1
|
Alver CG, Dominguez-Bendala J, Agarwal A. Engineered tools to study endocrine dysfunction of pancreas. BIOPHYSICS REVIEWS 2024; 5:041303. [PMID: 39449867 PMCID: PMC11498943 DOI: 10.1063/5.0220396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/04/2024] [Indexed: 10/26/2024]
Abstract
Pancreas, a vital organ with intricate endocrine and exocrine functions, is central to the regulation of the body's glucose levels and digestive processes. Disruptions in its endocrine functions, primarily regulated by islets of Langerhans, can lead to debilitating diseases such as diabetes mellitus. Murine models of pancreatic dysfunction have contributed significantly to the understanding of insulitis, islet-relevant immunological responses, and the optimization of cell therapies. However, genetic differences between mice and humans have severely limited their clinical translational relevance. Recent advancements in tissue engineering and microfabrication have ushered in a new era of in vitro models that offer a promising solution. This paper reviews the state-of-the-art engineered tools designed to study endocrine dysfunction of the pancreas. Islet on a chip devices that allow precise control of various culture conditions and noninvasive readouts of functional outcomes have led to the generation of physiomimetic niches for primary and stem cell derived islets. Live pancreatic slices are a new experimental tool that could more comprehensively recapitulate the complex cellular interplay between the endocrine and exocrine parts of the pancreas. Although a powerful tool, live pancreatic slices require more complex control over their culture parameters such as local oxygenation and continuous removal of digestive enzymes and cellular waste products for maintaining experimental functionality over long term. The combination of islet-immune and slice on chip strategies can guide the path toward the next generation of pancreatic tissue modeling for better understanding and treatment of endocrine pancreatic dysfunctions.
Collapse
Affiliation(s)
| | - Juan Dominguez-Bendala
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Ashutosh Agarwal
- Author to whom correspondence should be addressed:. Tel.: +1 305 243-8925
| |
Collapse
|
2
|
Chehregosha F, Maghsoumi-Norouzabad L, Mobasseri M, Fakhr L, Tarighat-Esfanjani A. The effect of Fenugreek seed dry extract supplement on glycemic indices, lipid profile, and prooxidant-antioxidant balance in patients with type 2 diabetes: A double-blind randomized clinical trial. J Cardiovasc Thorac Res 2024; 16:184-193. [PMID: 39430281 PMCID: PMC11489642 DOI: 10.34172/jcvtr.33231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/09/2024] [Indexed: 10/22/2024] Open
Abstract
Introduction This study aims to determine the effects of fenugreek seed dry extract (FDE) on the glycemic indices, lipid profile, and prooxidant-antioxidant balance (PAB) in patients with type 2 diabetes (T2D). Methods A double-blind randomized clinical trial was carried out on 54 individuals with T2D. Participants were randomly assigned to a FDE group (received 3 tablets containing 335 mg of FDE daily for 8 weeks) or a placebo group (received tablets containing microcrystalline cellulose). Anthropometric indices, physical activity, diet, fasting blood sugar (FBS), serum insulin, Homeostatic Model Assessment for Insulin Resistance (HOMA-IR), triglyceride (TG), total cholesterol (TC), low-density lipoprotein-cholesterol (LDL-C), high-density lipoprotein (HDL-C), and PAB were assessed. Results An eight-week intake of 3 tablets containing 335 mg of FDE decreased serum insulin (P=0.016, P<0.001), HOMA-IR (P=0.009, P<0.001), TG (P<0.001, P=0.001), and PAB (P<0.001, P<0.001) compared to the baseline, in both placebo and intervention groups respectively. TC decreased significantly compared to the baseline in the placebo group (P=0.028), while HDL-C increased in the FDE group compared to the baseline (P<0.001) and placebo group (P=0.014). Conclusion In the present study even though changes of parameters were more in intervention group compared to the control group, we did not observe any significant differences between studied groups except for HDL-C. However, the effects might become apparent with a higher dosage, longer study duration, or a larger sample size compared to the placebo group. Further clinical trials are needed in this regard.
Collapse
Affiliation(s)
- Fatemeh Chehregosha
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Nutrition Research Center, Department of Clinical Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Maghsoumi-Norouzabad
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Mobasseri
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Laleh Fakhr
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Nutrition Research Center, Department of Clinical Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Tarighat-Esfanjani
- Nutrition Research Center, Department of Clinical Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Sarray S, Ezzidi I, Moussa S, Abdennebi HB, Mtiraoui N. Association study between adiponectin gene variants, serum levels and the risk of type 2 diabetes in Tunisian women: Insights from BMI stratification. Cytokine 2024; 181:156695. [PMID: 39018944 DOI: 10.1016/j.cyto.2024.156695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 06/02/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Although prior studies have shown that adiponectin synthesis is genetically determined and that its levels influence susceptibility to T2D, the results in this regard have been inconsistent. This study aims, to investigate the relationship between adiponectin gene variants with the risk of developing T2D among Tunisian women and in relation to their BMI status. A cohort of 491 Tunisian T2D women and 373 non-diabetic subjects participated in the study. Nine ADIPOQ variants namely rs16861194, rs17300539, rs266729, rs822395, rs822396, rs2241766, rs1501299, rs2241767 and rs3774261 were selected and genotyped using the TaqMan® SNP genotyping assay. Fasting serum adiponectin levels were quantified using ELISA. The results showed that only the rs17300539 variant exhibited a significant association with the risk of T2D. However, upon considering T2D group stratification based on BMI (normal weight [18-24.99 Kg/m2], overweight [25-29.99 Kg/m2] and obese [30-34.99 Kg/m2]), the ADIPOQ rs2241766 variant emerged as a contributing risk factor for increased BMI in obese women with T2D. Linear regression analysis revealed that the minor allele (A), (GA) and (AA) genotypes of rs17300539 as well as the (G) allele and (GG) genotype of rs2241766 were significantly associated with hypoadiponectinemia in T2D subjects. Two haplotypes namely GGCAATGAA and AGCCGTGGA, were identified as conferring a higher risk of T2D with the GGCAATGAA haplotype also correlating with hypoadiponectinemia. Our study underscores the importance of the rs17300539 variant and the GGCAATGAA haplotype in the risk of T2D and hypoadiponectinemia. Additionally, the presence of the rs2241766 variant highlights its association with 'diabesity' and hypoadiponectinemia among Tunisian T2D women.
Collapse
Affiliation(s)
- Sameh Sarray
- College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain; Faculty of Sciences, University of Tunis EL Manar, Tunis, Tunisia
| | - Intissar Ezzidi
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia; Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia
| | - Saif Moussa
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia
| | - Hassen Ben Abdennebi
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia
| | - Nabil Mtiraoui
- Laboratory of Human Genome and Multifactorial Diseases (LR12ES07), Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia; Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia.
| |
Collapse
|
4
|
Billings LK, Shi Z, Mulford AJ, Wei J, Tran H, Ashworth A, Zheng SL, Dunnenberger HM, Hulick PJ, Sanders AR, Xu J. Validation of GenProb-T1D and its clinical utility for differentiating types of diabetes in a biobank from a US healthcare system. J Diabetes Investig 2024. [PMID: 39171755 DOI: 10.1111/jdi.14297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024] Open
Abstract
Atypical diabetes with overlapping clinical features of type 1 (T1D) and type 2 (T2D) is common and challenging diagnostically and for implementing effective treatment. Here, we validate a recently reported genetic probability of type 1 diabetes (GenProb-T1D) from the UK Biobank (UKB) for differentiating type 1 diabetes and type 2 diabetes in a diabetes patient cohort from a healthcare system-based biobank in the USA. Among 3,363 diabetes patients, we confirmed the performance of GenProb-T1D in differentiating typical type 1 diabetes vs type 2 diabetes. Furthermore, for 359 atypical diabetes patients, those with GenProb-T1D higher than the pre-defined cutoff derived from the UKB had clinical presentations more consistent with that of typical type 1 diabetes. Similar findings were found in participants of European and non-European ancestries. This study provides necessary validation to translate GenProb-T1D into genetic testing in a multi-ancestry cohort. Measuring underlying genetic susceptibility of type 1 diabetes and type 2 diabetes can supplement current clinical tools for earlier and more accurate diagnoses of diabetes.
Collapse
Affiliation(s)
- Liana K Billings
- Endeavor Health, Evanston, IL, USA
- University of Chicago Pritzker School of Medicine, Chicago, IL, USA
| | | | | | - Jun Wei
- Endeavor Health, Evanston, IL, USA
| | - Huy Tran
- Endeavor Health, Evanston, IL, USA
| | | | | | | | | | - Alan R Sanders
- Endeavor Health, Evanston, IL, USA
- University of Chicago Pritzker School of Medicine, Chicago, IL, USA
| | - Jianfeng Xu
- Endeavor Health, Evanston, IL, USA
- University of Chicago Pritzker School of Medicine, Chicago, IL, USA
| |
Collapse
|
5
|
Mazzotta FA, Lucaccini Paoli L, Rizzi A, Tartaglione L, Leo ML, Popolla V, Barberio A, Viti L, Di Leo M, Pontecorvi A, Pitocco D. Unmet needs in the treatment of type 1 diabetes: why is it so difficult to achieve an improvement in metabolic control? Nutr Diabetes 2024; 14:58. [PMID: 39095349 PMCID: PMC11297181 DOI: 10.1038/s41387-024-00319-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
The development of advanced diabetes technology has permitted persons with type 1 diabetes mellitus to improve metabolic control significantly, particularly with the development of advanced hybrid closed-loop systems which have improved the quality of life by reducing hypoglycemia, decreasing macroangiopathy and microangiopathy-related complications, ameliorating HbA1c and improving glycemic variability. Despite the progression made over the past few decades, there is still significant margin for improvement to be made in terms of attaining appropriate metabolic control. Various factors are responsible for poor glycemic control including inappropriate carbohydrate counting, repeated bouts of hypoglycemia, hypoglycemia unawareness, cutaneous manifestations due to localized insulin use and prolonged use of diabetes technology, psychosocial comorbidities such as eating disorders or 'diabulimia', the coexistence of insulin resistance among people with type 1 diabetes and the inability to mirror physiological endogenous pancreatic insulin secretion appropriately. Hence, the aim of this review is to highlight and overcome the barriers in attaining appropriate metabolic control among people with type 1 diabetes by driving research into adjunctive treatment for coexistent insulin resistance and developing new advanced diabetic technologies to preserve β cell function and mirror as much as possible endogenous pancreatic functions.
Collapse
Affiliation(s)
- Francesco Antonio Mazzotta
- Department of Endocrinology, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Lorenzo Lucaccini Paoli
- Department of Endocrinology, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.
| | - Alessandro Rizzi
- Diabetes Care Unit, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Linda Tartaglione
- Diabetes Care Unit, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Maria Laura Leo
- Department of Endocrinology, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Valentina Popolla
- Diabetes Care Unit, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Annarita Barberio
- Department of Internal Medicine, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Luca Viti
- Diabetes Care Unit, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Mauro Di Leo
- Diabetes Care Unit, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Alfredo Pontecorvi
- Department of Endocrinology, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Dario Pitocco
- Diabetes Care Unit, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| |
Collapse
|
6
|
Risi R, Vidal-Puig A, Bidault G. An adipocentric perspective of pancreatic lipotoxicity in diabetes pathogenesis. J Endocrinol 2024; 262:e230313. [PMID: 38642584 PMCID: PMC11227041 DOI: 10.1530/joe-23-0313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 04/16/2024] [Indexed: 04/22/2024]
Abstract
Obesity and diabetes represent two increasing and invalidating public health issues that often coexist. It is acknowledged that fat mass excess predisposes to insulin resistance and type 2 diabetes mellitus (T2D), with the increasing incidence of the two diseases significantly associated. Moreover, emerging evidence suggests that obesity might also accelerate the appearance of type 1 diabetes (T1D), which is now a relatively frequent comorbidity in patients with obesity. It is a common clinical finding that not all patients with obesity will develop diabetes at the same level of adiposity, with gender, genetic, and ethnic factors playing an important role in defining the timing of diabetes appearance. The adipose tissue (AT) expandability hypothesis explains this paradigm, indicating that the individual capacity to appropriately store energy surplus in the form of fat within the AT determines and prevents the toxic deposition of lipids in other organs, such as the pancreas. Thus, we posit that when the maximal storing capacity of AT is exceeded, individuals will develop T2D. In this review, we provide insight into mechanisms by which the AT controls pancreas lipid content and homeostasis in case of obesity to offer an adipocentric perspective of pancreatic lipotoxicity in the pathogenesis of diabetes. Moreover, we suggest that improving AT function is a valid therapeutic approach to fighting obesity-associated complications including diabetes.
Collapse
Affiliation(s)
- Renata Risi
- Department of Experimental Medicine, Sapienza University of Rome, Sapienza University of Rome, Rome, Italy
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
| | - Antonio Vidal-Puig
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
- Cambridge University Nanjing Centre of Technology and Innovation, Nanjing, P. R. China
- Centro de Investigacion Principe Felipe, Valencia, Spain
| | - Guillaume Bidault
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
| |
Collapse
|
7
|
de Vries M, Westerink J, Kaasjager HAH, de Valk HW. Association of physical activity and sports participation with insulin resistance and non-alcoholic fatty liver disease in people with type 1 diabetes. Diabet Med 2024; 41:e15317. [PMID: 38588026 DOI: 10.1111/dme.15317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/29/2024] [Accepted: 03/10/2024] [Indexed: 04/10/2024]
Abstract
AIM To evaluate the association between physical activity (PA) and sports participation with insulin resistance and non-alcoholic fatty liver disease (NAFLD) in people with type 1 diabetes (T1D). METHODS People with T1D from a secondary and tertiary care centre were included. Questionnaire-derived PA was expressed in metabolic equivalent of task hours per week (METh/week). Insulin sensitivity was calculated with the estimated glucose disposal rate (eGDR). NAFLD was assessed by transient elastography (TE). Multivariate linear and logistic regression models were conducted, adjusted for age, sex, diabetes duration and BMI. RESULTS In total, 254 participants were included (men 56%, age 44 ± 14 years, diabetes duration 24 ± 14 years, median BMI 24.8 kg/m2), of which 150 participants underwent TE. Total PA (median 50.7 METh/week) was not significantly associated with insulin resistance (median eGDR 7.31 mg/kg/min) (beta -0.00, 95% CI -0.01 to 0.00) or with NAFLD (OR 1.00, 95% CI 0.99-1.01). Participating in sports was significantly associated with eGDR (beta 0.94, 95% CI 0.48-1.41) and with NAFLD (OR 0.21, 95% CI 0.08-0.56). CONCLUSIONS In our T1D population, we could not find any dose-dependent association between PA, insulin resistance and NAFLD. People participating in sports had a lower degree of insulin resistance and lower odds for NAFLD.
Collapse
Affiliation(s)
- M de Vries
- Department of Internal Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - J Westerink
- Department of Internal Medicine, Isala Hospital, Zwolle, the Netherlands
| | - H A H Kaasjager
- Department of Internal Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - H W de Valk
- Department of Internal Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
8
|
Shahabudin S, Azmi NS, Lani MN, Mukhtar M, Hossain MS. Candida albicans skin infection in diabetic patients: An updated review of pathogenesis and management. Mycoses 2024; 67:e13753. [PMID: 38877612 DOI: 10.1111/myc.13753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/16/2024]
Abstract
Candida species, commensal residents of human skin, are recognized as the cause of cutaneous candidiasis across various body surfaces. Individuals with weakened immune systems, particularly those with immunosuppressive conditions, are significantly more susceptible to this infection. Diabetes mellitus, a major metabolic disorder, has emerged as a critical factor inducing immunosuppression, thereby facilitating Candida colonization and subsequent skin infections. This comprehensive review examines the prevalence of different types of Candida albicans-induced cutaneous candidiasis in diabetic patients. It explores the underlying mechanisms of pathogenicity and offers insights into recommended preventive measures and treatment strategies. Diabetes notably increases vulnerability to oral and oesophageal candidiasis. Additionally, it can precipitate vulvovaginal candidiasis in females, Candida balanitis in males, and diaper candidiasis in young children with diabetes. Diabetic individuals may also experience candidal infections on their nails, hands and feet. Notably, diabetes appears to be a risk factor for intertrigo syndrome in obese individuals and periodontal disorders in denture wearers. In conclusion, the intricate relationship between diabetes and cutaneous candidiasis necessitates a comprehensive understanding to strategize effective management planning. Further investigation and interdisciplinary collaborative efforts are crucial to address this multifaceted challenge and uncover novel approaches for the treatment, management and prevention of both health conditions, including the development of safer and more effective antifungal agents.
Collapse
Affiliation(s)
- Sakina Shahabudin
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Kuantan, Pahang, Malaysia
| | - Nina Suhaity Azmi
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Kuantan, Pahang, Malaysia
| | - Mohd Nizam Lani
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | | | - Md Sanower Hossain
- Centre for Sustainability of Mineral and Resource Recovery Technology (Pusat SMaRRT), Universiti Malaysia Pahang Al-Sultan Abdullah, Kuantan, Pahang, Malaysia
| |
Collapse
|
9
|
Czarnik K, Sablik Z, Borkowska A, Drożdż J, Cypryk K. Insulin resistance may accelerate typical changes in heart function among type 1 diabetes patients, particularly in overweight patients: a preliminary study. Front Endocrinol (Lausanne) 2024; 15:1384514. [PMID: 38836221 PMCID: PMC11148266 DOI: 10.3389/fendo.2024.1384514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/19/2024] [Indexed: 06/06/2024] Open
Abstract
Introduction Type 1 diabetes (T1D) is a metabolic disease characterized by insulin deficiency and subsequent hyperglycemia. Cardiovascular diseases are the prime cause of mortality and morbidity among patients with T1D. Accumulating metabolic disturbances and accelerated cardiac fibrosis fuel the development of heart dysfunction. As insulin resistance (IR) is a risk factor for the development and worsened course of heart failure, this study aimed to assess its impact on heart function in patients with T1D. Methods Adult participants were recruited prospectively. The inclusion criteria included a diagnosis of T1D. The exclusion criteria were other types of diabetes, symptoms/treatment of heart failure, AST and/or ALT exceeding the upper reference limit by ≥2x, hepatitis, alcoholism, metformin treatment, and pregnancy. The participants underwent a medical interview, physical examination, biochemical test, and echocardiography. Results The mean age in the study group was 38 ± 9.6 years, and the mean diabetes duration was 21.8 ± 11.3 years. The median BMI in the study cohort was 23.39 kg/m2. Patients with IR had significantly lower mitral E/A ratio and left ventricular and left atrial volume ratio (LVLAVR), higher LV mass index, and presented with altered mitral annular velocities. Conclusions IR seems to accelerate the pattern of typical changes in heart function among patients with T1D, especially in the overweight subgroup.
Collapse
Affiliation(s)
- Klaudia Czarnik
- Department of Internal Diseases and Diabetology, Medical University of Lodz, Lodz, Poland
| | - Zbigniew Sablik
- II Department of Cardiology, Medical University of Lodz, Lodz, Poland
| | - Anna Borkowska
- Department of Digestive Tract Diseases, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Jarosław Drożdż
- II Department of Cardiology, Medical University of Lodz, Lodz, Poland
| | - Katarzyna Cypryk
- Department of Internal Diseases and Diabetology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
10
|
Cao W, Feng H, Yang Y, Wang L, Wang X, Ma Y, Zhao D, Hu X. Trends in antidiabetic drug use and expenditure in public hospitals in Northwest China, 2012-21: a case study of Gansu Province. BMC Health Serv Res 2024; 24:415. [PMID: 38570849 PMCID: PMC10988802 DOI: 10.1186/s12913-024-10917-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 03/27/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Since the twenty-first century, the prevalence of diabetes has risen globally year by year. In Gansu Province, an economically underdeveloped province in northwest China, the cost of drugs for diabetes patients accounted for one-third of their total drug costs. To fundamentally reduce national drug expenditures and the burden of medication on the population, the relevant departments of government have continued to reform and improve drug policies. This study aimed to analyse long-term trends in antidiabetic drug use and expenditure in Gansu Province from 2012 to 2021 and to explore the role of pharmaceutical policy. METHODS Data were obtained from the provincial centralised bidding and purchasing (CBP) platform. Drug use was quantified using the anatomical therapeutic chemistry/defined daily dose (ATC/DDD) method and standardised by DDD per 1000 inhabitants per day (DID), and drug expenditure was expressed in terms of the total amount and defined daily cost (DDC). Linear regression was used to analyse the trends and magnitude of drug use and expenditure. RESULTS The overall trend in the use and expenditure of antidiabetic drugs was on the rise, with the use increasing from 1.04 in 2012 to 16.02 DID in 2021 and the expenditure increasing from 48.36 in 2012 to 496.42 million yuan in 2021 (from 7.66 to 76.95 million USD). Some new and expensive drugs changed in the use pattern, and their use and expenditure shares (as the percentage of all antidiabetic drugs) increased from 0 to 11.17% and 11.37%, but insulins and analogues and biguanides remained the most used drug class. The DDC of oral drugs all showed a decreasing trend, but essential medicines (EMs) and medical insurance drugs DDC gradually decreased with increasing use. The price reduction of the bid-winning drugs was over 40%, and the top three drugs were glimepiride 2mg/30, acarbose 50mg/30 and acarbose 100mg/30. CONCLUSIONS The implementation of pharmaceutical policies has significantly increased drug use and expenditure while reducing drug prices, and the introduction of novel drugs and updated treatment guidelines has led to changes in use patterns.
Collapse
Affiliation(s)
- Wenxuan Cao
- School of Public Health, Lanzhou University, 222# Tianshui South Road, Lanzhou, 730000, China
| | - Hu Feng
- School of Public Health, Lanzhou University, 222# Tianshui South Road, Lanzhou, 730000, China
| | - Yaya Yang
- School of Public Health, Lanzhou University, 222# Tianshui South Road, Lanzhou, 730000, China
| | - Lei Wang
- School of Public Health, Lanzhou University, 222# Tianshui South Road, Lanzhou, 730000, China
| | - Xuemei Wang
- School of Public Health, Lanzhou University, 222# Tianshui South Road, Lanzhou, 730000, China
| | - Yongheng Ma
- Division of Pharmaceutical Procurement, Gansu Public Resources Trading Center, 68# Yanxing Road, Lanzhou, 730000, China
| | - Defang Zhao
- Division of Pharmaceutical Procurement, Gansu Public Resources Trading Center, 68# Yanxing Road, Lanzhou, 730000, China
| | - Xiaobin Hu
- School of Public Health, Lanzhou University, 222# Tianshui South Road, Lanzhou, 730000, China.
| |
Collapse
|
11
|
Inkeri J, Harjutsalo V, Martola J, Putaala J, Groop PH, Gordin D, Thorn LM. No correlation between carotid intima-media thickness and long-term glycemic control in individuals with type 1 diabetes. Acta Diabetol 2024; 61:441-449. [PMID: 38071692 DOI: 10.1007/s00592-023-02211-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 11/07/2023] [Indexed: 03/27/2024]
Abstract
AIMS To determine whether carotid intima-media thickness (CIMT), a surrogate marker of cardiovascular disease (CVD), is associated with long-term blood glucose control in individuals with type 1 diabetes (T1D). METHODS We recruited 508 individuals (43.4% men; median age 46.1, IQR 37.8-55.9 years) with T1D (median diabetes duration of 30.4, IQR 21.2-40.8 years) in a cross-sectional retrospective sub-study, part of the Finnish Diabetic Nephropathy (FinnDiane) Study. Glycated hemoglobin (HbA1c) data were collected retrospectively over the course of ten years (HbA1c-meanoverall) prior to the clinical study visit that included a clinical examination, biochemical sampling, and ultrasound of the common carotid arteries. RESULTS Individuals with T1D had a median CIMT of 606 μm (IQR 538-683 μm) and HbA1c of 8.0% (7.3-8.8%) during the study visit and HbA1c-meanoverall of 8.0% (IQR 7.3-8.8%). CIMT did not correlate with HbA1c (p = 0.228) at visit or HbA1c-meanoverall (p = 0.063). After controlling for relevant factors in multivariable linear regression analysis, only age was associated with CIMT (p < 0.001). After further dividing CIMT into quartiles, no correlation between long-term glucose control and CIMT (%, 1st 8.1 [IQR 7.2-8.9] vs 4th 7.9 [7.4-8.7], p = 0.730) was found. CONCLUSIONS We observed no correlation between long-term blood glucose control and CIMT in individuals with T1D. This finding suggests that the development of early signs of macrovascular atherosclerosis is not strongly affected by the glycemic control in people with T1D.
Collapse
Affiliation(s)
- Jussi Inkeri
- Radiology, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Folkhälsan Research Center, Biomedicum Helsinki, University of Helsinki, P.O. Box 63 (C318b), 00014, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| | - Valma Harjutsalo
- Folkhälsan Research Center, Biomedicum Helsinki, University of Helsinki, P.O. Box 63 (C318b), 00014, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Juha Martola
- Radiology, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Jukka Putaala
- Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Per-Henrik Groop
- Folkhälsan Research Center, Biomedicum Helsinki, University of Helsinki, P.O. Box 63 (C318b), 00014, Helsinki, Finland.
- Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland.
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia.
| | - Daniel Gordin
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Lena M Thorn
- Folkhälsan Research Center, Biomedicum Helsinki, University of Helsinki, P.O. Box 63 (C318b), 00014, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
- Department of General Practice and Primary Health Care, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
12
|
Subramanian S, Khan F, Hirsch IB. New advances in type 1 diabetes. BMJ 2024; 384:e075681. [PMID: 38278529 DOI: 10.1136/bmj-2023-075681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Type 1 diabetes is an autoimmune condition resulting in insulin deficiency and eventual loss of pancreatic β cell function requiring lifelong insulin therapy. Since the discovery of insulin more than 100 years ago, vast advances in treatments have improved care for many people with type 1 diabetes. Ongoing research on the genetics and immunology of type 1 diabetes and on interventions to modify disease course and preserve β cell function have expanded our broad understanding of this condition. Biomarkers of type 1 diabetes are detectable months to years before development of overt disease, and three stages of diabetes are now recognized. The advent of continuous glucose monitoring and the newer automated insulin delivery systems have changed the landscape of type 1 diabetes management and are associated with improved glycated hemoglobin and decreased hypoglycemia. Adjunctive therapies such as sodium glucose cotransporter-1 inhibitors and glucagon-like peptide 1 receptor agonists may find use in management in the future. Despite these rapid advances in the field, people living in under-resourced parts of the world struggle to obtain necessities such as insulin, syringes, and blood glucose monitoring essential for managing this condition. This review covers recent developments in diagnosis and treatment and future directions in the broad field of type 1 diabetes.
Collapse
Affiliation(s)
- Savitha Subramanian
- University of Washington Diabetes Institute, Division of Metabolism, Endocrinology and Nutrition, University of Washington, Seattle, WA, USA
| | - Farah Khan
- University of Washington Diabetes Institute, Division of Metabolism, Endocrinology and Nutrition, University of Washington, Seattle, WA, USA
| | - Irl B Hirsch
- University of Washington Diabetes Institute, Division of Metabolism, Endocrinology and Nutrition, University of Washington, Seattle, WA, USA
| |
Collapse
|
13
|
Liu Z, Annarapu G, Yazdani HO, Wang Q, Liu S, Luo JH, Yu YP, Ren B, Neal MD, Monga SP, Mota Alvidrez RI. Restoring glucose balance: Conditional HMGB1 knockdown mitigates hyperglycemia in a Streptozotocin induced mouse model. Heliyon 2024; 10:e23561. [PMID: 38187339 PMCID: PMC10770459 DOI: 10.1016/j.heliyon.2023.e23561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
Diabetes mellitus (DM) poses a significant global health burden, with hyperglycemia being a primary contributor to complications and high morbidity associated with this disorder. Existing glucose management strategies have shown suboptimal effectiveness, necessitating alternative approaches. In this study, we explored the role of high mobility group box 1 (HMGB1) in hyperglycemia, a protein implicated in initiating inflammation and strongly correlated with DM onset and progression. We hypothesized that HMGB1 knockdown will mitigate hyperglycemia severity and enhance glucose tolerance. To test this hypothesis, we utilized a novel inducible HMGB1 knockout (iHMGB1 KO) mouse model exhibiting systemic HMGB1 knockdown. Hyperglycemic phenotype was induced using low dose streptozotocin (STZ) injections, followed by longitudinal glucose measurements and oral glucose tolerance tests to evaluate the effect of HMGB1 knockdown on glucose metabolism. Our findings showed a substantial reduction in glucose levels and enhanced glucose tolerance in HMGB1 knockdown mice. Additionally, we performed RNA sequencing analyses, which identified potential alternations in genes and molecular pathways within the liver and skeletal muscle tissue that may account for the in vivo phenotypic changes observed in hyperglycemic mice following HMGB1 knockdown. In conclusion, our present study delivers the first direct evidence of a causal relationship between systemic HMGB1 knockdown and hyperglycemia in vivo, an association that had remained unexamined prior to this research. This discovery positions HMGB1 knockdown as a potentially efficacious therapeutic target for addressing hyperglycemia and, by extension, the DM epidemic. Furthermore, we have revealed potential underlying mechanisms, establishing the essential groundwork for subsequent in-depth mechanistic investigations focused on further elucidating and harnessing the promising therapeutic potential of HMGB1 in DM management.
Collapse
Affiliation(s)
- Zeyu Liu
- Trauma and Transfusion Medicine Research Center, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Gowtham Annarapu
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Hamza O. Yazdani
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Qinge Wang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Silvia Liu
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jian-Hua Luo
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yan-Ping Yu
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Baoguo Ren
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Matthew D. Neal
- Trauma and Transfusion Medicine Research Center, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Satdarshan P. Monga
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Roberto Ivan Mota Alvidrez
- Trauma and Transfusion Medicine Research Center, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, 87131, USA
| |
Collapse
|
14
|
Billings LK, Shi Z, Wei J, Rifkin AS, Zheng SL, Helfand BT, Ilbawi N, Dunnenberger HM, Hulick PJ, Qamar A, Xu J. Utility of Polygenic Scores for Differentiating Diabetes Diagnosis Among Patients With Atypical Phenotypes of Diabetes. J Clin Endocrinol Metab 2023; 109:107-113. [PMID: 37560999 DOI: 10.1210/clinem/dgad456] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/10/2023] [Accepted: 08/08/2023] [Indexed: 08/11/2023]
Abstract
CONTEXT Misclassification of diabetes type occurs in people with atypical presentations of type 1 diabetes (T1D) or type 2 diabetes (T2D). Although current clinical guidelines suggest clinical variables and treatment response as ways to help differentiate diabetes type, they remain insufficient for people with atypical presentations. OBJECTIVE This work aimed to assess the clinical utility of 2 polygenic scores (PGSs) in differentiating between T1D and T2D. METHODS Patients diagnosed with diabetes in the UK Biobank were studied (N = 41 787), including 464 (1%) and 15 923 (38%) who met the criteria for classic T1D and T2D, respectively, and 25 400 (61%) atypical diabetes. The validity of 2 published PGSs for T1D (PGST1D) and T2D (PGST2D) in differentiating classic T1D or T2D was assessed using C statistic. The utility of genetic probability for T1D based on PGSs (GenProb-T1D) was evaluated in atypical diabetes patients. RESULTS The joint performance of PGST1D and PGST2D for differentiating classic T1D or T2D was outstanding (C statistic = 0.91), significantly higher than that of PGST1D alone (0.88) and PGST2D alone (0.70), both P less than .001. Using an optimal cutoff of GenProb-T1D, 23% of patients with atypical diabetes had a higher probability of T1D and its validity was independently supported by clinical presentations that are characteristic of T1D. CONCLUSION PGST1D and PGST2D can be used to discriminate classic T1D and T2D and have potential clinical utility for differentiating these 2 types of diseases among patients with atypical diabetes.
Collapse
Affiliation(s)
- Liana K Billings
- Department of Medicine, NorthShore University HealthSystem, Evanston, IL 60201, USA
- Department of Medicine, University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
| | - Zhuqing Shi
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - Jun Wei
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - Andrew S Rifkin
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - S Lilly Zheng
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - Brian T Helfand
- Department of Medicine, University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, IL 60201, USA
- Department of Surgery, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - Nadim Ilbawi
- Department of Family Medicine, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - Henry M Dunnenberger
- Neaman Center for Personalized Medicine, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - Peter J Hulick
- Neaman Center for Personalized Medicine, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - Arman Qamar
- Department of Medicine, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - Jianfeng Xu
- Department of Medicine, NorthShore University HealthSystem, Evanston, IL 60201, USA
- Department of Medicine, University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, IL 60201, USA
| |
Collapse
|
15
|
Malinowska-Polubiec A, Zawiejska A, Romejko-Wolniewicz E, Poprawski G, Towpik I, Brązert J, Handziuk Z, Czajkowski K. Double diabetes as an effect modifier for adverse perinatal outcome in pregnant women with type 1 diabetes mellitus - a retrospective multicenter cohort study. Front Endocrinol (Lausanne) 2023; 14:1215407. [PMID: 37576969 PMCID: PMC10422044 DOI: 10.3389/fendo.2023.1215407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/05/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction Double diabetes (DDiab) is defined as T1DM coexisting with insulin resistance (IR), metabolic syndrome (MetS), and/or obesity. Little evidence is available regarding how frequent DDiab is among T1DM pregnancies and whether it affects the perinatal outcome in this population. Aims of the study To explore the prevalence of DDiab in early pregnancy in the cohort of pregnant women with T1DM and to examine the association between an early-pregnancy DDiab status and fetomaternal complications characteristic for T1DM in pregnancy. Material and methods A retrospective data analysis of the multicenter cohort of N=495 pregnant women in singleton pregnancy complicated with T1DM followed from early pregnancy until delivery in three tertiary referral centers. DDiab status was defined as T1DM plus pre-pregnancy obesity defined as BMI≥30 kg/m2 measured at the first antenatal visit (DDiabOb), or T1DM plus pre-pregnancy IR defined as eGDR (estimated Glucose Disposal Rate) below the 25th centile for the cohort measured at the first antenatal visit (DDiabIR). Proportions of the adverse pregnancy outcomes were compared between DDiabOb and Non-DDiabOb and between DDiabIR and Non-DDiabIR patients. Characteristics of the study group (data presented as mean(SD) or percentage): age: 30.0(5.1) years; age when T1DM diagnosed: 17.5(8.5) years; T1DM duration: 12.0(7,9) years; microvascular complications (White classes R,F,RF): 11.9%, pre-pregnancy counselling: 26.6%, baseline gestational age: 10.5(4.3) weeks, pre-pregnancy BMI: 23.7(4.3) kg/m2; chronic hypertension: 9.1%, gestational hypertension (PIH) 10.7%, preeclampsia (PET): 3.2%; nulliparity 53.8%, smoking in pregnancy: 4.8%, eGWG: 22.4%, DDiabOB: 10.1%; DdiabIR: 25.2%; LGA: 44.0%, and NICU admission: 20.8%. Results (data from the univariate analysis given as OR(95%CI)): both DDiabOB and DDiabIR status increased the risk for eGWG [23.15 (10.82; 55.59); 3.03 (1.80; 5.08), respectively]. DDiabIR status increased the risk for PET [4.79 (1.68;14.6)], preterm delivery [1.84 (1.13; 3.21)], congenital malformation [2.15 (1.07;4.25)], and NICU hospitalization [2.2 (1.20;4.01)]. Both DDiabOB and DDiabIR accurately ruled out PET (NPV 97.3%/98.3%, accuracy: 88.3%/75.6%, respectively), congenital malformation (NPV 85.6%/88.4%, accuracy: 78.9/69.8, respectively), and perinatal mortality (NPV 98.7%/99.2%, accuracy: 88.8%/74.5%, respectively). Conclusions Double diabetes became a frequent complication in T1DM pregnant population. Double diabetes diagnosed in early pregnancy allows for further stratification of the T1DM pregnant population for additional maternal risk.
Collapse
Affiliation(s)
| | - Agnieszka Zawiejska
- Department of Medical Simulation, Chair of Medical Education, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Grzegorz Poprawski
- Oncological Gynecology Department, Poznan University of Medical Sciences, Poznan, Poland
| | - Iwona Towpik
- Department of Internal Medicine, Diabetology and Endocrinology, University of Zielona Gora, Zielona Gora, Poland
| | - Jacek Brązert
- Department of Reproduction, Poznan University of Medical Sciences, Poznan, Poland
| | - Zuzanna Handziuk
- 2 Department of Obstetrics and Gynecology, Medical University of Warsaw, Warsaw, Poland
| | - Krzysztof Czajkowski
- 2 Department of Obstetrics and Gynecology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
16
|
Oza C, Khadilkar A, Mondkar S, Amutha A, Uppal S, De H, Ghosh A, Khadilkar V, Mohan V. A Cross-Sectional Multicentre Study to Validate Insulin Sensitivity Index Cut-Offs for Detection of Metabolic Syndrome in Indian Adolescents with Type-1 Diabetes. Indian J Endocrinol Metab 2023; 27:301-306. [PMID: 37867981 PMCID: PMC10586563 DOI: 10.4103/ijem.ijem_411_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/21/2023] [Accepted: 02/03/2023] [Indexed: 10/24/2023] Open
Abstract
Background A previous study compared insulin sensitivity indices for the detection of double diabetes (DD) in Indian adolescents with type-1 diabetes (T1D) and derived a cut-off to predict future risk for the development of metabolic syndrome (MS) in adolescents with T1D. We conducted the current study with the aim to validate these cut-offs for detecting DD among Indian subjects with T1D from various geographical locations. Methods This multicentric cross-sectional study included 161 Indian adolescents with T1D. Demographic, anthropometric, clinical, and biochemical data were collected using standard protocols. Insulin sensitivity (IS) was calculated using various equations developed to determine insulin sensitivity in subjects with T1D. Metabolic syndrome was diagnosed using International Diabetes Federation (IDF) Consensus Definition 2017. Results We report 4.3% prevalence of MS in Indian adolescents with T1D with an additional 29.8% of study participants at risk of development of MS. Low High density lipoprotein (HDL) (23.6%) was the commonest abnormal component of the MS definition. Insulin sensitivity calculated by an equation derived by the SEARCH group was the most appropriate index to identify MS and metabolic risk in Indian adolescents with T1D. The proposed cut-off of 5.48 had high specificity, positive predictive value, and negative predictive value in identifying the risk of the development of DD. Conclusions Insulin sensitivity calculated by the equation proposed by the SEARCH group together with cut-offs derived in earlier study may be used effectively to identify risk of development of MS/DD in Indian adolescents with T1D from various geographical locations.
Collapse
Affiliation(s)
- Chirantap Oza
- Department of Growth and Pediatric Endocrinology, Hirabai Cowasji Jehangir Medical Research Institute, Pune, Maharashtra, India
| | - Anuradha Khadilkar
- Department of Growth and Pediatric Endocrinology, Hirabai Cowasji Jehangir Medical Research Institute, Pune, Maharashtra, India
- Department of Health Sciences, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Shruti Mondkar
- Department of Growth and Pediatric Endocrinology, Hirabai Cowasji Jehangir Medical Research Institute, Pune, Maharashtra, India
| | - Anandakumar Amutha
- Department of Growth and Pediatric Endocrinology, Madras Diabetes Research Foundation and Dr. Mohan’s Diabetes Specialities Centre, Chennai, Tamil Nadu, India
| | - Saurabh Uppal
- Department of Growth and Pediatric Endocrinology, ENDO-KIDZ Growth Diabetes and Hormone Clinic for Children, Jalandhar, Punjab, India
| | - Hriday De
- Department of Pediatrics, Institute of Child Health, Kolkata, West Bengal, India
| | - Apurba Ghosh
- Department of Pediatrics, Institute of Child Health, Kolkata, West Bengal, India
| | - Vaman Khadilkar
- Department of Health Sciences, Savitribai Phule Pune University, Pune, Maharashtra, India
- Senior Paediatric Endocrinologist, Jehangir Hospital, Pune, Maharashtra, India
| | - Viswanathan Mohan
- Department of Growth and Pediatric Endocrinology, Madras Diabetes Research Foundation and Dr. Mohan’s Diabetes Specialities Centre, Chennai, Tamil Nadu, India
| |
Collapse
|
17
|
Aljazzaf B, Regeai S, Elghmasi S, Alghazir N, Balgasim A, Hdud Ismail IM, Eskandrani AA, Shamlan G, Alansari WS, AL-Farga A, Alghazeer R. Evaluation of Antidiabetic Effect of Combined Leaf and Seed Extracts of Moringa oleifera ( Moringaceae) on Alloxan-Induced Diabetes in Mice: A Biochemical and Histological Study. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:9136217. [PMID: 37215365 PMCID: PMC10198764 DOI: 10.1155/2023/9136217] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/21/2023] [Accepted: 03/07/2023] [Indexed: 05/24/2023]
Abstract
Moringa oleifera (Moringaceae) is a medicinal plant rich in biologically active compounds. The aim of the present study was to screen M. oleifera methanolic leaf (L) extract, seed (S) extract, and a combined leaf/seed extract (2L : 1S ratio) for antidiabetic and antioxidant activities in mice following administration at a dose level of 500 mg/kg of body weight/day. Diabetes was induced by alloxan administration. Mice were treated with the extracts for 1 and 3 months and compared with the appropriate control. At the end of the study period, the mice were euthanized and pancreas, liver, kidney, and blood samples were collected for the analysis of biochemical parameters and histopathology. The oral administration of the combined L/S extract significantly reduced fasting blood glucose to normal levels compared with L or S extracts individually; moreover, a significant decrease in cholesterol, triglycerides, creatinine, liver enzymes, and oxidant markers was observed, with a concomitant increase in antioxidant biomarkers. Thus, the combined extract has stronger antihyperlipidemic and antioxidant properties than the individual extracts. The histopathological results also support the biochemical parameters, showing recovery of the pancreas, liver, and kidney tissue. The effects of the combined L/S extracts persisted throughout the study period tested. To the best of our knowledge, this is the first study to report on the antidiabetic, antioxidant, and antihyperlipidemic effects of a combined L/S extract of M. oleifera in an alloxan-induced diabetic model in mice. Our results suggest the potential for developing a natural potent antidiabetic drug from M. oleifera; however, clinical studies are required.
Collapse
Affiliation(s)
- Badriyah Aljazzaf
- Department of Food Sciences and Nutrition, College of Health Sciences, The Public Authority for Applied Education and Training, Kuwait
| | - Sassia Regeai
- Department of Life Sciences, School of Basic Science, Libyan Academy of Postgraduate Studies, Janzour, Libya
- Histology and Genetics Department, Faculty of Medicine, University of Tripoli, Tripoli, Libya
| | - Sana Elghmasi
- Department of Biochemistry, Faculty of Medicine, University of Tripoli, Tripoli, Libya
| | - Nadia Alghazir
- Department of Pediatrics, Tripoli University Hospital, Faculty of Medicine, University of Tripoli, Tripoli, Libya
| | - Amal Balgasim
- Biochemistry Division, Chemistry Department, Faculty of Sciences, University of Tripoli, Tripoli, Libya
| | - Ismail M. Hdud Ismail
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| | - Areej A. Eskandrani
- Chemistry Department, Faculty of Science, Taibah University, Medina 30002, Saudi Arabia
| | - Ghalia Shamlan
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11362, Saudi Arabia
| | - Wafa S. Alansari
- Biochemistry Department, Faculty of Science, University of Jeddah, Jeddah 21577, Saudi Arabia
| | - Ammar AL-Farga
- Biochemistry Department, Faculty of Science, University of Jeddah, Jeddah 21577, Saudi Arabia
| | - Rabia Alghazeer
- Biochemistry Division, Chemistry Department, Faculty of Sciences, University of Tripoli, Tripoli, Libya
| |
Collapse
|
18
|
Zhou R, He D, Zhang H, Xie J, Zhang S, Tian X, Zeng H, Qin Y, Huang L. Ginsenoside Rb1 protects against diabetes-associated metabolic disorders in Kkay mice by reshaping gut microbiota and fecal metabolic profiles. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:115997. [PMID: 36509256 DOI: 10.1016/j.jep.2022.115997] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/14/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax quinquefolius Linn. is one of the most valuable herbal medicine in the world for its broad health benefits, including anti-diabetes. Ginsenoside Rb1, the principal active constituent of Panax quinquefolius Linn., could attenuate insulin resistance and metabolic disorders. The dysfunction of gut microbiota and fecal metabolites plays an important role in the pathogenesis of Type 2 Diabetes mellitus (T2DM). However, whether ginsenoside Rb1's hypoglycemic effect is related to gut microbiota remains elusive. AIM OF THE STUDY Our study aimed to explore the insulin-sensitizing and anti-diabetic effects of ginsenoside Rb1 as well as the underlying mechanisms. MATERIALS AND METHODS The T2DM model were established by high fat diet (HFD)-induced Kkay mice. The anti-diabetic effect of ginsenoside Rb1 (200 mg/kg/day) was evaluated by random blood glucose (RBG), fasting blood glucose (FBG), glucose tolerance test (OGTT), serum insulin level, insulin resistance index (HOMA-IR), pancreatic histology analysis, liver indexes, total triglyceride (TG) and total cholesterol (TC). Subsequently, 16S rRNA sequencing and LC-MS-based untargeted metabolomics were applied to characterize the microbiome and metabolites profile in HFD-induced Kkay mice, respectively. Finally, antibiotic treatment was used to validate the potential mechanism of ginsenoside Rb1 by modulating gut microbiota. RESULTS Our results showed that ginsenoside Rb1 reduced blood glucose, OGTT, serum insulin level, HOMA-IR, liver indexes as well as pancreatic injury. In addition, the ginsenoside Rb1 reversed the gut microbiota dysbiosis in diabetic Kkay mice, as indicated by the elevated abundance of Parasutterella, decreased population of Alistipes, f_Prevotellaceae_unclassified, Odoribacter, Anaeroplasma. Moreover, ginsenoside Rb1 altered free fatty acid (FFA) levels in fecal metabolites, such as decreased the level of α-linolenic acid, 13-OxoODE, oleic acid, 13-HODE, arachidonic acid, palmitic acid, stearic acid, while increased the level of PC (14:0/22:1(13Z)) and PC (16:0/16:0). Notably, ginsenoside Rb1 failed to improve HFD-induced diabetes in Kkay mice with antibiotics intervention. CONCLUSION These findings suggested that ginsenoside Rb1 may serve as a potential prebiotic agent to modulate specific gut microbes and related metabolites, which play essential roles in diabetes-associated metabolic disorders and insulin resistance.
Collapse
Affiliation(s)
- Rongrong Zhou
- The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, China
| | - Dan He
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha, China; Hunan University of Chinese Medicine, Changsha, PR China
| | - Haichao Zhang
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha, China; Hunan University of Chinese Medicine, Changsha, PR China
| | - Jing Xie
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha, China; Hunan University of Chinese Medicine, Changsha, PR China
| | - Shuihan Zhang
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha, China
| | - Xuefei Tian
- Hunan University of Chinese Medicine, Changsha, PR China
| | - Hongliang Zeng
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha, China.
| | - Yuhui Qin
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha, China; Hunan University of Chinese Medicine, Changsha, PR China.
| | - Luqi Huang
- China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
19
|
Perng W, Conway R, Mayer-Davis E, Dabelea D. Youth-Onset Type 2 Diabetes: The Epidemiology of an Awakening Epidemic. Diabetes Care 2023; 46:490-499. [PMID: 36812420 PMCID: PMC10090267 DOI: 10.2337/dci22-0046] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/26/2022] [Indexed: 02/24/2023]
Abstract
In this narrative review, we describe the epidemiology (prevalence, incidence, temporal trends, and projections) of type 2 diabetes among children and adolescents (<20 years), focusing on data from the U.S. and reporting global estimates where available. Secondarily, we discuss the clinical course of youth-onset type 2 diabetes, from prediabetes to complications and comorbidities, drawing comparisons with youth type 1 diabetes to highlight the aggressive course of this condition, which, only recently, has become recognized as a pediatric disease by health care providers. Finally, we end with an overview of emerging topics in type 2 diabetes research that have potential to inform strategies for effective preventive action at the community and individual levels.
Collapse
Affiliation(s)
- Wei Perng
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Rebecca Conway
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO
| | | | - Dana Dabelea
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
20
|
Wu H, Wang M, Wu J, Francis F, Chang YH, Shavick A, Dong H, Poon MTC, Fitzpatrick N, Levine AP, Slater LT, Handy A, Karwath A, Gkoutos GV, Chelala C, Shah AD, Stewart R, Collier N, Alex B, Whiteley W, Sudlow C, Roberts A, Dobson RJB. A survey on clinical natural language processing in the United Kingdom from 2007 to 2022. NPJ Digit Med 2022; 5:186. [PMID: 36544046 PMCID: PMC9770568 DOI: 10.1038/s41746-022-00730-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Much of the knowledge and information needed for enabling high-quality clinical research is stored in free-text format. Natural language processing (NLP) has been used to extract information from these sources at scale for several decades. This paper aims to present a comprehensive review of clinical NLP for the past 15 years in the UK to identify the community, depict its evolution, analyse methodologies and applications, and identify the main barriers. We collect a dataset of clinical NLP projects (n = 94; £ = 41.97 m) funded by UK funders or the European Union's funding programmes. Additionally, we extract details on 9 funders, 137 organisations, 139 persons and 431 research papers. Networks are created from timestamped data interlinking all entities, and network analysis is subsequently applied to generate insights. 431 publications are identified as part of a literature review, of which 107 are eligible for final analysis. Results show, not surprisingly, clinical NLP in the UK has increased substantially in the last 15 years: the total budget in the period of 2019-2022 was 80 times that of 2007-2010. However, the effort is required to deepen areas such as disease (sub-)phenotyping and broaden application domains. There is also a need to improve links between academia and industry and enable deployments in real-world settings for the realisation of clinical NLP's great potential in care delivery. The major barriers include research and development access to hospital data, lack of capable computational resources in the right places, the scarcity of labelled data and barriers to sharing of pretrained models.
Collapse
Affiliation(s)
- Honghan Wu
- Institute of Health Informatics, University College London, London, UK.
| | - Minhong Wang
- Institute of Health Informatics, University College London, London, UK
| | - Jinge Wu
- Institute of Health Informatics, University College London, London, UK
- Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Farah Francis
- Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Yun-Hsuan Chang
- Institute of Health Informatics, University College London, London, UK
| | - Alex Shavick
- Research Department of Pathology, UCL Cancer Institute, University College London, London, UK
| | - Hang Dong
- Usher Institute, University of Edinburgh, Edinburgh, UK
- Department of Computer Science, University of Oxford, Oxford, UK
| | | | | | - Adam P Levine
- Research Department of Pathology, UCL Cancer Institute, University College London, London, UK
| | - Luke T Slater
- Institute of Cancer and Genomics, University of Birmingham, Birmingham, UK
| | - Alex Handy
- Institute of Health Informatics, University College London, London, UK
- University College London Hospitals NHS Trust, London, UK
| | - Andreas Karwath
- Institute of Cancer and Genomics, University of Birmingham, Birmingham, UK
| | - Georgios V Gkoutos
- Institute of Cancer and Genomics, University of Birmingham, Birmingham, UK
| | - Claude Chelala
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Anoop Dinesh Shah
- Institute of Health Informatics, University College London, London, UK
| | - Robert Stewart
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Nigel Collier
- Theoretical and Applied Linguistics, Faculty of Modern & Medieval Languages & Linguistics, University of Cambridge, Cambridge, UK
| | - Beatrice Alex
- Edinburgh Futures Institute, University of Edinburgh, Edinburgh, UK
| | | | - Cathie Sudlow
- Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Angus Roberts
- Department of Biostatistics & Health Informatics, King's College London, London, UK
| | - Richard J B Dobson
- Institute of Health Informatics, University College London, London, UK
- Department of Biostatistics & Health Informatics, King's College London, London, UK
| |
Collapse
|
21
|
Descriptive phenomenology study of the reasons for the low uptake of free health service package among type II diabetic patients. BMC Health Serv Res 2022; 22:1555. [PMID: 36539819 PMCID: PMC9764735 DOI: 10.1186/s12913-022-08953-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Although several diabetes management and control programs are introduced in Iran, rate of using such cares in patients with Type II Diabetic in Ahvaz is low and they show no tendency for receiving free diabetes service package. The aim of this study was to identify reasons behind low uptake of free health service package among T2DM patients in Ahvaz, Iran. METHODS This descriptive phenomenology study based on semi-structured guided interviews of patients with Type II Diabetic in Ahvaz, was carried out in the year 2021. Through purposeful sampling, 495 patients with diabetics who not received health services package more than 6 months were interviewed until the data saturation. The gathered data were analyzed through conventional content analysis. RESULTS Reasons were categorized into three themes which include 13 subthemes and 57 codes. Themes included individual, accessibility, and structural factors. Besides, subthemes were lack of awareness, poor health literacy, adverse patients experience, difficulties to use services, verbal miscommunication cultural barriers, low trust, geographic barriers, time barriers, financial difficulties, lack of human resources, poor service delivery, and organizational factors were as barriers to participation. CONCLUSION Regarding individual level, there is a need for further training of diabetic patients. Besides, for accessibility and structural factors Iranian healthcare system needs a comprehensive integrated care for the management of diabetes, this underlines the collaboration for improving patients' uptake of free health service package.
Collapse
|
22
|
Gorai B, Vashisth H. Progress in Simulation Studies of Insulin Structure and Function. Front Endocrinol (Lausanne) 2022; 13:908724. [PMID: 35795141 PMCID: PMC9252437 DOI: 10.3389/fendo.2022.908724] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/28/2022] [Indexed: 01/02/2023] Open
Abstract
Insulin is a peptide hormone known for chiefly regulating glucose level in blood among several other metabolic processes. Insulin remains the most effective drug for treating diabetes mellitus. Insulin is synthesized in the pancreatic β-cells where it exists in a compact hexameric architecture although its biologically active form is monomeric. Insulin exhibits a sequence of conformational variations during the transition from the hexamer state to its biologically-active monomer state. The structural transitions and the mechanism of action of insulin have been investigated using several experimental and computational methods. This review primarily highlights the contributions of molecular dynamics (MD) simulations in elucidating the atomic-level details of conformational dynamics in insulin, where the structure of the hormone has been probed as a monomer, dimer, and hexamer. The effect of solvent, pH, temperature, and pressure have been probed at the microscopic scale. Given the focus of this review on the structure of the hormone, simulation studies involving interactions between the hormone and its receptor are only briefly highlighted, and studies on other related peptides (e.g., insulin-like growth factors) are not discussed. However, the review highlights conformational dynamics underlying the activities of reported insulin analogs and mimetics. The future prospects for computational methods in developing promising synthetic insulin analogs are also briefly highlighted.
Collapse
Affiliation(s)
| | - Harish Vashisth
- Department of Chemical Engineering, University of New Hampshire, Durham, NH, United States
| |
Collapse
|
23
|
Banerjee SK, Chatterjee A, Gupta S, Nagar A. Activation and Regulation of NLRP3 by Sterile and Infectious Insults. Front Immunol 2022; 13:896353. [PMID: 35663964 PMCID: PMC9161712 DOI: 10.3389/fimmu.2022.896353] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
Nod-Like Receptor (NLR) is the largest family of Pathogen Recognition Receptors (PRRs) that patrols the cytosolic environment. NLR engagement drives caspase-1 activation that cleaves pro-IL-1B which then gets secreted. Released IL-1B recruits immune cells to the site of infection/injury. Caspase-1 also cleaves Gasdermin-D (GSDM-D) that forms pores within the plasma membrane driving inflammatory cell death called pyroptosis. NLRP3 is the most extensively studied NLR. The NLRP3 gene is encoded by 9 exons, where exon 1 codes for pyrin domain, exon 3 codes for NACHT domain, and Leucine Rich Repeat (LRR) domain is coded by exon 4-9. Exon 2 codes for a highly disorganized loop that connects the rest of the protein to the pyrin domain and may be involved in NLRP3 regulation. The NLRP3 inflammasome is activated by many structurally divergent agonists of microbial, environmental, and host origin. Activated NLRP3 interacts with an adaptor protein, ASC, that bridges it to pro-Caspase-1 forming a multi-protein complex called inflammasome. Dysregulation of NLRP3 inflammasome activity is a hallmark of pathogenesis in several human diseases, indicating its highly significant clinical relevance. In this review, we summarize the existing knowledge about the mechanism of activation of NLRP3 and its regulation during activation by infectious and sterile triggers.
Collapse
Affiliation(s)
- Srijon K. Banerjee
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ayan Chatterjee
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Shamba Gupta
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | - Abhinit Nagar
- Flow Cytometry, Luminex Corporation, Austin, TX, United States
- *Correspondence: Abhinit Nagar,
| |
Collapse
|
24
|
Akhlaghipour I, Bina AR, Mogharrabi MR, Fanoodi A, Ebrahimian AR, Khojasteh Kaffash S, Babazadeh Baghan A, Khorashadizadeh ME, Taghehchian N, Moghbeli M. Single-nucleotide polymorphisms as important risk factors of diabetes among Middle East population. Hum Genomics 2022; 16:11. [PMID: 35366956 PMCID: PMC8976361 DOI: 10.1186/s40246-022-00383-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/23/2022] [Indexed: 12/16/2022] Open
Abstract
Diabetes is a chronic metabolic disorder that leads to the dysfunction of various tissues and organs, including eyes, kidneys, and cardiovascular system. According to the World Health Organization, diabetes prevalence is 8.8% globally among whom about 90% of cases are type 2 diabetes. There are not any significant clinical manifestations in the primary stages of diabetes. Therefore, screening can be an efficient way to reduce the diabetic complications. Over the recent decades, the prevalence of diabetes has increased alarmingly among the Middle East population, which has imposed exorbitant costs on the health care system in this region. Given that the genetic changes are among the important risk factors associated with predisposing people to diabetes, we examined the role of single-nucleotide polymorphisms (SNPs) in the pathogenesis of diabetes among Middle East population. In the present review, we assessed the molecular pathology of diabetes in the Middle East population that paves the way for introducing an efficient SNP-based diagnostic panel for diabetes screening among the Middle East population. Since, the Middle East has a population of 370 million people; the current review can be a reliable model for the introduction of SNP-based diagnostic panels in other populations and countries around the world.
Collapse
|
25
|
Jeong MG, Kim HK, Lee G, Won HY, Yoon DH, Hwang ES. TAZ promotes PDX1-mediated insulinogenesis. Cell Mol Life Sci 2022; 79:186. [PMID: 35279781 PMCID: PMC11071806 DOI: 10.1007/s00018-022-04216-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 11/30/2022]
Abstract
Transcriptional co-activator with PDZ-binding motif (TAZ) is a key mediator of the Hippo signaling pathway and regulates structural and functional homeostasis in various tissues. TAZ activation is associated with the development of pancreatic cancer in humans, but it is unclear whether TAZ directly affects the structure and function of the pancreas. So we sought to identify the TAZ function in the normal pancreas. TAZ defect caused structural changes in the pancreas, particularly islet cell shrinkage and decreased insulin production and β-cell markers expression, leading to hyperglycemia. Interestingly, TAZ physically interacted with the pancreatic and duodenal homeobox 1 (PDX1), a key insulin transcription factor, through the N-terminal domain of TAZ and the homeodomain of PDX1. TAZ deficiency decreased the DNA-binding and transcriptional activity of PDX1, whereas TAZ overexpression promoted PDX1 activity and increased insulin production even in a low glucose environment. Indeed, high glucose increased insulin production by turning off the Hippo pathway and inducing TAZ activation in pancreatic β-cells. Ectopic TAZ overexpression along with PDX1 activation was sufficient to produce insulin in non-β-cells. TAZ deficiency impaired the mesenchymal stem cell differentiation into insulin-producing cells (IPCs), whereas TAZ recovery restored normal IPCs differentiation. Compared to WT control, body weight increased in TAZ-deficient mice with age and even more with a high-fat diet (HFD). TAZ deficiency significantly exacerbated HFD-induced glucose intolerance and insulin resistance. Therefore, TAZ deficiency impaired pancreatic insulin production, causing hyperglycemia and exacerbating HFD-induced insulin resistance, indicating that TAZ may have a beneficial effect in treating insulin deficiency in diabetes.
Collapse
Affiliation(s)
- Mi Gyeong Jeong
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, C206 Science Building, 52 Ewhayeodae-Gil, Seodaemun-Gu, Seoul, 03760, South Korea
| | - Hyo Kyeong Kim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, C206 Science Building, 52 Ewhayeodae-Gil, Seodaemun-Gu, Seoul, 03760, South Korea
| | - Gibbeum Lee
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, C206 Science Building, 52 Ewhayeodae-Gil, Seodaemun-Gu, Seoul, 03760, South Korea
| | - Hee Yeon Won
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, C206 Science Building, 52 Ewhayeodae-Gil, Seodaemun-Gu, Seoul, 03760, South Korea
| | - Da Hye Yoon
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, C206 Science Building, 52 Ewhayeodae-Gil, Seodaemun-Gu, Seoul, 03760, South Korea
| | - Eun Sook Hwang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, C206 Science Building, 52 Ewhayeodae-Gil, Seodaemun-Gu, Seoul, 03760, South Korea.
| |
Collapse
|
26
|
Ren L, Guo R, Fu G, Zhang J, Wang Q. The efficacy and safety of massage adjuvant therapy in the treatment of diabetic peripheral neuropathy: A protocol for systematic review and meta-analysis of randomized controlled trials. Medicine (Baltimore) 2022; 101:e29032. [PMID: 35451409 PMCID: PMC8913081 DOI: 10.1097/md.0000000000029032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The incidence of diabetic peripheral neuropathy (DPN) is increasing year by year. If patients cannot receive timely and effective treatment, DPN may lead to diabetic foot ulcers or even amputation. This risk factor has been widely concerned around the world. Massage, as a non-invasive physical therapy method, is gradually being applied in the adjuvant treatment of DPN. However, there is no systematic review of the adjuvant treatment of DPN by massage. Our study will explore the effectiveness and safety of massage applied in DPN. METHODS Eight electronic databases (PubMed, Cochrane, Web of Science, Sinomed, Embase, China National Knowledge Infrastructure, WanFang Data, Chongqing VIP Information) will be searched by our computer on February 9, 2022. A randomized controlled trial (RCT) of adjuvant massage therapy for DPN was screened. Primary outcome measures: efficiency, nerve conduction velocity. Secondary outcome measures: pain, blood glucose, and incidence of adverse reactions. The quality of the study was evaluated by two researchers using the RCT bias risk assessment tool in the Cochrane review manual Handbook5.4, and meta-analysis was performed by RevMan5.4 software. RESULTS RCTs will be used to evaluate the clinical efficacy of massage adjuvant therapy in DPN. CONCLUSION This study will provide evidence-based evidence for the safety and effectiveness of massage adjuvant therapy in DPN. PROTOCOL REGISTRATION NUMBER INPLASY202220025.
Collapse
Affiliation(s)
- Longsheng Ren
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ruiying Guo
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Guojing Fu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jie Zhang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Qiang Wang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
27
|
Kreiner FF, Kraaijenhof JM, von Herrath M, Hovingh GKK, von Scholten BJ. Interleukin 6 in diabetes, chronic kidney disease and cardiovascular disease: mechanisms and therapeutic perspectives. Expert Rev Clin Immunol 2022; 18:377-389. [PMID: 35212585 DOI: 10.1080/1744666x.2022.2045952] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Diabetes, chronic kidney disease (CKD) and cardiovascular disease (CVD) are cardiometabolic diseases that remain amongst the leading causes of morbidity and premature mortality. Here, we review the current understanding of how anti-inflammatory intervention via inhibition of the pro-inflammatory but pleiotropic cytokine interleukin (IL) 6 may benefit patients with these or related diseases or complications. AREAS COVERED Based on a PubMed literature search, this review integrates and contextualizes evidence regarding the clinical utility of anti-IL-6 intervention in the treatment of cardiometabolic diseases, as well as of the associated condition non-alcoholic hepatosteatosis. EXPERT OPINION Evidence implicates the pro-inflammatory effects of IL-6 in the pathophysiology of diabetes, CKD and CVD. Thus, targeting the IL-6 pathway holds a therapeutic potential in these cardiometabolic disorders. However, because IL-6 has multiple homeostatic roles, antagonizing this cytokine may be associated with side effects such as increased risk of infection as seen with other anti-inflammatory drugs. Additional studies are required to establish the benefit-risk profile of anti-IL-6 intervention in the cardiometabolic diseases, whilst also considering alternative interventions such as lifestyle changes. IL-6 is also elevated in NASH, but the clinical usefulness of targeting IL-6 in this hepatic disorder remains largely unexplored.
Collapse
Affiliation(s)
| | - Jordan M Kraaijenhof
- Global Chief Medical Office, Novo Nordisk A/S, Søborg, Denmark.,Department of Vascular Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Matthias von Herrath
- Global Chief Medical Office, Novo Nordisk A/S, Søborg, Denmark.,La Jolla Institute for Immunology, La Jolla, California, United States
| | - G Kees Kornelis Hovingh
- Global Chief Medical Office, Novo Nordisk A/S, Søborg, Denmark.,Department of Vascular Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | | |
Collapse
|
28
|
Noble AJ, Purcell RV, Adams AT, Lam YK, Ring PM, Anderson JR, Osborne AJ. A Final Frontier in Environment-Genome Interactions? Integrated, Multi-Omic Approaches to Predictions of Non-Communicable Disease Risk. Front Genet 2022; 13:831866. [PMID: 35211161 PMCID: PMC8861380 DOI: 10.3389/fgene.2022.831866] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/19/2022] [Indexed: 12/26/2022] Open
Abstract
Epidemiological and associative research from humans and animals identifies correlations between the environment and health impacts. The environment-health inter-relationship is effected through an individual's underlying genetic variation and mediated by mechanisms that include the changes to gene regulation that are associated with the diversity of phenotypes we exhibit. However, the causal relationships have yet to be established, in part because the associations are reduced to individual interactions and the combinatorial effects are rarely studied. This problem is exacerbated by the fact that our genomes are highly dynamic; they integrate information across multiple levels (from linear sequence, to structural organisation, to temporal variation) each of which is open to and responds to environmental influence. To unravel the complexities of the genomic basis of human disease, and in particular non-communicable diseases that are also influenced by the environment (e.g., obesity, type II diabetes, cancer, multiple sclerosis, some neurodegenerative diseases, inflammatory bowel disease, rheumatoid arthritis) it is imperative that we fully integrate multiple layers of genomic data. Here we review current progress in integrated genomic data analysis, and discuss cases where data integration would lead to significant advances in our ability to predict how the environment may impact on our health. We also outline limitations which should form the basis of future research questions. In so doing, this review will lay the foundations for future research into the impact of the environment on our health.
Collapse
Affiliation(s)
- Alexandra J. Noble
- Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, Oxford, United Kingdom
| | - Rachel V. Purcell
- Department of Surgery, University of Otago Christchurch, Christchurch, New Zealand
| | - Alex T. Adams
- Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, Oxford, United Kingdom
| | - Ying K. Lam
- Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, Oxford, United Kingdom
| | - Paulina M. Ring
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Jessica R. Anderson
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Amy J. Osborne
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
29
|
Gromova LV, Polozov AS, Savochkina EV, Alekseeva AS, Dmitrieva YV, Kornyushin OV, Gruzdkov AA. Effect of Type 2 Diabetes and Impaired Glucose Tolerance on Digestive Enzymes and Glucose Absorption in the Small Intestine of Young Rats. Nutrients 2022; 14:nu14020385. [PMID: 35057569 PMCID: PMC8779211 DOI: 10.3390/nu14020385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 12/10/2022] Open
Abstract
The reactions of intestinal functional parameters to type 2 diabetes at a young age remain unclear. The study aimed to assess changes in the activity of intestinal enzymes, glucose absorption, transporter content (SGLT1, GLUT2) and intestinal structure in young Wistar rats with type 2 diabetes (T2D) and impaired glucose tolerance (IGT). To induce these conditions in the T2D (n = 4) and IGT (n = 6) rats, we used a high-fat diet and a low dose of streptozotocin. Rats fed a high-fat diet (HFD) (n = 6) or a standard diet (SCD) (n = 6) were used as controls. The results showed that in T2D rats, the ability of the small intestine to absorb glucose was higher in comparison to HFD rats (p < 0.05). This was accompanied by a tendency towards an increase in the number of enterocytes on the villi of the small intestine in the absence of changes in the content of SGLT1 and GLUT2 in the brush border membrane of the enterocytes. T2D rats also showed lower maltase and alkaline phosphatase (AP) activity in the jejunal mucosa compared to the IGT rats (p < 0.05) and lower AP activity in the colon contents compared to the HFD (p < 0.05) and IGT (p < 0.05) rats. Thus, this study provides insights into the adaptation of the functional and structural parameters of the small intestine in the development of type 2 diabetes and impaired glucose tolerance in young representatives.
Collapse
Affiliation(s)
- Lyudmila V. Gromova
- Pavlov Institute of Physiology, Russian Academy of Sciences, 6 Makarova emb., 199034 Saint-Petersburg, Russia; (L.V.G.); (A.S.P.); (E.V.S.); (A.S.A.); (Y.V.D.)
| | - Alexandr S. Polozov
- Pavlov Institute of Physiology, Russian Academy of Sciences, 6 Makarova emb., 199034 Saint-Petersburg, Russia; (L.V.G.); (A.S.P.); (E.V.S.); (A.S.A.); (Y.V.D.)
| | - Elizaveta V. Savochkina
- Pavlov Institute of Physiology, Russian Academy of Sciences, 6 Makarova emb., 199034 Saint-Petersburg, Russia; (L.V.G.); (A.S.P.); (E.V.S.); (A.S.A.); (Y.V.D.)
| | - Anna S. Alekseeva
- Pavlov Institute of Physiology, Russian Academy of Sciences, 6 Makarova emb., 199034 Saint-Petersburg, Russia; (L.V.G.); (A.S.P.); (E.V.S.); (A.S.A.); (Y.V.D.)
| | - Yulia V. Dmitrieva
- Pavlov Institute of Physiology, Russian Academy of Sciences, 6 Makarova emb., 199034 Saint-Petersburg, Russia; (L.V.G.); (A.S.P.); (E.V.S.); (A.S.A.); (Y.V.D.)
| | - Oleg V. Kornyushin
- Almazov National Medical Research Center, Ministry of Health of the Russian Federation, 2 Akkuratova Str., 197341 Saint-Petersburg, Russia;
| | - Andrey A. Gruzdkov
- Pavlov Institute of Physiology, Russian Academy of Sciences, 6 Makarova emb., 199034 Saint-Petersburg, Russia; (L.V.G.); (A.S.P.); (E.V.S.); (A.S.A.); (Y.V.D.)
- Correspondence: ; Tel.: +7-960-276-3000
| |
Collapse
|
30
|
Newsholme P, Rowlands J, Rose’Meyer R, Cruzat V. Metabolic Adaptions/Reprogramming in Islet Beta-Cells in Response to Physiological Stimulators—What Are the Consequences. Antioxidants (Basel) 2022; 11:antiox11010108. [PMID: 35052612 PMCID: PMC8773416 DOI: 10.3390/antiox11010108] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/25/2022] Open
Abstract
Irreversible pancreatic β-cell damage may be a result of chronic exposure to supraphysiological glucose or lipid concentrations or chronic exposure to therapeutic anti-diabetic drugs. The β-cells are able to respond to blood glucose in a narrow concentration range and release insulin in response, following activation of metabolic pathways such as glycolysis and the TCA cycle. The β-cell cannot protect itself from glucose toxicity by blocking glucose uptake, but indeed relies on alternative metabolic protection mechanisms to avoid dysfunction and death. Alteration of normal metabolic pathway function occurs as a counter regulatory response to high nutrient, inflammatory factor, hormone or therapeutic drug concentrations. Metabolic reprogramming is a term widely used to describe a change in regulation of various metabolic enzymes and transporters, usually associated with cell growth and proliferation and may involve reshaping epigenetic responses, in particular the acetylation and methylation of histone proteins and DNA. Other metabolic modifications such as Malonylation, Succinylation, Hydroxybutyrylation, ADP-ribosylation, and Lactylation, may impact regulatory processes, many of which need to be investigated in detail to contribute to current advances in metabolism. By describing multiple mechanisms of metabolic adaption that are available to the β-cell across its lifespan, we hope to identify sites for metabolic reprogramming mechanisms, most of which are incompletely described or understood. Many of these mechanisms are related to prominent antioxidant responses. Here, we have attempted to describe the key β-cell metabolic adaptions and changes which are required for survival and function in various physiological, pathological and pharmacological conditions.
Collapse
Affiliation(s)
- Philip Newsholme
- Curtin Medical School and CHIRI, Curtin University, Perth, WA 6845, Australia
- Correspondence: (P.N.); (J.R.)
| | - Jordan Rowlands
- Curtin Medical School and CHIRI, Curtin University, Perth, WA 6845, Australia
- Correspondence: (P.N.); (J.R.)
| | - Roselyn Rose’Meyer
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD 4222, Australia;
| | - Vinicius Cruzat
- Faculty of Health, Torrens University Australia, Brisbane, QLD 4006, Australia;
| |
Collapse
|
31
|
Chandy G, Dhanapal S, Joseph J, Rajaram R, Madhiyazhagan M, Prabhakar Abhilash K. Acute diabetic complications and implications of glycated hemoglobin levels (HbA1c) in the emergency department – Experience from a tertiary care centre of South India. MEDICAL JOURNAL OF DR. D.Y. PATIL VIDYAPEETH 2022. [DOI: 10.4103/mjdrdypu.mjdrdypu_531_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
32
|
Mice with Type 2 Diabetes Present Significant Alterations in Their Tissue Biomechanical Properties and Histological Features. Biomedicines 2021; 10:biomedicines10010057. [PMID: 35052737 PMCID: PMC8773308 DOI: 10.3390/biomedicines10010057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/20/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a complex metabolic disease often associated with severe complications that may result in patient morbidity or death. One T2DM etiological agent is chronic hyperglycemia, a condition that induces damaging biological processes, including impactful extracellular matrix (ECM) modifications, such as matrix components accumulation. The latter alters ECM stiffness, triggering fibrosis, inflammation, and pathological angiogenesis. Hence, studying ECM biochemistry and biomechanics in the context of T2DM, or obesity, is highly relevant. With this in mind, we examined both native and decellularized tissues of obese B6.Cg-Lepob/J (ob/ob) and diabetic BKS.Cg-Dock7m+/+LeprdbJ (db/db) mice models, and extensively investigated their histological and biomechanical properties. The tissues analyzed herein were those strongly affected by diabetes—skin, kidney, adipose tissue, liver, and heart. The referred organs and tissues were collected from 8-week-old animals and submitted to classical histological staining, immunofluorescence, scanning electron microscopy, rheology, and atomic force microscopy. Altogether, this systematic characterization has identified significant differences in the architecture of both ob/ob and db/db tissues, namely db/db skin presents loose epidermis and altered dermis structure, the kidneys have clear glomerulopathy traits, and the liver exhibits severe steatosis. The distribution of ECM proteins also pinpoints important differences, such as laminin accumulation in db/db kidneys and decreased hyaluronic acid in hepatocyte cytoplasm in both obese and diabetic mice. In addition, we gathered a significant set of data showing that ECM features are maintained after decellularization, making these matrices excellent biomimetic scaffolds for 3D in vitro approaches. Importantly, mechanical studies revealed striking differences between tissue ECM stiffness of control (C57BL/6J), obese, and diabetic mice. Notably, we have unveiled that the intraperitoneal adipose tissue of diabetic animals is significantly stiffer (G* ≈ 10,000 Pa) than that of ob/ob or C57BL/6J mice (G* ≈ 3000–5000 Pa). Importantly, this study demonstrates that diabetes and obesity selectively potentiate severe histological and biomechanical alterations in different matrices that may impact vital processes, such as angiogenesis, wound healing, and inflammation.
Collapse
|
33
|
Liu P, Zhang Z, Wang J, Zhang X, Yu X, Li Y. Empagliflozin protects diabetic pancreatic tissue from damage by inhibiting the activation of the NLRP3/caspase-1/GSDMD pathway in pancreatic β cells: in vitro and in vivo studies. Bioengineered 2021; 12:9356-9366. [PMID: 34823419 PMCID: PMC8810000 DOI: 10.1080/21655979.2021.2001240] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/22/2022] Open
Abstract
Diabetes mellitus is an important public health problem worldwide. Insulin deficiency caused by pancreatic β cell dysfunction is an important pathogenic factor of diabetes mellitus. This study evaluated whether empagliflozin (EMPA) protects the pancreas from diabetes mellitus-induced injury by downregulating the nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3)/caspase-1/Gasdermin D (GSDMD) pyroptosis-related inflammasome pathway in vitro and in vivo. In vivo, animals were separated into blank control (control, C57/bl6j wild-type mice), diabetes model (db/db mice, BKS-Leprem2Cd479/Gpt mice), and db/db mice+EMPA (db/db+EMPA) groups. In vitro, pancreatic β cells were separated into low glucose (control), high glucose (HG), and HG+EMPA groups. The db/db+EMPA group were administered empagliflozin at 10 mg/(kg·day) by gavage for six months. Histological changes in the pancreatic tissues were observed by hematoxylin-eosin staining, and levels of the pyroptosis-related inflammatory factors NLPR3, caspase-1, and GSDMD were measured by immunohistochemistry and immunofluorescence staining methods. The Cell Counting Kit-8 assay was used to detect the effect of different concentrations of glucose and empagliflozin on the proliferation of mouse insulinoma islet β (β TC-6) cells. NLRP3/caspase-1/GSDMD expression was assessed by western blotting and immunofluorescent labeling in the β TC-6 cells. The results showed that empagliflozin reduced the pathological changes and inflammatory cell infiltration in the pancreatic tissues of db/db mice. Furthermore, empagliflozin not only reduced the expression levels of NLRP3/caspase-1/GSDMD in vitro, but also reduced their expression levels in vivo. In summary, our data suggested that empagliflozin protects the pancreatic tissues from diabetes mellitus-induced injury by downregulating the NLRP3/caspase-1/GSDMD pyroptosis-related inflammasome pathway.
Collapse
Affiliation(s)
- Pan Liu
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
- Department of Endocrinology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Zhengdong Zhang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
- Department of Orthopedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jinwu Wang
- School of Biosciences and Technology, Chengdu Medical College, Chengdu, China
| | - Xiao Zhang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
- Department of Endocrinology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xiaoping Yu
- School of Public Health, Chengdu Medical College, Chengdu, China
| | - Yao Li
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
- Department of Endocrinology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
34
|
Haris B, Saraswathi S, Al‐Khawaga S, Hasnah R, Saeed A, Mundekkadan S, Hamed N, Afyouni H, Abdel‐Karim T, Mohammed S, Khalifa A, Al‐Maadheed M, Al‐Zyoud M, Shamekh A, Elawwa A, Al‐Khalaf F, Boughorbel S, Petrovski G, Hussain K. Epidemiology, genetic landscape and classification of childhood diabetes mellitus in the State of Qatar. J Diabetes Investig 2021; 12:2141-2148. [PMID: 34101350 PMCID: PMC8668069 DOI: 10.1111/jdi.13610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 12/29/2022] Open
Abstract
AIMS/INTRODUCTION To study the epidemiology, genetic landscape and causes of childhood diabetes mellitus in the State of Qatar. MATERIALS AND METHODS All patients (aged 0-18 years) with diabetes mellitus underwent biochemical, immunological and genetic testing. American Diabetes Association guidelines were used to classify types of diabetes mellitus. The incidence and prevalence of all the different types of diabetes mellitus were calculated. RESULTS Total number of children with diabetes mellitus was 1,325 (type 1 n = 1,096, ≥1 antibody; type 2 n = 104, type 1B n = 53; maturity onset diabetes of the young n = 20; monogenic autoimmune n = 4; neonatal diabetes mellitus n = 10;, syndromic diabetes mellitus n = 23; and double diabetes mellitus n = 15). The incidence and prevalence of type 1 diabetes were 38.05 and 249.73 per 100,000, respectively, and for type 2 were 2.51 and 23.7 per 100,000, respectively. The incidence of neonatal diabetes mellitus was 34.4 per 1,000,000 live births, and in indigenous Qataris the incidence was 43.6 per 1,000,000 live births. The prevalence of type 1 diabetes and type 2 diabetes in Qatari children was double compared with other nationalities. The prevalence of maturity onset diabetes of the young in Qatar was 4.56 per 100,000. CONCLUSIONS This is the first prospective and comprehensive study to document the epidemiology and genetic landscape of childhood diabetes mellitus in this region. Qatar has the fourth highest incidence of type 1 diabetes mellitus, with the incidence and prevalence being higher in Qatari compared with non-Qatari. The prevalence of type 2 diabetes mellitus is also higher in Qatar than in Western countries. The incidence of neonatal diabetes mellitus is the second highest in the world. GCK is the most common form of maturity onset diabetes of the young, and a large number of patients have type 1B diabetes mellitus.
Collapse
Affiliation(s)
- Basma Haris
- Division of EndocrinologyDepartment of PediatricsSidra MedicineDohaQatar
| | - Saras Saraswathi
- Division of EndocrinologyDepartment of PediatricsSidra MedicineDohaQatar
| | - Sara Al‐Khawaga
- Division of EndocrinologyDepartment of PediatricsSidra MedicineDohaQatar
| | - Reem Hasnah
- Translational ResearchSidra MedicineDohaQatar
| | - Amira Saeed
- Translational ResearchSidra MedicineDohaQatar
| | - Shihab Mundekkadan
- Division of EndocrinologyDepartment of PediatricsSidra MedicineDohaQatar
| | - Noor Hamed
- Division of EndocrinologyDepartment of PediatricsSidra MedicineDohaQatar
| | - Houda Afyouni
- Division of EndocrinologyDepartment of PediatricsSidra MedicineDohaQatar
| | | | - Shayma Mohammed
- Division of EndocrinologyDepartment of PediatricsSidra MedicineDohaQatar
| | - Amel Khalifa
- Division of EndocrinologyDepartment of PediatricsSidra MedicineDohaQatar
| | - Maryam Al‐Maadheed
- Division of EndocrinologyDepartment of PediatricsSidra MedicineDohaQatar
| | - Mahmoud Al‐Zyoud
- Division of EndocrinologyDepartment of PediatricsSidra MedicineDohaQatar
| | - Ahmed Shamekh
- Division of EndocrinologyDepartment of PediatricsSidra MedicineDohaQatar
| | - Ahmed Elawwa
- Division of EndocrinologyDepartment of PediatricsSidra MedicineDohaQatar
| | - Fawziya Al‐Khalaf
- Division of EndocrinologyDepartment of PediatricsSidra MedicineDohaQatar
| | | | - Goran Petrovski
- Division of EndocrinologyDepartment of PediatricsSidra MedicineDohaQatar
| | - Khalid Hussain
- Division of EndocrinologyDepartment of PediatricsSidra MedicineDohaQatar
| |
Collapse
|
35
|
Kennard MR, Daniels Gatward LF, Roberts AG, White ERP, Nandi M, King AJF. The use of mice in diabetes research: The impact of experimental protocols. Diabet Med 2021; 38:e14705. [PMID: 34596274 DOI: 10.1111/dme.14705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/23/2021] [Accepted: 09/29/2021] [Indexed: 12/17/2022]
Abstract
Mice are used extensively in preclinical diabetes research to model various aspects of blood glucose homeostasis. Careful experimental design is vital for maximising welfare and improving reproducibility of data. Alongside decisions regarding physiological characteristics of the animal cohort (e.g., sex, strain and age), experimental protocols must also be carefully considered. This includes choosing relevant end points of interest and understanding what information they can provide and what their limitations are. Details of experimental protocols must, therefore, be carefully planned during the experimental design stage, especially considering the impact of researcher interventions on preclinical end points. Indeed, in line with the 3Rs of animal research, experiments should be refined where possible to maximise welfare. The role of welfare may be particularly pertinent in preclinical diabetes research as blood glucose concentrations are directly altered by physiological stress responses. Despite the potential impact of variations in experimental protocols, there is distinct lack of standardisation and consistency throughout the literature with regards to several experimental procedures including fasting, cage changing and glucose tolerance test protocol. This review firstly highlights practical considerations with regard to the choice of end points in preclinical diabetes research and the potential for novel technologies such as continuous glucose monitoring and glucose clamping techniques to improve data resolution. The potential influence of differing experimental protocols and in vivo procedures on both welfare and experimental outcomes is then discussed with focus on standardisation, consistency and full disclosure of methods.
Collapse
Affiliation(s)
| | | | - Anna G Roberts
- Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Ella R P White
- Department of Diabetes, King's College London, London, UK
| | - Manasi Nandi
- Institute of Pharmaceutical Science, King's College London, London, UK
| | | |
Collapse
|
36
|
Lee D, Kim YM, Kim HW, Choi YK, Park BJ, Joo SH, Kang KS. Schisandrin C Affects Glucose-Stimulated Insulin Secretion in Pancreatic β-Cells and Glucose Uptake in Skeletal Muscle Cells. Molecules 2021; 26:molecules26216509. [PMID: 34770916 PMCID: PMC8587027 DOI: 10.3390/molecules26216509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 01/20/2023] Open
Abstract
The aim of our study was to investigate the effect of three lignans (schisandrol A, schisandrol B, and schisandrin C) on insulin secretion in rat INS-1 pancreatic β-cells and glucose uptake in mouse C2C12 skeletal muscle cells. Schisandrol A and schisandrin C enhanced insulin secretion in response to high glucose levels with no toxic effects on INS-1 cells. The effect of schisandrin C was superior to that of gliclazide (positive control), a drug commonly used to treat type 2 diabetes (T2D). In addition, western blot analysis showed that the expression of associated proteins, including peroxisome proliferator-activated receptor γ (PPARγ), pancreatic and duodenal homeobox 1 (PDX-1), phosphatidylinositol 3-kinase (PI3K), Akt, and insulin receptor substrate-2 (IRS-2), was increased in INS-1 cells after treatment with schisandrin C. In addition, insulin secretion effect of schisandrin C were enhanced by the Bay K 8644 (L-type Ca2+ channel agonist) and glibenclamide (K+ channel blocker), were abolished by the nifedipine (L-type Ca2+ channel blocker) and diazoxide (K+ channel activator). Moreover, schisandrin C enhanced glucose uptake with no toxic effects on C2C12 cells. Western blot analysis showed that the expression of associated proteins, including insulin receptor substrate-1 (IRS-1), AMP-activated protein kinase (AMPK), PI3K, Akt, glucose transporter type 4 (GLUT-4), was increased in C2C12 cells after treatment with schisandrin C. Schisandrin C may improve hyperglycemia by enhancing insulin secretion in pancreatic β-cells and improving glucose uptake into skeletal muscle cells. Our findings may provide evidence that schisandrin C may be beneficial in devising novel anti-T2D strategies.
Collapse
Affiliation(s)
- Dahae Lee
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea;
| | - Young-Mi Kim
- Research Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; (Y.-M.K.); (H.W.K.)
| | - Hyun Woo Kim
- Research Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; (Y.-M.K.); (H.W.K.)
| | - You-Kyoung Choi
- Department of Korean International Medicine, College of Korean Medicine, Gachon University, Seongnam 13120, Korea;
| | - Bang Ju Park
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Korea;
| | - Sang Hoon Joo
- College of Pharmacy, Daegu Catholic University, Gyeongsan 38430, Korea
- Correspondence: (S.H.J.); (K.S.K.); Tel.: +82-53-850-3614 (S.H.J.); +82-31-750-5402 (K.S.K.)
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea;
- Correspondence: (S.H.J.); (K.S.K.); Tel.: +82-53-850-3614 (S.H.J.); +82-31-750-5402 (K.S.K.)
| |
Collapse
|
37
|
Ricci S, Cacialli P. Stem Cell Research Tools in Human Metabolic Disorders: An Overview. Cells 2021; 10:cells10102681. [PMID: 34685661 PMCID: PMC8534517 DOI: 10.3390/cells10102681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/23/2021] [Accepted: 10/04/2021] [Indexed: 12/20/2022] Open
Abstract
Metabolic disorders are very common in the population worldwide and are among the diseases with the highest health utilization and costs per person. Despite the ongoing efforts to develop new treatments, currently, for many of these disorders, there are no approved therapies, resulting in a huge economic hit and tension for society. In this review, we recapitulate the recent advancements in stem cell (gene) therapy as potential tools for the long-term treatment of both inherited (lysosomal storage diseases) and acquired (diabetes mellitus, obesity) metabolic disorders, focusing on the main promising results observed in human patients and discussing the critical hurdles preventing the definitive jump of this approach from the bench to the clinic.
Collapse
Affiliation(s)
- Serena Ricci
- Department of Cell Physiology and Metabolism, School of Medicine, University of Geneva, Rue Michel Servet 1, 1206 Geneva, Switzerland;
| | - Pietro Cacialli
- Department of Pathology and Immunology, School of Medicine, University of Geneva, Rue Michel Servet 1, 1206 Geneva, Switzerland
- Correspondence:
| |
Collapse
|
38
|
Choi HS, Kim JT, Seo JY, Linkov F, Shubnikov E, Lee HK. Correlation between total air pollutant emissions and incidence of type 1 diabetes in the Russian Federation. Clin Exp Pediatr 2021; 64:525-530. [PMID: 33539701 PMCID: PMC8498011 DOI: 10.3345/cep.2020.01501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/31/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Exposure to air pollution (gaseous pollutants and/or particulate matter) has been associated with the incidence, prevalence, and mortality of type 1 diabetes (T1D). PURPOSE To examine the quantitative relationship between air pollutant emissions and the incidence of T1D. METHODS We examined the association between the incidence of T1D and type 2 diabetes (T2D) in 2017 as well as that of T1D in patients younger than 15 years in 2016 with "emissions of air-polluting substances from stationary and mobile sources by regions of the Russian Federation in 2016" as reported by the Federal Diabetes Register of Russia downloaded from the Russian government website (http://www.mnr.gov.ru/docs/gosudarstvennye_doklady/o_sostoyanii_i_ob_okhrane_okruzhayushchey_sredy_rossiyskoy_federatsii/). RESULTS The incidence of T1D across all ages in each region of the Russian Federation correlated with the total air pollutants emitted in the region each year (r=0.278, P=0.013). The incidence of T2D was also correlated with the amount of air pollutants (r=0.234, P=0.037) and the incidence of T1D (r=0.600, P<0.001) in each country. Similarly, the incidence of T1D in patients younger than 15 years correlated with the total air pollutants emitted each year in each region (r=0.300, P=0.011). CONCLUSION The quantitative relationship between the total air pollutants emitted and the incidence of T1D and T2D in the Russian Federation suggests that air pollution contributes to the development of T1D and T2D.
Collapse
Affiliation(s)
- Hoon Sung Choi
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Jin Taek Kim
- Department of Internal Medicine, Eulji General Hospital, Eulji University School of Medicine, Seoul, Korea
| | - Ji-Young Seo
- Department of Pediatrics, Eulji General Hospital, Eulji University School of Medicine, Seoul, Korea
| | - Faina Linkov
- Department of Health Administration and Public Health, Rangos School of Health Sciences, Duquesne University, Pittsburgh, PA, USA
| | | | - Hong Kyu Lee
- Department of Internal Medicine, Eulji General Hospital, Eulji University School of Medicine, Seoul, Korea
| |
Collapse
|
39
|
Papadopoulos VP, Koutroulos MV, Zikoudi DG, Bakola SA, Avramidou P, Touzlatzi N, Filippou DK. Diabetes-related acute metabolic emergencies in COVID-19 patients: a systematic review and meta-analysis. Diabetol Int 2021; 12:445-459. [PMID: 33777611 PMCID: PMC7985576 DOI: 10.1007/s13340-021-00502-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023]
Abstract
AIMS COVID-19 is associated with diabetic ketoacidosis (DKA), hyperglycaemic hyperosmolar state (HHS) and euglycaemic DKA (EDKA); however, evidence regarding parameters affecting outcome and mortality rates is scarce. METHODS A systematic literature review was conducted using EMBASE, PubMed/Medline, and Google Scholar from January 2020 to 7 January 2021 to identify all studies describing clinical profile, outcome and mortality rates regarding DKA, HHS, DKA/HHS and EDKA cases in COVID-19 patients. The appropriate Joanna Briggs Institute tools were used for quality assessment; quality of evidence was approached using GRADE. Univariate and multivariate analyses were used to assess correlations between clinical characteristics and outcome based on case reports. Combined mortality rates (CMR) were estimated from data reported in case report series, cross-sectional studies, and meta-analyses. The protocol was submitted to PROSPERO (ID: 229356/230737). RESULTS From 312 identified publications, 44 were qualitatively and quantitatively analyzed. Critical COVID-19 necessitating ICU (P = 3 × 10-8), DKA/HHS presence (P = 0.021), and AKI (P = 0.037) were independently correlated with death. Increased COVID-19 severity (P = 0.003), elevated lactates (P < 0.001), augmented anion gap (P < 0.001), and AKI (P = 0.002) were associated with DKA/HHS. SGLT-2i were linked with EDKA (P = 0.004) and negatively associated with AKI (P = 0.023). CMR was 27.1% (95% CI 11.2-46.9%) with considerable heterogeneity (I 2 = 67%). CONCLUSION Acute diabetes-related metabolic emergencies in COVID-19 patients lead to increased mortality; key determinants are critical COVID-19 illness, coexistence of DKA/HHS and AKI. Previous SGLT-2i treatment, though associated with EDKA, might preserve renal function in COVID-19 patients. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13340-021-00502-9.
Collapse
Affiliation(s)
- Vasileios P. Papadopoulos
- Department of Internal Medicine, Xanthi General Hospital, Xanthi, Greece
- First Department of Internal Medicine, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
- ENARGEIA” Medical Ltd, 6 Elpidos str, Xanthi, Greece
| | | | | | | | - Peny Avramidou
- Department of Internal Medicine, Xanthi General Hospital, Xanthi, Greece
| | - Ntilara Touzlatzi
- Department of Internal Medicine, Xanthi General Hospital, Xanthi, Greece
| | - Dimitrios K. Filippou
- Department of Anatomy and Surgical Anatomy, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
40
|
Magalhães NS, Savino W, Silva PMR, Martins MA, Carvalho VF. Gut Microbiota Dysbiosis Is a Crucial Player for the Poor Outcomes for COVID-19 in Elderly, Diabetic and Hypertensive Patients. Front Med (Lausanne) 2021; 8:644751. [PMID: 34458281 PMCID: PMC8385716 DOI: 10.3389/fmed.2021.644751] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 07/20/2021] [Indexed: 12/16/2022] Open
Abstract
A new infectious disease, named COVID-19, caused by the coronavirus associated to severe acute respiratory syndrome (SARS-CoV-2) has become pandemic in 2020. The three most common pre-existing comorbidities associated with COVID-19-related death are elderly, diabetic, and hypertensive people. A common factor among these risk groups for the outcome of death in patients infected with SARS-CoV-2 is dysbiosis, with an increase in the proportion of bacteria with a pro-inflammatory profile. Due to this dysbiosis, elderly, diabetic, and hypertensive people present a higher propensity to mount an inflammatory environment in the gut with poor immune editing, culminating in a weakness of the intestinal permeability barrier and high bacterial product translocation to the bloodstream. This scenario culminates in a low-grade, persistent, and systemic inflammation. In this context, we propose here that high circulating levels of bacterial products, like lipopolysaccharide (LPS), can potentiate the SARS-CoV-2-induced cytokines, including IL-6, being crucial for development of the cytokine storm in the severe form of the disease. A better understanding on the possible correlation between gut dysbiosis and poor outcomes observed in elderly, diabetic, and hypertensive people can be useful for the development of new therapeutic strategies based on modulation of the gut microbiota.
Collapse
Affiliation(s)
- Nathalia Santos Magalhães
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil.,Rio de Janeiro Research Network on Neuroinflammation (RENEURIN), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Patrícia Machado Rodrigues Silva
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil.,Rio de Janeiro Research Network on Neuroinflammation (RENEURIN), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Marco Aurélio Martins
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil.,Rio de Janeiro Research Network on Neuroinflammation (RENEURIN), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Vinicius Frias Carvalho
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil.,Rio de Janeiro Research Network on Neuroinflammation (RENEURIN), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| |
Collapse
|
41
|
The role of endothelial dysfunction and subclinical inflammation in the development of obstetric and perinatal complications in diabetes mellitus patients. ACTA BIOMEDICA SCIENTIFICA 2021. [DOI: 10.29413/abs.2021-6.3.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
42
|
Abedin-Do A, Zhang Z, Douville Y, Méthot M, Rouabhia M. Effect of Electrical Stimulation on Diabetic Human Skin Fibroblast Growth and the Secretion of Cytokines and Growth Factors Involved in Wound Healing. BIOLOGY 2021; 10:biology10070641. [PMID: 34356496 PMCID: PMC8301053 DOI: 10.3390/biology10070641] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/29/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022]
Abstract
Simple Summary With the number of diabetic patients on the rise, diabetes has become a major health issue affecting millions of people worldwide. One complication of diabetes is foot ulcers, which are difficult to repair and are thus associated with major clinical problems that may lead to foot amputation and even patient death. The delayed repair of diabetic foot ulcers is due to the slow growth of one of the cell types involved in wound healing, namely, fibroblasts. Fibroblasts inhabit deep skin tissue. Post-wound, they grow and produce skin tissues to enable other cells to close the wound. Even though normal fibroblast growth can be increased by electrical stimulation, it is not clear whether diabetic fibroblast also responds to electrical stimulation. We demonstrated for the first time that a weak direct current electrical field increased diabetic fibroblast growth. The use of electrical stimulation could thus potentially help heal diabetic foot ulcers and ultimately improve patient health and well-being. Abstract Diabetic foot ulcers are indicative of an impaired wound healing process. This delay may be resolved through electrical stimulation (ES). The goal of the present study was to evaluate the effect of ES on diabetic fibroblast adhesion and growth, and the secretion of cytokines and growth factors. Diabetic human skin fibroblasts (DHSF) were exposed to various intensities of direct current ES (100, 80, 40 and 20 mV/mm). The effect of ES on fibroblast adhesion and growth was evaluated using Hoechst staining, MTT and trypan blue exclusion assays. The secretion of cytokine and growth factor was assessed by cytokine array and ELISA assay. The long-term effects of ES on DHSF shape and growth were determined by optical microscopy and cell count. We demonstrated that ES at 20 and 40 mV/mm promoted cell adhesion, viability and growth. ES also decreased the secretion of pro-inflammatory cytokines IL-6 and IL-8 yet promoted growth factor FGF7 secretion during 48 h post-ES. Finally, the beneficial effect of ES on fibroblast growth was maintained up to 5 days post-ES. Overall results suggest the possible use of low-intensity direct current ES to promote wound healing in diabetic patients.
Collapse
Affiliation(s)
- Atieh Abedin-Do
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, QC G1V 0A6, Canada;
- Axe Médecine Régénératrice, Centre de Recherche du CHU de Québec, Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (Z.Z.); (Y.D.); (M.M.)
| | - Ze Zhang
- Axe Médecine Régénératrice, Centre de Recherche du CHU de Québec, Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (Z.Z.); (Y.D.); (M.M.)
| | - Yvan Douville
- Axe Médecine Régénératrice, Centre de Recherche du CHU de Québec, Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (Z.Z.); (Y.D.); (M.M.)
| | - Mireille Méthot
- Axe Médecine Régénératrice, Centre de Recherche du CHU de Québec, Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; (Z.Z.); (Y.D.); (M.M.)
| | - Mahmoud Rouabhia
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, QC G1V 0A6, Canada;
- Correspondence: ; Tel.: +1-418-656-2131 (ext. 416321)
| |
Collapse
|
43
|
Rivaz M, Rahpeima M, Khademian Z, Dabbaghmanesh MH. The effects of aromatherapy massage with lavender essential oil on neuropathic pain and quality of life in diabetic patients: A randomized clinical trial. Complement Ther Clin Pract 2021; 44:101430. [PMID: 34217127 DOI: 10.1016/j.ctcp.2021.101430] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/15/2021] [Accepted: 06/12/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE to determine massage lavender essential oil on neuropathic pain and quality of life in diabetic patients. METHODS A randomized three-group control trial with the pre-post design was performed from 2019 to 2020 on 75 diabetic neuropathic patients. The patients were randomly allocated into aromatherapy (n = 26), placebo (n = 26), and control (n = 26) groups. Patients in the intervention group used 2.5 cc of 3% lavender oil on their feet as a gentle massage for 10 min every night before bedtime for a month. Data collected using the Visual analog scale (VAS), Douleur Neuropathic 4 (DN4) and Quality of Life Questionnaire (SF36). RESULTS The mean difference of pain scores in short-term and long-term in the aromatherapy group was significantly reduced compared to the placebo and control groups (P < 0.001). In addition, after four weeks, a significant increase was found in the QoL domains in the aromatherapy group (P < 0.001). CONCLUSION Aromatherapy massage with lavender oil helped reduce neuropathic pain two to four weeks after the intervention and improved the patients' QoL without causing any side effects. Thus, nurses are recommended to use it as a complementary method to reduce neuropathic pain and improve patients' QoL.
Collapse
Affiliation(s)
- Mozhgan Rivaz
- School of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Monireh Rahpeima
- School of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Zahra Khademian
- School of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz, Iran.
| | | |
Collapse
|
44
|
Zou J, Reddivari L, Shi Z, Li S, Wang Y, Bretin A, Ngo VL, Flythe M, Pellizzon M, Chassaing B, Gewirtz AT. Inulin Fermentable Fiber Ameliorates Type I Diabetes via IL22 and Short-Chain Fatty Acids in Experimental Models. Cell Mol Gastroenterol Hepatol 2021; 12:983-1000. [PMID: 33940221 PMCID: PMC8346662 DOI: 10.1016/j.jcmgh.2021.04.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND & AIMS Nourishment of gut microbiota via consumption of fermentable fiber promotes gut health and guards against metabolic syndrome. In contrast, how dietary fiber impacts type 1 diabetes is less clear. METHODS To examine impact of dietary fibers on development of type 1 diabetes in the streptozotocin (STZ)-induced and spontaneous non-obese diabetes (NOD) models, mice were fed grain-based chow (GBC) or compositionally defined diets enriched with a fermentable fiber (inulin) or an insoluble fiber (cellulose). Spontaneous (NOD mice) or STZ-induced (wild-type mice) diabetes was monitored. RESULTS Relative to GBC, low-fiber diets exacerbated STZ-induced diabetes, whereas diets enriched with inulin, but not cellulose, strongly protected against or treated it. Inulin's restoration of glycemic control prevented loss of adipose depots, while reducing food and water consumption. Inulin normalized pancreatic function and markedly enhanced insulin sensitivity. Such amelioration of diabetes was associated with alterations in gut microbiota composition and was eliminated by antibiotic administration. Pharmacologic blockade of fermentation reduced inulin's beneficial impact on glycemic control, indicating a role for short-chain fatty acids (SCFA). Furthermore, inulin's microbiota-dependent anti-diabetic effect associated with SCFA-independent restoration of interleukin 22, which was necessary and sufficient to ameliorate STZ-induced diabetes. Inulin-enriched diets significantly delayed diabetes in NOD mice. CONCLUSIONS Fermentable fiber confers microbiota-dependent increases in SCFA and interleukin 22 that, together, may have potential to prevent and/or treat type 1 diabetes.
Collapse
Affiliation(s)
- Jun Zou
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Lavanya Reddivari
- Department of Food Science, Purdue University, West Lafayette, Indiana
| | - Zhenda Shi
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Shiyu Li
- Department of Food Science, Purdue University, West Lafayette, Indiana
| | - Yanling Wang
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Alexis Bretin
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Vu L Ngo
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | | | | | - Benoit Chassaing
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia; Neuroscience Institute, Georgia State University, Atlanta, Georgia; INSERM, U1016, Team "Mucosal microbiota in chronic inflammatory diseases", Paris, France; Université de Paris, Paris, France
| | - Andrew T Gewirtz
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia.
| |
Collapse
|
45
|
Sluijs T, Lokkers L, Özsezen S, Veldhuis GA, Wortelboer HM. An Innovative Approach for Decision-Making on Designing Lifestyle Programs to Reduce Type 2 Diabetes on Dutch Population Level Using Dynamic Simulations. Front Public Health 2021; 9:652694. [PMID: 33996729 PMCID: PMC8116515 DOI: 10.3389/fpubh.2021.652694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
The number of individuals suffering from type 2 diabetes is dramatically increasing worldwide, resulting in an increasing burden on society and rising healthcare costs. With increasing evidence supporting lifestyle intervention programs to reduce type 2 diabetes, and the use of scenario simulations for policy support, there is an opportunity to improve population interventions based upon cost–benefit analysis of especially complex lifestyle intervention programs through dynamic simulations. In this article, we used the System Dynamics (SD) modeling methodology aiming to develop a simulation model for policy makers and health professionals to gain a clear understanding of the patient journey of type 2 diabetes mellitus and to assess the impact of lifestyle intervention programs on total cost for society associated with prevention and lifestyle treatment of pre-diabetes and type 2 diabetes in The Netherlands. System dynamics describes underlying structure in the form of causal relationships, stocks, flows, and delays to explore behavior and simulate scenarios, in order to prescribe intervention programs. The methodology has the opportunity to estimate and simulate the consequences of unforeseen interactions in order to prescribe intervention programs based on scenarios tested through “what-if” experiments. First, the extensive knowledge of diabetes, current available data on the type 2 diabetes population, lifestyle intervention programs, and associated cost in The Netherlands were captured in one simulation model. Next, the relationships between leverage points on the growth of type 2 diabetes population were based upon available data. Subsequently, the cost and benefits of future lifestyle intervention programs on reducing diabetes were simulated, identifying the need for an integrated adaptive design of lifestyle programs while collecting the appropriate data over time. The strengths and limitations of scenario simulations of complex lifestyle intervention programs to improve the (cost)effectiveness of these programs to reduce diabetes in a more sustainable way compared to usual care are discussed.
Collapse
Affiliation(s)
- Teun Sluijs
- Department of Microbiology and Systems Biology, Netherlands Organisation for Applied Scientific Research (TNO), Zeist, Netherlands
| | - Lotte Lokkers
- Methodology Department, School of Management, Radboud University, Nijmegen, Netherlands
| | - Serdar Özsezen
- Department of Microbiology and Systems Biology, Netherlands Organisation for Applied Scientific Research (TNO), Zeist, Netherlands
| | - Guido A Veldhuis
- Department Military Operations, Netherlands Organisation for Applied Scientific Research (TNO), The Hague, Netherlands
| | - Heleen M Wortelboer
- Department of Microbiology and Systems Biology, Netherlands Organisation for Applied Scientific Research (TNO), Zeist, Netherlands
| |
Collapse
|
46
|
Eberle C, Löhnert M, Stichling S. Effectiveness of Disease-Specific mHealth Apps in Patients With Diabetes Mellitus: Scoping Review. JMIR Mhealth Uhealth 2021; 9:e23477. [PMID: 33587045 PMCID: PMC7920757 DOI: 10.2196/23477] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/08/2020] [Accepted: 11/30/2020] [Indexed: 12/20/2022] Open
Abstract
Background According to the World Health Organization, the worldwide prevalence of diabetes mellitus (DM) is increasing dramatically and DM comprises a large part of the global burden of disease. At the same time, the ongoing digitalization that is occurring in society today offers novel possibilities to deal with this challenge, such as the creation of mobile health (mHealth) apps. However, while a great variety of DM-specific mHealth apps exist, the evidence in terms of their clinical effectiveness is still limited. Objective The objective of this review was to evaluate the clinical effectiveness of mHealth apps in DM management by analyzing health-related outcomes in patients diagnosed with type 1 DM (T1DM), type 2 DM (T2DM), and gestational DM. Methods A scoping review was performed. A systematic literature search was conducted in MEDLINE (PubMed), Cochrane Library, EMBASE, CINAHL, and Web of Science Core Collection databases for studies published between January 2008 and October 2020. The studies were categorized by outcomes and type of DM. In addition, we carried out a meta-analysis to determine the impact of DM-specific mHealth apps on the management of glycated hemoglobin (HbA1c). Results In total, 27 studies comprising 2887 patients were included. We analyzed 19 randomized controlled trials, 1 randomized crossover trial, 1 exploratory study, 1 observational study, and 5 pre-post design studies. Overall, there was a clear improvement in HbA1c values in patients diagnosed with T1DM and T2DM. In addition, positive tendencies toward improved self-care and self-efficacy as a result of mHealth app use were found. The meta-analysis revealed an effect size, compared with usual care, of a mean difference of –0.54% (95% CI –0.8 to –0.28) for T2DM and –0.63% (95% CI –0.93 to –0.32) for T1DM. Conclusions DM-specific mHealth apps improved the glycemic control by significantly reducing HbA1c values in patients with T1DM and T2DM patients. In general, mHealth apps effectively enhanced DM management. However, further research in terms of clinical effectiveness needs to be done in greater detail.
Collapse
Affiliation(s)
- Claudia Eberle
- Medicine with Specialization in Internal Medicine and General Medicine, Hochschule Fulda-University of Applied Sciences, Fulda, Germany
| | - Maxine Löhnert
- Medicine with Specialization in Internal Medicine and General Medicine, Hochschule Fulda-University of Applied Sciences, Fulda, Germany
| | - Stefanie Stichling
- Medicine with Specialization in Internal Medicine and General Medicine, Hochschule Fulda-University of Applied Sciences, Fulda, Germany
| |
Collapse
|
47
|
|
48
|
Aramabašić Jovanović J, Mihailović M, Uskoković A, Grdović N, Dinić S, Vidaković M. The Effects of Major Mushroom Bioactive Compounds on Mechanisms That Control Blood Glucose Level. J Fungi (Basel) 2021; 7:58. [PMID: 33467194 PMCID: PMC7830770 DOI: 10.3390/jof7010058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/11/2022] Open
Abstract
Diabetes mellitus is a life-threatening multifactorial metabolic disorder characterized by high level of glucose in the blood. Diabetes and its chronic complications have a significant impact on human life, health systems, and countries' economies. Currently, there are many commercial hypoglycemic drugs that are effective in controlling hyperglycemia but with several serious side-effects and without a sufficient capacity to significantly alter the course of diabetic complications. Over many centuries mushrooms and their bioactive compounds have been used in the treatment of diabetes mellitus, especially polysaccharides and terpenoids derived from various mushroom species. This review summarizes the effects of these main mushroom secondary metabolites on diabetes and underlying molecular mechanisms responsible for lowering blood glucose. In vivo and in vitro data revealed that treatment with mushroom polysaccharides displayed an anti-hyperglycemic effect by inhibiting glucose absorption efficacy, enhancing pancreatic β-cell mass, and increasing insulin-signaling pathways. Mushroom terpenoids act as inhibitors of α-glucosidase and as insulin sensitizers through activation of PPARγ in order to reduce hyperglycemia in animal models of diabetes. In conclusion, mushroom polysaccharides and terpenoids can effectively ameliorate hyperglycemia by various mechanisms and can be used as supportive candidates for prevention and control of diabetes in the future.
Collapse
Affiliation(s)
- Jelena Aramabašić Jovanović
- Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (M.M.); (A.U.); (N.G.); (S.D.); (M.V.)
| | | | | | | | | | | |
Collapse
|
49
|
Woldekidan S, Mulu A, Ergetie W, Teka F, Meressa A, Tadele A, Abebe A, Gemechu W, Gemeda N, Ashebir R, Sileshi M, Tolcha Y. Evaluation of Antihyperglycemic Effect of Extract of Moringa stenopetala (Baker f.) Aqueous Leaves on Alloxan-Induced Diabetic Rats. Diabetes Metab Syndr Obes 2021; 14:185-192. [PMID: 33488106 PMCID: PMC7815076 DOI: 10.2147/dmso.s266794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/04/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Diabetes is a serious metabolic disorder with complications that result in significant morbidity and mortality. Current drugs used for diabetes therapy are not free from side effects and do not restore normal glucose homeostasis. Therefore, the purpose of this study is to evaluate the antidiabetic effect of Moringa stenopetala (Baker f.) aqueous leaves extract. METHODS Thirty rats of weight 90-150 gram were distributed to five groups (n= 6). Then labelled as diabetic control (DC), normal control (NC), extract treated (MS 250 and 500mg/kg), and glibenclamide treated (GL 5mg/kg). The experimental rats were induced by intra-peritoneal injection of Alloxan monohydrate at a dose of 180 mg/kg after dissolving in normal saline. Clinical biochemistry such as AST, ALT, ALP, urea, creatinine, and cholesterol, blood glucose level, histopathological and preliminary phytochemical screening were evaluated. RESULTS Phytochemical tests revealed the presence of different secondary metabolites. Alkaloid, flavonoid, tannin, saponin, phytosteroids, phenols and terpenoids. Moringa stenopetala (Baker f.) leaves aqueous extract (250 and 500mg/kg) improved the body weight of rats, showed remarkable reduction in blood glucose concentration (P<0.05), and significantly decreased serum urea, creatinine, ALT, AST and ALP (P < 0.05). Levels of serum cholesterol remained unaltered in the experimental groups when compared with diabetic control. Histopathology of non-treated rats showed deterioration of insulin producing pancreas cells; nevertheless, β-cells restoration was observed due to administration of Moringa stenopetala (Baker f.) aqueous leaves extract. CONCLUSION It is possible to conclude that oral administration of Moringa stenopetala (Baker f.) aqueous leaf extracts (250mg/kg and 500mg/kg) for 28 days showed beneficial effects on antihyperglycemia, improved body weight and Alloxan damaged pancreatic β-cells, and restored biochemical changes.
Collapse
Affiliation(s)
- Samuel Woldekidan
- Directorate of Traditional and Modern Medicine Research, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Abay Mulu
- Department of Anatomy, School of Medicine, College of Health Science, Addis Ababa University, Addis Ababa, Ethiopia
| | - Wondwossen Ergetie
- Department of Pathology, School of Medicine, College of Health Science, Addis Ababa University, Addis Ababa, Ethiopia
| | - Frehiwot Teka
- Directorate of Traditional and Modern Medicine Research, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Asfaw Meressa
- Directorate of Traditional and Modern Medicine Research, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Ashenif Tadele
- Directorate of Traditional and Modern Medicine Research, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Abiy Abebe
- Directorate of Traditional and Modern Medicine Research, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Worku Gemechu
- Directorate of Traditional and Modern Medicine Research, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Negero Gemeda
- Directorate of Traditional and Modern Medicine Research, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Rekik Ashebir
- Directorate of Traditional and Modern Medicine Research, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Meron Sileshi
- National Clinical Chemistry Reference Laboratory, Addis Ababa, Ethiopia
| | - Yoseph Tolcha
- National Clinical Chemistry Reference Laboratory, Addis Ababa, Ethiopia
| |
Collapse
|
50
|
Rayapu L, Chakraborty K, Valluru L. Marine Algae as a Potential Source for Anti-diabetic Compounds - A Brief Review. Curr Pharm Des 2021; 27:789-801. [PMID: 32912118 DOI: 10.2174/1381612826666200909124526] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 06/27/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Diabetes Mellitus (DM) is a major chronic metabolic disorder characterized by hyperglycemia that leads to several complications such as retinopathy, atherosclerosis, nephropathy, etc. In 2019, it was estimated that about 463 million people had diabetes, and it may increase up to 700 million in 2045. Marine macroalgae are the rich source of bioactive compounds for the treatment of diabetes mellitus. OBJECTIVE This review summarizes the recent epidemiology and possible use of marine macroalgae-derived bioactive compounds for the protection against chronic metabolic disease, diabetes mellitus and marine macroalgae as a nutraceutical supplement. CONCLUSION The present therapies available for diabetes treatment are oral medicines and insulin injections. But continuous use of synthetic medicines provides low therapeutic with many side effects. In continuing search of anti-diabetic drugs, marine macroalgae remain as a promising source with potent bioactivity. Among existing marine algae, red and brown algae are reported to show anti-diabetic activity. Hence, the present review focuses on the epidemiology, diabetes biomarkers and different secondary bioactive compounds present in marine macroalgae to treat diabetes mellitus.
Collapse
Affiliation(s)
- Lavanya Rayapu
- Department of Biotechnology, Dravidian University, Kuppam-517426, A.P, India
| | - Kajal Chakraborty
- Marine Biotechnology Division, Central Marine Fisheries Research Institute (CMFRI), Ernakulum, Cochin-682001, Kerala, India
| | - Lokanatha Valluru
- Department of Biotechnology, Dravidian University, Kuppam-517426, A.P, India
| |
Collapse
|