1
|
Lei L, Wang YF, Chen CY, Wang YT, Zhang Y. Novel insight into astrocyte-mediated gliotransmission modulates the synaptic plasticity in major depressive disorder. Life Sci 2024; 355:122988. [PMID: 39153595 DOI: 10.1016/j.lfs.2024.122988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/23/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Major depressive disorder (MDD) is a form of glial cell-based synaptic dysfunction disease in which glial cells interact closely with neuronal synapses and perform synaptic information processing. Glial cells, particularly astrocytes, are active components of the brain and are responsible for synaptic activity through the release gliotransmitters. A reduced density of astrocytes and astrocyte dysfunction have both been identified the brains of patients with MDD. Furthermore, gliotransmission, i.e., active information transfer mediated by gliotransmitters between astrocytes and neurons, is thought to be involved in the pathogenesis of MDD. However, the mechanism by which astrocyte-mediated gliotransmission contributes to depression remains unknown. This review therefore summarizes the alterations in astrocytes in MDD, including astrocyte marker, connexin 43 (Cx43) expression, Cx43 gap junctions, and Cx43 hemichannels, and describes the regulatory mechanisms of astrocytes involved in synaptic plasticity. Additionally, we investigate the mechanisms acting of the glutamatergic, gamma-aminobutyric acidergic, and purinergic systems that modulate synaptic function and the antidepressant mechanisms of the related receptor antagonists. Further, we summarize the roles of glutamate, gamma-aminobutyric acid, d-serine, and adenosine triphosphate in depression, providing a basis for the identification of diagnostic and therapeutic targets for MDD.
Collapse
Affiliation(s)
- Lan Lei
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yu-Fei Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Cong-Ya Chen
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ya-Ting Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
2
|
Zhang H, Zheng R, Yu B, Yu Y, Luo X, Yin S, Zheng Y, Shi J, Ai S. Dissecting shared genetic architecture between depression and body mass index. BMC Med 2024; 22:455. [PMID: 39394142 PMCID: PMC11481102 DOI: 10.1186/s12916-024-03681-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND A growing body of evidence supports the comorbidity between depression (DEP) and obesity, yet the genetic mechanisms underlying this association remain unclear. Our study explored the shared genetic architecture and causal associations of DEP with BMI. METHODS We investigated the multigene overlap and genetic correlation between DEP (N > 1.3 million) and BMI (N = 806,834) based on genome-wide association studies (GWAS) and using the bivariate causal mixture model and linkage disequilibrium score regression (LDSC). The causal association was explored by bi-directional Mendelian randomization (MR). Common risk loci were identified through cross-trait meta-analyses. Stratified LDSC and multi-marker gene annotation analyses were applied to investigate single-nucleotide polymorphisms enrichment across tissue types, cell types, and functional categories. Finally, we explored shared functional genes by Summary Data-Based Mendelian Randomization (SMR) and further detected differential expression genes (DEG) in brain tissues of individuals with depression and obesity. RESULTS We found a positive genetic correlation between DEP and BMI (rg = 0.19, P = 4.07 × 10-26), which was more evident in local genomic regions. Cross-trait meta-analyses identified 16 shared genetic loci, 5 of which were newly identified, and they had influence on both diseases in the same direction. MR analysis showed a bidirectional causal association between DEP and BMI, with comparable effect sizes estimated in both directions. Combined with gene expression information, we found that genetic correlations between DEP and BMI were enriched in 6 brain regions, predominantly in the nucleus accumbens and anterior cingulate cortex. Moreover, 6 specific cell types and 23 functional genes were found to have an impact on both DEP and BMI across the brain regions. Of which, NEGR1 was identified as the most significant functional gene and associated with DEP and BMI at the genome-wide significance level (P < 5 × 10-8). Compared with healthy controls, the expression levels of NEGR1 gene were significant lower in brain tissues of individuals with depression and obesity. CONCLUSIONS Our study reveals shared genetic basis underpinnings between DEP and BMI, including genetic correlations and common genes. These insights offer novel opportunities and avenues for future research into their comorbidities.
Collapse
Affiliation(s)
- Hengyu Zhang
- Department of Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Guangzhou, Guangdong, China
| | - Rui Zheng
- Center for Sleep and Circadian Medicine, The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Guangzhou, Guangdong, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 511436, China
| | - Binhe Yu
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Heart Center, Weihui, 453100, Henan, China
| | - Yuefeng Yu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China
| | - Xiaomin Luo
- Center for Sleep and Circadian Medicine, The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Guangzhou, Guangdong, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 511436, China
| | - Shujuan Yin
- Department of Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Guangzhou, Guangdong, China
| | - Yingjun Zheng
- Department of Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Guangzhou, Guangdong, China.
| | - Jie Shi
- National Institute On Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Haidian District, 38 Xueyuan Road, Beijing, 100191, China.
- The State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China.
- The Key Laboratory for Neuroscience of the Ministry of Education and Health, Peking University, Beijing, 100191, China.
| | - Sizhi Ai
- Center for Sleep and Circadian Medicine, The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Guangzhou, Guangdong, China.
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 511436, China.
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Heart Center, Weihui, 453100, Henan, China.
| |
Collapse
|
3
|
Dabboussi N, Debs E, Bouji M, Rafei R, Fares N. Balancing the mind: Toward a complete picture of the interplay between gut microbiota, inflammation and major depressive disorder. Brain Res Bull 2024; 216:111056. [PMID: 39182696 DOI: 10.1016/j.brainresbull.2024.111056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/07/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
The intricate interplay existing between gut microbiota and homeostasis extends to the realm of the brain, where emerging research underscores the significant impact of the microbiota on mood regulation and overall neurological well-being and vice-versa, with inflammation playing a pivotal role in mediating these complex interactions. This comprehensive review explores the complex interplay between inflammation, alterations in gut microbiota, and their impact on major depressive disorder (MDD). It provides a cohesive framework for the puzzle pieces of this triad, emphasizing recent advancements in understanding the gut microbiota and inflammatory states' contribution to the depressive features. Two directions of communication between the gut and the brain in depression are discussed, with inflammation serving as a potential modulator. Therapeutic implications were discussed as well, drawing insights from interventional studies on the effects of probiotics on gut bacterial composition and depressive symptoms. Ultimately, this review will attempt to provide a complete and valuable framework for future research and therapeutic interventions in MDD.
Collapse
Affiliation(s)
- Nour Dabboussi
- Laboratory of Research in Physiology and pathophysiology, Faculty of Medicine, Saint Joseph University of Beirut, POBox. 17-5208 - Mar Mikhaël, Beirut 1104 2020, Lebanon; Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Science & Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon.
| | - Espérance Debs
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, P.O. Box 100, Tripoli, Lebanon.
| | - Marc Bouji
- Faculté des Sciences, Université Saint-Joseph de Beyrouth-Liban, Mar Roukos, Beirut, Lebanon.
| | - Rayane Rafei
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Science & Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Nassim Fares
- Laboratory of Research in Physiology and pathophysiology, Faculty of Medicine, Saint Joseph University of Beirut, POBox. 17-5208 - Mar Mikhaël, Beirut 1104 2020, Lebanon.
| |
Collapse
|
4
|
Luo Y, Zhang Y, Feng Y, Zeng X, Zhu D, Yang Y, Hu H, Wang Q, Guo L, Zou L, Zhong X. Prenatal exposure to low doses of benzophenone-3 elicits disruption of cortical vasculature in fetuses through perturbations in Wnt/β-catenin signaling correlating with depression-like behavior in offspring mice. Toxicology 2024; 509:153960. [PMID: 39343157 DOI: 10.1016/j.tox.2024.153960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
Benzophenone-3 (BP-3), commonly used in personal care products, is routinely detected in environmental and human matrices. Evidence delineates a correlation between gestational BP-3 exposure and emotional and social disorders in children and adolescents. However, sensitive target cells and the mode of action underlying the early responses to environmentally relevant level of BP-3 exposure remain unclear. In this study, 0.3 and 3 mg/kg of BP-3 were administered to pregnant mice. Compared with the control group, the cortical blood vessel development process manifested the highest susceptibility to BP-3 exposure using transcriptomic sequencing at embryonic day 14 (E14). Notably, the diminution in vascular density and tight junction proteins presence was observed in the fetal cortex at E14, concomitant with the suppressed transcriptional activity of genes essential to angiogenesis and barrier formation. Strikingly, the investigation revealed that BP-3 exposure impeded vascular sprouting in aortic ring explants and neuroendothelial migration, implicating the Wnt/β-catenin signaling pathway. Moreover, BP-3 exposure compromised perivascular neural stem cell differentiation. Cortical vascular injury correlated with the exhibition of depression-like behavior in four-week postnatal progeny. These insights underscore the cerebrovasculature as an early sensitive target for low doses of BP-3 exposure, fostering the development of biomarkers and the establishment of the adverse outcome pathway framework for BP-3 hazard evaluation.
Collapse
Affiliation(s)
- Yijun Luo
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yangjian Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yang Feng
- Institute of Clinical and Translational Medicine, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China; The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan 410005, China
| | - Xiangyu Zeng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Dan Zhu
- Institute of Clinical and Translational Medicine, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China; The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan 410005, China
| | - Ying Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Haichen Hu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qi Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Lan Guo
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Lianhong Zou
- Institute of Clinical and Translational Medicine, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China; The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan 410005, China; Geriatric Immunization Research Center of Hunan Provincial Geriatric Institute, Changsha, Hunan, China.
| | - Xiali Zhong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
5
|
Zhang L, Qin K, Pan N, Xu H, Gong Q. Shared and distinct patterns of default mode network dysfunction in major depressive disorder and bipolar disorder: A comparative meta-analysis. J Affect Disord 2024; 368:23-32. [PMID: 39260575 DOI: 10.1016/j.jad.2024.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND While patients with major depressive disorder (MDD) and bipolar disorder (BD) exhibited default mode network (DMN) dysfunction revealed by aberrant resting-state functional connectivity (rsFC) patterns, previous findings have been inconsistent. Little is known about the similarities and differences in DMN rsFC between MDD and BD. METHODS A voxel-wise meta-analysis of seed-based DMN rsFC studies on MDD or BD was performed using the Seed-based d Mapping software with permutation of subject images (SDM-PSI). Aberrant DMN rsFC in both disorders was investigated separately, followed by conjunction and between-disorder comparison analyses. Functional decoding was performed to implicate the psychophysiological underpinnings of derived brain abnormalities. RESULTS Thirty-four studies comparing 1316 MDD patients with 1327 HC, and 22 studies comparing 1059 BD patients with 1396 HC were included. Compared to HC, MDD patients exhibited DMN hyperconnectivity with frontolimbic systems, and hypoconnectivity with temporal lobe and posterior cingulate cortex. BD patients displayed increased DMN connectivity with bilateral precuneus, and reduced connectivity with prefrontal cortex and middle temporal gyrus. No common patterns of DMN rsFC abnormalities were observed between MDD and BD. Compared to BD, MDD patients showed DMN hyperconnectivity with triangular part of the left inferior frontal gyrus and left fusiform gyrus. Functional decoding found that patterns of DMN rsFC alteration between MDD and BD were primarily related to action and perception domains. CONCLUSION Distinct DMN dysfunction patterns in MDD and BD enhance current understanding of the neural substrates of mood disorders and may provide a potential biomarker for differentiation.
Collapse
Affiliation(s)
- Lisha Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Kun Qin
- Department of Radiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China.
| | - Nanfang Pan
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Haoran Xu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China.
| |
Collapse
|
6
|
Miranda L. Antidepressant and anxiolytic effects of activating 5HT2A receptors in the anterior cingulate cortex and the theoretical mechanisms underlying them - A scoping review of available literature. Brain Res 2024; 1846:149226. [PMID: 39251056 DOI: 10.1016/j.brainres.2024.149226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/22/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
Psychedelic drugs that activate the 5HT2A receptor have long been the target of extensive clinical research, particularly in models of psychiatric illness. The aim of this literature review was to investigate the therapeutic effects of 5HT2A receptor activation in the anterior cingulate cortex (ACC) and the respective mechanisms that underlie them. Based on the available research, I suggest that 5HT2A receptors in the ACC exert profound changes in excitatory neurotransmission and brain network connectivity in a way that reduces anxious preoccupation and obsessional thoughts, as well as promoting cognitive flexibility and long-lasting mood improvements in anhedonia. This is possibly due to a complex interplay with glutamate and gamma-butyric acid neurotransmission, particularly 5HT2A activation enhances α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor signalling, thus altering the ratio of AMPA to N-methyl-D-Aspartate (NMDA) activity in the ACC, which can dismantle previously established neuronal connections and aid the formation of new ones, an effect that may be beneficial for fear extinction and reversal learning. Psychedelics potentially change intra- and internetwork connectivity, strengthening connectivity from the dorsal ACC / Salience Network to the Default Mode Network (DMN) and Central Executive Network (CEN), which correlates with improvements in attentional shifting and anti-anhedonic effects. Additionally, they may decrease inhibitory influence of the DMN over the CEN which may reduce overevaluation of internal states and ameliorate cognitive deficits. Activation of ACC 5HT2A receptors also has important downstream effects on subcortical areas, including reducing amygdala reactivity to threatening stimuli and enhancing mesolimbic dopamine, respectively improving anxiety and the experience of natural rewards.
Collapse
|
7
|
Santos L, Behrens L, Barbosa C, Tiefensee-Ribeiro C, Rosa-Silva H, Somensi N, Brum PO, Silveira AK, Rodrigues MS, de Oliveira J, Gelain DP, Almeida RF, Moreira JCF. Histone 3 Trimethylation Patterns are Associated with Resilience or Stress Susceptibility in a Rat Model of Major Depression Disorder. Mol Neurobiol 2024; 61:5718-5737. [PMID: 38225513 DOI: 10.1007/s12035-024-03912-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/23/2023] [Indexed: 01/17/2024]
Abstract
Major Depressive Disorder (MDD) is a severe and multifactorial psychiatric condition. Evidence has shown that environmental factors, such as stress, significantly explain MDD pathophysiology. Studies have hypothesized that changes in histone methylation patterns are involved in impaired glutamatergic signaling. Based on this scenario, this study aims to investigate histone 3 involvement in depression susceptibility or resilience in MDD pathophysiology by investigating cellular and molecular parameters related to i) glutamatergic neurotransmission, ii) astrocytic functioning, and iii) neurogenesis. For this, we subjected male Wistar rats to the Chronic Unpredictable Mild Stress (CUMS) model of depression. We propose that by evaluating the sucrose consumption, open field, and object recognition test performance from animals submitted to CUMS, it is possible to predict with high specificity rats with susceptibility to depressive-like phenotype and resilient to the depressive-like phenotype. We also demonstrated, for the first time, that patterns of H3K4me3, H3K9me3, H3K27me3, and H3K36me3 trimethylation are strictly associated with the resilient or susceptible to depressive-like phenotype in a brain-region-specific manner. Additionally, susceptible animals have reduced DCx and GFAP and resilient animals present increase of AQP-4 immunoreactivity. Together, these results provide evidence that H3 trimethylations are related to the development of the resilient or susceptible to depressive-like phenotype, contributing to further advances in the pathophysiology of MDD and the discovery of mechanisms behind resilience.
Collapse
Affiliation(s)
- Lucas Santos
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Luiza Behrens
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Camila Barbosa
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Camila Tiefensee-Ribeiro
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Helen Rosa-Silva
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Nauana Somensi
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Pedro Ozorio Brum
- Max Perutz Labs, Vienna BioCenter, University of Vienna, Vienna, Austria
| | - Alexandre Kleber Silveira
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Matheus Scarpatto Rodrigues
- Laboratório de Investigação de Desordens Metabólicas e Doenças Neurodegenerativas, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Jade de Oliveira
- Laboratório de Investigação de Desordens Metabólicas e Doenças Neurodegenerativas, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Daniel Pens Gelain
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Roberto F Almeida
- Centro de Ciências Químicas Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - José Cláudio Fonseca Moreira
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
8
|
Liu X, Li Y, Mo Y, Chen B, Hou X, Zhu J, Xu Y, Xue J, Wen H, Wang X, Wen Z. GABAergic imbalance in Parkinson's disease-related depression determined with MEGA-PRESS. Neuroimage Clin 2024; 43:103641. [PMID: 39032208 PMCID: PMC11326908 DOI: 10.1016/j.nicl.2024.103641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/22/2024]
Abstract
OBJECTIVE The pathogenesis of depression in patients with Parkinson's disease (PD) is poorly understood. Therefore, this study aimed to explore the changes in γ-aminobutyric acid (GABA) and glutamate plus glutamine (Glx) levels in patients with PD with or without depression determined using MEscher-GArwood Point Resolved Spectroscopy (MEGA-PRESS). MATERIALS AND METHODS A total of 83 patients with primary PD and 24 healthy controls were included. Patients with PD were categorized into depressed PD (DPD, n = 19) and nondepressed PD (NDPD, n = 64) based on the 17-item Hamilton Depression Rating Scale. All participants underwent T1-weighted imaging and MEGA-PRESS sequence to acquire GABA+ and Glx values. The MEGA-PRESS sequence was conducted using 18.48 mL voxels in the left thalamus and medial frontal cortex. The GABA+, Glx, and creatine values were quantified using Gannet 3.1 software. RESULTS The GABA+ and Glx values were not significantly disparate between patients with PD and controls in the thalamus and medial frontal cortex. However, the levels of N-acetyl aspartate/creatine and choline/creatine in the left thalamus were significantly lower in patients with PD than in controls (P = .031, P = .009). The GABA+/Water and GABA+/Creatine in the medial frontal cortex were higher in DPD than in NDPD (P = .001, P = .004). The effects of depression on Glx or other metabolite levels were not evident, and no significant difference in metabolite values was noted in the left thalamus among all groups (P > .05). CONCLUSIONS GABA+ levels increased in the medial frontal cortex in DPD, which may be more closely related to depressive pathology. Thus, alterations in GABAergic function in special brain structures may be related to the clinical manifestations of PD symptoms, and hence mediating this function might help in treating depression in PD.
Collapse
Affiliation(s)
- Xinzi Liu
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuxin Li
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yixiang Mo
- Department of Functional Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Baoling Chen
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xusheng Hou
- Department of Functional Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianbin Zhu
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | | | - Jingyue Xue
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Haitao Wen
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xianlong Wang
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhibo Wen
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
9
|
Wang SY, Xia ZX, Yang SW, Chen WK, Zhao YL, Li MD, Tian D, Pan Y, Lin XS, Zhu XQ, Huang Z, Liu JM, Lai ZM, Tao WC, Shen ZC. Regulation of depressive-like behaviours by palmitoylation: Role of AKAP150 in the basolateral amygdala. Br J Pharmacol 2024; 181:1897-1915. [PMID: 38413375 DOI: 10.1111/bph.16318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/20/2023] [Accepted: 12/23/2023] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND AND PURPOSE Protein palmitoylation is involved in learning and memory, and in emotional disorders. Yet, the underlying mechanisms in these processes remain unclear. Herein, we describe that A-kinase anchoring protein 150 (AKAP150) is essential and sufficient for depressive-like behaviours in mice via a palmitoylation-dependent mechanism. EXPERIMENTAL APPROACH Depressive-like behaviours in mice were induced by chronic restraint stress (CRS) and chronic unpredictable mild stress (CUMS). Palmitoylated proteins in the basolateral amygdala (BLA) were assessed by an acyl-biotin exchange assay. Genetic and pharmacological approaches were used to investigate the role of the DHHC2-mediated AKAP150 palmitoylation signalling pathway in depressive-like behaviours. Electrophysiological recording, western blotting and co-immunoprecipitation were performed to define the mechanistic pathway. KEY RESULTS Chronic stress successfully induced depressive-like behaviours in mice and enhanced AKAP150 palmitoylation in the BLA, and a palmitoylation inhibitor was enough to reverse these changes. Blocking the AKAP150-PKA interaction with the peptide Ht-31 abolished the CRS-induced AKAP150 palmitoylation signalling pathway. DHHC2 expression and palmitoylation levels were both increased after chronic stress. DHHC2 knockdown prevented CRS-induced depressive-like behaviours, as well as attenuating AKAP150 signalling and synaptic transmission in the BLA in CRS-treated mice. CONCLUSION AND IMPLICATIONS These results delineate that DHHC2 modulates chronic stress-induced depressive-like behaviours and synaptic transmission in the BLA via the AKAP150 palmitoylation signalling pathway, and this pathway may be considered as a promising novel therapeutic target for major depressive disorder.
Collapse
Affiliation(s)
- Si-Ying Wang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Zhi-Xuan Xia
- Department of Pharmacology, School of Basic Medicine and Life Science, Hainan Medical University, Haikou, China
| | - Shao-Wei Yang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Wei-Kai Chen
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Yue-Ling Zhao
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Meng-Die Li
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Dan Tian
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Yue Pan
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Xiao-Shan Lin
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Xiao-Qian Zhu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Zhen Huang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Jian-Min Liu
- Department of Pharmacy, Wuhan No. 1 Hospital, Wuhan, China
| | - Zhong-Meng Lai
- Department of Anesthesiology, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Wu-Cheng Tao
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Medical University, Fuzhou, China
| | - Zu-Cheng Shen
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, China
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Medical University, Fuzhou, China
| |
Collapse
|
10
|
Li D, Li X, Li J, Liu J, Luo R, Li Y, Wang D, Zhou D, Zhang XY. Neurophysiological markers of disease severity and cognitive dysfunction in major depressive disorder: A TMS-EEG study. Int J Clin Health Psychol 2024; 24:100495. [PMID: 39282218 PMCID: PMC11402404 DOI: 10.1016/j.ijchp.2024.100495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/12/2024] [Indexed: 09/18/2024] Open
Abstract
Background Transcranial magnetic stimulation-electroencephalography (TMS-EEG) is a powerful technique to study the neuropathology and biomarkers of major depressive disorder (MDD). This study investigated cortical activity and its relationship with clinical symptoms and cognitive dysfunction in MDD patients by indexing TMS-EEG biomarkers in the dorsolateral prefrontal cortex (DLPFC). Methods 133 patients with MDD and 76 healthy individuals participated in this study. Single-pulse TMS was performed on the left DLPFC to obtain TMS-evoked potential (TEP) indices. TMS-EEG waveforms and components were determined by global mean field amplitude. We used the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) to measure participants' cognitive function. Results Patients with MDD had a lower excitatory P180 index compared to healthy controls, and P180 amplitude was negatively correlated with the severity of depressive and anxiety symptoms in patients with MDD. In the MDD group, P30 amplitude was negatively associated with RBANS Visuospatial/ Constructional index and total score. Conclusions TMS-EEG findings suggest that abnormal cortical excitation and inhibition induced by TMS on the DLPFC are associated with the severity of clinical symptoms and cognitive dysfunction in patients with MDD. P180 and P30 have the potential to serve as neurophysiological biomarkers of clinical symptoms and cognitive dysfunction in MDD patients, respectively.
Collapse
Affiliation(s)
- Deyang Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xingxing Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- Department of psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, Zhejiang, China
- Department of psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Jiaxin Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Junyao Liu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Ruichenxi Luo
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yanli Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Dongmei Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Dongsheng Zhou
- Department of psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, Zhejiang, China
- Department of psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Xiang-Yang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Dong J, Wei X, Huang Z, Tian J, Zhang W. Age-related changes of dopamine D1 and D2 receptors expression in parvalbumin-positive cells of the orbitofrontal and prelimbic cortices of mice. Front Neurosci 2024; 18:1364067. [PMID: 38903598 PMCID: PMC11187244 DOI: 10.3389/fnins.2024.1364067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 05/28/2024] [Indexed: 06/22/2024] Open
Abstract
Dopamine (DA) plays a pivotal role in reward processing, cognitive functions, and emotional regulation. The prefrontal cortex (PFC) is a critical brain region for these processes. Parvalbumin-positive (PV+) neurons are one of the major classes of inhibitory GABAergic neurons in the cortex, they modulate the activity of neighboring neurons, influencing various brain functions. While DA receptor expression exhibits age-related changes, the age-related changes of these receptors in PV+ neurons, especially in the PFC, remain unclear. To address this, we investigated the expression of DA D1 (D1R) and D2 (D2R) receptors in PV+ neurons within the orbitofrontal (OFC) and prelimbic (PrL) cortices at different postnatal ages (P28, P42, P56, and P365). We found that the expression of D1R and D2R in PV+ neurons showed both age- and region-related changes. PV+ neurons in the OFC expressed a higher abundance of D1 than those in the PrL, and those neurons in the OFC also showed higher co-expression of D1R and D2R than those in the PrL. In the OFC and PrL, D1R in PV+ neurons increased from P28 and reached a plateau at P42, then receded to express at P365. Meanwhile, D2R did not show significant age-related changes between the two regions except at P56. These results showed dopamine receptors in the prefrontal cortex exhibit age- and region-specific changes, which may contribute to the difference of these brain regions in reward-related brain functions.
Collapse
Affiliation(s)
- Jihui Dong
- Department of Neurobiology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, China
- Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| | - Xiaoyan Wei
- Department of Neurobiology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, China
- Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| | - Ziran Huang
- Department of Neurobiology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, China
- Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| | - Jing Tian
- Department of Neurobiology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, China
- Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| | - Wen Zhang
- Department of Neurobiology, School of Basic Medical Sciences, National Institute on Drug Dependence, Peking University, Beijing, China
- Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| |
Collapse
|
12
|
Duda JM, Moser AD, Ironside M, Null KE, Holsen LM, Zuo CS, Du F, Esfand SM, Chen X, Perlo S, Richards CE, Lobien R, Alexander M, Misra M, Goldstein JM, Pizzagalli DA. Effects of GABA, Sex, and Stress on Reward Learning in Current and Remitted Major Depression. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:606-615. [PMID: 38417785 PMCID: PMC11156537 DOI: 10.1016/j.bpsc.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/01/2024]
Abstract
BACKGROUND Neurocognitive factors including aberrant reward learning, blunted GABA (gamma-aminobutyric acid), and potentiated stress sensitivity have been linked to anhedonia, a hallmark depressive symptom, possibly in a sex-dependent manner. However, previous research has not investigated the putative associations among these factors or the extent to which they represent trait- or state-based vulnerabilities for depression. METHODS Young adults with current major depressive disorder (MDD) (n = 44), remitted MDD (n = 42), and healthy control participants (HCs) (n = 44), stratified by sex assigned at birth, underwent magnetic resonance spectroscopy to assess macromolecular contaminated GABA (GABA+) and then a reward learning task before and after acute stress. We assessed changes in reward learning after stress and associations with GABA+. RESULTS Results revealed blunted baseline reward learning in participants with remitted MDD versus participants with current MDD and HCs but, surprisingly, no differences between participants with current MDD and HCs. Reward learning was reduced following acute stress regardless of depressive history. GABA+ in the rostral anterior cingulate cortex, but not the dorsolateral prefrontal cortex, was associated with reduced baseline reward learning only in female participants. GABA+ did not predict stress-related changes in reward learning. CONCLUSIONS To our knowledge, this is the first study to investigate associations among GABA, reward learning, and stress reactivity in current versus past depression. Hypothesized depression-related differences in reward learning did not emerge, precluding claims about state versus trait vulnerabilities. However, our finding that blunted GABA was associated with greater reward learning in female participants provides novel insights into sex-selective associations between the frontal GABAergic inhibitory system and reward processing.
Collapse
Affiliation(s)
- Jessica M Duda
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, Massachusetts; Department of Psychology, Yale University, New Haven, Connecticut
| | - Amelia D Moser
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, Massachusetts; Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado
| | - Maria Ironside
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, Massachusetts; Laureate Institute for Brain Research, Tulsa, Oklahoma
| | - Kaylee E Null
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, Massachusetts; Department of Psychology, University of California Los Angeles, Los Angeles, California
| | - Laura M Holsen
- Harvard Medical School, Boston, Massachusetts; Division of Women's Health, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts; Department of Psychiatry, Brigham and Women's Hospital, Boston, Massachusetts
| | - Chun S Zuo
- Harvard Medical School, Boston, Massachusetts; McLean Imaging Center, McLean Hospital, Belmont, Massachusetts
| | - Fei Du
- Harvard Medical School, Boston, Massachusetts; McLean Imaging Center, McLean Hospital, Belmont, Massachusetts
| | - Shiba M Esfand
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, Massachusetts
| | - Xi Chen
- Harvard Medical School, Boston, Massachusetts; McLean Imaging Center, McLean Hospital, Belmont, Massachusetts
| | - Sarah Perlo
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, Massachusetts
| | - Christine E Richards
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, Massachusetts
| | - Rachel Lobien
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, Massachusetts
| | - Madeline Alexander
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, Massachusetts
| | - Madhusmita Misra
- Harvard Medical School, Boston, Massachusetts; Division of Pediatric Endocrinology, Massachusetts General Hospital, Boston, Massachusetts
| | - Jill M Goldstein
- Harvard Medical School, Boston, Massachusetts; Division of Women's Health, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts; Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts; Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Diego A Pizzagalli
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, Massachusetts; Harvard Medical School, Boston, Massachusetts; McLean Imaging Center, McLean Hospital, Belmont, Massachusetts.
| |
Collapse
|
13
|
Tran KH, Luki J, Hanstock S, Hanstock CC, Seres P, Aitchison K, Shandro T, Le Melledo JM. The impact of matching for reproductive status on the comparison of magnetic spectroscopic measurements of glutamate and gamma-aminobutyric acid + in the medial prefrontal cortex of women with major depression. J Affect Disord 2024; 351:396-402. [PMID: 38244791 DOI: 10.1016/j.jad.2024.01.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 01/08/2024] [Accepted: 01/14/2024] [Indexed: 01/22/2024]
Abstract
OBJECTIVES The role played by medial prefrontal cortex (MPFC) glutamate (Glu) and gamma-aminobutyric acid (GABA) in the pathophysiology and the treatment of major depression (MD) is increasingly recognized. Although measurements of MPFC GABA and Glu have been shown to be sensitive to physiological fluctuations of female hormones, none of the magnetic resonance spectroscopy (MRS) investigations of MPFC Glu and GABA in MD have controlled for possible bias effect of the reproductive stage of the women included. METHODS MPFC Glu and GABA+ (which include homocarnosine and macromolecules) referenced to creatine and phosphocreatine, were measured via magnetic resonance spectroscopy (MRS) using a 3-Tesla magnet in 24 women with MD and 24 healthy women paired for reproductive status. All participants were unmedicated. RESULTS There were no statistical differences in either MPFC Glu [95 % CI: (-0.025, 0.034)] or MPFC GABA+ [95 % CI: (-0.005, 0.017)] between women with MD and healthy controls. CONCLUSIONS Our investigation does not support abnormalities in measurement of MPFC Glu and GABA in MD women when stringent control for reproductive status is performed. As a result of the inherent limitations of MRS methodology, our results do not preclude glutamatergic and GABAergic dysregulations in the MPFC of women with MD.
Collapse
Affiliation(s)
- Kim H Tran
- University of Alberta, Department of Psychiatry, Edmonton, AB, Canada
| | - Jessica Luki
- University of Alberta, Department of Psychiatry, Edmonton, AB, Canada
| | - Sarah Hanstock
- University of Alberta, Department of Psychiatry, Edmonton, AB, Canada
| | | | - Peter Seres
- University of Alberta, Department of Biomedical Engineering, Edmonton, AB, Canada
| | - Katherine Aitchison
- University of Alberta, Department of Psychiatry, Edmonton, AB, Canada; University of Alberta, Department of Medical Genetics, Edmonton, AB, Canada; University of Alberta, Neuroscience and Mental Health Institute, Edmonton, AB, Canada; University of Alberta, Women and Children's Research Institute, Edmonton, AB, Canada; Northern Ontario School of Medicine, Division of Clinical Sciences, Psychiatry Section, Thunder Bay, ON, Canada
| | - Tami Shandro
- Lois Hole Hospital for Women, Royal Alexandra Hospital, Edmonton, AB, Canada
| | | |
Collapse
|
14
|
Willinger D, Häberling I, Ilioska I, Berger G, Walitza S, Brem S. Weakened effective connectivity between salience network and default mode network during resting state in adolescent depression. Front Psychiatry 2024; 15:1386984. [PMID: 38638415 PMCID: PMC11024787 DOI: 10.3389/fpsyt.2024.1386984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/18/2024] [Indexed: 04/20/2024] Open
Abstract
Adolescent major depressive disorder (MDD) is associated with altered resting-state connectivity between the default mode network (DMN) and the salience network (SN), which are involved in self-referential processing and detecting and filtering salient stimuli, respectively. Using spectral dynamical causal modelling, we investigated the effective connectivity and input sensitivity between key nodes of these networks in 30 adolescents with MDD and 32 healthy controls while undergoing resting-state fMRI. We found that the DMN received weaker inhibition from the SN and that the medial prefrontal cortex and the anterior cingulate cortex showed reduced self-inhibition in MDD, making them more prone to external influences. Moreover, we found that selective serotonin reuptake inhibitor (SSRI) intake was associated with decreased and increased self-inhibition of the SN and DMN, respectively, in patients. Our findings suggest that adolescent MDD is characterized by a hierarchical imbalance between the DMN and the SN, which could affect the integration of emotional and self-related information. We propose that SSRIs may help restore network function by modulating excitatory/inhibitory balance in the DMN and the SN. Our study highlights the potential of prefrontal-amygdala interactions as a biomarker and a therapeutic target for adolescent depression.
Collapse
Affiliation(s)
- David Willinger
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- Department of Psychology and Psychodynamics, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Isabelle Häberling
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland
| | - Iva Ilioska
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Gregor Berger
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Silvia Brem
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
15
|
Li H, Luo X, Qi K, Lv Y, Kan J, Yang C, Lin X, Tao J, Zhang W, Liu Y, Rong K, Wang A, Jiang Z, Li X. Glutamate Chemical Exchange Saturation Transfer (GluCEST) MRI to Evaluate the Rapid Antidepressant Effects of Ketamine in the Hippocampus of Rat Depression Model. J Magn Reson Imaging 2024; 59:1373-1381. [PMID: 37496196 DOI: 10.1002/jmri.28921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND Ketamine is a quick acting antidepressant drug, and an accurate detection method is lacking. Ketamine's effects in a rat depression model have not previously been well explored using glutamate chemical exchange saturation transfer (GluCEST). PURPOSE To investigate the GluCEST changes of chronic unpredictable mild stress (CUMS) rats after receiving either ketamine or saline injection. STUDY TYPE Randomized animal model trial. ANIMAL MODEL 12 CUMS and 6 Sprague-Dawley rats. Divided into three groups: ketamine (N = 6), saline (N = 6), and control (N = 6). FIELD STRENGTH/SEQUENCE 7.0 T/the sequence is GluCEST and 1 H MR spectroscopy (MRS). ASSESSMENT The CUMS rats were exposed to different stress factors for 8 weeks. The glutamate concentration in the hippocampus was assessed by the GluCEST,1 H MRS, and the high-performance liquid chromatography (HPLC). STATISTICAL TESTS The t-test, Mann-Whitney U test, and Pearson's correlation. RESULTS In depression conditions, GluCEST signals were lower in the bilateral hippocampus than in control group. Thirty minutes after ketamine injection, the GluCEST signals in the bilateral hippocampus were higher compared with the saline group (left: 2.99 ± 0.34 [Control] vs. 2.44 ± 0.20 [Saline] vs. 2.85 ± 0.11 [Ketamine]; right: 2.97 ± 0.28 [Control] vs. 2.49 ± 0.25 [Saline] vs. 2.86 ± 0.19 [Ketamine]). In 1 H MRS, significant changes were only observed in the left hippocampus (2.00 ± 0.16 [Control] vs. 1.81 ± 0.09 [Saline] vs. 2.04 ± 0.14 [Ketamine]). Furthermore, HPLC results showed similar trends to those observed in the GluCEST results (left: 2.32 ± 0.22 [Control] vs. 1.96 ± 0.11 [Saline] vs. 2.18 ± 0.11 [Ketamine]; right: 2.35 ± 0.18 [Control] vs. 1.87 ± 0.16 [Saline] vs. 2.09 ± 0.08 [Ketamine]). DATA CONCLUSION GluCEST can sensitively evaluate the ketamine's antidepressant effects by detecting the fast increase in glutamate concentration. LEVEL OF EVIDENCE 1 TECHNICAL EFFICACY STAGE: 1.
Collapse
Affiliation(s)
- Hao Li
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| | - Xunrong Luo
- Department of Radiology, Chongqing University Cancer Hospital, Chongqing University, Chongqing, China
| | - Kai Qi
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| | - Yijie Lv
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| | - Junnan Kan
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| | - Changfeng Yang
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| | - Xiaoqian Lin
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| | - Jin Tao
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| | - Wei Zhang
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| | - Yan Liu
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| | - Kang Rong
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| | - Ailing Wang
- Department of Clinical Laboratory, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Zhongde Jiang
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| | - Xianglin Li
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| |
Collapse
|
16
|
Long J, Song X, Wang C, Peng L, Niu L, Li Q, Huang R, Zhang R. Global-brain functional connectivity related with trait anxiety and its association with neurotransmitters and gene expression profiles. J Affect Disord 2024; 348:248-258. [PMID: 38159654 DOI: 10.1016/j.jad.2023.12.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/30/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Numerous studies have explored the neural correlates of trait anxiety, a predisposing factor for several stress-related disorders. However, the findings from previous studies are inconsistent, which might be due to the limited regions of interest (ROI). A recent approach, named global-brain functional connectivity (GBC), has been demonstrated to address the shortcomings of ROI-based analysis. Furthermore, research on the transcriptome-connectome association has provided an approach to link the microlevel transcriptome profile with the macroscale brain network. In this paper, we aim to explore the neurobiology of trait anxiety with an imaging transcriptomic approach using GBC, biological neurotransmitters, and transcriptome profiles. METHODS Using a sample of resting-state fMRI data, we investigated trait anxiety-related alteration in GBC. We further used behavioral analysis, spatial correlation analysis, and postmortem gene expression to separately assess the cognitive functions, neurotransmitters, and transcriptional profiles related to alteration in GBC in individuals with trait anxiety. RESULTS GBC values in the ventromedial prefrontal cortex and the precuneus were negatively correlated with levels of trait anxiety. This alteration was correlated with behavioral terms including social cognition, emotion, and memory. A strong association was revealed between trait anxiety-related alteration in GBC and neurotransmitters, including dopaminergic, serotonergic, GABAergic, and glutamatergic systems in the ventromedial prefrontal cortex and the precuneus. The transcriptional profiles explained the functional connectivity, with correlated genes enriched in transmembrane signaling. LIMITATIONS Several limitations should be taken into account in this research. For example, future research should consider using some different approaches based on dynamic or task-based functional connectivity analysis, include more neurotransmitter receptors, additional gene expression data from different samples or more genes related to other stress-related disorders. Meanwhile, it is of great significance to include a larger sample size of individuals with a diagnosis of major depression disorder or other disorders for analysis and comparison and apply stricter multiple-comparison correction and threshold settings in future research. CONCLUSIONS Our research employed multimodal data to investigate GBC in the context of trait anxiety and to establish its associations with neurotransmitters and transcriptome profiles. This approach may improve understanding of the neural mechanism, together with the biological and molecular genetic foundations of GBC in trait anxiety.
Collapse
Affiliation(s)
- Jixin Long
- Laboratory of Cognitive Control and Brain Healthy, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiaoqi Song
- Laboratory of Cognitive Control and Brain Healthy, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Chanyu Wang
- Laboratory of Cognitive Control and Brain Healthy, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China; Faculty of Medicine and Health Sciences, Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) lab, Ghent University, Ghent, Belgium
| | - Lanxin Peng
- Laboratory of Cognitive Control and Brain Healthy, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Lijing Niu
- Laboratory of Cognitive Control and Brain Healthy, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Qian Li
- Laboratory of Cognitive Control and Brain Healthy, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Ruiwang Huang
- School of Psychology, South China Normal University, Guangzhou, China
| | - Ruibin Zhang
- Laboratory of Cognitive Control and Brain Healthy, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China; Department of Psychiatry, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
17
|
Alizadeh Pahlavani H. Possible role of exercise therapy on depression: Effector neurotransmitters as key players. Behav Brain Res 2024; 459:114791. [PMID: 38048912 DOI: 10.1016/j.bbr.2023.114791] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 12/06/2023]
Abstract
About 280 million people suffer from depression as the most common neurological disorder and the most common cause of death worldwide. Exercise with serotonin released in the brain by the 5-HT3-IGF-1 mechanism can lead to antidepressant effects. Swimming exercise has antidepressant effects by increasing the sensitivity of serotonin 5-HT2 receptors and postsynaptic 5-HT1A receptors, increasing 5-HT and 5HIAA levels, increasing TPH and serotonin, and decreasing inflammatory levels of IFN-γ and TNF-α. Anaerobic and aerobic exercises increase beta-endorphin, enkephalin, and dynorphin and have antidepressant effects. Exercise by increasing dopamine, D1R, and D2R leads to the expression of BDNF and activation of TrkB and has antidepressant behavior. Exercise leads to a significant increase in GABAAR (γ2 and α2 subunits) and reduces neurodegenerative disorders caused by GABA imbalance through anti-inflammatory pathways. By increasing glutamate and PGC1α and reducing glutamatergic neurotoxicity, exercise enhances neurogenesis and synaptogenesis and prevents neurodegeneration and the onset of depression. Irisin release during exercise shows an important role in depression by increasing dopamine, BDNF, NGF, and IGF-1 and decreasing inflammatory mediators such as IL-6 and IL-1β. In addition, exercise-induced orexin and NPY can increase hippocampal neurogenesis and relieve depression. After exercise, the tryptophan to large neutral amino acids (TRP/LNAA) ratio and the tryptophan to branched-chain amino acids (BCAA) ratio increase, which may have antidepressant effects. The expression of M5 receptor and nAChR α7 increases after exercise and significantly increases dopamine and acetylcholine and ameliorates depression. It appears that during exercise, muscarinic receptors can reduce depression through dopamine in the absence of acetylcholine. Therefore, exercise can be used to reduce depression by affecting neurotransmitters, neuromodulators, cytokines, and/or neurotrophins.
Collapse
|
18
|
Li X, He C, Shen M, Wang M, Zhou J, Chen D, Zhang T, Pu Y. Effects of aqueous extracts and volatile oils prepared from Huaxiang Anshen decoction on p-chlorophenylalanine-induced insomnia mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117331. [PMID: 37858748 DOI: 10.1016/j.jep.2023.117331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Insomnia occurs frequently in modern society, and its common symptoms include difficulty in falling asleep and decreased sleep quality and time, memory, and attention. With the advantages of having few side-effects and reduced drug-dependence, a compound traditional Chinese medicine (TCM) prescription called Huaxiang Anshen Decoction (HAD) has been widely used in clinical practice in China mainly for primary insomnia treatment. Although the effects of volatile oils from TCM herbs have been increasingly reported, volatile oils in HAD are conventionally neglected because of its preparation process and clinical usage. Therefore, exploring the anti-insomnia effects of volatile oils from HAD is of great importance. AIM OF THE STUDY The sedative and hypnotic effects of the conventional aqueous extracts, the volatile oils from HAD, and their combinations were investigated. METHODS The main components in HAD volatile oils (HAD-Oils), were analyzed through gas chromatography-mass spectrometry (GC-MS). The HAD volatile oil inclusion complex (HAD-OIC) was prepared with β-cyclodextrin, and characterized. P-chlorophenylalanine (PCPA) was used to induce insomnia mice model and the test groups of HAD aqueous extract (HAD-AE), HAD-OIC and their combination (AE-OIC). An open field test was used in evaluating the mice's activities, and the levels of 5-hydroxytryptamine (5-HT) in mice sera, glutamate (Glu) in the hypothalamus, and γ-aminobutyric acid (γ-GABA) and dopamine (DA) in the brain tissues were assayed by enzyme-linked immunosorbent assay (ELISA). RESULTS A total 74 components in HAD-Oil were determined by GC/MS, and cyperenone (20.46%) and α-cyperone (10.39%) had the highest relative content. The characterization results of the physical phase showed that volatile oils were successfully encapsulated by β-cyclodextrin and HAD-OIC was produced. The average encapsulation rates of cyperenone and α-cyperone were 79.93% and 71.96%, respectively. The results of pharmacology study showed that all the test groups increased the body weight and decreased voluntary activity when compared with the model group (P < 0.05). The HAD-AE, HAD-OIC, and AE-OIC groups increased the levels of 5-HT in the sera and DA and Glu/γ-GABA in the brains, and AE-OIC groups showed better performance than the other test groups. CONCLUSIONS HAD-Oil exerts sedative and hypnotic effects, which are increased when it is used with HAD-AEs. This result provides a favorable experimental evidence that volatile oils should be retained for the further development of HAD.
Collapse
Affiliation(s)
- Xinye Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chao He
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Min Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Mingyun Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jingwen Zhou
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Dongying Chen
- Laboratory of Pharmaceutical Analysis, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yiqiong Pu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
19
|
Baek JH, Park H, Kang H, Kim R, Kang JS, Kim HJ. The Role of Glutamine Homeostasis in Emotional and Cognitive Functions. Int J Mol Sci 2024; 25:1302. [PMID: 38279303 PMCID: PMC10816396 DOI: 10.3390/ijms25021302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
Glutamine (Gln), a non-essential amino acid, is synthesized de novo by glutamine synthetase (GS) in various organs. In the brain, GS is exclusively expressed in astrocytes under normal physiological conditions, producing Gln that takes part in glutamatergic neurotransmission through the glutamate (Glu)-Gln cycle. Because the Glu-Gln cycle and glutamatergic neurotransmission play a pivotal role in normal brain activity, maintaining Gln homeostasis in the brain is crucial. Recent findings indicated that a neuronal Gln deficiency in the medial prefrontal cortex in rodents led to depressive behaviors and mild cognitive impairment along with lower glutamatergic neurotransmission. In addition, exogenous Gln supplementation has been tested for its ability to overcome neuronal Gln deficiency and reverse abnormal behaviors induced by chronic immobilization stress (CIS). Although evidence is accumulating as to how Gln supplementation contributes to normalizing glutamatergic neurotransmission and the Glu-Gln cycle, there are few reviews on this. In this review, we summarize recent evidence demonstrating that Gln supplementation ameliorates CIS-induced deleterious changes, including an imbalance of the Glu-Gln cycle, suggesting that Gln homeostasis is important for emotional and cognitive functions. This is the first review of detailed mechanistic studies on the effects of Gln supplementation on emotional and cognitive functions.
Collapse
Affiliation(s)
| | | | | | | | | | - Hyun Joon Kim
- Department of Anatomy and Convergence Medical Sciences, College of Medicine, Institute of Medical Science, Tyrosine Peptide Multiuse Research Group, Anti-Aging Bio Cell Factory Regional Leading Research Center, Gyeongsang National University, 15 Jinju-daero 816 Beongil, Jinju 52727, Gyeongnam, Republic of Korea; (J.H.B.); (H.P.); (H.K.); (R.K.); (J.S.K.)
| |
Collapse
|
20
|
Alonso S, Tyborowska A, Ikani N, Mocking RJT, Figueroa CA, Schene AH, Deco G, Kringelbach ML, Cabral J, Ruhé HG. Depression recurrence is accompanied by longer periods in default mode and more frequent attentional and reward processing dynamic brain-states during resting-state activity. Hum Brain Mapp 2023; 44:5770-5783. [PMID: 37672593 PMCID: PMC10619399 DOI: 10.1002/hbm.26475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 07/15/2023] [Accepted: 08/16/2023] [Indexed: 09/08/2023] Open
Abstract
Recurrence in major depressive disorder (MDD) is common, but neurobiological models capturing vulnerability for recurrences are scarce. Disturbances in multiple resting-state networks have been linked to MDD, but most approaches focus on stable (vs. dynamic) network characteristics. We investigated how the brain's dynamical repertoire changes after patients transition from remission to recurrence of a new depressive episode. Sixty two drug-free, MDD-patients with ≥2 episodes underwent a baseline resting-state fMRI scan when in remission. Over 30-months follow-up, 11 patients with a recurrence and 17 matched-remitted MDD-patients without a recurrence underwent a second fMRI scan. Recurrent patterns of functional connectivity were characterized by applying Leading Eigenvector Dynamics Analysis (LEiDA). Differences between baseline and follow-up were identified for the 11 non-remitted patients, while data from the 17 matched-remitted patients was used as a validation dataset. After the transition into a depressive state, basal ganglia-anterior cingulate cortex (ACC) and visuo-attentional networks were detected significantly more often, whereas default mode network activity was found to have a longer duration. Additionally, the fMRI signal in the basal ganglia-ACC areas underlying the reward network, were significantly less synchronized with the rest of the brain after recurrence (compared to a state of remission). No significant changes were observed in the matched-remitted patients who were scanned twice while in remission. These findings characterize changes that may be associated with the transition from remission to recurrence and provide initial evidence of altered dynamical exploration of the brain's repertoire of functional networks when a recurrent depressive episode occurs.
Collapse
Affiliation(s)
- Sonsoles Alonso
- Department of Biomedical Sciences of Cells and Systems, Cognitive Neuroscience Center, University Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
- Department of Clinical Medicine, Center for Functionally Integrative NeuroscienceAarhus UniversityAarhusDenmark
| | - Anna Tyborowska
- Department of PsychiatryRadboud University Medical CentreNijmegenthe Netherlands
- Donders Institute for Brain, Cognition and BehaviorRadboud UniversityNijmegenthe Netherlands
| | - Nessa Ikani
- Department of PsychiatryRadboud University Medical CentreNijmegenthe Netherlands
- Depression Expertise CenterProPersona Mental Health CareNijmegenthe Netherlands
- Overwaal Centre of Expertise for Anxiety Disorders, OCD and PTSDPro Persona Mental Health CareNijmegenthe Netherlands
| | - Roel J. T. Mocking
- Department of PsychiatryAmsterdam UMC, Location AMCAmsterdamthe Netherlands
| | - Caroline A. Figueroa
- Department of PsychiatryUniversity Medical Centre UtrechtUtrechtthe Netherlands
- School of Social WelfareUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Aart H. Schene
- Department of PsychiatryRadboud University Medical CentreNijmegenthe Netherlands
- Donders Institute for Brain, Cognition and BehaviorRadboud UniversityNijmegenthe Netherlands
| | - Gustavo Deco
- Department of Information and Communication Technologies, Center for Brain and Cognition, Computational Neuroscience GroupUniversitat Pompeu FabraBarcelonaSpain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA)BarcelonaSpain
| | - Morten L. Kringelbach
- Centre for Eudaimonia and Human Flourishing, Linacre CollegeUniversity of OxfordOxfordUK
- Center for Music in the BrainAarhus UniversityAarhusDenmark
- Department of PsychiatryUniversity of OxfordOxfordUK
| | - Joana Cabral
- Centre for Eudaimonia and Human Flourishing, Linacre CollegeUniversity of OxfordOxfordUK
- Life and Health Sciences Research Institute (ICVS), School of MedicineUniversity of MinhoBragaPortugal
| | - Henricus G. Ruhé
- Department of PsychiatryRadboud University Medical CentreNijmegenthe Netherlands
- Donders Institute for Brain, Cognition and BehaviorRadboud UniversityNijmegenthe Netherlands
| |
Collapse
|
21
|
VanElzakker MB, Tillman EM, Yonker LM, Ratai EM, Georgiopoulos AM. Neuropsychiatric adverse effects from CFTR modulators deserve a serious research effort. Curr Opin Pulm Med 2023; 29:603-609. [PMID: 37655981 PMCID: PMC10552811 DOI: 10.1097/mcp.0000000000001014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
PURPOSE OF REVIEW This review highlights the problem of neuropsychiatric adverse effects (AEs) associated with elexacaftor/tezacaftor/ivacaftor (ETI), current suboptimal mitigation approaches, a novel testable mechanistic hypothesis, and potential solutions requiring further research. RECENT FINDINGS Studies show that a minority of persons with cystic fibrosis (PwCF) initiating cystic fibrosis transmembrane conductance regulator (CFTR) modulators experience neuropsychiatric AEs including worsening mood, cognition, anxiety, sleep, and suicidality. The GABA-A receptor is a ligand-gated chloride channel, and magnetic resonance spectroscopy neuroimaging studies have shown that reduced GABA expression in rostral anterior cingulate cortex is associated with anxiety and depression. Recent research details the impact of peripheral inflammation and the gut-brain axis on central neuroinflammation. Plasma ETI concentrations and sweat chloride have been evaluated in small studies of neuropsychiatric AEs but not validated to guide dose titration or correlated with pharmacogenomic variants or safety/efficacy. SUMMARY Although ETI is well tolerated by most PwCF, some experience debilitating neuropsychiatric AEs. In some cases, these AEs may be driven by modulation of CFTR and chloride transport within the brain. Understanding biological mechanisms is a critical next step in identifying which PwCF are likely to experience AEs, and in developing evidence-based strategies to mitigate them, while retaining modulator efficacy.
Collapse
|
22
|
Zeng Z, Dong Y, Zou L, Xu D, Luo X, Chu T, Wang J, Ren Q, Liu Q, Li X. GluCEST Imaging and Structural Alterations of the Bilateral Hippocampus in First-Episode and Early-Onset Major Depression Disorder. J Magn Reson Imaging 2023; 58:1431-1440. [PMID: 36808678 DOI: 10.1002/jmri.28651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Glutamate dysregulation is one of the key pathogenic mechanisms of major depressive disorder (MDD), and glutamate chemical exchange saturation transfer (GluCEST) has been used for glutamate measurement in some brain diseases but rarely in depression. PURPOSE To investigate the GluCEST changes in hippocampus in MDD and the relationship between glutamate and hippocampal subregional volumes. STUDY TYPE Cross-sectional. SUBJECTS Thirty-two MDD patients (34% males; 22.03 ± 7.21 years) and 47 healthy controls (HCs) (43% males; 22.00 ± 3.28 years). FIELD STRENGTH/SEQUENCE 3.0 T; magnetization prepared rapid gradient echo (MPRAGE) for three-dimensional T1-weighted images, two-dimensional turbo spin echo GluCEST, and multivoxel chemical shift imaging (CSI) for proton magnetic resonance spectroscopy (1 H MRS). ASSESSMENT GluCEST data were quantified by magnetization transfer ratio asymmetry (MTRasym ) analysis and assessed by the relative concentration of 1 H MRS-measured glutamate. FreeSurfer was used for hippocampus segmentation. STATISTICAL TESTS The independent sample t test, Mann-Whitney U test, Spearman's correlation, and partial correlation analysis were used. P < 0.05 was considered statistically significant. RESULTS In the left hippocampus, GluCEST values were significantly decreased in MDD (2.00 ± 1.08 [MDD] vs. 2.62 ± 1.41 [HCs]) and showed a significantly positive correlation with Glx/Cr (r = 0.37). GluCEST values were significantly positively correlated with the volumes of CA1 (r = 0.40), subiculum (r = 0.40) in the left hippocampus and CA1 (r = 0.51), molecular_layer_HP (r = 0.50), GC-ML-DG (r = 0.42), CA3 (r = 0.44), CA4 (r = 0.44), hippocampus-amygdala-transition-area (r = 0.46), and the whole hippocampus (r = 0.47) in the right hippocampus. Hamilton Depression Rating Scale scores showed significantly negative correlations with the volumes of the left presubiculum (r = -0.40), left parasubiculum (r = -0.47), and right presubiculum (r = -0.41). DATA CONCLUSION GluCEST can be used to measure glutamate changes and help to understand the mechanism of hippocampal volume loss in MDD. Hippocampal volume changes are associated with disease severity. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Zhen Zeng
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| | - Yingying Dong
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, China
| | - Linxuan Zou
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| | - Donghao Xu
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| | - Xunrong Luo
- Department of Radiology, Cancer Hospital of Chongqing University, Chongqing, China
| | - Tongpeng Chu
- Department of Radiology, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai, China
| | - Jing Wang
- Department of Radiology, Binzhou Medical University Hospital, Binzhou, China
| | - Qingfa Ren
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| | - Quanyuan Liu
- Department of Radiology, Binzhou Medical University Hospital, Binzhou, China
| | - Xianglin Li
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| |
Collapse
|
23
|
Wang J, Liu G, Xu K, Ai K, Huang W, Zhang J. The role of neurotransmitters in mediating the relationship between brain alterations and depressive symptoms in patients with inflammatory bowel disease. Hum Brain Mapp 2023; 44:5357-5371. [PMID: 37530546 PMCID: PMC10543356 DOI: 10.1002/hbm.26439] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/07/2023] [Accepted: 07/10/2023] [Indexed: 08/03/2023] Open
Abstract
A growing body of evidence from neuroimaging studies suggests that inflammatory bowel disease (IBD) is associated with functional and structural alterations in the central nervous system and that it has a potential link to emotional symptoms, such as anxiety and depression. However, the neurochemical underpinnings of depression symptoms in IBD remain unclear. We hypothesized that changes in cortical gamma-aminobutyric acid (GABA+) and glutamine (Glx) concentrations are related to cortical thickness and resting-state functional connectivity in IBD as compared to healthy controls. To test this, we measured whole-brain cortical thickness and functional connectivity within the medial prefrontal cortex (mPFC), as well as the concentrations of neurotransmitters in the same brain region. We used the edited magnetic resonance spectroscopy (MRS) with the MEGA-PRESS sequence at a 3 T scanner to quantitate the neurotransmitter levels in the mPFC. Subjects with IBD (N = 37) and healthy control subjects (N = 32) were enrolled in the study. Compared with healthy controls, there were significantly decreased GABA+ and Glx concentrations in the mPFC of patients with IBD. The cortical thickness of patients with IBD was thin in two clusters that included the right medial orbitofrontal cortex and the right posterior cingulate cortex. A seed-based functional connectivity analysis indicated that there was higher connectivity of the mPFC with the left precuneus cortex (PC) and the posterior cingulate cortex, and conversely, lower connectivity in the left frontal pole was observed. The functional connectivity between the mPFC and the left PC was negatively correlated with the IBD questionnaire score (r = -0.388, p = 0.018). GABA+ concentrations had a negative correlation with the Hamilton Depression Scale (HAMD) score (r = -0.497, p = 0.002). Glx concentration was negatively correlated with the HAMD score (r = -0.496, p = 0.002) and positively correlated with the Short-Form McGill Pain Questionnaire score (r = 0.330, p = 0.046, uncorrected). There was a significant positive correlation between the ratio of Glx to GABA+ and the HAMD score (r = 0.428, p = 0.008). Mediation analysis revealed that GABA+ significantly mediated the main effect of the relationship between the structural and functional alterations and the severity of depression in patients with IBD. Our study provides initial evidence of neurochemistry that can be used to identify potential mechanisms underlying the modulatory effects of GABA+ on the development of depression in patients with IBD.
Collapse
Affiliation(s)
- Jun Wang
- Department of Magnetic ResonanceLanzhou University Second HospitalLanzhouChina
- Second Clinical SchoolLanzhou UniversityLanzhouChina
- Gansu Province Clinical Research Center for Functional and Molecular ImagingLanzhou University Second HospitalLanzhouChina
| | - Guangyao Liu
- Department of Magnetic ResonanceLanzhou University Second HospitalLanzhouChina
- Gansu Province Clinical Research Center for Functional and Molecular ImagingLanzhou University Second HospitalLanzhouChina
| | - Kun Xu
- Department of Magnetic ResonanceLanzhou University Second HospitalLanzhouChina
- Second Clinical SchoolLanzhou UniversityLanzhouChina
- Gansu Province Clinical Research Center for Functional and Molecular ImagingLanzhou University Second HospitalLanzhouChina
| | - Kai Ai
- Deparment of Clinical and Technical Support, Philips HealthcareXi'anChina
| | - Wenjing Huang
- Department of Magnetic ResonanceLanzhou University Second HospitalLanzhouChina
- Second Clinical SchoolLanzhou UniversityLanzhouChina
- Gansu Province Clinical Research Center for Functional and Molecular ImagingLanzhou University Second HospitalLanzhouChina
| | - Jing Zhang
- Department of Magnetic ResonanceLanzhou University Second HospitalLanzhouChina
- Second Clinical SchoolLanzhou UniversityLanzhouChina
- Gansu Province Clinical Research Center for Functional and Molecular ImagingLanzhou University Second HospitalLanzhouChina
| |
Collapse
|
24
|
Stanca S, Rossetti M, Bongioanni P. The Cerebellum's Role in Affective Disorders: The Onset of Its Social Dimension. Metabolites 2023; 13:1113. [PMID: 37999209 PMCID: PMC10672979 DOI: 10.3390/metabo13111113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023] Open
Abstract
Major Depressive Disorder (MDD) and Bipolar Disorder (BD) are the most frequent mental disorders whose indeterminate etiopathogenesis spurs to explore new aetiologic scenarios. In light of the neuropsychiatric symptoms characterizing Cerebellar Cognitive Affective Syndrome (CCAS), the objective of this narrative review is to analyze the involvement of the cerebellum (Cbm) in the onset of these conditions. It aims at detecting the repercussions of the Cbm activities on mood disorders based on its functional subdivision in vestibulocerebellum (vCbm), pontocerebellum (pCbm) and spinocerebellum (sCbm). Despite the Cbm having been, for decades, associated with somato-motor functions, the described intercellular pathways, without forgiving the molecular impairment and the alteration in the volumetric relationships, make the Cbm a new important therapeutic target for MDD and BD. Given that numerous studies have showed its activation during mnestic activities and socio-emotional events, this review highlights in the Cbm, in which the altered external space perception (vCbm) is strictly linked to the cognitive-limbic Cbm (pCbm and sCbm), a crucial role in the MDD and BD pathogenesis. Finally, by the analysis of the cerebellar activity, this study aims at underlying not only the Cbm involvement in affective disorders, but also its role in social relationship building.
Collapse
Affiliation(s)
- Stefano Stanca
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Via Savi 10, 56126 Pisa, Italy
- NeuroCare Onlus, 56100 Pisa, Italy
| | - Martina Rossetti
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Via Savi 10, 56126 Pisa, Italy
- NeuroCare Onlus, 56100 Pisa, Italy
| | - Paolo Bongioanni
- NeuroCare Onlus, 56100 Pisa, Italy
- Medical Specialties Department, Azienda Ospedaliero-Universitaria Pisana, 56100 Pisa, Italy
| |
Collapse
|
25
|
Piao J, Wang Y, Zhang T, Zhao J, Lv Q, Ruan M, Yu Q, Li B. Antidepressant-like Effects of Representative Types of Food and Their Possible Mechanisms. Molecules 2023; 28:6992. [PMID: 37836833 PMCID: PMC10574116 DOI: 10.3390/molecules28196992] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/22/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023] Open
Abstract
Depression is a mental disorder characterized by low mood, lack of motivation, negative cognitive outlook, and sleep problems. Suicide may occur in severe cases, although suicidal thoughts are not seen in all cases. Globally, an estimated 350 million individuals grapple with depression, as reported by the World Health Organization. At present, drug and psychological treatments are the main treatments, but they produce insufficient responses in many patients and fail to work at all in many others. Consequently, treating depression has long been an important topic in society. Given the escalating prevalence of depression, a comprehensive strategy for managing its symptoms and impacts has garnered significant attention. In this context, nutritional psychiatry emerges as a promising avenue. Extensive research has underscored the potential benefits of a well-rounded diet rich in fruits, vegetables, fish, and meat in alleviating depressive symptoms. However, the intricate mechanisms linking dietary interventions to brain function alterations remain largely unexplored. This review delves into the intricate relationship between dietary patterns and depression, while exploring the plausible mechanisms underlying the impact of dietary interventions on depression management. As we endeavor to unveil the pathways through which nutrition influences mental well-being, a holistic perspective that encompasses multidisciplinary strategies gains prominence, potentially reshaping how we approach and address depression.
Collapse
Affiliation(s)
- Jingjing Piao
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China; (J.P.); (T.Z.); (J.Z.); (Q.L.); (M.R.); (Q.Y.)
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, China
| | - Yingwei Wang
- Changchun Zhuoyi Biological Co., Ltd., Changchun 130616, China;
| | - Tianqi Zhang
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China; (J.P.); (T.Z.); (J.Z.); (Q.L.); (M.R.); (Q.Y.)
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, China
| | - Jiayu Zhao
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China; (J.P.); (T.Z.); (J.Z.); (Q.L.); (M.R.); (Q.Y.)
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, China
| | - Qianyu Lv
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China; (J.P.); (T.Z.); (J.Z.); (Q.L.); (M.R.); (Q.Y.)
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, China
| | - Mengyu Ruan
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China; (J.P.); (T.Z.); (J.Z.); (Q.L.); (M.R.); (Q.Y.)
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, China
| | - Qin Yu
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China; (J.P.); (T.Z.); (J.Z.); (Q.L.); (M.R.); (Q.Y.)
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China; (J.P.); (T.Z.); (J.Z.); (Q.L.); (M.R.); (Q.Y.)
- Engineering Laboratory for Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun 130041, China
- Jilin Provincial Key Laboratory on Target of Traditional Chinese Medicine with Anti-Depressive Effect, Changchun 130041, China
| |
Collapse
|
26
|
Gudmundson AT, Koo A, Virovka A, Amirault AL, Soo M, Cho JH, Oeltzschner G, Edden RAE, Stark CEL. Meta-analysis and open-source database for in vivo brain Magnetic Resonance spectroscopy in health and disease. Anal Biochem 2023; 676:115227. [PMID: 37423487 PMCID: PMC10561665 DOI: 10.1016/j.ab.2023.115227] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 07/11/2023]
Abstract
Proton (1H) Magnetic Resonance Spectroscopy (MRS) is a non-invasive tool capable of quantifying brain metabolite concentrations in vivo. Prioritization of standardization and accessibility in the field has led to the development of universal pulse sequences, methodological consensus recommendations, and the development of open-source analysis software packages. One on-going challenge is methodological validation with ground-truth data. As ground-truths are rarely available for in vivo measurements, data simulations have become an important tool. The diverse literature of metabolite measurements has made it challenging to define ranges to be used within simulations. Especially for the development of deep learning and machine learning algorithms, simulations must be able to produce accurate spectra capturing all the nuances of in vivo data. Therefore, we sought to determine the physiological ranges and relaxation rates of brain metabolites which can be used both in data simulations and as reference estimates. Using the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines, we've identified relevant MRS research articles and created an open-source database containing methods, results, and other article information as a resource. Using this database, expectation values and ranges for metabolite concentrations and T2 relaxation times are established based upon a meta-analyses of healthy and diseased brains.
Collapse
Affiliation(s)
- Aaron T Gudmundson
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Annie Koo
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Anna Virovka
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Alyssa L Amirault
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Madelene Soo
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Jocelyn H Cho
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Craig E L Stark
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
27
|
Joseph B, Nunez NA, Kung S, Vande Voort JL, Pazdernik VK, Schak KM, Boehm SM, Carpenter B, Johnson EK, Malyshev G, Smits N, Adewunmi DO, Brown SK, Singh B. Efficacy of Ketamine with and without Lamotrigine in Treatment-Resistant Depression: A Preliminary Report. Pharmaceuticals (Basel) 2023; 16:1164. [PMID: 37631079 PMCID: PMC10459873 DOI: 10.3390/ph16081164] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Intravenous (IV) ketamine and FDA-approved intranasal (IN) esketamine are increasingly used for treatment-resistant depression (TRD). Preliminary studies have suggested a synergistic effect of ketamine and lamotrigine, although the data are inconclusive. Herein, we report the response to serial ketamine/esketamine treatment among patients with TRD with or without lamotrigine therapy. In this historical cohort study, we included adult patients with TRD who received serial IV racemic ketamine (0.5 mg/kg over 40-100 min) or IN esketamine (56/84 mg) treatments. A change in depressive symptoms was assessed using the 16-item Quick Inventory of Depressive Symptomatology self-report (QIDS-SR) scale. There were no significant differences in response or remission rates among the patients on or not on lamotrigine during the ketamine/esketamine treatments. For a percent change in the QIDS-SR from baseline, no interaction was found between the lamotrigine groups and treatment number (p = 0.70), nor the overall effect of the group (p = 0.38). There was a trend towards lower dissociation (based on the CADSS score) among current lamotrigine users, especially in patients who received IV ketamine. A major limitation is the limited number of patients taking lamotrigine (n = 13). This preliminary study provides insufficient evidence that continuing lamotrigine therapy attenuates the antidepressant effect of repeated ketamine/esketamine; however, there seems to be a signal toward attenuating dissociation with lamotrigine in patients receiving serial ketamine treatments. Further observational studies or randomized controlled trials are needed to replicate these findings.
Collapse
Affiliation(s)
- Boney Joseph
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Nicolas A. Nunez
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN 55905, USA
| | - Simon Kung
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Vanessa K. Pazdernik
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Kathryn M. Schak
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN 55905, USA
| | - Stacey M. Boehm
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN 55905, USA
| | - Brooke Carpenter
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN 55905, USA
| | - Emily K. Johnson
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN 55905, USA
| | - Grigoriy Malyshev
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN 55905, USA
| | - Nathan Smits
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN 55905, USA
| | - Daniel O. Adewunmi
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN 55905, USA
| | - Sarah K. Brown
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN 55905, USA
| | - Balwinder Singh
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
28
|
Hu YT, Tan ZL, Hirjak D, Northoff G. Brain-wide changes in excitation-inhibition balance of major depressive disorder: a systematic review of topographic patterns of GABA- and glutamatergic alterations. Mol Psychiatry 2023; 28:3257-3266. [PMID: 37495889 DOI: 10.1038/s41380-023-02193-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/28/2023]
Abstract
The excitation-inhibition (E/I) imbalance is an important molecular pathological feature of major depressive disorder (MDD) as altered GABA and glutamate levels have been found in multiple brain regions in patients. Healthy subjects show topographic organization of the E/I balance (EIB) across various brain regions. We here raise the question of whether such EIB topography is altered in MDD. Therefore, we systematically review the gene and protein expressions of inhibitory GABAergic and excitatory glutamatergic signaling-related molecules in postmortem MDD brain studies as proxies for EIB topography. Searches were conducted through PubMed and 45 research articles were finally included. We found: i) brain-wide GABA- and glutamatergic alterations; ii) attenuated GABAergic with enhanced glutamatergic signaling in the cortical-subcortical limbic system; iii) that GABAergic signaling is decreased in regions comprising the default mode network (DMN) while it is increased in lateral prefrontal cortex (LPFC). These together demonstrate abnormal GABA- and glutamatergic signaling-based EIB topographies in MDD. This enhances our pathophysiological understanding of MDD and carries important therapeutic implications for stimulation treatment.
Collapse
Affiliation(s)
- Yu-Ting Hu
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Institute of Mental Health Research, University of Ottawa, Ottawa, Canada.
| | - Zhong-Lin Tan
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dusan Hirjak
- Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| | - Georg Northoff
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Institute of Mental Health Research, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
29
|
Pantazatos SP, Ogden T, Melhem NM, Brent DA, Lesanpezeshki M, Burke A, Keilp JG, Miller JM, Mann JJ. Smaller cornu ammonis (CA3) as a potential risk factor for suicidal behavior in mood disorders. J Psychiatr Res 2023; 163:262-269. [PMID: 37244064 PMCID: PMC11448310 DOI: 10.1016/j.jpsychires.2023.05.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/05/2023] [Accepted: 05/15/2023] [Indexed: 05/29/2023]
Abstract
Mood disorders and suicidal behavior have moderate heritability and familial transmission, and are associated with smaller hippocampal volumes. However, it is unclear whether hippocampal alterations reflect heritable risk or epigenetic effects of childhood adversity, compensatory mechanisms, illness-related changes, or treatment effects. We sought to separate the relationships of hippocampal substructure volumes to mood disorder, suicidal behavior, and risk and resilience to both by examining high familial risk individuals (HR) who have passed the age of greatest risk for psychopathology onset. Structural brain imaging and hippocampal substructure segmentation quantified Cornu Ammonis (CA1-4), dentate gyrus, and subiculum gray matter volumes in healthy volunteers (HV, N = 25) and three groups with one or more relatives reporting early-onset mood disorder and suicide attempt: 1. Unaffected HR (N = 20); 2. HR with lifetime mood disorder and no suicide attempt (HR-MOOD, N = 25); and 3. HR with lifetime mood disorder and a previous suicide attempt (HR-MOOD + SA, N = 18). Findings were tested in an independent cohort not selected for family history (HV, N = 47; MOOD, N = 44; and MOOD + SA, N = 21). Lower CA3 volume was found in HR (vs. HV), consistent with the direction of previously published findings in MOOD+SA (vs. HV and MOOD), suggesting the finding reflects a familial biological risk marker, not illness or treatment-related sequelae, of suicidal behavior and mood disorder. Familial suicide risk may be mediated in part by smaller CA3 volume. The structure may serve as a risk indicator and therapeutic target for suicide prevention strategies in high-risk families.
Collapse
Affiliation(s)
- Spiro P Pantazatos
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA.
| | - Todd Ogden
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York, NY, USA; Mailman School of Public Health, Columbia University, New York, USA
| | - Nadine M Melhem
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - David A Brent
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mohammad Lesanpezeshki
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Ainsley Burke
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - John G Keilp
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Jeffrey M Miller
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - J John Mann
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
30
|
Li X, Chen M, Liu Q, Zheng C, Yu C, Hou G, Chen Z, Chen Y, Chen Y, Zhu G, Zhou D, Xu W. TMS-evoked potential in the dorsolateral prefrontal cortex to assess the severity of depression disease: a TMS-EEG study. Front Pharmacol 2023; 14:1207020. [PMID: 37342593 PMCID: PMC10277673 DOI: 10.3389/fphar.2023.1207020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/24/2023] [Indexed: 06/23/2023] Open
Abstract
Objective: The combined use of transcranial magnetic stimulation and electroencephalography (TMS-EEG), as a powerful technique that can non-invasively probe the state of the brain, can be used as a method to study neurophysiological markers in the field of psychiatric disorders and discover potential diagnostic predictors. This study used TMS-evoked potentials (TEPs) to study the cortical activity of patients with major depressive disorder depression (MDD) and the correlation with clinical symptoms to provide an electrophysiological basis for the clinical diagnosis. Methods: A total of 41 patients and 42 healthy controls were recruited to study. Using TMS-EEG techniques to measure the left dorsolateral prefrontal cortex (DLPFC) 's TEP index and evaluate the clinical symptoms of MDD patients using the Hamilton Depression Scale-24 (HAMD-24). Results: MDD subjects performing TMS-EEG on the DLPFC showed lower cortical excitability P60 index levels than healthy controls. Further analysis revealed that the degree of P60 excitability within the DLPFC of MDD patients was significantly negatively correlated with the severity of depression. Conclusion: The low levels of P60 exhibited in DLPFC reflect low excitability in MDD; the P60 component can be used as a biomarker for MDD in clinical assessment tools.
Collapse
Affiliation(s)
- Xingxing Li
- Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Meng Chen
- Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Qinqin Liu
- Qingdao Mental Health Center, Qingdao, Shandong, China
| | - Chao Zheng
- Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Chang Yu
- Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Guangwei Hou
- Yu Yao Third People’s Hospital, Ningbo, Zhejiang, China
| | - Zan Chen
- Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Yiqing Chen
- Yu Yao Third People’s Hospital, Ningbo, Zhejiang, China
| | - Yinping Chen
- Yu Yao Third People’s Hospital, Ningbo, Zhejiang, China
| | - Guidong Zhu
- The Second People’s Hospital of Lishui, Lishui, Zhejiang, China
| | | | - Weiqian Xu
- Taizhou Second People’s Hospital, Taizhou, Zhejiang, China
| |
Collapse
|
31
|
Abi-Dargham A, Moeller SJ, Ali F, DeLorenzo C, Domschke K, Horga G, Jutla A, Kotov R, Paulus MP, Rubio JM, Sanacora G, Veenstra-VanderWeele J, Krystal JH. Candidate biomarkers in psychiatric disorders: state of the field. World Psychiatry 2023; 22:236-262. [PMID: 37159365 PMCID: PMC10168176 DOI: 10.1002/wps.21078] [Citation(s) in RCA: 71] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/08/2023] [Indexed: 05/11/2023] Open
Abstract
The field of psychiatry is hampered by a lack of robust, reliable and valid biomarkers that can aid in objectively diagnosing patients and providing individualized treatment recommendations. Here we review and critically evaluate the evidence for the most promising biomarkers in the psychiatric neuroscience literature for autism spectrum disorder, schizophrenia, anxiety disorders and post-traumatic stress disorder, major depression and bipolar disorder, and substance use disorders. Candidate biomarkers reviewed include various neuroimaging, genetic, molecular and peripheral assays, for the purposes of determining susceptibility or presence of illness, and predicting treatment response or safety. This review highlights a critical gap in the biomarker validation process. An enormous societal investment over the past 50 years has identified numerous candidate biomarkers. However, to date, the overwhelming majority of these measures have not been proven sufficiently reliable, valid and useful to be adopted clinically. It is time to consider whether strategic investments might break this impasse, focusing on a limited number of promising candidates to advance through a process of definitive testing for a specific indication. Some promising candidates for definitive testing include the N170 signal, an event-related brain potential measured using electroencephalography, for subgroup identification within autism spectrum disorder; striatal resting-state functional magnetic resonance imaging (fMRI) measures, such as the striatal connectivity index (SCI) and the functional striatal abnormalities (FSA) index, for prediction of treatment response in schizophrenia; error-related negativity (ERN), an electrophysiological index, for prediction of first onset of generalized anxiety disorder, and resting-state and structural brain connectomic measures for prediction of treatment response in social anxiety disorder. Alternate forms of classification may be useful for conceptualizing and testing potential biomarkers. Collaborative efforts allowing the inclusion of biosystems beyond genetics and neuroimaging are needed, and online remote acquisition of selected measures in a naturalistic setting using mobile health tools may significantly advance the field. Setting specific benchmarks for well-defined target application, along with development of appropriate funding and partnership mechanisms, would also be crucial. Finally, it should never be forgotten that, for a biomarker to be actionable, it will need to be clinically predictive at the individual level and viable in clinical settings.
Collapse
Affiliation(s)
- Anissa Abi-Dargham
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Scott J Moeller
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Farzana Ali
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Christine DeLorenzo
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Centre for Basics in Neuromodulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Guillermo Horga
- Department of Psychiatry, Columbia University, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Amandeep Jutla
- Department of Psychiatry, Columbia University, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Roman Kotov
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | | | - Jose M Rubio
- Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, USA
- Feinstein Institute for Medical Research - Northwell, Manhasset, NY, USA
- Zucker Hillside Hospital - Northwell Health, Glen Oaks, NY, USA
| | - Gerard Sanacora
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Jeremy Veenstra-VanderWeele
- Department of Psychiatry, Columbia University, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - John H Krystal
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
32
|
Wu X, Tu M, Chen N, Yang J, Jin J, Qu S, Xiong S, Cao Z, Xu M, Pei S, Hu H, Ge Y, Fang J, Shao X. The efficacy and cerebral mechanism of intradermal acupuncture for major depressive disorder: a study protocol for a randomized controlled trial. Front Psychiatry 2023; 14:1181947. [PMID: 37255689 PMCID: PMC10226652 DOI: 10.3389/fpsyt.2023.1181947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/27/2023] [Indexed: 06/01/2023] Open
Abstract
Background Major depressive disorder (MDD) has emerged as the fifth leading cause of years lived with disability, with a high prevalent, affecting nearly 4% of the global population. While available evidence suggests that intradermal acupuncture may enhance the effectiveness of antidepressants, whether its efficacy is a specific therapeutic effect or a placebo effect has not been reported. Moreover, the cerebral mechanism of intradermal acupuncture as a superficial acupuncture (usually subcutaneous needling to a depth of 1-2 mm) for MDD remains unclear. Methods A total of 120 participants with MDD will be enrolled and randomized to the waiting list group, sham intradermal acupuncture group and active intradermal acupuncture group. All 3 groups will receive a 6-week intervention and a 4-week follow-up. The primary outcome will be measured by the Hamilton Depression Rating Scale-17 and the secondary outcome measures will be the Self-Rating depression scale and Pittsburgh sleep quality index. Assessments will be conducted at baseline, 3 weeks, 6 weeks, and during the follow-up period. In addition, 20 eligible participants in each group will be randomly selected to undergo head magnetic resonance imaging before and after the intervention to explore the effects of intradermal acupuncture on brain activity in MDD patients. Discussion If the intradermal acupuncture is beneficial, it is promising to be included in the routine treatment of MDD. Clinical Trial Registration Clinicaltrials.gov, NCT05720637.
Collapse
Affiliation(s)
- Xiaoting Wu
- Key Laboratory for Research of Acupuncture Treatment and Transformation of Emotional Diseases, The Third Clinical Medical College, Zhejiang Chinese Medical University,, Hangzhou, China
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Mingqi Tu
- Key Laboratory for Research of Acupuncture Treatment and Transformation of Emotional Diseases, The Third Clinical Medical College, Zhejiang Chinese Medical University,, Hangzhou, China
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Nisang Chen
- Key Laboratory for Research of Acupuncture Treatment and Transformation of Emotional Diseases, The Third Clinical Medical College, Zhejiang Chinese Medical University,, Hangzhou, China
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiajia Yang
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Junyan Jin
- Key Laboratory for Research of Acupuncture Treatment and Transformation of Emotional Diseases, The Third Clinical Medical College, Zhejiang Chinese Medical University,, Hangzhou, China
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Siying Qu
- Key Laboratory for Research of Acupuncture Treatment and Transformation of Emotional Diseases, The Third Clinical Medical College, Zhejiang Chinese Medical University,, Hangzhou, China
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Sangsang Xiong
- Key Laboratory for Research of Acupuncture Treatment and Transformation of Emotional Diseases, The Third Clinical Medical College, Zhejiang Chinese Medical University,, Hangzhou, China
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhijian Cao
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Maosheng Xu
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuangyi Pei
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Hantong Hu
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yinyan Ge
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianqiao Fang
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaomei Shao
- Key Laboratory for Research of Acupuncture Treatment and Transformation of Emotional Diseases, The Third Clinical Medical College, Zhejiang Chinese Medical University,, Hangzhou, China
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
33
|
Wasiak J, Gawlik-Kotelnicka O. Intestinal permeability and its significance in psychiatric disorders - a narrative review and future perspectives. Behav Brain Res 2023; 448:114459. [PMID: 37121278 DOI: 10.1016/j.bbr.2023.114459] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/12/2023] [Accepted: 04/26/2023] [Indexed: 05/02/2023]
Abstract
The topic of increased intestinal permeability and its impact on the human body is. increasingly being addressed by researchers. It is associated with disruption of the. intestinal barrier, leading to the "leaky gut" syndrome. This can be assessed by. classical methods, determining the concentration of orally administered tracer. molecules in urine or by using biomarkers such as LPS, LBP or zonulin in blood. plasma. The presence of bacterial endotoxins in the body causes inflammation. In this. article, we review research on increased intestinal permeability in psychiatric illness. mood disorders, schizophrenia, alcohol dependence, anxiety disorders,. neurodegenerative and neurodevelopmental disorders. The results of the studies used. to assess intestinal permeability in different disease entities are presented. Possible. mechanisms for these interactions are the effects of chronic, low-grade inflammation. on the human brain, causing interruption of the brain blood barrier and dysfunction of. astrocytes and microglia. This affects brain function by reducing the number of. dopaminergic neurons, disrupting tryptophan metabolism and altering the amount of. GABA and glutamate. The links and mechanisms found may, in the future, allow earlier. detection of diseases and their targeted treatment.
Collapse
Affiliation(s)
- Jakub Wasiak
- Medical University of Lodz, Kosciuszki 4, 90-419 Lodz, Poland
| | - Oliwia Gawlik-Kotelnicka
- Department of Affective and Psychotic Disorders, Medical University of Lodz, Czechoslowacka 8/10, 92-216 Lodz, Poland.
| |
Collapse
|
34
|
Jazvinšćak Jembrek M, Oršolić N, Karlović D, Peitl V. Flavonols in Action: Targeting Oxidative Stress and Neuroinflammation in Major Depressive Disorder. Int J Mol Sci 2023; 24:ijms24086888. [PMID: 37108052 PMCID: PMC10138550 DOI: 10.3390/ijms24086888] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Major depressive disorder is one of the most common mental illnesses that highly impairs quality of life. Pharmacological interventions are mainly focused on altered monoamine neurotransmission, which is considered the primary event underlying the disease's etiology. However, many other neuropathological mechanisms that contribute to the disease's progression and clinical symptoms have been identified. These include oxidative stress, neuroinflammation, hippocampal atrophy, reduced synaptic plasticity and neurogenesis, the depletion of neurotrophic factors, and the dysfunction of the hypothalamic-pituitary-adrenal (HPA) axis. Current therapeutic options are often unsatisfactory and associated with adverse effects. This review highlights the most relevant findings concerning the role of flavonols, a ubiquitous class of flavonoids in the human diet, as potential antidepressant agents. In general, flavonols are considered to be both an effective and safe therapeutic option in the management of depression, which is largely based on their prominent antioxidative and anti-inflammatory effects. Moreover, preclinical studies have provided evidence that they are capable of restoring the neuroendocrine control of the HPA axis, promoting neurogenesis, and alleviating depressive-like behavior. Although these findings are promising, they are still far from being implemented in clinical practice. Hence, further studies are needed to more comprehensively evaluate the potential of flavonols with respect to the improvement of clinical signs of depression.
Collapse
Affiliation(s)
- Maja Jazvinšćak Jembrek
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
- School of Medicine, Catholic University of Croatia, Ilica 242, 10000 Zagreb, Croatia
| | - Nada Oršolić
- Division of Animal Physiology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia
| | - Dalibor Karlović
- School of Medicine, Catholic University of Croatia, Ilica 242, 10000 Zagreb, Croatia
- Department of Psychiatry, Sestre Milosrdnice University Hospital Center, 10000 Zagreb, Croatia
| | - Vjekoslav Peitl
- School of Medicine, Catholic University of Croatia, Ilica 242, 10000 Zagreb, Croatia
- Department of Psychiatry, Sestre Milosrdnice University Hospital Center, 10000 Zagreb, Croatia
| |
Collapse
|
35
|
Paton SE, Menard C. Glutamate shall not pass: a mechanistic role for astrocytic O-GlcNAc transferase in stress and depression. J Clin Invest 2023; 133:168662. [PMID: 37009895 PMCID: PMC10065068 DOI: 10.1172/jci168662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023] Open
Abstract
Major depressive disorder, characterized by aberrant glutamatergic signaling in the prefrontal cortex (PFC), is a leading cause of disability worldwide. Depression is highly comorbid with metabolic disorders, but a mechanistic link is elusive. In this issue of the JCI, Fan and coauthors report that elevated posttranslational modification with the glucose metabolite N-acetylglucosamine (GlcNAc) by O-GlcNAc transferase (OGT) contributed to stress-induced establishment of depression-like behaviors in mice. This effect was specific to medial PFC (mPFC) astrocytes, with glutamate transporter-1 (GLT-1) identified as an OGT target. Specifically, O-GlcNAcylation of GLT-1 resulted in diminished glutamate clearance from excitatory synapses. Further, astrocytic OGT knockdown restored stress-induced deficits in glutamatergic signaling, promoting resilience. These findings provide a mechanistic link between metabolism and depression and have relevance for antidepressant targets.
Collapse
|
36
|
Simmonite M, Steeby CJ, Taylor SF. Medial Frontal Cortex GABA Concentrations in Psychosis Spectrum and Mood Disorders: A Meta-analysis of Proton Magnetic Resonance Spectroscopy Studies. Biol Psychiatry 2023; 93:125-136. [PMID: 36335069 PMCID: PMC10184477 DOI: 10.1016/j.biopsych.2022.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Abnormalities of GABAergic (gamma-aminobutyric acidergic) systems may play a role in schizophrenia and mood disorders. Magnetic resonance spectroscopy allows for noninvasive in vivo quantification of GABA; however, studies of GABA in schizophrenia have yielded inconsistent findings. This may stem from grouping together disparate voxels from functionally heterogeneous regions. METHODS We searched PubMed for magnetic resonance spectroscopy studies of GABA in the medial frontal cortex (MFC) in patients with schizophrenia, bipolar disorder, and depression and in individuals meeting criteria for ultra-high risk for psychosis. Voxel placements were classified as rostral-, rostral-mid-, mid-, or posterior MFC, and meta-analyses were conducted for each group for each subregion. RESULTS Of 341 screened articles, 23 studies of schizophrenia, 6 studies of bipolar disorder, 20 studies of depression, and 7 studies of ultra-high risk met the inclusion criteria. Meta-analysis revealed lower mid- (standardized mean difference [SMD] = -0.28, 95% CI, -0.48 to -0.07, p < .01) and posterior (SMD = -0.29, 95% CI, -0.49 to -0.09, p < .01) MFC GABA in schizophrenia and increased rostral MFC GABA in bipolar disorder (SMD = 0.76, 95% CI, 0.25 to -1.25, p < .01). In depression, reduced rostral MFC GABA (SMD = -0.36, 95% CI, -0.64 to -0.08, p = .01) did not survive correction for multiple comparisons. We found no evidence for GABA differences in individuals at ultra-high risk for psychosis. CONCLUSIONS While limited by small numbers of published studies, these results substantiate the relevance of GABA in the pathophysiology of psychosis spectrum and mood disorders and underline the importance of voxel placement.
Collapse
Affiliation(s)
- Molly Simmonite
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan; Department of Psychology, University of Michigan, Ann Arbor, Michigan.
| | - Clara J Steeby
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan
| | - Stephan F Taylor
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
37
|
Harris AD, Amiri H, Bento M, Cohen R, Ching CRK, Cudalbu C, Dennis EL, Doose A, Ehrlich S, Kirov II, Mekle R, Oeltzschner G, Porges E, Souza R, Tam FI, Taylor B, Thompson PM, Quidé Y, Wilde EA, Williamson J, Lin AP, Bartnik-Olson B. Harmonization of multi-scanner in vivo magnetic resonance spectroscopy: ENIGMA consortium task group considerations. Front Neurol 2023; 13:1045678. [PMID: 36686533 PMCID: PMC9845632 DOI: 10.3389/fneur.2022.1045678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/06/2022] [Indexed: 01/06/2023] Open
Abstract
Magnetic resonance spectroscopy is a powerful, non-invasive, quantitative imaging technique that allows for the measurement of brain metabolites that has demonstrated utility in diagnosing and characterizing a broad range of neurological diseases. Its impact, however, has been limited due to small sample sizes and methodological variability in addition to intrinsic limitations of the method itself such as its sensitivity to motion. The lack of standardization from a data acquisition and data processing perspective makes it difficult to pool multiple studies and/or conduct multisite studies that are necessary for supporting clinically relevant findings. Based on the experience of the ENIGMA MRS work group and a review of the literature, this manuscript provides an overview of the current state of MRS data harmonization. Key factors that need to be taken into consideration when conducting both retrospective and prospective studies are described. These include (1) MRS acquisition issues such as pulse sequence, RF and B0 calibrations, echo time, and SNR; (2) data processing issues such as pre-processing steps, modeling, and quantitation; and (3) biological factors such as voxel location, age, sex, and pathology. Various approaches to MRS data harmonization are then described including meta-analysis, mega-analysis, linear modeling, ComBat and artificial intelligence approaches. The goal is to provide both novice and experienced readers with the necessary knowledge for conducting MRS data harmonization studies.
Collapse
Affiliation(s)
- Ashley D. Harris
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Houshang Amiri
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mariana Bento
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
| | - Ronald Cohen
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - Christopher R. K. Ching
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, Los Angeles, CA, United States
| | - Christina Cudalbu
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Animal Imaging and Technology, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Emily L. Dennis
- TBI and Concussion Center, Department of Neurology, University of Utah, Salt Lake City, UT, United States
| | - Arne Doose
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Stefan Ehrlich
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Ivan I. Kirov
- Department of Radiology, Center for Advanced Imaging Innovation and Research, New York University Grossman School of Medicine, New York, NY, United States
| | - Ralf Mekle
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Eric Porges
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - Roberto Souza
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Electrical and Software Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
| | - Friederike I. Tam
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Brian Taylor
- Division of Diagnostic Imaging, Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Paul M. Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, Los Angeles, CA, United States
| | - Yann Quidé
- School of Psychology, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Elisabeth A. Wilde
- TBI and Concussion Center, Department of Neurology, University of Utah, Salt Lake City, UT, United States
| | - John Williamson
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - Alexander P. Lin
- Center for Clinical Spectroscopy, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Brenda Bartnik-Olson
- Department of Radiology, Loma Linda University Medical Center, Loma Linda, CA, United States
| |
Collapse
|
38
|
Jiang C, Wang H, Qi J, Li J, He Q, Wang C, Gao Y. Antidepressant effects of cherry leaf decoction on a chronic unpredictable mild stress rat model based on the Glu/GABA-Gln metabolic loop. Metab Brain Dis 2022; 37:2883-2901. [PMID: 36181653 DOI: 10.1007/s11011-022-01081-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 09/04/2022] [Indexed: 01/10/2023]
Abstract
Cherry leaves (Prunus pseudocerasus Lindl. [Rosaceae]), a traditional Chinese herbal medicine, can regulate the factors closely related to depression including inflammatory cytokines, oxidative stress and blood glucose level. However, the antidepressant effects of cherry leaves and underlying neuromodulatory mechanisms remain relatively have not been elucidated explicitly. The present study investigated the antidepressant effects of cherry leaf decoction (CLD). The underlying neuromodulatory mechanism was explored by examining the glutamate (Glu)/γ-aminobutyric acid (GABA)-glutamine (Gln) metabolic loop. The chronic unpredictable mild stress (CUMS) rodent model was used in this study. The main flavonoids components of CLD were identified using high-performance liquid chromatography (HPLC). The antidepressant effects of CLD were assessed throughout behavioural tests including the bodyweight, sucrose preference test (SPT), forced swimming test (FPT) and tail suspension test (TST). Moreover, The baseline levels of serum adrenocorticotropic hormone (ACTH) and corticosterone (CORT) were quantified. The expression of proteins integrally involved in the Glu/GABA-Gln metabolic loop were observed and quantified by Western blotting, reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry. This study found that CLD ameliorated depressive-like behaviours induced by CUMS. The increase of serum ACTH and CORT baseline levels induced by CUMS was also reversed after CLD intervention. Furthermore, CUMS reduced the expression of GAD65, GAD67, GLT-1, GS and GABAA and increased NMDAR1 levels in the rat hippocampus, which was normalized by CLD treatment. The findings demonstrated that CLD could ameliorate the depression-like behaviours induced by CUMS, potentially through the inhibition of hypothalamic-pituitary-adrenal (HPA) axis hyperactivity and the regulation of Glu/GABA-Gln metabolic loop.
Collapse
Affiliation(s)
- Chuan Jiang
- Department of Preventive Medicine, Hebei University of Chinese Medicine, 3 Xingyuan Road, Shijiazhuang, 050200, Hebei, People's Republic of China
| | - Hua Wang
- Department of Preventive Medicine, Hebei University of Chinese Medicine, 3 Xingyuan Road, Shijiazhuang, 050200, Hebei, People's Republic of China
| | - Jiaying Qi
- Department of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, People's Republic of China
| | - Jinghan Li
- Department of Preventive Medicine, Hebei University of Chinese Medicine, 3 Xingyuan Road, Shijiazhuang, 050200, Hebei, People's Republic of China
| | - Qianqian He
- Department of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, People's Republic of China
| | - Chaonan Wang
- Department of Preventive Medicine, Hebei University of Chinese Medicine, 3 Xingyuan Road, Shijiazhuang, 050200, Hebei, People's Republic of China.
| | - Yonggang Gao
- Department of Preventive Medicine, Hebei University of Chinese Medicine, 3 Xingyuan Road, Shijiazhuang, 050200, Hebei, People's Republic of China.
- Hebei Key Laboratory of Chinese Medicine Research On Cardio-Cerebrovascular Disease, Shijiazhuang, 050200, Hebei, People's Republic of China.
| |
Collapse
|
39
|
He J, Wang D, Ban M, Kong L, Xiao Q, Yuan F, Zhu X. Regional metabolic heterogeneity in anterior cingulate cortex in major depressive disorder: A multi-voxel 1H magnetic resonance spectroscopy study. J Affect Disord 2022; 318:263-271. [PMID: 36087788 DOI: 10.1016/j.jad.2022.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Previous studies have shown major depressive disorder (MDD) is associated with altered neuro-metabolites in the anterior cingulate cortex (ACC). However, the regional metabolic heterogeneity in the ACC in individuals with MDD remains unclear. METHODS We recruited 59 first-episode, treatment-naive young adults with MDD and 50 healthy controls who underwent multi-voxel 1H-MRS scanning at 3 T (Tesla) with voxels placed in the ACC, which was divided into two subregions, pregenual ACC (pACC) and anterior midcingulate cortex (aMCC). Between and within-subjects metabolite concentration variations were analyzed with SPSS. RESULTS Compared with control subjects, patients with MDD exhibited higher glutamate (Glu) and glutamine (Gln) levels in the pACC and higher myo-inositol (MI) level in the aMCC. We observed higher Glu and Gln levels and lower N-acetyl-aspartate (NAA) level in the pACC than those in the aMCC in both MDD and healthy control (HC) groups. More importantly, the metabolite concentration gradients of Glu, Gln and NAA were more pronounced in MDD patients relative to HCs. In the MDD group, the MI level in the aMCC positively correlated with the age of onset. LIMITATIONS The use of the relative concentration of metabolites constitutes a key study limitation. CONCLUSIONS We observed inconsistent alterations and distribution of neuro-metabolites concentration in the pACC and aMCC, revealing regional metabolic heterogeneity of ACC in first-episode, treatment-naive young individuals with MDD. These results provided new evidence for abnormal neuro-metabolites of ACC in the pathophysiology of MDD and suggested that pACC and aMCC might play different roles in MDD.
Collapse
Affiliation(s)
- Jincheng He
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Dongcui Wang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Meiting Ban
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Lingyu Kong
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Qian Xiao
- Mental Health Centre, Xiangya Hospital, Central South University, Changsha, China
| | - Fulai Yuan
- Health Management Center, Xiangya Hospital, Central South University, Changsha, China
| | - Xueling Zhu
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
40
|
Ritter C, Buchmann A, Müller ST, Volleberg M, Haynes M, Ghisleni C, Noeske R, Tuura R, Hasler G. Evaluation of Prefrontal γ-Aminobutyric Acid and Glutamate Levels in Individuals With Major Depressive Disorder Using Proton Magnetic Resonance Spectroscopy. JAMA Psychiatry 2022; 79:1209-1216. [PMID: 36260322 PMCID: PMC9582968 DOI: 10.1001/jamapsychiatry.2022.3384] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/29/2022] [Indexed: 01/14/2023]
Abstract
Importance Major depressive disorder (MDD) is one of the most prevalent illnesses worldwide. Perturbations of the major inhibitory and excitatory neurotransmitters, γ-aminobutyric acid (GABA) and glutamate (Glu), respectively, as well as Glx (Glu or glutamine [Gln]) have been extensively reported in a multitude of brain areas of individuals with depression, but few studies have examined changes in Gln, the metabolic counterpart of synaptic Glu. Objective To investigate changes in GABA, Glx, Glu, and Gln levels in a voxel in the left dorsolateral prefrontal cortex of participants with no, past, and current MDD using proton magnetic resonance spectroscopy (1H-MRS). Design, Setting, and Participants This community-based study used a cross-sectional design using 3-T 1H-MRS in participants not taking MDD medication recruited from the community. The sample consisted of 251 healthy controls, 98 participants with a history of past MDD, and 47 participants who met the diagnostic criteria for current MDD. Diagnostic groups were comparable regarding age, education, income, and diet. Data were collected from March 2014 to October 2021, and data were analyzed from October 2021 to June 2022. Main Outcomes and Measures GABA, Glx, Glu, and Gln concentrations in the left dorsolateral prefrontal cortex. Results Of 396 included participants, 258 (65.2%) were female, and the mean (SD) age was 25.0 (4.7) years. Compared with healthy controls, those with past MDD and current MDD had lower GABA concentrations (mean [SEM] concentration: healthy controls, 2.70 [0.03] mmol/L; past MDD, 2.49 [0.05] mmol/L; current MDD, 2.54 [0.07] mmol/L; 92 with past MDD vs 236 healthy controls: r = 0.18; P = .002; 44 with current MDD vs 236 healthy controls: r = 0.13; P = .04). Compared with healthy controls, those with past MDD also had lower Glu concentrations (mean [SEM] concentration: healthy controls, 7.52 [0.06] mmol/L; past MDD, 7.23 [0.11] mmol/L; 93 with past MDD vs 234 healthy controls: r = 0.16; P = .01) and higher Gln concentrations (mean [SEM] concentration: healthy controls, 1.63 [0.04] mmol/L; past MDD, 1.84 [0.07] mmol/L; 66 with past MDD 153 healthy controls: r = 0.17; P = .04). Conclusions and Relevance In a large, mostly medication-free community sample, reduced prefrontal GABA concentrations were associated with past MDD, consistent with histopathologic studies reporting reduced glial cell and GABA cell density in the prefrontal cortex in individuals with depression. Patients with MDD also demonstrated increased Gln levels, indicative of increased synaptic Glu release, adding to previous evidence for the Glu hypothesis of MDD.
Collapse
Affiliation(s)
- Christopher Ritter
- Psychiatric University Hospital, University of Bern, Bern, Switzerland
- Unit of Psychiatry Research, University of Fribourg, Villars-sur-Glâne, Switzerland
- Center of MR Research, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Andreas Buchmann
- Psychiatric University Hospital, University of Bern, Bern, Switzerland
- Unit of Psychiatry Research, University of Fribourg, Villars-sur-Glâne, Switzerland
- Center of MR Research, University Children’s Hospital Zurich, Zurich, Switzerland
| | | | - Martin Volleberg
- Division of Clinical Chemistry and Biochemistry, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Melanie Haynes
- Psychiatric University Hospital, University of Bern, Bern, Switzerland
| | - Carmen Ghisleni
- Center of MR Research, University Children’s Hospital Zurich, Zurich, Switzerland
| | | | - Ruth Tuura
- Center of MR Research, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Gregor Hasler
- Unit of Psychiatry Research, University of Fribourg, Villars-sur-Glâne, Switzerland
| |
Collapse
|
41
|
Lee JHA, Chen Q, Zhuo M. Synaptic Plasticity in the Pain-Related Cingulate and Insular Cortex. Biomedicines 2022; 10:2745. [PMID: 36359264 PMCID: PMC9687873 DOI: 10.3390/biomedicines10112745] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/14/2022] [Accepted: 10/22/2022] [Indexed: 09/23/2023] Open
Abstract
Cumulative animal and human studies have consistently demonstrated that two major cortical regions in the brain, namely the anterior cingulate cortex (ACC) and insular cortex (IC), play critical roles in pain perception and chronic pain. Neuronal synapses in these cortical regions of adult animals are highly plastic and can undergo long-term potentiation (LTP), a phenomenon that is also reported in brain areas for learning and memory (such as the hippocampus). Genetic and pharmacological studies show that inhibiting such cortical LTP can help to reduce behavioral sensitization caused by injury as well as injury-induced emotional changes. In this review, we will summarize recent progress related to synaptic mechanisms for different forms of cortical LTP and their possible contribution to behavioral pain and emotional changes.
Collapse
Affiliation(s)
- Jung-Hyun Alex Lee
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Qiyu Chen
- Institute of Brain Research, Qingdao International Academician Park, Qingdao 266199, China
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Min Zhuo
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
- Institute of Brain Research, Qingdao International Academician Park, Qingdao 266199, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou 325000, China
| |
Collapse
|
42
|
Tran KH, Luki J, Hanstock S, Hanstock CC, Seres P, Aitchison K, Shandro T, Le Melledo JM. Decreased GABA+ Levels in the Medial Prefrontal Cortex of Perimenopausal Women: A 3T 1H-MRS Study. Int J Neuropsychopharmacol 2022; 26:32-41. [PMID: 36146906 PMCID: PMC9850658 DOI: 10.1093/ijnp/pyac066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/12/2022] [Accepted: 09/21/2022] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE Perimenopause is associated with an increased risk of developing a major depressive (MD) episode. A significant number of women develop their first MD episode during perimenopause, suggesting a unique pathophysiology of perimenopausal (PM) depression. Previous research has shown that depression is associated with decreased gamma-aminobutyric acid (GABA) levels in the medial prefrontal cortex (MPFC) of MD patients. The objective of this study was to compare MPFC GABA+ levels in healthy reproductive-aged (RD) and PM women. METHODS A total of 18 healthy PM and 20 RD women were included in the study. MPFC GABA+ levels, which include homocarnosine and macromolecules, were measured via magnetic resonance spectroscopy using a 3 Tesla magnet. MPFC GABA+ levels were referenced to creatine + phosphocreatine (Cr+PCr). Absence of current or past psychiatric diagnosis was confirmed via a structured interview. RD participants were scanned during the early follicular phase of the menstrual cycle. PM women were scanned outside of ovulatory cycles. RESULTS Mean MPFC GABA+ concentrations (relative to Cr+PCr) were decreased in the PM group compared with the RD group (PM mean = 0.08 ± 0.02, RD mean = 0.09 ± 0.02, t = -2.03, df = 36, P = .05) even after correcting for in percentage in gray matter (GM). Because PM women were inherently older than RD women (aged 48.8 ± 3.55 and 31.5 ± 9.66 years, respectively), the age difference between the 2 groups was statistically significant (P < .001). When age was treated as an independent covariate and included in the model, the difference in GABA+ between PM and RD women was no longer significant (P = .092). CONCLUSION Perimenopause is associated with decreased MPFC GABA+/Cr+PCr levels, which may contribute to the increased risk of experiencing a MD episode during PM.
Collapse
Affiliation(s)
- Kim H Tran
- University of Alberta, Department of Psychiatry, Edmonton, AB, Canada
| | - Jessica Luki
- University of Alberta, Department of Psychiatry, Edmonton, AB, Canada
| | - Sarah Hanstock
- University of Alberta, Department of Psychiatry, Edmonton, AB, Canada,University of Alberta, Department of Biomedical Engineering, Edmonton, AB, Canada
| | - Christopher C Hanstock
- University of Alberta, Department of Psychiatry, Edmonton, AB, Canada,University of Alberta, Department of Biomedical Engineering, Edmonton, AB, Canada
| | - Peter Seres
- University of Alberta, Department of Biomedical Engineering, Edmonton, AB, Canada
| | - Katherine Aitchison
- University of Alberta, Department of Psychiatry, Edmonton, AB, Canada,University of Alberta, Department of Medical Genetics, Edmonton, AB, Canada,University of Alberta, Neuroscience and Mental Health Institute, Edmonton, AB, Canada,Northern Ontario School of Medicine, Division of Clinical Sciences, Psychiatry Section, Thunder Bay, ON, Canada
| | - Tami Shandro
- Lois Hole Hospital for Women, Royal Alexandra Hospital, Edmonton, AB, Canada
| | - Jean-Michel Le Melledo
- Correspondence: Jean-Michel Le Melledo, MD, Department of Psychiatry, Room 1E7.14, 8440 112 Street, Walter Mackenzie Center, Edmonton, Alberta, Canada, T6G 2B7 ()
| |
Collapse
|
43
|
Tian H, Hu Z, Xu J, Wang C. The molecular pathophysiology of depression and the new therapeutics. MedComm (Beijing) 2022; 3:e156. [PMID: 35875370 PMCID: PMC9301929 DOI: 10.1002/mco2.156] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 12/21/2022] Open
Abstract
Major depressive disorder (MDD) is a highly prevalent and disabling disorder. Despite the many hypotheses proposed to understand the molecular pathophysiology of depression, it is still unclear. Current treatments for depression are inadequate for many individuals, because of limited effectiveness, delayed efficacy (usually two weeks), and side effects. Consequently, novel drugs with increased speed of action and effectiveness are required. Ketamine has shown to have rapid, reliable, and long-lasting antidepressant effects in treatment-resistant MDD patients and represent a breakthrough therapy for patients with MDD; however, concerns regarding its efficacy, potential misuse, and side effects remain. In this review, we aimed to summarize molecular mechanisms and pharmacological treatments for depression. We focused on the fast antidepressant treatment and clarified the safety, tolerability, and efficacy of ketamine and its metabolites for the MDD treatment, along with a review of the potential pharmacological mechanisms, research challenges, and future clinical prospects.
Collapse
Affiliation(s)
- Haihua Tian
- Ningbo Key Laboratory of Behavioral NeuroscienceNingbo University School of MedicineNingboZhejiangChina
- Zhejiang Provincial Key Laboratory of PathophysiologySchool of MedicineNingbo UniversityNingboZhejiangChina
- Department of Physiology and PharmacologyNingbo University School of MedicineNingboZhejiangChina
- Department of Laboratory MedicineNingbo Kangning HospitalNingboZhejiangChina
| | - Zhenyu Hu
- Department of Child PsychiatryNingbo Kanning HospitalNingboZhejiangChina
| | - Jia Xu
- Ningbo Key Laboratory of Behavioral NeuroscienceNingbo University School of MedicineNingboZhejiangChina
- Zhejiang Provincial Key Laboratory of PathophysiologySchool of MedicineNingbo UniversityNingboZhejiangChina
- Department of Physiology and PharmacologyNingbo University School of MedicineNingboZhejiangChina
| | - Chuang Wang
- Ningbo Key Laboratory of Behavioral NeuroscienceNingbo University School of MedicineNingboZhejiangChina
- Zhejiang Provincial Key Laboratory of PathophysiologySchool of MedicineNingbo UniversityNingboZhejiangChina
- Department of Physiology and PharmacologyNingbo University School of MedicineNingboZhejiangChina
| |
Collapse
|
44
|
Ghuman A, McEwen A, Tran KH, Mitchell N, Hanstock C, Seres P, Jhangri G, Burgess D, Baker G, Le Melledo JM. Prospective Investigation of Glutamate Levels and Percentage Gray Matter in the Medial Prefrontal Cortex in Females at Risk for Postpartum Depression. Curr Neuropharmacol 2022; 20:1988-2000. [PMID: 35236264 PMCID: PMC9886796 DOI: 10.2174/1570159x20666220302101115] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/19/2022] [Accepted: 02/27/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The substantial female hormone fluctuations associated with pregnancy and postpartum have been linked to a greater risk of developing depressive symptoms, particularly in high-risk women (HRW), i.e. those with histories of mood sensitivity to female hormone fluctuations. We have shown that glutamate (Glu) levels in the medial prefrontal cortex (MPFC) decrease during perimenopause, a period of increased risk of developing a major depressive episode. Our team has also demonstrated that percentage gray matter (%GM), another neural correlate of maternal brain health, decreases in the MPFC during pregnancy. OBJECTIVE To investigate MPFC Glu levels and %GM from late pregnancy up to 7 weeks postpartum in HRW and healthy pregnant women (HPW). METHODS Single-voxel spectra were acquired from the MPFC of 41 HPW and 22 HRW using 3- Tesla in vivo proton magnetic resonance spectroscopy at five different time points. RESULTS We observed a statistically significant interaction between time and group for the metabolite Glu, with Glu levels being lower for HRW during pregnancy and early postpartum (p<0.05). MPFC %GM was initially lower during pregnancy and then significantly increased over time in both groups (p<0.01). CONCLUSION This investigation suggests that the vulnerability towards PPD is associated with unique fluctuations of MPFC Glu levels during pregnancy and early postpartum period. Our results also suggest that the decline in MPFC %GM associated with pregnancy seems to progressively recover over time. Further investigations are needed to determine the specific role that female hormones play on the physiological changes in %GM during pregnancy and postpartum.
Collapse
Affiliation(s)
- Arjun Ghuman
- Address correspondence to these authors at the Department of Psychiatry, Room 1E7.14, 8440 112 street Walter Mackenzie Center, Edmonton, Alberta, Canada, T6G 2B7; Tel: 780-407-6578; Fax: 780-407-6672; E-mail:
| | - Alyssa McEwen
- Address correspondence to these authors at the Department of Psychiatry, Room 1E7.14, 8440 112 street Walter Mackenzie Center, Edmonton, Alberta, Canada, T6G 2B7; Tel: 780-407-6578; Fax: 780-407-6672; E-mail:
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Bi C, Guo S, Hu S, Chen J, Ye M, Liu Z. The microbiota-gut-brain axis and its modulation in the therapy of depression: comparison of efficacy of conventional drugs and traditional Chinese medicine approaches. Pharmacol Res 2022; 183:106372. [PMID: 35908662 DOI: 10.1016/j.phrs.2022.106372] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/16/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022]
Abstract
Depression is a common and severe mental disease that places a heavy burden on human society, which can lead to decreased cognitive function, energy loss, insomnia, and even suicide. Although medication plays an important role in improving the symptoms of depression, approximately one third of people with depression do not significantly benefit from medication and experience various adverse reactions. Recently, increasing evidence has shown that gut microbes play an important role in the occurrence and development of depression. There have been illuminating studies previously conducted on the relationship between antidepressant chemicals, traditional Chinese medicine, and the microbiota-gut-brain axis (MGBA). Therefore, in this review, we summarize the role of the MGBA in the occurrence and development of depression, especially the important role of the MGBA in the mechanism of action of antidepressants. Modulation of the MGBA is proposed to enhance the efficacy of antidepressant drugs and reduce their side effects and disease recurrence, so as to provide a new method for the treatment of depression.
Collapse
Affiliation(s)
- Chenchen Bi
- Department of Pharmacology, Medical College of Shaoxing University, Shaoxing, Zhejiang, China
| | - Shitian Guo
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shijia Hu
- Department of Pharmacology, Medical College of Shaoxing University, Shaoxing, Zhejiang, China
| | - Jiaqi Chen
- Department of Pharmacology, Medical College of Shaoxing University, Shaoxing, Zhejiang, China
| | - Mengfei Ye
- Department of Psychiatry, Shaoxing Seventh People's Hospital, Shaoxing, Zhejiang, China
| | - Zheng Liu
- Department of Pharmacology, Medical College of Shaoxing University, Shaoxing, Zhejiang, China; Department of Behavioral Neurosciences, Science Research Center of Medical College, Shaoxing University, Shaoxing, Zhejiang, China.
| |
Collapse
|
46
|
Lindsey A, Ellison RL, Herrold AA, Aaronson AL, Kletzel SL, Stika MM, Guernon A, Bender Pape T. rTMS/iTBS and Cognitive Rehabilitation for Deficits Associated With TBI and PTSD: A Theoretical Framework and Review. J Neuropsychiatry Clin Neurosci 2022; 35:28-38. [PMID: 35872613 DOI: 10.1176/appi.neuropsych.21090227] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Rehabilitation of cognitive and psychosocial deficits resulting from traumatic brain injury (TBI) continues to be an area of concern in health care. Commonly co-occurring psychiatric disorders, such as major depressive disorder and posttraumatic stress disorder, create additional hurdles when attempting to remediate cognitive sequelae. There is increased need for procedures that will yield consistent gains indicative of recovery of function. Intermittent theta-burst stimulation (iTBS), a form of repetitive transcranial magnetic stimulation, has potential as an instrument that can be tailored to aid cognitive processes and support functional gains. The use of iTBS enables direct stimulation of desired neural systems. iTBS, performed in conjunction with behavioral interventions (e.g., cognitive rehabilitation, psychotherapy), may result in additive success in facilitating cognitive restoration and adaptation. The purpose of this theoretical review is to illustrate how the technical and physiological aspects of iTBS may enhance other forms of neurorehabilitation for individuals with TBI. Future research on combinatorial iTBS interventions has the potential to translate to other complex neuropsychiatric conditions.
Collapse
Affiliation(s)
- André Lindsey
- Research Service (Lindsey, Ellison, Herrold, Kletzel, Guernon, Pape), Center for Innovation for Complex Chronic Healthcare (Herrold, aronson, Kletzel, Pape), and Spinal Cord Injury/Disorder Service (Stika), Edward Hines, Jr., Veterans Affairs (VA) Hospital, Hines, IL; School of Education, Nevada State College, Henderson (Lindsey); Department of Psychology, Illinois Institute of Technology, Chicago (Ellison); Departments of Psychiatry and Behavioral Medicine (Herrold, Aaronson) and Physical Medicine and Rehabilitation (Pape), Feinberg School of Medicine, Northwestern University, Chicago; Speech-Language Pathology Program, College of Nursing and Health Sciences, Lewis University, Romeoville, IL (Guernon)
| | - Rachael L Ellison
- Research Service (Lindsey, Ellison, Herrold, Kletzel, Guernon, Pape), Center for Innovation for Complex Chronic Healthcare (Herrold, aronson, Kletzel, Pape), and Spinal Cord Injury/Disorder Service (Stika), Edward Hines, Jr., Veterans Affairs (VA) Hospital, Hines, IL; School of Education, Nevada State College, Henderson (Lindsey); Department of Psychology, Illinois Institute of Technology, Chicago (Ellison); Departments of Psychiatry and Behavioral Medicine (Herrold, Aaronson) and Physical Medicine and Rehabilitation (Pape), Feinberg School of Medicine, Northwestern University, Chicago; Speech-Language Pathology Program, College of Nursing and Health Sciences, Lewis University, Romeoville, IL (Guernon)
| | - Amy A Herrold
- Research Service (Lindsey, Ellison, Herrold, Kletzel, Guernon, Pape), Center for Innovation for Complex Chronic Healthcare (Herrold, aronson, Kletzel, Pape), and Spinal Cord Injury/Disorder Service (Stika), Edward Hines, Jr., Veterans Affairs (VA) Hospital, Hines, IL; School of Education, Nevada State College, Henderson (Lindsey); Department of Psychology, Illinois Institute of Technology, Chicago (Ellison); Departments of Psychiatry and Behavioral Medicine (Herrold, Aaronson) and Physical Medicine and Rehabilitation (Pape), Feinberg School of Medicine, Northwestern University, Chicago; Speech-Language Pathology Program, College of Nursing and Health Sciences, Lewis University, Romeoville, IL (Guernon)
| | - Alexandra L Aaronson
- Research Service (Lindsey, Ellison, Herrold, Kletzel, Guernon, Pape), Center for Innovation for Complex Chronic Healthcare (Herrold, aronson, Kletzel, Pape), and Spinal Cord Injury/Disorder Service (Stika), Edward Hines, Jr., Veterans Affairs (VA) Hospital, Hines, IL; School of Education, Nevada State College, Henderson (Lindsey); Department of Psychology, Illinois Institute of Technology, Chicago (Ellison); Departments of Psychiatry and Behavioral Medicine (Herrold, Aaronson) and Physical Medicine and Rehabilitation (Pape), Feinberg School of Medicine, Northwestern University, Chicago; Speech-Language Pathology Program, College of Nursing and Health Sciences, Lewis University, Romeoville, IL (Guernon)
| | - Sandra L Kletzel
- Research Service (Lindsey, Ellison, Herrold, Kletzel, Guernon, Pape), Center for Innovation for Complex Chronic Healthcare (Herrold, aronson, Kletzel, Pape), and Spinal Cord Injury/Disorder Service (Stika), Edward Hines, Jr., Veterans Affairs (VA) Hospital, Hines, IL; School of Education, Nevada State College, Henderson (Lindsey); Department of Psychology, Illinois Institute of Technology, Chicago (Ellison); Departments of Psychiatry and Behavioral Medicine (Herrold, Aaronson) and Physical Medicine and Rehabilitation (Pape), Feinberg School of Medicine, Northwestern University, Chicago; Speech-Language Pathology Program, College of Nursing and Health Sciences, Lewis University, Romeoville, IL (Guernon)
| | - Monica M Stika
- Research Service (Lindsey, Ellison, Herrold, Kletzel, Guernon, Pape), Center for Innovation for Complex Chronic Healthcare (Herrold, aronson, Kletzel, Pape), and Spinal Cord Injury/Disorder Service (Stika), Edward Hines, Jr., Veterans Affairs (VA) Hospital, Hines, IL; School of Education, Nevada State College, Henderson (Lindsey); Department of Psychology, Illinois Institute of Technology, Chicago (Ellison); Departments of Psychiatry and Behavioral Medicine (Herrold, Aaronson) and Physical Medicine and Rehabilitation (Pape), Feinberg School of Medicine, Northwestern University, Chicago; Speech-Language Pathology Program, College of Nursing and Health Sciences, Lewis University, Romeoville, IL (Guernon)
| | - Ann Guernon
- Research Service (Lindsey, Ellison, Herrold, Kletzel, Guernon, Pape), Center for Innovation for Complex Chronic Healthcare (Herrold, aronson, Kletzel, Pape), and Spinal Cord Injury/Disorder Service (Stika), Edward Hines, Jr., Veterans Affairs (VA) Hospital, Hines, IL; School of Education, Nevada State College, Henderson (Lindsey); Department of Psychology, Illinois Institute of Technology, Chicago (Ellison); Departments of Psychiatry and Behavioral Medicine (Herrold, Aaronson) and Physical Medicine and Rehabilitation (Pape), Feinberg School of Medicine, Northwestern University, Chicago; Speech-Language Pathology Program, College of Nursing and Health Sciences, Lewis University, Romeoville, IL (Guernon)
| | - Theresa Bender Pape
- Research Service (Lindsey, Ellison, Herrold, Kletzel, Guernon, Pape), Center for Innovation for Complex Chronic Healthcare (Herrold, aronson, Kletzel, Pape), and Spinal Cord Injury/Disorder Service (Stika), Edward Hines, Jr., Veterans Affairs (VA) Hospital, Hines, IL; School of Education, Nevada State College, Henderson (Lindsey); Department of Psychology, Illinois Institute of Technology, Chicago (Ellison); Departments of Psychiatry and Behavioral Medicine (Herrold, Aaronson) and Physical Medicine and Rehabilitation (Pape), Feinberg School of Medicine, Northwestern University, Chicago; Speech-Language Pathology Program, College of Nursing and Health Sciences, Lewis University, Romeoville, IL (Guernon)
| |
Collapse
|
47
|
Xue X, Pan J, Zhang H, Lu Y, Mao Q, Ma K. Baihe Dihuang (Lilium Henryi Baker and Rehmannia Glutinosa) decoction attenuates somatostatin interneurons deficits in prefrontal cortex of depression via miRNA-144-3p mediated GABA synthesis and release. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115218. [PMID: 35337919 DOI: 10.1016/j.jep.2022.115218] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/19/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Baihe Dihuang Decoction is a well-known traditional Chinese medicine prescription (Also known as Lilium Henryi Baker and Rehmannia Glutinosa Decoction, LBRD) composed of Lilium Henryi Baker bulb and raw juice from Rehmannia Glutinosa (Gaertn) DC with the curative efficacy of nourishing yin and clearing heat based on the Chinese herbal medicine theory. It has been used as routine medication in treating depression combined with conventional western medicine in China for years. AIM OF THE STUDY LBRD can attenuates GABAergic deficits in the medial prefrontal cortex (mPFC) of depression. This study aimed to investigate the mechanism of antidepressive properties of LBRD in the prefrontal GABAergic interneuron subtypes, including parvalbumin (PV), somatostatin (SST), vasoactive intestinal peptide (VIP)-positive neuron. MATERIALS AND METHODS In this project, chronic unpredicted mild stress paradigm was adopted to construct depression model. After treated with LBRD standard decoction and behaviors test, the level of GABA associated miRNA/mRNA and GABAergic subtype-specific markers were detected by qRT-PCR and Western blot. The lncRNAs/miRNAs/GABA regulatory axis was verified by luciferase reporter assay, RNA immunoprecipitation, RNA pull-down assay, and theses changes were measured in LBRD administration with the use of immunofluorescence staining and RNA-fluorescence in situ hybridization. RESULTS In the current study, we found that LBRD exhibited high efficacy based on the results of behavioral tests. Meanwhile, LBRD also improved the reduced GABA levels in depression by increasing the expression of lncRNA Neat1 and Malat1, as well as decreasing miRNA-144-3p and miRNA-15b-5p. Moreover, the level of Sst mRNA and protein that were harvested from the mPFC tissues of depression group was significantly lower than those in the control mice. While, these changes can be reverted by LBRD standard decoction administration. Whereas, neither chronic stress nor treatment can change the level of PV and VIP mRNAs and protein expression. In the SST-positive neuron of mPFC tissues, treatment with LBRD standard decoction resulted in the elevation of Gad-67, VGAT, GAT-3 and a reduction of miRNA-144-3p expression. CONCLUSIONS These findings suggested that LBRD antidepressant activities may be related to ameliorating the SST-positive neuron deficits via regulating the miRNA-144-3p mediated GABA synthesis and release.
Collapse
Affiliation(s)
- Xiaoyan Xue
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Jin Pan
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Hongxiu Zhang
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China; Institute of Virology, Jinan Municipal Center for Disease Control and Prevention, Jinan, 250021, PR China
| | - Yanting Lu
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Qiancheng Mao
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Ke Ma
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China.
| |
Collapse
|
48
|
Tartt AN, Mariani MB, Hen R, Mann JJ, Boldrini M. Dysregulation of adult hippocampal neuroplasticity in major depression: pathogenesis and therapeutic implications. Mol Psychiatry 2022; 27:2689-2699. [PMID: 35354926 PMCID: PMC9167750 DOI: 10.1038/s41380-022-01520-y] [Citation(s) in RCA: 120] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/22/2022] [Accepted: 03/09/2022] [Indexed: 02/07/2023]
Abstract
Major depressive disorder (MDD) was previously hypothesized to be a disease of monoamine deficiency in which low levels of monoamines in the synaptic cleft were believed to underlie depressive symptoms. More recently, however, there has been a paradigm shift toward a neuroplasticity hypothesis of depression in which downstream effects of antidepressants, such as increased neurogenesis, contribute to improvements in cognition and mood. This review takes a top-down approach to assess how changes in behavior and hippocampal-dependent circuits may be attributed to abnormalities at the molecular, structural, and synaptic level. We conclude with a discussion of how antidepressant treatments share a common effect in modulating neuroplasticity and consider outstanding questions and future perspectives.
Collapse
Affiliation(s)
| | | | - Rene Hen
- Departments of Psychiatry, Columbia University, New York, NY, USA
- Neuroscience, Columbia University, New York, NY, USA
- Pharmacology, Columbia University, New York, NY, USA
- Integrative Neuroscience, NYS Psychiatric Institute, New York, NY, USA
| | - J John Mann
- Departments of Psychiatry, Columbia University, New York, NY, USA
- Molecular Imaging and Neuropathology, NYS Psychiatric Institute, New York, NY, USA
| | - Maura Boldrini
- Departments of Psychiatry, Columbia University, New York, NY, USA.
- Molecular Imaging and Neuropathology, NYS Psychiatric Institute, New York, NY, USA.
| |
Collapse
|
49
|
Singh B, Port JD, Pazdernik V, Coombes BJ, Vande Voort JL, Frye MA. Racemic ketamine treatment attenuates anterior cingulate cortex GABA deficits among remitters in treatment-resistant depression: A pilot study. Psychiatry Res Neuroimaging 2022; 320:111432. [PMID: 34973601 PMCID: PMC11467890 DOI: 10.1016/j.pscychresns.2021.111432] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 11/23/2022]
Affiliation(s)
- Balwinder Singh
- Department of Psychiatry and Psychology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905 USA.
| | - John D Port
- Department of Psychiatry and Psychology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905 USA; Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Vanessa Pazdernik
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Brandon J Coombes
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Jennifer L Vande Voort
- Department of Psychiatry and Psychology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905 USA
| | - Mark A Frye
- Department of Psychiatry and Psychology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905 USA
| |
Collapse
|
50
|
McGrath T, Baskerville R, Rogero M, Castell L. Emerging Evidence for the Widespread Role of Glutamatergic Dysfunction in Neuropsychiatric Diseases. Nutrients 2022; 14:nu14050917. [PMID: 35267893 PMCID: PMC8912368 DOI: 10.3390/nu14050917] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/06/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
The monoamine model of depression has long formed the basis of drug development but fails to explain treatment resistance or associations with stress or inflammation. Recent animal research, clinical trials of ketamine (a glutamate receptor antagonist), neuroimaging research, and microbiome studies provide increasing evidence of glutamatergic dysfunction in depression and other disorders. Glutamatergic involvement across diverse neuropathologies including psychoses, neurodevelopmental, neurodegenerative conditions, and brain injury forms the rationale for this review. Glutamate is the brain's principal excitatory neurotransmitter (NT), a metabolic and synthesis substrate, and an immune mediator. These overlapping roles and multiple glutamate NT receptor types complicate research into glutamate neurotransmission. The glutamate microcircuit comprises excitatory glutamatergic neurons, astrocytes controlling synaptic space levels, through glutamate reuptake, and inhibitory GABA interneurons. Astroglia generate and respond to inflammatory mediators. Glutamatergic microcircuits also act at the brain/body interface via the microbiome, kynurenine pathway, and hypothalamus-pituitary-adrenal axis. Disruption of excitatory/inhibitory homeostasis causing neuro-excitotoxicity, with neuronal impairment, causes depression and cognition symptoms via limbic and prefrontal regions, respectively. Persistent dysfunction reduces neuronal plasticity and growth causing neuronal death and tissue atrophy in neurodegenerative diseases. A conceptual overview of brain glutamatergic activity and peripheral interfacing is presented, including the common mechanisms that diverse diseases share when glutamate homeostasis is disrupted.
Collapse
Affiliation(s)
- Thomas McGrath
- Green Templeton College, University of Oxford, Oxford OX2 6HG, UK; (T.M.); (L.C.)
| | - Richard Baskerville
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
- Correspondence:
| | - Marcelo Rogero
- School of Public Health, University of Sao Paulo, Sao Paulo 01246-904, Brazil;
| | - Linda Castell
- Green Templeton College, University of Oxford, Oxford OX2 6HG, UK; (T.M.); (L.C.)
| |
Collapse
|