1
|
Friedman MI, Sørensen TIA, Taubes G, Lund J, Ludwig DS. Trapped fat: Obesity pathogenesis as an intrinsic disorder in metabolic fuel partitioning. Obes Rev 2024; 25:e13795. [PMID: 38961319 DOI: 10.1111/obr.13795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/24/2024] [Accepted: 06/13/2024] [Indexed: 07/05/2024]
Abstract
Our understanding of the pathophysiology of obesity remains at best incomplete despite a century of research. During this time, two alternative perspectives have helped shape thinking about the etiology of the disorder. The currently prevailing view holds that excessive fat accumulation results because energy intake exceeds energy expenditure, with excessive food consumption being the primary cause of the imbalance. The other perspective attributes the initiating cause of obesity to intrinsic metabolic defects that shift fuel partitioning from pathways for mobilization and oxidation to those for synthesis and storage. The resulting reduction in fuel oxidation and trapping of energy in adipose tissue drives a compensatory increase in energy intake and, under some conditions, a decrease in expenditure. This theory of obesity pathogenesis has historically garnered relatively less attention despite its pedigree. Here, we present an updated comprehensive formulation of the fuel partitioning theory, focused on evidence gathered over the last 80 years from major animal models of obesity showing a redirection of fuel fluxes from oxidation to storage and accumulation of excess body fat with energy intake equal to or even less than that of lean animals. The aim is to inform current discussions about the etiology of obesity and by so doing, help lay new foundations for the design of more efficacious approaches to obesity research, treatment and prevention.
Collapse
Affiliation(s)
| | - Thorkild I A Sørensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
- Center for Childhood Health, Copenhagen, Denmark
| | | | - Jens Lund
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - David S Ludwig
- New Balance Foundation Obesity Prevention Center, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| |
Collapse
|
2
|
Puchalska P. Unraveling the complex connection between ketone bodies and insulin resistance. Acta Physiol (Oxf) 2024; 240:e14077. [PMID: 38131693 PMCID: PMC10872407 DOI: 10.1111/apha.14077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Affiliation(s)
- Patrycja Puchalska
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
3
|
Zhang L, Lu Y, An J, Wu Y, Liu Z, Zou MH. AMPKα2 regulates fasting-induced hyperketonemia by suppressing SCOT ubiquitination and degradation. Sci Rep 2024; 14:1713. [PMID: 38242911 PMCID: PMC10798978 DOI: 10.1038/s41598-023-49991-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/14/2023] [Indexed: 01/21/2024] Open
Abstract
Ketone bodies serve as an energy source, especially in the absence of carbohydrates or in the extended exercise. Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a crucial energy sensor that regulates lipid and glucose metabolism. However, whether AMPK regulates ketone metabolism in whole body is unclear even though AMPK regulates ketogenesis in liver. Prolonged resulted in a significant increase in blood and urine levels of ketone bodies in wild-type (WT) mice. Interestingly, fasting AMPKα2-/- and AMPKα1-/- mice exhibited significantly higher levels of ketone bodies in both blood and urine compared to fasting WT mice. BHB tolerance assays revealed that both AMPKα2-/- and AMPKα1-/- mice exhibited slower ketone consumption compared to WT mice, as indicated by higher blood BHB or urine BHB levels in the AMPKα2-/- and AMPKα1-/- mice even after the peak. Interestingly, fasting AMPKα2-/- and AMPKα1-/- mice exhibited significantly higher levels of ketone bodies in both blood and urine compared to fasting WT mice. . Specifically, AMPKα2ΔMusc mice showed approximately a twofold increase in blood BHB levels, and AMPKα2ΔMyo mice exhibited a 1.5-fold increase compared to their WT littermates after a 48-h fasting. However, blood BHB levels in AMPKα1ΔMusc and AMPKα1ΔMyo mice were as same as in WT mice. Notably, AMPKα2ΔMusc mice demonstrated a slower rate of BHB consumption in the BHB tolerance assay, whereas AMPKα1ΔMusc mice did not show such an effect. Declining rates of body weights and blood glucoses were similar among all the mice. Protein levels of SCOT, the rate-limiting enzyme of ketolysis, decreased in skeletal muscle of AMPKα2-/- mice. Moreover, SCOT protein ubiquitination increased in C2C12 cells either transfected with kinase-dead AMPKα2 or subjected to AMPKα2 inhibition. AMPKα2 physiologically binds and stabilizes SCOT, which is dependent on AMPKα2 activity.
Collapse
Affiliation(s)
- Lingxue Zhang
- Center for Molecular and Translational Medicine, Georgia State University, 157 Decatur Street North East, Atlanta, USA
| | - Yanqiao Lu
- Center for Molecular and Translational Medicine, Georgia State University, 157 Decatur Street North East, Atlanta, USA
| | - Junqing An
- Center for Molecular and Translational Medicine, Georgia State University, 157 Decatur Street North East, Atlanta, USA
| | - Yin Wu
- Center for Molecular and Translational Medicine, Georgia State University, 157 Decatur Street North East, Atlanta, USA
| | - Zhixue Liu
- Center for Molecular and Translational Medicine, Georgia State University, 157 Decatur Street North East, Atlanta, USA.
| | - Ming-Hui Zou
- Center for Molecular and Translational Medicine, Georgia State University, 157 Decatur Street North East, Atlanta, USA
| |
Collapse
|
4
|
Ye YC, Chai SF, Li XR, Wu MN, Cai HY, Wang ZJ. Intermittent fasting and Alzheimer's disease-Targeting ketone bodies as a potential strategy for brain energy rescue. Metab Brain Dis 2024; 39:129-146. [PMID: 37823968 DOI: 10.1007/s11011-023-01288-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 09/01/2023] [Indexed: 10/13/2023]
Abstract
Alzheimer's disease (AD) lacks effective clinical treatments. As the disease progresses, the cerebral glucose hypometabolism that appears in the preclinical phase of AD gradually worsens, leading to increasingly severe brain energy disorders. This review analyzes the brain energy deficit in AD and its etiology, brain energy rescue strategies based on ketone intervention, the effects and mechanisms of IF, the differences in efficacy between IF and ketogenic diet and the duality of IF. The evidence suggests that brain energy deficits lead to the development and progression of AD pathology. IF, which improves brain energy impairments by promoting ketone metabolism, thus has good therapeutic potential for AD.
Collapse
Affiliation(s)
- Yu- Cai Ye
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Shi-Fan Chai
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Xin-Ru Li
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Mei-Na Wu
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Hong-Yan Cai
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Zhao-Jun Wang
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, People's Republic of China.
| |
Collapse
|
5
|
Avery CL, Howard AG, Lee HH, Downie CG, Lee MP, Koenigsberg SH, Ballou AF, Preuss MH, Raffield LM, Yarosh RA, North KE, Gordon-Larsen P, Graff M. Branched chain amino acids harbor distinct and often opposing effects on health and disease. COMMUNICATIONS MEDICINE 2023; 3:172. [PMID: 38017291 PMCID: PMC10684599 DOI: 10.1038/s43856-023-00382-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/10/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND The branched chain amino acids (BCAA) leucine, isoleucine, and valine are essential nutrients that have been associated with diabetes, cancers, and cardiovascular diseases. Observational studies suggest that BCAAs exert homogeneous phenotypic effects, but these findings are inconsistent with results from experimental human and animal studies. METHODS Hypothesizing that inconsistencies between observational and experimental BCAA studies reflect bias from shared lifestyle and genetic factors in observational studies, we used data from the UK Biobank and applied multivariable Mendelian randomization causal inference methods designed to address these biases. RESULTS In n = 97,469 participants of European ancestry (mean age = 56.7 years; 54.1% female), we estimate distinct and often opposing total causal effects for each BCAA. For example, of the 117 phenotypes with evidence of a statistically significant total causal effect for at least one BCAA, almost half (44%, n = 52) are associated with only one BCAA. These 52 associations include total causal effects of valine on diabetic eye disease [odds ratio = 1.51, 95% confidence interval (CI) = 1.31, 1.76], valine on albuminuria (odds ratio = 1.14, 95% CI = 1.08, 1.20), and isoleucine on angina (odds ratio = 1.17, 95% CI = 1.31, 1.76). CONCLUSIONS Our results suggest that the observational literature provides a flawed picture of BCAA phenotypic effects that is inconsistent with experimental studies and could mislead efforts developing novel therapeutics. More broadly, these findings motivate the development and application of causal inference approaches that enable 'omics studies conducted in observational settings to account for the biasing effects of shared genetic and lifestyle factors.
Collapse
Affiliation(s)
- Christy L Avery
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27516, USA.
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27516, USA.
| | - Annie Green Howard
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27516, USA
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27516, USA
| | - Harold H Lee
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27516, USA
| | - Carolina G Downie
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27516, USA
| | - Moa P Lee
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27516, USA
| | - Sarah H Koenigsberg
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27516, USA
| | - Anna F Ballou
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27516, USA
| | - Michael H Preuss
- The Charles Bronfman Institute for Personalized Medicine, Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27516, USA
| | - Rina A Yarosh
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27516, USA
| | - Kari E North
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27516, USA
| | - Penny Gordon-Larsen
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27516, USA
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27516, USA
| | - Mariaelisa Graff
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27516, USA
| |
Collapse
|
6
|
Dai L, Wang A, Gu H, Zhang Y, Zuo Y, Meng X, Chen P, Tian X, Li H, Wang Y. Urinary ketone bodies and stroke recurrence in patient with acute ischemic stroke or TIA. J Clin Neurosci 2023; 117:79-83. [PMID: 37778303 DOI: 10.1016/j.jocn.2023.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Urine ketone bodies may appear in different states in the acute stage of stroke. We aimed to examine the association between urine ketone bodies and recurrent stroke in patients with acute ischemic stroke (AIS) or transient ischemic attack (TIA) in this study. METHODS In Third China National Stroke Registry (CNSR-III), 14,015 patients with AIS or TIA were screened for urine ketone bodies. The outcomes were any stroke, ischemic stroke and combined vascular events within 1 year. The association of urine ketone bodies with recurrent stroke were analyzed by Cox proportional hazards. RESULTS During 1 year of follow-up, 1,335 (9.53%) participants experienced recurrent stroke. After adjustment for conventional confounding factors, patients with urine ketone bodies test positive had a higher risk of recurrent stroke (hazard ratio [HR], 1.43; 95% confidence interval [CI], 1.13-1.82), compared to those were negative. The correlation between positive urine ketone bodies and recurrent stroke were consistent in patient with (HR, 1.45; 95% CI, 1.00-2.12) and without (HR, 1.40; 95% CI, 1.02-1.94) diabetes. No significant interaction between urine ketone bodies and diabetes were observed. CONCLUSIONS Positive ketone bodies in urine was independently associated with recurrent stroke in patients with AIS or TIA.
Collapse
Affiliation(s)
- Liye Dai
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Anxin Wang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hongqiu Gu
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yijun Zhang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yingting Zuo
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Xia Meng
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Pan Chen
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xue Tian
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Hao Li
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yongjun Wang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
7
|
Szili-Torok T, de Borst MH, Garcia E, Gansevoort RT, Dullaart RP, Connelly MA, Bakker SJ, Tietge UJ. Fasting Ketone Bodies and Incident Type 2 Diabetes in the General Population. Diabetes 2023; 72:1187-1192. [PMID: 37352012 PMCID: PMC10450821 DOI: 10.2337/db22-0826] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 06/04/2023] [Indexed: 06/25/2023]
Abstract
With rising incidence and prevalence of type 2 diabetes, prevention including identification of prospective biomarkers becomes increasingly relevant. Although ketone bodies recently received a renewed interest as potential biomarkers, data linking these metabolites to diabetes risk are scarce. Therefore, the present prospective study investigated a potential association between fasting ketone bodies and incident type 2 diabetes in the general population. This study from the PREVEND cohort included 3,307 participants from the general population initially free of diabetes or impaired fasting glucose. Baseline fasting ketone body concentrations were measured by nuclear magnetic resonance spectroscopy. One hundred twenty-six participants (3.8%) developed type 2 diabetes during a median (interquartile range) follow-up of 7.3 (6.3-7.6) years. In Kaplan-Meier analysis, sex-stratified ketone body levels strongly positively associated with incident type 2 diabetes, which was confirmed in Cox regression analyses adjusted for several potential confounders. There was no significant interaction by sex. Both 3-β-hydroxybutyrate and acetoacetate+acetone individually associated with incident type 2 diabetes. In conclusion, fasting plasma ketone body levels are strongly positively associated with incident type 2 diabetes in the general population independent of several other recognized risk factors. These results may have important implications for diabetes prevention including dietary strategies. ARTICLE HIGHLIGHTS The identification of biomarkers that predict type 2 diabetes is increasingly relevant for personalized medicine strategies. Data regarding ketone bodies and incident type 2 diabetes are scarce. This study shows that ketone bodies, either combined or as individual subspecies, are strongly associated with incident type 2 diabetes in the general population, independent of potential confounders. These results may have important implications for diabetes prevention including dietary strategies.
Collapse
Affiliation(s)
- Tamas Szili-Torok
- Department of Internal Medicine, University Medical Center Groningen, Groningen, the Netherlands
| | - Martin H. de Borst
- Department of Internal Medicine, University Medical Center Groningen, Groningen, the Netherlands
| | - Erwin Garcia
- Laboratory Corporation of America Holdings (Labcorp), Morrisville, NC
| | - Ron T. Gansevoort
- Department of Internal Medicine, University Medical Center Groningen, Groningen, the Netherlands
| | - Robin P.F. Dullaart
- Department of Internal Medicine, University Medical Center Groningen, Groningen, the Netherlands
| | | | - Stephan J.L. Bakker
- Department of Internal Medicine, University Medical Center Groningen, Groningen, the Netherlands
| | - Uwe J.F. Tietge
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Clinical Chemistry, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
8
|
Gross JJ. Hepatic Lipidosis in Ruminants. Vet Clin North Am Food Anim Pract 2023; 39:371-383. [PMID: 37032295 DOI: 10.1016/j.cvfa.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023] Open
Abstract
Hepatic lipidosis (ie, fatty liver) occurs primarily during the first weeks of lactation in dairy cows because of excessive lipolysis overwhelming the concomitant capacity for beta-oxidation and hepatic export of triglycerides. Besides economic losses due to reduced lactational and reproductive performance, close associations with concomitantly occurring infectious and metabolic health disorders, in particular ketosis, exist. Hepatic lipidosis is not only a consequence from the postpartal negative energy balance but also acts as a disease component for further health disorders.
Collapse
Affiliation(s)
- Josef J Gross
- Veterinary Physiology, University of Bern, Bremgartenstrasse 109a, 3012 Bern, Switzerland.
| |
Collapse
|
9
|
Mank MM, Reed LF, Fastiggi VA, Peña-García PE, Hoyt LR, Van Der Vliet KE, Ather JL, Poynter ME. Ketone body augmentation decreases methacholine hyperresponsiveness in mouse models of allergic asthma. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2022; 1:282-298. [PMID: 36466740 PMCID: PMC9718535 DOI: 10.1016/j.jacig.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Background Individuals with allergic asthma exhibit lung inflammation and remodeling accompanied by methacholine hyperresponsiveness manifesting in proximal airway narrowing and distal lung tissue collapsibility, and they can present with a range of mild-to-severe disease amenable or resistant to therapeutic intervention, respectively. There remains a need for alternatives or complements to existing treatments that could control the physiologic manifestations of allergic asthma. Objectives Our aim was to examine the hypothesis that because ketone bodies elicit anti-inflammatory activity and are effective in mitigating the methacholine hyperresponsiveness associated with obese asthma, increasing systemic concentrations of ketone bodies would diminish pathologic outcomes in asthma-relevant cell types and in mouse models of allergic asthma. Methods We explored the effects of ketone bodies on allergic asthma-relevant cell types (macrophages, airway epithelial cells, CD4 T cells, and bronchial smooth muscle cells) in vitro as well as in vivo by using preclinical models representative of several endotypes of allergic asthma to determine whether promotion of ketosis through feeding a ketogenic diet or providing a ketone precursor or a ketone ester dietary supplement could affect immune and inflammatory parameters as well as methacholine hyperresponsiveness. Results In a dose-dependent manner, the ketone bodies acetoacetate and β-hydroxybutyrate (BHB) decreased proinflammatory cytokine secretion from mouse macrophages and airway epithelial cells, decreased house dust mite (HDM) extract-induced IL-8 secretion from human airway epithelial cells, and decreased cytokine production from polyclonally and HDM-activated T cells. Feeding a ketogenic diet, providing a ketone body precursor, or supplementing the diet with a ketone ester increased serum BHB concentrations and decreased methacholine hyperresponsiveness in several acute HDM sensitization and challenge models of allergic asthma. A ketogenic diet or ketone ester supplementation decreased methacholine hyperresponsiveness in an HDM rechallenge model of chronic allergic asthma. Ketone ester supplementation synergized with corticosteroid treatment to decrease methacholine hyperresponsiveness in an HDM-driven model of mixed-granulocytic severe asthma. HDM-induced morphologic changes in bronchial smooth muscle cells were inhibited in a dose-dependent manner by BHB, as was HDM protease activity. Conclusions Increasing systemic BHB concentrations through dietary interventions could provide symptom relief for several endotypes of allergic asthmatic individuals through effects on multiple asthma-relevant cells.
Collapse
Affiliation(s)
- Madeleine M Mank
- Department of Medicine, Division of Pulmonary Disease and Critical Care, University of Vermont, and The Vermont Lung Center, Burlington
| | - Leah F Reed
- Department of Medicine, Division of Pulmonary Disease and Critical Care, University of Vermont, and The Vermont Lung Center, Burlington
| | - V Amanda Fastiggi
- Department of Medicine, Division of Pulmonary Disease and Critical Care, University of Vermont, and The Vermont Lung Center, Burlington
| | - Paola E Peña-García
- Department of Medicine, Division of Pulmonary Disease and Critical Care, University of Vermont, and The Vermont Lung Center, Burlington
| | - Laura R Hoyt
- Department of Medicine, Division of Pulmonary Disease and Critical Care, University of Vermont, and The Vermont Lung Center, Burlington
| | - Katherine E Van Der Vliet
- Department of Medicine, Division of Pulmonary Disease and Critical Care, University of Vermont, and The Vermont Lung Center, Burlington
| | - Jennifer L Ather
- Department of Medicine, Division of Pulmonary Disease and Critical Care, University of Vermont, and The Vermont Lung Center, Burlington
| | - Matthew E Poynter
- Department of Medicine, Division of Pulmonary Disease and Critical Care, University of Vermont, and The Vermont Lung Center, Burlington
| |
Collapse
|
10
|
Hughey CC, Puchalska P, Crawford PA. Integrating the contributions of mitochondrial oxidative metabolism to lipotoxicity and inflammation in NAFLD pathogenesis. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159209. [DOI: 10.1016/j.bbalip.2022.159209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 06/25/2022] [Accepted: 07/27/2022] [Indexed: 11/28/2022]
|
11
|
Asif S, Kim RY, Fatica T, Sim J, Zhao X, Oh Y, Denoncourt A, Cheung A, Downey M, Mulvihill EE, Kim KH. Hmgcs2-mediated ketogenesis modulates high-fat diet-induced hepatosteatosis. Mol Metab 2022; 61:101494. [PMID: 35421611 PMCID: PMC9039870 DOI: 10.1016/j.molmet.2022.101494] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Aberrant ketogenesis is correlated with the degree of steatosis in NAFLD patients, and an inborn error of ketogenesis (mitochondrial HMG-CoA synthase deficiency) is commonly associated with the development of the fatty liver. Here we aimed to determine the impact of Hmgcs2-mediated ketogenesis and its modulations on the development and treatment of fatty liver disease. METHODS Loss- and gain-of-ketogenic function through in vivo and in vitro models, achieved by Hmgcs2 knockout and overexpression, respectively, were examined to investigate the role of ketogenesis in the hepatic lipid accumulation during neonatal development and the diet-induced NAFLD mouse model. RESULTS Ketogenic function was decreased in NAFLD mice with a reduction in Hmgcs2 expression. Mice lacking Hmgcs2 developed spontaneous fatty liver phenotype during postnatal development, which was rescued by a shift to a low-fat dietary composition via early weaning. Hmgcs2 heterozygous mice, which exhibited reduced ketogenic activity, were more susceptible to diet-induced NAFLD development, whereas HMGCS2 overexpression in NAFLD mice improved hepatosteatosis and glucose homeostasis. CONCLUSIONS Our study adds new knowledge to the field of ketone body metabolism and shows that Hmgcs2-mediated ketogenesis modulates hepatic lipid regulation under a fat-enriched nutritional environment. The regulation of hepatic ketogenesis may be a viable therapeutic strategy in the prevention and treatment of hepatosteatosis.
Collapse
Affiliation(s)
- Shaza Asif
- University of Ottawa Heart Institute, Ottawa, ON, K1Y 4W7, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Ri Youn Kim
- University of Ottawa Heart Institute, Ottawa, ON, K1Y 4W7, Canada
| | - Thet Fatica
- University of Ottawa Heart Institute, Ottawa, ON, K1Y 4W7, Canada
| | - Jordan Sim
- Department of Pathology and Laboratory Medicine, The Ottawa Hospital, Ottawa, ON, K1H 8M5, Canada
| | - Xiaoling Zhao
- University of Ottawa Heart Institute, Ottawa, ON, K1Y 4W7, Canada
| | - Yena Oh
- University of Ottawa Heart Institute, Ottawa, ON, K1Y 4W7, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Alix Denoncourt
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada; Ottawa Institute of Systems Biology, Ottawa, ON, K1H 8M5, Canada
| | - Angela Cheung
- Gastroenterology and Hepatology, Department of Medicine, The Ottawa Hospital, Ottawa, ON, K1H 8M5, Canada; The Ottawa Hospital Research Institute, Chronic Disease Program, Ottawa, ON, K1Y 4E9, Canada
| | - Michael Downey
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada; Ottawa Institute of Systems Biology, Ottawa, ON, K1H 8M5, Canada
| | - Erin E Mulvihill
- University of Ottawa Heart Institute, Ottawa, ON, K1Y 4W7, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Kyoung-Han Kim
- University of Ottawa Heart Institute, Ottawa, ON, K1Y 4W7, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
12
|
Wang A, Tian X, Zuo Y, Xu Q, Meng X, Chen P, Li H, Wang Y. Urine ketone bodies and adverse outcomes in patients with acute ischemic stroke or TIA. ATHEROSCLEROSIS PLUS 2022; 48:20-26. [PMID: 36644558 PMCID: PMC9833217 DOI: 10.1016/j.athplu.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 02/16/2022] [Accepted: 03/05/2022] [Indexed: 01/18/2023]
Abstract
Background and aims Urine ketone bodies have been considered as predictors of stroke in diabetic patients, however, the role of urine ketone bodies in the prognosis of stroke has not been investigated well. This study aimed to investigate the association between urine ketone bodies and adverse outcomes in patients with acute ischemic stroke (AIS) or transient ischemic attack (TIA). Methods This study enrolled 14 015 patients with AIS or TIA who screened for urine ketone bodies from the Third China National Stroke Registry. Status of urine ketone bodies were classified into negative, suspicious positive and positive. The outcomes were all-cause death and poor functional outcomes (modified Rankin Scale [mRS] 2-6/3-6) at 3 months and 1 year. Multivariable Cox proportional hazards regressions and logistic regressions were adopted to explore the associations. Results Participants with negative, suspicious positive and positive urine ketone bodies were 12979 (92.61%), 480 (3.42%) and 556 (3.97%). After multivariate adjustment, patients with positive urine ketone bodies had a higher risk of all-cause death (hazard ratio, 1.74; confidence interval [CI], 1.07-2.83), a higher proportion of mRS score 2-6 (Odds ratio [OR], 1.85; 95% CI, 1.51-2.27), mRS score 3-6 (OR, 2.00; 95% CI, 1.61-2.48) at 3 months, compared to those with negative urine ketone bodies. Significant associations persisted at 1 year. Furthermore, there was no significant interaction of diabetes status and alcohol use with urine ketone bodies. Conclusions Positive urine ketone bodies can independently predict all-cause death and poor functional outcomes in patients with AIS or TIA.
Collapse
Affiliation(s)
- Anxin Wang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xue Tian
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China,Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Yingting Zuo
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China,Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Qin Xu
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xia Meng
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Pan Chen
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hao Li
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yongjun Wang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China,Corresponding author. China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China.
| |
Collapse
|
13
|
Mank MM, Reed LF, Walton CJ, Barup MLT, Ather JL, Poynter ME. Therapeutic ketosis decreases methacholine hyperresponsiveness in mouse models of inherent obese asthma. Am J Physiol Lung Cell Mol Physiol 2022; 322:L243-L257. [PMID: 34936508 PMCID: PMC8782644 DOI: 10.1152/ajplung.00309.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 02/03/2023] Open
Abstract
Obese asthmatics tend to have severe, poorly controlled disease and exhibit methacholine hyperresponsiveness manifesting in proximal airway narrowing and distal lung tissue collapsibility. Substantial weight loss in obese asthmatics or in mouse models of the condition decreases methacholine hyperresponsiveness. Ketone bodies are rapidly elevated during weight loss, coinciding with or preceding relief from asthma-related comorbidities. As ketone bodies may exert numerous potentially therapeutic effects, augmenting their systemic concentrations is being targeted for the treatment of several conditions. Circulating ketone body levels can be increased by feeding a ketogenic diet or by providing a ketone ester dietary supplement, which we hypothesized would exert protective effects in mouse models of inherent obese asthma. Weight loss induced by feeding a low-fat diet to mice previously fed a high-fat diet was preceded by increased urine and blood levels of the ketone body β-hydroxybutyrate (BHB). Feeding a ketogenic diet for 3 wk to high-fat diet-fed obese mice or genetically obese db/db mice increased BHB concentrations and decreased methacholine hyperresponsiveness without substantially decreasing body weight. Acute ketone ester administration decreased methacholine responsiveness of normal mice, and dietary ketone ester supplementation of high-fat diet-fed mice decreased methacholine hyperresponsiveness. Ketone ester supplementation also transiently induced an "antiobesogenic" gut microbiome with a decreased Fermicutes/Bacteroidetes ratio. Dietary interventions to increase systemic BHB concentrations could provide symptom relief for obese asthmatics without the need for the substantial weight loss required of patients to elicit benefits to their asthma through bariatric surgery or other diet or lifestyle alterations.
Collapse
Affiliation(s)
- Madeleine M Mank
- Division of Pulmonary Disease and Critical Care, Department of Medicine, University of Vermont, Burlington, Vermont
- The Vermont Lung Center, Burlington, Vermont
| | - Leah F Reed
- Division of Pulmonary Disease and Critical Care, Department of Medicine, University of Vermont, Burlington, Vermont
- The Vermont Lung Center, Burlington, Vermont
| | - Camille J Walton
- Division of Pulmonary Disease and Critical Care, Department of Medicine, University of Vermont, Burlington, Vermont
- The Vermont Lung Center, Burlington, Vermont
| | - Madison L T Barup
- Division of Pulmonary Disease and Critical Care, Department of Medicine, University of Vermont, Burlington, Vermont
- The Vermont Lung Center, Burlington, Vermont
| | - Jennifer L Ather
- Division of Pulmonary Disease and Critical Care, Department of Medicine, University of Vermont, Burlington, Vermont
- The Vermont Lung Center, Burlington, Vermont
| | - Matthew E Poynter
- Division of Pulmonary Disease and Critical Care, Department of Medicine, University of Vermont, Burlington, Vermont
- The Vermont Lung Center, Burlington, Vermont
| |
Collapse
|
14
|
Chung JY, Kim OY, Song J. Role of ketone bodies in diabetes-induced dementia: sirtuins, insulin resistance, synaptic plasticity, mitochondrial dysfunction, and neurotransmitter. Nutr Rev 2021; 80:774-785. [PMID: 34957519 PMCID: PMC8907488 DOI: 10.1093/nutrit/nuab118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Abstract
Patients with type 2 diabetes can have several neuropathologies, such as memory deficits. Recent studies have focused on the association between metabolic imbalance and neuropathological problems, and the associated molecular pathology. Diabetes triggers neuroinflammation, impaired synaptic plasticity, mitochondrial dysfunction, and insulin resistance in the brain. Glucose is a main energy substrate for neurons, but under certain conditions, such as fasting and starvation, ketone bodies can be used as an energy fuel for these cells. Recent evidence has shed new light on the role of ketone bodies in regulating several anti-inflammation cellular pathways and improving glucose metabolism, insulin action, and synaptic plasticity, thereby being neuroprotective. However, very high amount of ketone bodies can be toxic for the brain, such as in ketoacidosis, a dangerous complication that may occur in type 1 diabetes mellitus or alcoholism. Recent findings regarding the relationship between ketone bodies and neuropathogenesis in dementia are reviewed in this article. They suggest that the adequately low amount of ketone bodies can be a potential energy source for the treatment of diabetes-induced dementia neuropathology, considering the multifaceted effects of the ketone bodies in the central nervous system. This review can provide useful information for establishing the therapeutic guidelines of a ketogenic diet for diabetes-induced dementia.
Collapse
Affiliation(s)
- Ji Yeon Chung
- Department of Neurology, Chosun University Medical School, Gwangju, Republic of Korea
| | - Oh Yoen Kim
- Department of Food Science and Nutrition and the Department of Health Sciences, Dong-A University, Busan, Republic of Korea
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun, Jeollanam-do, Republic of Korea
| |
Collapse
|
15
|
Fasting Ketonuria and the Risk of Incident Nonalcoholic Fatty Liver Disease With and Without Liver Fibrosis in Nondiabetic Adults. Am J Gastroenterol 2021; 116:2270-2278. [PMID: 34114568 DOI: 10.14309/ajg.0000000000001344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/14/2021] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Dietary carbohydrate restriction or ketogenic diets are known to be beneficial in preventing liver fat accumulation. However, the effect of ketonemia on the risk of nonalcoholic fatty liver disease (NAFLD) in nondiabetic population is largely unknown. We investigated the association between fasting ketonuria and the risk of incident NAFLD in healthy adults. METHODS A cohort of 153,076 nondiabetic Koreans with no hepatic steatosis and low probability of fibrosis at baseline was followed for a median of 4.1 years. The outcome was incident hepatic steatosis with or without liver fibrosis, and it was assessed by liver ultrasound and noninvasive fibrosis indices, including fibrosis-4 and the NAFLD fibrosis score (NFS). Parametric proportional hazard models were used to estimate hazard ratios (HRs) for outcome according to ketonuria status. RESULTS Within 677,702.1 person-years of follow-up, 31,079 subjects developed hepatic steatosis. Compared with no ketonuria (reference), fasting ketonuria was significantly associated with a decreased risk of incident hepatic steatosis, with multivariable-adjusted HRs (95% confidence interval) of 0.81 (0.78-0.84). The corresponding HRs for incident hepatic steatosis with intermediate-to-high NFS were 0.79 (0.69-0.90). Similar associations were observed replacing NFS with fibrosis-4. In addition, the presence of persistent ketonuria at both baseline and subsequent visit was associated with the greatest decrease in the adjusted HR for incident NAFLD. DISCUSSION Ketonuria was associated with a reduced risk of developing incident hepatic steatosis with and without intermediate-to-high probability of advanced fibrosis in a large cohort of nondiabetic healthy individuals. The role of hyperketonemia in the prevention of NAFLD requires further exploration.
Collapse
|
16
|
Abstract
Ketone bodies play significant roles in organismal energy homeostasis, serving as oxidative fuels, modulators of redox potential, lipogenic precursors, and signals, primarily during states of low carbohydrate availability. Efforts to enhance wellness and ameliorate disease via nutritional, chronobiological, and pharmacological interventions have markedly intensified interest in ketone body metabolism. The two ketone body redox partners, acetoacetate and D-β-hydroxybutyrate, serve distinct metabolic and signaling roles in biological systems. We discuss the pleiotropic roles played by both of these ketones in health and disease. While enthusiasm is warranted, prudent procession through therapeutic applications of ketogenic and ketone therapies is also advised, as a range of metabolic and signaling consequences continue to emerge. Organ-specific and cell-type-specific effects of ketone bodies are important to consider as prospective therapeutic and wellness applications increase.
Collapse
Affiliation(s)
- Patrycja Puchalska
- Department of Medicine, Division of Molecular Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA; ,
| | - Peter A Crawford
- Department of Medicine, Division of Molecular Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA; , .,Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
17
|
Zhang W, Guo X, Chen L, Chen T, Yu J, Wu C, Zheng J. Ketogenic Diets and Cardio-Metabolic Diseases. Front Endocrinol (Lausanne) 2021; 12:753039. [PMID: 34795641 PMCID: PMC8594484 DOI: 10.3389/fendo.2021.753039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/13/2021] [Indexed: 12/31/2022] Open
Abstract
While the prevalence of cardio-metabolic diseases (CMDs) has become a worldwide epidemic, much attention is paid to managing CMDs effectively. A ketogenic diet (KD) constitutes a high-fat and low-carbohydrate diet with appropriate protein content and calories. KD has drawn the interests of clinicians and scientists regarding its application in the management of metabolic diseases and related disorders; thus, the current review aimed to examine the evidences surrounding KD and the CMDs to draw the clinical implications. Overall, KD appears to play a significant role in the therapy of various CMDs, which is manifested by the effects of KDs on cardio-metabolic outcomes. KD therapy is generally promising in obesity, heart failure, and hypertension, though different voices still exist. In diabetes and dyslipidemia, the performance of KD remains controversial. As for cardiovascular complications of metabolic diseases, current evidence suggests that KD is generally protective to obese related cardiovascular disease (CVD), while remaining contradictory to diabetes and other metabolic disorder related CVDs. Various factors might account for the controversies, including genetic background, duration of therapy, food composition, quality, and sources of KDs. Therefore, it's crucial to perform more rigorous researches to focus on clinical safety and appropriate treatment duration and plan of KDs.
Collapse
Affiliation(s)
- Weiyue Zhang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Xin Guo
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lulu Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Ting Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Jiayu Yu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Chaodong Wu
- Department of Nutrition, Texas A&M University, College Station, TX, United States
- *Correspondence: Juan Zheng, ; Chaodong Wu,
| | - Juan Zheng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
- *Correspondence: Juan Zheng, ; Chaodong Wu,
| |
Collapse
|
18
|
Grau-Bové C, Sierra-Cruz M, Miguéns-Gómez A, Rodríguez-Gallego E, Beltrán-Debón R, Blay M, Terra X, Pinent M, Ardévol A. A Ten-Day Grape Seed Procyanidin Treatment Prevents Certain Ageing Processes in Female Rats over the Long Term. Nutrients 2020; 12:nu12123647. [PMID: 33260866 PMCID: PMC7759988 DOI: 10.3390/nu12123647] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Adaptive homeostasis declines with age and this leads to, among other things, the appearance of chronic age-related pathologies such as cancer, neurodegeneration, osteoporosis, sarcopenia, cardiovascular disease and diabetes. Grape seed-derived procyanidins (GSPE) have been shown to be effective against several of these pathologies, mainly in young animal models. Here we test their effectiveness in aged animals: 21-month-old female rats were treated with 500 mg GSPE/kg of body weight for ten days. Afterwards they were kept on a chow diet for eleven weeks. Food intake, body weight, metabolic plasma parameters and tumor incidence were measured. The GSPE administered to aged rats had an effect on food intake during the treatment and after eleven weeks continued to have an effect on visceral adiposity. It prevented pancreas dysfunction induced by ageing and maintained a higher glucagon/insulin ratio together with a lower decrease in ketonemia. It was very effective in preventing age-related tumor development. All in all, this study supports the positive effect of GSPE on preventing some age-related pathologies.
Collapse
|
19
|
Nuttall FQ, Almokayyad RM, Gannon MC. Circulating lipids in men with type 2 diabetes following 3 days on a carbohydrate-free diet versus 3 days of fasting. Physiol Rep 2020; 8:e14569. [PMID: 33030304 PMCID: PMC7543058 DOI: 10.14814/phy2.14569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE We have been interested in determining the effects of dietary changes on fuel metabolism and regulation in men with type 2 diabetes mellitus (T2DM). In this study, the changes in 24-hr circulating lipid profiles were determined when the major fuel source was endogenous versus exogenous fat. METHODS Seven males with T2DM were randomized in a crossover design with a 4-week washout period. A standard mixed (control) diet (30%fat:15%protein:55%carbohydrate) was provided initially. Subsequently, a 72-hr (3-day) fast, or a high fat (85%), 15% protein, essentially carbohydrate-free (CHO-free) diet was provided for 72 hr. Triacylglycerol (TAG), non-esterified fatty acids (NEFA), β-hydroxybutyrate (bHB), and insulin-like growth factor-binding protein-1 (IGFBP-1) profiles were determined during the last 24 hr of intervention, as well as during the control diet. RESULTS Regardless of the amount of dietary fat (30% vs 85%) and differences in 24-hr profiles, TAG, NEFA, and bHB all returned to the previous basal concentrations within 24 hr. TAGs and NEFAs changed only modestly with fasting; bHB was elevated and increasing. The IGFBP-1 profile was essentially unchanged with either diet but increased with fasting. CONCLUSION A CHO-free diet resulted in a large increase in TAG and NEFA versus the control diet; however, both were cleared by the following morning. A negative NEFA profile occurred with the control diet. Thus, mechanisms are present to restore lipid concentrations to their original AM concentrations daily. Fasting resulted in stable concentrations, except for a continuing increase in bHB. Glucose and insulin, common fuel regulators, could not explain the results.
Collapse
Affiliation(s)
- Frank Q Nuttall
- Section of Endocrinology, Metabolism & Nutrition, and the Metabolic Research Laboratory, Minneapolis VA Health Care System, University of Minnesota, Minneapolis, MN, USA.,Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Rami M Almokayyad
- Section of Endocrinology, Metabolism & Nutrition, and the Metabolic Research Laboratory, Minneapolis VA Health Care System, University of Minnesota, Minneapolis, MN, USA.,Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Mary C Gannon
- Section of Endocrinology, Metabolism & Nutrition, and the Metabolic Research Laboratory, Minneapolis VA Health Care System, University of Minnesota, Minneapolis, MN, USA.,Department of Medicine, University of Minnesota, Minneapolis, MN, USA.,Department of Food Science & Nutrition, University of Minnesota, St Paul, MN, USA
| |
Collapse
|
20
|
Bharmal SH, Pendharkar SA, Singh RG, Cameron-Smith D, Petrov MS. Associations between ketone bodies and fasting plasma glucose in individuals with post-pancreatitis prediabetes. Arch Physiol Biochem 2020; 126:308-319. [PMID: 30451544 DOI: 10.1080/13813455.2018.1534242] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Context: Levels of ketone bodies are altered in both acute pancreatitis and type 1 and type 2 diabetes. However, the role of ketone bodies in the pathogenesis of abnormal glucose metabolism after pancreatitis is largely unknown.Objective: To investigate the associations between ketone bodies and glucose homeostasis in individuals with post-pancreatitis prediabetes (PPP) versus normoglycaemia after pancreatitis (NAP).Methods: Fasting blood samples were analysed for acetoacetate, β-hydroxybutyrate, and markers of glucose metabolism at a median of 26 months after acute pancreatitis. A series of linear regression analyses were conducted adjusting for patient- and pancreatitis-related characteristics.Results: The study included 27 individuals with PPP and 52 with NAP. β-hydroxybutyrate was significantly associated with fasting plasma glucose (p = .002) and explained 26.2% of its variance in PPP, but not in NAP (p = .814; 0%). Acetoacetate was not significantly associated with fasting plasma glucose in both PPP (p = .681) or NAP (p = .661).Conclusions: An inverse association between β-hydroxybutyrate and fasting plasma glucose characterises PPP and this may have translational implications.
Collapse
Affiliation(s)
- Sakina H Bharmal
- School of Medicine, University of Auckland, Auckland, New Zealand
| | | | - Ruma G Singh
- School of Medicine, University of Auckland, Auckland, New Zealand
| | | | - Maxim S Petrov
- School of Medicine, University of Auckland, Auckland, New Zealand
| |
Collapse
|
21
|
Mey JT, Erickson ML, Axelrod CL, King WT, Flask CA, McCullough AJ, Kirwan JP. β-Hydroxybutyrate is reduced in humans with obesity-related NAFLD and displays a dose-dependent effect on skeletal muscle mitochondrial respiration in vitro. Am J Physiol Endocrinol Metab 2020; 319:E187-E195. [PMID: 32396388 PMCID: PMC7468782 DOI: 10.1152/ajpendo.00058.2020] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by hepatic fat accumulation and impaired insulin sensitivity. Reduced hepatic ketogenesis may promote these pathologies, but data are inconclusive in humans and the link between NAFLD and reduced insulin sensitivity remains obscure. We investigated individuals with obesity-related NAFLD and hypothesized that β-hydroxybutyrate (βOHB; the predominant ketone species) would be reduced and related to hepatic fat accumulation and insulin sensitivity. Furthermore, we hypothesized that ketones would impact skeletal muscle mitochondrial respiration in vitro. Hepatic fat was assessed by 1H-MRS in 22 participants in a parallel design, case control study [Control: n = 7, age 50 ± 6 yr, body mass index (BMI) 30 ± 1 kg/m2; NAFLD: n = 15, age 57 ± 3 yr, BMI 35 ± 1 kg/m2]. Plasma assessments were conducted in the fasted state. Whole body insulin sensitivity was determined by the gold-standard hyperinsulinemic-euglycemic clamp. The effect of ketone dose (0.5-5.0 mM) on mitochondrial respiration was conducted in human skeletal muscle cell culture. Fasting βOHB, a surrogate measure of hepatic ketogenesis, was reduced in NAFLD (-15.6%, P < 0.01) and correlated negatively with liver fat (r2 = 0.21, P = 0.03) and positively with insulin sensitivity (r2 = 0.30, P = 0.01). Skeletal muscle mitochondrial oxygen consumption increased with low-dose ketones, attributable to increases in basal respiration (135%, P < 0.05) and ATP-linked oxygen consumption (136%, P < 0.05). NAFLD pathophysiology includes impaired hepatic ketogenesis, which is associated with hepatic fat accumulation and impaired insulin sensitivity. This reduced capacity to produce ketones may be a potential link between NAFLD and NAFLD-associated reductions in whole body insulin sensitivity, whereby ketone concentrations impact skeletal muscle mitochondrial respiration.
Collapse
Affiliation(s)
- Jacob T Mey
- Integrated Physiology and Molecular Medicine, Pennington Biomedical Research Center, Baton Rouge, Louisiana
- Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Melissa L Erickson
- Integrated Physiology and Molecular Medicine, Pennington Biomedical Research Center, Baton Rouge, Louisiana
- Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Christopher L Axelrod
- Integrated Physiology and Molecular Medicine, Pennington Biomedical Research Center, Baton Rouge, Louisiana
- Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
- Translational Services, Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - William T King
- Integrated Physiology and Molecular Medicine, Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Chris A Flask
- Radiology and Biomedical Engineering, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | | | - John P Kirwan
- Integrated Physiology and Molecular Medicine, Pennington Biomedical Research Center, Baton Rouge, Louisiana
- Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
22
|
Metabolic profiling of tissue-specific insulin resistance in human obesity: results from the Diogenes study and the Maastricht Study. Int J Obes (Lond) 2020; 44:1376-1386. [PMID: 32203114 DOI: 10.1038/s41366-020-0565-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 02/25/2020] [Accepted: 03/04/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Recent evidence indicates that insulin resistance (IR) in obesity may develop independently in different organs, representing different etiologies toward type 2 diabetes and other cardiometabolic diseases. The aim of this study was to investigate whether IR in the liver and IR in skeletal muscle are associated with distinct metabolic profiles. METHODS This study includes baseline data from 634 adults with overweight or obesity (BMI ≥ 27 kg/m2) (≤65 years; 63% women) without diabetes of the European Diogenes Study. Hepatic insulin resistance index (HIRI) and muscle insulin sensitivity index (MISI), were derived from a five-point OGTT. At baseline 17 serum metabolites were identified and quantified by nuclear-magnetic-resonance spectroscopy. Linear mixed model analyses (adjusting for center, sex, body mass index (BMI), waist-to-hip ratio) were used to associate HIRI and MISI with these metabolites. In an independent sample of 540 participants without diabetes (BMI ≥ 27 kg/m2; 40-65 years; 46% women) of the Maastricht Study, an observational prospective population-based cohort study, 11 plasma metabolites and a seven-point OGTT were available for validation. RESULTS Both HIRI and MISI were associated with higher levels of valine, isoleucine, oxo-isovaleric acid, alanine, lactate, and triglycerides, and lower levels of glycine (all p < 0.05). HIRI was also associated with higher levels of leucine, hydroxyisobutyrate, tyrosine, proline, creatine, and n-acetyl and lower levels of acetoacetate and 3-OH-butyrate (all p < 0.05). Except for valine, these results were replicated for all available metabolites in the Maastricht Study. CONCLUSIONS In persons with obesity without diabetes, both liver and muscle IR show a circulating metabolic profile of elevated (branched-chain) amino acids, lactate, and triglycerides, and lower glycine levels, but only liver IR associates with lower ketone body levels and elevated ketogenic amino acids in circulation, suggestive of decreased ketogenesis. This knowledge might enhance developments of more targeted tissue-specific interventions to prevent progression to more severe disease stages.
Collapse
|
23
|
Achterbergh R, Lammers LA, Kuijsten L, Klümpen HJ, Mathôt RAA, Romijn JA. Effects of nutritional status on acetaminophen measurement and exposure. Clin Toxicol (Phila) 2018; 57:42-49. [DOI: 10.1080/15563650.2018.1487563] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- R. Achterbergh
- Departments of Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - L. A. Lammers
- Hospital Pharmacy, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - L. Kuijsten
- Hospital Pharmacy, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - H. J. Klümpen
- Department of Medical Oncology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - R. A. A. Mathôt
- Hospital Pharmacy, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - J. A. Romijn
- Departments of Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
24
|
d'Avignon DA, Puchalska P, Ercal B, Chang Y, Martin SE, Graham MJ, Patti GJ, Han X, Crawford PA. Hepatic ketogenic insufficiency reprograms hepatic glycogen metabolism and the lipidome. JCI Insight 2018; 3:99762. [PMID: 29925686 DOI: 10.1172/jci.insight.99762] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/17/2018] [Indexed: 02/06/2023] Open
Abstract
While several molecular targets are under consideration, mechanistic underpinnings of the transition from uncomplicated nonalcoholic fatty liver disease (NAFLD) to nonalcoholic steatohepatitis (NASH) remain unresolved. Here we apply multiscale chemical profiling technologies to mouse models of deranged hepatic ketogenesis to uncover potential NAFLD driver signatures. Use of stable-isotope tracers, quantitatively tracked by nuclear magnetic resonance (NMR) spectroscopy, supported previous observations that livers of wild-type mice maintained long term on a high-fat diet (HFD) exhibit a marked increase in hepatic energy charge. Fed-state ketogenesis rates increased nearly 3-fold in livers of HFD-fed mice, a greater proportionate increase than that observed for tricarboxylic acid (TCA) cycle flux, but both of these contributors to overall hepatic energy homeostasis fueled markedly increased hepatic glucose production (HGP). Thus, to selectively determine the role of the ketogenic conduit on HGP and oxidative hepatic fluxes, we studied a ketogenesis-insufficient mouse model generated by knockdown of the mitochondrial isoform of 3-hydroxymethylglutaryl-CoA synthase (HMGCS2). In response to ketogenic insufficiency, TCA cycle flux in the fed state doubled and HGP increased more than 60%, sourced by a 3-fold increase in glycogenolysis. Finally, high-resolution untargeted metabolomics and shotgun lipidomics performed using ketogenesis-insufficient livers in the fed state revealed accumulation of bis(monoacylglycero)phosphates, which also accumulated in livers of other models commonly used to study NAFLD. In summary, natural and interventional variations in ketogenesis in the fed state strongly influence hepatic energy homeostasis, glucose metabolism, and the lipidome. Importantly, HGP remains tightly linked to overall hepatic energy charge, which includes both terminal fat oxidation through the TCA cycle and partial oxidation via ketogenesis.
Collapse
Affiliation(s)
- D André d'Avignon
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA.,Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Patrycja Puchalska
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA.,Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Baris Ercal
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA.,Department of Psychiatry, Washington University, St. Louis, Missouri, USA
| | - YingJu Chang
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA.,Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Shannon E Martin
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA.,Pathobiology Graduate Program, Brown University, Providence, Rhode Island, USA
| | | | - Gary J Patti
- Department of Chemistry, Washington University, St. Louis, Missouri, USA
| | - Xianlin Han
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA.,Barshop Institute for Longevity and Aging Studies, Department of Medicine, Division of Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Peter A Crawford
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA.,Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA.,Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
25
|
Guo C, Wang Q, Yang L, Wang H, Wang D, Tang X. Selective naked eye and turn-on fluorescence for detection of D-3-HB based on an erbium complex. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2017.07.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
Nakajima K, Oda E. Ketonuria may be associated with low serum amylase independent of body weight and glucose metabolism. Arch Physiol Biochem 2017; 123:293-296. [PMID: 28508677 DOI: 10.1080/13813455.2017.1326941] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
CONTEXT Ketonuria, which reflects a preferential combustion of lipids relative to carbohydrates, is often observed in lean rather than obese people. Clinical studies have shown that individuals with diabetes and/or obesity predispose to have low serum amylase (LSA). OBJECTIVE To investigate the association between ketonuria and LSA. METHODS We examined ketonuria assessed by dipstick urinalysis and clinical parameters including serum amylase in 3638 Japanese people aged 25-79 years who underwent a health-screening checkup. RESULTS There was an inverse relationship between body mass index (BMI) and serum amylase. The lowest serum amylase was observed in obese subjects (BMI ≥ 25.0 kg/m2) with positive ketonuria. Logistic regression analysis showed that ketonuria was significantly associated with LSA (<50 IU/L), which was not altered by the adjustments for relevant confounders including age, sex, BMI, and HbA1c. CONCLUSIONS Current results suggest a relative unavailability of carbohydrates for energy production in individuals with LSA.
Collapse
Affiliation(s)
- Kei Nakajima
- a School of Nutrition and Dietetics, Faculty of Health and Social Services , Kanagawa University of Human Services , Yokosuka , Kanagawa , Japan
- b Department of Endocrinology and Diabetes , Saitama Medical Center, Saitama Medical University , Kawagoe, Saitama , Japan
- c Division of Clinical Nutrition, Department of Medical Dietetics, Faculty of Pharmaceutical Sciences , Josai University , Sakado, Saitama , Japan
| | - Eiji Oda
- d Medical Check-up Center , Tachikawa General Hospital , Nagaoka , Japan
| |
Collapse
|
27
|
Ramachandran D, Clara R, Fedele S, Hu J, Lackzo E, Huang JY, Verdin E, Langhans W, Mansouri A. Intestinal SIRT3 overexpression in mice improves whole body glucose homeostasis independent of body weight. Mol Metab 2017; 6:1264-1273. [PMID: 29031725 PMCID: PMC5641632 DOI: 10.1016/j.molmet.2017.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/11/2017] [Accepted: 07/14/2017] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Intestinal metabolism might play a greater role in regulating whole body metabolism than previously believed. We aimed to enhance enterocyte metabolism in mice and investigate if it plays a role in diet-induced obesity (DIO) and its comorbidities. METHODS Using the cre-loxP system, we overexpressed the mitochondrial NAD+ dependent protein deacetylase SIRT3 in enterocytes of mice (iSIRT3 mice). We chronically fed iSIRT3 mice and floxed-SIRT3 control (S3fl) mice a low-fat, control diet (CD) or a high-fat diet (HFD) and then phenotyped the mice. RESULTS There were no genotype differences in any of the parameters tested when the mice were fed CD. Also, iSIRT3 mice were equally susceptible to the development of DIO as S3fl mice when fed HFD. They were, however, better able than S3fl mice to regulate their blood glucose levels in response to exogenous insulin and glucose, indicating that they were protected from developing insulin resistance. This improved glucose homeostasis was accompanied by an increase in enterocyte metabolic activity and an upregulation of ketogenic gene expression in the small intestine. CONCLUSION Enhancing enterocyte oxidative metabolism can improve whole body glucose homeostasis.
Collapse
Affiliation(s)
| | - Rosmarie Clara
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland
| | - Shahana Fedele
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland
| | - Junmin Hu
- Functional Genomics Center Zurich (FGCZ), ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Endre Lackzo
- Functional Genomics Center Zurich (FGCZ), ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Jing-Yi Huang
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, CA, USA
| | - Eric Verdin
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, CA, USA
| | - Wolfgang Langhans
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland
| | - Abdelhak Mansouri
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland.
| |
Collapse
|
28
|
Caminhotto RDO, Komino ACM, de Fatima Silva F, Andreotti S, Sertié RAL, Boltes Reis G, Lima FB. Oral β-hydroxybutyrate increases ketonemia, decreases visceral adipocyte volume and improves serum lipid profile in Wistar rats. Nutr Metab (Lond) 2017; 14:31. [PMID: 28450882 PMCID: PMC5404327 DOI: 10.1186/s12986-017-0184-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 04/17/2017] [Indexed: 01/22/2023] Open
Abstract
Background Ketosis can be induced in humans and in animals by fasting or dietary interventions, such as ketogenic diets. However, the increasing interest on the ketogenic state has motivated the development of alternative approaches to rapidly increase ketonemia using less drastic interventions. Here, it was tested whether oral intake of a β-hydroxybutyrate (βHB) mineral salt mixture could increase ketonemia in Wistar rats without any other dietary changes, thereby being a useful model to study ketones effects alone on metabolism. Methods βHB salts were orally administered to provoke elevation in the ketonemia. Effects of this intervention were tested acutely (by gavage) and chronically (4 weeks in drinking water). Acutely, a concomitant glucose overload was used to suppress endogenous ketogenesis and verify whether βHB salts were really absorbed or not. Long-term administration allowed to weekly evaluate the impact on ketonemia, blood glucose and, after 4 weeks, on body weight, visceral fat mass, lipid blood profile, serum lipolysis products and adiponectinemia. Results βHB salts increased ketonemia in acute and long-term administrations, improved blood lipid profile by raising HDL-cholesterol concentration and decreasing LDL/HDL ratio, while reduced visceral adipocyte volume. Mean ketonemia correlated positively with HDLc and negatively with adipocyte volume and serum lipolysis products. Conclusions Oral βHB can rapidly increase ketonemia and, therefore, be used as an acute and long-term animal model of ketosis. Long-term treatment points to important beneficial effects of ketone bodies in serum lipid concentrations and visceral fat mass. These results may help to explain the metabolic adaptations following ketogenic diets, such as a better body fat control and a serum lipid profile improvement.
Collapse
Affiliation(s)
- Rennan de Oliveira Caminhotto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes 1524 - Ed. Biomédicas I sala 131, Butantã, 05508-900 São Paulo Brazil
| | - Ayumi Cristina Medeiros Komino
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes 1524 - Ed. Biomédicas I sala 131, Butantã, 05508-900 São Paulo Brazil
| | - Flaviane de Fatima Silva
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes 1524 - Ed. Biomédicas I sala 131, Butantã, 05508-900 São Paulo Brazil
| | - Sandra Andreotti
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes 1524 - Ed. Biomédicas I sala 131, Butantã, 05508-900 São Paulo Brazil
| | - Rogério Antônio Laurato Sertié
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes 1524 - Ed. Biomédicas I sala 131, Butantã, 05508-900 São Paulo Brazil
| | - Gabriela Boltes Reis
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes 1524 - Ed. Biomédicas I sala 131, Butantã, 05508-900 São Paulo Brazil
| | - Fabio Bessa Lima
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes 1524 - Ed. Biomédicas I sala 131, Butantã, 05508-900 São Paulo Brazil
| |
Collapse
|
29
|
Abstract
Ketone body metabolism is a central node in physiological homeostasis. In this review, we discuss how ketones serve discrete fine-tuning metabolic roles that optimize organ and organism performance in varying nutrient states and protect from inflammation and injury in multiple organ systems. Traditionally viewed as metabolic substrates enlisted only in carbohydrate restriction, observations underscore the importance of ketone bodies as vital metabolic and signaling mediators when carbohydrates are abundant. Complementing a repertoire of known therapeutic options for diseases of the nervous system, prospective roles for ketone bodies in cancer have arisen, as have intriguing protective roles in heart and liver, opening therapeutic options in obesity-related and cardiovascular disease. Controversies in ketone metabolism and signaling are discussed to reconcile classical dogma with contemporary observations.
Collapse
Affiliation(s)
- Patrycja Puchalska
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827, USA
| | - Peter A Crawford
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827, USA.
| |
Collapse
|
30
|
Granér M, Gustavsson S, Nyman K, Siren R, Pentikäinen MO, Lundbom J, Hakkarainen A, Lauerma K, Lundbom N, Borén J, Nieminen MS, Taskinen MR. Biomarkers and prediction of myocardial triglyceride content in non-diabetic men. Nutr Metab Cardiovasc Dis 2016; 26:134-140. [PMID: 26803593 DOI: 10.1016/j.numecd.2015.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 10/01/2015] [Accepted: 11/05/2015] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND AIMS Lipid oversupply to cardiomyocytes or decreased utilization of lipids leads to cardiac steatosis. We aimed to examine the role of different circulating metabolic biomarkers as predictors of myocardial triglyceride (TG) content in non-diabetic men. METHODS AND RESULTS Myocardial and hepatic TG contents were measured with 1.5 T magnetic resonance (MR) spectroscopy, and LV function, visceral adipose tissue (VAT), abdominal subcutaneous tissue (SAT), epicardial and pericardial fat by MR imaging in 76 non-diabetic men. Serum concentration of circulating metabolic biomarkers [adiponectin, leptin, adipocyte-fatty acid binding protein 4 (A-FABP 4), resistin, and lipocalin-2] including β-hydroxybuturate (β-OHB) were measured. Subjects were stratified by tertiles of myocardial TG into low, moderate, and high myocardial TG content groups. Concentrations of β-OHB were lower (p = 0.003) and serum levels of A-FABP 4 were higher (p < 0.001) in the group with high myocardial TG content compared with the group with low myocardial TG content. β-OHB was negatively correlated with myocardial TG content (r = -0.316, p = 0.006), whereas A-FABP 4 was not correlated with myocardial TG content (r = 0.192, p = 0.103). In multivariable analyses β-OHB and plasma glucose levels were the best predictors of myocardial TG content independently of VAT and hepatic TG content. The model explained 58.8% of the variance in myocardial TG content. CONCLUSION Our data showed that β-OHB and fasting glucose were the best predictors of myocardial TG content in non-diabetic men. These data suggest that hyperglycemia and alterations in lipid oxidation may be associated with cardiac steatosis in humans.
Collapse
Affiliation(s)
- M Granér
- Heart and Lung Center, Cardiology, Diabetes and Obesity Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| | - S Gustavsson
- Health Metric, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - K Nyman
- HUS Medical Imaging Center, Radiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - R Siren
- Department of General Practice and Primary Health Care, University of Helsinki and Health Center of City of Helsinki, Helsinki, Finland
| | - M O Pentikäinen
- Heart and Lung Center, Cardiology, Diabetes and Obesity Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - J Lundbom
- HUS Medical Imaging Center, Radiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research, Partner Düsseldorf, Germany
| | - A Hakkarainen
- HUS Medical Imaging Center, Radiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - K Lauerma
- HUS Medical Imaging Center, Radiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - N Lundbom
- HUS Medical Imaging Center, Radiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - J Borén
- University of Gothenburg, Gothenburg, Sweden
| | - M S Nieminen
- Heart and Lung Center, Cardiology, Diabetes and Obesity Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - M-R Taskinen
- Heart and Lung Center, Cardiology, Diabetes and Obesity Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
31
|
Cotter DG, Ercal B, Huang X, Leid JM, d'Avignon DA, Graham MJ, Dietzen DJ, Brunt EM, Patti GJ, Crawford PA. Ketogenesis prevents diet-induced fatty liver injury and hyperglycemia. J Clin Invest 2014; 124:5175-90. [PMID: 25347470 DOI: 10.1172/jci76388] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 09/18/2014] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) spectrum disorders affect approximately 1 billion individuals worldwide. However, the drivers of progressive steatohepatitis remain incompletely defined. Ketogenesis can dispose of much of the fat that enters the liver, and dysfunction in this pathway could promote the development of NAFLD. Here, we evaluated mice lacking mitochondrial 3-hydroxymethylglutaryl CoA synthase (HMGCS2) to determine the role of ketogenesis in preventing diet-induced steatohepatitis. Antisense oligonucleotide-induced loss of HMGCS2 in chow-fed adult mice caused mild hyperglycemia, increased hepatic gluconeogenesis from pyruvate, and augmented production of hundreds of hepatic metabolites, a suite of which indicated activation of the de novo lipogenesis pathway. High-fat diet feeding of mice with insufficient ketogenesis resulted in extensive hepatocyte injury and inflammation, decreased glycemia, deranged hepatic TCA cycle intermediate concentrations, and impaired hepatic gluconeogenesis due to sequestration of free coenzyme A (CoASH). Supplementation of the CoASH precursors pantothenic acid and cysteine normalized TCA intermediates and gluconeogenesis in the livers of ketogenesis-insufficient animals. Together, these findings indicate that ketogenesis is a critical regulator of hepatic acyl-CoA metabolism, glucose metabolism, and TCA cycle function in the absorptive state and suggest that ketogenesis may modulate fatty liver disease.
Collapse
|
32
|
Croci I, Byrne NM, Choquette S, Hills AP, Chachay VS, Clouston AD, O'Moore-Sullivan TM, Macdonald GA, Prins JB, Hickman IJ. Whole-body substrate metabolism is associated with disease severity in patients with non-alcoholic fatty liver disease. Gut 2013; 62:1625-33. [PMID: 23077135 DOI: 10.1136/gutjnl-2012-302789] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES In non-alcoholic fatty liver disease (NAFLD), hepatic steatosis is intricately linked with a number of metabolic alterations. We studied substrate utilisation in NAFLD during basal, insulin-stimulated and exercise conditions, and correlated these outcomes with disease severity. METHODS 20 patients with NAFLD (mean ± SD body mass index (BMI) 34.1 ± 6.7 kg/m(2)) and 15 healthy controls (BMI 23.4 ± 2.7 kg/m(2)) were assessed. Respiratory quotient (RQ), whole-body fat (Fat ox) and carbohydrate (CHO ox) oxidation rates were determined by indirect calorimetry in three conditions: basal (resting and fasted), insulin-stimulated (hyperinsulinaemic-euglycaemic clamp) and exercise (cycling at an intensity to elicit maximal Fat ox). Severity of disease and steatosis were determined by liver histology, hepatic Fat ox from plasma β-hydroxybutyrate concentrations, aerobic fitness expressed as VO2 peak, and visceral adipose tissue (VAT) measured by computed tomography. RESULTS Within the overweight/obese NAFLD cohort, basal RQ correlated positively with steatosis (r=0.57, p=0.01) and was higher (indicating smaller contribution of Fat ox to energy expenditure) in patients with NAFLD activity score (NAS) ≥ 5 vs <5 (p=0.008). Both results were independent of VAT, % body fat and BMI. Compared with the lean control group, patients with NAFLD had lower basal whole-body Fat ox (1.2 ± 0.3 vs 1.5 ± 0.4 mg/kg FFM/min, p=0.024) and lower basal hepatic Fat ox (ie, β-hydroxybutyrate, p=0.004). During exercise, they achieved lower maximal Fat ox (2.5 ± 1.4 vs. 5.8 ± 3.7 mg/kg FFM/min, p=0.002) and lower VO2 peak (p<0.001) than controls. Fat ox during exercise was not associated with disease severity (p=0.79). CONCLUSIONS Overweight/obese patients with NAFLD had reduced hepatic Fat ox and reduced whole-body Fat ox under basal and exercise conditions. There was an inverse relationship between ability to oxidise fat in basal conditions and histological features of NAFLD including severity of steatosis and NAS.
Collapse
Affiliation(s)
- Ilaria Croci
- The University of Queensland Diamantina Institute, University of Queensland, Brisbane, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Mahendran Y, Vangipurapu J, Cederberg H, Stančáková A, Pihlajamäki J, Soininen P, Kangas AJ, Paananen J, Civelek M, Saleem NK, Pajukanta P, Lusis AJ, Bonnycastle LL, Morken MA, Collins FS, Mohlke KL, Boehnke M, Ala-Korpela M, Kuusisto J, Laakso M. Association of ketone body levels with hyperglycemia and type 2 diabetes in 9,398 Finnish men. Diabetes 2013; 62:3618-26. [PMID: 23557707 PMCID: PMC3781437 DOI: 10.2337/db12-1363] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We investigated the association of the levels of ketone bodies (KBs) with hyperglycemia and with 62 genetic risk variants regulating glucose levels or type 2 diabetes in the population-based Metabolic Syndrome in Men (METSIM) study, including 9,398 Finnish men without diabetes or newly diagnosed type 2 diabetes. Increasing fasting and 2-h plasma glucose levels were associated with elevated levels of acetoacetate (AcAc) and β-hydroxybutyrate (BHB). AcAc and BHB predicted an increase in the glucose area under the curve in an oral glucose tolerance test, and AcAc predicted the conversion to type 2 diabetes in a 5-year follow-up of the METSIM cohort. Impaired insulin secretion, but not insulin resistance, explained these findings. Of the 62 single nucleotide polymorphisms associated with the risk of type 2 diabetes or hyperglycemia, the glucose-increasing C allele of GCKR significantly associated with elevated levels of fasting BHB levels. Adipose tissue mRNA expression levels of genes involved in ketolysis were significantly associated with insulin sensitivity (Matsuda index). In conclusion, high levels of KBs predicted subsequent worsening of hyperglycemia, and a common variant of GCKR was significantly associated with BHB levels.
Collapse
Affiliation(s)
- Yuvaraj Mahendran
- Department of Medicine, University of Eastern Finland, Kuopio, Finland
| | | | - Henna Cederberg
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Alena Stančáková
- Department of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Jussi Pihlajamäki
- Department of Medicine and Department of Clinical Nutrition, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Pasi Soininen
- Computational Medicine, Institute of Health Sciences, University of Oulu, Oulu, Finland
- Nuclear Magnetic Resonance Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Antti J. Kangas
- Computational Medicine, Institute of Health Sciences, University of Oulu, Oulu, Finland
| | - Jussi Paananen
- Department of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Mete Civelek
- Department of Human Genetics, Department of Microbiology, Immunology, and Molecular Genetics, and Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Niyas K. Saleem
- Department of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Päivi Pajukanta
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Aldons J. Lusis
- Department of Human Genetics, Department of Microbiology, Immunology, and Molecular Genetics, and Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Lori L. Bonnycastle
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Mario A. Morken
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Francis S. Collins
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Karen L. Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Mika Ala-Korpela
- Computational Medicine, Institute of Health Sciences, University of Oulu, Oulu, Finland
- Nuclear Magnetic Resonance Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
- School of Social and Community Medicine, University of Bristol, Bristol, U.K
- Unit of General Practice, Oulu University Hospital, Oulu, Finland
| | - Johanna Kuusisto
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Markku Laakso
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
- Corresponding author: Markku Laakso,
| |
Collapse
|
34
|
Cotter DG, Schugar RC, Crawford PA. Ketone body metabolism and cardiovascular disease. Am J Physiol Heart Circ Physiol 2013; 304:H1060-76. [PMID: 23396451 DOI: 10.1152/ajpheart.00646.2012] [Citation(s) in RCA: 294] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ketone bodies are metabolized through evolutionarily conserved pathways that support bioenergetic homeostasis, particularly in brain, heart, and skeletal muscle when carbohydrates are in short supply. The metabolism of ketone bodies interfaces with the tricarboxylic acid cycle, β-oxidation of fatty acids, de novo lipogenesis, sterol biosynthesis, glucose metabolism, the mitochondrial electron transport chain, hormonal signaling, intracellular signal transduction pathways, and the microbiome. Here we review the mechanisms through which ketone bodies are metabolized and how their signals are transmitted. We focus on the roles this metabolic pathway may play in cardiovascular disease states, the bioenergetic benefits of myocardial ketone body oxidation, and prospective interactions among ketone body metabolism, obesity, metabolic syndrome, and atherosclerosis. Ketone body metabolism is noninvasively quantifiable in humans and is responsive to nutritional interventions. Therefore, further investigation of this pathway in disease models and in humans may ultimately yield tailored diagnostic strategies and therapies for specific pathological states.
Collapse
Affiliation(s)
- David G Cotter
- Department of Medicine, Center for Cardiovascular Research, Washington University, Saint Louis, Missouri 63110, USA
| | | | | |
Collapse
|
35
|
Soeters MR, Soeters PB, Schooneman MG, Houten SM, Romijn JA. Adaptive reciprocity of lipid and glucose metabolism in human short-term starvation. Am J Physiol Endocrinol Metab 2012; 303:E1397-407. [PMID: 23074240 DOI: 10.1152/ajpendo.00397.2012] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The human organism has tools to cope with metabolic challenges like starvation that are crucial for survival. Lipolysis, lipid oxidation, ketone body synthesis, tailored endogenous glucose production and uptake, and decreased glucose oxidation serve to protect against excessive erosion of protein mass, which is the predominant supplier of carbon chains for synthesis of newly formed glucose. The starvation response shows that the adaptation to energy deficit is very effective and coordinated with different adaptations in different organs. From an evolutionary perspective, this lipid-induced effect on glucose oxidation and uptake is very strong and may therefore help to understand why insulin resistance in obesity and type 2 diabetes mellitus is difficult to treat. The importance of reciprocity in lipid and glucose metabolism during human starvation should be taken into account when studying lipid and glucose metabolism in general and in pathophysiological conditions in particular.
Collapse
Affiliation(s)
- Maarten R Soeters
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
36
|
Vrieze A, Schopman JE, Admiraal WM, Soeters MR, Nieuwdorp M, Verberne HJ, Holleman F. Fasting and Postprandial Activity of Brown Adipose Tissue in Healthy Men. J Nucl Med 2012; 53:1407-10. [DOI: 10.2967/jnumed.111.100701] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
37
|
Soeters MR, Serlie MJ, Sauerwein HP, Duran M, Ruiter JP, Kulik W, Ackermans MT, Minkler PE, Hoppel CL, Wanders RJA, Houten SM. Characterization of D-3-hydroxybutyrylcarnitine (ketocarnitine): an identified ketosis-induced metabolite. Metabolism 2012; 61:966-73. [PMID: 22209095 DOI: 10.1016/j.metabol.2011.11.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 11/09/2011] [Accepted: 11/11/2011] [Indexed: 11/21/2022]
Abstract
Hydroxybutyrylcarnitine (HB-carnitine) is a metabolite that has been associated with insulin resistance and type 2 diabetes mellitus. It is currently unknown whether HB-carnitine can be produced from D-3-hydroxybutyrate (D-3HB), a ketone body; but its formation from L-3-HB-CoA, a fatty acid β-oxidation intermediate, is well established. We aimed to assess which stereoisomers of 3-HB-carnitine are present in vivo. Ketosis and increased fatty acid oxidation were induced in 12 lean healthy men by a 38-hour fasting period. The D-3HB kinetics (stable isotope technique) and stereoisomers of muscle 3-HB-carnitine (high-performance liquid chromatography/ultra-performance liquid chromatography-tandem mass spectrometry) were measured. Muscle D-3HB-carnitine content was much higher compared with L-3HB-carnitine. In addition, muscle D-3HB-carnitine correlated significantly with D-3-HB production. Following the finding that a ketone body can be converted into a carnitine ester in vivo, we show in vitro that D-3-HB can be converted into HB-carnitine (ketocarnitine) via an acyl-CoA synthetase reaction in several tissues including human muscle. During fasting, HB-carnitine in muscle is derived mainly from the ketone body D-3HB. The role of D-3HB-carnitine synthesis in metabolism remains to be elucidated.
Collapse
Affiliation(s)
- Maarten R Soeters
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, PO Box 22660, 1100 DD, Amsterdam, the Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Carpentier AC, Labbé SM, Grenier-Larouche T, Noll C. Abnormal dietary fatty acid metabolic partitioning in insulin resistance and Type 2 diabetes. ACTA ACUST UNITED AC 2011. [DOI: 10.2217/clp.11.60] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
39
|
Current world literature. Curr Opin Lipidol 2011; 22:231-6. [PMID: 21562387 DOI: 10.1097/mol.0b013e328347aeca] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Abstract
PURPOSE OF REVIEW A net retention of triacylglycerol within the liver is a prerequisite for the development of nonalcoholic fatty liver disease. The accumulation of liver fat reflects an imbalance between fatty acid input and disposal. Here we summarize recent research into understanding the fate of fatty acids within the hepatocyte. RECENT FINDINGS Several recent studies have elucidated the contribution of different sources of fatty acids to liver fat and to plasma triacylglycerol. Some recent studies have suggested that, contrary to expectations, hepatic fatty acid oxidation is upregulated in insulin-resistant individuals. A recent observation shows the potential importance of fatty acid transformation, especially desaturation, to determination of metabolic fate. These studies highlight our lack of understanding of the regulation of metabolic partitioning of fatty acids within the human liver. SUMMARY The regulation of hepatic fatty acid partitioning involves many factors; not least insulin. Insulin undoubtedly regulates the supply of fatty acids to the liver from adipose tissue; however, whether insulin has a direct intrahepatic effect on hepatic fatty acid partitioning, in humans, remains unclear. The transformation of fatty acids, by desaturases, may have an important role in aiding the disposal of saturated fatty acids via oxidative pathways. Factors that upregulate hepatic fatty acid oxidation need to be elucidated.
Collapse
Affiliation(s)
- Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, UK.
| | | |
Collapse
|
41
|
Cotter DG, d'Avignon DA, Wentz AE, Weber ML, Crawford PA. Obligate role for ketone body oxidation in neonatal metabolic homeostasis. J Biol Chem 2011; 286:6902-10. [PMID: 21209089 PMCID: PMC3044945 DOI: 10.1074/jbc.m110.192369] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 11/28/2010] [Indexed: 11/06/2022] Open
Abstract
To compensate for the energetic deficit elicited by reduced carbohydrate intake, mammals convert energy stored in ketone bodies to high energy phosphates. Ketone bodies provide fuel particularly to brain, heart, and skeletal muscle in states that include starvation, adherence to low carbohydrate diets, and the neonatal period. Here, we use novel Oxct1(-/-) mice, which lack the ketolytic enzyme succinyl-CoA:3-oxo-acid CoA-transferase (SCOT), to demonstrate that ketone body oxidation is required for postnatal survival in mice. Although Oxct1(-/-) mice exhibit normal prenatal development, all develop ketoacidosis, hypoglycemia, and reduced plasma lactate concentrations within the first 48 h of birth. In vivo oxidation of (13)C-labeled β-hydroxybutyrate in neonatal Oxct1(-/-) mice, measured using NMR, reveals intact oxidation to acetoacetate but no contribution of ketone bodies to the tricarboxylic acid cycle. Accumulation of acetoacetate yields a markedly reduced β-hydroxybutyrate:acetoacetate ratio of 1:3, compared with 3:1 in Oxct1(+) littermates. Frequent exogenous glucose administration to actively suckling Oxct1(-/-) mice delayed, but could not prevent, lethality. Brains of newborn SCOT-deficient mice demonstrate evidence of adaptive energy acquisition, with increased phosphorylation of AMP-activated protein kinase α, increased autophagy, and 2.4-fold increased in vivo oxidative metabolism of [(13)C]glucose. Furthermore, [(13)C]lactate oxidation is increased 1.7-fold in skeletal muscle of Oxct1(-/-) mice but not in brain. These results indicate the critical metabolic roles of ketone bodies in neonatal metabolism and suggest that distinct tissues exhibit specific metabolic responses to loss of ketone body oxidation.
Collapse
Affiliation(s)
| | - D. André d'Avignon
- Chemistry, Washington University School of Medicine, St. Louis, Missouri 63110
| | | | | | | |
Collapse
|
42
|
Cunnane S, Nugent S, Roy M, Courchesne-Loyer A, Croteau E, Tremblay S, Castellano A, Pifferi F, Bocti C, Paquet N, Begdouri H, Bentourkia M, Turcotte E, Allard M, Barberger-Gateau P, Fulop T, Rapoport SI. Brain fuel metabolism, aging, and Alzheimer's disease. Nutrition 2011; 27:3-20. [PMID: 21035308 PMCID: PMC3478067 DOI: 10.1016/j.nut.2010.07.021] [Citation(s) in RCA: 414] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2010] [Revised: 07/28/2010] [Accepted: 07/28/2010] [Indexed: 12/14/2022]
Abstract
Lower brain glucose metabolism is present before the onset of clinically measurable cognitive decline in two groups of people at risk of Alzheimer's disease--carriers of apolipoprotein E4, and in those with a maternal family history of AD. Supported by emerging evidence from in vitro and animal studies, these reports suggest that brain hypometabolism may precede and therefore contribute to the neuropathologic cascade leading to cognitive decline in AD. The reason brain hypometabolism develops is unclear but may include defects in brain glucose transport, disrupted glycolysis, and/or impaired mitochondrial function. Methodologic issues presently preclude knowing with certainty whether or not aging in the absence of cognitive impairment is necessarily associated with lower brain glucose metabolism. Nevertheless, aging appears to increase the risk of deteriorating systemic control of glucose utilization, which, in turn, may increase the risk of declining brain glucose uptake, at least in some brain regions. A contributing role of deteriorating glucose availability to or metabolism by the brain in AD does not exclude the opposite effect, i.e., that neurodegenerative processes in AD further decrease brain glucose metabolism because of reduced synaptic functionality and hence reduced energy needs, thereby completing a vicious cycle. Strategies to reduce the risk of AD by breaking this cycle should aim to (1) improve insulin sensitivity by improving systemic glucose utilization, or (2) bypass deteriorating brain glucose metabolism using approaches that safely induce mild, sustainable ketonemia.
Collapse
Affiliation(s)
- Stephen Cunnane
- Research Center on Aging, Health and Social Services Center-Sherbrooke University Geriatrics Institute, Université de Sherbrooke, Sherbrooke, QC, Canada; Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada; Department of Physiology and Biophysics, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Scott Nugent
- Research Center on Aging, Health and Social Services Center-Sherbrooke University Geriatrics Institute, Université de Sherbrooke, Sherbrooke, QC, Canada; Department of Physiology and Biophysics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Maggie Roy
- Research Center on Aging, Health and Social Services Center-Sherbrooke University Geriatrics Institute, Université de Sherbrooke, Sherbrooke, QC, Canada; Department of Physiology and Biophysics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Alexandre Courchesne-Loyer
- Research Center on Aging, Health and Social Services Center-Sherbrooke University Geriatrics Institute, Université de Sherbrooke, Sherbrooke, QC, Canada; Department of Physiology and Biophysics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Etienne Croteau
- Department of Radiobiology and Nuclear Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Sébastien Tremblay
- Research Center on Aging, Health and Social Services Center-Sherbrooke University Geriatrics Institute, Université de Sherbrooke, Sherbrooke, QC, Canada; Department of Radiobiology and Nuclear Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Alex Castellano
- Research Center on Aging, Health and Social Services Center-Sherbrooke University Geriatrics Institute, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Christian Bocti
- Research Center on Aging, Health and Social Services Center-Sherbrooke University Geriatrics Institute, Université de Sherbrooke, Sherbrooke, QC, Canada; Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Nancy Paquet
- Department of Radiobiology and Nuclear Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Hadi Begdouri
- Department of Radiobiology and Nuclear Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - M'hamed Bentourkia
- Department of Radiobiology and Nuclear Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Eric Turcotte
- Department of Radiobiology and Nuclear Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Michèle Allard
- UMR CNRS 5231 and Ecole Pratique des Hautes Etudes, France
| | - Pascale Barberger-Gateau
- INSERM U897, Bordeaux F-33076, France; Université Victor Segalen Bordeaux 2, Bordeaux F-33076, France
| | - Tamas Fulop
- Research Center on Aging, Health and Social Services Center-Sherbrooke University Geriatrics Institute, Université de Sherbrooke, Sherbrooke, QC, Canada; Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Stanley I Rapoport
- Brain Physiology and Metabolism Section, National Institute of Aging, Bethesda, MD, USA
| |
Collapse
|
43
|
Soeters MR, Huidekoper HH, Duran M, Ackermans MT, Endert E, Fliers E, Wijburg FA, Wanders RJ, Sauerwein HP, Serlie MJ. Extended metabolic evaluation of suspected symptomatic hypoglycemia: the prolonged fast and beyond. Metabolism 2010; 59:1543-50. [PMID: 20189609 DOI: 10.1016/j.metabol.2010.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 01/11/2010] [Accepted: 01/27/2010] [Indexed: 11/21/2022]
Abstract
The diagnostic evaluation of spontaneous hypoglycemia in adults is mainly directed at detecting an insulinoma. Its interpretation is troublesome in those patients who develop low venous plasma glucose levels with appropriate hypoinsulinemia during a prolonged supervised fast. In this study, we investigated in this group of patients whether abnormalities in intermediary metabolism (fatty acid oxidation and amino/organic acids) could be detected that might explain the hypoinsulinemic hypoglycemia. Ten patients with otherwise unexplained low venous plasma glucose levels (<3 mmol/L) during prolonged fasting were included in the study. The patients participated in an extended metabolic protocol based on stable isotope techniques after an overnight fast to explore abnormalities in endogenous glucose production and intermediary metabolism. Endogenous glucose production, glucoregulatory hormones, plasma acylcarnitines, gluconeogenic amino acids, and rates of fatty acid and carbohydrate oxidation after 16 and 22 hours of fasting were measured. Although during the prolonged fast all patients had low venous plasma glucose level, there were no hypoglycemic events during the extended metabolic protocol. No abnormalities in endogenous glucose production (compared with reference values obtained in young healthy volunteers), fatty acid oxidation, or amino acid/organic acids were found in this patient group. In a group of patients exhibiting low venous plasma glucose levels during prolonged fasting in whom insulinoma was excluded, we found no signs of metabolic disorders. Therefore, the observation of low plasma glucose values in this subgroup of patients probably does not warrant extensive metabolic evaluation.
Collapse
Affiliation(s)
- Maarten R Soeters
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Hodson L, McQuaid SE, Humphreys SM, Milne R, Fielding BA, Frayn KN, Karpe F. Greater dietary fat oxidation in obese compared with lean men: an adaptive mechanism to prevent liver fat accumulation? Am J Physiol Endocrinol Metab 2010; 299:E584-92. [PMID: 20628024 PMCID: PMC2957864 DOI: 10.1152/ajpendo.00272.2010] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Liver fat represents a balance between input, secretion, and oxidation of fatty acids. As humans spend the majority of a 24-h period in a postprandial state, dietary fatty acids make an important contribution to liver fat metabolism. We compared hepatic fatty acid partitioning in healthy lean (n = 9) and abdominally obese (n = 10) males over 24 h. Volunteers received three mixed meals adjusted for basal metabolic rate. U-13C-labeled fatty acids were incorporated into the meals, and [2H2]palmitate was infused intravenously to distinguish between sources of fatty acids incorporated into VLDL-TG. Immunoaffinity chromatography was used to isolate VLDL-TG of hepatic origin. Liver and whole body fatty acid oxidation was assessed by isotopic enrichment of 3-hydoxybutyrate and breath CO2. We found a similar contribution of dietary fatty acids to VLDL-TG in the two groups over 24 h. The contribution of fatty acids from splanchnic sources was higher (P < 0.05) in the abdominally obese group. Ketogenesis occurred to a significantly greater extent in abdominally obese compared with lean males, largely due to lessened downregulation of postprandial ketogenesis (P < 0.001). The appearance of 13C in breath CO2 was also greater (P < 0.001) in abdominally obese compared with lean men. Hepatic elongation and desaturation of palmitic acid were higher (P < 0.05) in abdominally obese than in lean males. Oxidation of dietary fatty acids and hepatic desaturation and elongation of palmitic acid occurred to a greater extent in abdominally obese men. These alterations may represent further pathways for redirection of fatty acids into export from the liver or oxidation to prevent liver fat accumulation.
Collapse
Affiliation(s)
- Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
45
|
Wentz AE, d'Avignon DA, Weber ML, Cotter DG, Doherty JM, Kerns R, Nagarajan R, Reddy N, Sambandam N, Crawford PA. Adaptation of myocardial substrate metabolism to a ketogenic nutrient environment. J Biol Chem 2010; 285:24447-56. [PMID: 20529848 DOI: 10.1074/jbc.m110.100651] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Heart muscle is metabolically versatile, converting energy stored in fatty acids, glucose, lactate, amino acids, and ketone bodies. Here, we use mouse models in ketotic nutritional states (24 h of fasting and a very low carbohydrate ketogenic diet) to demonstrate that heart muscle engages a metabolic response that limits ketone body utilization. Pathway reconstruction from microarray data sets, gene expression analysis, protein immunoblotting, and immunohistochemical analysis of myocardial tissue from nutritionally modified mouse models reveal that ketotic states promote transcriptional suppression of the key ketolytic enzyme, succinyl-CoA:3-oxoacid CoA transferase (SCOT; encoded by Oxct1), as well as peroxisome proliferator-activated receptor alpha-dependent induction of the key ketogenic enzyme HMGCS2. Consistent with reduction of SCOT, NMR profiling demonstrates that maintenance on a ketogenic diet causes a 25% reduction of myocardial (13)C enrichment of glutamate when (13)C-labeled ketone bodies are delivered in vivo or ex vivo, indicating reduced procession of ketones through oxidative metabolism. Accordingly, unmetabolized substrate concentrations are higher within the hearts of ketogenic diet-fed mice challenged with ketones compared with those of chow-fed controls. Furthermore, reduced ketone body oxidation correlates with failure of ketone bodies to inhibit fatty acid oxidation. These results indicate that ketotic nutrient environments engage mechanisms that curtail ketolytic capacity, controlling the utilization of ketone bodies in ketotic states.
Collapse
Affiliation(s)
- Anna E Wentz
- Department of Medicine, Washington University, St Louis, Missouri 63108, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Tremblay-Mercier J, Tessier D, Plourde M, Fortier M, Lorrain D, Cunnane SC. Bezafibrate mildly stimulates ketogenesis and fatty acid metabolism in hypertriglyceridemic subjects. J Pharmacol Exp Ther 2010; 334:341-6. [PMID: 20404010 DOI: 10.1124/jpet.110.166504] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Our objective was to determine whether bezafibrate, a hypotriglyceridemic drug and peroxisome proliferator-activated receptor (PPAR)-alpha agonist, is ketogenic and increases fatty acid oxidation in humans. We measured fatty acid metabolism and ketone levels in 13 mildly hypertriglycemic adults (67 +/- 11 years old) during 2 metabolic study days lasting 6 h, 1 day before and 1 day after bezafibrate (400 mg of bezafibrate per day for 12 weeks). beta-Hydroxybutyrate, triglycerides, free fatty acids, fatty acid profiles, insulin, and glucose were measured in plasma, and fatty acid beta-oxidation was measured in breath after an oral 50-mg dose of the fatty acid tracer [U-(13)C]linoleic acid. As expected, 12 weeks on bezafibrate decreased plasma triglycerides by 35%. Bezafibrate tended to raise postprandial beta-hydroxybutyrate, an effect that was significant after normalization to the fasting baseline values (p = 0.03). beta-Oxidation of [U-(13)C]linoleic acid increased by 30% (p = 0.03) after treatment. On the metabolic study day after bezafibrate treatment, postprandial insulin decreased by 26% (p = 0.01), and glucose concentrations were lower 2 to 5 h postprandially. Thus, in hypertriglyceridemic individuals, bezafibrate is mildly ketogenic and significantly changes fatty acid metabolism, effects that may be linked to PPARalpha stimulation and to moderately improved glucose metabolism.
Collapse
Affiliation(s)
- Jennifer Tremblay-Mercier
- Research Center on Aging, University Institute of Geriatrics of Sherbrooke, Sherbrooke, Quebec, Canada.
| | | | | | | | | | | |
Collapse
|