1
|
Mandal S, Ghosh JS, Lohani SC, Zhao M, Cheng Y, Burrack R, Luo M, Li Q. A long-term stable cold-chain-friendly HIV mRNA vaccine encoding multi-epitope viral protease cleavage site immunogens inducing immunogen-specific protective T cell immunity. Emerg Microbes Infect 2024; 13:2377606. [PMID: 38979723 PMCID: PMC11259082 DOI: 10.1080/22221751.2024.2377606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 07/04/2024] [Indexed: 07/10/2024]
Abstract
The lack of success in clinical trials for HIV vaccines highlights the need to explore novel strategies for vaccine development. Research on highly exposed seronegative (HESN) HIV-resistant Kenyan female sex workers revealed naturally protective immunity is correlated with a focused immune response mediated by virus-specific CD8 T cells. Further studies indicated that the immune response is unconventionally focused on highly conserved sequences around HIV viral protease cleavage sites (VPCS). Thus, taking an unconventional approach to HIV vaccine development, we designed lipid nanoparticles loaded with mRNA that encodes multi-epitopes of VPCS (MEVPCS-mRNA LNP), a strategic design to boost antigen presentation by dendritic cells, promoting effective cellular immunity. Furthermore, we developed a novel cold-chain compatible mRNA LNP formulation, ensuring long-term stability and compatibility with cold-chain storage/transport, widening accessibility of mRNA LNP vaccine in low-income countries. The in-vivo mouse study demonstrated that the vaccinated group generated VPCS-specific CD8 memory T cells, both systemically and at mucosal sites of viral entry. The MEVPCS-mRNA LNP vaccine-induced CD8 T cell immunity closely resembled that of the HESN group and displayed a polyfunctional profile. Notably, it induced minimal to no activation of CD4 T cells. This proof-of-concept study underscores the potential of the MEVPCS-mRNA LNP vaccine in eliciting CD8 T cell memory specific to the highly conserved multiple VPCS, consequently having a broad coverage in human populations and limiting viral escape mutation. The MEVPCS-mRNA LNP vaccine holds promise as a candidate for an effective prophylactic HIV vaccine.
Collapse
Affiliation(s)
- Subhra Mandal
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Jayadri Sekhar Ghosh
- Nebraska Center for Virology, Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Saroj Chandra Lohani
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Miaoyun Zhao
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Yilun Cheng
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Rachel Burrack
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Ma Luo
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Qingsheng Li
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
2
|
Yosri M, Dokhan M, Aboagye E, Al Moussawy M, Abdelsamed HA. Mechanisms governing bystander activation of T cells. Front Immunol 2024; 15:1465889. [PMID: 39669576 PMCID: PMC11635090 DOI: 10.3389/fimmu.2024.1465889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/31/2024] [Indexed: 12/14/2024] Open
Abstract
The immune system is endowed with the capacity to distinguish between self and non-self, so-called immune tolerance or "consciousness of the immune system." This type of awareness is designed to achieve host protection by eliminating cells expressing a wide range of non-self antigens including microbial-derived peptides. Such a successful immune response is associated with the secretion of a whole spectrum of soluble mediators, e.g., cytokines and chemokines, which not only contribute to the clearance of infected host cells but also activate T cells that are not specific to the original cognate antigen. This kind of non-specific T-cell activation is called "bystander activation." Although it is well-established that this phenomenon is cytokine-dependent, there is evidence in the literature showing the involvement of peptide/MHC recognition depending on the type of T-cell subset (naive vs. memory). Here, we will summarize our current understanding of the mechanism(s) of bystander T-cell activation as well as its biological significance in a wide range of diseases including microbial infections, cancer, auto- and alloimmunity, and chronic inflammatory diseases such as atherosclerosis.
Collapse
Affiliation(s)
- Mohammed Yosri
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo, Egypt
| | - Mohamed Dokhan
- Immunology Center of Georgia (IMMCG), Medical College of Georgia (MCG), Augusta University, Augusta, GA, United States
| | - Elizabeth Aboagye
- Immunology Center of Georgia (IMMCG), Medical College of Georgia (MCG), Augusta University, Augusta, GA, United States
| | - Mouhamad Al Moussawy
- Starzl Transplantation Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Hossam A. Abdelsamed
- Immunology Center of Georgia (IMMCG), Medical College of Georgia (MCG), Augusta University, Augusta, GA, United States
- Department of Physiology, Augusta University, Augusta, GA, United States
| |
Collapse
|
3
|
Yoon D, Jung K, Kim JH, Ko HY, Yoon BA, Shin JY. Risk for Facial Palsy after COVID-19 Vaccination, South Korea, 2021-2022. Emerg Infect Dis 2024; 30:2313-2322. [PMID: 39378869 PMCID: PMC11521192 DOI: 10.3201/eid3011.240610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
We conducted a self-controlled case series study to investigate the association between COVID-19 vaccination and facial palsy (FP) in South Korea. We used a large immunization registry linked with the national health information database. We included 44,564,345 patients >18 years of age who received >1 dose of COVID-19 vaccine (BNT162b2, mRNA-1273, ChAdOx1 nCoV-19, or Ad.26.COV2.S) and had an FP diagnosis and corticosteroid prescription within 240 days postvaccination. We compared FP incidence in a risk window (days 1-28) with a control window (the remainder of the 240-day observation period, excluding any risk windows). We found 5,211 patients experienced FP within the risk window and 10,531 experienced FP within the control window. FP risk increased within 28 days postvaccination, primarily after first and second doses and was observed for both mRNA and viral vaccines. Clinicians should carefully assess the FP risk-benefit profile associated with the COVID-19 vaccines and monitor neurologic signs after vaccination.
Collapse
Affiliation(s)
| | | | - Ju Hwan Kim
- Sungkyunkwan University Department of Biohealth Regulatory Science, Suwon, South Korea (D. Yoon, K. Jung, J.H. Kim, J.-Y. Shin); Sungkyunkwan University School of Pharmacy, Suwon (D. Yoon, J.H. Kim, H.Y. Ko, J.-Y. Shin); Dong-A University College of Medicine Department of Neurology, Busan, South Korea (B.-A. Yoon); Sungkyunkwan University Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Seoul, South Korea (J.-Y. Shin)
| | - Hwa Yeon Ko
- Sungkyunkwan University Department of Biohealth Regulatory Science, Suwon, South Korea (D. Yoon, K. Jung, J.H. Kim, J.-Y. Shin); Sungkyunkwan University School of Pharmacy, Suwon (D. Yoon, J.H. Kim, H.Y. Ko, J.-Y. Shin); Dong-A University College of Medicine Department of Neurology, Busan, South Korea (B.-A. Yoon); Sungkyunkwan University Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Seoul, South Korea (J.-Y. Shin)
| | | | | | - CoVaSC Investigators
- Sungkyunkwan University Department of Biohealth Regulatory Science, Suwon, South Korea (D. Yoon, K. Jung, J.H. Kim, J.-Y. Shin); Sungkyunkwan University School of Pharmacy, Suwon (D. Yoon, J.H. Kim, H.Y. Ko, J.-Y. Shin); Dong-A University College of Medicine Department of Neurology, Busan, South Korea (B.-A. Yoon); Sungkyunkwan University Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Seoul, South Korea (J.-Y. Shin)
| |
Collapse
|
4
|
Covre LP, Fantecelle CH, Garcia de Moura R, Oliveira Lopes P, Sarmento IV, Freire-de-Lima CG, Decote-Ricardo D, de Matos Guedes HL, da Fonsceca-Martins AM, de Carvalho LP, de Carvalho EM, Mosser DM, Falqueto A, Akbar AN, Gomes DCO. Lesional senescent CD4 + T cells mediate bystander cytolysis and contribute to the skin pathology of human cutaneous leishmaniasis. Front Immunol 2024; 15:1475146. [PMID: 39497830 PMCID: PMC11532160 DOI: 10.3389/fimmu.2024.1475146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/23/2024] [Indexed: 11/07/2024] Open
Abstract
Cytotoxic activity is a hallmark of the immunopathogenesis in human cutaneous leishmaniasis (CL). In this study, we identified accumulation of CD4+ granzyme B producing T cells with increased cytotoxic capacity in CL lesions. These cells showed enhanced expression of activating NK receptors (NKG2D and NKG2C), diminished expression of inhibitory NKG2A, along with the upregulation of the senescence marker CD57. Notably, CD4+ T cells freshly isolated from CL lesions demonstrated remarkable capacity to mediate NL-like bystander cytolysis. Phenotypic analyses revealed that lesional CD4+ T cells are mainly composed of late-differentiated effector (CD27-CD45RA-) and terminally differentiated (senescent) TEMRA (CD27-CD45RA+) subsets. Interestingly, the TEMRA CD4+ T cells exhibited higher expression of granzyme B and CD107a. Collectively, our results provide the first evidence that senescent cytotoxic CD4+ T cells may support the skin pathology of human cutaneous leishmaniasis and, together with our previous findings, support the notion that multiple subsets of cytotoxic senescent cells may be involved in inducing the skin lesions in these patients.
Collapse
Affiliation(s)
- Luciana Polaco Covre
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória, Brazil
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Division of Medicine, University College London, London, United Kingdom
| | | | | | - Paola Oliveira Lopes
- Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Vitória, Brazil
| | | | | | - Debora Decote-Ricardo
- Departamento de Veterinária, Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Herbert Leonel de Matos Guedes
- Instituto de Microbiologia Professor Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | | | | | - David M. Mosser
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Aloisio Falqueto
- Departamento de Medicina Social, Universidade Federal do Espírito Santo, Vitória, Brazil
| | - Arne N. Akbar
- Division of Medicine, University College London, London, United Kingdom
| | - Daniel Claudio Oliveira Gomes
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória, Brazil
- Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Vitória, Brazil
| |
Collapse
|
5
|
Fan J, Xu M, Liu K, Yan W, Wu H, Dong H, Yang Y, Ye W. IL-15-induced CD38 +HLA-DR +CD8 + T cells correlate with liver injury via NKG2D in chronic hepatitis B cirrhosis. Clin Transl Immunology 2024; 13:e70007. [PMID: 39416768 PMCID: PMC11480635 DOI: 10.1002/cti2.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/17/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
Objectives CD8+ T cells play a critical role in the immune dysfunction associated with liver cirrhosis. CD38+HLA-DR+CD8+ T cells, or bystander-activated CD8+ T cells, are involved in tissue injury but their specific contribution to liver cirrhosis remains unclear. This study sought to identify the mechanism for CD38+HLA-DR+CD8+ T cell-mediated pathogenesis during liver cirrhosis. Methods The immunophenotype, antigen specificity, cytokine secretion and cytotoxicity-related indicators of CD38+HLA-DR+CD8+ T cells were determined using flow cytometry. The functional properties of these cells were assessed using transcriptome analysis. CD38+HLA-DR+CD8+ T-cell killing was detected using cytotoxicity and antibody-blocking assays. Results The proportion of CD38+HLA-DR+CD8+ T cells was significantly elevated in liver cirrhosis patients and correlated with tissue damage. Transcriptome analysis revealed that these cells had innate-like functional characteristics. This CD8+ T-cell population primarily consisted of effector memory T cells and produced a high level of cytotoxicity-related cytokines, granzyme B and perforin. IL-15 promoted CD38+HLA-DR+CD8+ T-cell activation and proliferation, inducing significant TCR-independent cytotoxicity mediated through NKG2D. Conclusions CD38+HLA-DR+CD8+ T cells correlated with cirrhosis-related liver injury and contributed to liver damage by signalling through NKG2D in a TCR-independent manner.
Collapse
Affiliation(s)
- Jing Fan
- Department of Infectious Disease and Liver DiseaseThe Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese MedicineNanjingJiangsuChina
- Clinical Research Center, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese MedicineNanjingJiangsuChina
| | - Min Xu
- Department of Infectious Disease and Liver DiseaseThe Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese MedicineNanjingJiangsuChina
| | - Ke Liu
- Department of Infectious Disease and Liver DiseaseThe Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese MedicineNanjingJiangsuChina
| | - Wanping Yan
- Department of Infectious Disease and Liver DiseaseThe Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese MedicineNanjingJiangsuChina
| | - Huanyu Wu
- Department of Infectious Disease and Liver DiseaseThe Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese MedicineNanjingJiangsuChina
| | - Hongliang Dong
- Department of Infectious Disease and Liver DiseaseThe Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese MedicineNanjingJiangsuChina
| | - Yongfeng Yang
- Department of Infectious Disease and Liver DiseaseThe Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese MedicineNanjingJiangsuChina
| | - Wei Ye
- Department of Infectious Disease and Liver DiseaseThe Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese MedicineNanjingJiangsuChina
| |
Collapse
|
6
|
Janova H, Zhao FR, Desai P, Mack M, Thackray LB, Stappenbeck TS, Diamond MS. West Nile virus triggers intestinal dysmotility via T cell-mediated enteric nervous system injury. J Clin Invest 2024; 134:e181421. [PMID: 39207863 PMCID: PMC11527448 DOI: 10.1172/jci181421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Intestinal dysmotility syndromes have been epidemiologically associated with several antecedent bacterial and viral infections. To model this phenotype, we previously infected mice with the neurotropic flavivirus West Nile virus (WNV) and demonstrated intestinal transit defects. Here, we found that within 1 week of WNV infection, enteric neurons and glia became damaged, resulting in sustained reductions of neuronal cells and their networks of connecting fibers. Using cell-depleting antibodies, adoptive transfer experiments, and mice lacking specific immune cells or immune functions, we show that infiltrating WNV-specific CD4+ and CD8+ T cells damaged the enteric nervous system (ENS) and glia, which led to intestinal dysmotility; these T cells used multiple and redundant effector molecules including perforin and Fas ligand. In comparison, WNV-triggered ENS injury and intestinal dysmotility appeared to not require infiltrating monocytes, and damage may have been limited by resident muscularis macrophages. Overall, our experiments support a model in which antigen-specific T cell subsets and their effector molecules responding to WNV infection direct immune pathology against enteric neurons and supporting glia that results in intestinal dysmotility.
Collapse
Affiliation(s)
- Hana Janova
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Fang R. Zhao
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Pritesh Desai
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Matthias Mack
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Larissa B. Thackray
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| | | | - Michael S. Diamond
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
- Department of Pathology and Immunology
- Department of Molecular Microbiology, and
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
7
|
Lu C, Li H, Chen W, Li H, Ma J, Peng P, Yan Y, Dong W, Jin Y, Pan S, Shang S, Gu J, Zhou J. Immunological characteristics of a recombinant alphaherpesvirus with an envelope-embedded Cap protein of circovirus. Front Immunol 2024; 15:1438371. [PMID: 39081314 PMCID: PMC11286414 DOI: 10.3389/fimmu.2024.1438371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 06/25/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction Variant pseudorabies virus (PRV) is a newly emerged zoonotic pathogen that can cause human blindness. PRV can take advantage of its large genome and multiple non-essential genes to construct recombinant attenuated vaccines carrying foreign genes. However, a major problem is that the foreign genes in recombinant PRV are only integrated into the genome for independent expression, rather than assembled on the surface of virion. Methods We reported a recombinant PRV with deleted gE/TK genes and an inserted porcine circovirus virus 2 (PCV2) Cap gene into the extracellular domain of the PRV gE gene using the Cre-loxP recombinant system combined with the CRISPR-Cas9 gene editing system. This recombinant PRV (PRV-Cap), with the envelope-embedded Cap protein, exhibits a similar replication ability to its parental virus. Results An immunogenicity assay revealed that PRV-Cap immunized mice have 100% resistance to lethal PRV and PCV2 attacks. Neutralization antibody and ELISPOT detections indicated that PRV-Cap can enhance neutralizing antibodies to PRV and produce IFN-γ secreting T cells specific for both PRV and PCV2. Immunological mechanistic investigation revealed that initial immunization with PRV-Cap stimulates significantly early activation and expansion of CD69+ T cells, promoting the activation of CD4 Tfh cell dependent germinal B cells and producing effectively specific effector memory T and B cells. Booster immunization with PRV-Cap recalled the activation of PRV-specific IFN-γ+IL-2+CD4+ T cells and IFN-γ+TNF-α+CD8+ T cells, as well as PCV2-specific IFN-γ+TNF-α+CD8+ T cells. Conclusion Collectively, our data suggested an immunological mechanism in that the recombinant PRV with envelope-assembled PCV2 Cap protein can serve as an excellent vaccine candidate for combined immunity against PRV and PCV2, and provided a cost-effective method for the production of PRV- PCV2 vaccine.
Collapse
Affiliation(s)
- Chenhe Lu
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Haimin Li
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Wenjing Chen
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Hui Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jiayu Ma
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Peng Peng
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Yan Yan
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Weiren Dong
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Yulan Jin
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Shiyue Pan
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Shaobin Shang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jinyan Gu
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Jiyong Zhou
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Yu W, Truong NTH, Polara R, Gargett T, Tea MN, Pitson SM, Cockshell MP, Bonder CS, Ebert LM, Brown MP. Endogenous bystander killing mechanisms enhance the activity of novel FAP-specific CAR-T cells against glioblastoma. Clin Transl Immunology 2024; 13:e1519. [PMID: 38975278 PMCID: PMC11225608 DOI: 10.1002/cti2.1519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/17/2024] [Accepted: 06/04/2024] [Indexed: 07/09/2024] Open
Abstract
Objectives CAR-T cells are being investigated as a novel immunotherapy for glioblastoma, but clinical success has been limited. We recently described fibroblast activation protein (FAP) as an ideal target antigen for glioblastoma immunotherapy, with expression on both tumor cells and tumor blood vessels. However, CAR-T cells targeting FAP have never been investigated as a therapy for glioblastoma. Methods We generated a novel FAP targeting CAR with CD3ζ and CD28 signalling domains and tested the resulting CAR-T cells for their lytic activity and cytokine secretion function in vitro (using real-time impedance, flow cytometry, imaging and bead-based cytokine assays), and in vivo (using a xenograft mimicking the natural heterogeneity of human glioblastoma). Results FAP-CAR-T cells exhibited target specificity against model cell lines and potent cytotoxicity against patient-derived glioma neural stem cells, even when only a subpopulation expressed FAP, indicating a bystander killing mechanism. Using co-culture assays, we confirmed FAP-CAR-T cells mediate bystander killing of antigen-negative tumor cells, but only after activation by FAP-positive target cells. This bystander killing was at least partially mediated by soluble factors and amplified by IL-2 which activated the non-transduced fraction of the CAR-T product. Finally, a low dose of intravenously administered FAP-CAR-T cells controlled, without overt toxicity, the growth of subcutaneous tumors created using a mixture of antigen-negative and antigen-positive glioblastoma cells. Conclusions Our findings advance FAP as a leading candidate for clinical CAR-T therapy of glioblastoma and highlight under-recognised antigen nonspecific mechanisms that may contribute meaningfully to the antitumor activity of CAR-T cells.
Collapse
Affiliation(s)
- Wenbo Yu
- Centre for Cancer BiologySA Pathology and University of South AustraliaAdelaideSAAustralia
- Cancer Clinical Trials UnitRoyal Adelaide HospitalAdelaideSAAustralia
| | - Nga TH Truong
- Centre for Cancer BiologySA Pathology and University of South AustraliaAdelaideSAAustralia
- Cancer Clinical Trials UnitRoyal Adelaide HospitalAdelaideSAAustralia
| | - Ruhi Polara
- Centre for Cancer BiologySA Pathology and University of South AustraliaAdelaideSAAustralia
| | - Tessa Gargett
- Centre for Cancer BiologySA Pathology and University of South AustraliaAdelaideSAAustralia
- Cancer Clinical Trials UnitRoyal Adelaide HospitalAdelaideSAAustralia
- Adelaide Medical SchoolThe University of AdelaideAdelaideSAAustralia
| | - Melinda N Tea
- Centre for Cancer BiologySA Pathology and University of South AustraliaAdelaideSAAustralia
| | - Stuart M Pitson
- Centre for Cancer BiologySA Pathology and University of South AustraliaAdelaideSAAustralia
- Adelaide Medical SchoolThe University of AdelaideAdelaideSAAustralia
| | - Michaelia P Cockshell
- Centre for Cancer BiologySA Pathology and University of South AustraliaAdelaideSAAustralia
| | - Claudine S Bonder
- Centre for Cancer BiologySA Pathology and University of South AustraliaAdelaideSAAustralia
- Adelaide Medical SchoolThe University of AdelaideAdelaideSAAustralia
| | - Lisa M Ebert
- Centre for Cancer BiologySA Pathology and University of South AustraliaAdelaideSAAustralia
- Cancer Clinical Trials UnitRoyal Adelaide HospitalAdelaideSAAustralia
- Adelaide Medical SchoolThe University of AdelaideAdelaideSAAustralia
| | - Michael P Brown
- Centre for Cancer BiologySA Pathology and University of South AustraliaAdelaideSAAustralia
- Cancer Clinical Trials UnitRoyal Adelaide HospitalAdelaideSAAustralia
- Adelaide Medical SchoolThe University of AdelaideAdelaideSAAustralia
| |
Collapse
|
9
|
Maurice NJ, Dalzell TS, Jarjour NN, DePauw TA, Jameson SC. Steady-state, therapeutic, and helminth-induced IL-4 compromise protective CD8 T cell bystander activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.598293. [PMID: 38915668 PMCID: PMC11195063 DOI: 10.1101/2024.06.10.598293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Memory CD8 T cells (Tmem) can be activated into innate-like killers by cytokines like IL-12, IL-15, and/or IL-18; but mechanisms regulating this phenomenon (termed bystander activation) are not fully resolved. We found strain-intrinsic deficiencies in bystander activation using specific pathogen-free mice, whereby basal IL-4 signals antagonize IL-18 sensing. We show that therapeutic and helminth-induced IL-4 impairs protective bystander-mediated responses against pathogens. However, this IL-4/IL-18 axis does not completely abolish bystander activation but rather tunes the expression of direct versus indirect mediators of cytotoxicity (granzymes and interferon-γ, respectively). We show that antigen-experience overrides strain-specific deficiencies in bystander activation, leading to uniform IL-18 receptor expression and enhanced capacity for bystander activation/cytotoxicity. Our data highlight that bystander activation is not a binary process but tuned/deregulated by other cytokines that are elevated by contemporaneous infections. Further, our findings underscore the importance of antigen-experienced Tmem to dissect the contributions of bystander Tmem in health and disease.
Collapse
Affiliation(s)
- Nicholas J Maurice
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN
| | - Talia S Dalzell
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN
| | - Nicholas N Jarjour
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN
| | - Taylor A DePauw
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN
| | - Stephen C Jameson
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN
| |
Collapse
|
10
|
de Jong MJM, Schaftenaar FH, Depuydt MAC, Lozano Vigario F, Janssen GMC, Peeters JAHM, Goncalves L, Wezel A, Smeets HJ, Kuiper J, Bot I, van Veelen P, Slütter B. Virus-Associated CD8 + T-Cells Are Not Activated Through Antigen-Mediated Interaction Inside Atherosclerotic Lesions. Arterioscler Thromb Vasc Biol 2024; 44:1302-1314. [PMID: 38511327 DOI: 10.1161/atvbaha.123.320539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/06/2024] [Indexed: 03/22/2024]
Abstract
INTRODUCTION Viral infections have been associated with the progression of atherosclerosis and CD8+ T-cells directed against common viruses, such as influenza, Epstein-Barr virus, and cytomegalovirus, have been detected inside human atherosclerotic lesions. These virus-specific CD8+ T-cells have been hypothesized to contribute to the development of atherosclerosis; however, whether they affect disease progression directly remains unclear. In this study, we aimed to characterize the activation status of virus-specific CD8+ T-cells in the atherosclerotic lesion. METHODS The presence, clonality, tissue enrichment, and phenotype of virus-associated CD8+ T-cells in atherosclerotic lesions were assessed by exploiting bulk T-cell receptor-β sequencing and single-cell T-cell receptor (α and β) sequencing datasets on human endarterectomy samples and patient-matched blood samples. To investigate if virus-specific CD8+ T-cells can be activated through T-cell receptor stimulation in the atherosclerotic lesion, the immunopeptidome of human plaques was determined. RESULTS Virus-associated CD8+ T-cells accumulated more in the atherosclerotic lesion (mean=2.0%), compared with patient-matched blood samples (mean=1.4%; P=0.05), and were more clonally expanded and tissue enriched in the atherosclerotic lesion in comparison with nonassociated CD8+ T-cells from the lesion. Single-cell T-cell receptor sequencing and flow cytometry revealed that these virus-associated CD8+ T-cells were phenotypically highly similar to other CD8+ T-cells in the lesion and that both exhibited a more activated phenotype compared with circulating T-cells. Interestingly, virus-associated CD8+ T-cells are unlikely to be activated through antigen-specific interactions in the atherosclerotic lesion, as no virus-derived peptides were detected on HLA-I in the lesion. CONCLUSIONS This study suggests that virus-specific CD8+ T-cells are tissue enriched in atherosclerotic lesions; however, their potential contribution to inflammation may involve antigen-independent mechanisms.
Collapse
MESH Headings
- Humans
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/virology
- Plaque, Atherosclerotic
- Lymphocyte Activation
- Atherosclerosis/immunology
- Atherosclerosis/virology
- Atherosclerosis/pathology
- Male
- Phenotype
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Female
- Middle Aged
- Aged
- Carotid Artery Diseases/immunology
- Carotid Artery Diseases/virology
- Carotid Artery Diseases/pathology
- Host-Pathogen Interactions
Collapse
Affiliation(s)
- Maaike J M de Jong
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, the Netherlands (M.J.M.J., F.H.S., M.A.C.D., F.L.V., J.K., I.B., B.S.)
| | - Frank H Schaftenaar
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, the Netherlands (M.J.M.J., F.H.S., M.A.C.D., F.L.V., J.K., I.B., B.S.)
| | - Marie A C Depuydt
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, the Netherlands (M.J.M.J., F.H.S., M.A.C.D., F.L.V., J.K., I.B., B.S.)
| | - Fernando Lozano Vigario
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, the Netherlands (M.J.M.J., F.H.S., M.A.C.D., F.L.V., J.K., I.B., B.S.)
| | - George M C Janssen
- Department of Immunology, Leiden University Medical Centre, Center for Proteomics and Metabolomics, the Netherlands (G.M.C.J., P.v.V.)
| | - Judith A H M Peeters
- Department of Surgery, Haaglanden Medical Center - location Westeinde, Lijnbaan, The Hague, the Netherlands (J.A.H.M.P., L.G., A.W., H.J.S.)
| | - Lauren Goncalves
- Department of Surgery, Haaglanden Medical Center - location Westeinde, Lijnbaan, The Hague, the Netherlands (J.A.H.M.P., L.G., A.W., H.J.S.)
| | - Anouk Wezel
- Department of Surgery, Haaglanden Medical Center - location Westeinde, Lijnbaan, The Hague, the Netherlands (J.A.H.M.P., L.G., A.W., H.J.S.)
| | - Harm J Smeets
- Department of Surgery, Haaglanden Medical Center - location Westeinde, Lijnbaan, The Hague, the Netherlands (J.A.H.M.P., L.G., A.W., H.J.S.)
| | - Johan Kuiper
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, the Netherlands (M.J.M.J., F.H.S., M.A.C.D., F.L.V., J.K., I.B., B.S.)
| | - Ilze Bot
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, the Netherlands (M.J.M.J., F.H.S., M.A.C.D., F.L.V., J.K., I.B., B.S.)
| | - Peter van Veelen
- Department of Immunology, Leiden University Medical Centre, Center for Proteomics and Metabolomics, the Netherlands (G.M.C.J., P.v.V.)
| | - Bram Slütter
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, the Netherlands (M.J.M.J., F.H.S., M.A.C.D., F.L.V., J.K., I.B., B.S.)
| |
Collapse
|
11
|
Moore KH, Erman EN, Traylor AM, Esman SK, Jiang Y, LaFontaine JR, Zmijewska A, Lu Y, Soliman RH, Agarwal A, George JF. Cognate antigen-independent differentiation of resident memory T cells in chronic kidney disease. Am J Physiol Renal Physiol 2024; 326:F839-F854. [PMID: 38450434 PMCID: PMC11386978 DOI: 10.1152/ajprenal.00373.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/09/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024] Open
Abstract
Resident memory T cells (TRMs), which are memory T cells that are retained locally within tissues, have recently been described as antigen-specific frontline defenders against pathogens in barrier and nonbarrier epithelial tissues. They have also been noted for perpetuating chronic inflammation. The conditions responsible for TRM differentiation are still poorly understood, and their contributions, if any, to sterile models of chronic kidney disease (CKD) remain a mystery. In this study, we subjected male C57BL/6J mice and OT-1 transgenic mice to five consecutive days of 2 mg/kg aristolochic acid (AA) injections intraperitoneally to induce CKD or saline injections as a control. We evaluated their kidney immune profiles at 2 wk, 6 wk, and 6 mo after treatment. We identified a substantial population of TRMs in the kidneys of mice with AA-induced CKD. Flow cytometry of injured kidneys showed T cells bearing TRM surface markers and single-cell (sc) RNA sequencing revealed these cells as expressing well-known TRM transcription factors and receptors responsible for TRM differentiation and maintenance. Although kidney TRMs expressed Cd44, a marker of antigen experience and T cell activation, their derivation was independent of cognate antigen-T cell receptor interactions, as the kidneys of transgenic OT-1 mice still harbored considerable proportions of TRMs after injury. Our results suggest a nonantigen-specific or antigen-independent mechanism capable of generating TRMs in the kidney and highlight the need to better understand TRMs and their involvement in CKD.NEW & NOTEWORTHY Resident memory T cells (TRMs) differentiate and are retained within the kidneys of mice with aristolochic acid (AA)-induced chronic kidney disease (CKD). Here, we characterized this kidney TRM population and demonstrated TRM derivation in the kidneys of OT-1 transgenic mice with AA-induced CKD. A better understanding of TRMs and the processes by which they can differentiate independent of antigen may help our understanding of the interactions between the immune system and kidneys.
Collapse
Affiliation(s)
- Kyle H Moore
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Division of Cardiothoracic Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Elise N Erman
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Division of Cardiothoracic Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Amie M Traylor
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Stephanie K Esman
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Yanlin Jiang
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Jennifer R LaFontaine
- Division of Cardiothoracic Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Anna Zmijewska
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Yan Lu
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Reham H Soliman
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Anupam Agarwal
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - James F George
- Division of Cardiothoracic Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
12
|
Alves Abrantes JJP, Veríssimo de Azevedo JC, Fernandes FL, Duarte Almeida V, Custódio De Oliveira LA, Ferreira de Oliveira MT, Galvão De Araújo JM, Lanza DCF, Bezerra FL, Andrade VS, Araújo de Medeiros Fernandes TA, Fernandes JV. Viruses as a potential environmental trigger of type 1 diabetes mellitus (Review). Biomed Rep 2024; 20:81. [PMID: 38628629 PMCID: PMC11019645 DOI: 10.3892/br.2024.1770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/07/2023] [Indexed: 04/19/2024] Open
Abstract
The etiopathogenesis of type 1 diabetes mellitus (T1DM) is a complex multifactorial process that involves an intricate network of genetic, epigenetic, immunological, and environmental factors. Despite the advances in recent years, some aspects of the mechanisms involved in triggering the disease are still unclear. Infections with certain viruses have been suggested as possible environmental triggers for the autoimmune process that leads to selective and progressive destruction of pancreatic β-cells and insufficiency of insulin production, which is its hallmark. In this review, advances in knowledge and evidence that suggest the participation of certain viruses in the mechanisms of disease initiation and progression are described. It has been accepted that environmental factors, including viruses, can initiate and possibly sustain, accelerate, or slow down the autoimmune process and consequently damage insulin-producing pancreatic β-cells. Although the role of these agents, especially human enteroviruses, has been exhaustively studied as the most likely triggers of the activation of autoimmunity that destroys pancreatic islets and leads to T1DM, certain doubts remain. Clinical epidemiological and experimental studies in humans and animals provide consistent and increasing evidence that persistent viral infections, especially with human enteroviruses and rotavirus infections, are associated with an increased risk of the disease in individuals genetically predisposed to autoimmunity.
Collapse
Affiliation(s)
| | | | - Fernando Liberalino Fernandes
- Department of Biomedical Sciences, Rio Grande do Norte State University, Mossoró, Rio Grande do Norte 59607-360, Brazil
| | - Valéria Duarte Almeida
- Department of Biomedical Sciences, Rio Grande do Norte State University, Mossoró, Rio Grande do Norte 59607-360, Brazil
| | | | | | - Josélio Maria Galvão De Araújo
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte 59078-970, Brazil
| | - Daniel Carlos Ferreira Lanza
- Laboratory of Applied Molecular Biology, Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte 59078-970, Brazil
| | - Fabiana Lima Bezerra
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte 59078-970, Brazil
| | - Vania Sousa Andrade
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte 59078-970, Brazil
| | | | - José Veríssimo Fernandes
- Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte 59078-970, Brazil
| |
Collapse
|
13
|
Rogovskii V. Cancer and Autoimmune Diseases as Two Sides of Chronic Inflammation and the Method of Therapy. Curr Cancer Drug Targets 2024; 24:1089-1103. [PMID: 38288812 DOI: 10.2174/0115680096282480240105071638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 09/20/2024]
Abstract
Chronic inflammation is associated with a prolonged increase in various inflammatory factors. According to clinical data, it can be linked with both cancer and autoimmune diseases in the same patients. This raises the critical question of how chronic inflammation relates to seemingly opposing diseases - tumors, in which there is immunosuppression, and autoimmune diseases, in which there is over-activation of the immune system. In this review, we consider chronic inflammation as a prerequisite for both immune suppression and an increased likelihood of autoimmune damage. We also discuss potential disease-modifying therapies targeting chronic inflammation, which can be helpful for both cancer and autoimmunity. On the one hand, pro-inflammatory factors persisting in the areas of chronic inflammation stimulate the production of anti-inflammatory factors due to a negative feedback loop, eliciting immune suppression. On the other hand, chronic inflammation can bring the baseline immunity closer to the threshold level required for triggering an autoimmune response using the bystander activation of immune cells. Focusing on the role of chronic inflammation in cancer and autoimmune diseases may open prospects for more intensive drug discovery for chronic inflammation.
Collapse
Affiliation(s)
- Vladimir Rogovskii
- Department of Molecular Pharmacology and Radiobiology, Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
14
|
Wang M, Lkhagva E, Kim S, Zhai C, Islam MM, Kim HJ, Hong ST. The gut microbe pair of Oribacterium sp. GMB0313 and Ruminococcus sp. GMB0270 confers complete protection against SARS-CoV-2 infection by activating CD8+ T cell-mediated immunity. Gut Microbes 2024; 16:2342497. [PMID: 38635321 PMCID: PMC11028030 DOI: 10.1080/19490976.2024.2342497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
Despite the potential protective role of the gut microbiome against COVID-19, specific microbes conferring resistance to COVID-19 have not yet been identified. In this work, we aimed to identify and validate gut microbes at the species level that provide protection against SARS-CoV-2 infection. To identify gut microbes conferring protection against COVID-19, we conducted a fecal microbiota transplantation (FMT) from an individual with no history of COVID-19 infection or immunization into a lethal COVID-19 hamster model. FMT from this COVID-19-resistant donor resulted in significant phenotypic changes related to COVID-19 sensitivity in the hamsters. Metagenomic analysis revealed distinct differences in the gut microbiome composition among the hamster groups, leading to the identification of two previously unknown bacterial species: Oribacterium sp. GMB0313 and Ruminococcus sp. GMB0270, both associated with COVID-19 resistance. Subsequently, we conducted a proof-of-concept confirmation animal experiment adhering to Koch's postulates. Oral administration of this gut microbe pair, Oribacterium sp. GMB0313 and Ruminococcus sp. GMB0270, to the hamsters provided complete protection against SARS-CoV-2 infection through the activation of CD8+ T cell mediated immunity. The prophylactic efficacy of the gut microbe pair against SARS-CoV-2 infection was comparable to, or even superior to, current mRNA vaccines. This strong prophylactic efficacy suggests that the gut microbe pair could be developed as a host-directed universal vaccine for all betacoronaviruses, including potential future emerging viruses.
Collapse
Affiliation(s)
- Mingda Wang
- Department of Biomedical Sciences, Jeonbuk National University Medical School, Jeollabuk-Do, South Korea
- Department of Critical Care Medicine, Shandong Provincial Hospital affiliated with Shandong First Medical University, Jinan, China
| | - Enkhchimeg Lkhagva
- Department of Biomedical Sciences, Jeonbuk National University Medical School, Jeollabuk-Do, South Korea
| | - Sura Kim
- Department of Biomedical Sciences, Jeonbuk National University Medical School, Jeollabuk-Do, South Korea
| | - Chongkai Zhai
- Department of Biomedical Sciences, Jeonbuk National University Medical School, Jeollabuk-Do, South Korea
- College of Food and Drugs, Luoyang Polytechnic, Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang, Henan Province, China
| | - Md Minarul Islam
- Department of Biomedical Sciences, Jeonbuk National University Medical School, Jeollabuk-Do, South Korea
| | - Hyeon J. Kim
- BioLabs-LA at the Lundquist Institute for Bio Medical Innovation at Harbor UCLA, SNJ Pharma Inc, Torrance, CA, USA
| | - Seong-Tshool Hong
- Department of Biomedical Sciences, Jeonbuk National University Medical School, Jeollabuk-Do, South Korea
| |
Collapse
|
15
|
Tran JQ, Muench MO, Gaillard B, Darst O, Tomayko MM, Jackman RP. Polyinosinic: polycytidylic acid induced inflammation enhances while lipopolysaccharide diminishes alloimmunity to platelet transfusion in mice. Front Immunol 2023; 14:1281130. [PMID: 38146372 PMCID: PMC10749330 DOI: 10.3389/fimmu.2023.1281130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/20/2023] [Indexed: 12/27/2023] Open
Abstract
Introduction Alloimmune responses against platelet antigens, which dominantly target the major histocompatibility complex (MHC), can cause adverse reactions to subsequent platelet transfusions, platelet refractoriness, or rejection of future transplants. Platelet transfusion recipients include individuals experiencing severe bacterial or viral infections, and how their underlying health modulates platelet alloimmunity is not well understood. Methods This study investigated the effect of underlying inflammation on platelet alloimmunization by modelling viral-like inflammation with polyinosinic-polycytidylic acid (poly(I:C)) or gram-negative bacterial infection with lipopolysaccharide (LPS), hypothesizing that underlying inflammation enhances alloimmunization. Mice were pretreated with poly(I:C), LPS, or nothing, then transfused with non-leukoreduced or leukoreduced platelets. Alloantibodies and allogeneic MHC-specific B cell (allo-B cell) responses were evaluated two weeks later. Rare populations of allo-B cells were identified using MHC tetramers. Results Relative to platelet transfusion alone, prior exposure to poly(I:C) increased the alloantibody response to allogeneic platelet transfusion whereas prior exposure to LPS diminished responses. Prior exposure to poly(I:C) had equivalent, if not moderately diminished, allo-B cell responses relative to platelet transfusion alone and exhibited more robust allo-B cell memory development. Conversely, prior exposure to LPS resulted in diminished allo-B cell frequency, activation, antigen experience, and germinal center formation and altered memory B cell responses. Discussion In conclusion, not all inflammatory environments enhance bystander responses and prior inflammation mediated by LPS on gram-negative bacteria may in fact curtail platelet alloimmunization.
Collapse
Affiliation(s)
- Johnson Q. Tran
- Vitalant Research Institute, San Francisco, CA, United States
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Marcus O. Muench
- Vitalant Research Institute, San Francisco, CA, United States
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Betty Gaillard
- Vitalant Research Institute, San Francisco, CA, United States
| | - Orsolya Darst
- Vitalant Research Institute, San Francisco, CA, United States
| | - Mary M. Tomayko
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, United States
- Department of Pathology, Yale University School of Medicine, New Haven, CT, United States
| | - Rachael P. Jackman
- Vitalant Research Institute, San Francisco, CA, United States
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
16
|
Taber A, Konecny A, Oda SK, Scott-Browne J, Prlic M. TGF-β broadly modifies rather than specifically suppresses reactivated memory CD8 T cells in a dose-dependent manner. Proc Natl Acad Sci U S A 2023; 120:e2313228120. [PMID: 37988468 PMCID: PMC10691214 DOI: 10.1073/pnas.2313228120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/16/2023] [Indexed: 11/23/2023] Open
Abstract
Transforming growth factor β (TGF-β) directly acts on naive, effector, and memory T cells to control cell fate decisions, which was shown using genetic abrogation of TGF-β signaling. TGF-β availability is altered by infections and cancer; however, the dose-dependent effects of TGF-β on memory CD8 T cell (Tmem) reactivation are still poorly defined. We examined how activation and TGF-β signals interact to shape the functional outcome of Tmem reactivation. We found that TGF-β could suppress cytotoxicity in a manner that was inversely proportional to the strength of the activating TCR or proinflammatory signals. In contrast, even high doses of TGF-β had a comparatively modest effect on IFN-γ expression in the context of weak and strong reactivation signals. Since CD8 Tmem may not always receive TGF-β signals concurrently with reactivation, we also explored whether the temporal order of reactivation versus TGF-β signals is of importance. We found that exposure to TGF-β before or after an activation event were both sufficient to reduce cytotoxic effector function. Concurrent ATAC-seq and RNA-seq analysis revealed that TGF-β altered ~10% of the regulatory elements induced by reactivation and also elicited transcriptional changes indicative of broadly modulated functional properties. We confirmed some changes on the protein level and found that TGF-β-induced expression of CCR8 was inversely proportional to the strength of the reactivating TCR signal. Together, our data suggest that TGF-β is not simply suppressing CD8 Tmem but modifies functional and chemotactic properties in context of their reactivation signals and in a dose-dependent manner.
Collapse
Affiliation(s)
- Alexis Taber
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA98109
| | - Andrew Konecny
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA98109
- Department of Immunology, University of Washington, Seattle, WA98195
| | - Shannon K. Oda
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA98101
- Department of Pediatrics, School of Medicine, University of Washington, Seattle, WA98105
| | - James Scott-Browne
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO80206
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO80045
| | - Martin Prlic
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA98109
- Department of Immunology, University of Washington, Seattle, WA98195
| |
Collapse
|
17
|
Li P, Li J, Huang H, Chen X, Lin Y, He G, Xu D. The effect of varicella-zoster virus reactivation on the long-term outcomes of patients undergoing allogeneic hematopoietic stem cell transplantation. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2023; 42:105. [PMID: 37784192 PMCID: PMC10544620 DOI: 10.1186/s41043-023-00429-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/11/2023] [Indexed: 10/04/2023]
Abstract
BACKGROUND A virus infection may lead the body to produce more immune cells of particular types or stimulate the production of new ones, both of which may have anti-leukemic effects. There has been no research on whether immune cells stimulated by varicella-zoster virus (VZV) infection have anti-leukemic effects. The objective of this investigation is to assess the impact of VZV infection on patients' long-term survival following allogeneic hematopoietic stem cell transplantation (allo-HSCT). METHODS This retrospective study investigated the association between varicella-zoster virus (VZV) reactivation and outcomes in 219 individuals who received allogeneic hematopoietic stem cell transplantation (allo-HSCT) at the Sun Yat-sen University's First Affiliated Hospital. According to being diagnosed with VZV infection or not, these patients were grouped into two groups. The comparison of cumulative incidence of relapse, non-recurrent mortality, and overall survival (OS) was conducted between the two groups. RESULTS Analyzing multivariate data, VZV reactivation was linked to lower relapse incidence in the group containing all individuals (hazard ratio [HR] = 0.27; 95% confidence interval [CI], 0.12-0.64), patients suffering from acute myeloid leukaemia (HR = 0.10; 95% CI, 0.01-0.83), and patients suffering from acute lymphoblastic leukaemia (HR = 0.25; 95% CI, 0.08-0.77). Moreover, VZV reactivation was linked with decreased non-relapse mortality in all individuals (HR = 0.20; 95% CI, 0.05-0.79), but no statistical significance was found for any disease subgroup. Further, VZV reactivation was an independent predictor for improved OS in the group containing all individuals (HR = 0.10; 95% CI, 0.03-0.29), patients suffering from acute myeloid leukaemia (HR = 0.09; 95% CI, 0.01-0.66), and patients suffering from acute lymphoblastic leukaemia (HR = 0.16; 95% CI, 0.04-0.68). CONCLUSION This is the first study to show that VZV reactivation following allo-HSCT is an independent predictor for lower relapse rates and improved OS, providing novel therapeutic approaches to improve patients' long-term survival following allo-HSCT.
Collapse
Affiliation(s)
- Ping Li
- Department of Haematology, The First Affiliated Hospital of Sun Yat-sen University, No.58 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Jingxia Li
- Department of Haematology, The First Affiliated Hospital of Sun Yat-sen University, No.58 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Haoyuan Huang
- Department of Haematology, The First Affiliated Hospital of Sun Yat-sen University, No.58 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Xiongnong Chen
- Department of Haematology, The First Affiliated Hospital of Sun Yat-sen University, No.58 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Yue Lin
- Department of Haematology, The First Affiliated Hospital of Sun Yat-sen University, No.58 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Ganlin He
- Department of Haematology, The First Affiliated Hospital of Sun Yat-sen University, No.58 Zhongshan 2nd Road, Guangzhou, 510080, China.
| | - Duorong Xu
- Department of Haematology, The First Affiliated Hospital of Sun Yat-sen University, No.58 Zhongshan 2nd Road, Guangzhou, 510080, China.
| |
Collapse
|
18
|
Tamburini B, Doan T, Forward T, Lucas E, Fleming I, Uecker-Martin A, Hesselberth J, Morrison T. Vaccine-induced antigen archiving enhances local memory CD8+ T cell responses following an unrelated viral infection. RESEARCH SQUARE 2023:rs.3.rs-3307809. [PMID: 37841845 PMCID: PMC10571600 DOI: 10.21203/rs.3.rs-3307809/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Viral and vaccine antigens persist or are archived in lymph node stromal cells (LNSC) such as lymphatic endothelial cells (LEC) and fibroblastic reticular cells (FRC). Here, we find that, during the time frame of antigen archiving, LEC apoptosis caused by a second, but unrelated, innate immune stimulus such as vaccina viral infection or CpG DNA administration boosted memory CD8+ T cells specific to the archived antigen. In contrast to "bystander" activation associated with unrelated infections, the memory CD8+ T cells specific to the vaccine archived antigen were significantly higher than memory CD8+ T cells of a different antigen specificity. Finally, the boosted memory CD8+ T cells resulted in increased protection against Listeria monocytogenes expressing the vaccine antigen, but only for the duration that the vaccine antigen was archived. These findings outline a novel mechanism by which LNSC archived antigens, in addition to bystander activation, can augment memory CD8+ T cell responses during repeated inflammatory insults.
Collapse
Affiliation(s)
| | - Thu Doan
- University of Colorado Anschutz Medical Campus
| | | | - Erin Lucas
- University of Colorado Anschutz Medical Campus
| | - Ira Fleming
- University of Colorado Anschutz Medical Campus
| | | | | | | |
Collapse
|
19
|
Mohammadi B, Dua K, Saghafi M, Singh SK, Heydarifard Z, Zandi M. COVID-19-induced autoimmune thyroiditis: Exploring molecular mechanisms. J Med Virol 2023; 95:e29001. [PMID: 37515444 DOI: 10.1002/jmv.29001] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/30/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) damages multiple organs, including the thyroid, by direct invasion and cell entry via angiotensin-converting enzyme 2 or indirectly by promoting excessive inflammation in the body. The immune system is a critical factor in antiviral immunity and disease progression. In the context of SARS-CoV-2 infection, the immune system may become overly activated, resulting in a shift from regulatory to effector responses, which may subsequently promote the development and progression of autoimmune diseases. The incidence of autoimmune thyroid diseases, such as subacute thyroiditis, Graves' disease, and Hashimoto's thyroiditis, increases in individuals with COVID-19 infection. This phenomenon may be attributed to aberrant responses of T-cell subtypes, the presence of autoantibodies, impaired regulatory cell function, and excessive production of inflammatory cytokines, namely interleukin (IL)-6, IL-1β, interferon-γ, and tumor necrosis factor-α. Therefore, insights into the immune responses involved in the development of autoimmune thyroid disease according to COVID-19 can help identify potential therapeutic approaches and guide the development of effective interventions to alleviate patients' symptoms.
Collapse
Affiliation(s)
- Bita Mohammadi
- Department of Immunology, Mashhad University of Medical Sciences, Mashhad, Iran
- Innovated Medical Research Center, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, Australia
- Faculty of Health, Australian Research Center in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW, Australia
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Mohammadreza Saghafi
- Department of Immunology, Mashhad University of Medical Sciences, Mashhad, Iran
- Innovated Medical Research Center, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Sachin Kumar Singh
- Faculty of Health, Australian Research Center in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW, Australia
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Zahra Heydarifard
- Department of Virology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
- School of Medicine, Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Milad Zandi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Ohya M, Tateishi A, Matsumoto Y, Satomi H, Kobayashi M. Bystander CD8 + T cells may be involved in the acute phase of diffuse alveolar damage. Virchows Arch 2023; 482:605-613. [PMID: 36849560 PMCID: PMC9970130 DOI: 10.1007/s00428-023-03521-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 03/01/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is a serious complication of systemic inflammatory response syndrome, and diffuse alveolar damage (DAD) is a histological manifestation of ARDS. Endothelial cell injury is mainly responsible for ARDS. Many neutrophils and macrophages/monocytes, which are inflammatory cells that play a role in innate immunity, infiltrate the lung tissue in DAD. In recent years, it has become clear that CD8 plays an important role not only in the acquired immune system, but also in the innate immune system. Non-antigen-activated bystander CD8 + T cells express the unique granzyme B (GrB) + /CD25-/programmed cell death-1 (PD-1)-phenotype. The involvement of bystander CD8 + T cells in lung tissue in DAD is an unexplored field. This study aimed to determine whether bystander CD8 is involved in DAD. Twenty-three consecutive autopsy specimens were retrieved from patients with DAD, and the phenotypes of infiltrating lymphocytes in the DAD lesions were evaluated using immunohistochemistry. In most cases, the number of CD8 + T cells was higher than that of CD4 + T cells, and many GrB + cells were also observed. However, the number of CD25 + and PD-1 + cells was low. We conclude that bystander CD8 + T cells may be involved in cell injury during the development of DAD.
Collapse
Affiliation(s)
- Maki Ohya
- Department of Pathology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Ayako Tateishi
- Department of Pathology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Yuki Matsumoto
- Department of Pathology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Hidetoshi Satomi
- Department of Pathology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Mikiko Kobayashi
- Department of Pathology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan.
- Department of Pathology, Marunouchi Hospital, 1-7-45, Nagisa, Matsumoto, 390-8601, Japan.
| |
Collapse
|
21
|
Gupta S, Simic M, Sagan SA, Shepherd C, Duecker J, Sobel RA, Dandekar R, Wu GF, Wu W, Pak JE, Hauser SL, Lim W, Wilson MR, Zamvil SS. CAR-T Cell-Mediated B-Cell Depletion in Central Nervous System Autoimmunity. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2023; 10:e200080. [PMID: 36657993 PMCID: PMC9853314 DOI: 10.1212/nxi.0000000000200080] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/07/2022] [Indexed: 01/20/2023]
Abstract
BACKGROUND AND OBJECTIVES Anti-CD20 monoclonal antibody (mAb) B-cell depletion is a remarkably successful multiple sclerosis (MS) treatment. Chimeric antigen receptor (CAR)-T cells, which target antigens in a non-major histocompatibility complex (MHC)-restricted manner, can penetrate tissues more thoroughly than mAbs. However, a previous study indicated that anti-CD19 CAR-T cells can paradoxically exacerbate experimental autoimmune encephalomyelitis (EAE) disease. We tested anti-CD19 CAR-T cells in a B-cell-dependent EAE model that is responsive to anti-CD20 B-cell depletion similar to the clinical benefit of anti-CD20 mAb treatment in MS. METHODS Anti-CD19 CAR-T cells or control cells that overexpressed green fluorescent protein were transferred into C57BL/6 mice pretreated with cyclophosphamide (Cy). Mice were immunized with recombinant human (rh) myelin oligodendrocyte protein (MOG), which causes EAE in a B-cell-dependent manner. Mice were evaluated for B-cell depletion, clinical and histologic signs of EAE, and immune modulation. RESULTS Clinical scores and lymphocyte infiltration were reduced in mice treated with either anti-CD19 CAR-T cells with Cy or control cells with Cy, but not with Cy alone. B-cell depletion was observed in peripheral lymphoid tissue and in the CNS of mice treated with anti-CD19 CAR-T cells with Cy pretreatment. Th1 or Th17 populations did not differ in anti-CD19 CAR-T cell, control cell-treated animals, or Cy alone. DISCUSSION In contrast to previous data showing that anti-CD19 CAR-T cell treatment exacerbated EAE, we observed that anti-CD19 CAR-T cells ameliorated EAE. In addition, anti-CD19 CAR-T cells thoroughly depleted B cells in peripheral tissues and in the CNS. However, the clinical benefit occurred independently of antigen specificity or B-cell depletion.
Collapse
Affiliation(s)
- Sasha Gupta
- From the Department of Neurology (S.G., S.A.S., C.S., R.D., S.L.H., M.R.W., S.S.Z.), Weill Institute for Neurosciences, University of California San Francisco, CA; Department of Cellular Molecular Pharmacology (M.S., J.D., W.L.), University of California San Francisco Cell Design Institute, CA; Veterans Affairs Health Care System (R.A.S.), Department of Pathology, Stanford University School of Medicine, CA; Departments of Neurology and Pathology and Immunology (G.F.W.), Washington University in St. Louis, MO; and Chan Zuckerberg Biohub (W.W., J.E.P.), San Francisco, CA
| | - Milos Simic
- From the Department of Neurology (S.G., S.A.S., C.S., R.D., S.L.H., M.R.W., S.S.Z.), Weill Institute for Neurosciences, University of California San Francisco, CA; Department of Cellular Molecular Pharmacology (M.S., J.D., W.L.), University of California San Francisco Cell Design Institute, CA; Veterans Affairs Health Care System (R.A.S.), Department of Pathology, Stanford University School of Medicine, CA; Departments of Neurology and Pathology and Immunology (G.F.W.), Washington University in St. Louis, MO; and Chan Zuckerberg Biohub (W.W., J.E.P.), San Francisco, CA
| | - Sharon A Sagan
- From the Department of Neurology (S.G., S.A.S., C.S., R.D., S.L.H., M.R.W., S.S.Z.), Weill Institute for Neurosciences, University of California San Francisco, CA; Department of Cellular Molecular Pharmacology (M.S., J.D., W.L.), University of California San Francisco Cell Design Institute, CA; Veterans Affairs Health Care System (R.A.S.), Department of Pathology, Stanford University School of Medicine, CA; Departments of Neurology and Pathology and Immunology (G.F.W.), Washington University in St. Louis, MO; and Chan Zuckerberg Biohub (W.W., J.E.P.), San Francisco, CA
| | - Chanelle Shepherd
- From the Department of Neurology (S.G., S.A.S., C.S., R.D., S.L.H., M.R.W., S.S.Z.), Weill Institute for Neurosciences, University of California San Francisco, CA; Department of Cellular Molecular Pharmacology (M.S., J.D., W.L.), University of California San Francisco Cell Design Institute, CA; Veterans Affairs Health Care System (R.A.S.), Department of Pathology, Stanford University School of Medicine, CA; Departments of Neurology and Pathology and Immunology (G.F.W.), Washington University in St. Louis, MO; and Chan Zuckerberg Biohub (W.W., J.E.P.), San Francisco, CA
| | - Jason Duecker
- From the Department of Neurology (S.G., S.A.S., C.S., R.D., S.L.H., M.R.W., S.S.Z.), Weill Institute for Neurosciences, University of California San Francisco, CA; Department of Cellular Molecular Pharmacology (M.S., J.D., W.L.), University of California San Francisco Cell Design Institute, CA; Veterans Affairs Health Care System (R.A.S.), Department of Pathology, Stanford University School of Medicine, CA; Departments of Neurology and Pathology and Immunology (G.F.W.), Washington University in St. Louis, MO; and Chan Zuckerberg Biohub (W.W., J.E.P.), San Francisco, CA
| | - Raymond A Sobel
- From the Department of Neurology (S.G., S.A.S., C.S., R.D., S.L.H., M.R.W., S.S.Z.), Weill Institute for Neurosciences, University of California San Francisco, CA; Department of Cellular Molecular Pharmacology (M.S., J.D., W.L.), University of California San Francisco Cell Design Institute, CA; Veterans Affairs Health Care System (R.A.S.), Department of Pathology, Stanford University School of Medicine, CA; Departments of Neurology and Pathology and Immunology (G.F.W.), Washington University in St. Louis, MO; and Chan Zuckerberg Biohub (W.W., J.E.P.), San Francisco, CA
| | - Ravi Dandekar
- From the Department of Neurology (S.G., S.A.S., C.S., R.D., S.L.H., M.R.W., S.S.Z.), Weill Institute for Neurosciences, University of California San Francisco, CA; Department of Cellular Molecular Pharmacology (M.S., J.D., W.L.), University of California San Francisco Cell Design Institute, CA; Veterans Affairs Health Care System (R.A.S.), Department of Pathology, Stanford University School of Medicine, CA; Departments of Neurology and Pathology and Immunology (G.F.W.), Washington University in St. Louis, MO; and Chan Zuckerberg Biohub (W.W., J.E.P.), San Francisco, CA
| | - Gregory F Wu
- From the Department of Neurology (S.G., S.A.S., C.S., R.D., S.L.H., M.R.W., S.S.Z.), Weill Institute for Neurosciences, University of California San Francisco, CA; Department of Cellular Molecular Pharmacology (M.S., J.D., W.L.), University of California San Francisco Cell Design Institute, CA; Veterans Affairs Health Care System (R.A.S.), Department of Pathology, Stanford University School of Medicine, CA; Departments of Neurology and Pathology and Immunology (G.F.W.), Washington University in St. Louis, MO; and Chan Zuckerberg Biohub (W.W., J.E.P.), San Francisco, CA
| | - Wesley Wu
- From the Department of Neurology (S.G., S.A.S., C.S., R.D., S.L.H., M.R.W., S.S.Z.), Weill Institute for Neurosciences, University of California San Francisco, CA; Department of Cellular Molecular Pharmacology (M.S., J.D., W.L.), University of California San Francisco Cell Design Institute, CA; Veterans Affairs Health Care System (R.A.S.), Department of Pathology, Stanford University School of Medicine, CA; Departments of Neurology and Pathology and Immunology (G.F.W.), Washington University in St. Louis, MO; and Chan Zuckerberg Biohub (W.W., J.E.P.), San Francisco, CA
| | - John E Pak
- From the Department of Neurology (S.G., S.A.S., C.S., R.D., S.L.H., M.R.W., S.S.Z.), Weill Institute for Neurosciences, University of California San Francisco, CA; Department of Cellular Molecular Pharmacology (M.S., J.D., W.L.), University of California San Francisco Cell Design Institute, CA; Veterans Affairs Health Care System (R.A.S.), Department of Pathology, Stanford University School of Medicine, CA; Departments of Neurology and Pathology and Immunology (G.F.W.), Washington University in St. Louis, MO; and Chan Zuckerberg Biohub (W.W., J.E.P.), San Francisco, CA
| | - Stephen L Hauser
- From the Department of Neurology (S.G., S.A.S., C.S., R.D., S.L.H., M.R.W., S.S.Z.), Weill Institute for Neurosciences, University of California San Francisco, CA; Department of Cellular Molecular Pharmacology (M.S., J.D., W.L.), University of California San Francisco Cell Design Institute, CA; Veterans Affairs Health Care System (R.A.S.), Department of Pathology, Stanford University School of Medicine, CA; Departments of Neurology and Pathology and Immunology (G.F.W.), Washington University in St. Louis, MO; and Chan Zuckerberg Biohub (W.W., J.E.P.), San Francisco, CA
| | - Wendell Lim
- From the Department of Neurology (S.G., S.A.S., C.S., R.D., S.L.H., M.R.W., S.S.Z.), Weill Institute for Neurosciences, University of California San Francisco, CA; Department of Cellular Molecular Pharmacology (M.S., J.D., W.L.), University of California San Francisco Cell Design Institute, CA; Veterans Affairs Health Care System (R.A.S.), Department of Pathology, Stanford University School of Medicine, CA; Departments of Neurology and Pathology and Immunology (G.F.W.), Washington University in St. Louis, MO; and Chan Zuckerberg Biohub (W.W., J.E.P.), San Francisco, CA
| | - Michael R Wilson
- From the Department of Neurology (S.G., S.A.S., C.S., R.D., S.L.H., M.R.W., S.S.Z.), Weill Institute for Neurosciences, University of California San Francisco, CA; Department of Cellular Molecular Pharmacology (M.S., J.D., W.L.), University of California San Francisco Cell Design Institute, CA; Veterans Affairs Health Care System (R.A.S.), Department of Pathology, Stanford University School of Medicine, CA; Departments of Neurology and Pathology and Immunology (G.F.W.), Washington University in St. Louis, MO; and Chan Zuckerberg Biohub (W.W., J.E.P.), San Francisco, CA
| | - Scott S Zamvil
- From the Department of Neurology (S.G., S.A.S., C.S., R.D., S.L.H., M.R.W., S.S.Z.), Weill Institute for Neurosciences, University of California San Francisco, CA; Department of Cellular Molecular Pharmacology (M.S., J.D., W.L.), University of California San Francisco Cell Design Institute, CA; Veterans Affairs Health Care System (R.A.S.), Department of Pathology, Stanford University School of Medicine, CA; Departments of Neurology and Pathology and Immunology (G.F.W.), Washington University in St. Louis, MO; and Chan Zuckerberg Biohub (W.W., J.E.P.), San Francisco, CA.
| |
Collapse
|
22
|
Holay N, Kennedy BE, Murphy JP, Konda P, Giacomantonio M, Brauer-Chapin T, Paulo JA, Kumar V, Kim Y, Elaghil M, Sisson G, Clements D, Richardson C, Gygi SP, Gujar S. After virus exposure, early bystander naïve CD8 T cell activation relies on NAD + salvage metabolism. Front Immunol 2023; 13:1047661. [PMID: 36818473 PMCID: PMC9932030 DOI: 10.3389/fimmu.2022.1047661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 12/20/2022] [Indexed: 02/04/2023] Open
Abstract
CD8 T cells play a central role in antiviral immunity. Type I interferons are among the earliest responders after virus exposure and can cause extensive reprogramming and antigen-independent bystander activation of CD8 T cells. Although bystander activation of pre-existing memory CD8 T cells is known to play an important role in host defense and immunopathology, its impact on naïve CD8 T cells remains underappreciated. Here we report that exposure to reovirus, both in vitro or in vivo, promotes bystander activation of naïve CD8 T cells within 24 hours and that this distinct subtype of CD8 T cell displays an innate, antiviral, type I interferon sensitized signature. The induction of bystander naïve CD8 T cells is STAT1 dependent and regulated through nicotinamide phosphoribosyl transferase (NAMPT)-mediated enzymatic actions within NAD+ salvage metabolic biosynthesis. These findings identify a novel aspect of CD8 T cell activation following virus infection with implications for human health and physiology.
Collapse
Affiliation(s)
- Namit Holay
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Barry E. Kennedy
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- IMV Inc, Halifax, NS, Canada
| | - J. Patrick Murphy
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Biology, University of Prince Edward Island, Charlottetown, PEI, Canada
| | - Prathyusha Konda
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | | | - Tatjana Brauer-Chapin
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Cell Biology, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Harvard University, Boston, MA, United States
| | | | - Youra Kim
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Mariam Elaghil
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- IMV Inc, Halifax, NS, Canada
| | - Gary Sisson
- Department of Biology, University of Prince Edward Island, Charlottetown, PEI, Canada
| | - Derek Clements
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, United States
| | - Christopher Richardson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Canadian Centre for Vaccinology, IWK Health Centre, Goldbloom Pavilion, Halifax, NS, Canada
- Department of Pediatrics, Dalhousie University, Halifax, NS, Canada
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Shashi Gujar
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Department of Biology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
- Cancer Immunotherapy: Innovation & Global Partnerships, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
23
|
Khoo WH, Jackson K, Phetsouphanh C, Zaunders JJ, Alquicira-Hernandez J, Yazar S, Ruiz-Diaz S, Singh M, Dhenni R, Kyaw W, Tea F, Merheb V, Lee FXZ, Burrell R, Howard-Jones A, Koirala A, Zhou L, Yuksel A, Catchpoole DR, Lai CL, Vitagliano TL, Rouet R, Christ D, Tang B, West NP, George S, Gerrard J, Croucher PI, Kelleher AD, Goodnow CG, Sprent JD, Powell JE, Brilot F, Nanan R, Hsu PS, Deenick EK, Britton PN, Phan TG. Tracking the clonal dynamics of SARS-CoV-2-specific T cells in children and adults with mild/asymptomatic COVID-19. Clin Immunol 2023; 246:109209. [PMID: 36539107 PMCID: PMC9758763 DOI: 10.1016/j.clim.2022.109209] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/28/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Children infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) develop less severe coronavirus disease 2019 (COVID-19) than adults. The mechanisms for the age-specific differences and the implications for infection-induced immunity are beginning to be uncovered. We show by longitudinal multimodal analysis that SARS-CoV-2 leaves a small footprint in the circulating T cell compartment in children with mild/asymptomatic COVID-19 compared to adult household contacts with the same disease severity who had more evidence of systemic T cell interferon activation, cytotoxicity and exhaustion. Children harbored diverse polyclonal SARS-CoV-2-specific naïve T cells whereas adults harbored clonally expanded SARS-CoV-2-specific memory T cells. A novel population of naïve interferon-activated T cells is expanded in acute COVID-19 and is recruited into the memory compartment during convalescence in adults but not children. This was associated with the development of robust CD4+ memory T cell responses in adults but not children. These data suggest that rapid clearance of SARS-CoV-2 in children may compromise their cellular immunity and ability to resist reinfection.
Collapse
Affiliation(s)
- Weng Hua Khoo
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | | | | | - John J Zaunders
- Centre for Applied Medical Research, St Vincent's Hospital, Sydney, Australia
| | - José Alquicira-Hernandez
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, Australia; Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Seyhan Yazar
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, Australia
| | | | - Mandeep Singh
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Rama Dhenni
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Wunna Kyaw
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Fiona Tea
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, Australia
| | - Vera Merheb
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, Australia
| | - Fiona X Z Lee
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, Australia
| | - Rebecca Burrell
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | | | - Archana Koirala
- Kids Research, The Children's Hospital at Westmead, Sydney, Australia
| | - Li Zhou
- Kids Research, The Children's Hospital at Westmead, Sydney, Australia
| | - Aysen Yuksel
- Kids Research, The Children's Hospital at Westmead, Sydney, Australia
| | - Daniel R Catchpoole
- Kids Research, The Children's Hospital at Westmead, Sydney, Australia; Discipline of Child and Adolescent Health, The University of Sydney, Sydney, Australia
| | - Catherine L Lai
- Kids Research, The Children's Hospital at Westmead, Sydney, Australia
| | | | - Romain Rouet
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Daniel Christ
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Benjamin Tang
- Department of Intensive Care Medicine, Nepean Hospital, Sydney, Australia; Centre for Immunology and Allergy Research, The Westmead Institute for Medical Research, Sydney, Australia; Respiratory Tract Infection Research Node, Marie Bashir Institute for Infectious Diseases and Biosecurity, Sydney, Australia
| | - Nicholas P West
- Systems Biology and Data Science, Menzies Health Institute QLD, Griffith University, Parklands, Australia
| | - Shane George
- Departments of Emergency Medicine and Children's Critical Care, Gold Coast University Hospital, Southport, QLD, Australia; School of Medicine and Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - John Gerrard
- Department of Infectious Diseases and Immunology, Gold Coast University Hospital, Southport, QLD, Australia
| | - Peter I Croucher
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | | | - Christopher G Goodnow
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia; UNSW Cellular Genomics Futures Institute, UNSW Sydney, Sydney, Australia
| | - Jonathan D Sprent
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Joseph E Powell
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, Australia; UNSW Cellular Genomics Futures Institute, UNSW Sydney, Sydney, Australia
| | - Fabienne Brilot
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, Australia; Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, Australia; Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Ralph Nanan
- Charles Perkins Centre Nepean, University of Sydney, Sydney, Australia
| | - Peter S Hsu
- Kids Research, The Children's Hospital at Westmead, Sydney, Australia; Discipline of Child and Adolescent Health, The University of Sydney, Sydney, Australia
| | - Elissa K Deenick
- Garvan Institute of Medical Research, Sydney, Australia; Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Philip N Britton
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; The Children's Hospital at Westmead, Sydney Children's Hospitals Network, Sydney, Australia
| | - Tri Giang Phan
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia.
| |
Collapse
|
24
|
Ozaka S, Kobayashi T, Mizukami K, Murakami K. COVID-19 vaccination and liver disease. World J Gastroenterol 2022; 28:6791-6810. [PMID: 36632314 PMCID: PMC9827578 DOI: 10.3748/wjg.v28.i48.6791] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/07/2022] [Accepted: 12/06/2022] [Indexed: 12/26/2022] Open
Abstract
Various vaccines against severe acute respiratory syndrome coronavirus 2 have been developed in response to the coronavirus disease 2019 (COVID-19) global pandemic, several of which are highly effective in preventing COVID-19 in the general population. Patients with chronic liver diseases (CLDs), particularly those with liver cirrhosis, are considered to be at a high risk for severe COVID-19 and death. Given the increased rates of disease severity and mortality in patients with liver disease, there is an urgent need to understand the efficacy of vaccination in this population. However, the data regarding efficacy and safety of COVID-19 vaccination in patients with CLDs is limited. Indeed, several organ-specific or systemic immune-mediated side effects following COVID-19 vaccination, including liver injury similar to autoimmune hepatitis, have been recently reported. Although the number of cases of vaccine-related liver injury is increasing, its frequency, clinical course, and mechanism remain unclear. Here, we review the current findings on COVID-19 vaccination and liver disease, focusing on: (1) The impact of COVID-19 in patients with CLD; (2) The efficacy, safety, and risk-benefit profiles of COVID-19 vaccines in patients with CLD; and (3) Liver injury following COVID-19 vaccination.
Collapse
Affiliation(s)
- Sotaro Ozaka
- Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu 879-5593, Oita, Japan
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu 879-5593, Oita, Japan
| | - Takashi Kobayashi
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu 879-5593, Oita, Japan
| | - Kazuhiro Mizukami
- Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu 879-5593, Oita, Japan
| | - Kazunari Murakami
- Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu 879-5593, Oita, Japan
| |
Collapse
|
25
|
Zhang X, Zhang Y, Liu H, Tang K, Zhang C, Wang M, Xue M, Jia X, Hu H, Li N, Zhuang R, Jin B, Zhang F, Zhang Y, Ma Y. IL-15 induced bystander activation of CD8 + T cells may mediate endothelium injury through NKG2D in Hantaan virus infection. Front Cell Infect Microbiol 2022; 12:1084841. [PMID: 36590594 PMCID: PMC9797980 DOI: 10.3389/fcimb.2022.1084841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Hantaan virus (HTNV) can cause endothelium injury in hemorrhagic fever with renal syndrome (HFRS) patients. Bystander activation of CD8+ T cells by virus infection has been shown that was involved in host injury, but it is unclear during HTNV infection. This project aimed to study the effect of bystander-activated CD8+ T cell responses in HTNV infection. Methods The in vitro infection model was established to imitate the injury of endothelium in HFRS patients. Flow cytometry was performed to detect the expression of markers of tetramer+ CD8+ T cells and human umbilical vein endothelial cells (HUVECs). The levels of interleukin-15 (IL-15) in serum and supermanant were detected using ELISA kit. The expression of MICA of HUVECs was respectively determined by flow cytometry and western blot. The cytotoxicity of CD8+ T cells was assessed through the cytotoxicity assay and antibody blocking assay. Results EBV or CMV-specific CD8+ T cells were bystander activated after HTNV infection in HFRS patients. HTNV-infected HUVECs in vitro could produce high levels of IL-15, which was positively correlated with disease severity and the expression of NKG2D on bystander-activated CD8+ T cells. Moreover, the elevated IL-15 could induce activation of CD122 (IL-15Rβ)+NKG2D+ EBV/CMV-specific CD8+ T cells. The expression of IL-15Rα and ligand for NKG2D were upregulated on HTNV-infected HUVECs. Bystander-activated CD8+ T cells could exert cytotoxicity effects against HTNV-infected HUVECs, which could be enhanced by IL-15 stimulation and blocked by NKG2D antibody. Discussion IL-15 induced bystander activation of CD8+ T cells through NKG2D, which may mediate endothelium injury during HTNV infection in HFRS patients.
Collapse
Affiliation(s)
- Xiyue Zhang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, China,Basic Medicine School, Yanan University, Yan’an, China
| | - Yusi Zhang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, China
| | - He Liu
- Department of Microbiology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, China
| | - Kang Tang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, China
| | - Chunmei Zhang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, China
| | - Meng Wang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, China,Basic Medicine School, Yanan University, Yan’an, China
| | - Manling Xue
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, China,Basic Medicine School, Yanan University, Yan’an, China
| | - Xiaozhou Jia
- Department of Infectious Diseases, Eighth Hospital of Xi'an, Xi’an, China
| | - Haifeng Hu
- Center for Infectious Diseases, Tangdu Hospital, Air-Force Medical University (The Fourth Military Medical University), Xi’an, China
| | - Na Li
- Department of Transfusion Medicine, Xijing Hospital, Air-Force Medical University (The Fourth Military Medical University), Xi’an, China
| | - Ran Zhuang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, China
| | - Boquan Jin
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, China
| | - Fanglin Zhang
- Department of Microbiology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, China
| | - Yun Zhang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, China,*Correspondence: Yun Zhang, ; Ying Ma,
| | - Ying Ma
- Department of Immunology, Basic Medicine School, Air-Force Medical University (The Fourth Military Medical University), Xi’an, China,*Correspondence: Yun Zhang, ; Ying Ma,
| |
Collapse
|
26
|
Zhang Z, Rafei-Shamsabadi D, Lehr S, Buettner N, Diehl R, Huzly D, Pinato DJ, Thimme R, Meiss F, Bengsch B. Incidence and severity of immune-related hepatitis after dual checkpoint therapy is linked to younger age independent of herpes virus immunity. J Transl Med 2022; 20:582. [PMID: 36503532 PMCID: PMC9743538 DOI: 10.1186/s12967-022-03755-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/04/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND AIMS Dual immune checkpoint blockade (ICB) therapy can result in immune-related-adverse events (irAE) such as ICB-hepatitis. An expansion of effector-memory (TEM) CD4 T cells associated with antiviral immunity against herpesviridae was implicated in ICB-hepatitis. Notably, these memory subsets are frequently associated with age. Here, we sought to understand baseline patient, immune and viral biomarkers associated with the development of ICB-hepatitis to identify currently lacking baseline predictors and test if an expansion of TEM or positive serology against herpesviridae can predict ICB-hepatitis. METHODS A discovery (n = 39) and validation cohort (n = 67) of patients with advanced melanoma undergoing anti-PD-1&anti-CTLA4 combination therapy (total n = 106) were analyzed for baseline clinical characteristics, occurrence of irAE and oncological outcomes alongside serological status for CMV, EBV and HSV. Immune populations were profiled by high-parametric flow cytometry (n = 29). RESULTS ICB-hepatitis occurred in 59% of patients within 100 days; 35.9% developed severe (CTCAE 3-4) hepatitis. Incidence of ICB-hepatitis was higher in the younger (< 55y: 85.7%) compared to older (> = 55y: 27.8%) age group (p = 0.0003), occured earlier in younger patients (p < 0.0001). The association of younger age with ICB-Hepatitis was also observed in the validation cohort (p = 0.0486). Incidence of ICB-hepatitis was also associated with additional non-hepatic irAE (p = 0.018), but neither positive IgG serostatus for CMV, EBV or HSV nor TEM subsets despite an association of T cell subsets with age. CONCLUSION Younger age more accurately predicts ICB-hepatitis after anti-PD-1&anti-CTLA4 checkpoint therapy at baseline compared to herpes virus serology or TEM subsets. Younger patients should be carefully monitored for the development of ICB-hepatitis.
Collapse
Affiliation(s)
- Zhen Zhang
- grid.7708.80000 0000 9428 7911Faculty of Medicine, Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Disease, University Medical Center Freiburg, Freiburg, Germany
| | - David Rafei-Shamsabadi
- grid.7708.80000 0000 9428 7911Faculty of Medicine, Department of Dermatology and Venereology, University Medical Center Freiburg, Freiburg, Germany
| | - Saskia Lehr
- grid.7708.80000 0000 9428 7911Faculty of Medicine, Department of Dermatology and Venereology, University Medical Center Freiburg, Freiburg, Germany
| | - Nico Buettner
- grid.7708.80000 0000 9428 7911Faculty of Medicine, Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Disease, University Medical Center Freiburg, Freiburg, Germany
| | - Rebecca Diehl
- grid.7708.80000 0000 9428 7911Faculty of Medicine, Department of Dermatology and Venereology, University Medical Center Freiburg, Freiburg, Germany
| | - Daniela Huzly
- grid.5963.9Institute of Virology, Faculty of Medicine, Freiburg University Medical Center, University of Freiburg, Freiburg, Germany
| | - David J Pinato
- grid.413629.b0000 0001 0705 4923Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK ,grid.16563.370000000121663741Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Robert Thimme
- grid.7708.80000 0000 9428 7911Faculty of Medicine, Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Disease, University Medical Center Freiburg, Freiburg, Germany
| | - Frank Meiss
- grid.7708.80000 0000 9428 7911Faculty of Medicine, Department of Dermatology and Venereology, University Medical Center Freiburg, Freiburg, Germany
| | - Bertram Bengsch
- grid.7708.80000 0000 9428 7911Faculty of Medicine, Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Disease, University Medical Center Freiburg, Freiburg, Germany ,grid.5963.9Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany ,grid.7497.d0000 0004 0492 0584Partner Site Freiburg, German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
27
|
Brassington K, Kanellakis P, Cao A, Toh BH, Peter K, Bobik A, Kyaw T. Crosstalk between cytotoxic CD8+ T cells and stressed cardiomyocytes triggers development of interstitial cardiac fibrosis in hypertensive mouse hearts. Front Immunol 2022; 13:1040233. [PMID: 36483558 PMCID: PMC9724649 DOI: 10.3389/fimmu.2022.1040233] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/31/2022] [Indexed: 11/24/2022] Open
Abstract
Aims Cardiac fibrosis is central to heart failure (HF), especially HF with preserved ejection fraction (HFpEF), often caused by hypertension. Despite fibrosis causing diastolic dysfunction and impaired electrical conduction, responsible for arrhythmia-induced sudden cardiac death, the mechanisms are poorly defined and effective therapies are lacking. Here we show that crosstalk between cardiac cytotoxic memory CD8+ T cells and overly stressed cardiomyocytes is essential for development of non-ischemic hypertensive cardiac fibrosis. Methods and results CD8 T cell depletion in hypertensive mice, strongly attenuated CF, reduced cardiac apoptosis and improved ventricular relaxation. Interaction between cytotoxic memory CD8+ T cells and overly stressed cardiomyocytes is highly dependent on the CD8+ T cells expressing the innate stress-sensing receptor NKG2D and stressed cardiomyocytes expressing the NKG2D activating ligand RAE-1. The interaction between NKG2D and RAE-1 results in CD8+ T cell activation, release of perforin, cardiomyocyte apoptosis, increased numbers of TGF-β1 expressing macrophages and fibrosis. Deleting NKG2D or perforin from CD8+ T cells greatly attenuates these effects. Activation of the cytoplasmic DNA-STING-TBK1-IRF3 signaling pathway in overly stressed cardiomyocytes is responsible for elevating RAE-1 and MCP-1, a macrophage attracting chemokine. Inhibiting STING activation greatly attenuates cardiomyocyte RAE-1 expression, the cardiomyocyte apoptosis, TGF-β1 and fibrosis. Conclusion Our data highlight a novel pathway by which CD8 T cells contribute to an early triggering mechanism in CF development; preventing CD8+ T cell activation by inhibiting the cardiomyocyte RAE-1-CD8+ T cell-NKG2D axis holds promise for novel therapeutic strategies to limit hypertensive cardiac fibrosis.
Collapse
Affiliation(s)
- Kurt Brassington
- Inflammation and Cardiovascular Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Peter Kanellakis
- Inflammation and Cardiovascular Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Anh Cao
- Inflammation and Cardiovascular Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia,Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Clayton, VIC, Australia
| | - Ban-Hock Toh
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Clayton, VIC, Australia
| | - Karlheinz Peter
- Inflammation and Cardiovascular Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia,Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, Australia
| | - Alex Bobik
- Inflammation and Cardiovascular Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia,Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Clayton, VIC, Australia,Department of Immunology, Monash University, Melbourne, VIC, Australia
| | - Tin Kyaw
- Inflammation and Cardiovascular Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia,Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Clayton, VIC, Australia,Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, Australia,*Correspondence: Tin Kyaw,
| |
Collapse
|
28
|
Fiorino S, Carusi A, Hong W, Cernuschi P, Gallo CG, Ferrara E, Maloberti T, Visani M, Lari F, de Biase D, Zippi M. SARS-CoV-2 vaccines: What we know, what we can do to improve them and what we could learn from other well-known viruses. AIMS Microbiol 2022; 8:422-453. [PMID: 36694588 PMCID: PMC9834075 DOI: 10.3934/microbiol.2022029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/24/2022] [Accepted: 11/06/2022] [Indexed: 11/18/2022] Open
Abstract
In recent weeks, the rate of SARS-CoV-2 infections has been progressively increasing all over the globe, even in countries where vaccination programs have been strongly implemented. In these regions in 2021, a reduction in the number of hospitalizations and deaths compared to 2020 was observed. This decrease is certainly associated with the introduction of vaccination measures. The process of the development of effective vaccines represents an important challenge. Overall, the breakthrough infections occurring in vaccinated subjects are in most cases less severe than those observed in unvaccinated individuals. This review examines the factors affecting the immunogenicity of vaccines against SARS-CoV-2 and the possible role of nutrients in modulating the response of distinct immune cells to the vaccination.
Collapse
Affiliation(s)
- Sirio Fiorino
- Internal Medicine Unit, Budrio Hospital, Budrio (Bologna), Azienda USL, Bologna, Italy
| | - Andrea Carusi
- Internal Medicine Unit, Budrio Hospital, Budrio (Bologna), Azienda USL, Bologna, Italy
| | - Wandong Hong
- Department of Gastroenterology and Hepatology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang, The People's Republic of China
| | - Paolo Cernuschi
- Internal Medicine Unit, Quisana Private Hospital, Ferrara, Italy
| | | | | | - Thais Maloberti
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna-Molecular Diagnostic Unit, Azienda USL di Bologna, Bologna, Italy
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Michela Visani
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna-Molecular Diagnostic Unit, Azienda USL di Bologna, Bologna, Italy
| | - Federico Lari
- Internal Medicine Unit, Budrio Hospital, Budrio (Bologna), Azienda USL, Bologna, Italy
| | - Dario de Biase
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Maddalena Zippi
- Unit of Gastroenterology and Digestive Endoscopy, Sandro Pertini Hospital, Rome, Italy
| |
Collapse
|
29
|
Lim JME, Hang SK, Hariharaputran S, Chia A, Tan N, Lee ES, Chng E, Lim PL, Young BE, Lye DC, Le Bert N, Bertoletti A, Tan AT. A comparative characterization of SARS-CoV-2-specific T cells induced by mRNA or inactive virus COVID-19 vaccines. Cell Rep Med 2022; 3:100793. [PMID: 36257326 PMCID: PMC9534788 DOI: 10.1016/j.xcrm.2022.100793] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/17/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022]
Abstract
Unlike mRNA vaccines based only on the spike protein, inactivated severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) vaccines should induce a diversified T cell response recognizing distinct structural proteins. Here, we perform a comparative analysis of SARS-CoV-2-specific T cells in healthy individuals following vaccination with inactivated SARS-CoV-2 or mRNA vaccines. Relative to spike mRNA vaccination, inactivated vaccines elicit a lower magnitude of spike-specific T cells, but the combination of membrane, nucleoprotein, and spike-specific T cell response is quantitatively comparable with the sole spike T cell response induced by mRNA vaccine, and they efficiently tolerate the mutations characterizing the Omicron lineage. However, this multi-protein-specific T cell response is not mediated by a coordinated CD4 and CD8 T cell expansion but by selective priming of CD4 T cells. These findings can help in understanding the role of CD4 and CD8 T cells in the efficacy of the different vaccines to control severe COVID-19 after Omicron infection.
Collapse
Affiliation(s)
- Joey Ming Er Lim
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Shou Kit Hang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Smrithi Hariharaputran
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Adeline Chia
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Nicole Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Eng Sing Lee
- Clinical Research Unit, National Healthcare Group Polyclinics, Singapore 138543, Singapore,Lee Kong Chian School of Medicine, Singapore 308232, Singapore
| | - Edwin Chng
- Parkway Shenton Pte Ltd, Singapore 048583, Singapore
| | - Poh Lian Lim
- Lee Kong Chian School of Medicine, Singapore 308232, Singapore,National Center of Infectious Diseases, Singapore 308442, Singapore,Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore 308433, Singapore
| | - Barnaby E. Young
- Lee Kong Chian School of Medicine, Singapore 308232, Singapore,National Center of Infectious Diseases, Singapore 308442, Singapore,Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore 308433, Singapore
| | - David Chien Lye
- Lee Kong Chian School of Medicine, Singapore 308232, Singapore,National Center of Infectious Diseases, Singapore 308442, Singapore,Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore 308433, Singapore,Yong Loo Lin School of Medicine, Singapore 119228, Singapore
| | - Nina Le Bert
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Antonio Bertoletti
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore,Singapore Immunology Network, A∗STAR, Singapore 138648, Singapore,Corresponding author
| | - Anthony T. Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore,Corresponding author
| |
Collapse
|
30
|
Zhang Z, Jiang Z, Deng T, Zhang J, Liu B, Liu J, Qiu R, Zhang Q, Li X, Nian X, Hong Y, Li F, Peng F, Zhao W, Xia Z, Huang S, Liang S, Chen J, Li C, Yang X. Preclinical immunogenicity assessment of a cell-based inactivated whole-virion H5N1 influenza vaccine. Open Life Sci 2022; 17:1282-1295. [PMID: 36249527 PMCID: PMC9518664 DOI: 10.1515/biol-2022-0478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/06/2022] [Accepted: 07/17/2022] [Indexed: 11/15/2022] Open
Abstract
In influenza vaccine development, Madin–Darby canine kidney (MDCK) cells provide multiple advantages, including large-scale production and egg independence. Several cell-based influenza vaccines have been approved worldwide. We cultured H5N1 virus in a serum-free MDCK cell suspension. The harvested virus was manufactured into vaccines after inactivation and purification. The vaccine effectiveness was assessed in the Wuhan Institute of Biological Products BSL2 facility. The pre- and postvaccination mouse serum titers were determined using the microneutralization and hemagglutination inhibition tests. The immunological responses induced by vaccine were investigated using immunological cell classification, cytokine expression quantification, and immunoglobulin G (IgG) subtype classification. The protective effect of the vaccine in mice was evaluated using challenge test. Antibodies against H5N1 in rats lasted up to 8 months after the first dose. Compared with those of the placebo group, the serum titer of vaccinated mice increased significantly, Th1 and Th2 cells were activated, and CD8+ T cells were activated in two dose groups. Furthermore, the challenge test showed that vaccination reduced the clinical symptoms and virus titer in the lungs of mice after challenge, indicating a superior immunological response. Notably, early after vaccination, considerably increased interferon-inducible protein-10 (IP-10) levels were found, indicating improved vaccine-induced innate immunity. However, IP-10 is an adverse event marker, which is a cause for concern. Overall, in the case of an outbreak, the whole-virion H5N1 vaccine should provide protection.
Collapse
Affiliation(s)
- Zhegang Zhang
- Viral Vaccines Research and Development Department 2, Wuhan Institute of Biological Products Co., LTD , Wuhan , 430207 , China
- National Engineering Technology Research Center of Combination Vaccines, China National Biotec Group , Wuhan , 430207 , China
| | - Zheng Jiang
- National Institute of Food and Drug Control , Beijing , 100050 , China
| | - Tao Deng
- Viral Vaccines Research and Development Department 2, Wuhan Institute of Biological Products Co., LTD , Wuhan , 430207 , China
- National Engineering Technology Research Center of Combination Vaccines, China National Biotec Group , Wuhan , 430207 , China
| | - Jiayou Zhang
- Viral Vaccines Research and Development Department 2, Wuhan Institute of Biological Products Co., LTD , Wuhan , 430207 , China
- National Engineering Technology Research Center of Combination Vaccines, China National Biotec Group , Wuhan , 430207 , China
| | - Bo Liu
- Viral Vaccines Research and Development Department 2, Wuhan Institute of Biological Products Co., LTD , Wuhan , 430207 , China
- National Engineering Technology Research Center of Combination Vaccines, China National Biotec Group , Wuhan , 430207 , China
| | - Jing Liu
- Viral Vaccines Research and Development Department 2, Wuhan Institute of Biological Products Co., LTD , Wuhan , 430207 , China
- National Engineering Technology Research Center of Combination Vaccines, China National Biotec Group , Wuhan , 430207 , China
| | - Ran Qiu
- Viral Vaccines Research and Development Department 2, Wuhan Institute of Biological Products Co., LTD , Wuhan , 430207 , China
- National Engineering Technology Research Center of Combination Vaccines, China National Biotec Group , Wuhan , 430207 , China
| | - Qingmei Zhang
- Viral Vaccines Research and Development Department 2, Wuhan Institute of Biological Products Co., LTD , Wuhan , 430207 , China
- National Engineering Technology Research Center of Combination Vaccines, China National Biotec Group , Wuhan , 430207 , China
| | - Xuedan Li
- Viral Vaccines Research and Development Department 2, Wuhan Institute of Biological Products Co., LTD , Wuhan , 430207 , China
- National Engineering Technology Research Center of Combination Vaccines, China National Biotec Group , Wuhan , 430207 , China
| | - Xuanxuan Nian
- Viral Vaccines Research and Development Department 2, Wuhan Institute of Biological Products Co., LTD , Wuhan , 430207 , China
- National Engineering Technology Research Center of Combination Vaccines, China National Biotec Group , Wuhan , 430207 , China
| | - Yue Hong
- Viral Vaccines Research and Development Department 2, Wuhan Institute of Biological Products Co., LTD , Wuhan , 430207 , China
- National Engineering Technology Research Center of Combination Vaccines, China National Biotec Group , Wuhan , 430207 , China
| | - Fang Li
- Viral Vaccines Research and Development Department 2, Wuhan Institute of Biological Products Co., LTD , Wuhan , 430207 , China
- National Engineering Technology Research Center of Combination Vaccines, China National Biotec Group , Wuhan , 430207 , China
| | - Feixia Peng
- Viral Vaccines Research and Development Department 2, Wuhan Institute of Biological Products Co., LTD , Wuhan , 430207 , China
- National Engineering Technology Research Center of Combination Vaccines, China National Biotec Group , Wuhan , 430207 , China
| | - Wei Zhao
- Viral Vaccines Research and Development Department 2, Wuhan Institute of Biological Products Co., LTD , Wuhan , 430207 , China
| | - Zhiwu Xia
- Viral Vaccines Research and Development Department 2, Wuhan Institute of Biological Products Co., LTD , Wuhan , 430207 , China
| | - Shihe Huang
- Viral Vaccines Research and Development Department 2, Wuhan Institute of Biological Products Co., LTD , Wuhan , 430207 , China
| | | | - Jinhua Chen
- Viral Vaccines Research and Development Department 2, Wuhan Institute of Biological Products Co., LTD , Wuhan , 430207 , China
- National Engineering Technology Research Center of Combination Vaccines, China National Biotec Group , Wuhan , 430207 , China
| | - Changgui Li
- National Institute of Food and Drug Control , Beijing , 100050 , China
| | - Xiaoming Yang
- National Engineering Technology Research Center of Combination Vaccines, China National Biotec Group , Wuhan , 430207 , China
- China National Biotec Group , Beijing , 100029 , China
| |
Collapse
|
31
|
Huang CH, Fan JH, Jeng WJ, Chang ST, Yang CK, Teng W, Wu TH, Hsieh YC, Chen WT, Chen YC, Sheen IS, Lin YC, Lin CY. Innate-like bystander-activated CD38 + HLA-DR + CD8 + T cells play a pathogenic role in patients with chronic hepatitis C. Hepatology 2022; 76:803-818. [PMID: 35060158 DOI: 10.1002/hep.32349] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS HCV-specific T cells are few and exhausted in patients with chronic hepatitis C (CHC). Whether these T cells are responsible for the liver damage and fibrosis is still debated. However, cluster of differentiation 38-positive (CD38+ ) human leukocyte antigen DR-positive (HLA-DR+ ) CD8+ T cells are regarded as bystander CD8+ T cells that cause liver injury in acute hepatitis. We propose that these innate CD8+ T cells play a pathogenic role in CHC. METHODS Lymphocytes from peripheral blood were obtained from 108 patients with CHC and 43 healthy subjects. Immunophenotyping, functional assays, T-cell receptor (TCR) repertoire, and cytotoxic assay of CD38+ HLA-DR+ CD8+ T cells were studied. RESULTS The percentage of CD38+ HLA-DR+ CD8+ T cells increased significantly in patients with CHC. These cells expressed higher levels of effector memory and proinflammatory chemokine molecules and showed higher interferon-γ production than CD38- HLA-DR- CD8 T cells. They were largely composed of non-HCV-specific CD8+ T cells as assessed by HLA-A2-restricted pentamers and next-generation sequencing analysis of the TCR repertoire. In addition, these CD38+ HLA-DR+ CD8+ T cells had strong cytotoxicity, which could be inhibited by anti-DNAX accessory molecule 1, anti-NKG2 family member D, and anti-natural killer NKp30 antibodies. Lastly, the percentage of CD38+ HLA-DR+ CD8+ T cells was significantly associated with liver injury and fibrosis and decreased significantly along with serum alanine aminotransferase normalization after successful direct-acting antiviral treatment. CONCLUSIONS The TCR-independent, cytokine-responsive bystander CD38+ HLA-DR+ CD8+ T cells are strongly cytotoxic and play a pathogenic role in patients with CHC.
Collapse
Affiliation(s)
- Chien-Hao Huang
- Division of Hepatology, Department of Gastroenterology and Hepatology, Chang-Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan.,College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Jian-He Fan
- Division of Hepatology, Department of Gastroenterology and Hepatology, Chang-Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan.,College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Wen-Juei Jeng
- Division of Hepatology, Department of Gastroenterology and Hepatology, Chang-Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan.,College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Shu-Ting Chang
- Division of Hepatology, Department of Gastroenterology and Hepatology, Chang-Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Chan-Keng Yang
- Division of Medical Oncology/Hematology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Wei Teng
- Division of Hepatology, Department of Gastroenterology and Hepatology, Chang-Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan.,College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Tsung-Han Wu
- Division of General Surgery, Chang-Gung Memorial Hospital, Linkou Medical Center, Taiwan
| | - Yi-Chung Hsieh
- Division of Hepatology, Department of Gastroenterology and Hepatology, Chang-Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan.,College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Wei-Ting Chen
- Division of Hepatology, Department of Gastroenterology and Hepatology, Chang-Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan.,College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Yi-Cheng Chen
- Division of Hepatology, Department of Gastroenterology and Hepatology, Chang-Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan.,College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - I-Shyan Sheen
- Division of Hepatology, Department of Gastroenterology and Hepatology, Chang-Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan.,College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Yung-Chang Lin
- Division of Medical Oncology/Hematology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chun-Yen Lin
- Division of Hepatology, Department of Gastroenterology and Hepatology, Chang-Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan.,College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| |
Collapse
|
32
|
Agrati C, Carsetti R, Bordoni V, Sacchi A, Quintarelli C, Locatelli F, Ippolito G, Capobianchi MR. The immune response as a double-edged sword: the lesson learnt during the COVID-19 pandemic. Immunology 2022; 167:287-302. [PMID: 35971810 PMCID: PMC9538066 DOI: 10.1111/imm.13564] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/06/2022] [Indexed: 11/29/2022] Open
Abstract
The COVID‐19 pandemic has represented an unprecedented challenge for the humanity, and scientists around the world provided a huge effort to elucidate critical aspects in the fight against the pathogen, useful in designing public health strategies, vaccines and therapeutic approaches. One of the first pieces of evidence characterizing the SARS‐CoV‐2 infection has been its breadth of clinical presentation, ranging from asymptomatic to severe/deadly disease, and the indication of the key role played by the immune response in influencing disease severity. This review is aimed at summarizing what the SARS‐CoV‐2 infection taught us about the immune response, highlighting its features of a double‐edged sword mediating both protective and pathogenic processes. We will discuss the protective role of soluble and cellular innate immunity and the detrimental power of a hyper‐inflammation‐shaped immune response, resulting in tissue injury and immunothrombotic events. We will review the importance of B‐ and T‐cell immunity in reducing the clinical severity and their ability to cross‐recognize viral variants.
Collapse
Affiliation(s)
- Chiara Agrati
- Laboratory of Cellular Immunology, INMI L. Spallanzani, IRCCS
| | - Rita Carsetti
- B cell laboratory, Immunology Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Alessandra Sacchi
- Molecular Virology and antimicrobial immunity Laboratory, Department of Science, Roma Tre University, Rome, Italy
| | - Concetta Quintarelli
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy.,Department of Hematology/Oncology and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS
| | - Franco Locatelli
- Department of Hematology/Oncology and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS.,Department of Pediatrics, Catholic University of Sacred Heart, Rome, Italy
| | - Giuseppe Ippolito
- General Directorate for Research and Health Innovation, Italian Ministry of Health
| | - Maria R Capobianchi
- Sacro Cuore Don Calabria Hospital IRCCS, Negrar di Valpolicella (Verona).,Saint Camillus International University of Health Sciences, Rome
| |
Collapse
|
33
|
Miao R, Chun H, Feng X, Gomes AC, Choi J, Pereira JP. Competition between hematopoietic stem and progenitor cells controls hematopoietic stem cell compartment size. Nat Commun 2022; 13:4611. [PMID: 35941168 PMCID: PMC9360400 DOI: 10.1038/s41467-022-32228-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 07/21/2022] [Indexed: 11/14/2022] Open
Abstract
Cellular competition for limiting hematopoietic factors is a physiologically regulated but poorly understood process. Here, we studied this phenomenon by hampering hematopoietic progenitor access to Leptin receptor+ mesenchymal stem/progenitor cells (MSPCs) and endothelial cells (ECs). We show that HSC numbers increase by 2-fold when multipotent and lineage-restricted progenitors fail to respond to CXCL12 produced by MSPCs and ECs. HSCs are qualitatively normal, and HSC expansion only occurs when early hematopoietic progenitors but not differentiated hematopoietic cells lack CXCR4. Furthermore, the MSPC and EC transcriptomic heterogeneity is stable, suggesting that it is impervious to major changes in hematopoietic progenitor interactions. Instead, HSC expansion correlates with increased availability of membrane-bound stem cell factor (mSCF) on MSPCs and ECs presumably due to reduced consumption by cKit-expressing hematopoietic progenitors. These studies suggest that an intricate homeostatic balance between HSCs and proximal hematopoietic progenitors is regulated by cell competition for limited amounts of mSCF. Hematopoietic stem cells (HSCs) rely on a combination of paracrine signals produced by their niche, including SCF. Here the authors show that HSCs and hematopoietic progenitors compete for limited amounts of membrane-bound SCF.
Collapse
Affiliation(s)
- Runfeng Miao
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, 300 Cedar Street, New Haven, CT, 06519, USA
| | - Harim Chun
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Xing Feng
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, 300 Cedar Street, New Haven, CT, 06519, USA
| | - Ana Cordeiro Gomes
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, 300 Cedar Street, New Haven, CT, 06519, USA.,i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
| | - Jungmin Choi
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea. .,Department of Genetics, Yale University School of Medicine, 300 Cedar Street, New Haven, CT, 06519, USA.
| | - João P Pereira
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, 300 Cedar Street, New Haven, CT, 06519, USA.
| |
Collapse
|
34
|
Iseki M, Nakayama H, Watanabe M, Uchibori A, Chiba A, Mizutani S. [A case of polyneuropathy after COVID-19 vaccine]. Rinsho Shinkeigaku 2022; 62:558-562. [PMID: 35753790 DOI: 10.5692/clinicalneurol.cn-001750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A 43-year-old-woman developed paresthesia, weakness of limbs, dysphagia and deep sensory impairment 12 days after vaccination of Pfizer COVID-19 vaccine. Her deep tendon reflexes were absent and cerebrospinal fluid showed normal cell counts and protein level. Anti-ganglioside antibodies were negative, and F wave frequency was decreased in nerve conduction studies. We diagnosed her as immune mediated polyneuropathy caused by COVID-19 vaccine, and plasma exchange improved her symptoms. Compared with Guillain-Barré syndrome and polyneuropathy following COVID-19 infection and COVID-19 vaccination, deep sensory impairment was the most characteristic of this case. We supposed that non-antigen specific mechanism played an important role in the pathogenesis of this case.
Collapse
Affiliation(s)
- Mari Iseki
- Department of Neurology, Tokyo Metropolitan Bokutoh Hospital
| | - Hiroki Nakayama
- Department of Neurology, Tokyo Metropolitan Bokutoh Hospital
| | | | | | - Atsuro Chiba
- Department of Neurology, Kyorin University Hospital
| | | |
Collapse
|
35
|
Dawoud R, Haddad D, Shah V, Patel V, Abbas G, Guduru S, Dakka A, Kaushik V, Cheriyath P. COVID-19 Vaccine-Related Arthritis: A Descriptive Study of Case Reports on a Rare Complication. Cureus 2022; 14:e26702. [PMID: 35959192 PMCID: PMC9359799 DOI: 10.7759/cureus.26702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2022] [Indexed: 11/23/2022] Open
Abstract
Large-scale coronavirus disease 2019 (COVID-19) vaccination programs have been rolled out worldwide. Vaccines that are widely used globally include mRNA vaccines, adenoviral vector vaccines, and inactivated whole-virus vaccines. COVID-19 vaccines can lead to varying side effects. Among the most common of these adverse effects are pain at the injection site, fatigue, and headaches. Some side effects, however, are not very well documented, and these include joint-related adverse effects. In this review, we assess the epidemiology and clinical features of post-COVID-19 vaccination joint-related adverse effects based on the analysis of 16 patient case reports. Based on our analysis, we found that females formed the majority of the cases, accounting for 62.5% of patients, while 37.5% of the cases were males. The mean age of presentation among the patients was 54.8 years, with a standard deviation (SD) of 17.49 years. In 37.5% of the cases, patients received the Sinovac vaccine. The proportion of patients who received other vaccines was as follows: the Pfizer vaccine: 31.25%; Sputnik V: 12.5%; Moderna, AstraZeneca, and Covaxin: 6.25% each. The characteristics of joint-related adverse effects following COVID-19 vaccination were analyzed in this study. We identified several key findings related to factors such as age, gender, type of vaccine, clinical features, and diagnosis modality. Our analysis showed that more cases were reported among individuals who received the Sinovac vaccine, as compared to the others. Further research is required to examine the underlying cause of this association.
Collapse
Affiliation(s)
- Rand Dawoud
- Medicine, The Hashemite University, Amman, JOR
| | - Daniel Haddad
- Internal Medicine, Rowan University School of Osteopathic Medicine, Glassboro, USA
| | - Viraj Shah
- Internal Medicine, Hackensack Meridian Ocean University Medical Center, Brick, USA
- Internal Medicine, Rajarshee Chhatrapati Shahu Maharaj Government Medical College, Kolhapur, IND
| | - Vraj Patel
- Internal Medicine, Hackensack Meridian Ocean University Medical Center, Brick, USA
| | - Gohar Abbas
- Internal Medicine, AUA School of Medicine, Brick, USA
| | - Sai Guduru
- Internal Medicine, North American Dental Group, Brick, USA
| | - Amulya Dakka
- Internal medicine, Mosaic Life Care, Saint Joseph, USA
| | - Vishrut Kaushik
- Internal Medicine, Hackensack Meridian Ocean University Medical Center, Brick, USA
| | - Pramil Cheriyath
- Internal Medicine, Hackensack Meridian Ocean University Medical Center, Brick, USA
| |
Collapse
|
36
|
Jonsson AH, Zhang F, Dunlap G, Gomez-Rivas E, Watts GFM, Faust HJ, Rupani KV, Mears JR, Meednu N, Wang R, Keras G, Coblyn JS, Massarotti EM, Todd DJ, Anolik JH, McDavid A, Wei K, Rao DA, Raychaudhuri S, Brenner MB. Granzyme K + CD8 T cells form a core population in inflamed human tissue. Sci Transl Med 2022; 14:eabo0686. [PMID: 35704599 PMCID: PMC9972878 DOI: 10.1126/scitranslmed.abo0686] [Citation(s) in RCA: 106] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
T cell-derived pro-inflammatory cytokines are a major driver of rheumatoid arthritis (RA) pathogenesis. Although these cytokines have traditionally been attributed to CD4 T cells, we have found that CD8 T cells are notably abundant in synovium and make more interferon (IFN)-γ and nearly as much tumor necrosis factor (TNF) as their CD4 T cell counterparts. Furthermore, using unbiased high-dimensional single-cell RNA-seq and flow cytometric data, we found that the vast majority of synovial tissue and synovial fluid CD8 T cells belong to an effector CD8 T cell population characterized by high expression of granzyme K (GzmK) and low expression of granzyme B (GzmB) and perforin. Functional experiments demonstrate that these GzmK+ GzmB+ CD8 T cells are major cytokine producers with low cytotoxic potential. Using T cell receptor repertoire data, we found that CD8 GzmK+ GzmB+ T cells are clonally expanded in synovial tissues and maintain their granzyme expression and overall cell state in blood, suggesting that they are enriched in tissue but also circulate. Using GzmK and GzmB signatures, we found that GzmK-expressing CD8 T cells were also the major CD8 T cell population in the gut, kidney, and coronavirus disease 2019 (COVID-19) bronchoalveolar lavage fluid, suggesting that they form a core population of tissue-associated T cells across diseases and human tissues. We term this population tissue-enriched expressing GzmK or TteK CD8 cells. Armed to produce cytokines in response to both antigen-dependent and antigen-independent stimuli, CD8 TteK cells have the potential to drive inflammation.
Collapse
Affiliation(s)
- A. Helena Jonsson
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School; Boston, MA 02115, USA
| | - Fan Zhang
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School; Boston, MA 02115, USA
- Center for Data Sciences, Brigham and Women’s Hospital; Boston, MA 02115, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital; Boston, MA 02115, USA
- Department of Biomedical Informatics, Harvard Medical School; Boston, MA 02115, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- Division of Rheumatology and the Center for Health Artificial Intelligence, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Garrett Dunlap
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School; Boston, MA 02115, USA
| | - Emma Gomez-Rivas
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School; Boston, MA 02115, USA
| | - Gerald F. M. Watts
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School; Boston, MA 02115, USA
| | - Heather J. Faust
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School; Boston, MA 02115, USA
| | - Karishma Vijay Rupani
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School; Boston, MA 02115, USA
| | - Joseph R. Mears
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School; Boston, MA 02115, USA
- Center for Data Sciences, Brigham and Women’s Hospital; Boston, MA 02115, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital; Boston, MA 02115, USA
- Department of Biomedical Informatics, Harvard Medical School; Boston, MA 02115, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
| | - Nida Meednu
- Division of Rheumatology and the Center for Health Artificial Intelligence, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Runci Wang
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School; Boston, MA 02115, USA
| | - Gregory Keras
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School; Boston, MA 02115, USA
| | - Jonathan S. Coblyn
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School; Boston, MA 02115, USA
| | - Elena M. Massarotti
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School; Boston, MA 02115, USA
| | - Derrick J. Todd
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School; Boston, MA 02115, USA
| | - Jennifer H. Anolik
- Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center; Rochester, NY 14642, USA
| | - Andrew McDavid
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry; Rochester, NY 14642, USA
| | | | - Kevin Wei
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School; Boston, MA 02115, USA
| | - Deepak A. Rao
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School; Boston, MA 02115, USA
| | - Soumya Raychaudhuri
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School; Boston, MA 02115, USA
- Center for Data Sciences, Brigham and Women’s Hospital; Boston, MA 02115, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital; Boston, MA 02115, USA
- Department of Biomedical Informatics, Harvard Medical School; Boston, MA 02115, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- Arthritis Research UK Centre for Genetics and Genomics, Centre for Musculoskeletal Research, The University of Manchester; Manchester M13 9PT, UK
| | - Michael B. Brenner
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women’s Hospital and Harvard Medical School; Boston, MA 02115, USA
| |
Collapse
|
37
|
Chowdhury RR, D’Addabbo J, Huang X, Veizades S, Sasagawa K, Louis DM, Cheng P, Sokol J, Jensen A, Tso A, Shankar V, Wendel BS, Bakerman I, Liang G, Koyano T, Fong R, Nau A, Ahmad H, Gopakumar JK, Wirka R, Lee A, Boyd J, Joseph Woo Y, Quertermous T, Gulati G, Jaiswal S, Chien YH, Chan C, Davis MM, Nguyen PK. Human Coronary Plaque T Cells Are Clonal and Cross-React to Virus and Self. Circ Res 2022; 130:1510-1530. [PMID: 35430876 PMCID: PMC9286288 DOI: 10.1161/circresaha.121.320090] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Coronary artery disease is an incurable, life-threatening disease that was once considered primarily a disorder of lipid deposition. Coronary artery disease is now also characterized by chronic inflammation' notable for the buildup of atherosclerotic plaques containing immune cells in various states of activation and differentiation. Understanding how these immune cells contribute to disease progression may lead to the development of novel therapeutic strategies. METHODS We used single-cell technology and in vitro assays to interrogate the immune microenvironment of human coronary atherosclerotic plaque at different stages of maturity. RESULTS In addition to macrophages, we found a high proportion of αβ T cells in the coronary plaques. Most of these T cells lack high expression of CCR7 and L-selectin, indicating that they are primarily antigen-experienced memory cells. Notably, nearly one-third of these cells express the HLA-DRA surface marker, signifying activation through their TCRs (T-cell receptors). Consistent with this, TCR repertoire analysis confirmed the presence of activated αβ T cells (CD4<CD8), exhibiting clonal expansion of specific TCRs. Interestingly, we found that these plaque T cells had TCRs specific for influenza, coronavirus, and other viral epitopes, which share sequence homologies to proteins found on smooth muscle cells and endothelial cells, suggesting potential autoimmune-mediated T-cell activation in the absence of active infection. To better understand the potential function of these activated plaque T cells, we then interrogated their transcriptome at the single-cell level. Of the 3 T-cell phenotypic clusters with the highest expression of the activation marker HLA-DRA, 2 clusters expressed a proinflammatory and cytolytic signature characteristic of CD8 cells, while the other expressed AREG (amphiregulin), which promotes smooth muscle cell proliferation and fibrosis, and, thus, contributes to plaque progression. CONCLUSIONS Taken together, these findings demonstrate that plaque T cells are clonally expanded potentially by antigen engagement, are potentially reactive to self-epitopes, and may interact with smooth muscle cells and macrophages in the plaque microenvironment.
Collapse
Affiliation(s)
- Roshni Roy Chowdhury
- Department of Microbiology and Immunology, Stanford University
- Department of Medicine (Section of Genetic Medicine), University of Chicago
| | - Jessica D’Addabbo
- Department of Medicine (Cardiovascular Medicine), Stanford University
| | - Xianxi Huang
- The First Affiliated Hospital of Shantou University Medical College
- Stanford Cardiovascular Institute, Stanford University
| | - Stefan Veizades
- Department of Medicine (Cardiovascular Medicine), Stanford University
- Stanford Cardiovascular Institute, Stanford University
- Edinburgh Medical School, United Kingdom
| | - Koki Sasagawa
- Department of Medicine (Cardiovascular Medicine), Stanford University
| | | | - Paul Cheng
- Department of Medicine (Cardiovascular Medicine), Stanford University
- Stanford Cardiovascular Institute, Stanford University
| | - Jan Sokol
- Department of Medicine (Cardiovascular Medicine), Stanford University
- Stanford Cardiovascular Institute, Stanford University
| | - Annie Jensen
- Department of Medicine (Cardiovascular Medicine), Stanford University
- Stanford Cardiovascular Institute, Stanford University
- Institute for Immunity, Transplantation and Infection, Stanford University
| | - Alexandria Tso
- Department of Medicine (Cardiovascular Medicine), Stanford University
- Stanford Cardiovascular Institute, Stanford University
- Institute for Immunity, Transplantation and Infection, Stanford University
| | - Vishnu Shankar
- Institute for Immunity, Transplantation and Infection, Stanford University
| | - Ben Shogo Wendel
- Institute for Immunity, Transplantation and Infection, Stanford University
| | - Isaac Bakerman
- Department of Medicine (Cardiovascular Medicine), Stanford University
- Stanford Cardiovascular Institute, Stanford University
| | - Grace Liang
- Department of Medicine (Cardiovascular Medicine), Stanford University
- Stanford Cardiovascular Institute, Stanford University
| | - Tiffany Koyano
- Department of Cardiothoracic Surgery, Stanford University
| | - Robyn Fong
- Department of Cardiothoracic Surgery, Stanford University
| | - Allison Nau
- Department of Microbiology and Immunology, Stanford University
| | - Herra Ahmad
- Department of Pathology, Stanford University
| | | | - Robert Wirka
- Department of Medicine (Cardiovascular Medicine), Stanford University
| | - Andrew Lee
- Stanford Cardiovascular Institute, Stanford University
- Department of Pathology, Stanford University
- Institute for Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Jack Boyd
- Department of Surgery, Stanford University
| | | | - Thomas Quertermous
- Department of Medicine (Cardiovascular Medicine), Stanford University
- Stanford Cardiovascular Institute, Stanford University
| | - Gunsagar Gulati
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University
| | | | - Yueh-Hsiu Chien
- Department of Microbiology and Immunology, Stanford University
| | - Charles Chan
- Stanford Cardiovascular Institute, Stanford University
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University
| | - Mark M. Davis
- Department of Microbiology and Immunology, Stanford University
- Edinburgh Medical School, United Kingdom
- Howard Hughes Medical Institute, Stanford University
| | - Patricia K. Nguyen
- Department of Medicine (Cardiovascular Medicine), Stanford University
- Stanford Cardiovascular Institute, Stanford University
- Institute for Immunity, Transplantation and Infection, Stanford University
| |
Collapse
|
38
|
Mortezaee K, Majidpoor J. CD8 + T Cells in SARS-CoV-2 Induced Disease and Cancer-Clinical Perspectives. Front Immunol 2022; 13:864298. [PMID: 35432340 PMCID: PMC9010719 DOI: 10.3389/fimmu.2022.864298] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/07/2022] [Indexed: 12/13/2022] Open
Abstract
Dysregulated innate and adaptive immunity is a sign of SARS-CoV-2-induced disease and cancer. CD8+ T cells are important cells of the immune system. The cells belong to the adaptive immunity and take a front-line defense against viral infections and cancer. Extreme CD8+ T-cell activities in the lung of patients with a SARS-CoV-2-induced disease and within the tumor microenvironment (TME) will change their functionality into exhausted state and undergo apoptosis. Such diminished immunity will put cancer cases at a high-risk group for SARS-CoV-2-induced disease, rendering viral sepsis and a more severe condition which will finally cause a higher rate of mortality. Recovering responses from CD8+ T cells is a purpose of vaccination against SARS-CoV-2. The aim of this review is to discuss the CD8+ T cellular state in SARS-CoV-2-induced disease and in cancer and to present some strategies for recovering the functionality of these critical cells.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Jamal Majidpoor
- Department of Anatomy, Faculty of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
39
|
Noé A, Datoo MS, Flaxman A, Husainy MA, Jenkin D, Bellamy D, Makinson RA, Morter R, Ramos Lopez F, Sheridan J, Voukantsis D, Prasad N, Hill AVS, Ewer KJ, Spencer AJ. Deep Immune Phenotyping and Single-Cell Transcriptomics Allow Identification of Circulating TRM-Like Cells Which Correlate With Liver-Stage Immunity and Vaccine-Induced Protection From Malaria. Front Immunol 2022; 13:795463. [PMID: 35197971 PMCID: PMC8859435 DOI: 10.3389/fimmu.2022.795463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/10/2022] [Indexed: 12/14/2022] Open
Abstract
Protection from liver-stage malaria requires high numbers of CD8+ T cells to find and kill Plasmodium-infected cells. A new malaria vaccine strategy, prime-target vaccination, involves sequential viral-vectored vaccination by intramuscular and intravenous routes to target cellular immunity to the liver. Liver tissue-resident memory (TRM) CD8+ T cells have been shown to be necessary and sufficient for protection against rodent malaria by this vaccine regimen. Ultimately, to most faithfully assess immunotherapeutic responses by these local, specialised, hepatic T cells, periodic liver sampling is necessary, however this is not feasible at large scales in human trials. Here, as part of a phase I/II P. falciparum challenge study of prime-target vaccination, we performed deep immune phenotyping, single-cell RNA-sequencing and kinetics of hepatic fine needle aspirates and peripheral blood samples to study liver CD8+ TRM cells and circulating counterparts. We found that while these peripheral ‘TRM-like’ cells differed to TRM cells in terms of previously described characteristics, they are similar phenotypically and indistinguishable in terms of key T cell residency transcriptional signatures. By exploring the heterogeneity among liver CD8+ TRM cells at single cell resolution we found two main subpopulations that each share expression profiles with blood T cells. Lastly, our work points towards the potential for using TRM−like cells as a correlate of protection by liver-stage malaria vaccines and, in particular, those adopting a prime-target approach. A simple and reproducible correlate of protection would be particularly valuable in trials of liver-stage malaria vaccines as they progress to phase III, large-scale testing in African infants. We provide a blueprint for understanding and monitoring liver TRM cells induced by a prime-target malaria vaccine approach.
Collapse
Affiliation(s)
- Andrés Noé
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
- *Correspondence: Andrés Noé, ; ; Alexandra J. Spencer,
| | - Mehreen S. Datoo
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Amy Flaxman
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | - Daniel Jenkin
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Duncan Bellamy
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | - Richard Morter
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | | | - Dimitrios Voukantsis
- Bioinformatics Hub, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Naveen Prasad
- Bioinformatics Hub, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | | | - Katie J. Ewer
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Alexandra J. Spencer
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
- *Correspondence: Andrés Noé, ; ; Alexandra J. Spencer,
| |
Collapse
|
40
|
Li J, Huang D, Lei B, Huang J, Yang L, Nie M, Su S, Zhao Q, Wang Y. VLA-4 suppression by senescence signals regulates meningeal immunity and leptomeningeal metastasis. eLife 2022; 11:83272. [PMID: 36484779 PMCID: PMC9803356 DOI: 10.7554/elife.83272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
Leptomeningeal metastasis is associated with dismal prognosis and has few treatment options. However, very little is known about the immune response to leptomeningeal metastasis. Here, by establishing an immunocompetent mouse model of breast cancer leptomeningeal metastasis, we found that tumor-specific CD8+ T cells were generated in deep cervical lymph nodes (dCLNs) and played an important role in controlling leptomeningeal metastasis. Mechanistically, T cells in dCLNs displayed a senescence phenotype and their recruitment was impaired in mice bearing cancer cells that preferentially colonized in leptomeningeal space. Upregulation of p53 suppressed the transcription of VLA-4 in senescent dCLN T cells and consequently inhibited their migration to the leptomeningeal compartment. Clinically, CD8+ T cells from the cerebrospinal fluid of patients with leptomeningeal metastasis exhibited senescence and VLA-4 downregulation. Collectively, our findings demonstrated that CD8+ T cell immunosenescence drives leptomeningeal metastasis.
Collapse
Affiliation(s)
- Jiaqian Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhouChina,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhouChina
| | - Di Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhouChina,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhouChina
| | - Bingxi Lei
- Department of Neurosurgery, Sun Yat-sen UniversityGuangzhouChina
| | - Jingying Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhouChina,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhouChina
| | - Linbing Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhouChina,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhouChina
| | - Man Nie
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer CenterGuangzhouChina
| | - Shicheng Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhouChina,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhouChina,Department of Immunology, Zhongshan School of Medicine, Sun Yat-Sen UniversityGuangzhouChina
| | - Qiyi Zhao
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen UniversityGuangzhouChina,Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital, Sun Yat-Sen UniversityGuangzhouChina
| | - Ying Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhouChina,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhouChina
| |
Collapse
|
41
|
Steininger J, Rossmanith R, Geier CB, Leiss-Piller A, Thonhauser L, Weiss S, Hainfellner JA, Freilinger M, Schmidt WM, Eibl MM, Wolf HM. Case Report: Meningoencephalitis With Thrombotic Occlusive Vasculopathy in a Young EBV-Naïve Boy Is Associated With a Novel SH2D1A Mutation. Front Immunol 2021; 12:747738. [PMID: 34987501 PMCID: PMC8721048 DOI: 10.3389/fimmu.2021.747738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/26/2021] [Indexed: 01/14/2023] Open
Abstract
X-linked lymphoproliferative disease (XLP1) is a combined immunodeficiency characterized by severe immune dysregulation caused by mutations in the SH2D1A/SAP gene. Loss or dysfunction of SH2D1A is associated with the inability in clearing Epstein-Barr-Virus (EBV) infections. Clinical manifestation is diverse and ranges from life-threatening hemophagocytic lymphohistiocytosis (HLH) and fulminant infectious mononucleosis (FIM) to lymphoma and antibody deficiency. Rare manifestations include aplastic anemia, chronic gastritis and vasculitis. Herein, we describe the case of a previously healthy eight-year old boy diagnosed with XLP1 presenting with acute non-EBV acute meningoencephalitis with thrombotic occlusive vasculopathy. The patient developed multiple cerebral aneurysms leading to repeated intracerebral hemorrhage and severe cerebral damage. Immunological examination was initiated after development of a susceptibility to infections with recurrent bronchitis and one episode of severe pneumonia and showed antibody deficiency with pronounced IgG1-3-4 subclass deficiency. We could identify a novel hemizygous SH2D1A point mutation affecting the start codon. Basal levels of SAP protein seemed to be detectable in CD8+ and CD4+ T- and CD56+ NK-cells of the patient what indicated an incomplete absence of SAP. In conclusion, we could demonstrate a novel SH2D1A mutation leading to deficient SAP protein expression and a rare clinical phenotype of non-EBV associated acute meningoencephalitis with thrombotic occlusive vasculopathy.
Collapse
Affiliation(s)
| | - Raphael Rossmanith
- Immunology Outpatient Clinic, Vienna, Austria
- Doctoral School Molecular Biology and Biochemistry, Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | | | | | | | - Simone Weiss
- Department of Pediatrics, Klinik Favoriten, Vienna, Austria
| | - Johannes A. Hainfellner
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Michael Freilinger
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Wolfgang M. Schmidt
- Neuromuscular Research Department, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Martha M. Eibl
- Immunology Outpatient Clinic, Vienna, Austria
- Biomedizinische Forschungs GmbH, Vienna, Austria
| | - Hermann M. Wolf
- Immunology Outpatient Clinic, Vienna, Austria
- Sigmund Freud Private University- Medical School, Vienna, Austria
- *Correspondence: Hermann M. Wolf,
| |
Collapse
|
42
|
Gallo CG, Fiorino S, Posabella G, Antonacci D, Tropeano A, Pausini E, Pausini C, Guarniero T, Hong W, Giampieri E, Corazza I, Federico L, de Biase D, Zippi M, Zancanaro M. COVID-19, what could sepsis, severe acute pancreatitis, gender differences, and aging teach us? Cytokine 2021; 148:155628. [PMID: 34411989 PMCID: PMC8343368 DOI: 10.1016/j.cyto.2021.155628] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 06/02/2021] [Accepted: 06/29/2021] [Indexed: 02/07/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes a potentially life-threatening disease, defined as Coronavirus Disease 19 (COVID-19). The most common signs and symptoms of this pathological condition include cough, fever, shortness of breath, and sudden onset of anosmia, ageusia, or dysgeusia. The course of COVID-19 is mild or moderate in more than 80% of cases, but it is severe or critical in about 14% and 5% of infected subjects respectively, with a significant risk of mortality. SARS-CoV-2 related infection is characterized by some pathogenetic events, resembling those detectable in other pathological conditions, such as sepsis and severe acute pancreatitis. All these syndromes are characterized by some similar features, including the coexistence of an exuberant inflammatory- as well as an anti-inflammatory-response with immune depression. Based on current knowledge concerning the onset and the development of acute pancreatitis and sepsis, we have considered these syndromes as a very interesting paradigm for improving our understanding of pathogenetic events detectable in patients with COVID-19. The aim of our review is: 1)to examine the pathogenetic mechanisms acting during the emergence of inflammatory and anti-inflammatory processes in human pathology; 2)to examine inflammatory and anti-inflammatory events in sepsis, acute pancreatitis, and SARS-CoV-2 infection and clinical manifestations detectable in patients suffering from these syndromes also according to the age and gender of these individuals; as well as to analyze the possible common and different features among these pathological conditions; 3)to obtain insights into our knowledge concerning COVID-19 pathogenesis. This approach may improve the management of patients suffering from this disease and it may suggest more effective diagnostic approaches and schedules of therapy, depending on the different phases and/or on the severity of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Claudio G Gallo
- Emilian Physiolaser Therapy Center, Castel S. Pietro Terme, Bologna, Italy.
| | - Sirio Fiorino
- Internal Medicine Unit, Budrio Hospital Azienda USL, Bologna, Italy
| | | | - Donato Antonacci
- Medical Science Department, "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo (FG), Italy
| | | | | | | | | | - Wandong Hong
- Department of Gastroenterology and Hepatology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang, The People's Republic of China
| | - Enrico Giampieri
- Experimental, Diagnostic and Specialty Medicine Department, University of Bologna, Bologna, Italy
| | - Ivan Corazza
- Experimental, Diagnostic and Specialty Medicine Department, University of Bologna, Bologna, Italy
| | - Lari Federico
- Internal Medicine Unit, Budrio Hospital Azienda USL, Bologna, Italy
| | - Dario de Biase
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Maddalena Zippi
- Unit of Gastroenterology and Digestive Endoscopy, Sandro Pertini Hospital, Rome, Italy
| | | |
Collapse
|
43
|
Chen AT, Stacey HD, Marzok A, Singh P, Ang J, Miller MS, Loeb M. Effect of inactivated influenza vaccination on human coronavirus infection: Secondary analysis of a randomized trial in Hutterite colonies. Vaccine 2021; 39:7058-7065. [PMID: 34756613 PMCID: PMC8520850 DOI: 10.1016/j.vaccine.2021.10.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/28/2021] [Accepted: 10/11/2021] [Indexed: 01/07/2023]
Abstract
Background Although influenza vaccines provide protection against influenza viruses, concern has been raised that they may increase susceptibility to non-influenza respiratory viruses. As pandemic lockdowns end, temporal overlap of circulation of seasonal influenza viruses and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is expected. Understanding the impact of influenza vaccination on risk of coronavirus infection is therefore of considerable public health importance. Methods We performed a secondary analysis of a randomized trial where children and adolescents in Canadian Hutterite colonies were randomly assigned by colony to receive the 2008–2009 seasonal inactivated trivalent influenza vaccine (TIV) or a control hepatitis A (HepA) vaccine. All 3273 colony members (vaccinated children and nonvaccine recipients) were followed for the primary outcome of RT-PCR confirmed seasonal coronavirus infection. Serum collected pre- and post-vaccination was analyzed for titers of IgG antibodies towards human coronaviruses (HCoV). Results The incidence of coronavirus infection was 0·18/1000 person-days in the colonies that received TIV vs 0.36/1000 person-days in the control group, hazard ratio (HR) 0.49 [0.21–1.17]. The risk reduction among non-vaccine recipients in the TIV group compared to the control group was HR 0.55 [0.24–1.23]. There was an increase in the geometric mean fold change of HCoV-OC43 antibody titers following TIV compared to HepA vaccine (mean difference 1.2 [0.38–2.06], p = 0.007), and an increase in geometric mean HCoV-NL63 antibody titers post-TIV (262.9 vs 342.9, p = 0.03). Conclusion The influenza vaccine does not increase the risk of a coronavirus infection. Instead, the influenza vaccine may reduce the rate of coronavirus infections by inducing cross-reactive anti-coronavirus IgG antibodies.
Collapse
Affiliation(s)
- Andrew T Chen
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Hannah D Stacey
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada; Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada; McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Art Marzok
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada; Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada; McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Pardeep Singh
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Jann Ang
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada; Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada; McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Matthew S Miller
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada; Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada; McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Mark Loeb
- Department of Medicine, McMaster University, Hamilton, ON, Canada; Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada; Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, ON, Canada; Department of Mathematics and Statistics, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
44
|
McDonald T, Muhammad F, Peters K, Lee DJ. Combined Deficiency of the Melanocortin 5 Receptor and Adenosine 2A Receptor Unexpectedly Provides Resistance to Autoimmune Disease in a CD8 + T Cell-Dependent Manner. Front Immunol 2021; 12:742154. [PMID: 34867964 PMCID: PMC8634946 DOI: 10.3389/fimmu.2021.742154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022] Open
Abstract
Regulatory immunity that provides resistance to relapse emerges during resolution of experimental autoimmune uveitis (EAU). This post-EAU regulatory immunity requires a melanocortin 5 receptor (MC5r)-dependent suppressor antigen presenting cell (APC), as shown using a MC5r single knock-out mouse. The MC5r-dependent APC activates an adenosine 2A receptor (A2Ar)-dependent regulatory Treg cell, as shown using an A2Ar single knock-out mouse. Unexpectedly, when MC5r-/- post-EAU APC were used to activate A2Ar-/- post-EAU T cells the combination of cells significantly suppressed EAU, when transferred to EAU mice. In contrast, transfer of the reciprocal activation scheme did not suppress EAU. In order to explain this finding, MC5r-/-A2Ar-/- double knock-out (DKO) mice were bred. Naïve DKO mice had no differences in the APC populations, or inflammatory T cell subsets, but did have significantly more Treg cells. When we examined the number of CD4 and CD8 T cell subsets, we found significantly fewer CD8 T cells in the DKO mice compared to WT and both single knock-out mice. DKO mice also had significantly reduced EAU severity and accelerated resolution. In order to determine if the CD8 T cell deficiency contributed to the resistance to EAU in the DKO mice, we transferred naïve CD8 T cells from WT mice, that were immunized for EAU. Susceptibility to EAU was restored in DKO mice that received a CD8 T cell transfer. While the mechanism that contributed to the CD8 T cell deficiency in the DKO mice remains to be determined, these observations indicate an importance of CD8 T cells in the initiation of EAU. The involvement of CD4 and CD8 T cells suggests that both class I and class II antigen presentation can trigger an autoimmune response, suggesting a much wider range of antigens may trigger autoimmune disease.
Collapse
Affiliation(s)
- Trisha McDonald
- Dean McGee Eye Institute, Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Fauziyya Muhammad
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Kayleigh Peters
- Dean McGee Eye Institute, Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Darren J. Lee
- Dean McGee Eye Institute, Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States,Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States,*Correspondence: Darren J. Lee,
| |
Collapse
|
45
|
Ehrlich R, Kamga L, Gil A, Luzuriaga K, Selin LK, Ghersi D. SwarmTCR: a computational approach to predict the specificity of T cell receptors. BMC Bioinformatics 2021; 22:422. [PMID: 34493215 PMCID: PMC8422754 DOI: 10.1186/s12859-021-04335-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 08/16/2021] [Indexed: 01/12/2023] Open
Abstract
Background With more T cell receptor sequence data becoming available, the need for bioinformatics approaches to predict T cell receptor specificity is even more pressing. Here we present SwarmTCR, a method that uses labeled sequence data to predict the specificity of T cell receptors using a nearest-neighbor approach. SwarmTCR works by optimizing the weights of the individual CDR regions to maximize classification performance. Results We compared the performance of SwarmTCR against another nearest-neighbor method and showed that SwarmTCR performs well both with bulk sequencing data and with single cell data. In addition, we show that the weights returned by SwarmTCR are biologically interpretable. Conclusions Computationally predicting the specificity of T cell receptors can be a powerful tool to shed light on the immune response against infectious diseases and cancers, autoimmunity, cancer immunotherapy, and immunopathology. SwarmTCR is distributed freely under the terms of the GPL-3 license. The source code and all sequencing data are available at GitHub (https://github.com/thecodingdoc/SwarmTCR). Supplementary Information The online version contains supplementary material available at 10.1186/s12859-021-04335-w.
Collapse
Affiliation(s)
- Ryan Ehrlich
- School of Interdisciplinary Informatics, College of Information Science and Technology, University of Nebraska at Omaha, 1110 S 67TH, Omaha, NE, 68182, USA
| | - Larisa Kamga
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Anna Gil
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Katherine Luzuriaga
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Liisa K Selin
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Dario Ghersi
- School of Interdisciplinary Informatics, College of Information Science and Technology, University of Nebraska at Omaha, 1110 S 67TH, Omaha, NE, 68182, USA.
| |
Collapse
|
46
|
Gomez MA, Belew AT, Navas A, Rosales-Chilama M, Murillo J, Dillon LAL, Alexander TA, Martinez-Valencia A, El-Sayed NM. Early Leukocyte Responses in Ex-Vivo Models of Healing and Non-Healing Human Leishmania (Viannia) panamensis Infections. Front Cell Infect Microbiol 2021; 11:687607. [PMID: 34557423 PMCID: PMC8453012 DOI: 10.3389/fcimb.2021.687607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/16/2021] [Indexed: 11/21/2022] Open
Abstract
Early host-pathogen interactions drive the host response and shape the outcome of natural infections caused by intracellular microorganisms. These interactions involve a number of immune and non-immune cells and tissues, along with an assortment of host and pathogen-derived molecules. Our current knowledge has been predominantly derived from research on the relationships between the pathogens and the invaded host cell(s), limiting our understanding of how microbes elicit and modulate immunological responses at the organismal level. In this study, we explored the early host determinants of healing and non-healing responses in human cutaneous leishmaniasis (CL) caused by Leishmania (Viannia) panamensis. We performed a comparative transcriptomic profiling of peripheral blood mononuclear cells from healthy donors (PBMCs, n=3) exposed to promastigotes isolated from patients with chronic (CHR, n=3) or self-healing (SH, n=3) CL, and compared these to human macrophage responses. Transcriptomes of L. V. panamensis-infected PBMCs showed enrichment of functional gene categories derived from innate as well as adaptive immune cells signatures, demonstrating that Leishmania modulates adaptive immune cell functions as early as after 24h post interaction with PBMCs from previously unexposed healthy individuals. Among differentially expressed PBMC genes, four broad categories were commonly modulated by SH and CHR strains: cell cycle/proliferation/differentiation, metabolism of macromolecules, immune signaling and vesicle trafficking/transport; the first two were predominantly downregulated, and the latter upregulated in SH and CHR as compared to uninfected samples. Type I IFN signaling genes were uniquely up-regulated in PBMCs infected with CHR strains, while genes involved in the immunological synapse were uniquely downregulated in SH infections. Similarly, pro-inflammatory response genes were upregulated in isolated macrophages infected with CHR strains. Our data demonstrate that early responses during Leishmania infection extend beyond innate cell and/or phagocytic host cell functions, opening new frontiers in our understanding of the triggers and drivers of human CL.
Collapse
Affiliation(s)
- Maria Adelaida Gomez
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
- Universidad IcesiI, Cali, Colombia
| | - Ashton Trey Belew
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD, United States
| | - Adriana Navas
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
| | - Mariana Rosales-Chilama
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
- Universidad IcesiI, Cali, Colombia
| | - Julieth Murillo
- Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM), Cali, Colombia
- Pontificia Universidad Javeriana, Cali, Colombia
| | - Laura A. L. Dillon
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD, United States
| | - Theresa A. Alexander
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| | | | - Najib M. El-Sayed
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD, United States
| |
Collapse
|
47
|
Bartleson JM, Radenkovic D, Covarrubias AJ, Furman D, Winer DA, Verdin E. SARS-CoV-2, COVID-19 and the Ageing Immune System. NATURE AGING 2021; 1:769-782. [PMID: 34746804 PMCID: PMC8570568 DOI: 10.1038/s43587-021-00114-7] [Citation(s) in RCA: 194] [Impact Index Per Article: 64.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 08/02/2021] [Indexed: 02/06/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is a global health threat with particular risk for severe disease and death in older adults and in adults with age-related metabolic and cardiovascular disease. Recent advances in the science of ageing have highlighted how ageing pathways control not only lifespan but also healthspan, the healthy years of life. Here, we discuss the ageing immune system and its ability to respond to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We specifically focus on the intersect of severe COVID-19 and immunosenescence to highlight pathways that may be determinant for the risk of complications and death following infection with SARS-CoV-2. New or adapted therapeutics that target ageing-associated pathways may be important tools to reduce the burden of death and long-term disability caused by this pandemic. Proposed interventions aimed at immunosenescence could enhance immune function not only in the elderly but in susceptible younger individuals as well, ultimately improving complications of severe COVID-19 for all ages.
Collapse
Affiliation(s)
| | - Dina Radenkovic
- Faculty of Life Sciences and Medicine, King's College London, London, UK
- Hooke, Health, Longevity Optimisation, London, UK
| | - Anthony J Covarrubias
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - David Furman
- Buck Institute for Research on Aging, Novato, CA, USA
| | | | - Eric Verdin
- Buck Institute for Research on Aging, Novato, CA, USA.
| |
Collapse
|
48
|
Prasad S, Sheng WS, Hu S, Chauhan P, Lokensgard JR. Dysregulated Microglial Cell Activation and Proliferation Following Repeated Antigen Stimulation. Front Cell Neurosci 2021; 15:686340. [PMID: 34447297 PMCID: PMC8383069 DOI: 10.3389/fncel.2021.686340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/16/2021] [Indexed: 12/16/2022] Open
Abstract
Upon reactivation of quiescent neurotropic viruses antigen (Ag)-specific brain resident-memory CD8+ T-cells (bTRM) may respond to de novo-produced viral Ag through the rapid release of IFN-γ, which drives subsequent interferon-stimulated gene expression in surrounding microglia. Through this mechanism, a small number of adaptive bTRM may amplify responses to viral reactivation leading to an organ-wide innate protective state. Over time, this brain-wide innate immune activation likely has cumulative neurotoxic and neurocognitive consequences. We have previously shown that HIV-1 p24 Ag-specific bTRM persist within the murine brain using a heterologous prime-CNS boost strategy. In response to Ag restimulation, these bTRM display rapid and robust recall responses, which subsequently activate glial cells. In this study, we hypothesized that repeated challenges to viral antigen (Ag) (modeling repeated episodes of viral reactivation) culminate in prolonged reactive gliosis and exacerbated neurotoxicity. To address this question, mice were first immunized with adenovirus vectors expressing the HIV p24 capsid protein, followed by a CNS-boost using Pr55Gag/Env virus-like particles (HIV-VLPs). Following the establishment of the bTRM population [>30 days (d)], prime-CNS boost animals were then subjected to in vivo challenge, as well as re-challenge (at 14 d post-challenge), using the immunodominant HIV-1 AI9 CD8+ T-cell epitope peptide. In these studies, Ag re-challenge resulted in prolonged expression of microglial activation markers and an increased proliferative response, longer than the challenge group. This continued expression of MHCII and PD-L1 (activation markers), as well as Ki67 (proliferative marker), was observed at 7, 14, and 30 days post-AI9 re-challenge. Additionally, in vivo re-challenge resulted in continued production of inducible nitric oxide synthase (iNOS) with elevated levels observed at 7, 14 and 30 days post re-challenge. Interestingly, iNOS expression was significantly lower among challenged animals when compared to re-challenged groups. Furthermore, in vivo specific Ag re-challenge produced lower levels of arginase (Arg)-1 when compared with the challenged group. Taken together, these results indicate that repeated Ag-specific stimulation of adaptive immune responses leads to cumulative dysregulated microglial cell activation.
Collapse
Affiliation(s)
- Sujata Prasad
- Neurovirology Laboratory, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Wen S Sheng
- Neurovirology Laboratory, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Shuxian Hu
- Neurovirology Laboratory, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Priyanka Chauhan
- Neurovirology Laboratory, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - James R Lokensgard
- Neurovirology Laboratory, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
49
|
Maurice NJ, Taber AK, Prlic M. The Ugly Duckling Turned to Swan: A Change in Perception of Bystander-Activated Memory CD8 T Cells. THE JOURNAL OF IMMUNOLOGY 2021; 206:455-462. [PMID: 33468558 DOI: 10.4049/jimmunol.2000937] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/11/2020] [Indexed: 12/23/2022]
Abstract
Memory T cells (Tmem) rapidly mount Ag-specific responses during pathogen reencounter. However, Tmem also respond to inflammatory cues in the absence of an activating TCR signal, a phenomenon termed bystander activation. Although bystander activation was first described over 20 years ago, the physiological relevance and the consequences of T cell bystander activation have only become more evident in recent years. In this review, we discuss the scenarios that trigger CD8 Tmem bystander activation including acute and chronic infections that are either systemic or localized, as well as evidence for bystander CD8 Tmem within tumors and following vaccination. We summarize the possible consequences of bystander activation for the T cell itself, the subsequent immune response, and the host. We highlight when T cell bystander activation appears to benefit or harm the host and briefly discuss our current knowledge gaps regarding regulatory signals that can control bystander activation.
Collapse
Affiliation(s)
- Nicholas J Maurice
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109.,Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195
| | - Alexis K Taber
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Martin Prlic
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109; .,Department of Immunology, University of Washington, Seattle, WA 98109; and.,Department of Global Health, University of Washington, Seattle, WA 98195
| |
Collapse
|
50
|
Pino M, Pereira Ribeiro S, Pagliuzza A, Ghneim K, Khan A, Ryan E, Harper JL, King CT, Welbourn S, Micci L, Aldrete S, Delman KA, Stuart T, Lowe M, Brenchley JM, Derdeyn CA, Easley K, Sekaly RP, Chomont N, Paiardini M, Marconi VC. Increased homeostatic cytokines and stability of HIV-infected memory CD4 T-cells identify individuals with suboptimal CD4 T-cell recovery on-ART. PLoS Pathog 2021; 17:e1009825. [PMID: 34449812 PMCID: PMC8397407 DOI: 10.1371/journal.ppat.1009825] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/23/2021] [Indexed: 01/12/2023] Open
Abstract
Clinical outcomes are inferior for individuals with HIV having suboptimal CD4 T-cell recovery during antiretroviral therapy (ART). We investigated if the levels of infection and the response to homeostatic cytokines of CD4 T-cell subsets contributed to divergent CD4 T-cell recovery and HIV reservoir during ART by studying virologically-suppressed immunologic responders (IR, achieving a CD4 cell count >500 cells/μL on or before two years after ART initiation), and virologically-suppressed suboptimal responders (ISR, did not achieve a CD4 cell count >500 cells/μL in the first two years after ART initiation). Compared to IR, ISR demonstrated higher levels of HIV-DNA in naïve, central (CM), transitional (TM), and effector (EM) memory CD4 T-cells in blood, both pre- and on-ART, and specifically in CM CD4 T-cells in LN on-ART. Furthermore, ISR had higher pre-ART plasma levels of IL-7 and IL-15, cytokines regulating T-cell homeostasis. Notably, pre-ART PD-1 and TIGIT expression levels were higher in blood CM and TM CD4 T-cells for ISR; this was associated with a significantly lower fold-changes in HIV-DNA levels between pre- and on-ART time points exclusively on CM and TM T-cell subsets, but not naïve or EM T-cells. Finally, the frequency of CM CD4 T-cells expressing PD-1 or TIGIT pre-ART as well as plasma levels of IL-7 and IL-15 predicted HIV-DNA content on-ART. Our results establish the association between infection, T-cell homeostasis, and expression of PD-1 and TIGIT in long-lived CD4 T-cell subsets prior to ART with CD4 T-cell recovery and HIV persistence on-ART.
Collapse
Affiliation(s)
- Maria Pino
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Atlanta, Georgia, United States of America
| | - Susan Pereira Ribeiro
- Department of Pathology and Laboratory Medicine, Emory School of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Amélie Pagliuzza
- Centre de Recherche du CHUM and Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, QC, Canada
| | - Khader Ghneim
- Department of Pathology and Laboratory Medicine, Emory School of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Anum Khan
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Emily Ryan
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Atlanta, Georgia, United States of America
| | - Justin L. Harper
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Atlanta, Georgia, United States of America
| | - Colin T. King
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Atlanta, Georgia, United States of America
| | - Sarah Welbourn
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Luca Micci
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Atlanta, Georgia, United States of America
| | - Sol Aldrete
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Keith A. Delman
- Division of Surgical Oncology, Department of Surgery, Winship Cancer Institute, Emory University, Atlanta, Georgia, United States of America
| | - Theron Stuart
- Emory Vaccine Center, Emory University, Hope Clinic, Decatur, Georgia, United States of America
| | - Michael Lowe
- Division of Surgical Oncology, Department of Surgery, Winship Cancer Institute, Emory University, Atlanta, Georgia, United States of America
| | - Jason M. Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Cynthia A. Derdeyn
- Department of Pathology and Laboratory Medicine, Emory School of Medicine, Emory University, Atlanta, Georgia, United States of America
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Kirk Easley
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Rafick P. Sekaly
- Department of Pathology and Laboratory Medicine, Emory School of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Nicolas Chomont
- Centre de Recherche du CHUM and Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, QC, Canada
| | - Mirko Paiardini
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory School of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Vincent C. Marconi
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Atlanta, Georgia, United States of America
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia, United States of America
| |
Collapse
|