1
|
Lion M, Ibrahim EC, Caccomo-Garcia E, Bourret J, Cinquanta G, Khalfallah O, Glaichenhaus N, Davidovic L, Courtet P, Turecki G, Tzavara E, Belzeaux R. A specific GPR56/ADGRG1 splicing isoform is associated with antidepressant response in major depressive disorder. Eur Neuropsychopharmacol 2025; 93:5-14. [PMID: 39874727 DOI: 10.1016/j.euroneuro.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 12/20/2024] [Accepted: 01/07/2025] [Indexed: 01/30/2025]
Abstract
Major Depressive Episode (MDE) is one of the most common psychiatric disorders. Often difficult to treat, this disease is one of the leading causes of suicide. A recent study showed an association between GPR56/ADGRG1 mRNA, MDE and response to antidepressant treatment in blood and in brain. Among GPR56 splicing variant, the S4 isoform has recently been associated with microglial synaptic pruning, while microglia are already known as a central player in MDE. Therefore, we hypothesized that S4 is the specific isoform associated to MDE and antidepressant response. To test our hypothesis, an in silico analysis was first performed to identify the different proteins and transcript isoforms of GPR56. This analysis allowed to design PCR and qPCR primers. GPR56 total, S4 and S3 were assessed by RT-qPCR in leukocytes from a cohort of 46 MDE patients including non-responders (NR, n = 31) and responders-remitters (R, n = 17) to antidepressant treatment. We replicated the result of one of our previous studies, which described an increase in total GPR56 mRNA in Rs. Additionally, we observed that this variation differs among mRNA splicing variants, with S4 exhibiting a similar pattern of variation while S3 shows no significant change. The differences observed withstood statistical correction for covariates of interest such as smoking, gender and suicidal ideation, demonstrating the robustness of the model. These findings confirm our hypothesis that certain mRNA splicing variants of GPR56 may play a more significant role in depression. This study highlighted a link between the GPR56-S4 and response to antidepressant treatment.
Collapse
Affiliation(s)
- Montaine Lion
- Aix-Marseille Univ, CNRS, INT, Inst Neurosci Timone, Marseille, France.
| | - El Chérif Ibrahim
- Aix-Marseille Univ, CNRS, INT, Inst Neurosci Timone, Marseille, France; Fondation FondaMental, Créteil, France.
| | | | - Julie Bourret
- IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France.
| | - Guillaume Cinquanta
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR7275, Université Côte d'Azur, INSERM U1318, Valbonne, France.
| | - Olfa Khalfallah
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR7275, Université Côte d'Azur, INSERM U1318, Valbonne, France.
| | - Nicolas Glaichenhaus
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR7275, Université Côte d'Azur, INSERM U1318, Valbonne, France.
| | - Laetitia Davidovic
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR7275, Université Côte d'Azur, INSERM U1318, Valbonne, France.
| | - Philippe Courtet
- IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France; Department of Emergency Psychiatry and Acute Care, Lapeyronie Hospital, CHU Montpellier, Montpellier, France
| | - Gustavo Turecki
- Department of Psychiatry, McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.
| | - Eleni Tzavara
- Fondation FondaMental, Créteil, France; Hôpital Sainte Marguerite, Pôle de psychiatrie, AP-HM, Marseille, France; CNRS (Integrative Neuroscience and Cognition Center, UMR 8002, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| | - Raoul Belzeaux
- IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France; Departement of psychiatry, CHU Montpellier, Montpellier, France.
| |
Collapse
|
2
|
Chalmers E, Duarte S, Al-Hejji X, Devoe D, Gruber A, McDonald RJ. Simulated synapse loss induces depression-like behaviors in deep reinforcement learning. Front Comput Neurosci 2024; 18:1466364. [PMID: 39569353 PMCID: PMC11576168 DOI: 10.3389/fncom.2024.1466364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/23/2024] [Indexed: 11/22/2024] Open
Abstract
Deep Reinforcement Learning is a branch of artificial intelligence that uses artificial neural networks to model reward-based learning as it occurs in biological agents. Here we modify a Deep Reinforcement Learning approach by imposing a suppressive effect on the connections between neurons in the artificial network-simulating the effect of dendritic spine loss as observed in major depressive disorder (MDD). Surprisingly, this simulated spine loss is sufficient to induce a variety of MDD-like behaviors in the artificially intelligent agent, including anhedonia, increased temporal discounting, avoidance, and an altered exploration/exploitation balance. Furthermore, simulating alternative and longstanding reward-processing-centric conceptions of MDD (dysfunction of the dopamine system, altered reward discounting, context-dependent learning rates, increased exploration) does not produce the same range of MDD-like behaviors. These results support a conceptual model of MDD as a reduction of brain connectivity (and thus information-processing capacity) rather than an imbalance in monoamines-though the computational model suggests a possible explanation for the dysfunction of dopamine systems in MDD. Reversing the spine-loss effect in our computational MDD model can lead to rescue of rewarding behavior under some conditions. This supports the search for treatments that increase plasticity and synaptogenesis, and the model suggests some implications for their effective administration.
Collapse
Affiliation(s)
- Eric Chalmers
- Department of Mathematics and Computing, Mount Royal University, Calgary, AB, Canada
| | - Santina Duarte
- Department of Mathematics and Computing, Mount Royal University, Calgary, AB, Canada
| | - Xena Al-Hejji
- Department of Mathematics and Computing, Mount Royal University, Calgary, AB, Canada
| | - Daniel Devoe
- Department of Mathematics and Computing, Mount Royal University, Calgary, AB, Canada
| | - Aaron Gruber
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Robert J McDonald
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
3
|
Alcaide J, Gramuntell Y, Klimczak P, Bueno-Fernandez C, Garcia-Verellen E, Guicciardini C, Sandi C, Castillo-Gómez E, Crespo C, Perez-Rando M, Nacher J. Long term effects of peripubertal stress on the thalamic reticular nucleus of female and male mice. Neurobiol Dis 2024; 200:106642. [PMID: 39173845 DOI: 10.1016/j.nbd.2024.106642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024] Open
Abstract
Adverse experiences during infancy and adolescence have an important and enduring effect on the brain and are predisposing factors for mental disorders, particularly major depression. This impact is particularly notable in regions with protracted development, such as the prefrontal cortex. The inhibitory neurons of this cortical region are altered by peripubertal stress (PPS), particularly in female mice. In this study we have explored whether the inhibitory circuits of the thalamus are impacted by PPS in male and female mice. This diencephalic structure, as the prefrontal cortex, also completes its development during postnatal life and is affected by adverse experiences. The long-term changes induced by PPS were exclusively found in adult female mice. We have found that PPS increases depressive-like behavior and induces changes in parvalbumin-expressing (PV+) cells of the thalamic reticular nucleus (TRN). We observed reductions in the volume of the TRN, together with those of parameters related to structures/molecules that regulate the plasticity and connectivity of PV+ cells: perineuronal nets, matricellular structures surrounding PV+ neurons, and the polysialylated form of the neural cell adhesion molecule (PSA-NCAM). The expression of the GluN1, but not of GluN2C, NMDA receptor subunit was augmented in the TRN after PPS. An increase in the fluorescence intensity of PV+ puncta was also observed in the synaptic output of TRN neurons in the lateral posterior thalamic nucleus. These results demonstrate that the inhibitory circuits of the thalamus, as those of the prefrontal cortex, are vulnerable to the effects of aversive experiences during early life, particularly in females. This vulnerability is probably related to the protracted development of the TRN and might contribute to the development of psychiatric disorders.
Collapse
Affiliation(s)
- Julia Alcaide
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain; Spanish National Network for Research in Mental Health CIBERSAM, 28029, Spain; Fundación Investigación Hospital Clínico de Valencia, INCLIVA, 46010 Valencia, Spain
| | - Yaiza Gramuntell
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain; Spanish National Network for Research in Mental Health CIBERSAM, 28029, Spain; Fundación Investigación Hospital Clínico de Valencia, INCLIVA, 46010 Valencia, Spain
| | - Patrycja Klimczak
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain; Spanish National Network for Research in Mental Health CIBERSAM, 28029, Spain; Fundación Investigación Hospital Clínico de Valencia, INCLIVA, 46010 Valencia, Spain
| | - Clara Bueno-Fernandez
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain; Spanish National Network for Research in Mental Health CIBERSAM, 28029, Spain; Fundación Investigación Hospital Clínico de Valencia, INCLIVA, 46010 Valencia, Spain
| | - Erica Garcia-Verellen
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain
| | - Chiara Guicciardini
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Esther Castillo-Gómez
- Spanish National Network for Research in Mental Health CIBERSAM, 28029, Spain; Department of Medicine, School of Medical Sciences, Universitat Jaume I, Valencia, Spain
| | - Carlos Crespo
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain
| | - Marta Perez-Rando
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain; Spanish National Network for Research in Mental Health CIBERSAM, 28029, Spain; Fundación Investigación Hospital Clínico de Valencia, INCLIVA, 46010 Valencia, Spain.
| | - Juan Nacher
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain; Spanish National Network for Research in Mental Health CIBERSAM, 28029, Spain; Fundación Investigación Hospital Clínico de Valencia, INCLIVA, 46010 Valencia, Spain.
| |
Collapse
|
4
|
Calagua-Bedoya EA, Rajasekaran V, De Witte L, Perez-Rodriguez MM. The Role of Inflammation in Depression and Beyond: A Primer for Clinicians. Curr Psychiatry Rep 2024; 26:514-529. [PMID: 39187612 DOI: 10.1007/s11920-024-01526-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
PURPOSE OF REVIEW We evaluate available evidence for the role of inflammation in depression. We reappraise literature involving systemic inflammation, neuroinflammation and neurotransmission and their association with depression. We review the connection between depression, autoimmunity and infectious diseases. We revise anti-inflammatory treatments used in depression. RECENT FINDINGS Peripheral inflammatory markers are present in a subset of patients with depression and can alter common neurotransmitters in this population but there is no clear causality between depression and systemic inflammation. Infectious conditions and autoimmune illnesses do not have a clear correlation with depression. Certain medications have positive evidence as adjunctive treatments in depression but studies are heterogenic, hence they are sparsely used in clinical settings. The current evidence does not fully support inflammation, infections or autoimmunity as possible etiologies of depression. The available studies have numerous confounders that obscure the findings. Anti-inflammatory agents may have potential for treatment of depression, but further research is needed to clarify their usefulness in routine clinical practice.
Collapse
Affiliation(s)
- Eduardo Andres Calagua-Bedoya
- Department of Psychiatry, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
- Dartmouth Hitchcock Medical Center, Lebanon, NH, 03766, USA.
| | | | - Lotje De Witte
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | | |
Collapse
|
5
|
Robledo-Montaña J, Díaz-García C, Martínez M, Ambrosio N, Montero E, Marín MJ, Virto L, Muñoz-López M, Herrera D, Sanz M, Leza JC, García-Bueno B, Figuero E, Martín-Hernández D. Microglial morphological/inflammatory phenotypes and endocannabinoid signaling in a preclinical model of periodontitis and depression. J Neuroinflammation 2024; 21:219. [PMID: 39245706 PMCID: PMC11382403 DOI: 10.1186/s12974-024-03213-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/29/2024] [Indexed: 09/10/2024] Open
Abstract
BACKGROUND Depression is a chronic psychiatric disease of multifactorial etiology, and its pathophysiology is not fully understood. Stress and other chronic inflammatory pathologies are shared risk factors for psychiatric diseases, and comorbidities are features of major depression. Epidemiological evidence suggests that periodontitis, as a source of low-grade chronic systemic inflammation, may be associated with depression, but the underlying mechanisms are not well understood. METHODS Periodontitis (P) was induced in Wistar: Han rats through oral gavage with the pathogenic bacteria Porphyromonas gingivalis and Fusobacterium nucleatum for 12 weeks, followed by 3 weeks of chronic mild stress (CMS) to induce depressive-like behavior. The following four groups were established (n = 12 rats/group): periodontitis and CMS (P + CMS+), periodontitis without CMS, CMS without periodontitis, and control. The morphology and inflammatory phenotype of microglia in the frontal cortex (FC) were studied using immunofluorescence and bioinformatics tools. The endocannabinoid (EC) signaling and proteins related to synaptic plasticity were analyzed in FC samples using biochemical and immunohistochemical techniques. RESULTS Ultrastructural and fractal analyses of FC revealed a significant increase in the complexity and heterogeneity of Iba1 + parenchymal microglia in the combined experimental model (P + CMS+) and increased expression of the proinflammatory marker inducible nitric oxide synthase (iNOS), while there were no changes in the expression of cannabinoid receptor 2 (CB2). In the FC protein extracts of the P + CMS + animals, there was a decrease in the levels of the EC metabolic enzymes N-acyl phosphatidylethanolamine-specific phospholipase D (NAPE-PLD), diacylglycerol lipase (DAGL), and monoacylglycerol lipase (MAGL) compared to those in the controls, which extended to protein expression in neurons and in FC extracts of cannabinoid receptor 1 (CB1) and to the intracellular signaling molecules phosphatidylinositol-3-kinase (PI3K), protein kinase B (Akt) and extracellular signal-regulated kinase 1/2 (ERK1/2). The protein levels of brain-derived neurotrophic factor (BDNF) and synaptophysin were also lower in P + CMS + animals than in controls. CONCLUSIONS The combined effects on microglial morphology and inflammatory phenotype, the EC signaling, and proteins related to synaptic plasticity in P + CMS + animals may represent relevant mechanisms explaining the association between periodontitis and depression. These findings highlight potential therapeutic targets that warrant further investigation.
Collapse
Affiliation(s)
- Javier Robledo-Montaña
- Department of Pharmacology and Toxicology, School of Medicine, Faculty of Medicine, Complutense University of Madrid (UCM), Hospital 12 de Octubre Research Institute (Imas12), Neurochemistry Research Institute UCM (IUIN), Pza. Ramón y Cajal s/n, Madrid, 28040, Spain
- Biomedical Network Research Center of Mental Health (CIBERSAM), Institute of Health Carlos III, Madrid, Spain
| | - César Díaz-García
- Department of Pharmacology and Toxicology, School of Medicine, Faculty of Medicine, Complutense University of Madrid (UCM), Hospital 12 de Octubre Research Institute (Imas12), Neurochemistry Research Institute UCM (IUIN), Pza. Ramón y Cajal s/n, Madrid, 28040, Spain
- Biomedical Network Research Center of Mental Health (CIBERSAM), Institute of Health Carlos III, Madrid, Spain
| | - María Martínez
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, Complutense University of Madrid, Madrid, Spain
- Department of Dental Clinical Specialties, School of Dentistry, Faculty of Dentistry, Complutense University of Madrid, Pza. Ramón y Cajal s/n, Madrid, 28040, Spain
| | - Nagore Ambrosio
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, Complutense University of Madrid, Madrid, Spain
- Department of Dental Clinical Specialties, School of Dentistry, Faculty of Dentistry, Complutense University of Madrid, Pza. Ramón y Cajal s/n, Madrid, 28040, Spain
| | - Eduardo Montero
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, Complutense University of Madrid, Madrid, Spain
- Department of Dental Clinical Specialties, School of Dentistry, Faculty of Dentistry, Complutense University of Madrid, Pza. Ramón y Cajal s/n, Madrid, 28040, Spain
| | - María José Marín
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, Complutense University of Madrid, Madrid, Spain
| | - Leire Virto
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, Complutense University of Madrid, Madrid, Spain
- Department of Anatomy and Embryology, Faculty of Optics, Complutense University of Madrid, Madrid, Spain
| | - Marina Muñoz-López
- Department of Pharmacology and Toxicology, School of Medicine, Faculty of Medicine, Complutense University of Madrid (UCM), Hospital 12 de Octubre Research Institute (Imas12), Neurochemistry Research Institute UCM (IUIN), Pza. Ramón y Cajal s/n, Madrid, 28040, Spain
- Biomedical Network Research Center of Mental Health (CIBERSAM), Institute of Health Carlos III, Madrid, Spain
| | - David Herrera
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, Complutense University of Madrid, Madrid, Spain
- Department of Dental Clinical Specialties, School of Dentistry, Faculty of Dentistry, Complutense University of Madrid, Pza. Ramón y Cajal s/n, Madrid, 28040, Spain
| | - Mariano Sanz
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, Complutense University of Madrid, Madrid, Spain
- Department of Dental Clinical Specialties, School of Dentistry, Faculty of Dentistry, Complutense University of Madrid, Pza. Ramón y Cajal s/n, Madrid, 28040, Spain
| | - Juan Carlos Leza
- Department of Pharmacology and Toxicology, School of Medicine, Faculty of Medicine, Complutense University of Madrid (UCM), Hospital 12 de Octubre Research Institute (Imas12), Neurochemistry Research Institute UCM (IUIN), Pza. Ramón y Cajal s/n, Madrid, 28040, Spain
- Biomedical Network Research Center of Mental Health (CIBERSAM), Institute of Health Carlos III, Madrid, Spain
| | - Borja García-Bueno
- Department of Pharmacology and Toxicology, School of Medicine, Faculty of Medicine, Complutense University of Madrid (UCM), Hospital 12 de Octubre Research Institute (Imas12), Neurochemistry Research Institute UCM (IUIN), Pza. Ramón y Cajal s/n, Madrid, 28040, Spain
- Biomedical Network Research Center of Mental Health (CIBERSAM), Institute of Health Carlos III, Madrid, Spain
| | - Elena Figuero
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, Complutense University of Madrid, Madrid, Spain.
- Department of Dental Clinical Specialties, School of Dentistry, Faculty of Dentistry, Complutense University of Madrid, Pza. Ramón y Cajal s/n, Madrid, 28040, Spain.
| | - David Martín-Hernández
- Department of Pharmacology and Toxicology, School of Medicine, Faculty of Medicine, Complutense University of Madrid (UCM), Hospital 12 de Octubre Research Institute (Imas12), Neurochemistry Research Institute UCM (IUIN), Pza. Ramón y Cajal s/n, Madrid, 28040, Spain.
- Biomedical Network Research Center of Mental Health (CIBERSAM), Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
6
|
Ahmed S, Polis B, Kaffman A. Microglia: The Drunken Gardeners of Early Adversity. Biomolecules 2024; 14:964. [PMID: 39199352 PMCID: PMC11353196 DOI: 10.3390/biom14080964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
Early life adversity (ELA) is a heterogeneous group of negative childhood experiences that can lead to abnormal brain development and more severe psychiatric, neurological, and medical conditions in adulthood. According to the immune hypothesis, ELA leads to an abnormal immune response characterized by high levels of inflammatory cytokines. This abnormal immune response contributes to more severe negative health outcomes and a refractory response to treatment in individuals with a history of ELA. Here, we examine this hypothesis in the context of recent rodent studies that focus on the impact of ELA on microglia, the resident immune cells in the brain. We review recent progress in our ability to mechanistically link molecular alterations in microglial function during a critical period of development with changes in synaptic connectivity, cognition, and stress reactivity later in life. We also examine recent research showing that ELA induces long-term alterations in microglial inflammatory response to "secondary hits" such as traumatic brain injury, substance use, and exposure to additional stress in adulthood. We conclude with a discussion on future directions and unresolved questions regarding the signals that modify microglial function and the clinical significance of rodent studies for humans.
Collapse
Affiliation(s)
| | | | - Arie Kaffman
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT 06511, USA; (S.A.); (B.P.)
| |
Collapse
|
7
|
Reichert Plaska C, Heslegrave A, Bruno D, Ramos-Cejudo J, Han Lee S, Osorio R, Imbimbo BP, Zetterberg H, Blennow K, Pomara N. Evidence for reduced anti-inflammatory microglial phagocytic response in late-life major depression. Brain Behav Immun 2024; 120:248-255. [PMID: 38795783 PMCID: PMC11270917 DOI: 10.1016/j.bbi.2024.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/19/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024] Open
Abstract
Major depressive disorder (MDD) is associated with Alzheimer's disease (AD) but the precise mechanisms underlying this relationship are not understood. While it is well established that cerebrospinal fluid (CSF) soluble levels of triggering receptor expressed on myeloid cells 2 (sTREM2) increase during early stages of AD, how sTREM2 levels behave in subjects with MDD is not known. In a longitudinal study, we measured CSF sTREM2 levels in 27 elderly cognitively intact individuals with late-life major depression (LLMD) and in 19 healthy controls. We tested the hypothesis that, similarly to what happens in early stages of AD, CSF sTREM2 would be elevated in MDD. In addition, we compared the associations of CSF sTREM2, pro- and anti- inflammatory, and AD biomarkers in LLMD and control subjects. Surprisingly, we found that mean CSF sTREM2 levels were significantly reduced in LLMD compared to controls. This reduction was no longer significant at the 3-year follow-up visit when depression severity improved. In addition, we found that CSF sTREM2 was associated with AD biomarkers and proinflammatory cytokines in controls but not in LLMD. These findings suggest that impaired microglia phagocytic response to AD pathology may be a novel link between MDD and AD.
Collapse
Affiliation(s)
- Chelsea Reichert Plaska
- Geriatric Psychiatry Division, Nathan S Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Amanda Heslegrave
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom; UK Dementia Research Institute at UCL, London, United Kingdom
| | - Davide Bruno
- School of Psychology, Liverpool John Moores University, Liverpool, United Kingdom
| | - Jaime Ramos-Cejudo
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA; VA Boston Cooperative Studies Program MAVERIC, VA Boston Healthcare System, Boston, MA, USA
| | - Sang Han Lee
- Geriatric Psychiatry Division, Nathan S Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Ricardo Osorio
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA; Clinical Research Department, Nathan S Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Bruno P Imbimbo
- Department of Research & Development, Chiesi Farmaceutici, Parma, Italy
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom; UK Dementia Research Institute at UCL, London, United Kingdom; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, P.R. China
| | - Nunzio Pomara
- Geriatric Psychiatry Division, Nathan S Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department of Psychiatry and Pathology, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
8
|
Fitzgerald E, Pokhvisneva I, Patel S, Yu Chan S, Peng Tan A, Chen H, Pelufo Silveira P, Meaney MJ. Microglial function interacts with the environment to affect sex-specific depression risk. Brain Behav Immun 2024; 119:597-606. [PMID: 38670238 DOI: 10.1016/j.bbi.2024.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/02/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024] Open
Abstract
There is a two-fold higher incidence of depression in females compared to men with recent studies suggesting a role for microglia in conferring this sex-dependent depression risk. In this study we investigated the nature of this relation. Using GWAS enrichment, gene-set enrichment analysis and Mendelian randomization, we found minimal evidence for a direct relation between genes functionally related to microglia and sex-dependent genetic risk for depression. We then used expression quantitative trait loci and single nucleus RNA-sequencing resources to generate polygenic scores (PGS) representative of individual variation in microglial function in the adult (UK Biobank; N = 54753-72682) and fetal (ALSPAC; N = 1452) periods. The adult microglial PGS moderated the association between BMI (UK Biobank; beta = 0.001, 95 %CI 0.0009 to 0.003, P = 7.74E-6) and financial insecurity (UK Biobank; beta = 0.001, 95 %CI 0.005 to 0.015, P = 2E-4) with depressive symptoms in females. The fetal microglia PGS moderated the association between maternal prenatal depressive symptoms and offspring depressive symptoms at 24 years in females (ALSPAC; beta = 0.04, 95 %CI 0.004 to 0.07, P = 0.03). We found no evidence for an interaction between the microglial PGS and depression risk factors in males. Our results illustrate a role for microglial function in the conferral of sex-dependent depression risk following exposure to a depression risk factor.
Collapse
Affiliation(s)
- Eamon Fitzgerald
- Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Canada; Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Canada.
| | - Irina Pokhvisneva
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Canada
| | - Sachin Patel
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Canada
| | - Shi Yu Chan
- Translational Neuroscience Program, Singapore Institute for Clinical Sciences, Singapore
| | - Ai Peng Tan
- Translational Neuroscience Program, Singapore Institute for Clinical Sciences, Singapore; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Diagnostic Imaging, National University Health System, Singapore; Brain - Body Initiative, Agency for Science, Technology & Research (A*STAR), Singapore
| | - Helen Chen
- Department of Psychological Medicine, KK Women's and Children's Hospital, Singapore; Duke-National University of Singapore, Singapore
| | - Patricia Pelufo Silveira
- Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Canada; Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Canada; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Michael J Meaney
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Canada; Translational Neuroscience Program, Singapore Institute for Clinical Sciences, Singapore; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Brain - Body Initiative, Agency for Science, Technology & Research (A*STAR), Singapore.
| |
Collapse
|
9
|
Haniff ZR, Bocharova M, Mantingh T, Rucker JJ, Velayudhan L, Taylor DM, Young AH, Aarsland D, Vernon AC, Thuret S. Psilocybin for dementia prevention? The potential role of psilocybin to alter mechanisms associated with major depression and neurodegenerative diseases. Pharmacol Ther 2024; 258:108641. [PMID: 38583670 DOI: 10.1016/j.pharmthera.2024.108641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Major depression is an established risk factor for subsequent dementia, and depression in late life may also represent a prodromal state of dementia. Considering current challenges in the clinical development of disease modifying therapies for dementia, the focus of research is shifting towards prevention and modification of risk factors to alter the neurodegenerative disease trajectory. Understanding mechanistic commonalities underlying affective symptoms and cognitive decline may reveal biomarkers to aid early identification of those at risk of progressing to dementia during the preclinical phase of disease, thus allowing for timely intervention. Adult hippocampal neurogenesis (AHN) is a phenomenon that describes the birth of new neurons in the dentate gyrus throughout life and it is associated with spatial learning, memory and mood regulation. Microglia are innate immune system macrophages in the central nervous system that carefully regulate AHN via multiple mechanisms. Disruption in AHN is associated with both dementia and major depression and microgliosis is a hallmark of several neurodegenerative diseases. Emerging evidence suggests that psychedelics promote neuroplasticity, including neurogenesis, and may also be immunomodulatory. In this context, psilocybin, a serotonergic agonist with rapid-acting antidepressant properties has the potential to ameliorate intersecting pathophysiological processes relevant for both major depression and neurodegenerative diseases. In this narrative review, we focus on the evidence base for the effects of psilocybin on adult hippocampal neurogenesis and microglial form and function; which may suggest that psilocybin has the potential to modulate multiple mechanisms of action, and may have implications in altering the progression from major depression to dementia in those at risk.
Collapse
Affiliation(s)
- Zarah R Haniff
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom.
| | - Mariia Bocharova
- Department of Old Age Psychiatry, Division of Academic Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Tim Mantingh
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - James J Rucker
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; South London and Maudsley NHS Foundation Trust, Maudsley Hospital, Denmark Hill, London, United Kingdom
| | - Latha Velayudhan
- Department of Old Age Psychiatry, Division of Academic Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - David M Taylor
- South London and Maudsley NHS Foundation Trust, Maudsley Hospital, Denmark Hill, London, United Kingdom
| | - Allan H Young
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Monks Orchard Road, Beckenham, Kent, United Kingdom
| | - Dag Aarsland
- Department of Old Age Psychiatry, Division of Academic Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; Wolfson Centre for Age Related Diseases, Division of Neuroscience of the Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; Stavanger University Hospital, Stavanger, Norway
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, United Kingdom.
| | - Sandrine Thuret
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom.
| |
Collapse
|
10
|
Yamamoto M, Sakai M, Yu Z, Nakanishi M, Yoshii H. Glial Markers of Suicidal Behavior in the Human Brain-A Systematic Review of Postmortem Studies. Int J Mol Sci 2024; 25:5750. [PMID: 38891940 PMCID: PMC11171620 DOI: 10.3390/ijms25115750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
Suicide is a major public health priority, and its molecular mechanisms appear to be related to glial abnormalities and specific transcriptional changes. This study aimed to identify and synthesize evidence of the relationship between glial dysfunction and suicidal behavior to understand the neurobiology of suicide. As of 26 January 2024, 46 articles that met the inclusion criteria were identified by searching PubMed and ISI Web of Science. Most postmortem studies, including 30 brain regions, have determined no density or number of total Nissl-glial cell changes in suicidal patients with major psychiatric disorders. There were 17 astrocytic, 14 microglial, and 9 oligodendroglial studies using specific markers of each glial cell and further on their specific gene expression. Those studies suggest that astrocytic and oligodendroglial cells lost but activated microglia in suicides with affective disorder, bipolar disorders, major depression disorders, or schizophrenia in comparison with non-suicided patients and non-psychiatric controls. Although the data from previous studies remain complex and cannot fully explain the effects of glial cell dysfunction related to suicidal behaviors, they provide risk directions potentially leading to suicide prevention.
Collapse
Affiliation(s)
- Mana Yamamoto
- Department of Psychiatric Nursing, Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Mai Sakai
- Department of Psychiatric Nursing, Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Zhiqian Yu
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan
| | - Miharu Nakanishi
- Department of Psychiatric Nursing, Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Hatsumi Yoshii
- Department of Psychiatric Nursing, Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| |
Collapse
|
11
|
Hartmann SM, Heider J, Wüst R, Fallgatter AJ, Volkmer H. Microglia-neuron interactions in schizophrenia. Front Cell Neurosci 2024; 18:1345349. [PMID: 38510107 PMCID: PMC10950997 DOI: 10.3389/fncel.2024.1345349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/21/2024] [Indexed: 03/22/2024] Open
Abstract
Multiple lines of evidence implicate increased neuroinflammation mediated by glial cells to play a key role in neurodevelopmental disorders such as schizophrenia. Microglia, which are the primary innate immune cells of the brain, are crucial for the refinement of the synaptic circuitry during early brain development by synaptic pruning and the regulation of synaptic plasticity during adulthood. Schizophrenia risk factors as genetics or environmental influences may further be linked to increased activation of microglia, an increase of pro-inflammatory cytokine levels and activation of the inflammasome resulting in an overall elevated neuroinflammatory state in patients. Synaptic loss, one of the central pathological hallmarks of schizophrenia, is believed to be due to excess removal of synapses by activated microglia, primarily affecting glutamatergic neurons. Therefore, it is crucial to investigate microglia-neuron interactions, which has been done by multiple studies focusing on post-mortem brain tissues, brain imaging, animal models and patient iPSC-derived 2D culture systems. In this review, we summarize the major findings in patients and in vivo and in vitro models in the context of neuron-microglia interactions in schizophrenia and secondly discuss the potential of anti-inflammatory treatments for the alleviation of positive, negative, and cognitive symptoms.
Collapse
Affiliation(s)
- Sophia-Marie Hartmann
- Molecular Neurobiology, Department of Pharma and Biotech, NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Johanna Heider
- Molecular Neurobiology, Department of Pharma and Biotech, NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Richard Wüst
- Department of Psychiatry, Tübingen Center for Mental Health (TüCMH), University of Tübingen, Tübingen, Germany
| | - Andreas J. Fallgatter
- Department of Psychiatry, Tübingen Center for Mental Health (TüCMH), University of Tübingen, Tübingen, Germany
| | - Hansjürgen Volkmer
- Molecular Neurobiology, Department of Pharma and Biotech, NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| |
Collapse
|
12
|
Petrican R, Fornito A, Boyland E. Lifestyle Factors Counteract the Neurodevelopmental Impact of Genetic Risk for Accelerated Brain Aging in Adolescence. Biol Psychiatry 2024; 95:453-464. [PMID: 37393046 DOI: 10.1016/j.biopsych.2023.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/30/2023] [Accepted: 06/19/2023] [Indexed: 07/03/2023]
Abstract
BACKGROUND The transition from childhood to adolescence is characterized by enhanced neural plasticity and a consequent susceptibility to both beneficial and adverse aspects of one's milieu. METHODS To understand the implications of the interplay between protective and risk-enhancing factors, we analyzed longitudinal data from the Adolescent Brain Cognitive Development (ABCD) Study (n = 834; 394 female). We probed the maturational correlates of positive lifestyle variables (friendships, parental warmth, school engagement, physical exercise, healthy nutrition) and genetic vulnerability to neuropsychiatric disorders (major depressive disorder, Alzheimer's disease, anxiety disorders, bipolar disorder, schizophrenia) and sought to further elucidate their implications for psychological well-being. RESULTS Genetic risk factors and lifestyle buffers showed divergent relationships with later attentional and interpersonal problems. These effects were mediated by distinguishable functional neurodevelopmental deviations spanning the limbic, default mode, visual, and control systems. More specifically, greater genetic vulnerability was associated with alterations in the normative maturation of areas rich in dopamine (D2), glutamate, and serotonin receptors and of areas with stronger expression of astrocytic and microglial genes, a molecular signature implicated in the brain disorders discussed here. Greater availability of lifestyle buffers predicted deviations in the normative functional development of higher density GABAergic (gamma-aminobutyric acidergic) receptor regions. The two profiles of neurodevelopmental alterations showed complementary roles in protection against psychopathology, which varied with environmental stress levels. CONCLUSIONS Our results underscore the importance of educational involvement and healthy nutrition in attenuating the neurodevelopmental sequelae of genetic risk factors. They also underscore the importance of characterizing early-life biomarkers associated with adult-onset pathologies.
Collapse
Affiliation(s)
- Raluca Petrican
- Institute of Population Health, Department of Psychology, University of Liverpool, Liverpool, United Kingdom.
| | - Alex Fornito
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash Biomedical Imaging, Monash University, Melbourne, Victoria, Australia
| | - Emma Boyland
- Institute of Population Health, Department of Psychology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
13
|
Cathomas F, Lin HY, Chan KL, Li L, Parise LF, Alvarez J, Durand-de Cuttoli R, Aubry AV, Muhareb S, Desland F, Shimo Y, Ramakrishnan A, Estill M, Ferrer-Pérez C, Parise EM, Wilk CM, Kaster MP, Wang J, Sowa A, Janssen WG, Costi S, Rahman A, Fernandez N, Campbell M, Swirski FK, Nestler EJ, Shen L, Merad M, Murrough JW, Russo SJ. Circulating myeloid-derived MMP8 in stress susceptibility and depression. Nature 2024; 626:1108-1115. [PMID: 38326622 PMCID: PMC10901735 DOI: 10.1038/s41586-023-07015-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 12/29/2023] [Indexed: 02/09/2024]
Abstract
Psychosocial stress has profound effects on the body, including the immune system and the brain1,2. Although a large number of pre-clinical and clinical studies have linked peripheral immune system alterations to stress-related disorders such as major depressive disorder (MDD)3, the underlying mechanisms are not well understood. Here we show that expression of a circulating myeloid cell-specific proteinase, matrix metalloproteinase 8 (MMP8), is increased in the serum of humans with MDD as well as in stress-susceptible mice following chronic social defeat stress (CSDS). In mice, we show that this increase leads to alterations in extracellular space and neurophysiological changes in the nucleus accumbens (NAc), as well as altered social behaviour. Using a combination of mass cytometry and single-cell RNA sequencing, we performed high-dimensional phenotyping of immune cells in circulation and in the brain and demonstrate that peripheral monocytes are strongly affected by stress. In stress-susceptible mice, both circulating monocytes and monocytes that traffic to the brain showed increased Mmp8 expression following chronic social defeat stress. We further demonstrate that circulating MMP8 directly infiltrates the NAc parenchyma and controls the ultrastructure of the extracellular space. Depleting MMP8 prevented stress-induced social avoidance behaviour and alterations in NAc neurophysiology and extracellular space. Collectively, these data establish a mechanism by which peripheral immune factors can affect central nervous system function and behaviour in the context of stress. Targeting specific peripheral immune cell-derived matrix metalloproteinases could constitute novel therapeutic targets for stress-related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Flurin Cathomas
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Brain and Body Research Center of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Hsiao-Yun Lin
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Brain and Body Research Center of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kenny L Chan
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Brain and Body Research Center of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Long Li
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Brain and Body Research Center of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lyonna F Parise
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Brain and Body Research Center of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Johana Alvarez
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Brain and Body Research Center of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Romain Durand-de Cuttoli
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Brain and Body Research Center of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Antonio V Aubry
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Brain and Body Research Center of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Samer Muhareb
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Brain and Body Research Center of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fiona Desland
- Department of Oncological Sciences, Marc and Jennifer Lipschultz Precision Immunology Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yusuke Shimo
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Brain and Body Research Center of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Brain and Body Research Center of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Molly Estill
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Brain and Body Research Center of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carmen Ferrer-Pérez
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Brain and Body Research Center of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric M Parise
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Brain and Body Research Center of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - C Matthias Wilk
- Department of Oncological Sciences, Marc and Jennifer Lipschultz Precision Immunology Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Manuella P Kaster
- Department of Biochemistry, Federal University of Santa Catarina, Santa Catarina, Brazil
| | - Jun Wang
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Brain and Body Research Center of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Allison Sowa
- Microscopy CoRE and Advanced Bioimaging Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - William G Janssen
- Brain and Body Research Center of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Microscopy CoRE and Advanced Bioimaging Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sara Costi
- Depression and Anxiety Center for Discovery and Treatment, Department of Psychiatry, Icahn School of Medicine of Mount Sinai, New York, NY, USA
| | - Adeeb Rahman
- Department of Oncological Sciences, Marc and Jennifer Lipschultz Precision Immunology Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nicolas Fernandez
- Department of Oncological Sciences, Marc and Jennifer Lipschultz Precision Immunology Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew Campbell
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Filip K Swirski
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric J Nestler
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Brain and Body Research Center of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Li Shen
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Brain and Body Research Center of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miriam Merad
- Department of Oncological Sciences, Marc and Jennifer Lipschultz Precision Immunology Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James W Murrough
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Depression and Anxiety Center for Discovery and Treatment, Department of Psychiatry, Icahn School of Medicine of Mount Sinai, New York, NY, USA
| | - Scott J Russo
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Brain and Body Research Center of the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
14
|
Traetta ME, Chaves Filho AM, Akinluyi ET, Tremblay MÈ. Neurodevelopmental and Neuropsychiatric Disorders. ADVANCES IN NEUROBIOLOGY 2024; 37:457-495. [PMID: 39207708 DOI: 10.1007/978-3-031-55529-9_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
This chapter will focus on microglial involvement in neurodevelopmental and neuropsychiatric disorders, particularly autism spectrum disorder (ASD), schizophrenia and major depressive disorder (MDD). We will describe the neuroimmune risk factors that contribute to the etiopathology of these disorders across the lifespan, including both in early life and adulthood. Microglia, being the resident immune cells of the central nervous system, could play a key role in triggering and determining the outcome of these disorders. This chapter will review preclinical and clinical findings where microglial morphology and function were examined in the contexts of ASD, schizophrenia and MDD. Clinical evidence points out to altered microglial morphology and reactivity, as well as increased expression of pro-inflammatory cytokines, supporting the idea that microglial abnormalities are involved in these disorders. Indeed, animal models for these disorders found altered microglial morphology and homeostatic functions which resulted in behaviours related to these disorders. Additionally, as microglia have emerged as promising therapeutic targets, we will also address in this chapter therapies involving microglial mechanisms for the treatment of neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
| | | | - Elizabeth Toyin Akinluyi
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Pharmacology and Therapeutics, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
- Département de Médecine Moléculaire, Université Laval, Quebec City, QC, Canada.
- Axe Neurosciences, Center de Recherche du CHU de Québec, Université Laval, Quebec City, QC, Canada.
- Neurology and Neurosurgery Department, McGill University, Montréal, QC, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
- Center for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
- Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
15
|
Biltz RG, Swanson SP, Draime N, Davis AC, Yin W, Goodman EJ, Gallagher NR, Bhattacharya A, Sheridan JF, Godbout JP. Antagonism of the brain P2X7 ion channel attenuates repeated social defeat induced microglia reactivity, monocyte recruitment and anxiety-like behavior in male mice. Brain Behav Immun 2024; 115:356-373. [PMID: 37914101 PMCID: PMC10807695 DOI: 10.1016/j.bbi.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/18/2023] [Accepted: 10/14/2023] [Indexed: 11/03/2023] Open
Abstract
Chronic stress is linked to increased anxiety. Repeated social defeat (RSD) in mice causes anxiety that is dependent on activated neurons, reactive microglia, and accumulation of monocytes in the brain. This response requires interactions between the immune system and central nervous system (CNS). Neuronal activation within threat appraisal regions is a key response to RSD, however, it is unclear how microglia become activated. One potential explanation is that microglia express a purinergic non-selective ligand gated adenosine-triphosphate (ATP) receptor 7 (P2X7). Activation of P2X7 promotes the release of chemokines and cytokines, and recruitment of monocytes to the brain. Thus, the purpose of this study was to determine if a novel P2X7 antagonist blocked neuronal and microglia interactions and the corresponding anxiety following RSD. Male mice were administered (i.p.) a P2X7 antagonist, JNJ-54471300, prior to each cycle of RSD. Fourteen hours after RSD, behavioral deficits including social avoidance and anxiety-like were determined. Moreover, several immune parameters were assessed. RSD caused neuronal activation in stress-responsive regions, monocyte production and release, splenomegaly, and social avoidance. These parameters were unaffected by P2X7 antagonism. RSD-associated proportional area of Iba-1+ microglia, monocyte accumulation in the brain, IL-1β mRNA expression in enriched myeloid cells, plasma IL-6, and anxiety-like behavior were ameliorated by P2X7 antagonism. Gene expression analysis in the hippocampus and amygdala showed regional specific responses to RSD and some were reversed with P2X7 antagonism. Overall, blocking P2X7 activation attenuated RSD-induced microglia reactivity with corresponding reduction in neuroinflammation, monocyte accumulation, and anxiety-like behavior in male mice.
Collapse
Affiliation(s)
- Rebecca G Biltz
- Department of Neuroscience, The Ohio State University, Wexner Medical Center, United States
| | - Samuel P Swanson
- Department of Neuroscience, The Ohio State University, Wexner Medical Center, United States
| | - Natalie Draime
- Department of Neuroscience, The Ohio State University, Wexner Medical Center, United States
| | - Amara C Davis
- Department of Neuroscience, The Ohio State University, Wexner Medical Center, United States
| | - Wenyuan Yin
- Department of Neuroscience, The Ohio State University, Wexner Medical Center, United States
| | - Ethan J Goodman
- Department of Neuroscience, The Ohio State University, Wexner Medical Center, United States
| | - Natalie R Gallagher
- Division of Biosciences, The Ohio State University College of Dentistry, United States; Institute for Behavioral Medicine Research, The Ohio State University, Wexner Medical Center, United States
| | - Anindya Bhattacharya
- Neuroscience, Janssen Research and Development, LLC, San Diego, CA, United States
| | - John F Sheridan
- Department of Neuroscience, The Ohio State University, Wexner Medical Center, United States; Division of Biosciences, The Ohio State University College of Dentistry, United States; Chronic Brain Injury Program, The Ohio State University, United States; Institute for Behavioral Medicine Research, The Ohio State University, Wexner Medical Center, United States.
| | - Jonathan P Godbout
- Department of Neuroscience, The Ohio State University, Wexner Medical Center, United States; Chronic Brain Injury Program, The Ohio State University, United States; Institute for Behavioral Medicine Research, The Ohio State University, Wexner Medical Center, United States.
| |
Collapse
|
16
|
Balbuena L, Peters E, Speed D. Using polygenic risk scores to investigate the evolution of smoking and mental health outcomes in UK biobank participants. Acta Psychiatr Scand 2023; 148:447-456. [PMID: 37607129 DOI: 10.1111/acps.13601] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 08/24/2023]
Abstract
OBJECTIVE Mendelian randomization studies report a bi-directional relation between cigarette smoking and mental disorders, yet from a clinical standpoint, mental disorders are the focus of treatment. Here, we used an event history framework to understand their evolution in the life course. Our objective was to estimate the relative contribution of genetic predispositions and self-reported smoking status (never, former, and present smoker) to hospitalizations for major depression, bipolar disorder, and schizophrenia. METHODS We calculated polygenic risk scores (PRS) for ever smoking, pack-years of smoking as a proportion of adult life, and neuroticism in 337,140 UK Biobank participants of white British ancestry. These PRS and self-reported smoking status were entered as explanatory variables in survival models for hospitalization. RESULTS The estimated single nucleotide polymorphisms heritabilities (h2 ) were 23%, 5.7%, and 5.7% for pack-years, ever smoking, and neuroticism respectively. PRS pack-years and PRS neuroticism were associated with higher hospitalization risk for mental disorders in all smoking status groups. The hazard for mental health hospitalization was higher in both previous (HR: 1.50, CI: 1.35-1.67) and current (HR: 3.58, 2.97-4.31) compared to never smokers, after adjusting for confounders. CONCLUSION Since genetic liabilities for smoking and neuroticism are fixed at conception and smoking initiation generally started before age 20, our results show that preventing smoking in adolescents probably prevents the development of mental disorders.
Collapse
Affiliation(s)
- Lloyd Balbuena
- Department of Psychiatry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Evyn Peters
- Department of Psychiatry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Doug Speed
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark
| |
Collapse
|
17
|
Scheepstra KWF, Mizee MR, van Scheppingen J, Adelia A, Wever DD, Mason MRJ, Dubbelaar ML, Hsiao CC, Eggen BJL, Hamann J, Huitinga I. Microglia Transcriptional Profiling in Major Depressive Disorder Shows Inhibition of Cortical Gray Matter Microglia. Biol Psychiatry 2023; 94:619-629. [PMID: 37121366 DOI: 10.1016/j.biopsych.2023.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/01/2023] [Accepted: 04/17/2023] [Indexed: 05/02/2023]
Abstract
BACKGROUND Microglia have been implicated in the pathophysiology of major depressive disorder (MDD), but information on biological mechanisms is limited. Therefore, we investigated the gene expression profile of microglial cells in relation to neuronal regulators of microglia activity in well-characterized MDD and control autopsy brains. METHODS Pure, intact microglia were isolated at brain autopsy from occipital cortex gray matter (GM) and corpus callosum white matter of 13 donors with MDD and 10 age-matched control donors for RNA sequencing. Top differentially expressed genes were validated using immunohistochemistry staining. Because gene expression changes were only detected in GM microglia, neuronal regulators of microglia were investigated in cortical tissue and synaptosomes from the cortex by reverse transcriptase-quantitative polymerase chain reaction and Western blot. RESULTS Transcriptome analysis revealed 92 genes differentially expressed in microglia isolated from GM, but none in microglia from white matter in donors with MDD, compared with control donors. Of these, 81 genes were less abundantly expressed in GM in MDD, including CD163, MKI67, SPP1, CD14, FCGR1A/C, and C1QA/B/C. Accordingly, pathways related to effector mechanisms, such as the complement system and phagocytosis, were differentially regulated in GM microglia in MDD. Immunohistochemistry staining revealed significantly lower expression of CD163 protein in MDD. Whole tissue analysis showed an increase in CD200 (p = .0009) and CD47 (p = .068) messenger RNA, and CD47 protein was significantly elevated (p = .0396) in synaptic fractions of MDD cases. CONCLUSIONS Transcriptional profiling indicates an immune-suppressed microglial phenotype in MDD that is possibly caused by neuronal regulation.
Collapse
Affiliation(s)
- Karel W F Scheepstra
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands; Psychiatric Program of the Netherlands Brain Bank, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands; Department of Psychiatry, Amsterdam University Medical Centers, Amsterdam Neuroscience, Amsterdam, the Netherlands.
| | - Mark R Mizee
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands; Psychiatric Program of the Netherlands Brain Bank, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Jackelien van Scheppingen
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands; Psychiatric Program of the Netherlands Brain Bank, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Adelia Adelia
- Psychiatric Program of the Netherlands Brain Bank, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Dennis D Wever
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands; Psychiatric Program of the Netherlands Brain Bank, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Matthew R J Mason
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Marissa L Dubbelaar
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University Medical Center Groningen, Groningen, the Netherlands
| | - Cheng-Chih Hsiao
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Bart J L Eggen
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University Medical Center Groningen, Groningen, the Netherlands
| | - Jörg Hamann
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Inge Huitinga
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands; Psychiatric Program of the Netherlands Brain Bank, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands; Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
18
|
Yirmiya R. Depressive Disorder-Associated Microglia as a Target for a Personalized Antidepressant Approach. Biol Psychiatry 2023; 94:602-604. [PMID: 37718029 DOI: 10.1016/j.biopsych.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 09/19/2023]
Affiliation(s)
- Raz Yirmiya
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
19
|
Fang S, Wu Z, Guo Y, Zhu W, Wan C, Yuan N, Chen J, Hao W, Mo X, Guo X, Fan L, Li X, Chen J. Roles of microglia in adult hippocampal neurogenesis in depression and their therapeutics. Front Immunol 2023; 14:1193053. [PMID: 37881439 PMCID: PMC10597707 DOI: 10.3389/fimmu.2023.1193053] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/20/2023] [Indexed: 10/27/2023] Open
Abstract
Adult hippocampal neurogenesis generates functional neurons from neural progenitor cells in the hippocampal dentate gyrus (DG) to complement and repair neurons and neural circuits, thus benefiting the treatment of depression. Increasing evidence has shown that aberrant microglial activity can disrupt the appropriate formation and development of functional properties of neurogenesis, which will play a crucial role in the occurrence and development of depression. However, the mechanisms of the crosstalk between microglia and adult hippocampal neurogenesis in depression are not yet fully understood. Therefore, in this review, we first introduce recent discoveries regarding the roles of microglia and adult hippocampal neurogenesis in the etiology of depression. Then, we systematically discuss the possible mechanisms of how microglia regulate adult hippocampal neurogenesis in depression according to recent studies, which involve toll-like receptors, microglial polarization, fractalkine-C-X3-C motif chemokine receptor 1, hypothalamic-pituitary-adrenal axis, cytokines, brain-derived neurotrophic factor, and the microbiota-gut-brain axis, etc. In addition, we summarize the promising drugs that could improve the adult hippocampal neurogenesis by regulating the microglia. These findings will help us understand the complicated pathological mechanisms of depression and shed light on the development of new treatment strategies for this disease.
Collapse
Affiliation(s)
- Shaoyi Fang
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Zhibin Wu
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Yali Guo
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Wenjun Zhu
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Chunmiao Wan
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Naijun Yuan
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
- Shenzhen People’s Hospital, 2Clinical Medical College, Jinan University, Shenzhen, China
| | - Jianbei Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wenzhi Hao
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Xiaowei Mo
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Xiaofang Guo
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Lili Fan
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Xiaojuan Li
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Jiaxu Chen
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
20
|
Zhu H, Guan A, Liu J, Peng L, Zhang Z, Wang S. Noteworthy perspectives on microglia in neuropsychiatric disorders. J Neuroinflammation 2023; 20:223. [PMID: 37794488 PMCID: PMC10548593 DOI: 10.1186/s12974-023-02901-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 09/22/2023] [Indexed: 10/06/2023] Open
Abstract
Microglia are so versatile that they not only provide immune surveillance for central nervous system, but participate in neural circuitry development, brain blood vessels formation, blood-brain barrier architecture, and intriguingly, the regulation of emotions and behaviors. Microglia have a profound impact on neuronal survival, brain wiring and synaptic plasticity. As professional phagocytic cells in the brain, they remove dead cell debris and neurotoxic agents via an elaborate mechanism. The functional profile of microglia varies considerately depending on age, gender, disease context and other internal or external environmental factors. Numerous studies have demonstrated a pivotal involvement of microglia in neuropsychiatric disorders, including negative affection, social deficit, compulsive behavior, fear memory, pain and other symptoms associated with major depression disorder, anxiety disorder, autism spectrum disorder and schizophrenia. In this review, we summarized the latest discoveries regarding microglial ontogeny, cell subtypes or state spectrum, biological functions and mechanistic underpinnings of emotional and behavioral disorders. Furthermore, we highlight the potential of microglia-targeted therapies of neuropsychiatric disorders, and propose outstanding questions to be addressed in future research of human microglia.
Collapse
Affiliation(s)
- Hongrui Zhu
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| | - Ao Guan
- School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Jiayuan Liu
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Li Peng
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Zhi Zhang
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| | - Sheng Wang
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| |
Collapse
|
21
|
Bollinger JL, Dadosky DT, Flurer JK, Rainer IL, Woodburn SC, Wohleb ES. Microglial P2Y12 mediates chronic stress-induced synapse loss in the prefrontal cortex and associated behavioral consequences. Neuropsychopharmacology 2023; 48:1347-1357. [PMID: 36517583 PMCID: PMC10354016 DOI: 10.1038/s41386-022-01519-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022]
Abstract
Chronic unpredictable stress (CUS) drives microglia-mediated neuronal remodeling and synapse loss in the prefrontal cortex (PFC), contributing to deficits in cognition and behavior. However, it remains unclear what mechanisms guide microglia-neuron interactions in stress. Evidence indicates that neuronal activity-dependent purinergic signaling directs microglial processes and synaptic engagement via P2Y12, a purinergic receptor exclusively expressed by microglia in the brain. Stress alters excitatory neurotransmission in the PFC, thus we aimed to determine if P2Y12 signaling promotes functional changes in microglia in chronic stress. Here we used genetic ablation of P2Y12 (P2ry12-/-) or pharmacological blockade (clopidogrel, ticagrelor) to examine the role of purinergic signaling in stress-induced microglia-neuron interaction. Multiple behavioral, physiological, and cytometric endpoints were analyzed. Deletion of P2Y12 led to a number of fundamental alterations in the PFC, including the heightened microglial number and increased dendritic spine density. Flow cytometry revealed that microglia in P2ry12-/- mice had shifts in surface levels of CX3CR1, CSF1R, and CD11b, suggesting changes in synaptic engagement and phagocytosis in the PFC. In line with this, pharmacological blockade of P2Y12 prevented CUS-induced increases in the proportion of microglia with neuronal inclusions, limited dendritic spine loss in the PFC, and attenuated alterations in stress coping behavior and working memory function. Overall, these findings indicate that microglial P2Y12 is a critical mediator of stress-induced synapse loss in the PFC and subsequent behavioral deficits.
Collapse
Affiliation(s)
- Justin L Bollinger
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - David T Dadosky
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - James K Flurer
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ivanka L Rainer
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Samuel C Woodburn
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Eric S Wohleb
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
22
|
Gędek A, Szular Z, Antosik AZ, Mierzejewski P, Dominiak M. Celecoxib for Mood Disorders: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J Clin Med 2023; 12:jcm12103497. [PMID: 37240605 DOI: 10.3390/jcm12103497] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/30/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
The effects of celecoxib on a broad spectrum of mood disorders and on inflammatory parameters have not yet been comprehensively evaluated. The aim of this study was to systematically summarize the available knowledge on this topic. Data from both preclinical and clinical studies were analyzed, considering the efficacy and safety of celecoxib in the treatment of mood disorders, as well as the correlation of inflammatory parameters with the effect of celecoxib treatment. Forty-four studies were included. We found evidence supporting the antidepressant efficacy of celecoxib in a dose of 400 mg/day used for 6 weeks as an add-on treatment in major depression (SMD = -1.12 [95%Cl: -1.71,-0.52], p = 0.0002) and mania (SMD = -0.82 [95% CI:-1.62,-0.01], p = 0.05). The antidepressant efficacy of celecoxib in the above dosage used as sole treatment was also confirmed in depressed patients with somatic comorbidity (SMD = -1.35 [95% CI:-1.95,-0.75], p < 0.0001). We found no conclusive evidence for the effectiveness of celecoxib in bipolar depression. Celecoxib at a dose of 400 mg/d used for up to 12 weeks appeared to be a safe treatment in patients with mood disorders. Although an association between celecoxib response and inflammatory parameters has been found in preclinical studies, this has not been confirmed in clinical trials. Further studies are needed to evaluate the efficacy of celecoxib in bipolar depression, as well as long-term studies evaluating the safety and efficacy of celecoxib in recurrent mood disorders, studies involving treatment-resistant populations, and assessing the association of celecoxib treatment with inflammatory markers.
Collapse
Affiliation(s)
- Adam Gędek
- Department of Pharmacology, Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957 Warsaw, Poland
- Praski Hospital, Aleja Solidarności 67, 03-401 Warsaw, Poland
| | - Zofia Szular
- Faculty of Medicine, Medical University of Warsaw, Żwirki i Wigury 61, 02-091 Warsaw, Poland
| | - Anna Z Antosik
- Department of Psychiatry, Faculty of Medicine, Collegium Medicum, Cardinal Wyszynski University in Warsaw, Woycickiego 1/3, 01-938 Warsaw, Poland
| | - Paweł Mierzejewski
- Department of Pharmacology, Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957 Warsaw, Poland
| | - Monika Dominiak
- Department of Pharmacology, Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957 Warsaw, Poland
| |
Collapse
|
23
|
Jiang J, Yang M, Tian M, Chen Z, Xiao L, Gong Y. Intertwined associations between oxytocin, immune system and major depressive disorder. Biomed Pharmacother 2023; 163:114852. [PMID: 37163778 PMCID: PMC10165244 DOI: 10.1016/j.biopha.2023.114852] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/12/2023] Open
Abstract
Major depressive disorder (MDD) is a prominent psychiatric disorder with a high prevalence rate. The recent COVID-19 pandemic has exacerbated the already high prevalence of MDD. Unfortunately, a significant proportion of patients are unresponsive to conventional treatments, necessitating the exploration of novel therapeutic strategies. Oxytocin, an endogenous neuropeptide, has emerged as a promising candidate with anxiolytic and antidepressant properties. Oxytocin has been shown to alleviate emotional disorders by modulating the hypothalamic-pituitary-adrenal (HPA) axis and the central immune system. The dysfunction of the immune system has been strongly linked to the onset and progression of depression. The central immune system is believed to be a key target of oxytocin in ameliorating emotional disorders. In this review, we examine the evidence regarding the interactions between oxytocin, the immune system, and depressive disorder. Moreover, we summarize and speculate on the potential roles of the intertwined association between oxytocin and the central immune system in treating emotional disorders.
Collapse
Affiliation(s)
- Junliang Jiang
- Department of Orthopedics and Traumatology, Affiliated Hospital of Yunnan University, Yunnan University, Kunming, China; Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Miaoxian Yang
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Mi Tian
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zhong Chen
- Department of Orthopedics and Traumatology, Affiliated Hospital of Yunnan University, Yunnan University, Kunming, China.
| | - Lei Xiao
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
| | - Ye Gong
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
24
|
Wei J, Arber C, Wray S, Hardy J, Piers TM, Pocock JM. Human myeloid progenitor glucocorticoid receptor activation causes genomic instability, type 1 IFN- response pathway activation and senescence in differentiated microglia; an early life stress model. Glia 2023; 71:1036-1056. [PMID: 36571248 DOI: 10.1002/glia.24325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/26/2022] [Accepted: 12/09/2022] [Indexed: 12/27/2022]
Abstract
One form of early life stress, prenatal exposure to glucocorticoids (GCs), confers a higher risk of psychiatric and neurodevelopmental disorders in later life. Increasingly, the importance of microglia in these disorders is recognized. Studies on GCs exposure during microglial development have been limited, and there are few, if any, human studies. We established an in vitro model of ELS by continuous pre-exposure of human iPS-microglia to GCs during primitive hematopoiesis (the critical stage of iPS-microglial differentiation) and then examined how this exposure affected the microglial phenotype as they differentiated and matured to microglia, using RNA-seq analyses and functional assays. The iPS-microglia predominantly expressed glucocorticoid receptors over mineralocorticoid receptors, and in particular, the GR-α splice variant. Chronic GCs exposure during primitive hematopoiesis was able to recapitulate in vivo ELS effects. Thus, pre-exposure to prolonged GCs resulted in increased type I interferon signaling, the presence of Cyclic GMP-AMP synthase-positive (cGAS) micronuclei, cellular senescence and reduced proliferation in the matured iPS-microglia. The findings from this in vitro ELS model have ramifications for the responses of microglia in the pathogenesis of GC- mediated ELS-associated disorders such as schizophrenia, attention-deficit hyperactivity disorder and autism spectrum disorder.
Collapse
Affiliation(s)
- Jingzhang Wei
- Department of Neuroinflammation, University College London Institute of Neurology, London, UK
| | - Charles Arber
- Department of Molecular Neuroscience, University College London Institute of Neurology, London, UK
| | - Selina Wray
- Department of Molecular Neuroscience, University College London Institute of Neurology, London, UK
| | - John Hardy
- Department of Molecular Neuroscience, University College London Institute of Neurology, London, UK
| | - Thomas M Piers
- Department of Neuroinflammation, University College London Institute of Neurology, London, UK
| | - Jennifer M Pocock
- Department of Neuroinflammation, University College London Institute of Neurology, London, UK
| |
Collapse
|
25
|
Naggan L, Robinson E, Dinur E, Goldenberg H, Kozela E, Yirmiya R. Suicide in bipolar disorder patients is associated with hippocampal microglia activation and reduction of lymphocytes-activation gene 3 (LAG3) microglial checkpoint expression. Brain Behav Immun 2023; 110:185-194. [PMID: 36863492 DOI: 10.1016/j.bbi.2023.02.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/20/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Bipolar disorder (BD) is associated with marked functional impairments along with increased rate of suicide. Although there is ample evidence for the involvement of inflammatory processes and microglia activation in the pathophysiology of BD, the mechanisms that regulate these cells in BD patients, and particularly the role of microglia checkpoints, is still unclear. METHODS Immunohistochemical analyses of hippocampal sections from post-mortem brains of 15 BD patients and 12 control subjects were used to assess microglia density, by staining the microglia-specific receptor P2RY12, and microglia activation, by staining the activation marker MHC II. Given recent findings on the involvement of LAG3, which interacts with MHC II and serves as a negative microglia checkpoint, in depression and electroconvulsive therapy, we assessed the levels of LAG3 expression and their correlations with microglia density and activation. RESULTS There were no overall differences between BD patients and controls, but BD patients who committed suicide (N = 9) displayed a significant elevation in the overall microglia density and the density of MHC II-labeled microglia (but not other MHC II-labeled cells), compared with no suicide BD patients (N = 6) and controls. Furthermore, the percent of microglia expressing LAG3 was significantly reduced only in suicidal BD patients, with significant negative correlations between microglial LAG3 expression levels and the density of microglia, in general, and activated microglia, in particular. CONCLUSION Suicidal BD patients exhibit microglia activation, which is possibly mediated by reduced LAG3 checkpoint expression, suggesting that anti-microglial therapeutics, including LAG3 modulators, may be beneficial for this subgroup of patients.
Collapse
Affiliation(s)
- Lior Naggan
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Elad Robinson
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eyal Dinur
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hagar Goldenberg
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ewa Kozela
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Raz Yirmiya
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
26
|
Reemst K, Kracht L, Kotah JM, Rahimian R, van Irsen AAS, Congrains Sotomayor G, Verboon LN, Brouwer N, Simard S, Turecki G, Mechawar N, Kooistra SM, Eggen BJL, Korosi A. Early-life stress lastingly impacts microglial transcriptome and function under basal and immune-challenged conditions. Transl Psychiatry 2022; 12:507. [PMID: 36481769 PMCID: PMC9731997 DOI: 10.1038/s41398-022-02265-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Early-life stress (ELS) leads to increased vulnerability to psychiatric disorders including depression later in life. Neuroinflammatory processes have been implicated in ELS-induced negative health outcomes, but how ELS impacts microglia, the main tissue-resident macrophages of the central nervous system, is unknown. Here, we determined the effects of ELS-induced by limited bedding and nesting material during the first week of life (postnatal days [P]2-9) on microglial (i) morphology; (ii) hippocampal gene expression; and (iii) synaptosome phagocytic capacity in male pups (P9) and adult (P200) mice. The hippocampus of ELS-exposed adult mice displayed altered proportions of morphological subtypes of microglia, as well as microglial transcriptomic changes related to the tumor necrosis factor response and protein ubiquitination. ELS exposure leads to distinct gene expression profiles during microglial development from P9 to P200 and in response to an LPS challenge at P200. Functionally, synaptosomes from ELS-exposed mice were phagocytosed less by age-matched microglia. At P200, but not P9, ELS microglia showed reduced synaptosome phagocytic capacity when compared to control microglia. Lastly, we confirmed the ELS-induced increased expression of the phagocytosis-related gene GAS6 that we observed in mice, in the dentate gyrus of individuals with a history of child abuse using in situ hybridization. These findings reveal persistent effects of ELS on microglial function and suggest that altered microglial phagocytic capacity is a key contributor to ELS-induced phenotypes.
Collapse
Affiliation(s)
- Kitty Reemst
- grid.7177.60000000084992262Swammerdam Institute for Life Sciences, Center for Neuroscience, Brain Plasticity Group, University of Amsterdam, Amsterdam, Science Park 904, 1098 XH The Netherlands
| | - Laura Kracht
- grid.4494.d0000 0000 9558 4598Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Janssen M. Kotah
- grid.7177.60000000084992262Swammerdam Institute for Life Sciences, Center for Neuroscience, Brain Plasticity Group, University of Amsterdam, Amsterdam, Science Park 904, 1098 XH The Netherlands
| | - Reza Rahimian
- grid.412078.80000 0001 2353 5268McGill Group for Suicide Studies, Douglas Hospital Research Center, Montreal, QC H4H 1R3 Canada ,grid.14709.3b0000 0004 1936 8649Department of Psychiatry, McGill University, Montreal, QC H3A 1A1 Canada
| | - Astrid A. S. van Irsen
- grid.7177.60000000084992262Swammerdam Institute for Life Sciences, Center for Neuroscience, Brain Plasticity Group, University of Amsterdam, Amsterdam, Science Park 904, 1098 XH The Netherlands
| | - Gonzalo Congrains Sotomayor
- grid.7177.60000000084992262Swammerdam Institute for Life Sciences, Center for Neuroscience, Brain Plasticity Group, University of Amsterdam, Amsterdam, Science Park 904, 1098 XH The Netherlands
| | - Laura N. Verboon
- grid.7177.60000000084992262Swammerdam Institute for Life Sciences, Center for Neuroscience, Brain Plasticity Group, University of Amsterdam, Amsterdam, Science Park 904, 1098 XH The Netherlands
| | - Nieske Brouwer
- grid.4494.d0000 0000 9558 4598Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Sophie Simard
- grid.412078.80000 0001 2353 5268McGill Group for Suicide Studies, Douglas Hospital Research Center, Montreal, QC H4H 1R3 Canada ,grid.14709.3b0000 0004 1936 8649Department of Psychiatry, McGill University, Montreal, QC H3A 1A1 Canada
| | - Gustavo Turecki
- grid.412078.80000 0001 2353 5268McGill Group for Suicide Studies, Douglas Hospital Research Center, Montreal, QC H4H 1R3 Canada ,grid.14709.3b0000 0004 1936 8649Department of Psychiatry, McGill University, Montreal, QC H3A 1A1 Canada
| | - Naguib Mechawar
- grid.412078.80000 0001 2353 5268McGill Group for Suicide Studies, Douglas Hospital Research Center, Montreal, QC H4H 1R3 Canada ,grid.14709.3b0000 0004 1936 8649Department of Psychiatry, McGill University, Montreal, QC H3A 1A1 Canada
| | - Susanne M. Kooistra
- grid.4494.d0000 0000 9558 4598Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Bart J. L. Eggen
- grid.4494.d0000 0000 9558 4598Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Aniko Korosi
- Swammerdam Institute for Life Sciences, Center for Neuroscience, Brain Plasticity Group, University of Amsterdam, Amsterdam, Science Park 904, 1098 XH, The Netherlands.
| |
Collapse
|
27
|
Eggerstorfer B, Kim JH, Cumming P, Lanzenberger R, Gryglewski G. Meta-analysis of molecular imaging of translocator protein in major depression. Front Mol Neurosci 2022; 15:981442. [PMID: 36226319 PMCID: PMC9549359 DOI: 10.3389/fnmol.2022.981442] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
Molecular neuroimaging studies provide mounting evidence that neuroinflammation plays a contributory role in the pathogenesis of major depressive disorder (MDD). This has been the focus of a number of positron emission tomography (PET) studies of the 17-kDa translocator protein (TSPO), which is expressed by microglia and serves as a marker of neuroinflammation. In this meta-analysis, we compiled and analyzed all available molecular imaging studies comparing cerebral TSPO binding in MDD patients with healthy controls. Our systematic literature search yielded eight PET studies encompassing 238 MDD patients and 164 healthy subjects. The meta-analysis revealed relatively increased TSPO binding in several cortical regions (anterior cingulate cortex: Hedges' g = 0.6, 95% CI: 0.36, 0.84; hippocampus: g = 0.54, 95% CI: 0.26, 0.81; insula: g = 0.43, 95% CI: 0.17, 0.69; prefrontal cortex: g = 0.36, 95% CI: 0.14, 0.59; temporal cortex: g = 0.39, 95% CI: -0.04, 0.81). While the high range of effect size in the temporal cortex might reflect group-differences in body mass index (BMI), exploratory analyses failed to reveal any relationship between elevated TSPO availability in the other four brain regions and depression severity, age, BMI, radioligand, or the binding endpoint used, or with treatment status at the time of scanning. Taken together, this meta-analysis indicates a widespread ∼18% increase of TSPO availability in the brain of MDD patients, with effect sizes comparable to those in earlier molecular imaging studies of serotonin transporter availability and monoamine oxidase A binding.
Collapse
Affiliation(s)
- Benjamin Eggerstorfer
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Jong-Hoon Kim
- Department of Psychiatry, Gachon University College of Medicine, Gil Medical Center, Neuroscience Research Institute, GAIHST, Gachon University, Incheon, South Korea
| | - Paul Cumming
- Department of Nuclear Medicine, Inselspital, Bern University, Bern, Switzerland
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD, Australia
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Gregor Gryglewski
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| |
Collapse
|
28
|
Matsuno H, Tsuchimine S, O'Hashi K, Sakai K, Hattori K, Hidese S, Nakajima S, Chiba S, Yoshimura A, Fukuzato N, Kando M, Tatsumi M, Ogawa S, Ichinohe N, Kunugi H, Sohya K. Association between vascular endothelial growth factor-mediated blood-brain barrier dysfunction and stress-induced depression. Mol Psychiatry 2022; 27:3822-3832. [PMID: 35618888 DOI: 10.1038/s41380-022-01618-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 04/22/2022] [Accepted: 05/10/2022] [Indexed: 02/08/2023]
Abstract
Several lines of evidence suggest that stress induces the neurovascular dysfunction associated with increased blood-brain barrier (BBB) permeability, which could be an important pathology linking stress and psychiatric disorders, including major depressive disorder (MDD). However, the detailed mechanism resulting in BBB dysfunction associated in the pathophysiology of MDD still remains unclear. Herein, we demonstrate the role of vascular endothelial growth factor (VEGF), a key mediator of vascular angiogenesis and BBB permeability, in stress-induced BBB dysfunction and depressive-like behavior development. We implemented an animal model of depression, chronic restraint stress (RS) in BALB/c mice, and found that the BBB permeability was significantly increased in chronically stressed mice. Immunohistochemical and electron microscopic observations revealed that increased BBB permeability was associated with both paracellular and transcellular barrier alterations in the brain endothelial cells. Pharmacological inhibition of VEGF receptor 2 (VEGFR2) using a specific monoclonal antibody (DC101) prevented chronic RS-induced BBB permeability and anhedonic behavior. Considered together, these results indicate that VEGF/VEGFR2 plays a crucial role in the pathogenesis of depression by increasing the BBB permeability, and suggest that VEGFR2 inhibition could be a potential therapeutic strategy for the MDD subtype associated with BBB dysfunction.
Collapse
Affiliation(s)
- Hitomi Matsuno
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan.
| | - Shoko Tsuchimine
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Kazunori O'Hashi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan.,Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Kazuhisa Sakai
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Kotaro Hattori
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Shinsuke Hidese
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan.,Department of Psychiatry, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Shingo Nakajima
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan.,Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal Diabetes Research Center, Montreal, QC, H2X 0A9, Canada
| | - Shuichi Chiba
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan.,Faculty of Veterinary Medical Science, Okayama University of Science, 1-1 Ridaicho, Kita-ku, Okayama-shi, Okayama, 700-0005, Japan
| | - Aya Yoshimura
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan.,Education and Research Center of Animal Models for Human Diseases, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Noriko Fukuzato
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Mayumi Kando
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Megumi Tatsumi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Shintaro Ogawa
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan.,Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Noritaka Ichinohe
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan.,Department of Psychiatry, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Kazuhiro Sohya
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan. .,Division of Physiology, Faculty of Medicine, Saga University, Saga, 849-8501, Japan.
| |
Collapse
|
29
|
Kang JY, Baek DC, Son CG, Lee JS. Succinum extracts inhibit microglial-derived neuroinflammation and depressive-like behaviors. Front Pharmacol 2022; 13:991243. [PMID: 36052132 PMCID: PMC9425083 DOI: 10.3389/fphar.2022.991243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Microglia are emerging as important targets for the treatment of neuropsychiatric disorders. The phagocytic microglial phenotype and the resulting neuroinflammation lead to synaptic loss and neuronal cell death. To explore potential candidates that inhibit microglial hyperactivation, we first investigated ten candidate extracts of traditional Chinese medicine (TCM) using lipopolysaccharide (LPS)-stimulated BV2 microglial cells. Among the candidates, Pinus spp. succinum extract (PSE) was superior; thus, we further investigated its pharmacological activity and underlying mechanisms both in vitro and in vivo. Pretreatment with PSE (10, 20, and 40 μg/ml) attenuated the increases in inflammatory factors (nitric oxide and tumor necrosis factor-α), translocation of nuclear factor-kappa B (NF-κB), and phenotypic transformations (phagocytic and migratory) in a dose-dependent manner. These inhibitory effects of PSE on microglia were supported by its regulatory effects on the CX3C chemokine receptor 1 (CX3CR1)/nuclear factor erythroid-2-related factor 2 (Nrf2) pathway. In particular, intragastric administration of PSE (100 mg/kg) considerably improved sickness, anxiety, and depressive-like behaviors in mice subjected to chronic restraint stress (CRS). Our results suggest that PSE has strong antineuroinflammatory and antidepressant properties, and the underlying mechanisms may involve not only the regulation of NF-κB translocation but also the normalization of the CX3CR1/Nrf2 pathway.
Collapse
|
30
|
Jiang X, Yi S, Liu Q, Su D, Li L, Xiao C, Zhang J. Asperosaponin VI ameliorates the CMS-induced depressive-like behaviors by inducing a neuroprotective microglial phenotype in hippocampus via PPAR-γ pathway. J Neuroinflammation 2022; 19:115. [PMID: 35610721 PMCID: PMC9131532 DOI: 10.1186/s12974-022-02478-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 05/15/2022] [Indexed: 02/04/2023] Open
Abstract
Background The natural compound asperosaponin VI has shown potential as an antidepressant, but how it works is unclear. Here, we explored its effects on mice exposed to chronic mild stress (CMS) and the underlying molecular pathways. Methods Mice were exposed to CMS for 3 weeks followed by asperosaponin VI (40 mg/kg) or imipramine (20 mg/kg) for another 3 weeks. Depression-like behaviors were assessed in the forced swimming test (FST), sucrose preference test (SPT), tail suspension test (TST). Microglial phenotypes were evaluated using immunofluorescence staining, real-time quantitative PCR and enzyme-linked immunosorbent assays in hippocampus of mice. In some experiments, stressed animals were treated with the PPAR-γ antagonist GW9662 to examine its involvement in the effects of asperosaponin VI. Blockade of PPAR-γ in asperosaponin VI-treated primary microglia in the presence of lipopolysaccharide (LPS) was executed synchronously. The nuclear transfer of PPAR-γ in microglia was detected by immunofluorescence staining in vitro and in vivo. A co-cultured model of neuron and microglia was used for evaluating the regulation of ASA VI on the microglia–neuron crosstalk molecules. Results Asperosaponin VI ameliorated depression-like behaviors of CMS mice based on SPT, TST and FST, and this was associated with a switch of hippocampal microglia from a pro-inflammatory (iNOS+-Iba1+) to neuroprotective (Arg-1+-Iba1+) phenotype. CMS reduced the expression levels of PPAR-γ and phosphorylated PPAR-γ in hippocampus, which asperosaponin VI partially reversed. GW9662 treatment prevented the nuclear transfer of PPAR-γ in asperosaponin VI-treated microglia and inhibited the induction of Arg-1+ microglia. Blockade of PPAR-γ signaling also abolished the ability of asperosaponin VI to suppress pro-inflammatory cytokines while elevating anti-inflammatory cytokines in the hippocampus of CMS mice. The asperosaponin VI also promoted interactions between hippocampal microglia and neurons by enhancing CX3CL1/CX3CR1 and CD200/CD200R, and preserved synaptic function based on PSD95, CamKII β and GluA levels, but not in the presence of GW9662. Blockade of PPAR-γ signaling also abolished the antidepressant effects of asperosaponin VI in the SPT, TST and FST. Conclusion CMS in mice induces a pro-inflammatory microglial phenotype that causes reduced crosstalk between microglia and neuron, inflammation and synaptic dysfunction in the hippocampus, ultimately leading to depression-like behaviors. Asperosaponin VI may ameliorate the effects of CMS by inducing microglia to adopt a PPAR-γ-dependent neuroprotective phenotype. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02478-y.
Collapse
Affiliation(s)
- Xue Jiang
- Laboratory of Neuropharmacology, Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.,State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Saini Yi
- Laboratory of Neuropharmacology, Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Qin Liu
- Laboratory of Neuropharmacology, Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Dapeng Su
- Laboratory of Neuropharmacology, Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Liangyuan Li
- Laboratory of Neuropharmacology, Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Chenghong Xiao
- Laboratory of Neuropharmacology, Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Jinqiang Zhang
- Laboratory of Neuropharmacology, Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| |
Collapse
|
31
|
Gonçalves de Andrade E, González Ibáñez F, Tremblay MÈ. Microglia as a Hub for Suicide Neuropathology: Future Investigation and Prevention Targets. Front Cell Neurosci 2022; 16:839396. [PMID: 35663424 PMCID: PMC9158339 DOI: 10.3389/fncel.2022.839396] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/22/2022] [Indexed: 12/27/2022] Open
Abstract
Suicide is a complex public health challenge associated worldwide with one death every 40 s. Research advances in the neuropathology of suicidal behaviors (SB) have defined discrete brain changes which may hold the key to suicide prevention. Physiological differences in microglia, the resident immune cells of the brain, are present in post-mortem tissue samples of individuals who died by suicide. Furthermore, microglia are mechanistically implicated in the outcomes of important risk factors for SB, including early-life adversity, stressful life events, and psychiatric disorders. SB risk factors result in inflammatory and oxidative stress activities which could converge to microglial synaptic remodeling affecting susceptibility or resistance to SB. To push further this perspective, in this Review we summarize current areas of opportunity that could untangle the functional participation of microglia in the context of suicide. Our discussion centers around microglial state diversity in respect to morphology, gene and protein expression, as well as function, depending on various factors, namely brain region, age, and sex.
Collapse
Affiliation(s)
- Elisa Gonçalves de Andrade
- Neuroscience Graduate Program, Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Fernando González Ibáñez
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
- *Correspondence: Marie-Ève Tremblay,
| |
Collapse
|
32
|
Associations between Autoimmunity and Depression: Serum IL-6 and IL-17 Have Directly Impact on the HAMD Scores in Patients with First-Episode Depressive Disorder. J Immunol Res 2022; 2022:6724881. [PMID: 35615531 PMCID: PMC9126704 DOI: 10.1155/2022/6724881] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/17/2022] Open
Abstract
Objective. The study is aimed at evaluating the immune-activation state before and after treatment in patients with first-episode depressive disorder (FDD) with evaluating the ILs and CRP levels and further clarifying the association between autoimmunity and the etiology and pathogenesis of FDD. Methods. We designed a case-control study. FDD patients and healthy subjects were enrolled in the FDD group and control group. Serum IL-6, IL-17, and CRP were measured before and after selective serotonin reuptake inhibitor (SSRI) therapy, as well as Hamilton rating scale for depression (HAMD) and life event scale (LES) scores. The correlations between IL-6 and IL-17 and HAMD and LES scores were analysed, and multiple linear regression analysis was performed for HAMD score. Results. 40 FDD patients and 40 healthy subjects were included in the FDD and control group from October 2009 to September 2012. Before treatment, the IL-6 (
,
) and IL-17 (
,
) in the FDD group were significantly higher than the control group (
and
, respectively). The C-reactive protein (CRP) level in two groups was comparable (
). After treatment, the IL-6 (
,
) and IL-17 (
,
) levels and HAMD scores (
) in the FDD group were significantly decreased than before treatment (
, respectively). CRP level was slightly increased after treatment without statistically significant (
). The HAMD score correlated with IL-6 (
,
) and IL-17 (
,
); the total LES and negative LES also correlated with IL-6 (
,
) (
, P <0.001) and IL-17 (
,
) (
,
). Multiple linear regression analysis showed that both of the IL-6 and IL-17 had direct impact on HAMD score. Conclusion. The autoimmunity status was overactivated in FDD patients, and serum IL-6 and IL-17 levels had direct impact on the HAMD score. Patients who experienced more negative life events had higher activation level of autoimmunity status and HAMD scores, and serum IL-6 and IL-17 levels can be decreased by SSRI treatment.
Collapse
|
33
|
Cathomas F, Holt LM, Parise EM, Liu J, Murrough JW, Casaccia P, Nestler EJ, Russo SJ. Beyond the neuron: Role of non-neuronal cells in stress disorders. Neuron 2022; 110:1116-1138. [PMID: 35182484 PMCID: PMC8989648 DOI: 10.1016/j.neuron.2022.01.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/15/2021] [Accepted: 01/24/2022] [Indexed: 12/11/2022]
Abstract
Stress disorders are leading causes of disease burden in the U.S. and worldwide, yet available therapies are fully effective in less than half of all individuals with these disorders. Although to date, much of the focus has been on neuron-intrinsic mechanisms, emerging evidence suggests that chronic stress can affect a wide range of cell types in the brain and periphery, which are linked to maladaptive behavioral outcomes. Here, we synthesize emerging literature and discuss mechanisms of how non-neuronal cells in limbic regions of brain interface at synapses, the neurovascular unit, and other sites of intercellular communication to mediate the deleterious, or adaptive (i.e., pro-resilient), effects of chronic stress in rodent models and in human stress-related disorders. We believe that such an approach may one day allow us to adopt a holistic "whole body" approach to stress disorder research, which could lead to more precise diagnostic tests and personalized treatment strategies. Stress is a major risk factor for many psychiatric disorders. Cathomas et al. review new insight into how non-neuronal cells mediate the deleterious effects, as well as the adaptive, protective effects, of stress in rodent models and human stress-related disorders.
Collapse
Affiliation(s)
- Flurin Cathomas
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Leanne M Holt
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric M Parise
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jia Liu
- Neuroscience Initiative, Advanced Science Research Center, Program in Biology and Biochemistry at The Graduate Center of The City University of New York, New York, NY, USA
| | - James W Murrough
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Patrizia Casaccia
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Neuroscience Initiative, Advanced Science Research Center, Program in Biology and Biochemistry at The Graduate Center of The City University of New York, New York, NY, USA
| | - Eric J Nestler
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Scott J Russo
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
34
|
de Witte LD, Wang Z, Snijders GLJL, Mendelev N, Liu Q, Sneeboer MAM, Boks MPM, Ge Y, Haghighi F. Contribution of Age, Brain Region, Mood Disorder Pathology, and Interindividual Factors on the Methylome of Human Microglia. Biol Psychiatry 2022; 91:572-581. [PMID: 35027166 PMCID: PMC11181298 DOI: 10.1016/j.biopsych.2021.10.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Transcriptome studies have revealed age-, disease-, and region-associated microglial phenotypes reflecting changes in microglial function during development, aging, central nervous system homeostasis, and pathology. The molecular mechanisms that contribute to these transcriptomic changes are largely unknown. The aim of this study was to characterize the DNA methylation landscape of human microglia and the factors that contribute to variations in the microglia methylome. We hypothesized that both age and brain region would have a large impact on DNA methylation in microglia. METHODS Microglia from postmortem brain tissue of four different brain regions of 22 donors, encompassing 1 patient with schizophrenia, 13 patients with mood disorder pathology, and 8 control subjects, were isolated and assayed using a genome-wide methylation array. RESULTS We found that human microglial cells have a methylation profile distinct from bulk brain tissue and neurons, and age explained a considerable part of the variation. Additionally, we showed that interindividual factors had a much larger effect on the methylation landscape of microglia than brain region, which was also seen at the transcriptome level. In our exploratory analysis, we found various differentially methylated regions that were related to disease status (mood disorder vs. control). This included differentially methylated regions that are linked to gene expression in microglia, as well as to myeloid cell function or neuropsychiatric disorders. CONCLUSIONS Although based on relatively small samples, these findings suggest that the methylation profile of microglia is responsive to interindividual variations and thereby plays an important role in the heterogeneity of microglia observed at the transcriptome level.
Collapse
Affiliation(s)
- Lot D de Witte
- Mental Illness Research, Education and Clinical Center, James J Peters VA Medical Center, Bronx, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Zhaoyu Wang
- Mental Illness Research, Education and Clinical Center, James J Peters VA Medical Center, Bronx, New York; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Gijsje L J L Snijders
- Mental Illness Research, Education and Clinical Center, James J Peters VA Medical Center, Bronx, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Natalia Mendelev
- Mental Illness Research, Education and Clinical Center, James J Peters VA Medical Center, Bronx, New York; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Qingkun Liu
- Mental Illness Research, Education and Clinical Center, James J Peters VA Medical Center, Bronx, New York; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Marjolein A M Sneeboer
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Psychiatry, University Medical Center Utrecht, UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands; Department of Translational Neuroscience, University Medical Center Utrecht, UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Marco P M Boks
- Department of Psychiatry, University Medical Center Utrecht, UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Yongchao Ge
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Fatemeh Haghighi
- Mental Illness Research, Education and Clinical Center, James J Peters VA Medical Center, Bronx, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
35
|
Guo J, Qiu T, Wang L, Shi L, Ai M, Xia Z, Peng Z, Zheng A, Li X, Kuang L. Microglia Loss and Astrocyte Activation Cause Dynamic Changes in Hippocampal [18F]DPA-714 Uptake in Mouse Models of Depression. Front Cell Neurosci 2022; 16:802192. [PMID: 35250485 PMCID: PMC8896346 DOI: 10.3389/fncel.2022.802192] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/31/2022] [Indexed: 12/18/2022] Open
Abstract
Major depression is a serious and chronic mental illness. However, its etiology is poorly understood. Although glial cells have been increasingly implicated in the pathogenesis of depression, the specific role of microglia and astrocytes in stress-induced depression remains unclear. Translocator protein (TSPO) has long been considered a marker of neuroinflammation and microglial activation. However, this protein is also present on astrocytes. Thus, it is necessary to explore the relationships between TSPO, microglia, and astrocytes in the context of depression. In this study, C57BL/6J male mice were subjected to chronic unpredictable stress (CUS) for 5 weeks. Subsequently, sucrose preference and tail suspension tests (TSTs) were performed to assess anhedonia and despair in these mice. [18F]DPA-714 positron emission tomography (PET) was adopted to dynamically assess the changes in glial cells before and 2, 4, or 5 weeks after CUS exposure. The numbers of TSPO+ cells, ionized calcium-binding adaptor molecule (Iba)-1+ microglial cells, TSPO+/Iba-1+ cells, glial fibrillary acidic protein (GFAP)+ astrocytes, TSPO+/GFAP+ cells, and TUNEL-stained microglia were quantified using immunofluorescence staining. Real-time PCR was used to evaluate interleukin (IL)-1β, IL-4, and IL-18 expression in the hippocampus. We observed that hippocampal [18F]DPA-714 uptake significantly increased after 2 weeks of CUS. However, the signal significantly decreased after 5 weeks of CUS. CUS significantly reduced the number of Iba-1+, TSPO+, and TSPO+/Iba-1+ cells in the hippocampus, especially in the CA1 and dentate gyrus (DG) subregions. However, this intervention increased the number of GFAP+ astrocytes in the CA2/CA3 subregions of the hippocampus. In addition, microglial apoptosis in the early stage of CUS appeared to be involved in microglia loss. Further, the expression of pro-inflammatory cytokines (IL-1β and IL-18) was significantly decreased after CUS. In contrast, the expression of the anti-inflammatory cytokine IL-4 was significantly increased after 2 weeks of CUS. These results suggested that the CUS-induced dynamic changes in hippocampal [18F]DPA-714 uptake and several cytokines may be due to combined microglial and astrocyte action. These findings provide a theoretical reference for the future clinical applications of TSPO PET.
Collapse
Affiliation(s)
- Jiamei Guo
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tian Qiu
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lixia Wang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lei Shi
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ming Ai
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhu Xia
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhiping Peng
- College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Anhai Zheng
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiao Li
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Kuang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Li Kuang,
| |
Collapse
|
36
|
Agarwal K, Manza P, Chapman M, Nawal N, Biesecker E, McPherson K, Dennis E, Johnson A, Volkow ND, Joseph PV. Inflammatory Markers in Substance Use and Mood Disorders: A Neuroimaging Perspective. Front Psychiatry 2022; 13:863734. [PMID: 35558424 PMCID: PMC9086785 DOI: 10.3389/fpsyt.2022.863734] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/17/2022] [Indexed: 12/21/2022] Open
Abstract
Chronic exposure to addictive drugs in substance use disorders and stressors in mood disorders render the brain more vulnerable to inflammation. Inflammation in the brain, or neuroinflammation, is characterized by gliosis, microglial activation, and sustained release of cytokines, chemokines, and pro-inflammatory factors compromising the permeability of the blood-brain barrier. There is increased curiosity in understanding how substance misuse and/or repeated stress exposure affect inflammation and contribute to abnormal neuronal activity, altered neuroplasticity, and impaired cognitive control, which eventually promote compulsive drug-use behaviors and worsen mood disorders. This review will emphasize human imaging studies to explore the link between brain function and peripheral markers of inflammation in substance use disorders and mood disorders.
Collapse
Affiliation(s)
- Khushbu Agarwal
- Section of Sensory Science and Metabolism Unit, Division of Intramural Research, Department of Health and Human Services, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States.,Section of Sensory Science and Metabolism, Division of Intramural Research, U.S. Department of Health and Human Services, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Peter Manza
- Laboratory of Neuroimaging, Department of Health and Human Services, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Marquis Chapman
- Section of Sensory Science and Metabolism Unit, Division of Intramural Research, Department of Health and Human Services, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Nafisa Nawal
- Section of Sensory Science and Metabolism Unit, Division of Intramural Research, Department of Health and Human Services, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Erin Biesecker
- Section of Sensory Science and Metabolism Unit, Division of Intramural Research, Department of Health and Human Services, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Katherine McPherson
- Section of Sensory Science and Metabolism Unit, Division of Intramural Research, Department of Health and Human Services, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Evan Dennis
- Section of Sensory Science and Metabolism Unit, Division of Intramural Research, Department of Health and Human Services, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Allison Johnson
- Section of Sensory Science and Metabolism Unit, Division of Intramural Research, Department of Health and Human Services, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Nora D Volkow
- Laboratory of Neuroimaging, Department of Health and Human Services, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Paule V Joseph
- Section of Sensory Science and Metabolism Unit, Division of Intramural Research, Department of Health and Human Services, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States.,Section of Sensory Science and Metabolism, Division of Intramural Research, U.S. Department of Health and Human Services, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
37
|
Bollinger J. Uncovering microglial pathways driving sex-specific neurobiological effects in stress and depression. Brain Behav Immun Health 2021; 16:100320. [PMID: 34589809 PMCID: PMC8474553 DOI: 10.1016/j.bbih.2021.100320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 12/13/2022] Open
Abstract
Women suffer from major depressive disorder (MDD) more often than men and report greater MDD symptom severity. Mounting evidence suggests that sex differences in MDD may be driven, in part, by sex-specific neurobiological mechanisms. Chronic stress is a significant risk factor in MDD, and preclinical rodent models show differential patterns of stress-induced neural remodeling and cognitive-behavioral dysfunction in males and females. For instance, chronic stress leads to synapse loss in the medial prefrontal cortex in male rodents yet has either no effect on- or increases-synapse number in females. Recent reports have implicated microglia, the immune cells of the brain, in MDD, and findings demonstrate sex-specific microglial signatures in both preclinical stress models and MDD patients. Given that microglia can remodel neural architecture, modulate synaptic transmission, and affect subsequent changes in behavior, it is plausible that microglial pathways contribute to differential stress effects on neuroplasticity and function in males and females. As such, this review examines the evidence for sex-specific microglia-neuron interactions in preclinical stress models and in patients with MDD. Discoveries highlighted herein demonstrate divergent microglial contributions in males and females and suggest that future studies investigating stress-linked disorders should be guided by sex-dependent neurobiological and behavioral findings. Examining these pathways represents a clear avenue toward both a richer understanding of brain, behavior, and immunity, and innovative psychoneuroimmunology-based applications in personalized medicine.
Collapse
Affiliation(s)
- J.L. Bollinger
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, 2120 East Galbraith Road, Cincinnati, OH, 45237, USA
| |
Collapse
|
38
|
Leschik J, Lutz B, Gentile A. Stress-Related Dysfunction of Adult Hippocampal Neurogenesis-An Attempt for Understanding Resilience? Int J Mol Sci 2021; 22:7339. [PMID: 34298958 PMCID: PMC8305135 DOI: 10.3390/ijms22147339] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/16/2022] Open
Abstract
Newborn neurons in the adult hippocampus are regulated by many intrinsic and extrinsic cues. It is well accepted that elevated glucocorticoid levels lead to downregulation of adult neurogenesis, which this review discusses as one reason why psychiatric diseases, such as major depression, develop after long-term stress exposure. In reverse, adult neurogenesis has been suggested to protect against stress-induced major depression, and hence, could serve as a resilience mechanism. In this review, we will summarize current knowledge about the functional relation of adult neurogenesis and stress in health and disease. A special focus will lie on the mechanisms underlying the cascades of events from prolonged high glucocorticoid concentrations to reduced numbers of newborn neurons. In addition to neurotransmitter and neurotrophic factor dysregulation, these mechanisms include immunomodulatory pathways, as well as microbiota changes influencing the gut-brain axis. Finally, we discuss recent findings delineating the role of adult neurogenesis in stress resilience.
Collapse
Affiliation(s)
- Julia Leschik
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, 55128 Mainz, Germany;
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, 55128 Mainz, Germany;
- Leibniz Institute for Resilience Research (LIR), 55122 Mainz, Germany
| | - Antonietta Gentile
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, 00166 Rome, Italy;
| |
Collapse
|
39
|
Afridi R, Suk K. Neuroinflammatory Basis of Depression: Learning From Experimental Models. Front Cell Neurosci 2021; 15:691067. [PMID: 34276311 PMCID: PMC8283257 DOI: 10.3389/fncel.2021.691067] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/08/2021] [Indexed: 12/17/2022] Open
Abstract
The neuroinflammatory basis of depression encompasses the detrimental role of otherwise supportive non-neuronal cells and neuroinflammation in hampering neuronal function, leading to depressive behavior. Animals subjected to different stress paradigms show glial cell activation and a surge in proinflammatory cytokines in various brain regions. The concept of sterile inflammation observed in animal models of depression has intrigued many researchers to determine the possible triggers of central immune cell activation. Notably, microglial activation and subsequent phenotypic polarization in depression have been strongly advocated by the wealth of recent preclinical studies; however, findings from human studies have shown contradictory results. Despite intensive investigation, many research gaps still exist to elucidate the molecular mechanisms of neuroinflammatory cascades underlying the pathophysiology of depression. In this mini-review, recent progress in understanding neuroinflammatory mechanisms in light of experimental models of depression will be thoroughly discussed. The challenges of mirroring depression in animal and in vitro models will also be highlighted. Furthermore, prospects of targeting neuroinflammation to treat depressive disorder will be covered.
Collapse
Affiliation(s)
- Ruqayya Afridi
- BK21 Plus KNU Biomedical Convergence Program, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Kyoungho Suk
- BK21 Plus KNU Biomedical Convergence Program, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, South Korea.,Brain Science and Engineering Institute, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
40
|
Snijders GJLJ, van Zuiden W, Sneeboer MAM, Berdenis van Berlekom A, van der Geest AT, Schnieder T, MacIntyre DJ, Hol EM, Kahn RS, de Witte LD. A loss of mature microglial markers without immune activation in schizophrenia. Glia 2021; 69:1251-1267. [PMID: 33410555 PMCID: PMC7986895 DOI: 10.1002/glia.23962] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/04/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023]
Abstract
Microglia, the immune cells of the brain, are important for neurodevelopment and have been hypothesized to play a role in the pathogenesis of schizophrenia (SCZ). Although previous postmortem studies pointed toward presence of microglial activation, this view has been challenged by more recent hypothesis-driven and hypothesis-free analyses. The aim of the present study is to further understand the observed microglial changes in SCZ. We first performed a detailed meta-analysis on studies that analyzed microglial cell density, microglial morphology, and expression of microglial-specific markers. We then further explored findings from the temporal cortex by performing immunostainings and qPCRs on an additional dataset. A random effect meta-analysis showed that the density of microglial cells was unaltered in SCZ (ES: 0.144 95% CI: 0.102 to 0.390, p = .250), and clear changes in microglial morphology were also absent. The expression of several microglial specific genes, such as CX3CR1, CSF1R, IRF8, OLR1, and TMEM119 was decreased in SCZ (ES: -0.417 95% CI: -0.417 to -0.546, p < .0001), consistent with genome-wide transcriptome meta-analysis results. These results indicate a change in microglial phenotype rather than density, which was validated with the use of TMEM119/Iba1 immunostainings on temporal cortex of a separate cohort. Changes in microglial gene expression were overlapping between SCZ and other psychiatric disorders, but largely opposite from changes reported in Alzheimer's disease. This distinct microglial phenotype provides a crucial molecular hallmark for future research into the role of microglia in SCZ and other psychiatric disorders.
Collapse
Affiliation(s)
- Gijsje J. L. J. Snijders
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Brain Center Rudolf MagnusUniversity Medical Center Utrecht, Utrecht University (BCRM‐UMCU‐UU)UtrechtThe Netherlands
- Department of PsychiatryIcahn School of MedicineNew YorkNew YorkUSA
| | | | | | - Amber Berdenis van Berlekom
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Brain Center Rudolf MagnusUniversity Medical Center Utrecht, Utrecht University (BCRM‐UMCU‐UU)UtrechtThe Netherlands
- Department of Translational Neuroscience (BCRM‐UMCU‐UU)UtrechtThe Netherlands
| | | | | | - Donald J. MacIntyre
- Division of Psychiatry, Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
| | - Elly M. Hol
- Department of Translational Neuroscience (BCRM‐UMCU‐UU)UtrechtThe Netherlands
- Neuroimmunology, Netherlands Institute for Neuroscience, An Institute of the Royal Academy of Arts and SciencesAmsterdamThe Netherlands
| | - René S. Kahn
- Department of PsychiatryIcahn School of MedicineNew YorkNew YorkUSA
- Mental Illness Research, Education and Clinical Center (MIRECC), James J Peters VA Medical CenterBronxNew YorkUSA
| | - Lot D. de Witte
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Brain Center Rudolf MagnusUniversity Medical Center Utrecht, Utrecht University (BCRM‐UMCU‐UU)UtrechtThe Netherlands
- Department of PsychiatryIcahn School of MedicineNew YorkNew YorkUSA
- Mental Illness Research, Education and Clinical Center (MIRECC), James J Peters VA Medical CenterBronxNew YorkUSA
| |
Collapse
|
41
|
Qi B, Ramamurthy J, Bennani I, Trakadis YJ. Machine learning and bioinformatic analysis of brain and blood mRNA profiles in major depressive disorder: A case-control study. Am J Med Genet B Neuropsychiatr Genet 2021; 186:101-112. [PMID: 33645908 DOI: 10.1002/ajmg.b.32839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 01/08/2021] [Accepted: 02/03/2021] [Indexed: 12/13/2022]
Abstract
This study analyzed gene expression messenger RNA data, from cases with major depressive disorder (MDD) and controls, using supervised machine learning (ML). We built on the methodology of prior studies to obtain more generalizable/reproducible results. First, we obtained a classifier trained on gene expression data from the dorsolateral prefrontal cortex of post-mortem MDD cases (n = 126) and controls (n = 103). An average area-under-the-receiver-operating-characteristics-curve (AUC) from 10-fold cross-validation of 0.72 was noted, compared to an average AUC of 0.55 for a baseline classifier (p = .0048). The classifier achieved an AUC of 0.76 on a previously unused testing-set. We also performed external validation using DLPFC gene expression values from an independent cohort of matched MDD cases (n = 29) and controls (n = 29), obtained from Affymetrix microarray (vs. Illumina microarray for the original cohort) (AUC: 0.62). We highlighted gene sets differentially expressed in MDD that were enriched for genes identified by the ML algorithm. Next, we assessed the ML classification performance in blood-based microarray gene expression data from MDD cases (n = 1,581) and controls (n = 369). We observed a mean AUC of 0.64 on 10-fold cross-validation, which was significantly above baseline (p = .0020). Similar performance was observed on the testing-set (AUC: 0.61). Finally, we analyzed the classification performance in covariates subgroups. We identified an interesting interaction between smoking and recall performance in MDD case prediction (58% accurate predictions in cases who are smokers vs. 43% accurate predictions in cases who are non-smokers). Overall, our results suggest that ML in combination with gene expression data and covariates could further our understanding of the pathophysiology in MDD.
Collapse
Affiliation(s)
- Bill Qi
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | | | - Imane Bennani
- Faculty of Science, McGill University, Montreal, Quebec, Canada
| | - Yannis J Trakadis
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,Department of Medical Genetics, McGill University Health Center, Montreal, Quebec, Canada
| |
Collapse
|