1
|
Al-Hedaithy A, Alghamdi F, Almomen M, Amer F, Al Dossari S, Noreen Baig D, Bashir S. Comparative genetic diagnostic evaluation of pediatric neuromuscular diseases in a consanguineous population. Sci Rep 2025; 15:231. [PMID: 39747233 PMCID: PMC11695944 DOI: 10.1038/s41598-024-81744-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/28/2024] [Indexed: 01/04/2025] Open
Abstract
Neuromuscular diseases (NMD) are a group of neurological diseases that manifest with various clinical symptoms affecting different components of the peripheral nervous system, which play a role in voluntary body movements control. The primary objective of this study is to explore the diagnostic efficacy of a combined genetic and biochemical testing approach for patients with neuromuscular diseases with diverse presentations in a population with high rate of consanguinity. Genetic testing was performed using selected Next Generation Sequencing (NGS) gene panels and whole exome sequencing on the peripheral blood sample from the patients. The study results revealed that the majority of patients in our cohort had a history of consanguinity (83%). Genetic testing through gene panels and Whole Exome Sequencing yielded similar result. Out of the patients tested, 66% underwent gene panels testing, 56% had Whole Exome Sequencing, 32% received array Comparative Genomic Hybridization (CGH) assays, and 40% underwent metabolic testing. Overall, 58 patients (61%) received definitive results after following all tests. Among the remaining 36 patients, 19 exhibited variants of unknown significance (VOUS) (21%).
Collapse
Affiliation(s)
- Abdullah Al-Hedaithy
- Department of Pediatric Neurology, Neuroscience Center, King Fahad Specialist Hospital, Ammar Bin Thabit Street, 31444, Dammam, Saudi Arabia.
| | - Fouad Alghamdi
- Department of Pediatric Neurology, Neuroscience Center, King Fahad Specialist Hospital, Ammar Bin Thabit Street, 31444, Dammam, Saudi Arabia
| | - Momen Almomen
- Department of Pediatric Neurology, Neuroscience Center, King Fahad Specialist Hospital, Ammar Bin Thabit Street, 31444, Dammam, Saudi Arabia
| | - Fawzia Amer
- Department of Pediatric Neurology, Neuroscience Center, King Fahad Specialist Hospital, Ammar Bin Thabit Street, 31444, Dammam, Saudi Arabia
- Department of Pediatric Neurology and Metabolic, Cairo University Children Hospital, Cairo, Egypt
| | | | - Deeba Noreen Baig
- School of Life Sciences, Forman Christian College (A Chartered University) Lahore, Lahore, 54600, Pakistan
| | - Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia
- King Salman Center for Disability Research, 11614, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Fattahi Z, Shokouhian E, Peymani F, Babanejad M, Beheshtian M, Edizadeh M, Molaei N, Alagha P, Ghodratpour F, Keshavarzi F, Moghadam MG, Arzhangi S, Kahrizi K, Najmabadi H. Improved Diagnostic Yield in Recessive Intellectual Disability Utilizing Systematic Whole Exome Sequencing Data Reanalysis. Clin Genet 2025. [PMID: 39748273 DOI: 10.1111/cge.14692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025]
Abstract
Recent advances in next generation sequencing (NGS) have positioned whole exome sequencing (WES) as an efficient first-tier method in genetic diagnosis. However, despite the diagnostic yield of 35%-50% in intellectual disability (ID) many patients still remain undiagnosed due to inherent limitations and bioinformatic short-comings. In this study, we reanalyzed WES data from 159 Iranian families showing recessively inherited ID. The reanalysis was conducted with an initial clinical re-evaluation of the patients and their families, followed by data reanalysis using two updated bioinformatic pipelines. In the first phase, the BWA-GATK pipeline was utilized for alignment and variant calling, with subsequent variant annotation by the ANNOVAR tool. This approach yielded causative variants in 17 families (10.6%). Among these, six genes (MAZ, ACTR5, AKTIP, MIX23, SERPINB12, and CDC25B) were identified as novel candidates potentially associated with ID, supported by bioinformatics functional annotation and segregation analysis. In the second phase, families with negative results were reassessed using the Illumina DRAGEN Bio-IT platform for variant-calling, and Ilyome, a newly developed web-based tool, for annotation. The second phase identified likely pathogenic variants in two additional families, increasing the total diagnostic yield to 11.9% which is consistent with other studies conducted on cohorts of patients with ID. In conclusion, identification of co-segregating variants in six novel candidate genes in this study, emphasizes once more on the potential of WES reanalysis to uncover previously unknown gene-disease associations. Notably, it demonstrates that systematic reanalysis of WES data using updated bioinformatic tools and a thorough review of the literature for new gene-disease associations while performing phenotypic re-evaluation, can improve diagnostic outcome of WES in recessively inherited ID. Consequently, if performed within a 1-3 year period, it can reduce the number of cases that may require other costly diagnostic methods such as whole genome sequencing.
Collapse
Affiliation(s)
- Zohreh Fattahi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Ebrahim Shokouhian
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Fatemeh Peymani
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mojgan Babanejad
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Maryam Beheshtian
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Masoud Edizadeh
- Department of Bioinformatics, Genoks Genetic Diagnosis Center, Ankara, Turkey
| | - Negar Molaei
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Parnian Alagha
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Fatemeh Ghodratpour
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Fatemeh Keshavarzi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | | | - Sanaz Arzhangi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| |
Collapse
|
3
|
Li C, Wang Y, Zeng C, Huang B, Chen Y, Xue C, Liu L, Rong S, Lin Y. Trio-whole exome sequencing reveals the importance of de novo variants in children with intellectual disability and developmental delay. Sci Rep 2024; 14:27590. [PMID: 39528574 PMCID: PMC11555314 DOI: 10.1038/s41598-024-79431-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024] Open
Abstract
Understanding the genetic basis of developmental delay (DD) and intellectual disability (ID) remains a considerable clinical challenge. This study evaluated the clinical application of trio whole exome sequencing (WES) in children diagnosed with DD/ID. The study comprised 173 children with unexplained DD/ID. The participants underwent trio-WES and their demographic, clinical, and genetic characteristics were evaluated. Based on their clinical features, the participants were classified into two groups for further analysis: a syndromic DD/ID group and a non-syndromic DD/ID group. The genetic diagnostic yield of the 173 children diagnosed with DD/ID was 49.7% (86/173). This included 58 pathogenic or likely pathogenic single nucleotide variants (SNVs) in 41 genes identified across 54 individuals (31.2%) through trio-WES. Among these, 22 SNVs had not been previously reported. Additionally, 30 copy number variations (CNVs) were detected in 36 individuals (20.8%). The diagnostic yield in the syndromic DD/ID group was higher than that in the non-syndromic DD/ID group (57.8% vs. 47.2%, P < 0.001). Within the syndromic DD/ID subgroup, the diagnostic yield of the DD/ID with epilepsy subgroup (83.9%) was significantly higher than those of the other subgroups (P < 0.001). Based on the analysis of the individuals' clinical phenotypes, the individuals with facial dysmorphism shown a higher diagnostic yield (68.2%, P < 0.001). The diagnostic yield of SNVs was higher in the individuals with DD/ID accompanied by epilepsy, whereas the diagnostic yield of CNVs was higher in the DD/ID without epilepsy group. Similarly, the diagnostic yield of de novo SNVs was higher in the DD/ID with epilepsy group, while the diagnostic yield of de novo CNVs was higher in the DD/ID without epilepsy group (all P < 0.001). Trio-WES is a crucial tool for the genetic diagnosis of DD/ID, demonstrating a diagnostic yield of up to 49.7%. De novo variants in autosomal dominant genes are significant contributors to DD/ID, particularly in non-consanguineous families.
Collapse
Affiliation(s)
- Chengyan Li
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, No. 57, Renmin Avenue (South), Xiashan, Zhanjiang, 524000, Guangdong Province, People's Republic of China
| | - You Wang
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, No. 57, Renmin Avenue (South), Xiashan, Zhanjiang, 524000, Guangdong Province, People's Republic of China
| | - Cizheng Zeng
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, No. 57, Renmin Avenue (South), Xiashan, Zhanjiang, 524000, Guangdong Province, People's Republic of China
| | - Binglong Huang
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, No. 57, Renmin Avenue (South), Xiashan, Zhanjiang, 524000, Guangdong Province, People's Republic of China
| | - Yinhui Chen
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, No. 57, Renmin Avenue (South), Xiashan, Zhanjiang, 524000, Guangdong Province, People's Republic of China
| | - Chupeng Xue
- Department of Pediatrics, Shantou Central Hospital, ShanTou, 515000, Guangdong Province, People's Republic of China
| | - Ling Liu
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, No. 57, Renmin Avenue (South), Xiashan, Zhanjiang, 524000, Guangdong Province, People's Republic of China
| | - Shiwen Rong
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, No. 57, Renmin Avenue (South), Xiashan, Zhanjiang, 524000, Guangdong Province, People's Republic of China
| | - Yongwen Lin
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, No. 57, Renmin Avenue (South), Xiashan, Zhanjiang, 524000, Guangdong Province, People's Republic of China.
| |
Collapse
|
4
|
Sadr Z, Rohani M, Jamali P, Alavi A. A case report of concurrent occurrence of two inherited axonopathies within a family: the benefit of whole-exome sequencing. Int J Neurosci 2024; 134:1282-1287. [PMID: 37712628 DOI: 10.1080/00207454.2023.2260091] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/12/2023] [Indexed: 09/16/2023]
Abstract
Mutations in ERLIN2 and MFN2 lead to the development of spastic paraplegia-18 (SPG18) and Charcot-Marie-Tooth type-2A (CMT2A), respectively. These disorders are unified by the fact that both can be termed inherited axonopathies. With whole-exome sequencing (WES), more patients of neurological disorders with clinical overlaps receive a genetic result than ever before. This study describes an Iranian family who harbor mutations in ERLIN2 and MFN2, simultaneously. The proband was a 73-year old man who has experienced weakness and spasticity of lower limbs since late childhood. He was diagnosed with hereditary spastic paraplegia (HSP). His WES identified a novel homozygous variant in ERLIN2 as well as a known heterozygous variant in MFN2. These variants were cosegregated with the phenotypes among the family members. His sister with a similar phenotype just carried the homozygous ERLIN2 variant, whereas, his asymptomatic brother and daughter carried the heterozygous variant of MFN2. Re-evaluation of the MFN2 variant carriers by nerve conduction study revealed that only the proband's daughter has peripheral neuropathy. Herein, using WES two distinct disease-causing variants with different modes of inheritance in ERLIN2 and MFN2 were detected in the proband. As expected, individuals with a defined MFN2 variant, p.Arg468His, were asymptomatic or had a mild phenotype. The co-occurrence of such diseases, SPG18 and CMT2A, may result in the milder phenotype to be overlooked or its features considered as a part of the symptoms of other disease. Certainly, providing genetic counseling in such cases can be challenging. These cases reveal the importance of WES.
Collapse
Affiliation(s)
- Zahra Sadr
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mohammad Rohani
- Department of Neurology, Hazrat Rasool Hospital, School of Medicines, Iran University of Medical Sciences, Tehran, Iran
| | | | - Afagh Alavi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
- Neuromuscular Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Samhani C, Guerci B, Larose C. Discovery of a TRMT10A mutation in a case of atypical diabetes: Case report. DIABETES & METABOLISM 2024; 50:101572. [PMID: 39243962 DOI: 10.1016/j.diabet.2024.101572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024]
Abstract
It is notable that monogenic forms of diabetes are exceedingly uncommon, with only 28 genes thus far identified. Such conditions frequently result in the dysfunction of pancreatic cells responsible for insulin production. Mutation in the TRMT10A gene leads to a rare genetic disease that is associated with endocrine and metabolic disorders, including diabetes and short stature. This article presents a review of the existing literature on the subject, describing the association between TRMT10A gene mutation and diabetes. It also presents the clinical case of a young girl with type 1 diabetes and facial dysmorphia. TRMT10A gene mutation has been linked to syndromic juvenile diabetes in a manner analogous to Wolfram's syndrome. This form of diabetes, which manifests in early childhood and is associated with microcephaly, epilepsy and intellectual disability, is caused by mutations in the gene for homolog A of tRNA methyltransferase 10 (TRMT10A). This emphasizes the importance of using a targeted panel to recognize previously unidentified monogenic diabetes among early-onset non-insulin-dependent diabetes in the absence of obesity and autoimmunity. In view of the aforementioned data, it is recommended that TRMT10A sequencing be considered in children or adults with early-onset diabetes and a history of intellectual disability, microcephaly and epilepsy.
Collapse
Affiliation(s)
- C Samhani
- Department of Endocrinology, Diabetology, and Nutrition, Brabois Adult Hospital, University of Lorraine, Vandoeuvre-lès-Nancy, France
| | - B Guerci
- Department of Endocrinology, Diabetology, and Nutrition, Brabois Adult Hospital, University of Lorraine, Vandoeuvre-lès-Nancy, France; Faculty of Medicine, University of Lorraine, Vandoeuvre-lès-Nancy, France
| | - C Larose
- Faculty of Medicine, University of Lorraine, Vandoeuvre-lès-Nancy, France; Department of Urology, University Hospital, Nancy, France.
| |
Collapse
|
6
|
Pande S, Joseph S, Sudhakar DVS, Bhanothu V, Babu S, Gawde H, Kadam S, Minde N. Emphasizing the need for preconceptional, prenatal genetic counseling and comprehensive genetic testing in consanguinity: challenges and experience. Mol Genet Genomics 2024; 299:91. [PMID: 39365491 DOI: 10.1007/s00438-024-02187-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 09/17/2024] [Indexed: 10/05/2024]
Abstract
Preconception and prenatal genetic counseling is a well-established means of risk assessment in many parts of the world, and in recent years, an emerging concept in India. Likelihood of an offspring having autosomal recessive disorder increases based on the degree of consanguinity. Hence, genetic testing of the couple for the identification of carrier status for disease-causing variants is crucial. The purpose of this study is to understand the frequency of genetic abnormalities in consanguineous marriages by using a comprehensive genetic testing algorithm where in karyotyping, FISH, exome sequencing and microarray are used sequentially to determine the genetic etiology based on the clinical presentation and to evaluate the need and benefits of preconceptional and prenatal genetic counseling. This retrospective study includes 66 couples having consanguinity referred for genetic counseling and testing. Of the 66 couples, 58 underwent comprehensive genetic testing which included Karyotyping, Fluorescence in Situ Hybridization (FISH), Microarray and Exome sequencing based on their clinical presentation. The analyses revealed a genetic abnormality in approximately 31% and chromosomal polymorphic variations & variants of uncertain significance in 17% of the couples. Counseling in these couples helped in identifying the carrier status and enabled them to take an informed decision in subsequent pregnancies. These findings reiterate the acute need for preconception and prenatal genetic counseling services in India.
Collapse
Affiliation(s)
- Shailesh Pande
- Genetic Research Centre, ICMR-National Institute for Research in Reproductive and Child Health, Jehangir Merwanji Street, Parel, Mumbai, 400012, India.
| | - Shaini Joseph
- Genetic Research Centre, ICMR-National Institute for Research in Reproductive and Child Health, Jehangir Merwanji Street, Parel, Mumbai, 400012, India
| | - Digumarthi V S Sudhakar
- Genetic Research Centre, ICMR-National Institute for Research in Reproductive and Child Health, Jehangir Merwanji Street, Parel, Mumbai, 400012, India
| | - Venkanna Bhanothu
- Genetic Research Centre, ICMR-National Institute for Research in Reproductive and Child Health, Jehangir Merwanji Street, Parel, Mumbai, 400012, India
| | - Shiny Babu
- Genetic Research Centre, ICMR-National Institute for Research in Reproductive and Child Health, Jehangir Merwanji Street, Parel, Mumbai, 400012, India
| | - Harshvardhan Gawde
- Genetic Research Centre, ICMR-National Institute for Research in Reproductive and Child Health, Jehangir Merwanji Street, Parel, Mumbai, 400012, India
| | - Seema Kadam
- Genetic Research Centre, ICMR-National Institute for Research in Reproductive and Child Health, Jehangir Merwanji Street, Parel, Mumbai, 400012, India
| | - Neha Minde
- Genetic Research Centre, ICMR-National Institute for Research in Reproductive and Child Health, Jehangir Merwanji Street, Parel, Mumbai, 400012, India
| |
Collapse
|
7
|
Wu J, Gan J, Hua Y, Li Y, Qie D. Case report: A novel de novo variant of NACC1 caused epileptic encephalopathy and intellectual disability. Front Psychiatry 2024; 15:1446698. [PMID: 39421062 PMCID: PMC11484253 DOI: 10.3389/fpsyt.2024.1446698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/04/2024] [Indexed: 10/19/2024] Open
Abstract
Background Genetic disorders could also contribute to intellectual disability. Using whole exome sequencing (WES), several variants have been identified as autosomal-dominant inheritance intellectual disability. Thus, the application of WES has demonstrated its critical role in distinguishing intellectual disability in children patients, which provides essential diagnosis and promotes therapeutic strategy. Case presentation The proband, an 18-month-old female patient, presented with a complex clinical profile characterized by profound developmental delay, epilepsy, and neurological developmental impairment. WES identified a heterozygous c.913A>G variant in exon 2 of NACC1, resulting in disease caused by a change in the amino acid sequence, affecting the protein features and resulting in splice site changes, as revealed by MutationTaster analysis. The protein structure of NAC1 was built and named AF-Q96RE7-F1, and the mutant site was beyond the BTB/POZ, NLS, and BEN domains. Subsequently, PyMOL software was used to illustrate the molecular structure between the wild type and the mutant type of NAC1. The residues around the 304 site of amino acid changed in NAC1 p.T304A with an altered hydrogen bond, indicating an unstable structure. The patient was diagnosed with intellectual disability and profound developmental delay with epilepsy harboring a novel de novo NACC1 variant. Upon hospital admission, a comprehensive treatment regimen was initiated, including antiseizure medications, nutritional supplements, and rehabilitation training. As a result, the patient's movement performance improved. However, recurrent epilepsy attacks still occurred. Conclusion This is the first case revealing a novel NACC1 c.903A>G variant that induced a neurological impairment in an infant. This report expanded the understanding of the non-domain-associated variant of NACC1 and developmental disorder.
Collapse
Affiliation(s)
| | | | | | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education (MOE), Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Di Qie
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education (MOE), Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Yousaf A, Hafeez H, Basra MAR, Rice ML, Raza MH, Shabbir MI. Genome-Wide Mapping of Consanguineous Families Confirms Previously Implicated Gene Loci and Suggests New Loci in Specific Language Impairment (SLI). CHILDREN (BASEL, SWITZERLAND) 2024; 11:1063. [PMID: 39334596 PMCID: PMC11429814 DOI: 10.3390/children11091063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/22/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024]
Abstract
Specific language impairment (SLI) is a developmental disorder with substantial genetic contributions. A genome-wide linkage analysis and homozygosity mapping were performed in five consanguineous families from Pakistan. The highest LOD scores of 2.49 at 12p11.22-q11.21 in family PKSLI-31 and 1.92 at 6p in family PKSLI-20 were observed. Homozygosity mapping showed a loss of heterozygosity on 1q25.3-q32.2 and 2q36.3-q37.3 in PKSLI-20. A loss of heterozygosity mapped, in PKSLI-31 and PKSLI-34 flanks, NFXL1 and CNTNAP2, which are genes previously identified in SLI. Our findings report novel SLI loci and corroborate previously reported SLI loci, indicating the utility of a family-based approach.
Collapse
Affiliation(s)
- Adnan Yousaf
- Department of Biological Sciences, International Islamic University, Islamabad 45500, Pakistan
- Speech-Language-Hearing: Sciences & Disorders, University of Kansas, Lawrence, KS 66045-7555, USA
| | - Huma Hafeez
- Centre for Clinical and Nutritional Chemistry, School of Chemistry, University of the Punjab, New Campus Lahore, Lahore 54590, Pakistan
| | - Muhammad Asim Raza Basra
- Centre for Clinical and Nutritional Chemistry, School of Chemistry, University of the Punjab, New Campus Lahore, Lahore 54590, Pakistan
| | - Mabel L Rice
- Speech-Language-Hearing: Sciences & Disorders, University of Kansas, Lawrence, KS 66045-7555, USA
| | - Muhammad Hashim Raza
- Speech-Language-Hearing: Sciences & Disorders, University of Kansas, Lawrence, KS 66045-7555, USA
| | - Muhammad Imran Shabbir
- Department of Biological Sciences, International Islamic University, Islamabad 45500, Pakistan
| |
Collapse
|
9
|
Massey S, Ang CS, Davidson NM, Quigley A, Rollo B, Harris AR, Kapsa RMI, Christodoulou J, Van Bergen NJ. Novel CDKL5 targets identified in human iPSC-derived neurons. Cell Mol Life Sci 2024; 81:347. [PMID: 39136782 PMCID: PMC11335273 DOI: 10.1007/s00018-024-05389-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/01/2024] [Accepted: 07/31/2024] [Indexed: 08/22/2024]
Abstract
CDKL5 Deficiency Disorder (CDD) is a debilitating epileptic encephalopathy disorder affecting young children with no effective treatments. CDD is caused by pathogenic variants in Cyclin-Dependent Kinase-Like 5 (CDKL5), a protein kinase that regulates key phosphorylation events in neurons. For therapeutic intervention, it is essential to understand molecular pathways and phosphorylation targets of CDKL5. Using an unbiased phosphoproteomic approach we identified novel targets of CDKL5, including GTF2I, PPP1R35, GATAD2A and ZNF219 in human iPSC-derived neuronal cells. The phosphoserine residue in the target proteins lies in the CDKL5 consensus motif. We validated direct phosphorylation of GTF2I and PPP1R35 by CDKL5 using complementary approaches. GTF2I controls axon guidance, cell cycle and neurodevelopment by regulating expression of neuronal genes. PPP1R35 is critical for centriole elongation and cilia morphology, processes that are impaired in CDD. PPP1R35 interacts with CEP131, a known CDKL5 phospho-target. GATAD2A and ZNF219 belong to the Nucleosome Remodelling Deacetylase (NuRD) complex, which regulates neuronal activity-dependent genes and synaptic connectivity. In-depth knowledge of molecular pathways regulated by CDKL5 will allow a better understanding of druggable disease pathways to fast-track therapeutic development.
Collapse
Affiliation(s)
- Sean Massey
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia
| | - Ching-Seng Ang
- The Bio21 Institute of Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - Nadia M Davidson
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, 3052, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Anita Quigley
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia
- Centre for Clinical Neurosciences and Neurological Research, St. Vincent's Hospital Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia
- Department of Medicine, St Vincent's Hospital Melbourne, The University of Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia
| | - Ben Rollo
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Alexander R Harris
- Department of Biomedical Engineering, University of Melbourne, Melbourne, 3010, Australia
| | - Robert M I Kapsa
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia
- Centre for Clinical Neurosciences and Neurological Research, St. Vincent's Hospital Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia
- Department of Medicine, St Vincent's Hospital Melbourne, The University of Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia
| | - John Christodoulou
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, 3052, Australia
- Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, VIC, 3052, Australia
- Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Nicole J Van Bergen
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia.
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, 3052, Australia.
- Department of Paediatrics, University of Melbourne, c/o MCRI, 50 Flemington Road, Parkville, VIC, 3052, Australia.
| |
Collapse
|
10
|
Schmidt A, Danyel M, Grundmann K, Brunet T, Klinkhammer H, Hsieh TC, Engels H, Peters S, Knaus A, Moosa S, Averdunk L, Boschann F, Sczakiel HL, Schwartzmann S, Mensah MA, Pantel JT, Holtgrewe M, Bösch A, Weiß C, Weinhold N, Suter AA, Stoltenburg C, Neugebauer J, Kallinich T, Kaindl AM, Holzhauer S, Bührer C, Bufler P, Kornak U, Ott CE, Schülke M, Nguyen HHP, Hoffjan S, Grasemann C, Rothoeft T, Brinkmann F, Matar N, Sivalingam S, Perne C, Mangold E, Kreiss M, Cremer K, Betz RC, Mücke M, Grigull L, Klockgether T, Spier I, Heimbach A, Bender T, Brand F, Stieber C, Morawiec AM, Karakostas P, Schäfer VS, Bernsen S, Weydt P, Castro-Gomez S, Aziz A, Grobe-Einsler M, Kimmich O, Kobeleva X, Önder D, Lesmann H, Kumar S, Tacik P, Basin MA, Incardona P, Lee-Kirsch MA, Berner R, Schuetz C, Körholz J, Kretschmer T, Di Donato N, Schröck E, Heinen A, Reuner U, Hanßke AM, Kaiser FJ, Manka E, Munteanu M, Kuechler A, Cordula K, Hirtz R, Schlapakow E, Schlein C, Lisfeld J, Kubisch C, Herget T, Hempel M, Weiler-Normann C, Ullrich K, Schramm C, Rudolph C, Rillig F, Groffmann M, Muntau A, Tibelius A, Schwaibold EMC, Schaaf CP, Zawada M, Kaufmann L, Hinderhofer K, Okun PM, Kotzaeridou U, Hoffmann GF, Choukair D, Bettendorf M, Spielmann M, Ripke A, Pauly M, Münchau A, Lohmann K, Hüning I, Hanker B, Bäumer T, Herzog R, Hellenbroich Y, Westphal DS, Strom T, Kovacs R, Riedhammer KM, Mayerhanser K, Graf E, Brugger M, Hoefele J, Oexle K, Mirza-Schreiber N, Berutti R, Schatz U, Krenn M, Makowski C, Weigand H, Schröder S, Rohlfs M, Vill K, Hauck F, Borggraefe I, Müller-Felber W, Kurth I, Elbracht M, Knopp C, Begemann M, Kraft F, Lemke JR, Hentschel J, Platzer K, Strehlow V, Abou Jamra R, Kehrer M, Demidov G, Beck-Wödl S, Graessner H, Sturm M, Zeltner L, Schöls LJ, Magg J, Bevot A, Kehrer C, Kaiser N, Turro E, Horn D, Grüters-Kieslich A, Klein C, Mundlos S, Nöthen M, Riess O, Meitinger T, Krude H, Krawitz PM, Haack T, Ehmke N, Wagner M. Next-generation phenotyping integrated in a national framework for patients with ultrarare disorders improves genetic diagnostics and yields new molecular findings. Nat Genet 2024; 56:1644-1653. [PMID: 39039281 PMCID: PMC11319204 DOI: 10.1038/s41588-024-01836-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 06/18/2024] [Indexed: 07/24/2024]
Abstract
Individuals with ultrarare disorders pose a structural challenge for healthcare systems since expert clinical knowledge is required to establish diagnoses. In TRANSLATE NAMSE, a 3-year prospective study, we evaluated a novel diagnostic concept based on multidisciplinary expertise in Germany. Here we present the systematic investigation of the phenotypic and molecular genetic data of 1,577 patients who had undergone exome sequencing and were partially analyzed with next-generation phenotyping approaches. Molecular genetic diagnoses were established in 32% of the patients totaling 370 distinct molecular genetic causes, most with prevalence below 1:50,000. During the diagnostic process, 34 novel and 23 candidate genotype-phenotype associations were identified, mainly in individuals with neurodevelopmental disorders. Sequencing data of the subcohort that consented to computer-assisted analysis of their facial images with GestaltMatcher could be prioritized more efficiently compared with approaches based solely on clinical features and molecular scores. Our study demonstrates the synergy of using next-generation sequencing and phenotyping for diagnosing ultrarare diseases in routine healthcare and discovering novel etiologies by multidisciplinary teams.
Collapse
Affiliation(s)
- Axel Schmidt
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Magdalena Danyel
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
- BIH Charité Clinician Scientist Program, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Kathrin Grundmann
- Institute for Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Theresa Brunet
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, München, Germany
| | - Hannah Klinkhammer
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
- Institut für Medizinische Biometrie, Informatik und Epidemiologie, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Tzung-Chien Hsieh
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Hartmut Engels
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Sophia Peters
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Alexej Knaus
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Shahida Moosa
- Institute for Medical Genetics, Stellenbosch University, Cape Town, South Africa
| | - Luisa Averdunk
- Department of Pediatrics, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Felix Boschann
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
- BIH Charité Clinician Scientist Program, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Henrike Lisa Sczakiel
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
- BIH Charité Clinician Scientist Program, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sarina Schwartzmann
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Martin Atta Mensah
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
- BIH Charité Clinician Scientist Program, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jean Tori Pantel
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Manuel Holtgrewe
- Core Uni Bioinformatics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Annemarie Bösch
- Department of Pediatrics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Claudia Weiß
- Department of Pediatrics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Natalie Weinhold
- Department of Pediatrics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Aude-Annick Suter
- Department of Pediatrics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Corinna Stoltenburg
- Department of Pediatrics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Julia Neugebauer
- Department of Pediatrics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Tillmann Kallinich
- Department of Pediatrics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Angela M Kaindl
- Department of Pediatric Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Center for Chronically Sick Children, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Institute of Cell and Neurobiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Susanne Holzhauer
- Department of Pediatrics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christoph Bührer
- Department of Pediatrics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Philip Bufler
- Department of Pediatrics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Uwe Kornak
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Claus-Eric Ott
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Markus Schülke
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Sabine Hoffjan
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
| | - Corinna Grasemann
- Department of Pediatrics Bochum and CeSER, Ruhr University Bochum, Bochum, Germany
| | - Tobias Rothoeft
- Department of Pediatrics Bochum and CeSER, Ruhr University Bochum, Bochum, Germany
| | - Folke Brinkmann
- Department of Pediatrics Bochum and CeSER, Ruhr University Bochum, Bochum, Germany
| | - Nora Matar
- Department of Pediatrics Bochum and CeSER, Ruhr University Bochum, Bochum, Germany
| | - Sugirthan Sivalingam
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Claudia Perne
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Elisabeth Mangold
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Martina Kreiss
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Kirsten Cremer
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Regina C Betz
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Martin Mücke
- Center for Rare Diseases, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Lorenz Grigull
- Center for Rare Diseases, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Thomas Klockgether
- Department of Neurology, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Isabel Spier
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - André Heimbach
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Tim Bender
- Center for Rare Diseases, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Fabian Brand
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Christiane Stieber
- Center for Rare Diseases, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Alexandra Marzena Morawiec
- Center for Rare Diseases, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Pantelis Karakostas
- Clinic for Internal Medicine III, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Valentin S Schäfer
- Clinic for Internal Medicine III, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Sarah Bernsen
- Center for Rare Diseases, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Patrick Weydt
- Department of Neurology, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Sergio Castro-Gomez
- Department of Neurology, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Ahmad Aziz
- Department of Neurology, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Marcus Grobe-Einsler
- Department of Neurology, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Okka Kimmich
- Department of Neurology, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Xenia Kobeleva
- Department of Neurology, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Demet Önder
- Department of Neurology, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Hellen Lesmann
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Sheetal Kumar
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Pawel Tacik
- Department of Neurology, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Meghna Ahuja Basin
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Pietro Incardona
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Min Ae Lee-Kirsch
- University Center for Rare Diseases, University Hospital Carl Gustav Carus, Dresden, Germany
- Department of Pediatrics, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Reinhard Berner
- University Center for Rare Diseases, University Hospital Carl Gustav Carus, Dresden, Germany
- Department of Pediatrics, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Catharina Schuetz
- University Center for Rare Diseases, University Hospital Carl Gustav Carus, Dresden, Germany
- Department of Pediatrics, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Julia Körholz
- University Center for Rare Diseases, University Hospital Carl Gustav Carus, Dresden, Germany
- Department of Pediatrics, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Tanita Kretschmer
- University Center for Rare Diseases, University Hospital Carl Gustav Carus, Dresden, Germany
- Department of Pediatrics, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Nataliya Di Donato
- University Center for Rare Diseases, University Hospital Carl Gustav Carus, Dresden, Germany
- Institute for Clinical Genetics, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Evelin Schröck
- University Center for Rare Diseases, University Hospital Carl Gustav Carus, Dresden, Germany
- Institute for Clinical Genetics, University Hospital Carl Gustav Carus, Dresden, Germany
| | - André Heinen
- University Center for Rare Diseases, University Hospital Carl Gustav Carus, Dresden, Germany
- Department of Pediatrics, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Ulrike Reuner
- University Center for Rare Diseases, University Hospital Carl Gustav Carus, Dresden, Germany
- Department of Neurology, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Amalia-Mihaela Hanßke
- University Center for Rare Diseases, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Frank J Kaiser
- Institute of Human Genetics, University Hospital Essen, Essen, Germany
| | - Eva Manka
- Department of Pediatrics II, University Hospital Essen, Essen, Germany
| | - Martin Munteanu
- Institute of Human Genetics, University Hospital Essen, Essen, Germany
| | - Alma Kuechler
- Institute of Human Genetics, University Hospital Essen, Essen, Germany
| | - Kiewert Cordula
- Department of Pediatrics II, University Hospital Essen, Essen, Germany
| | - Raphael Hirtz
- Department of Pediatrics II, University Hospital Essen, Essen, Germany
| | - Elena Schlapakow
- Department of Neurology, University Hospital Halle, Halle, Germany
| | - Christian Schlein
- Institute of Human Genetics, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Jasmin Lisfeld
- Institute of Human Genetics, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Kubisch
- Institute of Human Genetics, University Hospital Hamburg-Eppendorf, Hamburg, Germany
- Martin Zeitz Center for Rare Diseases, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Theresia Herget
- Institute of Human Genetics, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Maja Hempel
- Institute of Human Genetics, University Hospital Hamburg-Eppendorf, Hamburg, Germany
- Martin Zeitz Center for Rare Diseases, University Hospital Hamburg-Eppendorf, Hamburg, Germany
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Christina Weiler-Normann
- Martin Zeitz Center for Rare Diseases, University Hospital Hamburg-Eppendorf, Hamburg, Germany
- I. Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Kurt Ullrich
- Martin Zeitz Center for Rare Diseases, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Schramm
- Martin Zeitz Center for Rare Diseases, University Hospital Hamburg-Eppendorf, Hamburg, Germany
- I. Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Cornelia Rudolph
- Martin Zeitz Center for Rare Diseases, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Franziska Rillig
- Martin Zeitz Center for Rare Diseases, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Maximilian Groffmann
- Martin Zeitz Center for Rare Diseases, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Ania Muntau
- Department of Pediatrics, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | - Michal Zawada
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Lilian Kaufmann
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | | | - Pamela M Okun
- Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Urania Kotzaeridou
- Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Georg F Hoffmann
- Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Daniela Choukair
- Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Markus Bettendorf
- Center for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Malte Spielmann
- Institute of Human Genetics, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Annekatrin Ripke
- Center for Rare Diseases, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Martje Pauly
- Department of Neurology, University Hospital Schleswig-Holstein, Lübeck, Germany
- Institute for Neurogenetics, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Alexander Münchau
- Center for Rare Diseases, University Hospital Schleswig-Holstein, Lübeck, Germany
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Irina Hüning
- Institute of Human Genetics, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Britta Hanker
- Institute of Human Genetics, University of Lübeck, Lübeck, Germany
| | - Tobias Bäumer
- Center for Rare Diseases, University Hospital Schleswig-Holstein, Lübeck, Germany
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Rebecca Herzog
- Center for Rare Diseases, University Hospital Schleswig-Holstein, Lübeck, Germany
- Department of Neurology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Yorck Hellenbroich
- Department of Human Genetics, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Dominik S Westphal
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, München, Germany
| | - Tim Strom
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, München, Germany
| | - Reka Kovacs
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, München, Germany
| | - Korbinian M Riedhammer
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, München, Germany
- Department of Nephrology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, München, Germany
| | - Katharina Mayerhanser
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, München, Germany
| | - Elisabeth Graf
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, München, Germany
| | - Melanie Brugger
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, München, Germany
| | - Julia Hoefele
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, München, Germany
| | - Konrad Oexle
- Institute of Neurogenomics, Helmholtz Zentrum München, München, Germany
| | | | - Riccardo Berutti
- Institute of Neurogenomics, Helmholtz Zentrum München, München, Germany
| | - Ulrich Schatz
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, München, Germany
| | - Martin Krenn
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, München, Germany
- Department of Neurology, Medical University of Vienna, Wien, Austria
| | - Christine Makowski
- Department of Paediatrics, Adolescent Medicine and Neonatology, München, Germany
| | - Heike Weigand
- Dr. von Hauner Children's Hospital, University Hospital Munich, München, Germany
| | - Sebastian Schröder
- Dr. von Hauner Children's Hospital, University Hospital Munich, München, Germany
| | - Meino Rohlfs
- Dr. von Hauner Children's Hospital, University Hospital Munich, München, Germany
| | - Katharina Vill
- Dr. von Hauner Children's Hospital, University Hospital Munich, München, Germany
| | - Fabian Hauck
- Dr. von Hauner Children's Hospital, University Hospital Munich, München, Germany
| | - Ingo Borggraefe
- Dr. von Hauner Children's Hospital, University Hospital Munich, München, Germany
| | | | - Ingo Kurth
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Miriam Elbracht
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Cordula Knopp
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Matthias Begemann
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Florian Kraft
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Center for Rare Diseases, University of Leipzig Medical Center, Leipzig, Germany
| | - Julia Hentschel
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Vincent Strehlow
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Martin Kehrer
- Institute for Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - German Demidov
- Institute for Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Stefanie Beck-Wödl
- Institute for Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Holm Graessner
- Center for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Marc Sturm
- Institute for Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Lena Zeltner
- Center for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Ludger J Schöls
- Department of Neurology, University of Tübingen, Tübingen, Germany
| | - Janine Magg
- Center for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Andrea Bevot
- Department of Pediatric Neurology and Developmental Medicine, University of Tübingen, Tübingen, Germany
| | - Christiane Kehrer
- Department of Pediatric Neurology and Developmental Medicine, University of Tübingen, Tübingen, Germany
| | - Nadja Kaiser
- Department of Pediatric Neurology and Developmental Medicine, University of Tübingen, Tübingen, Germany
| | - Ernest Turro
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Denise Horn
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Christoph Klein
- Dr. von Hauner Children's Hospital, University Hospital Munich, München, Germany
| | - Stefan Mundlos
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Markus Nöthen
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Olaf Riess
- Institute for Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, München, Germany
| | - Heiko Krude
- Berlin Centre for Rare Diseases, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Peter M Krawitz
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany.
| | - Tobias Haack
- Institute for Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Nadja Ehmke
- Institute for Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
- BIH Charité Clinician Scientist Program, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Matias Wagner
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, München, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, München, Germany
- Dr. von Hauner Children's Hospital, University Hospital Munich, München, Germany
| |
Collapse
|
11
|
Saima, Khan A, Ali S, Jiang J, Miao Z, Kamil A, Khan SN, Arold ST. Clinical genomics expands the link between erroneous cell division, primary microcephaly and intellectual disability. Neurogenetics 2024; 25:179-191. [PMID: 38795246 DOI: 10.1007/s10048-024-00759-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 04/09/2024] [Indexed: 05/27/2024]
Abstract
Primary microcephaly is a rare neurogenic and genetically heterogeneous disorder characterized by significant brain size reduction that results in numerous neurodevelopmental disorders (NDD) problems, including mild to severe intellectual disability (ID), global developmental delay (GDD), seizures and other congenital malformations. This disorder can arise from a mutation in genes involved in various biological pathways, including those within the brain. We characterized a recessive neurological disorder observed in nine young adults from five independent consanguineous Pakistani families. The disorder is characterized by microcephaly, ID, developmental delay (DD), early-onset epilepsy, recurrent infection, hearing loss, growth retardation, skeletal and limb defects. Through exome sequencing, we identified novel homozygous variants in five genes that were previously associated with brain diseases, namely CENPJ (NM_018451.5: c.1856A > G; p.Lys619Arg), STIL (NM_001048166.1: c.1235C > A; p.(Pro412Gln), CDK5RAP2 (NM_018249.6 c.3935 T > G; p.Leu1312Trp), RBBP8 (NM_203291.2 c.1843C > T; p.Gln615*) and CEP135 (NM_025009.5 c.1469A > G; p.Glu490Gly). These variants were validated by Sanger sequencing across all family members, and in silico structural analysis. Protein 3D homology modeling of wild-type and mutated proteins revealed substantial changes in the structure, suggesting a potential impact on function. Importantly, all identified genes play crucial roles in maintaining genomic integrity during cell division, with CENPJ, STIL, CDK5RAP2, and CEP135 being involved in centrosomal function. Collectively, our findings underscore the link between erroneous cell division, particularly centrosomal function, primary microcephaly and ID.
Collapse
Affiliation(s)
- Saima
- Department of Biotechnology, Abdul Wali Khan University, Mardan, 23200, Khyber Pakhtunkhwa, Pakistan
| | - Amjad Khan
- Department of Zoology, University of Lakki Marwat, Lakki, 28420, Khyber Pakhtunkhwa, Pakistan.
- Institute for Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.
- Alexander Von Humboldt Fellowship Foundation, Berlin, Germany.
| | - Sajid Ali
- Department of Biotechnology, Abdul Wali Khan University, Mardan, 23200, Khyber Pakhtunkhwa, Pakistan
| | - Jiuhong Jiang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, China
| | - Zhichao Miao
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Atif Kamil
- Department of Biotechnology, Abdul Wali Khan University, Mardan, 23200, Khyber Pakhtunkhwa, Pakistan
- Department of Internal Medicine, Brody Medicine School, East Carolina University, Greenville, NC, USA
| | - Shahid Niaz Khan
- Department of Zoology, Kohat University of Science & Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Stefan T Arold
- Biological and Environmental Science and Engineering Division, Computational Biology Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
12
|
Sandal S, Verma IC, Mahay SB, Dubey S, Sabharwal RK, Kulshrestha S, Saxena R, Suman P, Kumar P, Puri RD. Next-Generation Sequencing in Unexplained Intellectual Disability. Indian J Pediatr 2024; 91:682-695. [PMID: 37804371 DOI: 10.1007/s12098-023-04820-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 06/23/2023] [Indexed: 10/09/2023]
Abstract
OBJECTIVES To determine the diagnostic yield of next generation sequencing (NGS) in patients with moderate/severe/profound intellectual disability (ID) unexplained by conventional tests and to assess the impact of definitive diagnosis on the clinical management and genetic counselling of these families. METHODS This was a ambi-directional study conducted at Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi. The study comprised 227 patients (prospective cohort - 126, retrospective cohort - 101) in whom NGS based tests were performed. RESULTS The mean age of study cohort was 4.5 ± 4.4 y (2.5 mo to 37.3 y). The male: female ratio was 1.6:1. The overall diagnostic yield of NGS was 53.3% (121/227) with causative variants identified in 84 known ID genes. Autosomal recessive intellectual disability (ARID) (23.3%, 53/227) was the most common followed by autosomal dominant intellectual disability (ADID) (20.7%, 47/227) and X-linked intellectual disability (XLID) (9.2%, 21/227). The diagnostic yield was notably higher for ID plus associated condition group (55.6% vs. 20%) (p = 0.0075, Fisher's exact test) compared to isolated ID group. The impact of diagnosis on active or long-term management was observed in 17/121 (14%) and on reproductive outcomes in 26/121 (21.4%) families. CONCLUSIONS There is paucity of data on molecular genetic spectrum of ID from India. The current study identifies extensive genetic heterogeneity and the impact of NGS in patients with ID unexplained by standard genetic tests. The study identified ARID as the most common cause of ID with additional implications for reproductive outcomes. It reiterates the importance of phenotype in genetic testing.
Collapse
Affiliation(s)
- Sapna Sandal
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Ishwar Chander Verma
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Sunita Bijarnia Mahay
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Sudhisha Dubey
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - R K Sabharwal
- Department of Pediatric Neurology, Sir Ganga Ram Hospital, New Delhi, India
| | - Samarth Kulshrestha
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Renu Saxena
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Praveen Suman
- Department of Developmental Pediatrics, Sir Ganga Ram Hospital, New Delhi, India
| | - Praveen Kumar
- Department of Pediatric Neurology, Sir Ganga Ram Hospital, New Delhi, India
| | - Ratna Dua Puri
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India.
| |
Collapse
|
13
|
Sharkia R, Zalan A, Kessel A, Al-Shareef W, Zahalka H, Hengel H, Schöls L, Azem A, Mahajnah M. SCAPER-Related Autosomal Recessive Retinitis Pigmentosa with Intellectual Disability: Confirming and Extending the Phenotypic Spectrum and Bioinformatics Analyses. Genes (Basel) 2024; 15:791. [PMID: 38927727 PMCID: PMC11203295 DOI: 10.3390/genes15060791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Mutations in the gene SCAPER (S phase Cyclin A-Associated Protein residing in the Endoplasmic Reticulum) have recently been associated with retinitis pigmentosa (RP) and intellectual disability (ID). In 2011, a possible involvement of SCAPER in human diseases was discovered for the first time due to the identification of a homozygous mutation causing ID in an Iranian family. Later, five studies were published in 2019 that described patients with autosomal recessive syndromic retinitis pigmentosa (arRP) accompanied by ID and attention-deficit/hyperactivity disorder (ADHD). This present study describes three patients from an Arab consanguineous family in Israel with similar clinical features of the SCAPER syndrome. In addition, new manifestations of ocular symptoms, nystagmus, glaucoma, and elevator palsy, were observed. Genetic testing of the patients and both parents via whole-exome sequencing revealed the homozygous mutation c.2023-2A>G in SCAPER. Phenotypic and genotypic descriptions for all available cases described in the literature including our current three cases (37 cases) were carried out, in addition to a bioinformatics analysis for all the genetic variants that was undertaken. Our study confirms and extends the clinical manifestations of SCAPER-related disorders.
Collapse
Affiliation(s)
- Rajech Sharkia
- Unit of Human Biology and Genetics, The Triangle Regional Research and Development Center, Kafr Qara 3007500, Israel; (A.Z.); (W.A.-S.)
- Unit of Natural Sciences, Beit-Berl Academic College, Beit-Berl 4490500, Israel
| | - Abdelnaser Zalan
- Unit of Human Biology and Genetics, The Triangle Regional Research and Development Center, Kafr Qara 3007500, Israel; (A.Z.); (W.A.-S.)
- Baqa College, Al-Qasmi Street, 64, Baqa Al-Gharbia 3010000, Israel
| | - Amit Kessel
- Department of Biochemistry and Molecular Biology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel; (A.K.); (A.A.)
| | - Wasif Al-Shareef
- Unit of Human Biology and Genetics, The Triangle Regional Research and Development Center, Kafr Qara 3007500, Israel; (A.Z.); (W.A.-S.)
| | - Hazar Zahalka
- Child Development and Pediatric Neurology Service, Meuhedet—Northern Region, Hadera 38100, Israel;
| | - Holger Hengel
- Department of Neurology and Hertie-Institute for Clinical Brain Research, University of Tübingen, 72074 Tübingen, Germany; (H.H.); (L.S.)
- German Center of Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
| | - Ludger Schöls
- Department of Neurology and Hertie-Institute for Clinical Brain Research, University of Tübingen, 72074 Tübingen, Germany; (H.H.); (L.S.)
- German Center of Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
| | - Abdussalam Azem
- Department of Biochemistry and Molecular Biology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel; (A.K.); (A.A.)
| | - Muhammad Mahajnah
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel;
- Child Neurology and Development Center, Hillel Yaffe Medical Center, Hadera 38100, Israel
| |
Collapse
|
14
|
Abdel-Salam GMH, Abdel-Hamid MS. New insights into the clinical and molecular spectrum of the MADD-related neurodevelopmental disorder. J Hum Genet 2024; 69:263-270. [PMID: 38459224 PMCID: PMC11126384 DOI: 10.1038/s10038-024-01236-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/10/2024]
Abstract
Biallelic pathogenic variants in MADD lead to a very rare neurodevelopmental disorder which is phenotypically pleiotropic grossly ranging from severe neonatal hypotonia, failure to thrive, multiple organ dysfunction, and early lethality to a similar but milder phenotype with better survival. Here, we report 5 patients from 3 unrelated Egyptian families in whom 4 patients showed the severe end of the spectrum displaying neonatal respiratory distress, hypotonia and chronic diarrhea while one patient presented with the mild form displaying moderate intellectual disability and myopathy. In addition, we observed distal arthrogryposis and nonspecific structural brain anomalies in all our patients. Interestingly, cerebellar and brainstem hypoplasia were noted in one patient. Whole exome sequencing identified three novel homozygous variants in the MADD gene: two likely pathogenic [c.4321delC p.(Gln1441ArgfsTer46) and c.2620 C > T p.(Arg874Ter)] and one variant of uncertain significance (c.4307 G > A, p.Arg1436Gln). The variants segregated with the disease in all available family members. Our findings confirm that arthrogryposis, genital, cardiac and structural brain anomalies are manifestations of MADD which expand the spectrum of MADD-related neurodevelopmental disorder. Moreover, they further highlight the convergence of MADD variants on different organ systems leading to complex phenotypes.
Collapse
Affiliation(s)
- Ghada M H Abdel-Salam
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National ResearchCentre, Cairo, Egypt.
| | - Mohamed S Abdel-Hamid
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
15
|
Vankwani S, Mirza MR, Awan FR, Zafar M, Nawrocki A, Wasim M, Khan HN, Ayesha H, Larsen MR, Choudhary MI. Label free quantitative proteomic profiling of serum samples of intellectually disabled young patients revealed dysregulation of complement coagulation and cholesterol cascade systems. Metab Brain Dis 2024; 39:855-869. [PMID: 38733546 DOI: 10.1007/s11011-024-01351-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
Intellectual disability is a heterogeneous disorder, diagnosed using intelligence quotient (IQ) score criteria. Currently, no specific clinical test is available to diagnose the disease and its subgroups due to inadequate understanding of the pathophysiology. Therefore, current study was designed to explore the molecular mechanisms involved in disease perturbation, and to identify potential biomarkers for disease diagnosis and prognosis. A total of 250 participants were enrolled in this study, including 200 intellectually disabled (ID) subjects from the subgroups (mild, moderate, and severe) with age and gender matched healthy controls (n = 50). Initially, IQ testing score and biochemical profile of each subject was generated, followed by label-free quantitative proteomics of subgroups of IQ and healthy control group through nano-LC/MS- mass spectrometry. A total of 310 proteins were identified, among them198 proteins were common among all groups. Statistical analysis (ANOVA) of the subgroups of ID showed 142 differentially expressed proteins, in comparison to healthy control group. From these, 120 proteins were found to be common among all subgroups. The remaining 22 proteins were categorized as exclusive proteins found only in disease subgroups. Furthermore, the hierarchical cluster analysis (HCL) of common significant proteins was also performed, followed by PANTHER protein classification and GO functional enrichment analysis. Results provides that the datasets of differentially expressed proteins, belong to the categories of immune / defense proteins, transfer carrier proteins, apolipoproteins, complement proteins, protease inhibitors, hemoglobin proteins etc., they are known to involvein immune system, and complement and coagulation pathway cascade and cholesterol metabolism pathway. Exclusively expressed 22 proteins were found to be disease stage specific and strong PPI network specifically those that have significant role in platelets activation and degranulation, such as Filamin A (FLNA). Furthermore, to validate the mass spectrometric findings, four highly significant proteins (APOA4, SAP, FLNA, and SERPING) were quantified by ELISA in all the study subjects. AUROC analysis showed a significant association of APOA4 (0.830), FLNA (0.958), SAP (0.754) and SERPING (0.600) with the disease. Apolipoprotein A4 (APOA4) has a significant role in cholesterol transport, and in modulation of glucose and lipid metabolism in the CNS. Similarly, FLNA has a crucial role in the nervous system, especially in the functioning of synaptic network. Therefore, both APOA4, and FLNA proteins represent good potential for candidate biomarkers for the diagnosis and prognosis of the intellectual disability. Overall, serum proteome of ID patients provides valuable information of proteins/pathways that are altered during ID progression.
Collapse
Affiliation(s)
- Soma Vankwani
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Munazza Raza Mirza
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| | - Fazli Rabbi Awan
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, P.O. Box. 577, Faisalabad, Pakistan.
| | - Muneeza Zafar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, P.O. Box. 577, Faisalabad, Pakistan
| | - Arkadiusz Nawrocki
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Muhammad Wasim
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, P.O. Box. 577, Faisalabad, Pakistan
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Haq Nawaz Khan
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, P.O. Box. 577, Faisalabad, Pakistan
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Hina Ayesha
- Department of Pediatrics, Punjab Medical College, Allied & DHQ Hospitals, Faisalabad Medical University, Faisalabad, Pakistan
| | - Martin Rossel Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Muhammad Iqbal Choudhary
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| |
Collapse
|
16
|
Cai M, Zheng Q, Chen Y, Liu S, Zhu H, Bai B. Insights from the neural guidance factor Netrin-1 into neurodegeneration and other diseases. Front Mol Neurosci 2024; 17:1379726. [PMID: 38638604 PMCID: PMC11024333 DOI: 10.3389/fnmol.2024.1379726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/22/2024] [Indexed: 04/20/2024] Open
Abstract
Netrin-1 was initially discovered as a neuronal growth cue for axonal guidance, and its functions have later been identified in inflammation, tumorigenesis, neurodegeneration, and other disorders. We have recently found its alterations in the brains with Alzheimer's disease, which might provide important clues to the mechanisms of some unique pathologies. To provide better understanding of this promising molecule, we here summarize research progresses in genetics, pathology, biochemistry, cell biology and other studies of Netrin-1 about its mechanistic roles and biomarker potentials with an emphasis on clinical neurodegenerative disorders in order to expand understanding of this promising molecular player in human diseases.
Collapse
Affiliation(s)
- Minqi Cai
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, Jiangsu, China
| | - Qian Zheng
- Health Management Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Yiqiang Chen
- Center for Precision Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Siyuan Liu
- Center for Precision Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Huimin Zhu
- Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing, China
| | - Bing Bai
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, Jiangsu, China
| |
Collapse
|
17
|
Kaiyrzhanov R, Rad A, Lin SJ, Bertoli-Avella A, Kallemeijn WW, Godwin A, Zaki MS, Huang K, Lau T, Petree C, Efthymiou S, Karimiani EG, Hempel M, Normand EA, Rudnik-Schöneborn S, Schatz UA, Baggelaar MP, Ilyas M, Sultan T, Alvi JR, Ganieva M, Fowler B, Aanicai R, Tayfun GA, Al Saman A, Alswaid A, Amiri N, Asilova N, Shotelersuk V, Yeetong P, Azam M, Babaei M, Monajemi GB, Mohammadi P, Samie S, Banu SH, Pinto Basto J, Kortüm F, Bauer M, Bauer P, Beetz C, Garshasbi M, Issa AH, Eyaid W, Ahmed H, Hashemi N, Hassanpour K, Herman I, Ibrohimov S, Abdul-Majeed BA, Imdad M, Isrofilov M, Kaiyal Q, Khan S, Kirmse B, Koster J, Lourenço CM, Mitani T, Moldovan O, Murphy D, Najafi M, Pehlivan D, Rocha ME, Salpietro V, Schmidts M, Shalata A, Mahroum M, Talbeya JK, Taylor RW, Vazquez D, Vetro A, Waterham HR, Zaman M, Schrader TA, Chung WK, Guerrini R, Lupski JR, Gleeson J, Suri M, Jamshidi Y, Bhatia KP, Vona B, Schrader M, Severino M, Guille M, Tate EW, Varshney GK, Houlden H, Maroofian R. Bi-allelic ACBD6 variants lead to a neurodevelopmental syndrome with progressive and complex movement disorders. Brain 2024; 147:1436-1456. [PMID: 37951597 PMCID: PMC10994533 DOI: 10.1093/brain/awad380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/13/2023] [Accepted: 10/20/2023] [Indexed: 11/14/2023] Open
Abstract
The acyl-CoA-binding domain-containing protein 6 (ACBD6) is ubiquitously expressed, plays a role in the acylation of lipids and proteins and regulates the N-myristoylation of proteins via N-myristoyltransferase enzymes (NMTs). However, its precise function in cells is still unclear, as is the consequence of ACBD6 defects on human pathophysiology. Using exome sequencing and extensive international data sharing efforts, we identified 45 affected individuals from 28 unrelated families (consanguinity 93%) with bi-allelic pathogenic, predominantly loss-of-function (18/20) variants in ACBD6. We generated zebrafish and Xenopus tropicalis acbd6 knockouts by CRISPR/Cas9 and characterized the role of ACBD6 on protein N-myristoylation with myristic acid alkyne (YnMyr) chemical proteomics in the model organisms and human cells, with the latter also being subjected further to ACBD6 peroxisomal localization studies. The affected individuals (23 males and 22 females), aged 1-50 years, typically present with a complex and progressive disease involving moderate-to-severe global developmental delay/intellectual disability (100%) with significant expressive language impairment (98%), movement disorders (97%), facial dysmorphism (95%) and mild cerebellar ataxia (85%) associated with gait impairment (94%), limb spasticity/hypertonia (76%), oculomotor (71%) and behavioural abnormalities (65%), overweight (59%), microcephaly (39%) and epilepsy (33%). The most conspicuous and common movement disorder was dystonia (94%), frequently leading to early-onset progressive postural deformities (97%), limb dystonia (55%) and cervical dystonia (31%). A jerky tremor in the upper limbs (63%), a mild head tremor (59%), parkinsonism/hypokinesia developing with advancing age (32%) and simple motor and vocal tics were among other frequent movement disorders. Midline brain malformations including corpus callosum abnormalities (70%), hypoplasia/agenesis of the anterior commissure (66%), short midbrain and small inferior cerebellar vermis (38% each) as well as hypertrophy of the clava (24%) were common neuroimaging findings. Acbd6-deficient zebrafish and Xenopus models effectively recapitulated many clinical phenotypes reported in patients including movement disorders, progressive neuromotor impairment, seizures, microcephaly, craniofacial dysmorphism and midbrain defects accompanied by developmental delay with increased mortality over time. Unlike ACBD5, ACBD6 did not show a peroxisomal localization and ACBD6-deficiency was not associated with altered peroxisomal parameters in patient fibroblasts. Significant differences in YnMyr-labelling were observed for 68 co- and 18 post-translationally N-myristoylated proteins in patient-derived fibroblasts. N-myristoylation was similarly affected in acbd6-deficient zebrafish and X. tropicalis models, including Fus, Marcks and Chchd-related proteins implicated in neurological diseases. The present study provides evidence that bi-allelic pathogenic variants in ACBD6 lead to a distinct neurodevelopmental syndrome accompanied by complex and progressive cognitive and movement disorders.
Collapse
Affiliation(s)
- Rauan Kaiyrzhanov
- Department of Neuromuscular Diseases, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Aboulfazl Rad
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar 009851, Iran
- Tübingen Hearing Research Centre, Department of Otolaryngology, Head and Neck Surgery, Eberhard Karls University, 72076 Tübingen, Germany
| | - Sheng-Jia Lin
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | | | - Wouter W Kallemeijn
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London W12 0BZ, UK
- Chemical Biology and Therapeutic Discovery Lab, The Francis Crick Institute, London NW1 1AT, UK
| | - Annie Godwin
- European Xenopus Resource Centre—XenMD, School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, 12622 Cairo, Egypt
| | - Kevin Huang
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Tracy Lau
- Department of Neuromuscular Diseases, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Cassidy Petree
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Stephanie Efthymiou
- Department of Neuromuscular Diseases, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Ehsan Ghayoor Karimiani
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St George’s University of London, London SW17 0RE, UK
- Department of Medical Genetics, Next Generation Genetic Polyclinic, Mashhad 1696700, Iran
| | - Maja Hempel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Institute of Human Genetics, University Hospital Heidelberg, Heidelberg 69120, Germany
| | | | | | - Ulrich A Schatz
- Institute of Human Genetics, Medical University Innsbruck, Innsbruck 6020, Austria
- Institute of Human Genetics, Technical University of Munich, Munich, 81675, Germany
| | - Marc P Baggelaar
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London W12 0BZ, UK
- Biomolecular Mass Spectrometry & Proteomics Group, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Muhammad Ilyas
- Department of BioEngineering, University of Engineering and Applied Sciences, 19130 Swat, Pakistan
- Centre for Omic Sciences, Islamia College University, 25000 Peshawar, Pakistan
| | - Tipu Sultan
- Department of Pediatric Neurology, Institute of Child Health, Children Hospital, Lahore 54600, Pakistan
| | - Javeria Raza Alvi
- Department of Pediatric Neurology, Institute of Child Health, Children Hospital, Lahore 54600, Pakistan
| | - Manizha Ganieva
- Department of Neurology, Avicenna Tajik State Medical University, 734063 Dushanbe, Tajikistan
| | - Ben Fowler
- Imaging Core, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Ruxandra Aanicai
- Department of Medical Genetics, CENTOGENE GmbH, 18055 Rostock, Germany
| | - Gulsen Akay Tayfun
- Department of Pediatric Genetics, Marmara University Medical School, 34722 Istanbul, Turkey
| | - Abdulaziz Al Saman
- Pediatric Neurology Department, National Neuroscience Institute, King Fahad Medical City, 49046 Riyadh, Saudi Arabia
| | - Abdulrahman Alswaid
- King Saud Bin Abdulaziz University for Health Sciences, Department of Pediatrics, King Abdullah Specialized Children’s Hospital, Riyadh 11461, Saudi Arabia
| | - Nafise Amiri
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Nilufar Asilova
- Department of Neurology, Avicenna Tajik State Medical University, 734063 Dushanbe, Tajikistan
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Department of Pediatrics, King Chulalongkorn Memorial Hospital, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Patra Yeetong
- Division of Human Genetics, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Matloob Azam
- Pediatrics and Child Neurology, Wah Medical College, 47000 Wah Cantt, Pakistan
| | - Meisam Babaei
- Department of Pediatrics, North Khorasan University of Medical Sciences, Bojnurd 94149-74877, Iran
| | | | - Pouria Mohammadi
- Children’s Medical Center, Pediatrics Center of Excellence, Ataxia Clinic, Tehran University of Medical Sciences, Tehran 1416634793, Iran
- Faculty of Medical Sciences, Department of Medical Genetics, Tarbiat Modares University, Tehran 1411944961, Iran
| | - Saeed Samie
- Pars Advanced and Minimally Invasive Medical Manners Research Center, Pars Hospital, Tehran, Iran
| | - Selina Husna Banu
- Department of Paediatric Neurology and Development, Dr. M.R. Khan Shishu (Children) Hospital and Institute of Child Health, Dhaka 1216, Bangladesh
| | - Jorge Pinto Basto
- Department of Medical Genetics, CENTOGENE GmbH, 18055 Rostock, Germany
| | - Fanny Kortüm
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Mislen Bauer
- Division of Clinical Genetics and Metabolism, Nicklas Children's Hospital, Miami, FL 33155, USA
| | - Peter Bauer
- Department of Medical Genetics, CENTOGENE GmbH, 18055 Rostock, Germany
| | - Christian Beetz
- Department of Medical Genetics, CENTOGENE GmbH, 18055 Rostock, Germany
| | - Masoud Garshasbi
- Faculty of Medical Sciences, Department of Medical Genetics, Tarbiat Modares University, Tehran 1411944961, Iran
| | | | - Wafaa Eyaid
- Department of Genetics and Precision Medicine, King Abdullah International Medical Research Centre, King Saud bin Abdulaziz University for Health Science, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), Riyadh 11426, Saudi Arabia
| | - Hind Ahmed
- Department of Genetics and Precision Medicine, King Abdullah International Medical Research Centre, King Saud bin Abdulaziz University for Health Science, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (NGHA), Riyadh 11426, Saudi Arabia
| | - Narges Hashemi
- Department of Pediatrics, School of Medicine, Mashhad University of Medical Sciences, 13131–99137 Mashhad, Iran
| | - Kazem Hassanpour
- Non-Communicable Diseases Research Center, Sabzevar University of Medical Sciences, 319 Sabzevar, Iran
| | - Isabella Herman
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX 68010, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurology, Texas Children’s Hospital, Houston, TX 77030, USA
- Pediatric Neurology, Neurogenetics and Rare Diseases, Boys Town National Research Hospital, Boys Town, NE 68131, USA
| | - Sherozjon Ibrohimov
- Department of Neurology, Avicenna Tajik State Medical University, 734063 Dushanbe, Tajikistan
| | - Ban A Abdul-Majeed
- Molecular Pathology and Genetics, The Pioneer Molecular Pathology Lab, Baghdad 10044, Iraq
| | - Maria Imdad
- Centre for Human Genetics, Hazara University, 21300 Mansehra, Pakistan
| | - Maksudjon Isrofilov
- Department of Neurology, Avicenna Tajik State Medical University, 734063 Dushanbe, Tajikistan
| | - Qassem Kaiyal
- Department of Pediatric Neurology, Clalit Health Care, 2510500 Haifa, Israel
| | - Suliman Khan
- Department of Medical Genetics, CENTOGENE GmbH, 18055 Rostock, Germany
| | - Brian Kirmse
- SOM-Peds-Genetics, University of Mississippi Medical Center, Jackson MS, 39216, USA
| | - Janet Koster
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers location AMC, 1100 DD Amsterdam, The Netherlands
| | - Charles Marques Lourenço
- Faculdade de Medicina, Centro Universitario Estácio de Ribeirão Preto, 14096-160 São Paulo, Brazil
| | - Tadahiro Mitani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Oana Moldovan
- Serviço de Genética Médica, Departamento de Pediatria, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte, 1649-035 Lisboa, Portugal
| | - David Murphy
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Maryam Najafi
- Pediatrics Genetics Division, Center for Pediatrics and Adolescent Medicine, Faculty of Medicine, Freiburg University, 79106 Freiburg, Germany
- Genome Research Division, Human Genetics Department, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Davut Pehlivan
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX 68010, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Vincenzo Salpietro
- Department of Neuromuscular Diseases, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Miriam Schmidts
- Pediatrics Genetics Division, Center for Pediatrics and Adolescent Medicine, Faculty of Medicine, Freiburg University, 79106 Freiburg, Germany
- Genome Research Division, Human Genetics Department, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Adel Shalata
- Pediatrics and Medical Genetics, the Simon Winter Institute for Human Genetics, Bnai Zion Medical Center, 31048 Haifa, Israel
- Bruce Rappaport Faculty of Medicine, the Technion institution of Technology, 3200003 Haifa, Israel
| | - Mohammad Mahroum
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Jawabreh Kassem Talbeya
- Pediatrics and Medical Genetics, the Simon Winter Institute for Human Genetics, Bnai Zion Medical Center, 31048 Haifa, Israel
- Department of Radiology, The Bnai Zion Medical Center, Haifa 31048, Israel
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK
| | - Dayana Vazquez
- Division of Clinical Genetics and Metabolism, Nicklas Children's Hospital, Miami, FL 33155, USA
| | - Annalisa Vetro
- Neuroscience Department, Meyer Children's Hospital IRCCS, 50139 Florence, Italy
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers location AMC, 1100 DD Amsterdam, The Netherlands
| | - Mashaya Zaman
- Department of Paediatric Neurology and Development, Dr. M.R. Khan Shishu (Children) Hospital and Institute of Child Health, Dhaka 1216, Bangladesh
| | - Tina A Schrader
- Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Wendy K Chung
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Renzo Guerrini
- Neuroscience Department, Meyer Children's Hospital IRCCS, 50139 Florence, Italy
- Neuroscience, Pharmacology and Child Health Department, University of Florence, 50139 Florence, Italy
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurology, Texas Children’s Hospital, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Joseph Gleeson
- Department of Neurosciences, University of California, San Diego, CA 92093, USA
- Department of Neurosciences, Rady Children's Institute for Genomic Medicine, San Diego, CA 92025, USA
| | - Mohnish Suri
- Clinical Genetics Service, Nottingham University Hospitals NHS Trust, Nottingham NG5 1PB, UK
| | - Yalda Jamshidi
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St George’s University of London, London SW17 0RE, UK
- Human Genetics Centre of Excellence, Novo Nordisk Research Centre Oxford, Oxford, OX3 7FZ, UK
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Barbara Vona
- Tübingen Hearing Research Centre, Department of Otolaryngology, Head and Neck Surgery, Eberhard Karls University, 72076 Tübingen, Germany
- Institute of Human Genetics, University Medical Center Göttingen, 37073 Göttingen, Germany
- Institute for Auditory Neuroscience and Inner Ear Lab, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Michael Schrader
- Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | | | - Matthew Guille
- European Xenopus Resource Centre—XenMD, School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| | - Edward W Tate
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London W12 0BZ, UK
- Chemical Biology and Therapeutic Discovery Lab, The Francis Crick Institute, London NW1 1AT, UK
| | - Gaurav K Varshney
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Reza Maroofian
- Department of Neuromuscular Diseases, UCL Institute of Neurology, London WC1N 3BG, UK
| |
Collapse
|
18
|
Inoue Y, Tsuchida N, Kim CA, de Oliveira Stephan B, Castro MAA, Honjo RS, Bertola DR, Uchiyama Y, Hamanaka K, Fujita A, Koshimizu E, Misawa K, Miyatake S, Mizuguchi T, Matsumoto N. Novel compound heterozygous ABCA2 variants cause IDPOGSA, a variable phenotypic syndrome with intellectual disability. J Hum Genet 2024; 69:163-167. [PMID: 38228874 DOI: 10.1038/s10038-024-01219-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/07/2023] [Accepted: 12/28/2023] [Indexed: 01/18/2024]
Abstract
The gene for ATP binding cassette subfamily A member 2 (ABCA2) is located at chromosome 9q34.3. Biallelic ABCA2 variants lead to intellectual developmental disorder with poor growth and with or without seizures or ataxia (IDPOGSA). In this study, we identified novel compound heterozygous ABCA2 variants (NM_001606.5:c.[5300-17C>A];[6379C>T]) by whole exome sequencing in a 28-year-old Korean female patient with intellectual disability. These variants included intronic and nonsense variants of paternal and maternal origin, respectively, and are absent from gnomAD. SpliceAI predicted that the intron variant creates a cryptic acceptor site. Reverse transcription-PCR using RNA extracted from a lymphoblastoid cell line of the patient confirmed two aberrant transcripts. Her clinical features are compatible with those of IDPOGSA.
Collapse
Affiliation(s)
- Yuta Inoue
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Naomi Tsuchida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Chong Ae Kim
- Clinical Genetics Unit, Instituto da Crianca, Hospital das Clinicas HC-FMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Bruno de Oliveira Stephan
- Clinical Genetics Unit, Instituto da Crianca, Hospital das Clinicas HC-FMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Matheus Augusto Araujo Castro
- Clinical Genetics Unit, Instituto da Crianca, Hospital das Clinicas HC-FMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Rachel Sayuri Honjo
- Clinical Genetics Unit, Instituto da Crianca, Hospital das Clinicas HC-FMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Debora Romeo Bertola
- Clinical Genetics Unit, Instituto da Crianca, Hospital das Clinicas HC-FMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Yuri Uchiyama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Kohei Hamanaka
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Eriko Koshimizu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kazuharu Misawa
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Clinical Genetics, Yokohama City University Hospital, Yokohama, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| |
Collapse
|
19
|
Leal-Ortega R, Parra-Medina LE, González-Herrera LJ. L-2 hydroxyglutaric aciduria: report of a Mexican-Mayan patient with the mutation c.569C>T and response to vitamin supplements and levocarnitine. Tremor Other Hyperkinet Mov (N Y) 2024; 14:12. [PMID: 38464914 PMCID: PMC10921960 DOI: 10.5334/tohm.854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/23/2024] [Indexed: 03/12/2024] Open
Abstract
Background L-2-hydroxyglutaric aciduria (L2HGA) is a rare inherited autosomal recessive neurometabolic disorder caused by pathogenic variants in the L2HGDH gene which encodes mitochondrial 2-hydroxyglutarate dehydrogenase. Here, we report a case of L2HGA in a Mexican-Mayan patient with a homozygous mutation at L2HGDH gene and clinical response to vitamin supplements and levocarnitine. Case report A 17-year-old, right-handed female patient with long-term history of seizures, developmental delay and ataxia was referred to a movement disorders specialist for the evaluation of tremor. Her brain MRI showed typical findings of L2HGA. The diagnosis was corroborated with elevated levels of 2-hydroxyglutaric acid in urine and genetic test which revealed a homozygous genetic known variant c.569C>T in exon 5 of L2HGDH gene. She was treated with levocarnitine and vitamin supplements, showing improvement in tremor and gait. Discussion To our knowledge this is the first report of a Mexican patient with L2HGA. This case adds information about a rare condition in a different ethnic group and supports the findings of other authors which encountered symptomatic improvement with the use of flavin adenine dinucleotide (and its precursor riboflavin), and levocarnitine. Highlights We report the first case of Mexican-Mayan patient with L2HGA showing a missense homozygous mutation in L2HGDH gene, and improvement of symptoms with vitamin supplements and levocarnitine.
Collapse
Affiliation(s)
- Roberto Leal-Ortega
- Department of Neurology, Hospital Regional de Alta Especialidad de la Peninsula de Yucatán. Mérida, Mexico
| | - Luis Enrique Parra-Medina
- Department of Neurology, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez". Mexico City, Mexico
| | - Lizbeth Josefina González-Herrera
- DIMYGEN Laboratorio S.C.P, Mérida, Yucatán, México
- Laboratory of Genetics. Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán. Mérida, Mexico
| |
Collapse
|
20
|
Yoganathan S, Whitney R, Thomas M, Danda S, Chettali AM, Prasad AN, Farhan SMK, AlSowat D, Abukhaled M, Aldhalaan H, Gowda VK, Kinhal UV, Bylappa AY, Konanki R, Lingappa L, Parchuri BM, Appendino JP, Scantlebury MH, Cunningham J, Hadjinicolaou A, El Achkar CM, Kamate M, Menon RN, Jose M, Riordan G, Kannan L, Jain V, Manokaran RK, Chau V, Donner EJ, Costain G, Minassian BA, Jain P. KCTD7-related progressive myoclonic epilepsy: Report of 42 cases and review of literature. Epilepsia 2024; 65:709-724. [PMID: 38231304 DOI: 10.1111/epi.17880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/18/2024]
Abstract
OBJECTIVE KCTD7-related progressive myoclonic epilepsy (PME) is a rare autosomal-recessive disorder. This study aimed to describe the clinical details and genetic variants in a large international cohort. METHODS Families with molecularly confirmed diagnoses of KCTD7-related PME were identified through international collaboration. Furthermore, a systematic review was done to identify previously reported cases. Salient demographic, epilepsy, treatment, genetic testing, electroencephalographic (EEG), and imaging-related variables were collected and summarized. RESULTS Forty-two patients (36 families) were included. The median age at first seizure was 14 months (interquartile range = 11.75-22.5). Myoclonic seizures were frequently the first seizure type noted (n = 18, 43.9%). EEG and brain magnetic resonance imaging findings were variable. Many patients exhibited delayed development with subsequent progressive regression (n = 16, 38.1%). Twenty-one cases with genetic testing available (55%) had previously reported variants in KCTD7, and 17 cases (45%) had novel variants in KCTD7 gene. Six patients died in the cohort (age range = 1.5-21 years). The systematic review identified 23 eligible studies and further identified 59 previously reported cases of KCTD7-related disorders from the literature. The phenotype for the majority of the reported cases was consistent with a PME (n = 52, 88%). Other reported phenotypes in the literature included opsoclonus myoclonus ataxia syndrome (n = 2), myoclonus dystonia (n = 2), and neuronal ceroid lipofuscinosis (n = 3). Eight published cases died over time (14%, age range = 3-18 years). SIGNIFICANCE This study cohort and systematic review consolidated the phenotypic spectrum and natural history of KCTD7-related disorders. Early onset drug-resistant epilepsy, relentless neuroregression, and severe neurological sequalae were common. Better understanding of the natural history may help future clinical trials.
Collapse
Affiliation(s)
- Sangeetha Yoganathan
- Department of Neurological Sciences, Christian Medical College, Vellore, Tamil Nadu, India
| | - Robyn Whitney
- Comprehensive Pediatric Epilepsy Program, Division of Neurology, Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Maya Thomas
- Department of Neurological Sciences, Christian Medical College, Vellore, Tamil Nadu, India
| | - Sumita Danda
- Department of Medical Genetics, Christian Medical College, Vellore, Tamil Nadu, India
| | | | - Asuri N Prasad
- Division of Pediatric Neurology and Clinical Neurosciences, Department of Pediatrics, Children's Hospital, London Health Sciences Centre, London, Ontario, Canada
| | - Sali M K Farhan
- Department of Neurology and Neurosurgery, and Department of Human Genetics, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Daad AlSowat
- Division of Pediatric Neurology, Neurosciences Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Musaad Abukhaled
- Division of Pediatric Neurology, Neurosciences Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Hesham Aldhalaan
- Division of Pediatric Neurology, Neurosciences Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Vykuntaraju K Gowda
- Department of Pediatric Neurology, Indira Gandhi Institute of Child Health, Bangalore, Karnataka, India
| | - Uddhava V Kinhal
- Department of Pediatric Neurology, Indira Gandhi Institute of Child Health, Bangalore, Karnataka, India
| | - Arun Y Bylappa
- Department of Pediatric Neurology, Indira Gandhi Institute of Child Health, Bangalore, Karnataka, India
| | - Ramesh Konanki
- Department of Pediatric Neurology, Rainbow Children's Hospital, Hyderabad, Telangana, India
| | - Lokesh Lingappa
- Department of Pediatric Neurology, Rainbow Children's Hospital, Hyderabad, Telangana, India
| | | | - Juan P Appendino
- Pediatric Neurology Service, Department of Pediatrics, Cumming School of Medicine, University of Calgary, Alberta Children's Hospital, Calgary, Alberta, Canada
| | - Morris H Scantlebury
- Departments of Pediatrics and Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jessie Cunningham
- Hospital Library and Archives, Learning Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Aristides Hadjinicolaou
- Division of Neurology, Department of Pediatrics, CHU (Centre Hospitalier Universitaire) Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
| | - Christelle Moufawad El Achkar
- Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mahesh Kamate
- Department of Pediatric Neurology, Jawaharlal Nehru Medical College, KLE (Karnataka Lingayat Education) Academy of Higher Education and Research, KLE's Dr Prabhakar Kore (PK) Hospital, Belagavi, Karnataka, India
| | - Ramshekhar N Menon
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, Kerala, India
| | - Manna Jose
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, Kerala, India
| | - Gillian Riordan
- Department of Paediatric Neurology, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
| | | | - Vivek Jain
- Department of Pediatric Neurology, Neoclinic Children's Hospital, Jaipur, Rajasthan, India
| | - Ranjith Kumar Manokaran
- Division of Pediatric neurology, Department of Neurology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Vann Chau
- Division of Neurology, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Elizabeth J Donner
- Epilepsy Program, Division of Neurology, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Gregory Costain
- Division of Clinical and Metabolic Genetics, Hospital for Sick Children, and Program in Genetics & Genome Biology, SickKids Research Institute, Toronto, Ontario, Canada
| | - Berge A Minassian
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Puneet Jain
- Epilepsy Program, Division of Neurology, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
21
|
Darouich S, Darouich S. Calloso-adreno-scrotal agenesis associated with biallelic MAPK-activating death domain protein (MADD) variant: Further phenotypic delineation of MADD deficiency. Am J Med Genet A 2024; 194:e63463. [PMID: 37932938 DOI: 10.1002/ajmg.a.63463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/22/2023] [Accepted: 10/20/2023] [Indexed: 11/08/2023]
Abstract
MAPK-activating death domain protein (MADD) deficiency is associated with a broad clinical spectrum ranging from mild developmental impairment to fatal multisystem disorder. We report an additional case of severe form with some overlapping and unreported systemic features in a growth-restricted full-term male newborn. The novel findings include corpus callosum agenesis, bilateral adrenal agenesis, scrotal aplasia, and abnormal skin pigmentation. Microscopic changes are only remarkable in thyroid gland that shows decreased, variously sized follicles with absent or non-vacuolated pale colloid. This unique constellation of birth defects is associated with a novel homozygous in-frame MADD gene deletion (NM_003682.4: c.4853_4855delGCT:p.Cys1618del). This case report expands the phenotypic and genetic spectrum of MADD deficiency.
Collapse
Affiliation(s)
- Sihem Darouich
- Faculté de Médecine de Tunis, Université de Tunis El Manar, Tunis, Tunisia
- Unité de Pathologie Fœtale et Placentaire, CHU Habib Bougatfa, Bizerte, Tunisia
| | - Samia Darouich
- Institut supérieur des Sciences Humaines de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
22
|
La Rocca LA, Frank J, Bentzen HB, Pantel JT, Gerischer K, Bovier A, Krawitz PM. Understanding recessive disease risk in multi-ethnic populations with different degrees of consanguinity. Am J Med Genet A 2024; 194:e63452. [PMID: 37921563 DOI: 10.1002/ajmg.a.63452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 10/10/2023] [Indexed: 11/04/2023]
Abstract
Population medical genetics aims at translating clinically relevant findings from recent studies of large cohorts into healthcare for individuals. Genetic counseling concerning reproductive risks and options is still mainly based on family history, and consanguinity is viewed to increase the risk for recessive diseases regardless of the demographics. However, in an increasingly multi-ethnic society with diverse approaches to partner selection, healthcare professionals should also sharpen their intuition for the influence of different mating schemes in non-equilibrium dynamics. We, therefore, revisited the so-called out-of-Africa model and studied in forward simulations with discrete and not overlapping generations the effect of inbreeding on the average number of recessive lethals in the genome. We were able to reproduce in both frameworks the drop in the incidence of recessive disorders, which is a transient phenomenon during and after the growth phase of a population, and therefore showed their equivalence. With the simulation frameworks, we also provide the means to study and visualize the effect of different kin sizes and mating schemes on these parameters for educational purposes.
Collapse
Affiliation(s)
- Luis A La Rocca
- Institute for Applied Mathematics, University of Bonn, Bonn, Germany
| | - Julia Frank
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, Bonn, Germany
| | - Heidi Beate Bentzen
- Centre for Medical Ethics, Faculty of Medicine, Univeristy of Oslo, Oslo, Norway
| | - Jean Tori Pantel
- Department of Digitalization and General Practice, University Hospital RWTH Aachen, Aachen, Germany
| | - Konrad Gerischer
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, Bonn, Germany
| | - Anton Bovier
- Institute for Genomic Statistics and Bioinformatics, University of Bonn, Bonn, Germany
| | - Peter M Krawitz
- Institute for Applied Mathematics, University of Bonn, Bonn, Germany
| |
Collapse
|
23
|
Abolhassani A, Fattahi Z, Beheshtian M, Fadaee M, Vazehan R, Ahangari F, Dehdahsi S, Faraji Zonooz M, Parsimehr E, Kalhor Z, Peymani F, Mozaffarpour Nouri M, Babanejad M, Noudehi K, Fatehi F, Zamanian Najafabadi S, Afroozan F, Yazdan H, Bozorgmehr B, Azarkeivan A, Sadat Mahdavi S, Nikuei P, Fatehi F, Jamali P, Ashrafi MR, Karimzadeh P, Habibi H, Kahrizi K, Nafissi S, Kariminejad A, Najmabadi H. Clinical application of next generation sequencing for Mendelian disease diagnosis in the Iranian population. NPJ Genom Med 2024; 9:12. [PMID: 38374194 PMCID: PMC10876633 DOI: 10.1038/s41525-024-00393-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 01/29/2024] [Indexed: 02/21/2024] Open
Abstract
Next-generation sequencing (NGS) has been proven to be one of the most powerful diagnostic tools for rare Mendelian disorders. Several studies on the clinical application of NGS in unselected cohorts of Middle Eastern patients have reported a high diagnostic yield of up to 48%, correlated with a high level of consanguinity in these populations. We evaluated the diagnostic utility of NGS-based testing across different clinical indications in 1436 patients from Iran, representing the first study of its kind in this highly consanguineous population. A total of 1075 exome sequencing and 361 targeted gene panel sequencing were performed over 8 years at a single clinical genetics laboratory, with the majority of cases tested as proband-only (91.6%). The overall diagnostic rate was 46.7%, ranging from 24% in patients with an abnormality of prenatal development to over 67% in patients with an abnormality of the skin. We identified 660 pathogenic or likely pathogenic variants, including 241 novel variants, associated with over 342 known genetic conditions. The highly consanguineous nature of this cohort led to the diagnosis of autosomal recessive disorders in the majority of patients (79.1%) and allowed us to determine the shared carrier status of couples for suspected recessive phenotypes in their deceased child(ren) when direct testing was not possible. We also highlight the observations of recessive inheritance of genes previously associated only with dominant disorders and provide an expanded genotype-phenotype spectrum for multiple less-characterized genes. We present the largest mutational spectrum of known Mendelian disease, including possible founder variants, throughout the Iranian population, which can serve as a unique resource for clinical genomic studies locally and beyond.
Collapse
Affiliation(s)
- Ayda Abolhassani
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Zohreh Fattahi
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | | | - Mahsa Fadaee
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Raheleh Vazehan
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Fatemeh Ahangari
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Shima Dehdahsi
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | | | - Elham Parsimehr
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Zahra Kalhor
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Fatemeh Peymani
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | | | - Mojgan Babanejad
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Khadijeh Noudehi
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Fatemeh Fatehi
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | | | - Fariba Afroozan
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Hilda Yazdan
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Bita Bozorgmehr
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Azita Azarkeivan
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran
| | | | - Pooneh Nikuei
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Nasle Salem Genetic Counseling Center, Bandar Abbas, Iran
| | - Farzad Fatehi
- Department of Neurology, Neuromuscular Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Payman Jamali
- Genetic Counseling Center, Shahroud Welfare Organization, Semnan, Iran
| | | | - Parvaneh Karimzadeh
- Pediatric Neurology Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Haleh Habibi
- Hamedan University of Medical Science, Hamedan, Iran
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Shahriar Nafissi
- Department of Neurology, Neuromuscular Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Hossein Najmabadi
- Kariminejad - Najmabadi Pathology & Genetics Center, Tehran, Iran.
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Yassin SH, Kalaw FGP, Li A, Fletcher E, Borooah S. Syndromic retinitis pigmentosa caused by biallelic SCAPER frameshift variant. Ophthalmic Genet 2024; 45:63-71. [PMID: 37160720 DOI: 10.1080/13816810.2023.2204359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 04/14/2023] [Indexed: 05/11/2023]
Abstract
PURPOSE Mutations in the SCAPER gene have previously been reported to be a rare cause of syndromic and non-syndromic autosomal recessive retinitis pigmentosa (RP). We report a case of syndromic RP caused by a frameshift heterozygous mutation in SCAPER. Our case has a relatively mild ocular phenotype with the presence of cone involvement noted on full field electroretinogram (ffERG) without impacting central or color vision. MATERIALS AND METHODS A 17-year-old male presented with progressive nyctalopia in both eyes. He underwent ophthalmic examination and multimodal imaging. A complete retinal degeneration panel consisting of 322 genes was used to screen for molecular causes of retinal dystrophy in this patient along with family segregation analysis. RESULTS Fundus examination of the proband revealed mild RP phenotype with waxy pallor of optic discs, attenuated retinal arterioles, and single bone spicule like pigmentary change in the mid-periphery bilaterally. Multimodal imaging and ffERG demonstrated a picture of RP with cone dysfunction without impacting central or color vision bilaterally. Examined family members were found to be normal. The proband was found to be heterozygous for two novel frameshift pathogenic variants in SCAPER c.3781del, p. (Val1261Serfs*26), c.868_869del, p. (Glu290Serfs*7) both leading to predicted premature termination. The family members tested were found to be heterozygous for SCAPER c.868_869del, p. (Glu290Serfs*7) pathogenic variant confirming their carrier status. CONCLUSION We report a case of a syndromic RP of previously unreported ocular phenotype associated with SCAPER pathogenic variant, which will add to the phenotypic spectrum of retinopathy and systemic features associated with pathogenic variants in SCAPER.
Collapse
Affiliation(s)
- Shaden H Yassin
- Shiley Eye Institute, University of California, San Diego, California, USA
| | | | - Alexa Li
- Shiley Eye Institute, University of California, San Diego, California, USA
| | - Emily Fletcher
- Department of Pediatrics, Children's Primary Care Medical Group, San Diego, California, USA
| | - Shyamanga Borooah
- Shiley Eye Institute, University of California, San Diego, California, USA
| |
Collapse
|
25
|
Sun L, Yang X, Khan A, Yu X, Zhang H, Han S, Habulieti X, Sun Y, Wang R, Zhang X. Panoramic variation analysis of a family with neurodevelopmental disorders caused by biallelic loss-of-function variants in TMEM141, DDHD2, and LHFPL5. Front Med 2024; 18:81-97. [PMID: 37837560 DOI: 10.1007/s11684-023-1006-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/27/2023] [Indexed: 10/16/2023]
Abstract
Highly clinical and genetic heterogeneity of neurodevelopmental disorders presents a major challenge in clinical genetics and medicine. Panoramic variation analysis is imperative to analyze the disease phenotypes resulting from multilocus genomic variation. Here, a Pakistani family with parental consanguinity was presented, characterized with severe intellectual disability (ID), spastic paraplegia, and deafness. Homozygosity mapping, integrated single nucleotide polymorphism (SNP) array, whole-exome sequencing, and whole-genome sequencing were performed, and homozygous variants in TMEM141 (c.270G>A, p.Trp90*), DDHD2 (c.411+767_c.1249-327del), and LHFPL5 (c.250delC, p.Leu84*) were identified. A Tmem141p.Trp90*/p.Trp90* mouse model was generated. Behavioral studies showed impairments in learning ability and motor coordination. Brain slice electrophysiology and Golgi staining demonstrated deficient synaptic plasticity in hippocampal neurons and abnormal dendritic branching in cerebellar Purkinje cells. Transmission electron microscopy showed abnormal mitochondrial morphology. Furthermore, studies on a human in vitro neuronal model (SH-SY5Y cells) with stable shRNA-mediated knockdown of TMEM141 showed deleterious effect on bioenergetic function, possibly explaining the pathogenesis of replicated phenotypes in the cross-species mouse model. Conclusively, panoramic variation analysis revealed that multilocus genomic variations of TMEM141, DDHD2, and LHFPL5 together caused variable phenotypes in patient. Notably, the biallelic loss-of-function variants of TMEM141 were responsible for syndromic ID.
Collapse
Affiliation(s)
- Liwei Sun
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory for Complex Severe and Rare Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, National Key Clinical Speciality Construction Project (Obstetrics and Gynecology), Chongqing Health Center for Women and Children, Chongqing, 400013, China
- Chongqing Clinical Research Center for Reproductive Medicine, Women and Children's Hospital of Chongqing Medical University, Chongqing, 400013, China
| | - Xueting Yang
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory for Complex Severe and Rare Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Amjad Khan
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory for Complex Severe and Rare Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
- Faculty of Biological Sciences, Department of Zoology, University of Lakki Marwat, Khyber Pakhtunkhwa, 28420, Pakistan.
- Institute for Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, 72076, Germany.
- Alexander von Humboldt fellowship Foundation, Berlin, 10117, Germany.
| | - Xue Yu
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory for Complex Severe and Rare Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530000, China
| | - Han Zhang
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory for Complex Severe and Rare Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Department of Laboratory Medicine, State Key Laboratory for Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Shirui Han
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory for Complex Severe and Rare Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Xiaerbati Habulieti
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory for Complex Severe and Rare Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Yang Sun
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory for Complex Severe and Rare Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Rongrong Wang
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory for Complex Severe and Rare Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
| | - Xue Zhang
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory for Complex Severe and Rare Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| |
Collapse
|
26
|
Uctepe E, Vona B, Esen FN, Sonmez FM, Smol T, Tümer S, Mancılar H, Geylan Durgun DE, Boute O, Moghbeli M, Ghayoor Karimiani E, Hashemi N, Bakhshoodeh B, Kim HG, Maroofian R, Yesilyurt A. Bi-allelic truncating variants in CASP2 underlie a neurodevelopmental disorder with lissencephaly. Eur J Hum Genet 2024; 32:52-60. [PMID: 37880421 PMCID: PMC10772072 DOI: 10.1038/s41431-023-01461-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/24/2023] [Accepted: 09/11/2023] [Indexed: 10/27/2023] Open
Abstract
Lissencephaly (LIS) is a malformation of cortical development due to deficient neuronal migration and abnormal formation of cerebral convolutions or gyri. Thirty-one LIS-associated genes have been previously described. Recently, biallelic pathogenic variants in CRADD and PIDD1, have associated with LIS impacting the previously established role of the PIDDosome in activating caspase-2. In this report, we describe biallelic truncating variants in CASP2, another subunit of PIDDosome complex. Seven patients from five independent families presenting with a neurodevelopmental phenotype were identified through GeneMatcher-facilitated international collaborations. Exome sequencing analysis was carried out and revealed two distinct novel homozygous (NM_032982.4:c.1156delT (p.Tyr386ThrfsTer25), and c.1174 C > T (p.Gln392Ter)) and compound heterozygous variants (c.[130 C > T];[876 + 1 G > T] p.[Arg44Ter];[?]) in CASP2 segregating within the families in a manner compatible with an autosomal recessive pattern. RNA studies of the c.876 + 1 G > T variant indicated usage of two cryptic splice donor sites, each introducing a premature stop codon. All patients from whom brain MRIs were available had a typical fronto-temporal LIS and pachygyria, remarkably resembling the CRADD and PIDD1-related neuroimaging findings. Other findings included developmental delay, attention deficit hyperactivity disorder, hypotonia, seizure, poor social skills, and autistic traits. In summary, we present patients with CASP2-related ID, anterior-predominant LIS, and pachygyria similar to previously reported patients with CRADD and PIDD1-related disorders, expanding the genetic spectrum of LIS and lending support that each component of the PIDDosome complex is critical for normal development of the human cerebral cortex and brain function.
Collapse
Affiliation(s)
- Eyyup Uctepe
- Acibadem Ankara Tissue Typing Laboratory, Ankara, Türkiye
| | - Barbara Vona
- Institute of Human Genetics, University Medical Center Göttingen, Heinrich-Düker-Weg 12, 37073, Göttingen, Germany
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | | | - F Mujgan Sonmez
- Department of Child Neurology, Faculty of Medicine, Retired lecturer, Karadeniz Technical University, Trabzon, Türkiye
- Private Office, Ankara, Türkiye
| | - Thomas Smol
- Institut de Génétique Médicale, Université de Lille, ULR7364 RADEME, CHU Lille, F-59000, Lille, France
| | - Sait Tümer
- Acibadem Labgen Genetic Diagnosis Center, Istanbul, Türkiye
| | | | | | - Odile Boute
- Clinique de Génétique, Université de Lille, ULR7364 RADEME, CHU Lille, F-59000, Lille, France
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Ghayoor Karimiani
- Molecular and Clinical Sciences Institute, St. George's, University of London, Cranmer Terrace, London, SW17 0RE, UK
- Department of Medical Genetics, Next Generation Genetic Polyclinic, Mashhad, Iran
| | - Narges Hashemi
- Department of Pediatrics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hyung Goo Kim
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Reza Maroofian
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Ahmet Yesilyurt
- Acibadem Labgen Genetic Diagnosis Center, Istanbul, Türkiye.
- Acibadem Maslak Hospital, Istanbul, Türkiye.
| |
Collapse
|
27
|
Volik PI, Kopeina GS, Zhivotovsky B, Zamaraev AV. Total recall: the role of PIDDosome components in neurodegeneration. Trends Mol Med 2023; 29:996-1013. [PMID: 37716905 DOI: 10.1016/j.molmed.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/18/2023]
Abstract
The PIDDosome is a multiprotein complex that includes p53-induced protein with a death domain 1 (PIDD1), receptor-interacting protein-associated ICH-1/CED-3 homologous protein with a death domain (RAIDD), and caspase-2, the activation of which is driven by PIDDosome assembly. In addition to the key role of the PIDDosome in the regulation of cell differentiation, tissue homeostasis, and organogenesis and regeneration, caspase-2, RAIDD and PIDD1 engagement in neuronal development was shown. Here, we focus on the involvement of PIDDosome components in neurodegenerative disorders, including retinal neuropathies, different types of brain damage, and Alzheimer's disease (AD), Huntington's disease (HD), and Lewy body disease. We also discuss pathogenic variants of PIDD1, RAIDD, and caspase-2 that are associated with intellectual, behavioral, and psychological abnormalities, together with prospective PIDDosome inhibition strategies and their potential clinical application.
Collapse
Affiliation(s)
- Pavel I Volik
- Facuty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia; Engelhardt Institute of Molecular Biology, RAS, 119991 Moscow, Russia
| | - Gelina S Kopeina
- Facuty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia; Engelhardt Institute of Molecular Biology, RAS, 119991 Moscow, Russia
| | - Boris Zhivotovsky
- Facuty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia; Engelhardt Institute of Molecular Biology, RAS, 119991 Moscow, Russia; Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177 Stockholm, Sweden.
| | - Alexey V Zamaraev
- Facuty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia; Engelhardt Institute of Molecular Biology, RAS, 119991 Moscow, Russia.
| |
Collapse
|
28
|
Bartolomaeus T, Hentschel J, Jamra RA, Popp B. Re-evaluation and re-analysis of 152 research exomes five years after the initial report reveals clinically relevant changes in 18. Eur J Hum Genet 2023; 31:1154-1164. [PMID: 37460657 PMCID: PMC10545662 DOI: 10.1038/s41431-023-01425-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 06/16/2023] [Accepted: 06/28/2023] [Indexed: 07/22/2023] Open
Abstract
Iterative re-analysis of NGS results is not well investigated for published research cohorts of rare diseases. We revisited a cohort of 152 consanguineous families with developmental disorders (NDD) reported five years ago. We re-evaluated all reported variants according to diagnostic classification guidelines or our candidate gene scoring system (AutoCaSc) and systematically scored the validity of gene-disease associations (GDA). Sequencing data was re-processed using an up-to-date pipeline for case-level re-analysis. In 28/152 (18%) families, we identified a clinically relevant change. Ten previously reported (likely) pathogenic variants were re-classified as VUS/benign. In one case, the GDA (TSEN15) validity was judged as limited, and in five cases GDAs are meanwhile established. We identified 12 new disease causing variants. Two previously reported variants were missed by our updated pipeline due to alignment or reference issues. Our results support the need to re-evaluate screening studies, not only the negative cases but including supposedly solved ones. This also applies in a diagnostic setting. We highlight that the complexity of computational re-analysis for old data should be weighed against the decreasing re-testing costs. Since extensive re-analysis per case is beyond the resources of most institutions, we recommend a screening procedure that would quickly identify the majority (83%) of new variants.
Collapse
Affiliation(s)
- Tobias Bartolomaeus
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, 04103, Germany
| | - Julia Hentschel
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, 04103, Germany
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, 04103, Germany.
| | - Bernt Popp
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, 04103, Germany.
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center of Functional Genomics, Hessische Straße 4A, 10115, Berlin, Germany.
| |
Collapse
|
29
|
Ghorashi T, Darvish H, Bakhtiari S, Tafakhori A, Kruer MC, Mozdarani H. A biallelic loss-of-function variant in TMEM147 causes profound intellectual disability and spasticity. Neurogenetics 2023; 24:311-316. [PMID: 37668766 DOI: 10.1007/s10048-023-00734-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/27/2023] [Indexed: 09/06/2023]
Abstract
Intellectual disability (ID), occurring in syndromic or non-syndromic forms, is the most common neurodevelopmental disorder. Although many cases are caused by single gene defects, ID is highly genetically heterogeneous. Biallelic variants in the transmembrane protein TMEM147 have recently been linked to intellectual disability with dysmorphic facial features. TMEM147 is believed to localize to the endoplasmic reticulum membrane and nuclear envelope and also involved in biogenesis of multi-pass membrane proteins. Here, we report two patients born to a consanguineous family with a novel loss-of-function variant; (NM_001242597.2:c.193-197del) in TMEM147 causing intellectual disability and spasticity. Whole exome sequencing and validating Sanger sequencing were utilized to confirm the identified causal variant. Our findings were in line with the previously described patients with TMEM147 variants manifesting intellectual disability as a major clinical sign but also featured spasticity as a phenotypic expansion. This study provides additional evidence for the pathogenicity of TMEM147 mutations in intellectual disability and expands the phenotypic and variant spectrum linked to this gene.
Collapse
Affiliation(s)
- Tahereh Ghorashi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Darvish
- Neuroscience Research Center, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Somayeh Bakhtiari
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Abbas Tafakhori
- Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael C Kruer
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA.
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA.
| | - Hossein Mozdarani
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
30
|
Mattioli F, Worpenberg L, Li CT, Ibrahim N, Naz S, Sharif S, Firouzabadi SG, Vosoogh S, Saraeva-Lamri R, Raymond L, Trujillo C, Guex N, Antonarakis SE, Ansar M, Darvish H, Liu RJ, Roignant JY, Reymond A. Biallelic variants in NSUN6 cause an autosomal recessive neurodevelopmental disorder. Genet Med 2023; 25:100900. [PMID: 37226891 DOI: 10.1016/j.gim.2023.100900] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/26/2023] Open
Abstract
PURPOSE 5-methylcytosine RNA modifications are driven by NSUN methyltransferases. Although variants in NSUN2 and NSUN3 were associated with neurodevelopmental diseases, the physiological role of NSUN6 modifications on transfer RNAs and messenger RNAs remained elusive. METHODS We combined exome sequencing of consanguineous families with functional characterization to identify a new neurodevelopmental disorder gene. RESULTS We identified 3 unrelated consanguineous families with deleterious homozygous variants in NSUN6. Two of these variants are predicted to be loss-of-function. One maps to the first exon and is predicted to lead to the absence of NSUN6 via nonsense-mediated decay, whereas we showed that the other maps to the last exon and encodes a protein that does not fold correctly. Likewise, we demonstrated that the missense variant identified in the third family has lost its enzymatic activity and is unable to bind the methyl donor S-adenosyl-L-methionine. The affected individuals present with developmental delay, intellectual disability, motor delay, and behavioral anomalies. Homozygous ablation of the NSUN6 ortholog in Drosophila led to locomotion and learning impairment. CONCLUSION Our data provide evidence that biallelic pathogenic variants in NSUN6 cause one form of autosomal recessive intellectual disability, establishing another link between RNA modification and cognition.
Collapse
Affiliation(s)
- Francesca Mattioli
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Lina Worpenberg
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Cai-Tao Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China; Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Nazia Ibrahim
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland; Department of Zoology, Lahore College for Women University, Jail Road Lahore, Pakistan
| | - Shagufta Naz
- Department of Zoology, Lahore College for Women University, Jail Road Lahore, Pakistan
| | - Saima Sharif
- Department of Zoology, Lahore College for Women University, Jail Road Lahore, Pakistan
| | - Saghar G Firouzabadi
- Neuroscience Research Center, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran; Nikagene Genetic Diagnostic Laboratory, Gorgan, Golestan, Iran
| | - Shohreh Vosoogh
- Clinical Research Development Unit (CRDU), Sayad Shirazi Hospital, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Laure Raymond
- Genetics Department, Laboratoire Eurofins Biomnis, Lyon, France
| | - Carlos Trujillo
- Facultad de Medicina, Departmento de Genetica, Universidad CES, Medellin, Colombia; Genome Unit, KFMRC, Jeddah, Saudi Arabia
| | - Nicolas Guex
- Bioinformatics Competence Center, University of Lausanne, Lausanne, Switzerland
| | - Stylianos E Antonarakis
- Department of Genetic Medicine and Development, University of Geneva Medical Faculty, Geneva, Switzerland; Medigenome, Swiss Institute of Genomic Medicine, Geneva, Switzerland
| | - Muhammad Ansar
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Hossein Darvish
- Neuroscience Research Center, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ru-Juan Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jean-Yves Roignant
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland; Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Mainz, Germany.
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
31
|
Ben-Mahmoud A, Kishikawa S, Gupta V, Leach NT, Shen Y, Moldovan O, Goel H, Hopper B, Ranguin K, Gruchy N, Maas SM, Lacassie Y, Kim SH, Kim WY, Quade BJ, Morton CC, Kim CH, Layman LC, Kim HG. A cryptic microdeletion del(12)(p11.21p11.23) within an unbalanced translocation t(7;12)(q21.13;q23.1) implicates new candidate loci for intellectual disability and Kallmann syndrome. Sci Rep 2023; 13:12984. [PMID: 37563198 PMCID: PMC10415337 DOI: 10.1038/s41598-023-40037-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023] Open
Abstract
In a patient diagnosed with both Kallmann syndrome (KS) and intellectual disability (ID), who carried an apparently balanced translocation t(7;12)(q22;q24)dn, array comparative genomic hybridization (aCGH) disclosed a cryptic heterozygous 4.7 Mb deletion del(12)(p11.21p11.23), unrelated to the translocation breakpoint. This novel discovery prompted us to consider the possibility that the combination of KS and neurological disorder in this patient could be attributed to gene(s) within this specific deletion at 12p11.21-12p11.23, rather than disrupted or dysregulated genes at the translocation breakpoints. To further support this hypothesis, we expanded our study by screening five candidate genes at both breakpoints of the chromosomal translocation in a cohort of 48 KS patients. However, no mutations were found, thus reinforcing our supposition. In order to delve deeper into the characterization of the 12p11.21-12p11.23 region, we enlisted six additional patients with small copy number variations (CNVs) and analyzed eight individuals carrying small CNVs in this region from the DECIPHER database. Our investigation utilized a combination of complementary approaches. Firstly, we conducted a comprehensive phenotypic-genotypic comparison of reported CNV cases. Additionally, we reviewed knockout animal models that exhibit phenotypic similarities to human conditions. Moreover, we analyzed reported variants in candidate genes and explored their association with corresponding phenotypes. Lastly, we examined the interacting genes associated with these phenotypes to gain further insights. As a result, we identified a dozen candidate genes: TSPAN11 as a potential KS candidate gene, TM7SF3, STK38L, ARNTL2, ERGIC2, TMTC1, DENND5B, and ETFBKMT as candidate genes for the neurodevelopmental disorder, and INTS13, REP15, PPFIBP1, and FAR2 as candidate genes for KS with ID. Notably, the high-level expression pattern of these genes in relevant human tissues further supported their candidacy. Based on our findings, we propose that dosage alterations of these candidate genes may contribute to sexual and/or cognitive impairments observed in patients with KS and/or ID. However, the confirmation of their causal roles necessitates further identification of point mutations in these candidate genes through next-generation sequencing.
Collapse
Affiliation(s)
- Afif Ben-Mahmoud
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Shotaro Kishikawa
- Gene Engineering Division, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Vijay Gupta
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Natalia T Leach
- Integrated Genetics, Laboratory Corporation of America Holdings, 3400 Computer Drive, Westborough, MA, 01581, USA
| | - Yiping Shen
- Division of Genetics and Genomics at Boston Children's Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Oana Moldovan
- Medical Genetics Service, Pediatric Department, Hospital Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| | - Himanshu Goel
- Hunter Genetics, Waratah, NSW, 2298, Australia
- University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Bruce Hopper
- Forster Genetics-Hunter New England Local Health District, Forster, NSW, 2428, Australia
| | - Kara Ranguin
- Department of Genetics, Reference Center for Rare Diseases of Developmental anomalies and polymalformative syndrome, CHU de Caen Normandie, Caen, France
| | - Nicolas Gruchy
- Department of Genetics, Reference Center for Rare Diseases of Developmental anomalies and polymalformative syndrome, CHU de Caen Normandie, Caen, France
| | - Saskia M Maas
- Department of Human Genetics, Amsterdam University Medical Center, Amsterdam, the Netherlands
- Reproduction and Development Research Institute, University of Amsterdam, Amsterdam, the Netherlands
| | - Yves Lacassie
- Division of Genetics, Department of Pediatrics, Louisiana State University, New Orleans, LA, 70118, USA
| | - Soo-Hyun Kim
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK
| | - Woo-Yang Kim
- Department of Biological Sciences, Kent State University, Kent, OH, 44242, USA
| | - Bradley J Quade
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Cynthia C Morton
- Departments of Obstetrics and Gynecology and of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Manchester Centre for Audiology and Deafness, School of Health Sciences, University of Manchester, Manchester, UK
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon, 34134, Korea
| | - Lawrence C Layman
- Section of Reproductive Endocrinology, Infertility and Genetics, Department of Obstetrics and Gynecology, Augusta University, Augusta, GA, USA
- Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA, USA
| | - Hyung-Goo Kim
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar.
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
32
|
Jia X, Zhu J, Bian X, Liu S, Yu S, Liang W, Jiang L, Mao R, Zhang W, Rao Y. Importance of glutamine in synaptic vesicles revealed by functional studies of SLC6A17 and its mutations pathogenic for intellectual disability. eLife 2023; 12:RP86972. [PMID: 37440432 PMCID: PMC10393021 DOI: 10.7554/elife.86972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023] Open
Abstract
Human mutations in the gene encoding the solute carrier (SLC) 6A17 caused intellectual disability (ID). The physiological role of SLC6A17 and pathogenesis of SLC6A17-based-ID were both unclear. Here, we report learning deficits in Slc6a17 knockout and point mutant mice. Biochemistry, proteomic, and electron microscopy (EM) support SLC6A17 protein localization in synaptic vesicles (SVs). Chemical analysis of SVs by liquid chromatography coupled to mass spectrometry (LC-MS) revealed glutamine (Gln) in SVs containing SLC6A17. Virally mediated overexpression of SLC6A17 increased Gln in SVs. Either genetic or virally mediated targeting of Slc6a17 reduced Gln in SVs. One ID mutation caused SLC6A17 mislocalization while the other caused defective Gln transport. Multidisciplinary approaches with seven types of genetically modified mice have shown Gln as an endogenous substrate of SLC6A17, uncovered Gln as a new molecule in SVs, established the necessary and sufficient roles of SLC6A17 in Gln transport into SVs, and suggested SV Gln decrease as the key pathogenetic mechanism in human ID.
Collapse
Affiliation(s)
- Xiaobo Jia
- Chinese Institute for Brain ResearchBeijingChina
- Changping LaboratoryBeijingChina
- Research Unit of Medical Neurobiology, Chinese Academy of Medical SciencesBeijingChina
| | - Jiemin Zhu
- Laboratory of Neurochemical Biology, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, School of Chemistry and Chemical Engineering, Peking UniversityBeijingChina
| | - Xiling Bian
- Laboratory of Neurochemical Biology, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, School of Chemistry and Chemical Engineering, Peking UniversityBeijingChina
| | | | - Sihan Yu
- Chinese Institute for Brain ResearchBeijingChina
| | | | - Lifen Jiang
- Institute of Molecular Physiology, Shenzhen Bay LaboratoryShenzhenChina
| | - Renbo Mao
- Chinese Institute for Brain ResearchBeijingChina
| | - Wenxia Zhang
- Laboratory of Neurochemical Biology, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, School of Chemistry and Chemical Engineering, Peking UniversityBeijingChina
| | - Yi Rao
- Chinese Institute for Brain ResearchBeijingChina
- Changping LaboratoryBeijingChina
- Research Unit of Medical Neurobiology, Chinese Academy of Medical SciencesBeijingChina
- Laboratory of Neurochemical Biology, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, School of Chemistry and Chemical Engineering, Peking UniversityBeijingChina
- Institute of Molecular Physiology, Shenzhen Bay LaboratoryShenzhenChina
- Capital Medical UniversityBeijingChina
| |
Collapse
|
33
|
Gracia-Diaz C, Zhou Y, Yang Q, Maroofian R, Espana-Bonilla P, Lee CH, Zhang S, Padilla N, Fueyo R, Waxman EA, Lei S, Otrimski G, Li D, Sheppard SE, Mark P, Harr MH, Hakonarson H, Rodan L, Jackson A, Vasudevan P, Powel C, Mohammed S, Maddirevula S, Alzaidan H, Faqeih EA, Efthymiou S, Turchetti V, Rahman F, Maqbool S, Salpietro V, Ibrahim SH, di Rosa G, Houlden H, Alharbi MN, Al-Sannaa NA, Bauer P, Zifarelli G, Estaras C, Hurst ACE, Thompson ML, Chassevent A, Smith-Hicks CL, de la Cruz X, Holtz AM, Elloumi HZ, Hajianpour MJ, Rieubland C, Braun D, Banka S, French DL, Heller EA, Saade M, Song H, Ming GL, Alkuraya FS, Agrawal PB, Reinberg D, Bhoj EJ, Martínez-Balbás MA, Akizu N. Gain and loss of function variants in EZH1 disrupt neurogenesis and cause dominant and recessive neurodevelopmental disorders. Nat Commun 2023; 14:4109. [PMID: 37433783 PMCID: PMC10336078 DOI: 10.1038/s41467-023-39645-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 06/22/2023] [Indexed: 07/13/2023] Open
Abstract
Genetic variants in chromatin regulators are frequently found in neurodevelopmental disorders, but their effect in disease etiology is rarely determined. Here, we uncover and functionally define pathogenic variants in the chromatin modifier EZH1 as the cause of dominant and recessive neurodevelopmental disorders in 19 individuals. EZH1 encodes one of the two alternative histone H3 lysine 27 methyltransferases of the PRC2 complex. Unlike the other PRC2 subunits, which are involved in cancers and developmental syndromes, the implication of EZH1 in human development and disease is largely unknown. Using cellular and biochemical studies, we demonstrate that recessive variants impair EZH1 expression causing loss of function effects, while dominant variants are missense mutations that affect evolutionarily conserved aminoacids, likely impacting EZH1 structure or function. Accordingly, we found increased methyltransferase activity leading to gain of function of two EZH1 missense variants. Furthermore, we show that EZH1 is necessary and sufficient for differentiation of neural progenitor cells in the developing chick embryo neural tube. Finally, using human pluripotent stem cell-derived neural cultures and forebrain organoids, we demonstrate that EZH1 variants perturb cortical neuron differentiation. Overall, our work reveals a critical role of EZH1 in neurogenesis regulation and provides molecular diagnosis for previously undefined neurodevelopmental disorders.
Collapse
Affiliation(s)
- Carolina Gracia-Diaz
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yijing Zhou
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Qian Yang
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Reza Maroofian
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Paula Espana-Bonilla
- Department of Structural and Molecular Biology, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Chul-Hwan Lee
- Department of Biomedical Sciences and Pharmacology, Seoul National University, College of Medicine, Seoul, South Korea
| | - Shuo Zhang
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Natàlia Padilla
- Research Unit in Clinical and Translational Bioinformatics, Vall d'Hebron Institute of Research (VHIR), Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Raquel Fueyo
- Department of Structural and Molecular Biology, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Elisa A Waxman
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sunyimeng Lei
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Garrett Otrimski
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dong Li
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sarah E Sheppard
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Paul Mark
- Department of Pediatrics, Division of Medical Genetics, Helen DeVos Children's Hospital, Corewell Health, Grand Rapids, MI, USA
| | - Margaret H Harr
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lance Rodan
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Division of Genetics & Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Adam Jackson
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Pradeep Vasudevan
- Leicestershire Clinical Genetics Service, University Hospitals of Leicester NHS Trust, Leicester Royal Infirmary, Leicester, UK
| | - Corrina Powel
- Leicestershire Clinical Genetics Service, University Hospitals of Leicester NHS Trust, Leicester Royal Infirmary, Leicester, UK
| | | | - Sateesh Maddirevula
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Hamad Alzaidan
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Eissa A Faqeih
- Section of Medical Genetics, Children's Specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Stephanie Efthymiou
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Valentina Turchetti
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Fatima Rahman
- Developmental and Behavioral Pediatrics, University of Child Health Sciences & The Children's Hospital, Lahore, Pakistan
| | - Shazia Maqbool
- Developmental and Behavioral Pediatrics, University of Child Health Sciences & The Children's Hospital, Lahore, Pakistan
| | - Vincenzo Salpietro
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Shahnaz H Ibrahim
- Department of Pediatrics and Child Health, Aga Khan University Hospital, Karachi, Pakistan
| | - Gabriella di Rosa
- Child Neuropsychiatry Unit, Department of Pediatrics, University of Messina, Messina, 98100, Italy
| | - Henry Houlden
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Maha Nasser Alharbi
- Maternity and Children Hospital Buraidah, Qassim Health Cluster, Buraydah, Saudi Arabia
| | | | | | | | - Conchi Estaras
- Center for Translational Medicine, Department of Cardiovascular Sciences, Temple University, Philadelphia, PA, USA
| | - Anna C E Hurst
- University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Anna Chassevent
- Department of Neurogenetics, Neurology and Developmental Medicine Kennedy Krieger Institute, Baltimore, MD, USA
| | - Constance L Smith-Hicks
- Department of Neurogenetics, Neurology and Developmental Medicine Kennedy Krieger Institute, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Xavier de la Cruz
- Research Unit in Clinical and Translational Bioinformatics, Vall d'Hebron Institute of Research (VHIR), Universitat Autonoma de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Alexander M Holtz
- Division of Genetics & Genomics, Boston Children's Hospital, Boston, MA, USA
| | | | - M J Hajianpour
- Division of Medical Genetics and Genomics, Department of Pediatrics, Albany Medical College, Albany, NY, USA
| | - Claudine Rieubland
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Dominique Braun
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Siddharth Banka
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Deborah L French
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth A Heller
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Murielle Saade
- Department of Structural and Molecular Biology, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Pankaj B Agrawal
- Division of Genetics & Genomics, Boston Children's Hospital, Boston, MA, USA
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
- Division of Neonatology, Department of Pediatrics, University of Miami School of Medicine and Holtz Children's Hospital, Jackson Heath System, Miami, FL, USA
| | | | - Elizabeth J Bhoj
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Marian A Martínez-Balbás
- Department of Structural and Molecular Biology, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Naiara Akizu
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
34
|
Zare Ashrafi F, Akhtarkhavari T, Fattahi Z, Asadnezhad M, Beheshtian M, Arzhangi S, Najmabadi H, Kahrizi K. Emerging Epidemiological Data on Rare Intellectual Disability Syndromes from Analyzing the Data of a Large Iranian Cohort. ARCHIVES OF IRANIAN MEDICINE 2023; 26:186-197. [PMID: 38301078 PMCID: PMC10685746 DOI: 10.34172/aim.2023.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/25/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND Intellectual disability (ID) is a genetically heterogeneous condition, and so far, 1679 human genes have been identified for this phenotype. Countries with a high rate of parental consanguinity, such as Iran, provide an excellent opportunity to identify the remaining novel ID genes, especially those with an autosomal recessive (AR) mode of inheritance. This study aimed to investigate the most prevalent ID genes identified via next-generation sequencing (NGS) in a large ID cohort at the Genetics Research Center (GRC) of the University of Social Welfare and Rehabilitation Sciences. METHODS First, we surveyed the epidemiological data of 619 of 1295 families in our ID cohort, who referred to the Genetics Research Center from all over the country between 2004 and 2021 for genetic investigation via the NGS pipeline. We then compared our data with those of several prominent studies conducted in consanguineous countries. Data analysis, including cohort data extraction, categorization, and comparison, was performed using the R program version 4.1.2. RESULTS We categorized the most common ID genes that were mutated in more than two families into 17 categories. The most common syndromic ID in our cohort was AP4 deficiency syndrome, and the most common non-syndromic autosomal recessive intellectual disability (ARID) gene was ASPM. We identified two unrelated families for the 36 ID genes. We found 14 genes in common between our cohort and the Arab and Pakistani groups, of which three genes (AP4M1, AP4S1, and ADGRG1) were repeated more than once. CONCLUSION To date, there has been no comprehensive targeted NGS platform for the detection of ID genes in our country. Due to the large sample size of our study, our data may provide the initial step toward designing an indigenously targeted NGS platform for the diagnosis of ID, especially common ARID in our population.
Collapse
Affiliation(s)
- Farzane Zare Ashrafi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Tara Akhtarkhavari
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Zohreh Fattahi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Maryam Asadnezhad
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Maryam Beheshtian
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Sanaz Arzhangi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| |
Collapse
|
35
|
Ben-Mahmoud A, Kishikawa S, Gupta V, Leach NT, Shen Y, Moldovan O, Goel H, Hopper B, Ranguin K, Gruchy N, Maas SM, Lacassie Y, Kim SH, Kim WY, Quade BJ, Morton CC, Kim CH, Layman LC, Kim HG. A microdeletion del(12)(p11.21p11.23) with a cryptic unbalanced translocation t(7;12)(q21.13;q23.1) implicates new candidate loci for intellectual disability and Kallmann syndrome. RESEARCH SQUARE 2023:rs.3.rs-2572736. [PMID: 37034680 PMCID: PMC10081357 DOI: 10.21203/rs.3.rs-2572736/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
In an apparently balanced translocation t(7;12)(q22;q24)dn exhibiting both Kallmann syndrome (KS) and intellectual disability (ID), we detected a cryptic heterozygous 4.7 Mb del(12)(p11.21p11.23) unrelated to the translocation breakpoint. This new finding raised the possibility that KS combined with neurological disorder in this patient could be caused by gene(s) within this deletion at 12p11.21-12p11.23 instead of disrupted or dysregulated genes at the genomic breakpoints. Screening of five candidate genes at both breakpoints in 48 KS patients we recruited found no mutation, corroborating our supposition. To substantiate this hypothesis further, we recruited six additional subjects with small CNVs and analyzed eight individuals carrying small CNVs in this region from DECIPHER to dissect 12p11.21-12p11.23. We used multiple complementary approaches including a phenotypic-genotypic comparison of reported cases, a review of knockout animal models recapitulating the human phenotypes, and analyses of reported variants in the interacting genes with corresponding phenotypes. The results identified one potential KS candidate gene ( TSPAN11 ), seven candidate genes for the neurodevelopmental disorder ( TM7SF3 , STK38L , ARNTL2 , ERGIC2 , TMTC1 , DENND5B , and ETFBKMT ), and four candidate genes for KS with ID ( INTS13 , REP15 , PPFIBP1 , and FAR2 ). The high-level expression pattern in the relevant human tissues further suggested the candidacy of these genes. We propose that the dosage alterations of the candidate genes may contribute to sexual and/or cognitive impairment in patients with KS and/or ID. Further identification of point mutations through next generation sequencing will be necessary to confirm their causal roles.
Collapse
Affiliation(s)
| | | | | | | | | | - Oana Moldovan
- Hospital Santa Maria, Centro Hospitalar Universitário Lisboa Norte
| | | | - Bruce Hopper
- Forster Genetics-Hunter New England Local Health District
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Genome-Wide Sequencing Modalities for Children with Unexplained Global Developmental Delay and Intellectual Disabilities—A Narrative Review. CHILDREN 2023; 10:children10030501. [PMID: 36980059 PMCID: PMC10047410 DOI: 10.3390/children10030501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/25/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
Unexplained global developmental delay (GDD) and intellectual disabilities (ID) together affect nearly 2% of the pediatric population. Establishing an etiologic diagnosis is crucial for disease management, prognostic evaluation, and provision of physical and psychological support for both the patient and the family. Advancements in genome sequencing have allowed rapid accumulation of gene–disorder associations and have accelerated the search for an etiologic diagnosis for unexplained GDD/ID. We reviewed recent studies that utilized genome-wide analysis technologies, and we discussed their diagnostic yield, strengths, and limitations. Overall, exome sequencing (ES) and genome sequencing (GS) outperformed chromosomal microarrays and targeted panel sequencing. GS provides coverage for both ES and chromosomal microarray regions, providing the maximal diagnostic potential, and the cost of ES and reanalysis of ES-negative results is currently still lower than that of GS alone. Therefore, singleton or trio ES is the more cost-effective option for the initial investigation of individuals with GDD/ID in clinical practice compared to a staged approach or GS alone. Based on these updated evidence, we proposed an evaluation algorithm with ES as the first-tier evaluation for unexplained GDD/ID.
Collapse
|
37
|
Dawood M, Akay G, Mitani T, Marafi D, Fatih JM, Gezdirici A, Najmabadi H, Kahrizi K, Punetha J, Grochowski CM, Du H, Jolly A, Li H, Coban-Akdemir Z, Sedlazeck FJ, Hunter JV, Jhangiani SN, Muzny D, Pehlivan D, Posey JE, Carvalho CM, Gibbs RA, Lupski JR. A biallelic frameshift indel in PPP1R35 as a cause of primary microcephaly. Am J Med Genet A 2023; 191:794-804. [PMID: 36598158 PMCID: PMC9928800 DOI: 10.1002/ajmg.a.63080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/05/2022] [Accepted: 12/01/2022] [Indexed: 01/05/2023]
Abstract
Protein phosphatase 1 regulatory subunit 35 (PPP1R35) encodes a centrosomal protein required for recruiting microtubule-binding elongation machinery. Several proteins in this centriole biogenesis pathway correspond to established primary microcephaly (MCPH) genes, and multiple model organism studies hypothesize PPP1R35 as a candidate MCPH gene. Here, using exome sequencing (ES) and family-based rare variant analyses, we report a homozygous, frameshifting indel deleting the canonical stop codon in the last exon of PPP1R35 [Chr7: c.753_*3delGGAAGCGTAGACCinsCG (p.Trp251Cysfs*22)]; the variant allele maps in a 3.7 Mb block of absence of heterozygosity (AOH) in a proband with severe MCPH (-4.3 SD at birth, -6.1 SD by 42 months), pachygyria, and global developmental delay from a consanguineous Turkish kindred. Droplet digital PCR (ddPCR) confirmed mutant mRNA expression in fibroblasts. In silico prediction of the translation of mutant PPP1R35 is expected to be elongated by 18 amino acids before encountering a downstream stop codon. This complex indel allele is absent in public databases (ClinVar, gnomAD, ARIC, 1000 genomes) and our in-house database of 14,000+ exomes including 1800+ Turkish exomes supporting predicted pathogenicity. Comprehensive literature searches for PPP1R35 variants yielded two probands affected with severe microcephaly (-15 SD and -12 SD) with the same homozygous indel from a single, consanguineous, Iranian family from a cohort of 404 predominantly Iranian families. The lack of heterozygous cases in two large cohorts representative of the genetic background of these two families decreased our suspicion of a founder allele and supports the contention of a recurrent mutation. We propose two potential secondary structure mutagenesis models for the origin of this variant allele mediated by hairpin formation between complementary GC rich segments flanking the stop codon via secondary structure mutagenesis.
Collapse
Affiliation(s)
- Moez Dawood
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Gulsen Akay
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Tadahiro Mitani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Dana Marafi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Department of Pediatrics, Faculty of Medicine, Kuwait University, P.O. Box 24923, 13110 Safat, Kuwait
| | - Jawid M. Fatih
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Alper Gezdirici
- Department of Medical Genetics, Basaksehir Cam and Sakura City Hospital, Istanbul 34480, Turkey
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Jaya Punetha
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | | | - Haowei Du
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Angad Jolly
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - He Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Zeynep Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Fritz J. Sedlazeck
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Jill V. Hunter
- Department of Radiology, Baylor College of Medicine, Houston, Texas, 77030, USA
- E.B. Singleton Department of Pediatric Radiology, Texas Children’s Hospital, Houston, Texas, 77030, USA
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Shalini N. Jhangiani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Donna Muzny
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Texas Children’s Hospital, Houston, Texas, 77030, USA
| | - Jennifer E. Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Claudia M.B. Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Pacific Northwest Research Institute, Seattle, WA, 98122, USA
| | - Richard A. Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, 77030, USA
- Texas Children’s Hospital, Houston, Texas, 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030
| |
Collapse
|
38
|
Liu Y, Wu Z, Wang W, Han H, Wang Y, Wang T. A novel homozygous missense mutation in L-2-HGA gene: A case report. Clin Neurol Neurosurg 2023; 225:107529. [PMID: 36610237 DOI: 10.1016/j.clineuro.2022.107529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/08/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022]
Abstract
L-2-hydroxyglutaric aciduria (L-2-HGA) is a rare autosomal recessive disease resulted from the mutated gene L-2- hydroxyglutarate dehydrogenase (L2HGDH). We presented a female case who inherited the disease from her consanguineous relatives and suffered from cognitive impairment, seizure, and ataxia. Using cerebral magnetic resonance imaging (MRI), urine organic acid test, and high-throughput DNA sequencing, a novel homozygous missense mutation was found in the L2HGDH gene, namely c 0.847 G>A/p. G283R in exon 7. Summarizing the clinical information of the patient with L-2-HGA exhibited to be beneficial for the diagnosis of this rare disease. In summary, the pathogenic missense mutation in the case was reliably confirmed using the bioinformatics analysis.
Collapse
Affiliation(s)
- Yanjun Liu
- Department of Neurology, Epilepsy Center, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730030, China.
| | - Zhijun Wu
- Department of Neurology, Epilepsy Center, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730030, China.
| | - Wenjie Wang
- Department of Neurology, Epilepsy Center, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730030, China.
| | - Hongmei Han
- Department of Neurology, Epilepsy Center, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730030, China.
| | - Yongxiang Wang
- Heart Center, the First Hospital of Lanzhou University, Lanzhou University, Lanzhou 730000, China.
| | - Tiancheng Wang
- Department of Neurology, Epilepsy Center, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730030, China.
| |
Collapse
|
39
|
Whole-Exome Sequencing of Pakistani Consanguineous Families Identified Pathogenic Variants in Genes of Intellectual Disability. Genes (Basel) 2022; 14:genes14010048. [PMID: 36672789 PMCID: PMC9858807 DOI: 10.3390/genes14010048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/01/2022] [Accepted: 12/16/2022] [Indexed: 12/28/2022] Open
Abstract
Intellectual disability (ID) is a condition of significant limitation of cognitive functioning and adaptive behavior, with 50% of etiology attributed to genetic predisposition. We recruited two consanguineous Pakistani families manifesting severe ID and developmental delay. The probands were subjected to whole exome sequencing (WES) and variants were further prioritized based on population frequency, predicted pathogenicity and functional relevance. The WES data analysis identified homozygous pathogenic variants in genes MBOAT7 and TRAPPC9. The pathogenicity of the variants was supported by co-segregation analysis and in silico tool. The findings of this study expand mutation spectrum and provide additional evidence to the role of MBOAT7 and TRAPPC9 in causation of ID.
Collapse
|
40
|
Bilches Medinas D, Malik S, Yıldız‐Bölükbaşı E, Borgonovo J, Saaranen MJ, Urra H, Pulgar E, Afzal M, Contreras D, Wright MT, Bodaleo F, Quiroz G, Rozas P, Mumtaz S, Díaz R, Rozas C, Cabral‐Miranda F, Piña R, Valenzuela V, Uyan O, Reardon C, Woehlbier U, Brown RH, Sena‐Esteves M, Gonzalez‐Billault C, Morales B, Plate L, Ruddock LW, Concha ML, Hetz C, Tolun A. Mutation in protein disulfide isomerase A3 causes neurodevelopmental defects by disturbing endoplasmic reticulum proteostasis. EMBO J 2022; 41:e105531. [PMID: 34904718 PMCID: PMC8762563 DOI: 10.15252/embj.2020105531] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/23/2021] [Accepted: 10/14/2021] [Indexed: 01/19/2023] Open
Abstract
Recessive gene mutations underlie many developmental disorders and often lead to disabling neurological problems. Here, we report identification of a homozygous c.170G>A (p.Cys57Tyr or C57Y) mutation in the gene coding for protein disulfide isomerase A3 (PDIA3, also known as ERp57), an enzyme that catalyzes formation of disulfide bonds in the endoplasmic reticulum, to be associated with syndromic intellectual disability. Experiments in zebrafish embryos show that PDIA3C57Y expression is pathogenic and causes developmental defects such as axonal disorganization as well as skeletal abnormalities. Expression of PDIA3C57Y in the mouse hippocampus results in impaired synaptic plasticity and memory consolidation. Proteomic and functional analyses reveal that PDIA3C57Y expression leads to dysregulation of cell adhesion and actin cytoskeleton dynamics, associated with altered integrin biogenesis and reduced neuritogenesis. Biochemical studies show that PDIA3C57Y has decreased catalytic activity and forms disulfide-crosslinked aggregates that abnormally interact with chaperones in the endoplasmic reticulum. Thus, rare disease gene variant can provide insight into how perturbations of neuronal proteostasis can affect the function of the nervous system.
Collapse
|
41
|
Ehtesham N, Mosallaei M, Beheshtian M, Khoshbakht S, Fadaee M, Vazehan R, Faraji Zonooz M, Karimzadeh P, Kahrizi K, Najmabadi H. Characterizing Genotypes and Phenotypes Associated with Dysfunction of Channel-Encoding Genes in a Cohort of Patients with Intellectual Disability. ARCHIVES OF IRANIAN MEDICINE 2022; 25:788-797. [PMID: 37543906 PMCID: PMC10685845 DOI: 10.34172/aim.2022.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/20/2021] [Indexed: 08/08/2023]
Abstract
BACKGROUND Ion channel dysfunction in the brain can lead to impairment of neuronal membranes and generate several neurological diseases, especially neurodevelopmental disorders. METHODS In this study, we set out to delineate the genotype and phenotype spectrums of 14 Iranian patients from 7 families with intellectual disability (ID) and/or developmental delay (DD) in whom genetic mutations were identified by next-generation sequencing (NGS) in 7 channel-encoding genes: KCNJ10, KCNQ3, KCNK6, CACNA1C, CACNA1G, SCN8A, and GRIN2B. Moreover, the data of 340 previously fully reported ID and/or DD cases with a mutation in any of these seven genes were combined with our patients to clarify the genotype and phenotype spectrum in this group. RESULTS In total, the most common phenotypes in 354 cases with ID/DD in whom mutation in any of these 7 channel-encoding genes was identified were as follows: ID (77.4%), seizure (69.8%), DD (59.8%), behavioral abnormality (29.9%), hypotonia (21.7%), speech disorder (21.5%), gait disturbance (20.9%), and ataxia (20.3%). Electroencephalography abnormality (33.9%) was the major brain imaging abnormality. CONCLUSION The results of this study broaden the molecular spectrum of channel pathogenic variants associated with different clinical presentations in individuals with ID and/or DD.
Collapse
Affiliation(s)
- Naeim Ehtesham
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Meysam Mosallaei
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Maryam Beheshtian
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Shahrouz Khoshbakht
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mahsa Fadaee
- Kariminejad – Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Raheleh Vazehan
- Kariminejad – Najmabadi Pathology & Genetics Center, Tehran, Iran
| | | | - Parvaneh Karimzadeh
- Department of Pediatric Neurology, School of Medicine, Pediatric Neurology Research Center, Mofid Children’s Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
- Kariminejad – Najmabadi Pathology & Genetics Center, Tehran, Iran
| |
Collapse
|
42
|
Ben-Mahmoud A, Jun KR, Gupta V, Shastri P, de la Fuente A, Park Y, Shin KC, Kim CA, da Cruz AD, Pinto IP, Minasi LB, Silva da Cruz A, Faivre L, Callier P, Racine C, Layman LC, Kong IK, Kim CH, Kim WY, Kim HG. A rigorous in silico genomic interrogation at 1p13.3 reveals 16 autosomal dominant candidate genes in syndromic neurodevelopmental disorders. Front Mol Neurosci 2022; 15:979061. [PMID: 36277487 PMCID: PMC9582330 DOI: 10.3389/fnmol.2022.979061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Genome-wide chromosomal microarray is extensively used to detect copy number variations (CNVs), which can diagnose microdeletion and microduplication syndromes. These small unbalanced chromosomal structural rearrangements ranging from 1 kb to 10 Mb comprise up to 15% of human mutations leading to monogenic or contiguous genomic disorders. Albeit rare, CNVs at 1p13.3 cause a variety of neurodevelopmental disorders (NDDs) including development delay (DD), intellectual disability (ID), autism, epilepsy, and craniofacial anomalies (CFA). Most of the 1p13.3 CNV cases reported in the pre-microarray era encompassed a large number of genes and lacked the demarcating genomic coordinates, hampering the discovery of positional candidate genes within the boundaries. In this study, we present four subjects with 1p13.3 microdeletions displaying DD, ID, autism, epilepsy, and CFA. In silico comparative genomic mapping with three previously reported subjects with CNVs and 22 unreported DECIPHER CNV cases has resulted in the identification of four different sub-genomic loci harboring five positional candidate genes for DD, ID, and CFA at 1p13.3. Most of these genes have pathogenic variants reported, and their interacting genes are involved in NDDs. RT-qPCR in various human tissues revealed a high expression pattern in the brain and fetal brain, supporting their functional roles in NDDs. Interrogation of variant databases and interacting protein partners led to the identification of another set of 11 potential candidate genes, which might have been dysregulated by the position effect of these CNVs at 1p13.3. Our studies define 1p13.3 as a genomic region harboring 16 NDD candidate genes and underscore the critical roles of small CNVs in in silico comparative genomic mapping for disease gene discovery. Our candidate genes will help accelerate the isolation of pathogenic heterozygous variants from exome/genome sequencing (ES/GS) databases.
Collapse
Affiliation(s)
- Afif Ben-Mahmoud
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Kyung Ran Jun
- Department of Laboratory Medicine, Inje University Haeundae Paik Hospital, Busan, South Korea
| | - Vijay Gupta
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Pinang Shastri
- Department of Cardiovascular Medicine, Cape Fear Valley Medical Center, Fayetteville, NC, United States
| | - Alberto de la Fuente
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Yongsoo Park
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Kyung Chul Shin
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Chong Ae Kim
- Faculdade de Medicina, Unidade de Genética do Instituto da Criança – Hospital das Clínicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Aparecido Divino da Cruz
- School of Medical and Life Sciences, Genetics Master Program, Replicon Research Group, Pontifical Catholic University of Goiás, Goiânia, Brazil
- Genetics Master Program, Replicon Research Nucleus, School of Agrarian and Biological Sciences, Pontifical Catholic University of Goias, Goiás, Brazil
| | - Irene Plaza Pinto
- School of Medical and Life Sciences, Genetics Master Program, Replicon Research Group, Pontifical Catholic University of Goiás, Goiânia, Brazil
- Genetics Master Program, Replicon Research Nucleus, School of Agrarian and Biological Sciences, Pontifical Catholic University of Goias, Goiás, Brazil
| | - Lysa Bernardes Minasi
- School of Medical and Life Sciences, Genetics Master Program, Replicon Research Group, Pontifical Catholic University of Goiás, Goiânia, Brazil
- Genetics Master Program, Replicon Research Nucleus, School of Agrarian and Biological Sciences, Pontifical Catholic University of Goias, Goiás, Brazil
| | - Alex Silva da Cruz
- School of Medical and Life Sciences, Genetics Master Program, Replicon Research Group, Pontifical Catholic University of Goiás, Goiânia, Brazil
- Genetics Master Program, Replicon Research Nucleus, School of Agrarian and Biological Sciences, Pontifical Catholic University of Goias, Goiás, Brazil
| | - Laurence Faivre
- Inserm UMR 1231 GAD, Genetics of Developmental Disorders, Université de Bourgogne-Franche Comté, Dijon, France
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Hôpital d’Enfants, Dijon, France
| | - Patrick Callier
- UMR 1231 GAD, Inserm – Université Bourgogne-Franche Comté, Dijon, France
| | - Caroline Racine
- UMR 1231 GAD, Inserm – Université Bourgogne-Franche Comté, Dijon, France
| | - Lawrence C. Layman
- Section of Reproductive Endocrinology, Infertility and Genetics, Department of Obstetrics and Gynecology, Augusta University, Augusta, GA, United States
- Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA, United States
| | - Il-Keun Kong
- Department of Animal Science, Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, South Korea
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon, South Korea
| | - Woo-Yang Kim
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Hyung-Goo Kim
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
- *Correspondence: Hyung-Goo Kim,
| |
Collapse
|
43
|
Musante L, Faletra F, Meier K, Tomoum H, Najarzadeh Torbati P, Blair E, North S, Gärtner J, Diegmann S, Beiraghi Toosi M, Ashrafzadeh F, Ghayoor Karimiani E, Murphy D, Murru FM, Zanus C, Magnolato A, La Bianca M, Feresin A, Girotto G, Gasparini P, Costa P, Carrozzi M. TTC5 syndrome: Clinical and molecular spectrum of a severe and recognizable condition. Am J Med Genet A 2022; 188:2652-2665. [PMID: 35670379 PMCID: PMC9541101 DOI: 10.1002/ajmg.a.62852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/31/2022] [Accepted: 04/30/2022] [Indexed: 01/24/2023]
Abstract
Biallelic mutations in the TTC5 gene have been associated with autosomal recessive intellectual disability (ARID) and subsequently with an ID syndrome including severe speech impairment, cerebral atrophy, and hypotonia as clinical cornerstones. A TTC5 role in IDs has been proposed based on the physical interaction of TTC5 with p300, and possibly reducing p300 co-activator complex activity, similarly to what was observed in Menke-Hennekam 1 and 2 patients (MKHK1 and 2) carrying, respectively, mutations in exon 30 and 31 of CREBBP and EP300, which code for the TTC5-binding region. Recently, TTC5-related brain malformation has been linked to tubulinopathies due to the function of TTC5 in tubulins' dynamics. We reported seven new patients with novel or recurrent TTC5 variants. The deep characterization of the molecular and phenotypic spectrum confirmed TTC5-related disorder as a recognizable, very severe neurodevelopmental syndrome. In addition, other relevant clinical aspects, including a severe pre- and postnatal growth retardation, cryptorchidism, and epilepsy, have emerged from the reversal phenotype approach and the review of already published TTC5 cases. Microcephaly and facial dysmorphism resulted in being less variable than that documented before. The TTC5 clinical features have been compared with MKHK1 published cases in the hypothesis that clinical overlap in some characteristics of the two conditions was related to the common p300 molecular pathway.
Collapse
Affiliation(s)
- Luciana Musante
- Institute for Maternal and Child Health ‐ IRCCS “Burlo Garofolo”TriesteItaly
| | - Flavio Faletra
- Institute for Maternal and Child Health ‐ IRCCS “Burlo Garofolo”TriesteItaly
| | - Kolja Meier
- Department of Pediatrics and Adolescent MedicineUniversity Medical Center GöttingenGöttingenGermany
| | - Hoda Tomoum
- Department of PediatricsAin Shams UniversityCairoEgypt
| | | | - Edward Blair
- Oxford Centre for Genomic MedicineOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Sally North
- Oxford Centre for Genomic MedicineOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Jutta Gärtner
- Department of Pediatrics and Adolescent MedicineUniversity Medical Center GöttingenGöttingenGermany
| | - Susann Diegmann
- Department of Pediatrics and Adolescent MedicineUniversity Medical Center GöttingenGöttingenGermany
| | - Mehran Beiraghi Toosi
- Pediatric Neurology Department, Ghaem HospitalMashhad University of Medical SciencesMashhadIran
| | - Farah Ashrafzadeh
- Department of Pediatrics, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Ehsan Ghayoor Karimiani
- Department of Molecular GeneticsNext Generation Genetic PolyclinicMashhadIran
- Molecular and Clinical Sciences InstituteSt. George's, University of LondonLondonUK
- Innovative Medical Research Center, Mashhad BranchIslamic Azad UniversityMashhadIran
| | - David Murphy
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Flora Maria Murru
- Institute for Maternal and Child Health ‐ IRCCS “Burlo Garofolo”TriesteItaly
| | - Caterina Zanus
- Institute for Maternal and Child Health ‐ IRCCS “Burlo Garofolo”TriesteItaly
| | - Andrea Magnolato
- Institute for Maternal and Child Health ‐ IRCCS “Burlo Garofolo”TriesteItaly
| | - Martina La Bianca
- Institute for Maternal and Child Health ‐ IRCCS “Burlo Garofolo”TriesteItaly
| | - Agnese Feresin
- Department of Medical, Surgical and Health SciencesUniversity of TriesteTriesteItaly
| | - Giorgia Girotto
- Institute for Maternal and Child Health ‐ IRCCS “Burlo Garofolo”TriesteItaly
- Department of Medical, Surgical and Health SciencesUniversity of TriesteTriesteItaly
| | - Paolo Gasparini
- Institute for Maternal and Child Health ‐ IRCCS “Burlo Garofolo”TriesteItaly
- Department of Medical, Surgical and Health SciencesUniversity of TriesteTriesteItaly
| | - Paola Costa
- Institute for Maternal and Child Health ‐ IRCCS “Burlo Garofolo”TriesteItaly
| | - Marco Carrozzi
- Institute for Maternal and Child Health ‐ IRCCS “Burlo Garofolo”TriesteItaly
| |
Collapse
|
44
|
Algouneh A, Caudle M, Balci T, Andrade A, Penava D, Saleh M. Dual BRCA1 and BRCA2 pathogenic variants in an adolescent with syndromic intellectual disability. Clin Case Rep 2022; 10:e6202. [PMID: 35957765 PMCID: PMC9360338 DOI: 10.1002/ccr3.6202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 11/11/2022] Open
Abstract
Pathogenic variants in the BRCA1 and BRCA2 genes are associated with increased risk for breast and ovarian cancers. Concurrent mutations in both genes in the same individual are rare but pose specific challenges when identified, usually through multigene panel testing or infrequently from a genome-wide analysis, such as whole-exome sequencing (WES). We present a 15-year-old female patient with syndromic intellectual disability whose exome reanalysis identified secondary findings of pathogenic BRCA1 and BRCA2 variants, both inherited paternally. We discuss the significant challenges posed by this finding in genetic counseling and cancer risk management of an adolescent with nonverbal intellectual disability, as well as the impact on their family. This rare case highlights the potential increased diagnostic yield of whole exome sequencing reanalysis and the consequences of secondary medically actionable results in a pediatric patient.
Collapse
Affiliation(s)
- Arash Algouneh
- Schulich School of MedicineWestern UniversityLondonOntarioCanada
| | - Michelle Caudle
- Division of Clinical Genetics, Department of PediatricsLondon Health Sciences CentreLondonOntarioCanada
| | - Tugce Balci
- Schulich School of MedicineWestern UniversityLondonOntarioCanada
- Division of Clinical Genetics, Department of PediatricsLondon Health Sciences CentreLondonOntarioCanada
| | - Andrea Andrade
- Schulich School of MedicineWestern UniversityLondonOntarioCanada
- Division of Pediatric Neurology, Department of PediatricsWestern UniversityLondonOntarioCanada
| | - Debbie Penava
- Schulich School of MedicineWestern UniversityLondonOntarioCanada
- Department of Obstetrics & GynecologyLondonOntarioCanada
| | - Maha Saleh
- Schulich School of MedicineWestern UniversityLondonOntarioCanada
- Division of Clinical Genetics, Department of PediatricsLondon Health Sciences CentreLondonOntarioCanada
| |
Collapse
|
45
|
De Novo ZMYND8 variants result in an autosomal dominant neurodevelopmental disorder with cardiac malformations. Genet Med 2022; 24:1952-1966. [PMID: 35916866 DOI: 10.1016/j.gim.2022.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 12/25/2022] Open
Abstract
PURPOSE ZMYND8 encodes a multidomain protein that serves as a central interactive hub for coordinating critical roles in transcription regulation, chromatin remodeling, regulation of super-enhancers, DNA damage response and tumor suppression. We delineate a novel neurocognitive disorder caused by variants in the ZMYND8 gene. METHODS An international collaboration, exome sequencing, molecular modeling, yeast two-hybrid assays, analysis of available transcriptomic data and a knockdown Drosophila model were used to characterize the ZMYND8 variants. RESULTS ZMYND8 variants were identified in 11 unrelated individuals; 10 occurred de novo and one suspected de novo; 2 were truncating, 9 were missense, of which one was recurrent. The disorder is characterized by intellectual disability with variable cardiovascular, ophthalmologic and minor skeletal anomalies. Missense variants in the PWWP domain of ZMYND8 abolish the interaction with Drebrin and missense variants in the MYND domain disrupt the interaction with GATAD2A. ZMYND8 is broadly expressed across cell types in all brain regions and shows highest expression in the early stages of brain development. Neuronal knockdown of the DrosophilaZMYND8 ortholog results in decreased habituation learning, consistent with a role in cognitive function. CONCLUSION We present genomic and functional evidence for disruption of ZMYND8 as a novel etiology of syndromic intellectual disability.
Collapse
|
46
|
Boonsawat P, Horn AHC, Steindl K, Baumer A, Joset P, Kraemer D, Bahr A, Ivanovski I, Cabello EM, Papik M, Zweier M, Oneda B, Sirleto P, Burkhardt T, Sticht H, Rauch A. Assessing clinical utility of preconception expanded carrier screening regarding residual risk for neurodevelopmental disorders. NPJ Genom Med 2022; 7:45. [PMID: 35906228 PMCID: PMC9338263 DOI: 10.1038/s41525-022-00316-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 07/15/2022] [Indexed: 11/10/2022] Open
Abstract
The magnitude of clinical utility of preconception expanded carrier screening (ECS) concerning its potential to reduce the risk of affected offspring is unknown. Since neurodevelopmental disorders (NDDs) in their offspring is a major concern of parents-to-be, we addressed the question of residual risk by assessing the risk-reduction potential for NDDs in a retrospective study investigating ECS with different criteria for gene selection and definition of pathogenicity. We used exome sequencing data from 700 parents of children with NDDs and blindly screened for carrier-alleles in up to 3046 recessive/X-linked genes. Depending on variant pathogenicity thresholds and gene content, NDD-risk-reduction potential was up to 43.5% in consanguineous, and 5.1% in nonconsanguineous couples. The risk-reduction-potential was compromised by underestimation of pathogenicity of missense variants (false-negative-rate 4.6%), inherited copy-number variants and compound heterozygosity of one inherited and one de novo variant (0.9% each). Adherence to the ACMG recommendations of restricting ECS to high-frequency genes in nonconsanguineous couples would more than halve the detectable inherited NDD-risk. Thus, for optimized clinical utility of ECS, screening in recessive/X-linked genes regardless of their frequency (ACMG Tier-4) and sensible pathogenicity thresholds should be considered for all couples seeking ECS.
Collapse
Affiliation(s)
| | - Anselm H C Horn
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland.,Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Katharina Steindl
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Alessandra Baumer
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Pascal Joset
- Medical Genetics, University Hospital Basel, Basel, Switzerland
| | - Dennis Kraemer
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Angela Bahr
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Ivan Ivanovski
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Elena M Cabello
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Michael Papik
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Markus Zweier
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Beatrice Oneda
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Pietro Sirleto
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Tilo Burkhardt
- University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Heinrich Sticht
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland. .,University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
47
|
Sánchez-Luquez KY, Carpena MX, Karam SM, Tovo-Rodrigues L. The contribution of whole-exome sequencing to intellectual disability diagnosis and knowledge of underlying molecular mechanisms: A systematic review and meta-analysis. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 790:108428. [PMID: 35905832 DOI: 10.1016/j.mrrev.2022.108428] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 01/01/2023]
Abstract
Whole-exome sequencing (WES) is useful for molecular diagnosis, family genetic counseling, and prognosis of intellectual disability (ID). However, ID molecular diagnosis ascertainment based on WES is highly dependent on de novo mutations (DNMs) and variants of uncertain significance (VUS). The quantification of DNM frequency in ID molecular diagnosis ascertainment and the biological mechanisms common to genes with VUS may provide objective information about WES use in ID diagnosis and etiology. We aimed to investigate and estimate the rate of ID molecular diagnostic assessment by WES, quantify the contribution of DNMs to this rate, and biologically and functionally characterize the genes whose mutations were identified through WES. A PubMed/Medline, Web of Science, Scopus, Science Direct, BIREME, and PsycINFO systematic review and meta-analysis was performed, including studies published between 2010 and 2022. Thirty-seven articles with data on ID molecular diagnostic yield using the WES approach were included in the review. WES testing accounted for an overall diagnostic rate of 42% (Confidence interval (CI): 35-50%), while the estimate restricted to DNMs was 11% (CI: 6-18%). Genetic information on mutations and genes was extracted and split into two groups: (1) genes whose mutation was used for positive molecular diagnosis, and (2) genes whose mutation led to uncertain molecular diagnosis. After functional enrichment analysis, in addition to their expected roles in neurodevelopment, genes from the first group were enriched in epigenetic regulatory mechanisms, immune system regulation, and circadian rhythm control. Genes from uncertain diagnosis cases were enriched in the renin angiotensin pathway. Taken together, our results support WES as an important approach to the molecular diagnosis of ID. The results also indicated relevant pathways that may underlie the pathogenesis of ID with the renin-angiotensin pathway being suggested to be a potential pathway underlying the pathogenesis of ID.
Collapse
Affiliation(s)
| | - Marina Xavier Carpena
- Postgraduate Program in Epidemiology, Universidade Federal de Pelotas, Pelotas, Brazil.
| | - Simone M Karam
- Postgraduate Program in Public Health, Universidade Federal do Rio Grande, Rio Grande, Brazil.
| | | |
Collapse
|
48
|
Haddadi M, Ataei R. wde, calpA, if, dap160, and poe genes knock down Drosophila models exhibit neurofunctional deficit. Gene 2022; 829:146499. [PMID: 35447243 DOI: 10.1016/j.gene.2022.146499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/14/2022] [Accepted: 04/14/2022] [Indexed: 11/27/2022]
Abstract
Intellectual disability (ID) is a heterogeneous disorder with high prevalence and remarkable social and cost burdens. Novel genetic variants of ATF7IP, CAPN9, ITGAV, ITSN1, and UBR4 genes are reported to be associated with the ID among Iranian families. However, in vivo validation is required to confirm the functional role of these variants in ID development. Drosophila melanogaster is a convenient model for such functional investigations as its genome bears ortholog of more than 75% of the disease-causing genes in human and represents numerous approaches to study defects in neuronal function. In this connection, RNAi gene silencing was applied to wde, calpA, if, dap160, and poe genes, the Drosophila ortholog of the selected human genes, and then consequent structural and functional changes in neurons were studied by means of immunohistochemistry and confocal microscopy of mushroom bodies (MBs) and validated behavioural assays including larvae and adult conditioning learning and memories, and ethanol sensitivity. Down-regulation of these genes led to neuronal loss which was evident by decline in total fluorescent signal intensity in micrographs of MBs structure. The gene silencing caused neuronal dysfunction and induction of ID-like symptoms manifested by deficits in larval preference learning, and short-term olfactory memory and courtship suppression learning in adults. Moreover, the RNAi flies showed higher sensitivity to ethanol vapour. Interestingly, the poe knock-down flies exhibited the most severe phenotypes among other genes. Altogether, we believe this study is first-of-its-kind and findings are highly applicable to confirm pathogenecity of the selected ID gene variants in Iranian population.
Collapse
Affiliation(s)
- Mohammad Haddadi
- Department of Biology, Faculty of Science, University of Zabol, Zabol, Iran.
| | - Reza Ataei
- Department of Biology, Faculty of Science, University of Zabol, Zabol, Iran
| |
Collapse
|
49
|
He S, Chen H, Guo X, Gao J. Red cell adenylate kinase deficiency in China: molecular study of 2 new mutations (413G > A, 223dupA). BMC Med Genomics 2022; 15:102. [PMID: 35509045 PMCID: PMC9066714 DOI: 10.1186/s12920-022-01248-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 04/22/2022] [Indexed: 11/14/2022] Open
Abstract
Background Adenylate kinase (AK) is a monomolecular enzyme widely found in a variety of organisms. It mainly catalyses the reversible transfer of adenosine nucleotide phosphate groups and plays an important role in maintaining energy metabolism. AK deficiency is a rare genetic disorder that is related to haemolytic anaemia. Chronic haemolytic anaemia associated with AK deficiency is a rare condition, and only 14 unrelated families have been reported thus far. Moreover, only 11 mutations have been identified in the AK1 gene, with only 3 cases of psychomotor impairment. Case presentation The patient was a 3-year-old boy with severe haemolytic anaemia and psychomotor retardation. A molecular study of the patient’s AK gene revealed 2 different mutations: a heterozygous missense mutation in exon 6 (c.413G > A) and a heterozygous frameshift mutation in exon 5 (c.223dupA). Molecular modelling analyses indicated that AK gene inactivation resulted in a lack of AK activity. The patient recovered after regular blood transfusion therapy. Conclusions AK1 deficiency was diagnosed on the basis of low enzymatic activity and the identification of a mutation in the AK1 gene located on chromosome 9q. Here, we report the first case of moderate red cell AK1 deficiency associated with chronic nonspherocytic haemolytic anaemia (CNSHA) in China. The genetic mutations were confirmed by Sanger sequencing. The variants were classified as pathogenic by bioinformatics tools, such as ACMG/AMP guidelines, Mutation Taster, SIFT, MACP, REVEL and PolyPhen2.2. Based on our evidence and previous literature reports, we speculate that the site of the AK1 gene c.413G > A (p.Arg138His) mutation may be a high-frequency mutation site and the other mutation (c.223dupA) might be related to the neuropathogenicity caused by AK1 deficiency. NGS should be a part of newborn to early childhood screening to diagnose rare and poorly diagnosed genetic diseases as early as possible. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01248-2.
Collapse
Affiliation(s)
- Sijia He
- Department of Peadiatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, 610041, China
| | - Hongbo Chen
- Department of Peadiatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Xia Guo
- Department of Peadiatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China. .,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, 610041, China.
| | - Ju Gao
- Department of Peadiatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China. .,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, 610041, China.
| |
Collapse
|
50
|
Lange LM, Gonzalez-Latapi P, Rajalingam R, Tijssen MAJ, Ebrahimi-Fakhari D, Gabbert C, Ganos C, Ghosh R, Kumar KR, Lang AE, Rossi M, van der Veen S, van de Warrenburg B, Warner T, Lohmann K, Klein C, Marras C. Nomenclature of Genetic Movement Disorders: Recommendations of the International Parkinson and Movement Disorder Society Task Force - An Update. Mov Disord 2022; 37:905-935. [PMID: 35481685 DOI: 10.1002/mds.28982] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/28/2022] [Accepted: 02/14/2022] [Indexed: 12/13/2022] Open
Abstract
In 2016, the Movement Disorder Society Task Force for the Nomenclature of Genetic Movement Disorders presented a new system for naming genetically determined movement disorders and provided a criterion-based list of confirmed monogenic movement disorders. Since then, a substantial number of novel disease-causing genes have been described, which warrant classification using this system. In addition, with this update, we further refined the system and propose dissolving the imaging-based categories of Primary Familial Brain Calcification and Neurodegeneration with Brain Iron Accumulation and reclassifying these genetic conditions according to their predominant phenotype. We also introduce the novel category of Mixed Movement Disorders (MxMD), which includes conditions linked to multiple equally prominent movement disorder phenotypes. In this article, we present updated lists of newly confirmed monogenic causes of movement disorders. We found a total of 89 different newly identified genes that warrant a prefix based on our criteria; 6 genes for parkinsonism, 21 for dystonia, 38 for dominant and recessive ataxia, 5 for chorea, 7 for myoclonus, 13 for spastic paraplegia, 3 for paroxysmal movement disorders, and 6 for mixed movement disorder phenotypes; 10 genes were linked to combined phenotypes and have been assigned two new prefixes. The updated lists represent a resource for clinicians and researchers alike and they have also been published on the website of the Task Force for the Nomenclature of Genetic Movement Disorders on the homepage of the International Parkinson and Movement Disorder Society (https://www.movementdisorders.org/MDS/About/Committees--Other-Groups/MDS-Task-Forces/Task-Force-on-Nomenclature-in-Movement-Disorders.htm). © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson Movement Disorder Society.
Collapse
Affiliation(s)
- Lara M Lange
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Paulina Gonzalez-Latapi
- The Edmond J. Safra Program in Parkinson's Disease and The Morton and Gloria Shulman Movement Disorder Clinic, Toronto Western Hospital, University of Toronto, Toronto, Canada.,Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Rajasumi Rajalingam
- The Edmond J. Safra Program in Parkinson's Disease and The Morton and Gloria Shulman Movement Disorder Clinic, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | - Marina A J Tijssen
- UMCG Expertise Centre Movement Disorders, Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Darius Ebrahimi-Fakhari
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Carolin Gabbert
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Christos Ganos
- Department of Neurology, Charité University Hospital Berlin, Berlin, Germany
| | - Rhia Ghosh
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Kishore R Kumar
- Molecular Medicine Laboratory and Department of Neurology, Concord Repatriation General Hospital, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Anthony E Lang
- The Edmond J. Safra Program in Parkinson's Disease and The Morton and Gloria Shulman Movement Disorder Clinic, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | - Malco Rossi
- Movement Disorders Section, Neuroscience Department, Raul Carrea Institute for Neurological Research (FLENI), Buenos Aires, Argentina
| | - Sterre van der Veen
- UMCG Expertise Centre Movement Disorders, Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Bart van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Center of Expertise for Parkinson and Movement Disorders, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Tom Warner
- Department of Clinical & Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Connie Marras
- The Edmond J. Safra Program in Parkinson's Disease and The Morton and Gloria Shulman Movement Disorder Clinic, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | | |
Collapse
|