the current knowledge on the pathogenesis of granuloma formation in CVID and the biological basis of the current treatment options. RECENT FINDINGS Histological analysis shows that T and B cells are abundantly present in the granulomas that are less well organized and are frequently associated with lymphoid hyperplasia. Increased presence of activation markers such as soluble IL-2 receptor (sIL-2R) and IFN-ɣ, suggest increased Th1-cell activity. Moreover, B-cell abnormalities are prominent in CVID, with elevated IgM, BAFF, and CD21low B cells correlating with granulomatous disease progression. Innate immune alterations, as M2 macrophages and neutrophil dysregulation, indicate chronic inflammation. Therapeutic regimens include glucocorticoids, DMARDs, and biologicals like rituximab. SUMMARY Our review links the biological context of CVID with granulomatous disease or GLILD to currently prescribed therapies and potential targeted treatments.
Collapse
Affiliation(s)
- Astrid C. van Stigt
- Laboratory Medical Immunology, Department of Immunology
- Division of Allergy & Clinical Immunology, Department of Internal Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Giulia Gualtiero
- Hematology and Clinical Immunology Unit, Department of Medicine (DIMED)
- Veneto Institute of Molecular Medicine (VIMM)
| | - Francesco Cinetto
- Rare Diseases Referral Center, Internal Medicine 1, Department of Medicine (DIMED), AULSS2 Marca Trevigiana, Ca’ Foncello Hospital, University of Padova, Padova, Italy
| | - Virgil A.S.H. Dalm
- Laboratory Medical Immunology, Department of Immunology
- Division of Allergy & Clinical Immunology, Department of Internal Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Francesco Muscianisi
- Rare Diseases Referral Center, Internal Medicine 1, Department of Medicine (DIMED), AULSS2 Marca Trevigiana, Ca’ Foncello Hospital, University of Padova, Padova, Italy
| |
Collapse
|
6
|
Huth SW, Geri JB, Oakley JV, MacMillan DWC. μMap-Interface: Temporal Photoproximity Labeling Identifies F11R as a Functional Member of the Transient Phagocytic Surfaceome. J Am Chem Soc 2024; 146:32255-32262. [PMID: 39532068 DOI: 10.1021/jacs.4c11058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Phagocytosis is usually carried out by professional phagocytic cells in the context of pathogen response or wound healing. The transient surface proteins that regulate phagocytosis pose a challenging proteomics target; knowledge thereof could lead to new therapeutic insights. Herein, we describe a novel photocatalytic proximity labeling method: "μMap-Interface", allowing for spatiotemporal mapping of phagocytosis. Utilizing photocatalyst-conjugated IGG-opsonized beads and initiating phagocytosis in a synchronized manner, we capture phagocytic interactome "snapshots" at the interface of the phagocyte and its target. This allows profiling of the dynamic surface proteome of human macrophages during the engulfment process. We reveal previously known phagocytic mediators as well as potential novel interactors and validate their presence with super-resolution microscopy. This includes F11R, an important cancer target yet to be investigated in the context of phagocytosis. Further, we demonstrate that knocking down F11R leads to an increased degree of phagocytosis; this insight could contribute to explaining its oncogenic activity. Lastly, we show capture of orthogonal phagocytic surfaceomes across different cells, using a neutrophil-like model. We believe this method will enable new insights into phagocytic processes in a variety of contexts.
Collapse
Affiliation(s)
- Sean W Huth
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Jacob B Geri
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - James V Oakley
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - David W C MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
7
|
Jeon S, Salvo MA, Alia AO, Popovic J, Zagardo M, Chandra S, Nassan M, Gate D, Vassar R, Cuddy LK. Neuronal ACE1 knockout disrupts the hippocampal renin angiotensin system leading to memory impairment and vascular loss in normal aging. Neurobiol Dis 2024; 202:106729. [PMID: 39515529 DOI: 10.1016/j.nbd.2024.106729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/24/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Angiotensin I converting enzyme (ACE1) maintains blood pressure homeostasis by converting angiotensin I into angiotensin II in the renin-angiotensin system (RAS). ACE1 is expressed in the brain, where an intrinsic RAS regulates complex cognitive functions including learning and memory. ACE1 has been implicated in neurodegenerative disorders including Alzheimer's disease and Parkinson's disease, but the mechanisms remain incompletely understood. Here, we performed single-nucleus RNA sequencing to characterize the expression of RAS genes in the hippocampus and discovered that Ace is mostly expressed in CA1 region excitatory neurons. To gain a deeper understanding of the function of neuronal ACE1, we generated ACE1 conditional knockout (cKO) mice lacking ACE1 expression specifically in hippocampal and cortical excitatory neurons. ACE1 cKO mice exhibited hippocampus-dependent memory impairment in the Morris water maze, y-maze, and fear conditioning tests. Total ACE1 level was significantly reduced in the cortex and hippocampus of ACE1 cKO mice showing that excitatory neurons are the predominant cell type expressing ACE1 in the forebrain. Despite similar reductions in total ACE1 level in both the hippocampus and cortex, the RAS pathway was dysregulated in the hippocampus only. Importantly, ACE1 cKO mice exhibited age-related capillary loss selectively in the hippocampus. Here, we show selective vulnerability of the hippocampal microvasculature and RAS pathway to neuronal ACE1 knockout. Our results provide important insights into the function of ACE1 in the brain and demonstrate a connection between neuronal ACE1 and cerebrovascular function in the hippocampus.
Collapse
Affiliation(s)
- Sohee Jeon
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States.
| | - Miranda A Salvo
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States.
| | - Alia O Alia
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States.
| | - Jelena Popovic
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States.
| | - Mitchell Zagardo
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States.
| | - Sidhanth Chandra
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States.
| | - Malik Nassan
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States.
| | - David Gate
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States.
| | - Robert Vassar
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States; Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States.
| | - Leah K Cuddy
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States.
| |
Collapse
|
8
|
Rossides M, Megadimou V, Smed-Sörensen A, Eklund A, Kullberg S, Darlington P. Elevated serum angiotensin converting enzyme correlates with specific HLA-DRB1 alleles and extrapulmonary manifestations in sarcoidosis. Respir Med Res 2024; 86:101142. [PMID: 39393304 DOI: 10.1016/j.resmer.2024.101142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/11/2024] [Accepted: 09/24/2024] [Indexed: 10/13/2024]
Abstract
BACKGROUND Genetics influence the clinical picture in sarcoidosis, a granulomatous heterogeneous disease often accompanied by elevated serum angiotensin converting enzyme (s-ACE). We aimed to investigate if certain HLA-DRB1 alleles correlate with the levels of s-ACE, known as a marker of the granuloma burden. METHODS Medical journals of patients with sarcoidosis from a Swedish clinical registry were retrospectively examined to extract the highest recorded s-ACE value and analysed in relation to patient characteristics including phenotype [Löfgren syndrome (LS)/ non-LS], chest X-ray staging according to Scadding, treatment with immunosuppressants, presence of extrapulmonary manifestations (EPM), HLA-DRB1 alleles and prognosis (resolving vs. non-resolving disease within 2 years). Data were analysed with Fisher's exact test and Bonferroni correction was applied for HLA analyses. RESULTS Of 1204 patients included, 40% had s-ACE levels above reference value. In comparison with patients with normal s-ACE, those with elevated levels were more often classified into non-LS (78% vs 59%, p < 0.001), and Scadding stage II (50% vs 38%, p < 0.001) but less often Scadding stage I (33% vs 46%, p < 0.001) and had more often EPM (45% vs 23%, p < 0.001). The patients with HLA-DRB1×04 had more often elevated s-ACE (p < 0.01) while those with HLA-DRB1×03 commonly had normal levels (p < 0.001). CONCLUSIONS In this retrospective study, HLA alleles associated with s-ACE levels in sarcoidosis patients, which in turn correlated with occurrence of EPM. These findings shed some new light on possible mechanisms behind differences in s-ACE levels.
Collapse
Affiliation(s)
- Marios Rossides
- Department of Respiratory Medicine, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden; Unit of Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Anna Smed-Sörensen
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Anders Eklund
- Department of Respiratory Medicine, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden; Respiratory Medicine Division, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Susanna Kullberg
- Department of Respiratory Medicine, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden; Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Pernilla Darlington
- Department of Internal Medicine, Södersjukhuset, Stockholm, Sweden; Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
9
|
Möller Petrun A, Markota A. Angiotensin II-Real-Life Use and Literature Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1483. [PMID: 39336524 PMCID: PMC11433685 DOI: 10.3390/medicina60091483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024]
Abstract
Angiotensin II is a recently introduced vasopressor, which has been available since 2017. The novelty and the relatively high cost of angiotensin II currently limit its broader application. It induces vasoconstriction by activating the renin-angiotensin-aldosterone system and is currently the sole vasopressor functioning through this pathway. Beyond vasoconstriction, angiotensin II also affects various other physiological processes. Current evidence supports its use in managing vasoplegic and cardiogenic shock in patients who are unresponsive to catecholamines and vasopressin. However, due to limited data, the optimal timing for initiating therapy with angiotensin II, strategies for combining it with other vasopressors, and strategies for its discontinuation remain unclear. Ongoing and planned studies aim to address some of these uncertainties. This article reviews the physiological and pathophysiological effects of angiotensin II, describes its pharmacology, and provides a narrative review of the current literature.
Collapse
Affiliation(s)
- Andreja Möller Petrun
- Department of Anaesthesiology, Intensive Therapy and Pain Management, University Medical Centre Maribor, 2000 Maribor, Slovenia;
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| | - Andrej Markota
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
- Medical Intensive Care Unit, University Medical Centre Maribor, 2000 Maribor, Slovenia
| |
Collapse
|
10
|
Li X, Ding H, Feng G, Huang Y. Role of angiotensin converting enzyme in pathogenesis associated with immunity in cardiovascular diseases. Life Sci 2024; 352:122903. [PMID: 38986897 DOI: 10.1016/j.lfs.2024.122903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/18/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Angiotensin converting enzyme (ACE) is not only a critical component in the renin-angiotensin system (RAS), but also suggested as an important mediator for immune response and activity, such as immune cell mobilization, metabolism, biogenesis of immunoregulatory molecules, etc. The chronic duration of cardiovascular diseases (CVD) has been increasingly considered to be triggered by uncontrolled pathologic immune reactions from myeloid cells and lymphocytes. Considering the potential anti-inflammatory effect of the traditional antihypertensive ACE inhibitor (ACEi), we attempt to elucidate whether ACE and its catalytically relevant substances as well as signaling pathways play a role in the immunity-related pathogenesis of common CVD, such as arterial hypertension, atherosclerosis and arrythmias. ACEi was also reported to benefit the prognoses of COVID-19-positive patients with CVD, and COVID-19 disease with preexisting CVD or subsequent cardiovascular damage is featured by a significant influx of immune cells and proinflammatory molecules, suggesting that ACE may also participate in COVID-19 induced cardiovascular injury, because COVID-19 disease basically triggers an overactive pathologic immune response. Hopefully, the ACE inhibition and manipulation of those associated bioactive signals could supplement the current medicinal management of various CVD and bring greater benefit to patients' cardiovascular health.
Collapse
Affiliation(s)
- Xinyi Li
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Huasheng Ding
- Department of Emergency, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Gaoke Feng
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Yan Huang
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China.
| |
Collapse
|
11
|
Padín JF, Pérez-Ortiz JM, Redondo-Calvo FJ. Aprotinin (I): Understanding the Role of Host Proteases in COVID-19 and the Importance of Pharmacologically Regulating Their Function. Int J Mol Sci 2024; 25:7553. [PMID: 39062796 PMCID: PMC11277036 DOI: 10.3390/ijms25147553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Proteases are produced and released in the mucosal cells of the respiratory tract and have important physiological functions, for example, maintaining airway humidification to allow proper gas exchange. The infectious mechanism of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), takes advantage of host proteases in two ways: to change the spatial conformation of the spike (S) protein via endoproteolysis (e.g., transmembrane serine protease type 2 (TMPRSS2)) and as a target to anchor to epithelial cells (e.g., angiotensin-converting enzyme 2 (ACE2)). This infectious process leads to an imbalance in the mucosa between the release and action of proteases versus regulation by anti-proteases, which contributes to the exacerbation of the inflammatory and prothrombotic response in COVID-19. In this article, we describe the most important proteases that are affected in COVID-19, and how their overactivation affects the three main physiological systems in which they participate: the complement system and the kinin-kallikrein system (KKS), which both form part of the contact system of innate immunity, and the renin-angiotensin-aldosterone system (RAAS). We aim to elucidate the pathophysiological bases of COVID-19 in the context of the imbalance between the action of proteases and anti-proteases to understand the mechanism of aprotinin action (a panprotease inhibitor). In a second-part review, titled "Aprotinin (II): Inhalational Administration for the Treatment of COVID-19 and Other Viral Conditions", we explain in depth the pharmacodynamics, pharmacokinetics, toxicity, and use of aprotinin as an antiviral drug.
Collapse
Affiliation(s)
- Juan Fernando Padín
- Department of Medical Sciences, School of Medicine at Ciudad Real, University of Castilla-La Mancha, 13971 Ciudad Real, Spain;
| | - José Manuel Pérez-Ortiz
- Facultad HM de Ciencias de la Salud, Universidad Camilo José Cela, 28692 Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, 28015 Madrid, Spain
| | - Francisco Javier Redondo-Calvo
- Department of Medical Sciences, School of Medicine at Ciudad Real, University of Castilla-La Mancha, 13971 Ciudad Real, Spain;
- Department of Anaesthesiology and Critical Care Medicine, University General Hospital, 13005 Ciudad Real, Spain
- Translational Research Unit, University General Hospital and Research Institute of Castilla-La Mancha (IDISCAM), 13005 Ciudad Real, Spain
| |
Collapse
|
12
|
Oosthuizen D, Ganief TA, Bernstein KE, Sturrock ED. Proteomic Analysis of Human Macrophages Overexpressing Angiotensin-Converting Enzyme. Int J Mol Sci 2024; 25:7055. [PMID: 39000163 PMCID: PMC11240931 DOI: 10.3390/ijms25137055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 07/16/2024] Open
Abstract
Angiotensin converting enzyme (ACE) exerts strong modulation of myeloid cell function independently of its cardiovascular arm. The success of the ACE-overexpressing murine macrophage model, ACE 10/10, in treating microbial infections and cancer opens a new avenue into whether ACE overexpression in human macrophages shares these benefits. Additionally, as ACE inhibitors are a widely used antihypertensive medication, their impact on ACE expressing immune cells is of interest and currently understudied. In the present study, we utilized mass spectrometry to characterize and assess global proteomic changes in an ACE-overexpressing human THP-1 cell line. Additionally, proteomic changes and cellular uptake following treatment with an ACE C-domain selective inhibitor, lisinopril-tryptophan, were also assessed. ACE activity was significantly reduced following inhibitor treatment, despite limited uptake within the cell, and both RNA processing and immune pathways were significantly dysregulated with treatment. Also present were upregulated energy and TCA cycle proteins and dysregulated cytokine and interleukin signaling proteins with ACE overexpression. A novel, functionally enriched immune pathway that appeared both with ACE overexpression and inhibitor treatment was neutrophil degranulation. ACE overexpression within human macrophages showed similarities with ACE 10/10 murine macrophages, paving the way for mechanistic studies aimed at understanding the altered immune function.
Collapse
Affiliation(s)
- Delia Oosthuizen
- Division of Chemical, Systems and Synthetic Biology, Faculty of Health Sciences, Institute for Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa
| | - Tariq A. Ganief
- Division of Chemical, Systems and Synthetic Biology, Faculty of Health Sciences, Institute for Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa
| | - Kenneth E. Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Edward D. Sturrock
- Division of Chemical, Systems and Synthetic Biology, Faculty of Health Sciences, Institute for Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa
| |
Collapse
|
13
|
Bernstein KE, Cao D, Shibata T, Saito S, Bernstein EA, Nishi E, Yamashita M, Tourtellotte WG, Zhao TV, Khan Z. Classical and nonclassical effects of angiotensin-converting enzyme: How increased ACE enhances myeloid immune function. J Biol Chem 2024; 300:107388. [PMID: 38763333 PMCID: PMC11208953 DOI: 10.1016/j.jbc.2024.107388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/21/2024] Open
Abstract
As part of the classical renin-angiotensin system, the peptidase angiotensin-converting enzyme (ACE) makes angiotensin II which has myriad effects on systemic cardiovascular function, inflammation, and cellular proliferation. Less well known is that macrophages and neutrophils make ACE in response to immune activation which has marked effects on myeloid cell function independent of angiotensin II. Here, we discuss both classical (angiotensin) and nonclassical functions of ACE and highlight mice called ACE 10/10 in which genetic manipulation increases ACE expression by macrophages and makes these mice much more resistant to models of tumors, infection, atherosclerosis, and Alzheimer's disease. In another model called NeuACE mice, neutrophils make increased ACE and these mice are much more resistant to infection. In contrast, ACE inhibitors reduce neutrophil killing of bacteria in mice and humans. Increased expression of ACE induces a marked increase in macrophage oxidative metabolism, particularly mitochondrial oxidation of lipids, secondary to increased peroxisome proliferator-activated receptor α expression, and results in increased myeloid cell ATP. ACE present in sperm has a similar metabolic effect, and the lack of ACE activity in these cells reduces both sperm motility and fertilization capacity. These nonclassical effects of ACE are not due to the actions of angiotensin II but to an unknown molecule, probably a peptide, that triggers a profound change in myeloid cell metabolism and function. Purifying and characterizing this peptide could offer a new treatment for several diseases and prove potentially lucrative.
Collapse
Affiliation(s)
- Kenneth E Bernstein
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA.
| | - DuoYao Cao
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Tomohiro Shibata
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Suguru Saito
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Ellen A Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Erika Nishi
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA; Department of Physiology, São Paulo School of Medicine, Universidade Federal de São Paulo, Sao Paulo, Brazil
| | - Michifumi Yamashita
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Warren G Tourtellotte
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Tuantuan V Zhao
- Research Oncology, Gilead Sciences, Foster City, California, USA
| | - Zakir Khan
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA; Institute for Myeloma & Bone Cancer Research, West Hollywood, California, USA
| |
Collapse
|
14
|
de Cavanagh EMV, Inserra F, Ferder L. Renin-angiotensin system inhibitors positively impact on multiple aging regulatory pathways: Could they be used to protect against human aging? Physiol Rep 2024; 12:e16094. [PMID: 38924381 PMCID: PMC11200104 DOI: 10.14814/phy2.16094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/18/2024] [Accepted: 05/18/2024] [Indexed: 06/28/2024] Open
Abstract
The renin-angiotensin system (RAS)-a classical blood pressure regulator-largely contributes to healthy organ development and function. Besides, RAS activation promotes age-related changes and age-associated diseases, which are attenuated/abolished by RAS-blockade in several mammalian species. RAS-blockers also increase rodent lifespan. In previous work, we discussed how RAS-blockade downregulates mTOR and growth hormone/IGF-1 signaling, and stimulates AMPK activity (together with klotho, sirtuin, and vitamin D-receptor upregulation), and proposed that at least some of RAS-blockade's aging benefits are mediated through regulation of these intermediaries and their signaling to mitochondria. Here, we included RAS-blockade's impact on other aging regulatory pathways, that is, TGF-ß, NF-kB, PI3K, MAPK, PKC, Notch, and Wnt, all of which affect mitochondria. No direct evidence is available on RAS/RAS-blockade-aging regulatory pathway-mitochondria interactions. However, existing results allow to conjecture that RAS-blockers neutralize mitochondrial dysfunction by acting on the discussed pathways. The reviewed evidence led us to propose that the foundation is laid for conducting clinical trials aimed at testing whether angiotensin-converting enzyme inhibitors (ACEi) or angiotensin receptor blockers (ARB)-even at subclinical doses-offer the possibility to live longer and in better health. As ACEi and ARB are low cost and well-tolerated anti-hypertension therapies in use for over 35 years, investigating their administration to attenuate/prevent aging effects seems simple to implement.
Collapse
Affiliation(s)
| | - Felipe Inserra
- Department of MedicineMaimonides UniversityBuenos AiresArgentina
- Master of Vascular Mechanics and Arterial Hypertension, Postgraduate DepartmentAustral UniversityPilarArgentina
| | - León Ferder
- Department of MedicineMaimonides UniversityBuenos AiresArgentina
| |
Collapse
|
15
|
Wei M, Yu Q, Li E, Zhao Y, Sun C, Li H, Liu Z, Ji G. Ace Deficiency Induces Intestinal Inflammation in Zebrafish. Int J Mol Sci 2024; 25:5598. [PMID: 38891786 PMCID: PMC11172040 DOI: 10.3390/ijms25115598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a nonspecific chronic inflammatory disease resulting from an immune disorder in the intestine that is prone to relapse and incurable. The understanding of the pathogenesis of IBD remains unclear. In this study, we found that ace (angiotensin-converting enzyme), expressed abundantly in the intestine, plays an important role in IBD. The deletion of ace in zebrafish caused intestinal inflammation with increased expression of the inflammatory marker genes interleukin 1 beta (il1b), matrix metallopeptidase 9 (mmp9), myeloid-specific peroxidase (mpx), leukocyte cell-derived chemotaxin-2-like (lect2l), and chemokine (C-X-C motif) ligand 8b (cxcl8b). Moreover, the secretion of mucus in the ace-/- mutants was significantly higher than that in the wild-type zebrafish, validating the phenotype of intestinal inflammation. This was further confirmed by the IBD model constructed using dextran sodium sulfate (DSS), in which the mutant zebrafish had a higher susceptibility to enteritis. Our study reveals the role of ace in intestinal homeostasis, providing a new target for potential therapeutic interventions.
Collapse
Affiliation(s)
- Mingxia Wei
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.W.); (Q.Y.)
| | - Qinqing Yu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.W.); (Q.Y.)
| | - Enguang Li
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.W.); (Q.Y.)
| | - Yibing Zhao
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.W.); (Q.Y.)
| | - Chen Sun
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.W.); (Q.Y.)
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Hongyan Li
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.W.); (Q.Y.)
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Zhenhui Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.W.); (Q.Y.)
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Guangdong Ji
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (M.W.); (Q.Y.)
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
16
|
Gomez AR, Byun HR, Wu S, Muhammad AG, Ikbariyeh J, Chen J, Muro A, Li L, Bernstein KE, Ainsworth R, Tourtellotte WG. Angiotensin Converting Enzyme (ACE) expression in microglia reduces amyloid β deposition and neurodegeneration by increasing SYK signaling and endolysosomal trafficking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.590837. [PMID: 38712251 PMCID: PMC11071489 DOI: 10.1101/2024.04.24.590837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Genome-wide association studies (GWAS) have identified many gene polymorphisms associated with an increased risk of developing Late Onset Alzheimer's Disease (LOAD). Many of these LOAD risk-associated alleles alter disease pathogenesis by influencing microglia innate immune responses and lipid metabolism. Angiotensin Converting Enzyme (ACE), a GWAS LOAD risk-associated gene best known for its role in regulating systemic blood pressure, also enhances innate immunity and lipid processing in peripheral myeloid cells, but a role for ACE in modulating the function of myeloid-derived microglia remains unexplored. Using novel mice engineered to express ACE in microglia and CNS associated macrophages (CAMs), we find that ACE expression in microglia reduces Aβ plaque load, preserves vulnerable neurons and excitatory synapses, and greatly reduces learning and memory abnormalities in the 5xFAD amyloid mouse model of Alzheimer's Disease (AD). ACE-expressing microglia show enhanced Aβ phagocytosis and endolysosomal trafficking, increased clustering around amyloid plaques, and increased SYK tyrosine kinase activation downstream of the major Aβ receptors, TREM2 and CLEC7A. Single microglia sequencing and digital spatial profiling identifies downstream SYK signaling modules that are expressed by ACE expression in microglia that mediate endolysosomal biogenesis and trafficking, mTOR and PI3K/AKT signaling, and increased oxidative phosphorylation, while gene silencing or pharmacologic inhibition of SYK activity in ACE-expressing microglia abrogates the potentiated Aβ engulfment and endolysosomal trafficking. These findings establish a role for ACE in enhancing microglial immune function and they identify a potential use for ACE-expressing microglia as a cell-based therapy to augment endogenous microglial responses to Aβ in AD.
Collapse
|
17
|
Pedreañez A, Carrero Y, Vargas R, Hernández-Fonseca JP, Mosquera JA. Role of angiotensin II in cellular entry and replication of dengue virus. Arch Virol 2024; 169:121. [PMID: 38753119 DOI: 10.1007/s00705-024-06040-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/19/2024] [Indexed: 05/21/2024]
Abstract
Previous studies have demonstrated the relevance of several soluble molecules in the pathogenesis of dengue. In this regard, a possible role for angiotensin II (Ang II) in the pathophysiology of dengue has been suggested by the observation of a blockade of Ang II in patients with dengue, increased expression of molecules related to Ang II production in the plasma of dengue patients, increased expression of circulating cytokines and soluble molecules related to the action of Ang II, and an apparent relationship between DENV, Ang II effects, and miRNAs. In addition, in ex vivo experiments, the blockade of Ang II AT1 receptor and ACE-1 (angiotensin converting enzyme 1), both of which are involved in Ang II production and its function, inhibits infection of macrophages by DENV, suggesting a role of Ang II in viral entry or in intracellular viral replication of the virus. Here, we discuss the possible mechanisms of Ang II in the entry and replication of DENV. Ang II has the functions of increasing the expression of DENV entry receptors, creation of clathrin-coated vesicles, and increasing phagocytosis, all of which are involved in DENV entry. This hormone also modulates the expression of the Rab5 and Rab7 proteins, which are important in the endosomal processing of DENV during viral replication. This review summarizes the data related to the possible involvement of Ang II in the entry of DENV into cells and its replication.
Collapse
Affiliation(s)
- Adriana Pedreañez
- Cátedra de Inmunología, Escuela de Bioanálisis, Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Yenddy Carrero
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Renata Vargas
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Juan P Hernández-Fonseca
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
- Servicio de Microscopia Electrónica del Centro Nacional de Biotecnología (CNB- CSIC), Madrid, España
| | - Jesús Alberto Mosquera
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela.
| |
Collapse
|
18
|
Buryskova Salajova K, Malik J, Valerianova A. Cardiorenal Syndromes and Their Role in Water and Sodium Homeostasis. Physiol Res 2024; 73:173-187. [PMID: 38710052 PMCID: PMC11081188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 11/16/2023] [Indexed: 05/08/2024] Open
Abstract
Sodium is the main osmotically active ion in the extracellular fluid and its concentration goes hand in hand with fluid volume. Under physiological conditions, homeostasis of sodium and thus amount of fluid is regulated by neural and humoral interconnection of body tissues and organs. Both heart and kidneys are crucial in maintaining volume status. Proper kidney function is necessary to excrete regulated amount of water and solutes and adequate heart function is inevitable to sustain renal perfusion pressure, oxygen supply etc. As these organs are bidirectionally interconnected, injury of one leads to dysfunction of another. This condition is known as cardiorenal syndrome. It is divided into five subtypes regarding timeframe and pathophysiology of the onset. Hemodynamic effects include congestion, decreased cardiac output, but also production of natriuretic peptides. Renal congestion and hypoperfusion leads to kidney injury and maladaptive activation of renin-angiotensin-aldosterone system and sympathetic nervous system. In cardiorenal syndromes sodium and water excretion is impaired leading to volume overload and far-reaching negative consequences, including higher morbidity and mortality of these patients. Keywords: Cardiorenal syndrome, Renocardiac syndrome, Volume overload, Sodium retention.
Collapse
Affiliation(s)
- K Buryskova Salajova
- 3rd Department of Internal Medicine, General University Hospital in Prague, First Faculty of Medicine, Charles University, Prague, Czech Republic.
| | | | | |
Collapse
|
19
|
Saito S, Cao D, Bernstein EA, Jones AE, Rios A, Hoshi AO, Stotland AB, Nishi EE, Shibata T, Ahmed F, Van Eyk JE, Divakaruni A, Khan Z, Bernstein KE. Peroxisome proliferator-activated receptor alpha is essential factor in enhanced macrophage immune function induced by angiotensin converting enzyme. RESEARCH SQUARE 2024:rs.3.rs-4255086. [PMID: 38746124 PMCID: PMC11092867 DOI: 10.21203/rs.3.rs-4255086/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
An upregulation of angiotensin-converting enzyme (ACE) expression strengthens the immune activity of myeloid lineage cells as a natural functional regulation mechanism in our immunity. ACE10/10 mice, possessing increased ACE expression in macrophages, exhibit enhanced anti-tumor immunity and anti-bactericidal effects compared to those of wild type (WT) mice, while the detailed molecular mechanism has not been elucidated yet. In this report, we demonstrate that peroxisome proliferator-activated receptor alpha (PPARα) is a key molecule in the functional upregulation of macrophages induced by ACE. The expression of PPARα, a transcription factor regulating fatty acid metabolism-associated gene expressions, was upregulated in ACE-overexpressing macrophages. To pinpoint the role of PPARα in the enhanced immune function of ACE-overexpressing macrophages, we established a line with myeloid lineage-selective PPARα depletion employing the Lysozyme 2 (LysM)-Cre system based on ACE 10/10 mice (named A10-PPARα-Cre). Interestingly, A10-PPARα-Cre mice exhibited larger B16-F10-originated tumors than original ACE 10/10 mice. PPARα depletion impaired cytokine production and antigen-presenting activity in ACE-overexpressing macrophages, resulting in reduced tumor antigen-specific CD8+ T cell activity. Additionally, the anti-bactericidal effect was also impaired in A10-PPARα-Cre mice, resulting in similar bacterial colonization to WT mice in Methicillin-Resistant Staphylococcus aureus (MRSA) infection. PPARα depletion downregulated phagocytic activity and bacteria killing in ACE-overexpressing macrophages. Moreover, THP-1-ACE-derived macrophages, as a human model, expressing upregulated PPARα exhibited enhanced cytotoxicity against B16-F10 cells and MRSA killing. These activities were further enhanced by the PPARα agonist, WY 14643, while abolished by the antagonist, GW6471, in THP-1-ACE cells. Thus, PPARα is an indispensable molecule in ACE-dependent functional upregulation of macrophages in both mice and humans.
Collapse
Affiliation(s)
- Suguru Saito
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - DuoYao Cao
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ellen A. Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Anthony E. Jones
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Amy Rios
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Aoi O. Hoshi
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Ibaraki 3058577, Japan
| | - Aleksandr B. Stotland
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Erika E. Nishi
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Physiology, São Paulo School of Medicine, Universidade Federal de São Paulo, Rua Botucatu, 862 terreo, Sao Paulo, 04023-062, Brazil
| | - Tomohiro Shibata
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Faizan Ahmed
- Division of Gastroenterology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jennifer E. Van Eyk
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Ajit Divakaruni
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zakir Khan
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Kenneth E. Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
20
|
Barak R, Goshtasbi G, Fatehi R, Firouzabadi N. Signaling pathways and genetics of brain Renin angiotensin system in psychiatric disorders: State of the art. Pharmacol Biochem Behav 2024; 236:173706. [PMID: 38176544 DOI: 10.1016/j.pbb.2023.173706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
Along the conventional pathways, Renin-angiotensin system (RAS) plays a key role in the physiology of the CNS and pathogenesis of psychiatric diseases. RAS is a complex regulatory pathway which is composed of several peptides and receptors and comprises two counter-regulatory axes. The classical (ACE1/AngII/AT1 receptor) axis and the contemporary (ACE2/Ang (1-7)/Mas receptor) axis. The genes coding for elements of both axes have been broadly studied. Numerous functional polymorphisms on components of RAS have been identified to serve as informative disease and treatment markers. This review summarizes the role of each peptide and receptor in the pathophysiology of psychiatric disorders (depression, bipolar disorders and schizophrenia), followed by a concise look at the role of genetic polymorphism of the RAS in the pathophysiology of these disorders.
Collapse
Affiliation(s)
- Roya Barak
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ghazal Goshtasbi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reihaneh Fatehi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Firouzabadi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
21
|
Lee DY, Kim C, Kim J, Yun J, Lee Y, Chui CSL, Son SJ, Park RW, You SC. Comparative estimation of the effects of antihypertensive medications on schizophrenia occurrence: a multinational observational cohort study. BMC Psychiatry 2024; 24:128. [PMID: 38365637 PMCID: PMC10870661 DOI: 10.1186/s12888-024-05578-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/01/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND The association between antihypertensive medication and schizophrenia has received increasing attention; however, evidence of the impact of antihypertensive medication on subsequent schizophrenia based on large-scale observational studies is limited. We aimed to compare the schizophrenia risk in large claims-based US and Korea cohort of patients with hypertension using angiotensin-converting enzyme (ACE) inhibitors versus those using angiotensin receptor blockers (ARBs) or thiazide diuretics. METHODS Adults aged 18 years who were newly diagnosed with hypertension and received ACE inhibitors, ARBs, or thiazide diuretics as first-line antihypertensive medications were included. The study population was sub-grouped based on age (> 45 years). The comparison groups were matched using a large-scale propensity score (PS)-matching algorithm. The primary endpoint was incidence of schizophrenia. RESULTS 5,907,522; 2,923,423; and 1,971,549 patients used ACE inhibitors, ARBs, and thiazide diuretics, respectively. After PS matching, the risk of schizophrenia was not significantly different among the groups (ACE inhibitor vs. ARB: summary hazard ratio [HR] 1.15 [95% confidence interval, CI, 0.99-1.33]; ACE inhibitor vs. thiazide diuretics: summary HR 0.91 [95% CI, 0.78-1.07]). In the older subgroup, there was no significant difference between ACE inhibitors and thiazide diuretics (summary HR, 0.91 [95% CI, 0.71-1.16]). The risk for schizophrenia was significantly higher in the ACE inhibitor group than in the ARB group (summary HR, 1.23 [95% CI, 1.05-1.43]). CONCLUSIONS The risk of schizophrenia was not significantly different between the ACE inhibitor vs. ARB and ACE inhibitor vs. thiazide diuretic groups. Further investigations are needed to determine the risk of schizophrenia associated with antihypertensive drugs, especially in people aged > 45 years.
Collapse
Affiliation(s)
- Dong Yun Lee
- Department of Biomedical Informatics, Ajou University School of Medicine, 164, World cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16499, Republic of Korea
| | - Chungsoo Kim
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea
| | - Jiwoo Kim
- Big Data Department, Health Insurance Review and Assessment Service, Wonju, Korea
| | - Jeongwon Yun
- Big Data Department, Health Insurance Review and Assessment Service, Wonju, Korea
| | - Yujin Lee
- Big Data Department, Health Insurance Review and Assessment Service, Wonju, Korea
| | - Celine Sze Ling Chui
- School of Nursing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administration Region, Hong Kong, China
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administration Region, Hong Kong, China
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science and Technology Park, Hong Kong Special Administration Region, Hong Kong Science Park, Hong Kong, China
| | - Sang Joon Son
- Department of Psychiatry, Ajou University School of Medicine, Suwon, Korea
| | - Rae Woong Park
- Department of Biomedical Informatics, Ajou University School of Medicine, 164, World cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16499, Republic of Korea.
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea.
| | - Seng Chan You
- Department of Biomedicine Systems Informatics, Yonsei University College of Medicine, Seoul, Korea.
- Institute for Innovation in Digital Healthcare, Yonsei University, 50-1 Yonsei-ro, Seodaemungu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
22
|
Firoozi Z, Mohammadisoleimani E, Bagheri F, Taheri A, Pezeshki B, Naghizadeh MM, Daraei A, Karimi J, Gholampour Y, Mansoori Y, Montaseri Z. Evaluation of the Expression of Infection-Related Long Noncoding RNAs among COVID-19 Patients: A Case-Control Study. Genet Res (Camb) 2024; 2024:3391054. [PMID: 38389521 PMCID: PMC10883746 DOI: 10.1155/2024/3391054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 01/04/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Background and Aims Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a worldwide pandemic, activates signaling cascades and leads to innate immune responses and secretion of multiple chemokines and cytokines. Long noncoding RNAs (lncRNAs) have a crucial role in inflammatory pathways. Through our search on the PubMed database, we discovered that existing research has primarily focused on examining the regulatory impacts of five lncRNAs in the context of viral infections. However, their role in regulating other conditions, including SARS-CoV-2, has not been explored. Therefore, this study aimed to investigate the expression pattern of lncRNAs in the peripheral blood mononuclear cells (PBMC) and their potential roles in SARS-CoV-2 infection. Potentially significant competing endogenous RNA (ceRNA) networks of these five lncRNAs were found using online in-silico techniques. Methods Ethylenediaminetetraacetic acid (EDTA) blood samples of the control group consisted of 45 healthy people, and a total of 53 COVID-19-infected patients in case group, with a written informed consent, was collected. PBMCs were extracted, and then, the RNA extraction and complementary DNA (cDNA) synthesis was performed. The expression of five lncRNAs (lnc ISR, lnc ATV, lnc PAAN, lnc SG20, and lnc HEAL) was assessed by real-time PCR. In order to evaluate the biomarker roles of genes, receiver operating characteristic (ROC) curve was drawn. Results Twenty-four (53.3%) and 29 (54.7%) of healthy and COVID-19-infected participants were male, respectively. The most prevalent symptoms were as follows: cough, general weakness, contusion, headache, and sore throat. The results showed that three lncRNAs, including lnc ISR, lnc ATV, and lnc HEAL, were expressed dramatically higher in the case group compared to healthy controls. According to ROC curve analysis, lnc ATV has a higher AUC and is a better biomarker to differentiate COVID-19 patients from the healthy controls. Then, using bioinformatics methods, the ceRNA network of these lncRNAs enabled the identification of mRNAs and miRNAs with crucial functions in COVID-19. Conclusion The considerable higher expression of ISR, ATV, and HEAL lncRNAs and the significant area under curve (AUC) in ROC curve demonstrate that these RNAs probably have a potential role in controlling the host innate immune responses and regulate the viral replication of SARS-CoV-2. However, these assumptions need further in vitro and in vivo investigations to be confirmed.
Collapse
Affiliation(s)
- Zahra Firoozi
- Department of Medical Genetics, Fasa University of Medical Sciences, Fasa, Iran
- USERN Office, Fasa University of Medical Sciences, Fasa, Iran
| | - Elham Mohammadisoleimani
- USERN Office, Fasa University of Medical Sciences, Fasa, Iran
- Department of Medical Biotechnology, Fasa University of Medical Sciences, Fasa, Iran
- Department of Microbiology and Virology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Farzaneh Bagheri
- USERN Office, Fasa University of Medical Sciences, Fasa, Iran
- Department of Internal Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Atefeh Taheri
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Babak Pezeshki
- Department of Internal Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | | | - Abdolreza Daraei
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Jalal Karimi
- Department of Infectious Diseases, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Yousef Gholampour
- Department of Internal Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Yaser Mansoori
- Department of Medical Genetics, Fasa University of Medical Sciences, Fasa, Iran
- USERN Office, Fasa University of Medical Sciences, Fasa, Iran
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Zahra Montaseri
- Department of Infectious Diseases, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
23
|
Markousis-Mavrogenis G, Baumhove L, Al-Mubarak AA, Aboumsallem JP, Bomer N, Voors AA, van der Meer P. Immunomodulation and immunopharmacology in heart failure. Nat Rev Cardiol 2024; 21:119-149. [PMID: 37709934 DOI: 10.1038/s41569-023-00919-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/03/2023] [Indexed: 09/16/2023]
Abstract
The immune system is intimately involved in the pathophysiology of heart failure. However, it is currently underused as a therapeutic target in the clinical setting. Moreover, the development of novel immunomodulatory therapies and their investigation for the treatment of patients with heart failure are hampered by the fact that currently used, evidence-based treatments for heart failure exert multiple immunomodulatory effects. In this Review, we discuss current knowledge on how evidence-based treatments for heart failure affect the immune system in addition to their primary mechanism of action, both to inform practising physicians about these pleiotropic actions and to create a framework for the development and application of future immunomodulatory therapies. We also delineate which subpopulations of patients with heart failure might benefit from immunomodulatory treatments. Furthermore, we summarize completed and ongoing clinical trials that assess immunomodulatory treatments in heart failure and present several therapeutic targets that could be investigated in the future. Lastly, we provide future directions to leverage the immunomodulatory potential of existing treatments and to foster the investigation of novel immunomodulatory therapeutics.
Collapse
Affiliation(s)
- George Markousis-Mavrogenis
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Lukas Baumhove
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Ali A Al-Mubarak
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Joseph Pierre Aboumsallem
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Cardiology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Nils Bomer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Adriaan A Voors
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Peter van der Meer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.
| |
Collapse
|
24
|
Soos BL, Ballinger A, Weinstein M, Foreman H, Grampone J, Weafer S, Aylesworth C, King BL. Color-Flu Fluorescent Reporter Influenza A Viruses Allow for In Vivo Studies of Innate Immune Function in Zebrafish. Viruses 2024; 16:155. [PMID: 38275965 PMCID: PMC10818453 DOI: 10.3390/v16010155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/27/2024] Open
Abstract
Influenza virus infection can cause severe respiratory disease and is estimated to cause millions of illnesses annually. Studies on the contribution of the innate immune response to influenza A virus (IAV) to viral pathogenesis may yield new antiviral strategies. Zebrafish larvae are useful models for studying the innate immune response to pathogens, including IAV, in vivo. Here, we demonstrate how Color-flu, four fluorescent IAV strains originally developed for mice, can be used to study the host response to infection by simultaneously monitoring infected cells, neutrophils, and macrophages in vivo. Using this model, we show how the angiotensin-converting enzyme inhibitor, ramipril, and mitophagy inhibitor, MDIVI-1, improved survival, decreased viral burden, and improved the respiratory burst response to IAV infection. The Color-flu zebrafish larvae model of IAV infection is complementary to other models where the dynamics of infection and the response of innate immune cells can be visualized in a transparent host in vivo.
Collapse
Affiliation(s)
- Brandy-Lee Soos
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA; (B.-L.S.); (A.B.); (M.W.); (H.F.); (J.G.); (S.W.); (C.A.)
| | - Alec Ballinger
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA; (B.-L.S.); (A.B.); (M.W.); (H.F.); (J.G.); (S.W.); (C.A.)
| | - Mykayla Weinstein
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA; (B.-L.S.); (A.B.); (M.W.); (H.F.); (J.G.); (S.W.); (C.A.)
| | - Haley Foreman
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA; (B.-L.S.); (A.B.); (M.W.); (H.F.); (J.G.); (S.W.); (C.A.)
| | - Julianna Grampone
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA; (B.-L.S.); (A.B.); (M.W.); (H.F.); (J.G.); (S.W.); (C.A.)
| | - Samuel Weafer
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA; (B.-L.S.); (A.B.); (M.W.); (H.F.); (J.G.); (S.W.); (C.A.)
| | - Connor Aylesworth
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA; (B.-L.S.); (A.B.); (M.W.); (H.F.); (J.G.); (S.W.); (C.A.)
| | - Benjamin L. King
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA; (B.-L.S.); (A.B.); (M.W.); (H.F.); (J.G.); (S.W.); (C.A.)
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA
| |
Collapse
|
25
|
Curran CS, Cui X, Li Y, Jeakle M, Sun J, Demirkale CY, Minkove S, Hoffmann V, Dhamapurkar R, Chumbris S, Bolyard C, Iheanacho A, Eichacker PQ, Torabi-Parizi P. Anti-PD-L1 therapy altered inflammation but not survival in a lethal murine hepatitis virus-1 pneumonia model. Front Immunol 2024; 14:1308358. [PMID: 38259435 PMCID: PMC10801642 DOI: 10.3389/fimmu.2023.1308358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction Because prior immune checkpoint inhibitor (ICI) therapy in cancer patients presenting with COVID-19 may affect outcomes, we investigated the beta-coronavirus, murine hepatitis virus (MHV)-1, in a lethal pneumonia model in the absence (Study 1) or presence of prior programmed cell death ligand-1 (PD-L1) antibody (PD-L1mAb) treatment (Study 2). Methods In Study 1, animals were inoculated intratracheally with MHV-1 or vehicle and evaluated at day 2, 5, and 10 after infection. In Study 2, uninfected or MHV-1-infected animals were pretreated intraperitoneally with control or PD-L1-blocking antibodies (PD-L1mAb) and evaluated at day 2 and 5 after infection. Each study examined survival, physiologic and histologic parameters, viral titers, lung immunophenotypes, and mediator production. Results Study 1 results recapitulated the pathogenesis of COVID-19 and revealed increased cell surface expression of checkpoint molecules (PD-L1, PD-1), higher expression of the immune activation marker angiotensin converting enzyme (ACE), but reduced detection of the MHV-1 receptor CD66a on immune cells in the lung, liver, and spleen. In addition to reduced detection of PD-L1 on all immune cells assayed, PD-L1 blockade was associated with increased cell surface expression of PD-1 and ACE, decreased cell surface detection of CD66a, and improved oxygen saturation despite reduced blood glucose levels and increased signs of tissue hypoxia. In the lung, PD-L1mAb promoted S100A9 but inhibited ACE2 production concomitantly with pAKT activation and reduced FOXO1 levels. PD-L1mAb promoted interferon-γ but inhibited IL-5 and granulocyte-macrophage colony-stimulating factor (GM-CSF) production, contributing to reduced bronchoalveolar lavage levels of eosinophils and neutrophils. In the liver, PD-L1mAb increased viral clearance in association with increased macrophage and lymphocyte recruitment and liver injury. PD-L1mAb increased the production of virally induced mediators of injury, angiogenesis, and neuronal activity that may play role in COVID-19 and ICI-related neurotoxicity. PD-L1mAb did not affect survival in this murine model. Discussion In Study 1 and Study 2, ACE was upregulated and CD66a and ACE2 were downregulated by either MHV-1 or PD-L1mAb. CD66a is not only the MHV-1 receptor but also an identified immune checkpoint and a negative regulator of ACE. Crosstalk between CD66a and PD-L1 or ACE/ACE2 may provide insight into ICI therapies. These networks may also play role in the increased production of S100A9 and neurological mediators in response to MHV-1 and/or PD-L1mAb, which warrant further study. Overall, these findings support observational data suggesting that prior ICI treatment does not alter survival in patients presenting with COVID-19.
Collapse
Affiliation(s)
- Colleen S. Curran
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Xizhong Cui
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Yan Li
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Mark Jeakle
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Junfeng Sun
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Cumhur Y. Demirkale
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Samuel Minkove
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Victoria Hoffmann
- Division of Veterinary Resources, National Institutes of Health, Bethesda, MD, United States
| | - Rhea Dhamapurkar
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Symya Chumbris
- Texcell North-America, Inc., Frederick, MD, United States
| | | | | | - Peter Q. Eichacker
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Parizad Torabi-Parizi
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
26
|
Fan B, Zhao JV. Genetic proxies for antihypertensive drugs and mental disorders: Mendelian randomization study in European and East Asian populations. BMC Med 2024; 22:6. [PMID: 38166843 PMCID: PMC10763027 DOI: 10.1186/s12916-023-03218-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Mental disorders are among the top causes of disease burden worldwide. Existing evidence regarding the repurposing of antihypertensives for mental disorders treatment is conflicting and cannot establish causation. METHODS We used Mendelian randomization to assess the effects of angiotensin-converting-enzyme inhibitors (ACEIs), beta blockers (BBs), and calcium channel blockers (CCBs) on risk of bipolar disorder (BD), major depression disorder (MDD), and schizophrenia (SCZ). We used published genetic variants which are in antihypertensive drugs target genes and correspond to systolic blood pressure (SBP) in Europeans and East Asians, and applied them to summary statistics of BD (cases = 41,917; controls = 371,549 in Europeans), MDD (cases = 170,756; controls = 329,443 in Europeans and cases = 15,771; controls = 178,777 in East Asians), and SCZ (cases = 53,386; controls = 77,258 in Europeans and cases = 22,778; controls = 35,362 in East Asians) from the Psychiatric Genomics Consortium. We used inverse variance weighting with MR-Egger, weighted median, weighted mode, and Mendelian Randomization Pleiotropy RESidual Sum and Outlier. We performed gene-specific analysis and utilized various methods to address potential pleiotropy. RESULTS After multiple testing correction, genetically proxied ACEIs were associated with an increased risk of SCZ in Europeans (odds ratio (OR) per 5 mmHg lower in SBP 2.10, 95% CI 1.54 to 2.87) and East Asians (OR per 5 mmHg lower in SBP 2.51, 95% CI 1.38 to 4.58). Genetically proxied BBs were not associated with any mental disorders in both populations. Genetically proxied CCBs showed no benefits on mental disorders. CONCLUSIONS Antihypertensive drugs have no protection for mental disorders but potential harm. Their long-term use among hypertensive patients with, or with high susceptibility to, psychiatric illness needs careful evaluation.
Collapse
Affiliation(s)
- Bohan Fan
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 1/F, Patrick Manson Building, 7 Sassoon Road, Hong Kong SAR, China
| | - Jie V Zhao
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 1/F, Patrick Manson Building, 7 Sassoon Road, Hong Kong SAR, China.
| |
Collapse
|
27
|
Sharma KK, Devi S, Kumar D, Ali Z, Fatma N, Misra R, Kumar G. Role of Natural Products against the Spread of SARS-CoV-2 by Inhibition of ACE-2 Receptor: A Review. Curr Pharm Des 2024; 30:2562-2573. [PMID: 39041269 DOI: 10.2174/0113816128320161240703092622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/10/2024] [Indexed: 07/24/2024]
Abstract
A unique extreme acute breathing syndrome emerged in China and spread rapidly globally due to a newly diagnosed human coronavirus and declared a pandemic. COVID-19 was formally named by WHO, and the Global Committee on Taxonomy referred to it as extreme Acute respiratory Syndrome Coronavirus-2 (SARS-CoV-2). Currently there is no efficient method to control the extent of SARS-CoV-2 other than social distancing and hygiene activities. This study aims to present a simple medicinal strategy for combating fatal viral diseases like COVID-19 with minimum effort and intervention. Different Ayurveda medicines (Curcuma longa, green tea, and Piper nigrum) inhibit virus entrance and pathogen transmission while also enhancing immunity. Piperine (1-piperoylpiperidine), as well as curcumin, combine to create an intermolecular complex (π- π) that improves curcumin bioavailability by inhibiting glucuronidation of curcumin in the liver. The receptor- binding domains of the S-protein and also the angiotensin-converting enzyme 2 receptor of the recipient organism are directly occupied by curcumin and catechin, respectively, thereby preventing viruses from entering the cell. As a result, the infection will be tolerated by the animal host.
Collapse
Affiliation(s)
- Krishana Kumar Sharma
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad 244001 (UP), India
| | - Shoma Devi
- Department of Zoology, Krishna College of Science & Information Technology, Bijnor 246701 (UP), India
| | - Dharmendra Kumar
- Science Branch, Pt. Deendayal Upadhyay Institute of Archaeology, Archaeological Survey of India, Greater Noida 201013, India
| | - Zeeshan Ali
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad 244001 (UP), India
| | - Nishat Fatma
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad 244001 (UP), India
| | - Raghvendra Misra
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad 244001 (UP), India
| | - Gajendra Kumar
- Department of Chemistry, Constituent Government College, MJP Rohilkhand University, Bareilly, Hasanpur, Amroha 244241 (UP), India
| |
Collapse
|
28
|
Shibata T, Bhat SA, Cao D, Saito S, Bernstein EA, Nishi E, Medenilla JD, Wang ET, Chan JL, Pisarska MD, Tourtellotte WG, Giani JF, Bernstein KE, Khan Z. Testicular ACE regulates sperm metabolism and fertilization through the transcription factor PPARγ. J Biol Chem 2024; 300:105486. [PMID: 37992807 PMCID: PMC10788540 DOI: 10.1016/j.jbc.2023.105486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023] Open
Abstract
Testis angiotensin-converting enzyme (tACE) plays a critical role in male fertility, but the mechanism is unknown. By using ACE C-domain KO (CKO) mice which lack tACE activity, we found that ATP in CKO sperm was 9.4-fold lower than WT sperm. Similarly, an ACE inhibitor (ACEi) reduced ATP production in mouse sperm by 72%. Metabolic profiling showed that tACE inactivation severely affects oxidative metabolism with decreases in several Krebs cycle intermediates including citric acid, cis-aconitic acid, NAD, α-ketoglutaric acid, succinate, and L-malic acid. We found that sperms lacking tACE activity displayed lower levels of oxidative enzymes (CISY, ODO1, MDHM, QCR2, SDHA, FUMH, CPT2, and ATPA) leading to a decreased mitochondrial respiration rate. The reduced energy production in CKO sperms leads to defects in their physiological functions including motility, acrosine activity, and fertilization in vitro and in vivo. Male mice treated with ACEi show severe impairment in reproductive capacity when mated with female mice. In contrast, an angiotensin II receptor blocker (ARB) had no effect. CKO sperms express significantly less peroxisome proliferators-activated receptor gamma (PPARγ) transcription factor, and its blockade eliminates the functional differences between CKO and WT sperms, indicating PPARγ might mediate the effects of tACE on sperm metabolism. Finally, in a cohort of human volunteers, in vitro treatment with the ramipril or a PPARγ inhibitor reduced ATP production in human sperm and hence its motility and acrosine activity. These findings may have clinical significance since millions of people take ACEi daily, including men who are reproductively active.
Collapse
Affiliation(s)
- Tomohiro Shibata
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Shabir A Bhat
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - DuoYao Cao
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Suguru Saito
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Ellen A Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Erika Nishi
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Juliet D Medenilla
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Erica T Wang
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jessica L Chan
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Margareta D Pisarska
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA; Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Warren G Tourtellotte
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA; Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jorge F Giani
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Kenneth E Bernstein
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Zakir Khan
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA.
| |
Collapse
|
29
|
Felkle D, Zięba K, Kaleta K, Czaja J, Zyzdorf A, Sobocińska W, Jarczyński M, Bryniarski K, Nazimek K. Overreactive macrophages in SARS-CoV-2 infection: The effects of ACEI. Int Immunopharmacol 2023; 124:110858. [PMID: 37708705 DOI: 10.1016/j.intimp.2023.110858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/16/2023]
Abstract
Among various factors influencing the course of SARS-CoV-2 infection in humans, macrophage overactivation is considered the main cause of the cytokine storm that leads to severe complications of COVID-19. Moreover, the increased expression of angiotensin converting enzyme 2 (ACE2), an obligatory entry receptor of the coronavirus, caused by treatment with ACE inhibitors (ACEI) lowered overall confidence in the safety of these drugs. However, analysis of the course of coronavirus infection in patients treated with ACEI does not support these concerns. Instead, the beneficial effect of ACEI on macrophages has increasingly been emphasized. This includes their anti-inflammatory activation and the consequent reduction in the risk of severe disease and life-threatening complications. Herein, we summarize the current knowledge and understanding of the dual role of macrophages in SARS-CoV-2 infection, with a special focus on the postulated mechanisms underlying the beneficial effects of macrophage targeting by ACEI. These seem to involve the stimulation of macrophage angiotensin II type 2 and Mas receptors by angiotensin 1-7, intensively produced due to the up-regulation of ACE2 expression on macrophages, as well as the direct inhibition of macrophage hyper-responsiveness by ACEI. The impact of ACEI on macrophages may also lead to the activation of an effective antiviral response due to the increased expression of ACE2.
Collapse
Affiliation(s)
- Dominik Felkle
- Students' Scientific Group at the Department of Immunology, Jagiellonian University Medical College, Czysta 18, 31-121 Kraków, Poland
| | - Katarzyna Zięba
- Students' Scientific Group at the Department of Immunology, Jagiellonian University Medical College, Czysta 18, 31-121 Kraków, Poland
| | - Konrad Kaleta
- Students' Scientific Group at the Department of Immunology, Jagiellonian University Medical College, Czysta 18, 31-121 Kraków, Poland
| | - Julia Czaja
- Students' Scientific Group at the Department of Immunology, Jagiellonian University Medical College, Czysta 18, 31-121 Kraków, Poland
| | - Amanda Zyzdorf
- Students' Scientific Group at the Department of Immunology, Jagiellonian University Medical College, Czysta 18, 31-121 Kraków, Poland
| | - Wiktoria Sobocińska
- Students' Scientific Group at the Department of Immunology, Jagiellonian University Medical College, Czysta 18, 31-121 Kraków, Poland
| | - Mateusz Jarczyński
- Students' Scientific Group at the Department of Immunology, Jagiellonian University Medical College, Czysta 18, 31-121 Kraków, Poland
| | - Krzysztof Bryniarski
- Department of Immunology, Jagiellonian University Medical College, Czysta 18, 31-121 Kraków, Poland
| | - Katarzyna Nazimek
- Department of Immunology, Jagiellonian University Medical College, Czysta 18, 31-121 Kraków, Poland.
| |
Collapse
|
30
|
Kumar U, Aich J, Devarajan S. Exploring the repurposing potential of telmisartan drug in breast cancer: an in-silico and in-vitro approach. Anticancer Drugs 2023; 34:1094-1103. [PMID: 36847075 DOI: 10.1097/cad.0000000000001509] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Anticancer drug resistance is one of the biggest hurdles in the treatment of breast cancer. Drug repurposing is a viable option fordeveloping novel medical treatment strategies since this method is more cost-efficient and rapid. Antihypertensive medicines have recently been found to have pharmacological features that could be used to treat cancer, making them effective candidates for therapeutic repurposing. The goal of our research is to find a potent antihypertensive drug that can be repurposed as adjuvant therapy for breast cancer. In this study, virtual screening was performed using a set of Food and Drug Administration (FDA)-approved antihypertensive drugs as ligands with selected receptor proteins (EGFR, KRAS, P53, AGTR1, AGTR2, and ACE) assuming these proteins are regarded to have a significant role in hypertension as well as breast cancer. Further, our in-silico results were further confirmed by an in-vitro experiment (cytotoxicity assay). All the compounds (enalapril, atenolol, acebutolol, propranolol, amlodipine, verapamil, doxazosin, prazosin, hydralazine, irbesartan, telmisartan, candesartan, and aliskiren) showed remarkable affinity towards the target receptor proteins. However, maximum affinity was displayed by telmisartan. Cell-based cytotoxicity study of telmisartan in MCF7 (breast cancer cell line) confirmed the anticancer effect of telmisartan. IC50 of the drug was calculated to be 7.75 µM and at this concentration, remarkable morphological alterations were observed in the MCF7 cells confirming its cytotoxicity in breast cancer cells. Based on both in-silico and in-vitro studies, we can conclude that telmisartan appears to be a promising drug repurposing candidate for the therapeutic treatment of breast cancer.
Collapse
Affiliation(s)
- Urwashi Kumar
- School of Biotechnology and Bioinformatics, D.Y. Patil Deemed to Be University, CBD Belapur, Navi Mumbai, Maharashtra, India
| | | | | |
Collapse
|
31
|
Zheng SY, Du X, Dong JZ. Re-evaluating serum angiotensin-converting enzyme in sarcoidosis. Front Immunol 2023; 14:950095. [PMID: 37868968 PMCID: PMC10586325 DOI: 10.3389/fimmu.2023.950095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 08/25/2023] [Indexed: 10/24/2023] Open
Abstract
Sarcoidosis is a systemic inflammatory disease of unknown etiology, which mainly affects the lungs and lymph nodes, as well as extrapulmonary organs. Its incidence, and prevalence rate, and disease course largely vary with regions and populations globally. The clinical manifestations of sarcoidosis depend on the affected organs and the degree of severity, and the diagnosis is mainly based on serum biomarkers, radiographic, magnetic resonance, or positron emission tomography imaging, and pathological biopsy. Noncaseating granulomas composing T cells, macrophages, epithelioid cells, and giant cells, were observed in a pathological biopsy, which was the characteristic pathological manifestation of sarcoidosis. Angiotensin-converting enzyme (ACE) was first found in the renin-angiotensin-aldosterone system. Its main function is to convert angiotensin I (Ang I) into Ang II, which plays an important role in regulating blood pressure. Also, an ACE insertion/deletion polymorphism exists in the human genome, which is involved in the occurrence and development of many diseases, including hypertension, heart failure, and sarcoidosis. The serum ACE level, most commonly used as a biomarker in diagnosing sarcoidosis, in patients with sarcoidosis increases. because of epithelioid cells and giant cells of sarcoid granuloma expressing ACE. Thus, it serves as the most commonly used biomarker in the diagnosis of sarcoidosis and also aids in analyzing its therapeutic effect and prognosis in patients with sarcoidosis.
Collapse
Affiliation(s)
- Shi-yue Zheng
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xin Du
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jian-zeng Dong
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
32
|
Cao D, Saito S. Editorial: Role of angiotensin-converting enzyme in myeloid immune functions. Front Physiol 2023; 14:1297995. [PMID: 37841317 PMCID: PMC10569411 DOI: 10.3389/fphys.2023.1297995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/17/2023] Open
Affiliation(s)
- DuoYao Cao
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | | |
Collapse
|
33
|
Copur S, Peltek IB, Mutlu A, Tanriover C, Kanbay M. A new immune disease: systemic hypertension. Clin Kidney J 2023; 16:1403-1419. [PMID: 37664577 PMCID: PMC10469084 DOI: 10.1093/ckj/sfad059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Indexed: 09/05/2023] Open
Abstract
Systemic hypertension is the most common medical comorbidity affecting the adult population globally, with multiple associated outcomes including cerebrovascular diseases, cardiovascular diseases, vascular calcification, chronic kidney disease, metabolic syndrome and mortality. Despite advancements in the therapeutic field approximately one in every five adult patients with hypertension is classified as having treatment-resistant hypertension, indicating the need for studies to provide better understanding of the underlying pathophysiology and the need for more therapeutic targets. Recent pre-clinical studies have demonstrated the role of the innate and adaptive immune system including various cell types and cytokines in the pathophysiology of hypertension. Moreover, pre-clinical studies have indicated the potential beneficial effects of immunosuppressant medications in the control of hypertension. Nevertheless, it is unclear whether such pathophysiological mechanisms and therapeutic alternatives are applicable to human subjects, while this area of research is undoubtedly a rapidly growing field.
Collapse
Affiliation(s)
- Sidar Copur
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Ibrahim B Peltek
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Ali Mutlu
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Cem Tanriover
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Mehmet Kanbay
- Department of Medicine, Section of Nephrology, Koc University School of Medicine, Istanbul, Turkey
| |
Collapse
|
34
|
Koc AS, Fener N, Kobak S. SARS-CoV-2 Infection-Induced Necrotising Sarcoid Granulomatosis. Mediterr J Rheumatol 2023; 34:386-390. [PMID: 37941860 PMCID: PMC10628879 DOI: 10.31138/mjr.20230731.si] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/25/2022] [Accepted: 01/06/2023] [Indexed: 11/10/2023] Open
Abstract
SARS-CoV-2 infection is a pandemic that affects predominantly upper airways and lungs. It may lead to reactivation of known inflammatory rheumatic diseases and/or initiation of various granulomatous disorders. Necrotising sarcoid granulomatosis (NSG) is a rare condition that can be confused with malignancy, granulomatosis with polyangiitis, and sarcoidosis. Herein we reported the development of NSG following a SARS-CoV-2 infection which mimicked granulomatosis with polyangiitis.
Collapse
Affiliation(s)
- Aysu Sinem Koc
- Department of Pulmonology, Istinye University Faculty of Medicine, LIV Hospital, Istanbul, Turkey
| | - Neslihan Fener
- Department of Pathology, University of Health Sciences, Yedikule Chest Diseases and Thoracic Surgery Training and Research Hospital, Istanbul, Turkey
| | - Senol Kobak
- Department of Internal Medicine and Rheumatology Istinye University Faculty of Medicine, LIV Hospital, WASOG Sarcoidosis Clinic, Istanbul, Turkey
| |
Collapse
|
35
|
Maurer J, Grouzmann E, Eugster PJ. Tutorial review for peptide assays: An ounce of pre-analytics is worth a pound of cure. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1229:123904. [PMID: 37832388 DOI: 10.1016/j.jchromb.2023.123904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023]
Abstract
The recent increase in peptidomimetic-based medications and the growing interest in peptide hormones has brought new attention to the quantification of peptides for diagnostic purposes. Indeed, the circulating concentrations of peptide hormones in the blood provide a snapshot of the state of the body and could eventually lead to detecting a particular health condition. Although extremely useful, the quantification of such molecules, preferably by liquid chromatography coupled to mass spectrometry, might be quite tricky. First, peptides are subjected to hydrolysis, oxidation, and other post-translational modifications, and, most importantly, they are substrates of specific and nonspecific proteases in biological matrixes. All these events might continue after sampling, changing the peptide hormone concentrations. Second, because they include positively and negatively charged groups and hydrophilic and hydrophobic residues, they interact with their environment; these interactions might lead to a local change in the measured concentrations. A phenomenon such as nonspecific adsorption to lab glassware or materials has often a tremendous effect on the concentration and needs to be controlled with particular care. Finally, the circulating levels of peptides might be low (pico- or femtomolar range), increasing the impact of the aforementioned effects and inducing the need for highly sensitive instruments and well-optimized methods. Thus, despite the extreme diversity of these peptides and their matrixes, there is a common challenge for all the assays: the need to keep concentrations unchanged from sampling to analysis. While significant efforts are often placed on optimizing the analysis, few studies consider in depth the impact of pre-analytical steps on the results. By working through practical examples, this solution-oriented tutorial review addresses typical pre-analytical challenges encountered during the development of a peptide assay from the standpoint of a clinical laboratory. We provide tips and tricks to avoid pitfalls as well as strategies to guide all new developments. Our ultimate goal is to increase pre-analytical awareness to ensure that newly developed peptide assays produce robust and accurate results.
Collapse
Affiliation(s)
- Jonathan Maurer
- Service of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Eric Grouzmann
- Service of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Philippe J Eugster
- Service of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
36
|
Barhoumi T, Mansour FA, Jalouli M, Alamri HS, Ali R, Harrath AH, Aljumaa M, Boudjelal M. Angiotensin II modulates THP-1-like macrophage phenotype and inflammatory signatures via angiotensin II type 1 receptor. Front Cardiovasc Med 2023; 10:1129704. [PMID: 37692050 PMCID: PMC10485254 DOI: 10.3389/fcvm.2023.1129704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/30/2023] [Indexed: 09/12/2023] Open
Abstract
Angiotensin II (Ang II) is a major component of the renin-angiotensin or renin-angiotensin-aldosterone system, which is the main element found to be involved in cardiopathology. Recently, long-term metabolomics studies have linked high levels of angiotensin plasma to inflammatory conditions such as coronary heart disease, obesity, and type 2 diabetes. Monocyte/macrophage cellular function and phenotype orchestrate the inflammatory response in various pathological conditions, most notably cardiometabolic disease. An activation of the Ang II system is usually associated with inflammation and cardiovascular disease; however, the direct effect on monocyte/macrophages has still not been well elucidated. Herein, we have evaluated the cellular effects of Ang II on THP-1-derived macrophages. Ang II stimulated the expression of markers involved in monocyte/macrophage cell differentiation (e.g., CD116), as well as adhesion, cell-cell interaction, chemotaxis, and phagocytosis (CD15, CD44, CD33, and CD49F). Yet, Ang II increased the expression of proinflammatory markers (HLA-DR, TNF-α, CD64, CD11c, and CD38) and decreased CD206 (mannose receptor), an M2 marker. Moreover, Ang II induced cytosolic calcium overload, increased reactive oxygen species, and arrested cells in the G1 phase. Most of these effects were induced via the angiotensin II type 1 receptor (AT1R). Collectively, our results provide new evidence in support of the effect of Ang II in inflammation associated with cardiometabolic diseases.
Collapse
Affiliation(s)
- Tlili Barhoumi
- Medical Research Core Facility and Platforms (MRCFP), King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), NGHA, Riyadh, Saudi Arabia
| | - Fatmah A. Mansour
- Medical Research Core Facility and Platforms (MRCFP), King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), NGHA, Riyadh, Saudi Arabia
| | - Maroua Jalouli
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Hassan S. Alamri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences/King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Rizwan Ali
- Medical Research Core Facility and Platforms (MRCFP), King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), NGHA, Riyadh, Saudi Arabia
| | - Abdel Halim Harrath
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Maha Aljumaa
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mohamed Boudjelal
- Medical Research Core Facility and Platforms (MRCFP), King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), NGHA, Riyadh, Saudi Arabia
| |
Collapse
|
37
|
Cao D, Khan Z, Li X, Saito S, Bernstein EA, Victor AR, Ahmed F, Hoshi AO, Veiras LC, Shibata T, Che M, Cai L, Yamashita M, Temel RE, Giani JF, Luthringer DJ, Divakaruni AS, Okwan-Duodu D, Bernstein KE. Macrophage angiotensin-converting enzyme reduces atherosclerosis by increasing peroxisome proliferator-activated receptor α and fundamentally changing lipid metabolism. Cardiovasc Res 2023; 119:1825-1841. [PMID: 37225143 PMCID: PMC10681664 DOI: 10.1093/cvr/cvad082] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/21/2023] [Accepted: 04/05/2023] [Indexed: 05/26/2023] Open
Abstract
AIMS The metabolic failure of macrophages to adequately process lipid is central to the aetiology of atherosclerosis. Here, we examine the role of macrophage angiotensin-converting enzyme (ACE) in a mouse model of PCSK9-induced atherosclerosis. METHODS AND RESULTS Atherosclerosis in mice was induced with AAV-PCSK9 and a high-fat diet. Animals with increased macrophage ACE (ACE 10/10 mice) have a marked reduction in atherosclerosis vs. WT mice. Macrophages from both the aorta and peritoneum of ACE 10/10 express increased PPARα and have a profoundly altered phenotype to process lipids characterized by higher levels of the surface scavenger receptor CD36, increased uptake of lipid, increased capacity to transport long chain fatty acids into mitochondria, higher oxidative metabolism and lipid β-oxidation as determined using 13C isotope tracing, increased cell ATP, increased capacity for efferocytosis, increased concentrations of the lipid transporters ABCA1 and ABCG1, and increased cholesterol efflux. These effects are mostly independent of angiotensin II. Human THP-1 cells, when modified to express more ACE, increase expression of PPARα, increase cell ATP and acetyl-CoA, and increase cell efferocytosis. CONCLUSION Increased macrophage ACE expression enhances macrophage lipid metabolism, cholesterol efflux, efferocytosis, and it reduces atherosclerosis. This has implications for the treatment of cardiovascular disease with angiotensin II receptor antagonists vs. ACE inhibitors.
Collapse
Affiliation(s)
- DuoYao Cao
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Zakir Khan
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Xiaomo Li
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Suguru Saito
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Ellen A Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Aaron R Victor
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Faizan Ahmed
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Aoi O Hoshi
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Luciana C Veiras
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Tomohiro Shibata
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Mingtian Che
- Biobank and Pathology Shared Resource, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Lei Cai
- Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - Michifumi Yamashita
- Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - Ryan E Temel
- Saha Cardiovascular Research Center and Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - Jorge F Giani
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Daniel J Luthringer
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Ajit S Divakaruni
- Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Derick Okwan-Duodu
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Kenneth E Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| |
Collapse
|
38
|
Lathe R, St Clair D. Programmed ageing: decline of stem cell renewal, immunosenescence, and Alzheimer's disease. Biol Rev Camb Philos Soc 2023; 98:1424-1458. [PMID: 37068798 DOI: 10.1111/brv.12959] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/19/2023]
Abstract
The characteristic maximum lifespan varies enormously across animal species from a few hours to hundreds of years. This argues that maximum lifespan, and the ageing process that itself dictates lifespan, are to a large extent genetically determined. Although controversial, this is supported by firm evidence that semelparous species display evolutionarily programmed ageing in response to reproductive and environmental cues. Parabiosis experiments reveal that ageing is orchestrated systemically through the circulation, accompanied by programmed changes in hormone levels across a lifetime. This implies that, like the circadian and circannual clocks, there is a master 'clock of age' (circavital clock) located in the limbic brain of mammals that modulates systemic changes in growth factor and hormone secretion over the lifespan, as well as systemic alterations in gene expression as revealed by genomic methylation analysis. Studies on accelerated ageing in mice, as well as human longevity genes, converge on evolutionarily conserved fibroblast growth factors (FGFs) and their receptors, including KLOTHO, as well as insulin-like growth factors (IGFs) and steroid hormones, as key players mediating the systemic effects of ageing. Age-related changes in these and multiple other factors are inferred to cause a progressive decline in tissue maintenance through failure of stem cell replenishment. This most severely affects the immune system, which requires constant renewal from bone marrow stem cells. Age-related immune decline increases risk of infection whereas lifespan can be extended in germfree animals. This and other evidence suggests that infection is the major cause of death in higher organisms. Immune decline is also associated with age-related diseases. Taking the example of Alzheimer's disease (AD), we assess the evidence that AD is caused by immunosenescence and infection. The signature protein of AD brain, Aβ, is now known to be an antimicrobial peptide, and Aβ deposits in AD brain may be a response to infection rather than a cause of disease. Because some cognitively normal elderly individuals show extensive neuropathology, we argue that the location of the pathology is crucial - specifically, lesions to limbic brain are likely to accentuate immunosenescence, and could thus underlie a vicious cycle of accelerated immune decline and microbial proliferation that culminates in AD. This general model may extend to other age-related diseases, and we propose a general paradigm of organismal senescence in which declining stem cell proliferation leads to programmed immunosenescence and mortality.
Collapse
Affiliation(s)
- Richard Lathe
- Division of Infection Medicine, Chancellor's Building, University of Edinburgh Medical School, Little France, Edinburgh, EH16 4SB, UK
| | - David St Clair
- Institute of Medical Sciences, School of Medicine, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
39
|
Danziger R, Fuchs DT, Koronyo Y, Rentsendorj A, Sheyn J, Hayden EY, Teplow DB, Black KL, Fuchs S, Bernstein KE, Koronyo-Hamaoui M. The effects of enhancing angiotensin converting enzyme in myelomonocytes on ameliorating Alzheimer's-related disease and preserving cognition. Front Physiol 2023; 14:1179315. [PMID: 37427403 PMCID: PMC10326285 DOI: 10.3389/fphys.2023.1179315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023] Open
Abstract
This review examines the role of angiotensin-converting enzyme (ACE) in the context of Alzheimer's disease (AD) and its potential therapeutic value. ACE is known to degrade the neurotoxic 42-residue long alloform of amyloid β-protein (Aβ42), a peptide strongly associated with AD. Previous studies in mice, demonstrated that targeted overexpression of ACE in CD115+ myelomonocytic cells (ACE10 models) improved their immune responses to effectively reduce viral and bacterial infection, tumor growth, and atherosclerotic plaque. We further demonstrated that introducing ACE10 myelomonocytes (microglia and peripheral monocytes) into the double transgenic APPSWE/PS1ΔE9 murine model of AD (AD+ mice), diminished neuropathology and enhanced the cognitive functions. These beneficial effects were dependent on ACE catalytic activity and vanished when ACE was pharmacologically blocked. Moreover, we revealed that the therapeutic effects in AD+ mice can be achieved by enhancing ACE expression in bone marrow (BM)-derived CD115+ monocytes alone, without targeting central nervous system (CNS) resident microglia. Following blood enrichment with CD115+ ACE10-monocytes versus wild-type (WT) monocytes, AD+ mice had reduced cerebral vascular and parenchymal Aβ burden, limited microgliosis and astrogliosis, as well as improved synaptic and cognitive preservation. CD115+ ACE10-versus WT-monocyte-derived macrophages (Mo/MΦ) were recruited in higher numbers to the brains of AD+ mice, homing to Aβ plaque lesions and exhibiting a highly Aβ-phagocytic and anti-inflammatory phenotype (reduced TNFα/iNOS and increased MMP-9/IGF-1). Moreover, BM-derived ACE10-Mo/MΦ cultures had enhanced capability to phagocytose Aβ42 fibrils, prion-rod-like, and soluble oligomeric forms that was associated with elongated cell morphology and expression of surface scavenger receptors (i.e., CD36, Scara-1). This review explores the emerging evidence behind the role of ACE in AD, the neuroprotective properties of monocytes overexpressing ACE and the therapeutic potential for exploiting this natural mechanism for ameliorating AD pathogenesis.
Collapse
Affiliation(s)
- Ron Danziger
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical center, Los Angeles, CA, United States
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical center, Los Angeles, CA, United States
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical center, Los Angeles, CA, United States
| | - Altan Rentsendorj
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical center, Los Angeles, CA, United States
| | - Julia Sheyn
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical center, Los Angeles, CA, United States
| | - Eric Y. Hayden
- Department of Neurology, David Geffen School of Medicine at UCLA, Mary S. Easton Center for Alzheimer’s Disease Research at UCLA, Brain Research Institute, Molecular Biology Institute, University of California, Los Angeles, CA, United States
| | - David B. Teplow
- Department of Neurology, David Geffen School of Medicine at UCLA, Mary S. Easton Center for Alzheimer’s Disease Research at UCLA, Brain Research Institute, Molecular Biology Institute, University of California, Los Angeles, CA, United States
| | - Keith L. Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical center, Los Angeles, CA, United States
| | - Sebastien Fuchs
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| | - Kenneth E. Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical center, Los Angeles, CA, United States
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
40
|
Li J, Bollati C, Aiello G, Bartolomei M, Rivardo F, Boschin G, Arnoldi A, Lammi C. Evaluation of the multifunctional dipeptidyl-peptidase IV and angiotensin converting enzyme inhibitory properties of a casein hydrolysate using cell-free and cell-based assays. Front Nutr 2023; 10:1198258. [PMID: 37284652 PMCID: PMC10240083 DOI: 10.3389/fnut.2023.1198258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/09/2023] [Indexed: 06/08/2023] Open
Abstract
The objective of the study was the evaluation of the potential pleiotropic effect of a commercial casein hydrolysate (CH). After an analysis of the composition, the BIOPEP-UWM database suggested that these peptides contained numerous sequences with potential inhibitory activities on angiotensin converting enzyme (ACE) and dipeptidyl-peptidase IV (DPP-IV). The anti-diabetic and anti-hypertensive effects of these peptides were thus assessed using either cell-free or cell-based assays. In the cell-free system, CH displayed inhibitory properties against DPP-IV (IC50 value equal to 0.38 ± 0.01 mg/mL) and ACE (IC50 value equal to 0.39 ± 0.01 mg/mL). Further, CH reduced the DPP-IV and ACE activities expressed by human intestinal Caco-2 cells by 61.10 ± 1.70% and 76.90 ± 4.47%, respectively, versus untreated cells, after 6 h of treatment at the concentration of 5 mg/mL. This first demonstration of the multifunctional behavior of this material suggests that it may become an anti-diabetic and/or anti-hypertensive ingredient to be included in the formulation of different functional food or nutraceutics.
Collapse
Affiliation(s)
- Jianqiang Li
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Carlotta Bollati
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Gilda Aiello
- Department of Human Science and Quality of Life Promotion, Telematic University San Raffaele, Rome, Italy
| | - Martina Bartolomei
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | | | - Giovanna Boschin
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Anna Arnoldi
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Carmen Lammi
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| |
Collapse
|
41
|
Ndiaye JF, Nekka F, Craig M. Understanding the Mechanisms and Treatment of Heart Failure: Quantitative Systems Pharmacology Models with a Focus on SGLT2 Inhibitors and Sex-Specific Differences. Pharmaceutics 2023; 15:1002. [PMID: 36986862 PMCID: PMC10052171 DOI: 10.3390/pharmaceutics15031002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Heart failure (HF), which is a major clinical and public health challenge, commonly develops when the myocardial muscle is unable to pump an adequate amount of blood at typical cardiac pressures to fulfill the body's metabolic needs, and compensatory mechanisms are compromised or fail to adjust. Treatments consist of targeting the maladaptive response of the neurohormonal system, thereby decreasing symptoms by relieving congestion. Sodium-glucose co-transporter 2 (SGLT2) inhibitors, which are a recent antihyperglycemic drug, have been found to significantly improve HF complications and mortality. They act through many pleiotropic effects, and show better improvements compared to others existing pharmacological therapies. Mathematical modeling is a tool used to describe the pathophysiological processes of the disease, quantify clinically relevant outcomes in response to therapies, and provide a predictive framework to improve therapeutic scheduling and strategies. In this review, we describe the pathophysiology of HF, its treatment, and how an integrated mathematical model of the cardiorenal system was built to capture body fluid and solute homeostasis. We also provide insights into sex-specific differences between males and females, thereby encouraging the development of more effective sex-based therapies in the case of heart failure.
Collapse
Affiliation(s)
- Jean François Ndiaye
- Department of Mathematics and Statistics, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Sainte-Justine University Hospital Research Centre, Montréal, QC H3T 1C5, Canada
| | - Fahima Nekka
- Faculty of Pharmacy, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Morgan Craig
- Department of Mathematics and Statistics, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Sainte-Justine University Hospital Research Centre, Montréal, QC H3T 1C5, Canada
| |
Collapse
|
42
|
Abstract
Alzheimer's disease (AD) is a genetically complex and heterogeneous disorder with multifaceted neuropathological features, including β-amyloid plaques, neurofibrillary tangles, and neuroinflammation. Over the past decade, emerging evidence has implicated both beneficial and pathological roles for innate immune genes and immune cells, including peripheral immune cells such as T cells, which can infiltrate the brain and either ameliorate or exacerbate AD neuropathogenesis. These findings support a neuroimmune axis of AD, in which the interplay of adaptive and innate immune systems inside and outside the brain critically impacts the etiology and pathogenesis of AD. In this review, we discuss the complexities of AD neuropathology at the levels of genetics and cellular physiology, highlighting immune signaling pathways and genes associated with AD risk and interactions among both innate and adaptive immune cells in the AD brain. We emphasize the role of peripheral immune cells in AD and the mechanisms by which immune cells, such as T cells and monocytes, influence AD neuropathology, including microglial clearance of amyloid-β peptide, the key component of β-amyloid plaque cores, pro-inflammatory and cytotoxic activity of microglia, astrogliosis, and their interactions with the brain vasculature. Finally, we review the challenges and outlook for establishing immune-based therapies for treating and preventing AD.
Collapse
|
43
|
Zhang MQ, Wang CC, Pang XB, Shi JZ, Li HR, Xie XM, Wang Z, Zhang HD, Zhou YF, Chen JW, Han ZY, Zhao LL, He YY. Role of macrophages in pulmonary arterial hypertension. Front Immunol 2023; 14:1152881. [PMID: 37153557 PMCID: PMC10154553 DOI: 10.3389/fimmu.2023.1152881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/27/2023] [Indexed: 05/09/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe cardiopulmonary vascular disease characterized by progressive pulmonary artery pressure elevation, increased pulmonary vascular resistance and ultimately right heart failure. Studies have demonstrated the involvement of multiple immune cells in the development of PAH in patients with PAH and in experimental PAH. Among them, macrophages, as the predominant inflammatory cells infiltrating around PAH lesions, play a crucial role in exacerbating pulmonary vascular remodeling in PAH. Macrophages are generally polarized into (classic) M1 and (alternative) M2 phenotypes, they accelerate the process of PAH by secreting various chemokines and growth factors (CX3CR1, PDGF). In this review we summarize the mechanisms of immune cell action in PAH, as well as the key factors that regulate the polarization of macrophages in different directions and their functional changes after polarization. We also summarize the effects of different microenvironments on macrophages in PAH. The insight into the interactions between macrophages and other cells, chemokines and growth factors may provide important clues for the development of new, safe and effective immune-targeted therapies for PAH.
Collapse
Affiliation(s)
- Meng-Qi Zhang
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Chen-Chen Wang
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Xiao-Bin Pang
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Jun-Zhuo Shi
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Hao-Ran Li
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Xin-Mei Xie
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Zhe Wang
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Hong-Da Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yun-Feng Zhou
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Ji-Wang Chen
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Zhi-Yan Han
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Yang-Yang He, ; Lu-Ling Zhao, ; Zhi-Yan Han,
| | - Lu-Ling Zhao
- School of Pharmacy, Henan University, Kaifeng, Henan, China
- *Correspondence: Yang-Yang He, ; Lu-Ling Zhao, ; Zhi-Yan Han,
| | - Yang-Yang He
- School of Pharmacy, Henan University, Kaifeng, Henan, China
- *Correspondence: Yang-Yang He, ; Lu-Ling Zhao, ; Zhi-Yan Han,
| |
Collapse
|
44
|
Kopp W. Pathogenesis of (smoking-related) non-communicable diseases-Evidence for a common underlying pathophysiological pattern. Front Physiol 2022; 13:1037750. [PMID: 36589440 PMCID: PMC9798240 DOI: 10.3389/fphys.2022.1037750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Non-communicable diseases, like diabetes, cardiovascular diseases, cancer, stroke, chronic obstructive pulmonary disease, osteoporosis, arthritis, Alzheimer's disease and other more are a leading cause of death in almost all countries. Lifestyle factors, especially poor diet and tobacco consumption, are considered to be the most important influencing factors in the development of these diseases. The Western diet has been shown to cause a significant distortion of normal physiology, characterized by dysregulation of the sympathetic nervous system, renin-angiotensin aldosterone system, and immune system, as well as disruption of physiological insulin and oxidant/antioxidant homeostasis, all of which play critical roles in the development of these diseases. This paper addresses the question of whether the development of smoking-related non-communicable diseases follows the same pathophysiological pattern. The evidence presented shows that exposure to cigarette smoke and/or nicotine causes the same complex dysregulation of physiology as described above, it further shows that the factors involved are strongly interrelated, and that all of these factors play a key role in the development of a broad spectrum of smoking-related diseases. Since not all smokers develop one or more of these diseases, it is proposed that this disruption of normal physiological balance represents a kind of pathogenetic "basic toolkit" for the potential development of a range of non-communicable diseases, and that the decision of whether and what disease will develop in an individual is determined by other, individual factors ("determinants"), such as the genome, epigenome, exposome, microbiome, and others. The common pathophysiological pattern underlying these diseases may provide an explanation for the often poorly understood links between non-communicable diseases and disease comorbidities. The proposed pathophysiological process offers new insights into the development of non-communicable diseases and may influence the direction of future research in both prevention and therapy.
Collapse
|
45
|
Cozier GE, Newby EC, Schwager SLU, Isaac RE, Sturrock ED, Acharya KR. Structural basis for the inhibition of human angiotensin-1 converting enzyme by fosinoprilat. FEBS J 2022; 289:6659-6671. [PMID: 35653492 PMCID: PMC9796954 DOI: 10.1111/febs.16543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/24/2022] [Accepted: 06/01/2022] [Indexed: 01/07/2023]
Abstract
Human angiotensin I-converting enzyme (ACE) has two isoforms, somatic ACE (sACE) and testis ACE (tACE). The functions of sACE are widespread, with its involvement in blood pressure regulation most extensively studied. sACE is composed of an N-domain (nACE) and a C-domain (cACE), both catalytically active but have significant structural differences, resulting in different substrate specificities. Even though ACE inhibitors are used clinically, they need much improvement because of serious side effects seen in patients (~ 25-30%) with long-term treatment due to nonselective inhibition of nACE and cACE. Investigation into the distinguishing structural features of each domain is therefore of vital importance for the development of domain-specific inhibitors with minimal side effects. Here, we report kinetic data and high-resolution crystal structures of both nACE (1.75 Å) and cACE (1.85 Å) in complex with fosinoprilat, a clinically used inhibitor. These structures allowed detailed analysis of the molecular features conferring domain selectivity by fosinoprilat. Particularly, altered hydrophobic interactions were observed to be a contributing factor. These experimental data contribute to improved understanding of the structural features that dictate ACE inhibitor domain selectivity, allowing further progress towards designing novel 2nd-generation domain-specific potent ACE inhibitors suitable for clinical administration, with a variety of potential future therapeutic benefits. DATABASE: The atomic coordinates and structure factors for nACE-fosinoprilat and cACE-fosinoprilat structures have been deposited with codes 7Z6Z and 7Z70, respectively, in the RCSB Protein Data Bank, www.pdb.org.
Collapse
Affiliation(s)
| | - Emma C. Newby
- Department of Biology and BiochemistryUniversity of BathUK
| | - Sylva L. U. Schwager
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular MedicineUniversity of Cape TownSouth Africa
| | | | - Edward D. Sturrock
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular MedicineUniversity of Cape TownSouth Africa
| | | |
Collapse
|
46
|
Rossi E, Mutti L, Morrione A, Giordano A. Neuro-Immune Interactions in Severe COVID-19 Infection. Pathogens 2022; 11:1256. [PMID: 36365007 PMCID: PMC9699641 DOI: 10.3390/pathogens11111256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 12/15/2022] Open
Abstract
SARS-CoV-2 is a new coronavirus that has affected the world since 2019. Interstitial pneumonia is the most common clinical presentation, but additional symptoms have been reported, including neurological manifestations. Severe forms of infection, especially in elderly patients, present as an excessive inflammatory response called "cytokine storm", which can lead to acute respiratory distress syndrome (ARDS), multiorgan failure and death. Little is known about the relationship between symptoms and clinical outcomes or the characteristics of virus-host interactions. The aim of this narrative review is to highlight possible links between neurological involvement and respiratory damage mediated by pathological inflammatory pathways in SARS-CoV-2 infection. We will focus on neuro-immune interactions and age-related immunity decline and discuss some pathological mechanisms that contribute to negative outcomes in COVID-19 patients. Furthermore, we will describe available therapeutic strategies and their effects on COVID-19 neurological symptoms.
Collapse
Affiliation(s)
- Elena Rossi
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Luciano Mutti
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
- Italian Group for Research and Therapy for Mesothelioma (GIMe), 27058 Voghera, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, Coppito 2, 67100 L’Aquila, Italy
| | - Andrea Morrione
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Antonio Giordano
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
47
|
Saito S, Tatsumoto N, Cao DY, Nosaka N, Nishi H, Leal DN, Bernstein E, Shimada K, Arditi M, Bernstein KE, Yamashita M. Overexpressed angiotensin-converting enzyme in neutrophils suppresses glomerular damage in crescentic glomerulonephritis. Am J Physiol Renal Physiol 2022; 323:F411-F424. [PMID: 35979968 PMCID: PMC9484997 DOI: 10.1152/ajprenal.00067.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/22/2022] [Accepted: 08/13/2022] [Indexed: 11/22/2022] Open
Abstract
While angiotensin-converting enzyme (ACE) regulates blood pressure by producing angiotensin II as part of the renin-angiotensin system, we recently reported that elevated ACE in neutrophils promotes an effective immune response and increases resistance to infection. Here, we investigate if such neutrophils protect against renal injury in immune complex (IC)-mediated crescentic glomerulonephritis (GN) through complement. Nephrotoxic serum nephritis (NTN) was induced in wild-type and NeuACE mice that overexpress ACE in neutrophils. Glomerular injury of NTN in NeuACE mice was attenuated with much less proteinuria, milder histological injury, and reduced IC deposits, but presented with more glomerular neutrophils in the early stage of the disease. There were no significant defects in T and B cell functions in NeuACE mice. NeuACE neutrophils exhibited enhanced IC uptake with elevated surface expression of FcγRII/III and complement receptor CR1/2. IC uptake in neutrophils was enhanced by NeuACE serum containing elevated complement C3b. Given no significant complement activation by ACE, this suggests that neutrophil ACE indirectly preactivates C3 and that the C3b-CR1/2 axis and elevated FcγRII/III play a central role in IC elimination by neutrophils, resulting in reduced glomerular injury. The present study identified a novel renoprotective role of ACE in glomerulonephritis; elevated neutrophilic ACE promotes elimination of locally formed ICs in glomeruli via C3b-CR1/2 and FcγRII/III, ameliorating glomerular injury.NEW & NOTEWORTHY We studied immune complex (IC)-mediated crescentic glomerulonephritis in NeuACE mice that overexpress ACE only in neutrophils. Such mice show no significant defects in humoral immunity but strongly resist nephrotoxic serum nephritis (less proteinuria, milder histological damage, reduced IC deposits, and more glomerular neutrophils). NeuACE neutrophils enhanced IC uptake via increased surface expression of CR1/2 and FcgRII/III, as well as elevated serum complement C3b. These results suggest neutrophil ACE as a novel approach to reducing glomerulonephritis.
Collapse
Affiliation(s)
- Suguru Saito
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Narihito Tatsumoto
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Duo-Yao Cao
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Nobuyuki Nosaka
- Division of Infectious Diseases and Immunology, Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, California
| | - Hiroshi Nishi
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Daniel N Leal
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Ellen Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Kenichi Shimada
- Division of Infectious Diseases and Immunology, Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Biomedical Sciences, Infectious and Immunologic Diseases Research Center, Cedars-Sinai Medical Center, Los Angeles, California
| | - Moshe Arditi
- Division of Infectious Diseases and Immunology, Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Biomedical Sciences, Infectious and Immunologic Diseases Research Center, Cedars-Sinai Medical Center, Los Angeles, California
| | - Kenneth E Bernstein
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Michifumi Yamashita
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
48
|
Leisman DE, Privratsky JR, Lehman JR, Abraham MN, Yaipan OY, Brewer MR, Nedeljkovic-Kurepa A, Capone CC, Fernandes TD, Griffiths R, Stein WJ, Goldberg MB, Crowley SD, Bellomo R, Deutschman CS, Taylor MD. Angiotensin II enhances bacterial clearance via myeloid signaling in a murine sepsis model. Proc Natl Acad Sci U S A 2022; 119:e2211370119. [PMID: 35969740 PMCID: PMC9407661 DOI: 10.1073/pnas.2211370119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/19/2022] [Indexed: 11/18/2022] Open
Abstract
Sepsis, defined as organ dysfunction caused by a dysregulated host-response to infection, is characterized by immunosuppression. The vasopressor norepinephrine is widely used to treat low blood pressure in sepsis but exacerbates immunosuppression. An alternative vasopressor is angiotensin-II, a peptide hormone of the renin-angiotensin system (RAS), which displays complex immunomodulatory properties that remain unexplored in severe infection. In a murine cecal ligation and puncture (CLP) model of sepsis, we found alterations in the surface levels of RAS proteins on innate leukocytes in peritoneum and spleen. Angiotensin-II treatment induced biphasic, angiotensin-II type 1 receptor (AT1R)-dependent modulation of the systemic inflammatory response and decreased bacterial counts in both the blood and peritoneal compartments, which did not occur with norepinephrine treatment. The effect of angiotensin-II was preserved when treatment was delivered remote from the primary site of infection. At an independent laboratory, angiotensin-II treatment was compared in LysM-Cre AT1aR-/- (Myeloid-AT1a-) mice, which selectively do not express AT1R on myeloid-derived leukocytes, and littermate controls (Myeloid-AT1a+). Angiotensin-II treatment significantly reduced post-CLP bacteremia in Myeloid-AT1a+ mice but not in Myeloid-AT1a- mice, indicating that the AT1R-dependent effect of angiotensin-II on bacterial clearance was mediated through myeloid-lineage cells. Ex vivo, angiotensin-II increased post-CLP monocyte phagocytosis and ROS production after lipopolysaccharide stimulation. These data identify a mechanism by which angiotensin-II enhances the myeloid innate immune response during severe systemic infection and highlight a potential role for angiotensin-II to augment immune responses in sepsis.
Collapse
Affiliation(s)
- Daniel E. Leisman
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Hofstra-Northwell School of Medicine, Manhasset, NY 11030
| | - Jamie R. Privratsky
- Division of Critical Care Medicine, Department of Anesthesiology, Duke University, Durham, NC 27708
| | - Jake R. Lehman
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Hofstra-Northwell School of Medicine, Manhasset, NY 11030
- Department of Pediatrics, Cohen Children’s Medical Center, New Hyde Park, NY 11040
| | - Mabel N. Abraham
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Hofstra-Northwell School of Medicine, Manhasset, NY 11030
- Department of Pediatrics, Cohen Children’s Medical Center, New Hyde Park, NY 11040
| | - Omar Y. Yaipan
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Hofstra-Northwell School of Medicine, Manhasset, NY 11030
- Department of Pediatrics, Cohen Children’s Medical Center, New Hyde Park, NY 11040
| | - Mariana R. Brewer
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Hofstra-Northwell School of Medicine, Manhasset, NY 11030
- Department of Pediatrics, Cohen Children’s Medical Center, New Hyde Park, NY 11040
| | - Ana Nedeljkovic-Kurepa
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Hofstra-Northwell School of Medicine, Manhasset, NY 11030
- Department of Pediatrics, Cohen Children’s Medical Center, New Hyde Park, NY 11040
| | - Christine C. Capone
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Hofstra-Northwell School of Medicine, Manhasset, NY 11030
- Department of Pediatrics, Cohen Children’s Medical Center, New Hyde Park, NY 11040
| | - Tiago D. Fernandes
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Hofstra-Northwell School of Medicine, Manhasset, NY 11030
- Department of Pediatrics, Cohen Children’s Medical Center, New Hyde Park, NY 11040
| | - Robert Griffiths
- Department of Medicine, Duke University and Durham VA Medical Centers, Durham, NC 27705
| | - William J. Stein
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Hofstra-Northwell School of Medicine, Manhasset, NY 11030
- Department of Pediatrics, Cohen Children’s Medical Center, New Hyde Park, NY 11040
| | - Marcia B. Goldberg
- Center for Bacterial Pathogenesis, Division of Infectious Disease, Massachusetts General Hospital, Boston, MA 02114
- Department of Medicine, Harvard Medical School, Boston, MA 02115
- Department of Microbiology, Harvard Medical School, Boston, MA 02115
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Steven D. Crowley
- Department of Medicine, Duke University and Durham VA Medical Centers, Durham, NC 27705
| | - Rinaldo Bellomo
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Department of Critical Care, University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Intensive Care, Royal Melbourne Hospital, Parkville, VIC 3050, Australia
- Department of Intensive Care, Austin Health, Heidelberg, VIC 3084, Australia
- Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Clifford S. Deutschman
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Hofstra-Northwell School of Medicine, Manhasset, NY 11030
- Department of Pediatrics, Cohen Children’s Medical Center, New Hyde Park, NY 11040
| | - Matthew D. Taylor
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Hofstra-Northwell School of Medicine, Manhasset, NY 11030
- Department of Pediatrics, Cohen Children’s Medical Center, New Hyde Park, NY 11040
| |
Collapse
|
49
|
Exploring the Impact of ACE Inhibition in Immunity and Disease. J Renin Angiotensin Aldosterone Syst 2022; 2022:9028969. [PMID: 36016727 PMCID: PMC9371878 DOI: 10.1155/2022/9028969] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/07/2022] [Indexed: 11/18/2022] Open
Abstract
Angiotensin-converting enzyme (ACE) is a zinc-dependent dipeptidyl carboxypeptidase and is crucial in the renin-angiotensin-aldosterone system (RAAS) but also implicated in immune regulation. Intrinsic ACE has been detected in several immune cell populations, including macrophages and neutrophils, where its overexpression results in enhanced bactericidal and antitumour responses, independent of angiotensin II. With roles in antigen presentation and inflammation, the impact of ACE inhibitors must be explored to understand how ACE inhibition may impact our ability to clear infections or malignancy, particularly in the wake of the coronavirus (SARS-CoV2) pandemic and as antibiotic resistance grows. Patients using ACE inhibitors may be more at risk of postsurgical complications as ACE inhibition in human neutrophils results in decreased ROS and phagocytosis whilst angiotensin receptor blockers (ARBs) have no effect. In contrast, ACE is also elevated in certain autoimmune diseases such as rheumatoid arthritis and lupus, and its inhibition benefits patient outcome where inflammatory immune cells are overactive. Although the ACE autoimmune landscape is changing, some studies have conflicting results and require further input. This review seeks to highlight the need for further research covering ACE inhibitor therapeutics and their potential role in improving autoimmune conditions, cancer, or how they may contribute to immunocompromise during infection and neurodegenerative diseases. Understanding ACE inhibition in immune cells is a developing field that will alter how ACE inhibitors are designed in future and aid in developing therapeutic interventions.
Collapse
|
50
|
Cheriyath P, Prasad A, Patel P, Vankeshwaram V, Seeburun S, Ghodasara K, Pavuluri S. Measuring Epidemiologic Effects of Enterococcal Bacteremia and Outcomes From a Nationwide Inpatient Sample Database. Cureus 2022; 14:e27516. [PMID: 36060337 PMCID: PMC9424815 DOI: 10.7759/cureus.27516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction Enterococcus is a gram-positive, non-sporing, facultative anaerobe. It is a common cause of nosocomial infections in the United States. Enterococcal bacteremia is primarily a nosocomial infection in the medical intensive care unit (ICU), with a preference for elderly patients with multiple comorbidities. Material and methods This is a retrospective cohort study using the publicly accessible National (Nationwide) Inpatient Sample (NIS) database from October 2015 to December 2017. We examined data from 75,430 patients aged 18 years and older in the NIS who developed enterococcal bacteremia, as identified from the ICD-10 CM codes (B95), to discuss the epidemiologic effects and outcomes of enterococcal bacteremia. Patients were classified based on demographics, and comorbidities were identified. Three primary outcomes were studied: in-hospital mortality, length of stay, and healthcare cost. The secondary outcome was identifying any comorbidities associated with enterococcal bacteremia. Length of stay was defined as days from admission to discharge or death. Healthcare costs were estimated from the hospital perspective from hospital-level ratios of costs-to-charges. SAS 9.4 (2013; SAS Institute Inc., Cary, North Carolina, United States) was used for univariate and multivariate analyses. For data analysis, mortality was modeled using logistic regression. Length of stay and costs were modeled using linear regression, controlling for patient and hospital characteristics. Statistical analyses were performed using SAS. Statistical significance was defined as P<0.05. Results A total of 75,430 patients with enterococcal bacteremia were included in the study. Of this, 44,270 were males and 31,160 females. A total of 50,270 (68.67%) were Caucasians, 11,210 (15.31%) were African Americans, 6,445 (8.80%) were Hispanic and 2,025 (2.77%) were native Americans. Important comorbidities were congestive heart failure (25.91%), valvular disease (8.08%), neurological complications (11.87%), diabetes mellitus with complications (18.89%), renal failure (28.52%), and obesity (11.61%). In-hospital mortality was 11.07%, length of stay was 13.8 days, and a healthcare cost of 41,232.6 USD. Conclusions Enterococcal bacteremia is a nosocomial infection with a preference for the elderly with renal failure, cardiac failure, cardiac valvular diseases, stroke, obesity, and diabetes with complications. Further studies are needed to see whether the mortality caused by enterococcal bacteremia is attributable to comorbidities or to the bacteremia. It is associated with a more extended hospital stay and higher healthcare expenditure. Implementing contact precautions to contain the spread of methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus(VRE) has also checked the spread of enterococci. Further prospective studies can be planned using chart-based data.
Collapse
|