1
|
Liang C, Shen Y, Xu Y, Liang Y, Qiu S, Tang H, Zhong X. Dendritic Cells Promote the Differentiation of ILCs into NCR -ILC3s in the Lungs of Mice Exposed to Cigarette Smoke. COPD 2024; 21:2389909. [PMID: 39143749 DOI: 10.1080/15412555.2024.2389909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/07/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024]
Abstract
The involvement of Group 3 innate lymphoid cells (ILC3s) and dendritic cells (DCs) in chronic lung inflammation has been increasingly regarded as the key to understand the inflammatory mechanisms of smoke-related chronic obstructive pulmonary disease (COPD). However, the mechanism underlying the engagement of both remains unclear. Our study aimed to explore NCR-ILC3 differentiation in the lungs of mice exposed to cigarette smoke (CS) and to further investigate whether DCs activated by CS exposure contribute to the differentiation of ILCs into NCR-ILC3s. The study involved both in vivo and in vitro experiments. In the former, the frequencies of lung NCR-ILC3s and NKp46-IL-17A+ ILCs and the expression of DCs, CD40, CD86, IL-23, and IL-1β quantified by flow cytometry were compared between CS-exposed mice and air-exposed mice. In the latter, NKp46-IL-17A+ ILC frequencies quantified by flow cytometry were compared after two cocultures, one involving lung CD45+Lin-CD127+ ILCs sorted from air-exposed mice and DCs sifted by CD11c magnetic beads from CS-exposed mice and another including identical CD45+Lin-CD127+ ILCs and DCs from air-exposed mice. The results indicated significant increases in the frequencies of NCR-ILC3s and NKp46-IL-17A+ ILCs; in the expression of DCs, CD40, CD86, IL-23, and IL-1β in CS-exposed mice; and in the frequency of NKp46-IL-17A+ ILCs after the coculture with DCs from CS-exposed mice. In conclusion, CS exposure increases the frequency of lung ILCs and NCR-ILC3s. CS-induced DC activation enhances the differentiation of ILCs into NCR-ILC3s, which likely acts as a mediating step in the involvement of NCR-ILC3s in chronic lung inflammation.
Collapse
Affiliation(s)
- Caixia Liang
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Ying Shen
- General Practice School, Guangxi Medical University, Nanning, P.R. China
| | - Yifang Xu
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Yi Liang
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Shilin Qiu
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Haijuan Tang
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Xiaoning Zhong
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
| |
Collapse
|
2
|
Yang Z, Zhang D, Jiang Z, Peng J, Wei H. The formidable guardian: Type 3 immunity in the intestine of pigs. Virulence 2024; 15:2424325. [PMID: 39497434 DOI: 10.1080/21505594.2024.2424325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 09/19/2024] [Accepted: 10/11/2024] [Indexed: 11/09/2024] Open
Abstract
Well-intestinal health is crucial for better growth performance in pigs. Type 3 immunity, which is one of the three types of immune responses in mammals, plays a vital role in maintaining intestinal homoeostasis. Therefore, we initially introduce the type 3 immune cells in the intestine of pigs, including their distribution, development, and function. We then discuss the type 3 immune response under infection, encompassing bacterial, fungal, and viral infections. It also covers two major stresses in pigs: heat stress and weaning stress. Lastly, we discuss the effects of various nutrients and feed additives on the regulation of the type 3 immune response in pigs under infection. This review aims to contribute to the understanding of the interaction between infection and type 3 immunity in pigs and to illustrate how various nutrients modulate the type 3 immune response in pigs under diverse infections.
Collapse
Affiliation(s)
- Zhipeng Yang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Dou Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhoudan Jiang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, China
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
3
|
Abacar K, Macleod T, Direskeneli H, McGonagle D. How underappreciated autoinflammatory (innate immunity) mechanisms dominate disparate autoimmune disorders. Front Immunol 2024; 15:1439371. [PMID: 39372419 PMCID: PMC11449752 DOI: 10.3389/fimmu.2024.1439371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/04/2024] [Indexed: 10/08/2024] Open
Abstract
Historically inflammation against self was considered autoimmune which stems back to the seminal observations by Ehrlich who described serum factors, now known to be autoantibodies produced by B lineage cells that mediate "horror autotoxicus". The 20th century elucidation of B- and T-cell adaptive immune responses cemented the understanding of the key role of adaptive immune responses in mediating pathology against self. However, Mechnikov shared the Nobel Prize for the discovery of phagocytosis, the most rudimentary aspect of innate immunity. Fast forward some 100 years and an immunogenetic understanding of innate immunity led to the categorising of innate immunopathology under the umbrella term 'auto inflammation' and terminology such as "horror autoinflammaticus" to highlight the schism from the classical adaptive immune understanding of autoimmunity. These concepts lead to calls for a two-tiered classification of inflammation against self, but just as innate and adaptive immunity are functionally integrated, so is immunopathology in many settings and the concept of an autoimmune to autoinflammation continuum emerged with overlaps between both. Herein we describe several historically designated disorders of adaptive immunity where innate immunity is key, including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), systemic juvenile idiopathic arthritis (sJIA) and adult-onset Still's disease (AOSD) where the immunopathology phenotype is strongly linked to major histocompatibility complex (MHC) class II associations and responds to drugs that target T-cells. We also consider MHC-I-opathies including psoriasis and Behcet's disease(BD) that are increasingly viewed as archetype CD8 T-cell related disorders. We also briefly review the key role of barrier dysfunction in eczema and ulcerative colitis (UC) where innate tissue permeability barrier dysfunction and microbial dysbiosis contributes to prominent adaptive immune pathological mechanisms. We also highlight the emerging roles of intermediate populations of lymphocytes including gamma delta (γδ) and mucosal-associated invariant T (MAIT) cells that represent a blend of adaptive immune plasticity and innate immune rapid responders that may also determine site specific patterns of inflammation.
Collapse
Affiliation(s)
- Kerem Abacar
- Department of Internal Medicine, Division of Rheumatology, Marmara University School of Medicine, Istanbul, Türkiye
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
| | - Tom Macleod
- Department of Internal Medicine, Division of Rheumatology, Marmara University School of Medicine, Istanbul, Türkiye
| | - Haner Direskeneli
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
| | - Dennis McGonagle
- Department of Internal Medicine, Division of Rheumatology, Marmara University School of Medicine, Istanbul, Türkiye
- National Institute for Health Research, Leeds Biomedical Research Centre, Leeds Teaching Hospitals, Leeds, United Kingdom
| |
Collapse
|
4
|
Li X, He J, Gao X, Zheng G, Chen C, Chen Y, Xing Z, Wang T, Tang J, Guo Y, He Y. GPX4 restricts ferroptosis of NKp46 +ILC3s to control intestinal inflammation. Cell Death Dis 2024; 15:687. [PMID: 39300068 PMCID: PMC11413021 DOI: 10.1038/s41419-024-07060-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/31/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
Group 3 innate lymphoid cells (ILC3s) are essential for both pathogen defense and tissue homeostasis in the intestine. Dysfunction of ILC3s could lead to increased susceptibility to intestinal inflammation. However, the precise mechanisms governing the maintenance of intestinal ILC3s are yet to be fully elucidated. Here, we demonstrated that ferroptosis is vital for regulating the survival of intestinal ILC3. Ferroptosis-related genes, including GPX4, a key regulator of ferroptosis, were found to be upregulated in intestinal mucosal ILC3s from ulcerative colitis patients. Deletion of GPX4 resulted in a decrease in NKp46+ILC3 cell numbers, impaired production of IL-22 and IL-17A, and exacerbated intestinal inflammation in a T cell-independent manner. Our mechanistic studies revealed that GPX4-mediated ferroptosis in NKp46+ILC3 cells was regulated by the LCN2-p38-ATF4-xCT signaling pathway. Mice lacking LCN2 in ILC3s or administration of a p38 pathway inhibitor exhibited similar phenotypes of ILC3 and colitis to those observed in GPX4 conditional knock-out mice. These observations provide novel insights into therapeutic strategies for intestinal inflammation by modulating ILC3 ferroptosis.
Collapse
Affiliation(s)
- Xinyao Li
- Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences); Department of Immunology, School of Basic Medical Sciences; Department of Clinical Laboratory, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
- Department of Immunology; Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Junyu He
- Department of Immunology; Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiang Gao
- Department of Gastroenterology, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guilang Zheng
- Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University; Guangdong Provincial Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chunling Chen
- Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University; Guangdong Provincial Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yimin Chen
- Department of Immunology; Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhe Xing
- Department of Immunology; Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Tianci Wang
- Department of Immunology; Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jian Tang
- Department of Gastroenterology, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuxiong Guo
- Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University; Guangdong Provincial Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Yumei He
- Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences); Department of Immunology, School of Basic Medical Sciences; Department of Clinical Laboratory, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China.
- Department of Immunology; Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
5
|
Shen G, Wang Q, Li Z, Xie J, Han X, Wei Z, Zhang P, Zhao S, Wang X, Huang X, Xu M. Bridging Chronic Inflammation and Digestive Cancer: The Critical Role of Innate Lymphoid Cells in Tumor Microenvironments. Int J Biol Sci 2024; 20:4799-4818. [PMID: 39309440 PMCID: PMC11414386 DOI: 10.7150/ijbs.96338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 08/09/2024] [Indexed: 09/25/2024] Open
Abstract
The incidence and mortality of digestive system-related cancers have always been high and attributed to the heterogeneity and complexity of the immune microenvironment of the digestive system. Furthermore, several studies have shown that chronic inflammation in the digestive system is responsible for cancer incidence; therefore, controlling inflammation is a potential strategy to stop the development of cancer. Innate Lymphoid Cells (ILC) represent a heterogeneous group of lymphocytes that exist in contrast to T cells. They function by interacting with cytokines and immune cells in an antigen-independent manner. In the digestive system cancer, from the inflammatory phase to the development, migration, and metastasis of tumors, ILC have been found to interact with the immune microenvironment and either control or promote these processes. The conventional treatments for digestive tumors have limited efficacy, therefore, ILC-associated immunotherapies are promising strategies. This study reviews the characterization of different ILC subpopulations, how they interact with and influence the immune microenvironment as well as chronic inflammation, and their promotional or inhibitory role in four common digestive system tumors, including pancreatic, colorectal, gastric, and hepatocellular cancers. In particular, the review emphasizes the role of ILC in associating chronic inflammation with cancer and the potential for enhanced immunotherapy with cytokine therapy and adoptive immune cell therapy.
Collapse
Affiliation(s)
- Guanliang Shen
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212001, China
- Digestive Disease Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Qi Wang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212001, China
- Digestive Disease Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Zhengrui Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaheng Xie
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xinda Han
- Xinglin College, Nantong University, Nantong, Jiangsu, China
| | - Zehao Wei
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212001, China
- Digestive Disease Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Pengpeng Zhang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Songyun Zhao
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Xiumei Wang
- Affiliated Cancer Hospital of Inner Mongolia Medical University, 010020, Inner Mongolia, China
| | | | - Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212001, China
- Digestive Disease Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| |
Collapse
|
6
|
Roberts LB, Neves JF, Lee DCH, Valpione S, Tachó-Piñot R, Howard JK, Hepworth MR, Lord GM. MicroRNA-142 regulates gut associated lymphoid tissues and group 3 innate lymphoid cells. Mucosal Immunol 2024:S1933-0219(24)00094-1. [PMID: 39245145 DOI: 10.1016/j.mucimm.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024]
Abstract
The transcriptomic signatures that shape responses of innate lymphoid cells (ILCs) have been well characterised, however post-transcriptional mechanisms which regulate their development and activity remain poorly understood. We demonstrate that ILC groups of the intestinal lamina propria express mature forms of microRNA-142 (miR-142), an evolutionarily conserved microRNA family with several non-redundant regulatory roles within the immune system. Germline Mir142 deletion alters intestinal ILC compositions, resulting in the absence of T-bet+ populations and significant defects in the cellularity and phenotypes of ILC3 subsets including CCR6+ LTi-like ILC3s. These effects were associated with decreased pathology in an innate-immune cell driven model of colitis. Furthermore, Mir142-/- mice demonstrate defective development of gut-associated lymphoid tissues, including a complete absence of mature Peyer's patches. Conditional deletion of Mir142 in ILC3s (RorcΔMir142) supported cell-intrinsic roles for these microRNAs in establishing or maintaining cellularity and functions of LTi-like ILC3s in intestinal associated tissues. RNAseq analysis revealed several target genes and biological pathways potentially regulated by miR-142 microRNAs in these cells. Finally, lack of Mir142 in ILC3 led to elevated IL-17A production. These data broaden our understanding of immune system roles of miR-142 microRNAs, identifying these molecules as critical post-transcriptional regulators of ILC3s and intestinal mucosal immunity.
Collapse
Affiliation(s)
- Luke B Roberts
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, M13 9PL, United Kingdom.
| | - Joana F Neves
- Centre for Host-Microbiome Interactions, King's College London, Great Maze Pond, London SE1 9RT, United Kingdom
| | - Dave C H Lee
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, M13 9PL, United Kingdom
| | - Sara Valpione
- The Christie NHS Foundation Trust, 550 Wilmslow Road, M20 4BX Manchester, United Kingdom; Division of Cancer Sciences, The University of Manchester, Oxford Road, M13 9PL Manchester, United Kingdom; Cancer Research UK National Biomarker Centre, Wilmslow Road, M20 4BX Manchester, United Kingdom
| | - Roser Tachó-Piñot
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, M13 9PL, United Kingdom
| | - Jane K Howard
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, Great Maze Pond, London SE1 9RT, United Kingdom
| | - Matthew R Hepworth
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, M13 9PL, United Kingdom
| | - Graham M Lord
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, M13 9PL, United Kingdom; Centre for Gene Therapy and Regenerative Medicine, School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, United Kingdom.
| |
Collapse
|
7
|
Wang W, Li N, Guo X. The crosstalk between ILC3s and adaptive immunity in diseases. FEBS J 2024; 291:3965-3977. [PMID: 37994218 DOI: 10.1111/febs.17014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/26/2023] [Accepted: 11/21/2023] [Indexed: 11/24/2023]
Abstract
RORγt+ group 3 innate lymphoid cells (ILC3s), the innate counterpart of Th17 cells, are enriched in the mucosal area and lymphoid tissues. ILC3s interact with a variety of cells through their effector molecules and play an important role in the host defense against a spectrum of infections. Recent studies suggest that the extensive crosstalk between ILC3s and adaptive immune cells, especially T cells, is essential for maintaining tissue homeostasis. Here we discuss recent advances in the crosstalk between ILC3s and adaptive immune responses in multiple tissues and diseases. Understanding how ILC3s engage with adaptive immune cells will enhance our comprehension of diseases and facilitate the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Wenyan Wang
- Institute for Immunology, Tsinghua University, Beijing, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
- Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Na Li
- Institute for Immunology, Tsinghua University, Beijing, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
- Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Xiaohuan Guo
- Institute for Immunology, Tsinghua University, Beijing, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
- Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| |
Collapse
|
8
|
Liu H, Guan L, Su X, Zhao L, Shu Q, Zhang J. A broken network of susceptibility genes in the monocytes of Crohn's disease patients. Life Sci Alliance 2024; 7:e202302394. [PMID: 38925865 PMCID: PMC11208737 DOI: 10.26508/lsa.202302394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Genome-wide association studies have identified over 200 genetic loci associated with inflammatory bowel disease; however, the mechanism of such a large amount of susceptibility genes remains uncertain. In this study, we integrated bioinformatics analysis and two independent single-cell transcriptome datasets to investigate the expression network of 232 susceptibility genes in Crohn's disease (CD) patients and healthy controls. The study revealed that most of the susceptibility genes are specifically and strictly expressed in the monocytes of the human intestinal tract. The susceptibility genes established a network within the monocytes of health control. The robustness of a gene network may prevent disease onset that is influenced by the genetic and environmental alteration in the expression of susceptibility genes. In contrast, we showed a sparse network in pediatric/adult CD patients, suggesting the broken network contributed to the CD etiology. The network status of susceptibility genes at the single-cell level of monocytes provided novel insight into the etiology.
Collapse
Affiliation(s)
- Hankui Liu
- Hebei Industrial Technology Research Institute of Genomics in Maternal & Child Health, Clin Lab, BGI Genomics, Shijiazhuang, China
- BGI Genomics, Shenzhen, China
| | - Liping Guan
- Hebei Industrial Technology Research Institute of Genomics in Maternal & Child Health, Clin Lab, BGI Genomics, Shijiazhuang, China
- BGI Genomics, Shenzhen, China
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Xi Su
- BGI Genomics, Shenzhen, China
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Lijian Zhao
- Hebei Industrial Technology Research Institute of Genomics in Maternal & Child Health, Clin Lab, BGI Genomics, Shijiazhuang, China
- BGI Genomics, Shenzhen, China
- Hebei Medical University, Shijiazhuang, China
| | - Qing Shu
- Department of Gastroenterology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Jianguo Zhang
- Hebei Industrial Technology Research Institute of Genomics in Maternal & Child Health, Clin Lab, BGI Genomics, Shijiazhuang, China
- BGI Research, Shenzhen, China
- Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
9
|
Anderson J, Quah L, Mangano K, Pellicci DG, Mazarakis N, Licciardi PV. A 38-colour high dimensional immunophenotyping panel for human peripheral blood mononuclear cells. J Immunol Methods 2024; 532:113726. [PMID: 38992764 DOI: 10.1016/j.jim.2024.113726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/28/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
High dimensional immunophenotyping panels are invaluable resources for performing extensive phenotyping on peripheral blood mononuclear cells (PBMCs). We designed a 38-colour high dimensional phenotyping panel to measure innate (monocytes, dendritic cells, NK cells, basophils, innate like lymphoid cells), T cell (γδ T cells, MAIT cells, CD4 and CD8 memory, Th1, Th2, Th17, Tfh, Treg) and B cell (memory, plasma cells, transitional B cells, plasmablasts, IgG, IgM) subsets in addition to their activation status using the 5-laser Cytek Aurora. We optimised optimal fluorochrome combinations and titres to minimise spread and autofluorescence of rare immune cell populations and tested this panel on PBMCs from 15 healthy adults. This high dimensional panel will be invaluable for direct ex vivo studies to evaluate immune cells in the context of human health and disease, especially when samples are limited.
Collapse
Affiliation(s)
- Jeremy Anderson
- Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia.
| | - Leanne Quah
- Murdoch Children's Research Institute, Melbourne, Australia
| | - Kiara Mangano
- Murdoch Children's Research Institute, Melbourne, Australia
| | - Daniel G Pellicci
- Murdoch Children's Research Institute, Melbourne, Australia; Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - Nadia Mazarakis
- Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Paul V Licciardi
- Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia
| |
Collapse
|
10
|
Huang S, Ye Q, Wang A, Chen Y. Paeoniae Decoction restores intestinal barrier dysfunction by promoting the interaction between ILC3 and gut flora. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155873. [PMID: 39024673 DOI: 10.1016/j.phymed.2024.155873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/18/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Intestinal barrier dysfunction is a significant contributor to the recurrence and refractory of ulcerative colitis (UC). Promoting the interaction between group 3 innate lymphoid cells (ILC3s) and gut flora is a valuable strategy for mucosal repair. Paeoniae decoction (PD) is a compound commonly used in clinical treatment of UC, but its exact mechanism remains unclear. PURPOSE We aimed to investigate the protective effect of PD on intestinal mucosal injury induced by dextran sulfate sodium (DSS) in chronic colitis, as well as to elucidate its potential mechanism. METHODS C57BL/6 mice were induced with chronic colitis by 2 % DSS and divided into four groups: control group, model group, PD low dose (4 g/kg), and high dose (8 g/kg) group. The effectiveness of PD in treating chronic colitis mice was evaluated based on changes in body weight, colon length, colon pathological tissue scores, and the mRNA levels of inflammatory factors IL-6 and IL-1β. The expressions of intestinal epithelial tight junction proteins (ZO-1 and Occludin), IL-22, and MUC2 were observed using immunofluorescence and RT-PCR. Additionally, the proportion of ILC3 and natural cytotoxicity receptor (NCR)+ ILC3 in the colon were detected using flow cytometry. Furthermore, UHPLC-QE-MS was utilized to identify chemical components of PD and network pharmacology was employed to predict potential pathways for PD intervention in UC. Subsequently, MNK-3 cells (ILC3 in vitro cell line) and NCM460 cells were used to verify the network pharmacology results. Finally, the effects of PD on UC gut flora have been explored using in vitro fermentation and 16S rDNA techniques. RESULTS The results showed that PD significantly restored body weight and colon length in mice with chronic colitis, while also reducing colon inflammatory cell infiltration and the expression of IL-6 and IL-1β. Additionally, PD notably promoted the expression of MUC2, ZO-1, Occludin, and IL-22, as well as increasing the ratio of ILC3 and NCR+ILC3. UHPLC-QE-MS analysis identified 443 components of PD, and network pharmacology suggested that PD could target the aryl hydrocarbon receptor (AHR) signaling pathway, which was confirmed by MNK-3 cells and in vitro fermentation experiments. Furthermore, MNK-3-conditioned medium (CM) increased the expression of ZO-1 and Occludin in NCM460 cells. In addition, 16S rDNA results indicated that PD promoted the abundance of Lactobacillales, thus contributing to mucosal damage repair by activating the AHR signal in ILC3s. CONCLUSION In summary, our study demonstrates that PD repairs intestinal mucosal damage in chronic colitis by regulating the interaction of gut flora with ILC3, and the specific mechanism is related to the activation of AHR signaling pathway.
Collapse
Affiliation(s)
- Shaowei Huang
- Integrative Microecology Clinical Center, Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Shenzhen Clinical Research Center for Digestive Disease, Shenzhen Technology Research Center of Gut Microbiota Transplantation, Shenzhen Hospital, Southern Medical University, Shenzhen, PR China
| | - Qiujuan Ye
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Anjiang Wang
- Integrative Microecology Clinical Center, Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Shenzhen Clinical Research Center for Digestive Disease, Shenzhen Technology Research Center of Gut Microbiota Transplantation, Shenzhen Hospital, Southern Medical University, Shenzhen, PR China.
| | - Ye Chen
- Integrative Microecology Clinical Center, Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Shenzhen Clinical Research Center for Digestive Disease, Shenzhen Technology Research Center of Gut Microbiota Transplantation, Shenzhen Hospital, Southern Medical University, Shenzhen, PR China; Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China.
| |
Collapse
|
11
|
Zhang H, Zheng H, Wang Q, Ma Z, Liu W, Xu L, Li D, Zhu Y, Xue Y, Mei L, Huang X, Guo Z, Ke X. Sinomenine hydrochloride improves DSS-induced colitis in mice through inhibition of the TLR2/NF-κB signaling pathway. Clin Res Hepatol Gastroenterol 2024; 48:102411. [PMID: 38992426 DOI: 10.1016/j.clinre.2024.102411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/20/2024] [Accepted: 06/29/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND Sinomenine hydrochloride (SH) has anti-inflammatory and immunosuppressive effects, and its effectiveness in inflammatory diseases, such as rheumatoid arthritis, has been demonstrated. However, whether SH has a therapeutic effect on dextran sodium sulfate (DSS)-induced ulcerative colitis (UC) in mice and its mechanism of action have not been clarified. This study aimed to investigate the therapeutic effects and mechanism of action of SH on UC. METHODS Twenty-four mice were randomly divided into control, model, SH low-dose (SH-L, 20mg/kg), and SH high-dose (SH-H, 60mg/kg) groups with six mice in each group. Disease activity index (DAI), colonic mucosal damage index, and colonic histopathology scores were calculated. The expression levels of related proteins, genes, and downstream inflammatory factors in the Toll-like receptor 2/NF-κB (TLR2/NF-κB) signaling pathway were quantified. RESULTS SH inhibited weight loss, decreased DAI and histopathological scores, decreased the expression levels of TLR2, MyD88, P-P65, P65 proteins, and TLR2 genes, and also suppressed the expression of inflammatory factors TNF-α, IL-1 β, and IL-6 in the peripheral blood of mice. CONCLUSION The therapeutic effect of SH on DSS-induced UC in mice may be related to the inhibition of the TLR2/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Huimin Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui 233000, China
| | - Hailun Zheng
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui 233000, China
| | - Qizhi Wang
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui 233000, China
| | - Zhenzeng Ma
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui 233000, China
| | - Wei Liu
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui 233000, China
| | - Linxia Xu
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui 233000, China
| | - Dapeng Li
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui 233000, China
| | - Yu Zhu
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui 233000, China
| | - Yongju Xue
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui 233000, China
| | - Letian Mei
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui 233000, China
| | - Xixiang Huang
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui 233000, China
| | - Zhiguo Guo
- Department of Gastroenterology, Suzhou Hospital of Anhui Medical University, No. 616, Bianyangsan Road, Suzhou, Anhui 234000, China.
| | - Xiquan Ke
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui 233000, China.
| |
Collapse
|
12
|
Xing Z, Li X, He J, Chen Y, Zhu L, Zhang X, Huang Z, Tang J, Guo Y, He Y. OLFM4 modulates intestinal inflammation by promoting IL-22 +ILC3 in the gut. Commun Biol 2024; 7:914. [PMID: 39075283 PMCID: PMC11286877 DOI: 10.1038/s42003-024-06601-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 07/18/2024] [Indexed: 07/31/2024] Open
Abstract
Group 3 innate lymphoid cells (ILC3s) play key roles in intestinal inflammation. Olfactomedin 4 (OLFM4) is highly expressed in the colon and has a potential role in dextran sodium sulfate-induced colitis. However, the detailed mechanisms underlying the effects of OLFM4 on ILC3-mediated colitis remain unclear. In this study, we identify OLFM4 as a positive regulator of IL-22+ILC3. OLFM4 expression in colonic ILC3s increases substantially during intestinal inflammation in humans and mice. Compared to littermate controls, OLFM4-deficient (OLFM4-/-) mice are more susceptible to bacterial infection and display greater resistance to anti-CD40 induced innate colitis, together with impaired IL-22 production by ILC3, and ILC3s from OLFM4-/-mice are defective in pathogen resistance. Besides, mice with OLFM4 deficiency in the RORγt compartment exhibit the same trend as in OLFM4-/-mice, including colonic inflammation and IL-22 production. Mechanistically, the decrease in IL-22+ILC3 caused by OLFM4 deficiency involves the apoptosis signal-regulating kinase 1 (ASK1)- p38 MAPK signaling-dependent downregulation of RAR-related orphan receptor gamma (RORγt) protein. The OLFM4-metadherin (MTDH) complex upregulates p38/RORγt signaling, which is necessary for IL-22+ILC3 activation. The findings indicate that OLFM4 is a novel regulator of IL-22+ILC3 and essential for modulating intestinal inflammation and tissue homeostasis.
Collapse
Affiliation(s)
- Zhe Xing
- Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences); Department of Immunology, School of Basic Medical Sciences; Department of Clinical Laboratory, the Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
| | - Xinyao Li
- Department of Immunology; Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Basic Medical Sciences; Southern Medical University, Guangzhou, China
| | - Junyu He
- Department of Immunology; Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Basic Medical Sciences; Southern Medical University, Guangzhou, China
| | - Yimin Chen
- Department of Immunology; Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Basic Medical Sciences; Southern Medical University, Guangzhou, China
| | - Lei Zhu
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaogang Zhang
- Department of Immunology; Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Basic Medical Sciences; Southern Medical University, Guangzhou, China
| | - Zhengcong Huang
- Department of Immunology; Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Basic Medical Sciences; Southern Medical University, Guangzhou, China
| | - Jian Tang
- Department of Gastroenterology, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Yuxiong Guo
- Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University; Guangdong Provincial Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Yumei He
- Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences); Department of Immunology, School of Basic Medical Sciences; Department of Clinical Laboratory, the Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China.
- Department of Immunology; Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Basic Medical Sciences; Southern Medical University, Guangzhou, China.
| |
Collapse
|
13
|
Huang C, Zhu W, Li Q, Lei Y, Chen X, Liu S, Chen D, Zhong L, Gao F, Fu S, He D, Li J, Xu H. Antibody Fc-receptor FcεR1γ stabilizes cell surface receptors in group 3 innate lymphoid cells and promotes anti-infection immunity. Nat Commun 2024; 15:5981. [PMID: 39013884 PMCID: PMC11252441 DOI: 10.1038/s41467-024-50266-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/03/2024] [Indexed: 07/18/2024] Open
Abstract
Group 3 innate lymphoid cells (ILC3) are crucial for maintaining mucosal homeostasis and regulating inflammatory diseases, but the molecular mechanisms governing their phenotype and function are not fully understood. Here, we show that ILC3s highly express Fcer1g gene, which encodes the antibody Fc-receptor common gamma chain, FcεR1γ. Genetic perturbation of FcεR1γ leads to the absence of critical cell membrane receptors NKp46 and CD16 in ILC3s. Alanine scanning mutagenesis identifies two residues in FcεR1γ that stabilize its binding partners. FcεR1γ expression in ILC3s is essential for effective protective immunity against bacterial and fungal infections. Mechanistically, FcεR1γ influences the transcriptional state and proinflammatory cytokine production of ILC3s, relying on the CD16-FcεR1γ signaling pathway. In summary, our findings highlight the significance of FcεR1γ as an adapter protein that stabilizes cell membrane partners in ILC3s and promotes anti-infection immunity.
Collapse
Affiliation(s)
- Chao Huang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
- Laboratory of Systems Immunology, School of Medicine, Westlake University, Hangzhou, Zhejiang, China.
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
| | - Wenting Zhu
- Laboratory of Systems Immunology, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Qing Li
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yuchen Lei
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Xi Chen
- Laboratory of Systems Immunology, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Shaorui Liu
- Laboratory of Systems Immunology, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Dianyu Chen
- Laboratory of Systems Immunology, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Lijian Zhong
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Feng Gao
- Laboratory of Systems Immunology, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Shujie Fu
- Laboratory of Systems Immunology, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Danyang He
- Laboratory of Systems Immunology, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Jinsong Li
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Heping Xu
- Laboratory of Systems Immunology, School of Medicine, Westlake University, Hangzhou, Zhejiang, China.
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
14
|
Yang Y, Olah P, Radai Z, Maia G, Salava A, Salo V, Barker J, Lauerma A, Andersson B, Homey B, Fyhrquist N, Alenius H. Exploratory multi-omics analysis reveals host-microbe interactions associated with disease severity in psoriatic skin. EBioMedicine 2024; 105:105222. [PMID: 38924840 PMCID: PMC11259698 DOI: 10.1016/j.ebiom.2024.105222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/02/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Psoriasis (Pso) is a chronic inflammatory skin disease that poses both physical and psychological challenges. Dysbiosis of the skin microbiome has been implicated in Pso, yet a comprehensive multi-omics analysis of host-microbe interactions is still lacking. To bridge this gap, we conducted an exploratory study by adopting the integrated approach that combines whole metagenomic shotgun sequencing with skin transcriptomics. METHODS This was a cross-sectional study, adult patients with plaque-type Psoriasis (Pso) and healthy volunteers were included. Skin microbiota samples and biopsies were collected from both lesional and non-lesional skin areas on the lower back. Weighted Gene Correlation Network Analysis (WGCNA) was employed for co-expression network analysis, and cell deconvolution was conducted to estimate cell fractions. Taxonomic and functional features of the microbiome were identified using whole metagenomic shotgun sequencing. Association between host genes and microbes was analyzed using Spearman correlation. FINDINGS Host anti-viral responses and interferon-related networks were identified and correlated with the severity of psoriasis. The skin microbiome showed a greater prevalence of Corynebacterium simulans in the PASI severe-moderate groups, which correlated with interferon-induced host genes. Two distinct psoriatic clusters with varying disease severities were identified. Variations in the expression of cell apoptosis-associated antimicrobial peptides (AMPs) and microbial aerobic respiration I pathway may partly account for these differences in disease severity. INTERPRETATION Our multi-omics analysis revealed for the first time anti-viral responses and the presence of C. simulans associated with psoriasis severity. It also identified two psoriatic subtypes with distinct AMP and metabolic pathway expression. Our study provides new insights into understanding the host-microbe interaction in psoriasis and lays the groundwork for developing subtype-specific strategies for managing this chronic skin disease. FUNDING The research has received funding from the FP7 (MAARS-Grant 261366) and the Innovative Medicines Initiative 2 Joint Undertaking (JU) under grant agreement No 821511 (BIOMAP). The JU receives support from the European Union's Horizon 2020 research and innovation programme and EFPIA. This publication reflects only the author's view and the JU is not responsible for any use that may be made of the information it contains. GAM was supported by a scholarship provided by CAPES-PRINT, financed by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES (Brazilian Government Agency). The authors thank all patients who participated in our study.
Collapse
Affiliation(s)
- Ying Yang
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Peter Olah
- Department of Dermatology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine University Duesseldorf, Germany; Department of Dermatology, Venereology and Oncodermatology, Medical Faculty, University of Pécs, Hungary
| | - Zoltan Radai
- Department of Dermatology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine University Duesseldorf, Germany; One Health Institute, Faculty of Health Sciences, University of Debrecen, Hungary
| | - Guilherme Maia
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Alexander Salava
- Department of Dermatology, Allergology and Venereology, University of Helsinki and Helsinki University Hospital, Inflammation Centre, Helsinki, Finland
| | - Ville Salo
- Department of Dermatology, Allergology and Venereology, University of Helsinki and Helsinki University Hospital, Inflammation Centre, Helsinki, Finland
| | - Jonathan Barker
- St John's Institute of Dermatology, Kings College London, London, UK
| | - Antti Lauerma
- Department of Dermatology, Allergology and Venereology, University of Helsinki and Helsinki University Hospital, Inflammation Centre, Helsinki, Finland
| | - Björn Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Bernhard Homey
- Department of Dermatology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine University Duesseldorf, Germany
| | - Nanna Fyhrquist
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Harri Alenius
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Human Microbiome Research Program (HUMI), Medical Faculty, University of Helsinki, Finland.
| |
Collapse
|
15
|
Ye Q, Huang S, Wang Y, Chen S, Yang H, Tan W, Wu Z, Wang A, Chen Y. Wogonin improves colitis by activating the AhR pathway to regulate the plasticity of ILC3/ILC1. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155425. [PMID: 38518634 DOI: 10.1016/j.phymed.2024.155425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/23/2024] [Accepted: 02/05/2024] [Indexed: 03/24/2024]
Abstract
BACKGROUND Intestinal barrier dysfunction caused by the disrupted balance of group 3 innate lymphoid cells (ILC3)/group 1 innate lymphoid cells (ILC1) is a significant feature in the pathogenesis of inflammatory bowel disease (IBD). Activation of aryl hydrocarbon receptor (AhR) signaling contributes to the maintenance of ILC3/ILC1 balance. Wogonin, a natural flavonoid from Scutellaria baicalensis Georgi, can repair intestinal mucosal damage of IBD. However, it remains unclear if wogonin can exert a therapeutic effect by activating the AhR pathway to regulate the plasticity of ILC3/ILC1. PURPOSE In this study, we investigated the immunomodulatory effects of wogonin on IBD and its potential mechanisms in vitro and in vivo. STUDY DESIGN AND METHODS Chronic colitis was induced by four cycles of 2 % DSS treatment in mice. 20 mg kg-1/day wogonin was administrated by oral gavage and mice were treated intraperitoneally with 10 mg kg-1/2 days CH223191 to block the AhR pathway. Colon tissues were processed for histopathological examination and evaluation of the epithelial barrier function by immunohistochemistry. The activation of the AhR pathway and the plasticity of ILC3/ILC1 were determined by western blot and flow cytometry. Then, we also detected the intestinal microflora and their metabolites by 16 s sequencing and non-targeted Metabolomics analysis. Furthermore, an in vitro culture system consisting of MNK3 cells and NCM460 cells, and a CETSA assay were performed to confirm the molecular mechanism. RESULTS Wogonin ameliorated histological severity of the colon, decreased the secretion of inflammatory factors, and increased tight junction proteins in colitis mice. These effects are associated with the tendency of conversion from ILC3 to ILC1 prevented by wogonin, which was offset by AhR antagonist CH223191. In addition, wogonin exerted the curative effect by altering gut microbiota to produce metabolites such as Kynurenic acid, and 1H-Indole-3-carboxaldehyde as AhR endogenous ligands. In vitro data further verified that wogonin as an exogenous ligand directly binds to the structural domain of AhR by CETSA. Also, the supernatant of MNK-3 cells stimulated with wogonin enhanced expression of Occludin and Claudin1 in NCM460 cells induced by LPS. CONCLUSION Cumulatively, our study illustrated that wogonin improved the outcomes of DSS-induced chronic colitis via regulating the plasticity of ILC3/ILC1. Its specific mechanism is to binding to AhR directly, and to activate the AhR pathway indirectly by altering the tryptophan metabolisms of gut microbiota.
Collapse
Affiliation(s)
- Qiujuan Ye
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Shaowei Huang
- Integrative Microecology Clinical Center, Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Shenzhen Clinical Research Center for Digestive Disease, Shenzhen Technology Research Center of Gut Microbiota Transplantation, Shenzhen Hospital, Southern Medical University, Shenzhen, PR China
| | - Ying Wang
- Integrative Microecology Clinical Center, Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Shenzhen Clinical Research Center for Digestive Disease, Shenzhen Technology Research Center of Gut Microbiota Transplantation, Shenzhen Hospital, Southern Medical University, Shenzhen, PR China
| | - Shuze Chen
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Huiping Yang
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Weihao Tan
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Zaoxuan Wu
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Anjiang Wang
- Integrative Microecology Clinical Center, Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Shenzhen Clinical Research Center for Digestive Disease, Shenzhen Technology Research Center of Gut Microbiota Transplantation, Shenzhen Hospital, Southern Medical University, Shenzhen, PR China
| | - Ye Chen
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China; Integrative Microecology Clinical Center, Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Shenzhen Clinical Research Center for Digestive Disease, Shenzhen Technology Research Center of Gut Microbiota Transplantation, Shenzhen Hospital, Southern Medical University, Shenzhen, PR China.
| |
Collapse
|
16
|
Huang S, Xie X, Xu B, Pan Z, Liang J, Zhang M, Pan S, Wang X, Zhao M, Wang Q, Chen J, Li Y, Zhou L, Luo X. Paeoniflorin ameliorates chronic colitis via the DR3 signaling pathway in group 3 innate lymphoid cells. J Pharm Anal 2024; 14:100940. [PMID: 39027912 PMCID: PMC11255901 DOI: 10.1016/j.jpha.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/22/2024] [Accepted: 01/28/2024] [Indexed: 07/20/2024] Open
Abstract
Inhibiting the death receptor 3 (DR3) signaling pathway in group 3 innate lymphoid cells (ILC3s) presents a promising approach for promoting mucosal repair in individuals with ulcerative colitis (UC). Paeoniflorin, a prominent component of Paeonia lactiflora Pall., has demonstrated the ability to restore barrier function in UC mice, but the precise mechanism remains unclear. In this study, we aimed to delve into whether paeoniflorin may promote intestinal mucosal repair in chronic colitis by inhibiting DR3 signaling in ILC3s. C57BL/6 mice were subjected to random allocation into 7 distinct groups, namely the control group, the 2 % dextran sodium sulfate (DSS) group, the paeoniflorin groups (25, 50, and 100 mg/kg), the anti-tumor necrosis factor-like ligand 1A (anti-TL1A) antibody group, and the IgG group. We detected the expression of DR3 signaling pathway proteins and the proportion of ILC3s in the mouse colon using Western blot and flow cytometry, respectively. Meanwhile, DR3-overexpressing MNK-3 cells and 2 % DSS-induced Rag1-/- mice were used for verification. The results showed that paeoniflorin alleviated DSS-induced chronic colitis and repaired the intestinal mucosal barrier. Simultaneously, paeoniflorin inhibited the DR3 signaling pathway in ILC3s and regulated the content of cytokines (Interleukin-17A, Granulocyte-macrophage colony stimulating factor, and Interleukin-22). Alternatively, paeoniflorin directly inhibited the DR3 signaling pathway in ILC3s to repair mucosal damage independently of the adaptive immune system. We additionally confirmed that paeoniflorin-conditioned medium (CM) restored the expression of tight junctions in Caco-2 cells via coculture. In conclusion, paeoniflorin ameliorates chronic colitis by enhancing the intestinal barrier in an ILC3-dependent manner, and its mechanism is associated with the inhibition of the DR3 signaling pathway.
Collapse
Affiliation(s)
- Shaowei Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 510006, China
| | - Xueqian Xie
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 510006, China
| | - Bo Xu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 510006, China
| | - Zengfeng Pan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 510006, China
| | - Junjie Liang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 510006, China
| | - Meiling Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 510006, China
| | - Simin Pan
- First Clinical Medical College, Guangzhou University of Chinese Medicine, 510000, China
| | - Xiaojing Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 510006, China
| | - Meng Zhao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 510006, China
| | - Qing Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 510006, China
| | - Jinyan Chen
- School of Basic Medicine, Guangzhou University of Chinese Medicine, 510006, China
| | - Yanyang Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 510006, China
| | - Lian Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 510006, China
| | - Xia Luo
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 510006, China
| |
Collapse
|
17
|
Peng Z, Zhang J, Zhang M, Yin L, Zhou Z, Lv C, Wang Z, Tang J. Tryptophan metabolites relieve intestinal Candida albicans infection by altering the gut microbiota to reduce IL-22 release from group 3 innate lymphoid cells of the colon lamina propria. Food Funct 2024; 15:5364-5381. [PMID: 38639049 DOI: 10.1039/d4fo00432a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Invasive candidiasis may be caused by Candida albicans (C. albicans) colonization of the intestinal tract. Preventing intestinal damage caused by Candida albicans infection and protecting intestinal barrier function have become a critical issue. Integrated analyses of the microbiome with metabolome revealed a remarkable shift of the gut microbiota and tryptophan metabolites, kynurenic acid (KynA), and indolacrylic acid (IA) in mice infected with C. albicans. The transcriptome sequencing indicated that differentially expressed genes were significantly associated with innate immune responses and inflammatory responses. The results of this study suggest that KynA and IA (KI) can alleviate intestinal damage caused by Candida albicans infection in mice by reducing intestinal permeability, increasing intestinal firmness, alleviating intestinal inflammation, and reducing the secretion of interleukin-22 (IL-22) in the 3 groups of colon innate lymphoid cells (ILC3). We performed a fecal microbiota transplantation (FMT) experiment and found that the intestinal barrier function, inflammation, and IL-22 secretion of ILC3 in the colon lamina propria of the recipient mice subjected to C. albicans infection and KI treatment were consistent with the trends of the donor mice. Our results suggest that tryptophan metabolites may directly regulate colon lamina ILC3 to promote intestinal resistance to C. albicans invasion, or indirectly regulate the ILC3 secretion of IL-22 to play a protective role in the intestinal barrier by affecting intestinal microorganisms, which may become a potential target for alleviating intestine borne C. albicans infection.
Collapse
Affiliation(s)
- Ziyao Peng
- Department of Trauma-Emergency and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Jiali Zhang
- Central Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Meng Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Liping Yin
- Department of Trauma-Emergency and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Ziyang Zhou
- Department of Trauma-Emergency and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Cuiting Lv
- Central Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Zetian Wang
- Department of Trauma-Emergency and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Jianguo Tang
- Department of Trauma-Emergency and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Emanuel E, Arifuzzaman M, Artis D. Epithelial-neuronal-immune cell interactions: Implications for immunity, inflammation, and tissue homeostasis at mucosal sites. J Allergy Clin Immunol 2024; 153:1169-1180. [PMID: 38369030 PMCID: PMC11070312 DOI: 10.1016/j.jaci.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
The epithelial lining of the respiratory tract and intestine provides a critical physical barrier to protect host tissues against environmental insults, including dietary antigens, allergens, chemicals, and microorganisms. In addition, specialized epithelial cells communicate directly with hematopoietic and neuronal cells. These epithelial-immune and epithelial-neuronal interactions control host immune responses and have important implications for inflammatory conditions associated with defects in the epithelial barrier, including asthma, allergy, and inflammatory bowel diseases. In this review, we discuss emerging research that identifies the mechanisms and impact of epithelial-immune and epithelial-neuronal cross talk in regulating immunity, inflammation, and tissue homeostasis at mucosal barrier surfaces. Understanding the regulation and impact of these pathways could provide new therapeutic targets for inflammatory diseases at mucosal sites.
Collapse
Affiliation(s)
- Elizabeth Emanuel
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY; Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY
| | - Mohammad Arifuzzaman
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY; Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY; Friedman Center for Nutrition and Inflammation, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY; Allen Discovery Center for Neuroimmune Interactions, New York, NY; Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY.
| |
Collapse
|
19
|
Díez-Sánchez A, Lindholm HT, Vornewald PM, Ostrop J, Yao R, Single AB, Marstad A, Parmar N, Shaw TN, Martín-Alonso M, Oudhoff MJ. LSD1 drives intestinal epithelial maturation and controls small intestinal immune cell composition independent of microbiota in a murine model. Nat Commun 2024; 15:3412. [PMID: 38649356 PMCID: PMC11035651 DOI: 10.1038/s41467-024-47815-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 04/12/2024] [Indexed: 04/25/2024] Open
Abstract
Postnatal development of the gastrointestinal tract involves the establishment of the commensal microbiota, the acquisition of immune tolerance via a balanced immune cell composition, and maturation of the intestinal epithelium. While studies have uncovered an interplay between the first two, less is known about the role of the maturing epithelium. Here we show that intestinal-epithelial intrinsic expression of lysine-specific demethylase 1A (LSD1) is necessary for the postnatal maturation of intestinal epithelium and maintenance of this developed state during adulthood. Using microbiota-depleted mice, we find plasma cells, innate lymphoid cells (ILCs), and a specific myeloid population to depend on LSD1-controlled epithelial maturation. We propose that LSD1 controls the expression of epithelial-derived chemokines, such as Cxcl16, and that this is a mode of action for this epithelial-immune cell interplay in local ILC2s but not ILC3s. Together, our findings suggest that the maturing epithelium plays a dominant role in regulating the local immune cell composition, thereby contributing to gut homeostasis.
Collapse
Affiliation(s)
- Alberto Díez-Sánchez
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Håvard T Lindholm
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Pia M Vornewald
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jenny Ostrop
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Rouan Yao
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Andrew B Single
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Anne Marstad
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Naveen Parmar
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Tovah N Shaw
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Mara Martín-Alonso
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Menno J Oudhoff
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.
- Department of Health Sciences, Carleton University, Ottawa, Ontario, ON, Canada.
| |
Collapse
|
20
|
Saadh MJ, Ahmed HM, Alani ZK, Al Zuhairi RAH, Almarhoon ZM, Ahmad H, Ubaid M, Alwan NH. The Role of Gut-derived Short-Chain Fatty Acids in Multiple Sclerosis. Neuromolecular Med 2024; 26:14. [PMID: 38630350 DOI: 10.1007/s12017-024-08783-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/08/2024] [Indexed: 04/19/2024]
Abstract
Multiple sclerosis (MS) is a chronic condition affecting the central nervous system (CNS), where the interplay of genetic and environmental factors influences its pathophysiology, triggering immune responses and instigating inflammation. Contemporary research has been notably dedicated to investigating the contributions of gut microbiota and their metabolites in modulating inflammatory reactions within the CNS. Recent recognition of the gut microbiome and dietary patterns as environmental elements impacting MS development emphasizes the potential influence of small, ubiquitous molecules from microbiota, such as short-chain fatty acids (SCFAs). These molecules may serve as vital molecular signals or metabolic substances regulating host cellular metabolism in the intricate interplay between microbiota and the host. A current emphasis lies on optimizing the health-promoting attributes of colonic bacteria to mitigate urinary tract issues through dietary management. This review aims to spotlight recent investigations on the impact of SCFAs on immune cells pivotal in MS, the involvement of gut microbiota and SCFAs in MS development, and the considerable influence of probiotics on gastrointestinal disruptions in MS. Comprehending the gut-CNS connection holds promise for the development of innovative therapeutic approaches, particularly probiotic-based supplements, for managing MS.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | - Hani Moslem Ahmed
- Department of Dental Industry Techniques, Al-Noor University College, Nineveh, Iraq
| | - Zaid Khalid Alani
- College of Health and Medical Technical, Al-Bayan University, Baghdad, Iraq
| | | | - Zainab M Almarhoon
- Department of Chemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Hijaz Ahmad
- Section of Mathematics, International Telematic University Uninettuno, Corso Vittorio Emanuele II, 39, 00186, Rome, Italy.
- Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Mubarak Al-Abdullah, Kuwait.
- Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon.
| | - Mohammed Ubaid
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | |
Collapse
|
21
|
Tchitchek N, Binvignat M, Roux A, Pitoiset F, Dubois J, Marguerit G, Saadoun D, Cacoub P, Sellam J, Berenbaum F, Hartemann A, Amouyal C, Lorenzon R, Mariotti-Ferrandiz E, Rosenzwajg M, Klatzmann D. Deep immunophenotyping reveals that autoimmune and autoinflammatory disorders are spread along two immunological axes capturing disease inflammation levels and types. Ann Rheum Dis 2024; 83:638-650. [PMID: 38182406 DOI: 10.1136/ard-2023-225179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/17/2023] [Indexed: 01/07/2024]
Abstract
OBJECTIVES Based on genetic associations, McGonagle and McDermott suggested a classification of autoimmune and autoinflammatory diseases as a continuum ranging from purely autoimmune to purely autoinflammatory diseases and comprising diseases with both components. We used deep immunophenotyping to identify immune cell populations and molecular targets characterising this continuum. METHODS We collected blood from 443 patients with one of 15 autoimmune or autoinflammatory diseases and 71 healthy volunteers. Deep phenotyping was performed using 13 flow cytometry panels characterising over 600 innate and adaptive cell populations. Unsupervised and supervised analyses were conducted to identify disease clusters with their common and specific cell parameters. RESULTS Unsupervised clustering categorised these diseases into five clusters. Principal component analysis deconvoluted this clustering into two immunological axes. The first axis was driven by the ratio of LAG3+ to ICOS+ in regulatory T lymphocytes (Tregs), and segregated diseases based on their inflammation levels. The second axis was driven by activated Tregs and type 3 innate lymphoid cells (ILC3s), and segregated diseases based on their types of affected tissues. We identified a signature of 23 cell populations that accurately characterised the five disease clusters. CONCLUSIONS We have refined the monodimensional continuum of autoimmune and autoinflammatory diseases as a continuum characterised by both disease inflammation levels and targeted tissues. Such classification should be helpful for defining therapies. Our results call for further investigations into the role of the LAG3+/ICOS+ balance in Tregs and the contribution of ILC3s in autoimmune and autoinflammatory diseases. TRIAL REGISTRATION NUMBER NCT02466217.
Collapse
Affiliation(s)
- Nicolas Tchitchek
- INSERM UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université, Paris, France
- Clinical Investigation Center for Biotherapies (CIC-BTi) and Immunology-Inflammation-Infectiology and Dermatology Department (3iD), Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière-Charles Foix Hospital, Paris, France
| | - Marie Binvignat
- INSERM UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université, Paris, France
- INSERM U938, Rheumatology Department, Saint-Antoine Hospital, AP-HP, Sorbonne Université, Paris, France
| | - Alexandra Roux
- INSERM UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université, Paris, France
- Clinical Investigation Center for Biotherapies (CIC-BTi) and Immunology-Inflammation-Infectiology and Dermatology Department (3iD), Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière-Charles Foix Hospital, Paris, France
| | - Fabien Pitoiset
- INSERM UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université, Paris, France
- Clinical Investigation Center for Biotherapies (CIC-BTi) and Immunology-Inflammation-Infectiology and Dermatology Department (3iD), Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière-Charles Foix Hospital, Paris, France
| | - Johanna Dubois
- INSERM UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université, Paris, France
- Clinical Investigation Center for Biotherapies (CIC-BTi) and Immunology-Inflammation-Infectiology and Dermatology Department (3iD), Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière-Charles Foix Hospital, Paris, France
| | - Gwendolyn Marguerit
- INSERM UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université, Paris, France
- Clinical Investigation Center for Biotherapies (CIC-BTi) and Immunology-Inflammation-Infectiology and Dermatology Department (3iD), Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière-Charles Foix Hospital, Paris, France
| | - David Saadoun
- INSERM UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université, Paris, France
- Clinical Investigation Center for Biotherapies (CIC-BTi) and Immunology-Inflammation-Infectiology and Dermatology Department (3iD), Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière-Charles Foix Hospital, Paris, France
- Department of Internal Medicine and Clinical Immunology and Immunology-Inflammation-Infectiology and Dermatology Department (3iD), Reference Center for Autoinflammatory Disorders (CEREMAIA); Reference Center for Systemic Autoimmune Diseases, Paris, France
| | - Patrice Cacoub
- INSERM UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université, Paris, France
- Clinical Investigation Center for Biotherapies (CIC-BTi) and Immunology-Inflammation-Infectiology and Dermatology Department (3iD), Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière-Charles Foix Hospital, Paris, France
- Department of Internal Medicine and Clinical Immunology and Immunology-Inflammation-Infectiology and Dermatology Department (3iD), Reference Center for Autoinflammatory Disorders (CEREMAIA); Reference Center for Systemic Autoimmune Diseases, Paris, France
| | - Jérémie Sellam
- INSERM U938, Rheumatology Department, Saint-Antoine Hospital, AP-HP, Sorbonne Université, Paris, France
| | - Francis Berenbaum
- INSERM U938, Rheumatology Department, Saint-Antoine Hospital, AP-HP, Sorbonne Université, Paris, France
| | - Agnès Hartemann
- INSERM UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université, Paris, France
- Clinical Investigation Center for Biotherapies (CIC-BTi) and Immunology-Inflammation-Infectiology and Dermatology Department (3iD), Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière-Charles Foix Hospital, Paris, France
- Diabetology-Metabolism Department, AP-HP, Institut Hospitalo-Universitaire de Cardiometabolisme et Nutrition (ICAN), Pitié-Salpêtrière-Charles Foix Hospital, Sorbonne Université, Paris, France
| | - Chloé Amouyal
- INSERM UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université, Paris, France
- Clinical Investigation Center for Biotherapies (CIC-BTi) and Immunology-Inflammation-Infectiology and Dermatology Department (3iD), Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière-Charles Foix Hospital, Paris, France
- Diabetology-Metabolism Department, AP-HP, Institut Hospitalo-Universitaire de Cardiometabolisme et Nutrition (ICAN), Pitié-Salpêtrière-Charles Foix Hospital, Sorbonne Université, Paris, France
| | - Roberta Lorenzon
- INSERM UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université, Paris, France
- Clinical Investigation Center for Biotherapies (CIC-BTi) and Immunology-Inflammation-Infectiology and Dermatology Department (3iD), Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière-Charles Foix Hospital, Paris, France
| | - Encarnita Mariotti-Ferrandiz
- INSERM UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université, Paris, France
- Clinical Investigation Center for Biotherapies (CIC-BTi) and Immunology-Inflammation-Infectiology and Dermatology Department (3iD), Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière-Charles Foix Hospital, Paris, France
- Institut Universitaire de France (IUF), Paris, France
| | - Michelle Rosenzwajg
- INSERM UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université, Paris, France
- Clinical Investigation Center for Biotherapies (CIC-BTi) and Immunology-Inflammation-Infectiology and Dermatology Department (3iD), Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière-Charles Foix Hospital, Paris, France
| | - David Klatzmann
- INSERM UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Sorbonne Université, Paris, France
- Clinical Investigation Center for Biotherapies (CIC-BTi) and Immunology-Inflammation-Infectiology and Dermatology Department (3iD), Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière-Charles Foix Hospital, Paris, France
| |
Collapse
|
22
|
Bernardi C, Charvet C, Zeiser R, Simonetta F. Granulocyte-Macrophage Colony-Stimulating Factor in Allogenic Hematopoietic Stem Cell Transplantation: From Graft-versus-Host Disease to the Graft-versus-Tumor Effect. Transplant Cell Ther 2024; 30:386-395. [PMID: 38224950 DOI: 10.1016/j.jtct.2024.01.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/30/2023] [Accepted: 01/08/2024] [Indexed: 01/17/2024]
Abstract
Allogenic hematopoietic stem cell transplantation (allo-HSCT) is a widely used treatment for a broad range of hematologic malignancies because of its graft-versus-tumor (GVT) effect. Unfortunately, allo-HSCT is still associated with morbidity and mortality related to relapse and transplantation complications, namely graft-versus-host-disease (GVHD). In an era of therapies specifically targeting molecular pathways, transcription factors, and cytokines, a better understanding of GVHD physiopathology is essential for the development of new therapeutic approaches. In this review, we outline the current knowledge of the role of granulocyte- macrophage colony-stimulating factor (GM-CSF) in allo-HSCT. We first discuss the biology of GM-CSF and its signaling pathways, with a focus on the main producing cells, T cells. We discuss recent preclinical studies pointing to a pivotal role of GM-CSF in GVHD, in particular gastrointestinal GVHD. We then summarize the potential role of GM-CSF in the GVT effect, discussing some potential strategies for exploiting GM-CSF in the context of allo-HSCT.
Collapse
Affiliation(s)
- Chiara Bernardi
- Division of Hematology, Department of Oncology, Geneva University Hospitals, Geneva, Switzerland; Translational Research Center for Oncohematology, Department of Medicine and Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| | - Céline Charvet
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France; Université de Strasbourg, Strasbourg, France
| | - Robert Zeiser
- Hematology, Oncology and Stem Cell Transplantation, Department of Medicine I, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Comprehensive Cancer Center Freiburg, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium Partner Site Freiburg and German Cancer Research Center, Heidelberg, Germany; Signaling Research Centres BIOSS and Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Federico Simonetta
- Division of Hematology, Department of Oncology, Geneva University Hospitals, Geneva, Switzerland; Translational Research Center for Oncohematology, Department of Medicine and Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
23
|
Torres-Huerta A, Ruley-Haase K, Reed T, Boger-May A, Rubadeux D, Mayer L, Rajashekara AM, Hiller M, Frech M, Roncagli C, Pedersen C, Camacho MC, Hollmer L, English L, Kane G, Boone DL. Retinoid orphan receptor gamma t (rorγt) promotes inflammatory eosinophilia but is dispensable for innate immune-mediated colitis. PLoS One 2024; 19:e0300892. [PMID: 38512959 PMCID: PMC10956760 DOI: 10.1371/journal.pone.0300892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/05/2024] [Indexed: 03/23/2024] Open
Abstract
Inflammatory bowel diseases (IBD) result from uncontrolled inflammation in the intestinal mucosa leading to damage and loss of function. Both innate and adaptive immunity contribute to the inflammation of IBD and innate and adaptive immune cells reciprocally activate each other in a forward feedback loop. In order to better understand innate immune contributions to IBD, we developed a model of spontaneous 100% penetrant, early onset colitis that occurs in the absence of adaptive immunity by crossing villin-TNFAIP3 mice to RAG1-/- mice (TRAG mice). This model is driven by microbes and features increased levels of innate lymphoid cells in the intestinal mucosa. To investigate the role of type 3 innate lymphoid cells (ILC3) in the innate colitis of TRAG mice, we crossed them to retinoid orphan receptor gamma t deficient (Rorγt-/-) mice. Rorγt-/- x TRAG mice exhibited markedly reduced eosinophilia in the colonic mucosa, but colitis persisted in these mice. Colitis in Rorγt-/- x TRAG mice was characterized by increased infiltration of the intestinal mucosa by neutrophils, inflammatory monocytes, macrophages and other innate cells. RNA and cellular profiles of Rorγt-/- x TRAG mice were consistent with a lack of ILC3 and ILC3 derived cytokines, reduced antimicrobial factors, increased activation oof epithelial repair processes and reduced activation of epithelial cell STAT3. The colitis in Rorγt-/- x TRAG mice was ameliorated by antibiotic treatment indicating that microbes contribute to the ILC3-independent colitis of these mice. Together, these gene expression and cell signaling signatures reflect the double-edged sword of ILC3 in the intestine, inducing both proinflammatory and antimicrobial protective responses. Thus, Rorγt promotes eosinophilia but Rorγt and Rorγt-dependent ILC3 are dispensable for the innate colitis in TRAG mice.
Collapse
Affiliation(s)
- Alvaro Torres-Huerta
- Department of Microbiology & Immunology, Indiana University School of Medicine-South Bend, South Bend, IN, United States of America
| | - Katelyn Ruley-Haase
- Department of Biology, University of Notre Dame, South Bend, IN, United States of America
| | - Theodore Reed
- Department of Biology, University of Notre Dame, South Bend, IN, United States of America
| | - Antonia Boger-May
- Department of Microbiology & Immunology, Indiana University School of Medicine-South Bend, South Bend, IN, United States of America
| | - Derek Rubadeux
- Department of Biology, University of Notre Dame, South Bend, IN, United States of America
| | - Lauren Mayer
- Department of Biology, University of Notre Dame, South Bend, IN, United States of America
| | | | - Morgan Hiller
- Department of Biology, University of Notre Dame, South Bend, IN, United States of America
| | - Madeleine Frech
- Department of Biology, University of Notre Dame, South Bend, IN, United States of America
| | - Connor Roncagli
- Department of Biology, University of Notre Dame, South Bend, IN, United States of America
| | - Cameron Pedersen
- Department of Biology, University of Notre Dame, South Bend, IN, United States of America
| | - Mary Catherine Camacho
- Department of Biology, University of Notre Dame, South Bend, IN, United States of America
| | - Lauren Hollmer
- Department of Biology, University of Notre Dame, South Bend, IN, United States of America
| | - Lauren English
- Department of Biology, University of Notre Dame, South Bend, IN, United States of America
| | - Grace Kane
- Department of Biology, University of Notre Dame, South Bend, IN, United States of America
| | - David L. Boone
- Department of Microbiology & Immunology, Indiana University School of Medicine-South Bend, South Bend, IN, United States of America
- Department of Biology, University of Notre Dame, South Bend, IN, United States of America
| |
Collapse
|
24
|
Li T, Yu F, Zhang T, Wang X, Sun Y, Shuai G, Chen Y, Xue Y, Zhang J, Zhang H. Modulatory effects of fermented Polygonatum cyrtonema Hua on immune homeostasis and gut integrity in a dextran-sulfate-sodium-induced colitis model. Food Funct 2024; 15:3158-3173. [PMID: 38440931 DOI: 10.1039/d3fo04556k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
The gut health-promoting properties of saponin-rich Polygonatum cyrtonema Hua (FP) fermented with Lactobacillus plantarum P9 were explored in a dextran sulfate sodium (DSS)-induced colitis mouse model. FP supplementation effectively inhibited DSS-induced physiological alteration and impaired immune responses by reducing the disease activity index (DAI) score and restoring the T helper (Th) 1/Th2 and regulatory T (Treg)/Th17 ratios. In addition, FP supplementation protected the gut barrier function against DSS-induced damage via upregulation of zonula occludens (ZO)-1 and occludin and downregulation of pro-inflammatory cytokines, including interleukin (IL)-1β, tumor necrosis factor-α (TNF-α), IL-18, and the granulocyte-macrophage colony-stimulating factor (GM-CSF). This study further elucidated the potential mechanisms underlying the FP-mediated suppression of the plasticity of type 3 innate lymphoid cells (ILC3) and subsequent macrophage polarization. Therefore, the FP supplementation effectively restored mucosal immune homeostasis and enhanced gut integrity. In addition, it suppressed the growth of Escherichia-Shigella and Enterococcus and promoted the enrichment of probiotics and short-chain fatty acid-producing microbes, such as Romboutsia, Faecalibaculum, and Blautia. In conclusion, P. cyrtonema Hua fermented with L. plantarum P9 might be a promising dietary intervention to improve gut health by sustaining overall gut homeostasis and related gut integrity.
Collapse
Affiliation(s)
- Tao Li
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| | - Fengyao Yu
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| | - Tao Zhang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| | - Xiaoya Wang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| | - Yong Sun
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Gexia Shuai
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| | - Yuhuan Chen
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| | - Yanhua Xue
- Jian Chang Bang Pharmaceutical Co., Ltd, No.3 Jinshankou Industry Park, Fuzhou, Jiangxi Province 344000, China
| | - Jinlian Zhang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| | - Hua Zhang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| |
Collapse
|
25
|
Uddin MJ, Thompson B, Leslie JL, Fishman C, Sol-church K, Kumar P, Petri WA. Investigating the impact of antibiotic-induced dysbiosis on protection from Clostridium difficile colitis by mouse colonic innate lymphoid cells. mBio 2024; 15:e0333823. [PMID: 38376154 PMCID: PMC11209775 DOI: 10.1128/mbio.03338-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/18/2024] [Indexed: 02/21/2024] Open
Abstract
Innate lymphoid cells (ILCs) play a critical role in maintaining intestinal health in homeostatic and diseased conditions. During Clostridium difficile infection (CDI), IL-33 activates ILC2 to protect from colonic damage and mortality. The function of IL-33 and ILC is tightly regulated by the intestinal microbiota. We set out to determine the impact of antibiotic-induced disruption of the microbiome on ILC function. Our goal was to understand antibiotic-induced changes in ILC function on susceptibility to C. difficile colitis in a mouse model. We utilized high-throughput single-cell RNAseq to investigate the phenotypic features of colonic ILC at baseline, after antibiotic administration with or without IL-33 treatment. We identified a heterogeneous landscape of colonic ILCs with gene signatures of inflammatory, anti-inflammatory, migratory, progenitor, plastic, and antigen-presenting ILCs. Antibiotic treatment decreased ILC2 while coordinately increasing ILC1 and ILC3 phenotypes. Notably, Ifng+, Ccl5+, and Il23r+ ILC increased after antibiotics. IL-33 treatment counteracted the antibiotic effect by downregulating ILC1 and ILC3 and activating ILC2. In addition, IL-33 treatment markedly induced the expression of type 2 genes, including Areg and Il5. Finally, we identified amphiregulin, produced by ILC2, as protective during C. difficile infection. Together, our data expand our understanding of how antibiotics induce susceptibility to C. difficile colitis through their impact on ILC subsets and function.IMPORTANCEClostridium difficile infection (CDI) accounts for around 500,000 symptomatic cases and over 20,000 deaths annually in the United States alone. A major risk factor of CDI is antibiotic-induced dysbiosis of the gut. Microbiota-regulated IL-33 and innate lymphoid cells (ILCs) are important in determining the outcomes of C. difficile infection. Understanding how antibiotic and IL-33 treatment alter the phenotype of colon ILCs is important to identify potential therapeutics. Here, we performed single-cell RNAseq of mouse colon ILCs collected at baseline, after antibiotic treatment, and after IL-33 treatment. We identified heterogeneous subpopulations of all three ILC subtypes in the mouse colon. Our analysis revealed several potential pathways of antibiotic-mediated increased susceptibility to intestinal infection. Our discovery that Areg is abundantly expressed by ILCs, and the protection of mice from CDI by amphiregulin treatment, suggests that the amphiregulin-epidermal growth factor receptor pathway is a potential therapeutic target for treating intestinal colitis.
Collapse
Affiliation(s)
- Md Jashim Uddin
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Brandon Thompson
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Jhansi L. Leslie
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Arcus Biosciences, Hayward, California, USA
| | - Casey Fishman
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Katia Sol-church
- Genome Analysis and Technology Core, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Pankaj Kumar
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - William A. Petri
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
26
|
Wu W, Pan Y, Zheng T, Sun H, Li X, Zhu H, Wang Z, Zhou X. Limonin alleviates high-fat diet-induced dyslipidemia by regulating the intestinal barrier via the microbiota-related ILC3-IL22-IL22R pathway. Food Funct 2024; 15:2679-2692. [PMID: 38375746 DOI: 10.1039/d3fo04530g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
High-fat diet (HFD)-induced dyslipidemia is frequently accompanied by gut microbiota dysbiosis and a compromised gut barrier. Enhancing the intestinal barrier function emerges as a potential therapeutic approach for dyslipidemia. The ILC3-IL22-IL22R pathway, which responds to dietary and microbial signals, has not only attracted attention for its crucial role in maintaining the intestinal barrier, but recent reports have also suggested its potential in regulating lipid metabolism. Limonin is derived from the Chinese herb Evodiae fructus, which has shown potential in ameliorating dysbiosis of serum lipids. However, its underlying mechanisms remain elusive. Consequently, targeting the ILC3-IL22-IL22R pathway to enhance intestinal barrier function holds promise as a therapeutic approach for dyslipidemia. In this study, male C57BL/6 mice were subjected to a 16-week HFD to induce dyslipidemia and concurrently administered oral limonin. We discovered that limonin supplementation dramatically reduced serum lipid profiles in HFD-fed mice, significantly curbing HFD-induced weight gain and epididymal fat accumulation. Ileal histopathological evaluation indicated limonin's ameliorative effects on HFD-induced intestinal barrier impairment. Limonin also moderated the intestinal microbiota dysbiosis, which is characterized by the elevation of Firmicutes in HFD mice, and notably amplified the abundance of probiotic Lactobacillus. In addition, supported by flow cytometry and other analyses, we observed that limonin upregulated the ILC3-IL22-IL22R pathway, enhancing phosphorylated STAT3 (pSTAT3) in intestinal epithelial cells (IECs), thereby reducing lipid transporter expression. In conclusion, our study revealed that limonin exerted a promising preventive effect against HFD-induced dyslipidemia by the mitigation of the intestinal barrier function and intestinal microbiota, and its mechanism was related to the upregulation of the ILC3-IL22-IL22R pathway.
Collapse
Affiliation(s)
- Wangling Wu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yingying Pan
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Tianyan Zheng
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Haoyi Sun
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Xia Li
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Haiyan Zhu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Zheng Wang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Xin Zhou
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
27
|
Stosik M, Tokarz-Deptuła B, Deptuła W. Innate lymphoid cells (ILCs) in teleosts against data on ILCs in humans. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109415. [PMID: 38296004 DOI: 10.1016/j.fsi.2024.109415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/13/2024]
Abstract
It is assumed that cells corresponding to innate lymphoid cells (ILCs) in humans, in addition to lymphoid tissue inducer cells (LTi), are also found in teleosts. In this systematic group of organisms, however, they are a poorly understood cell population. In contrast to the data on ILCs in humans, which also remain incomplete despite advanced research, in teleosts, these cells require much more attention. ILCs in teleosts have been presented as cells that may be evolutionary precursors of NK cells or ILCs identified in mammals, including humans. It is a highly heterogeneous group of cells in both humans and fish and their properties, as revealed by studies in humans, are most likely to remain strictly dependent on the location of these cells and the physiological state of the individual from which they originate. They form a bridge between innate and adaptive immunity. The premise of this paper is to review the current knowledge of ILCs in teleosts, taking into account data on similar cells in humans. A review of the knowledge concerning these particular cells, elements of innate immunity mechanisms as equivalent to, or perhaps dominant over, adaptive immunity mechanisms in teleosts, as presented, may inspire the need for further research.
Collapse
Affiliation(s)
- Michał Stosik
- Institute of Biological Sciences, University of Zielona Góra, Poland
| | | | - Wiesław Deptuła
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Poland
| |
Collapse
|
28
|
Rodriguez-Mogeda C, van Ansenwoude CMJ, van der Molen L, Strijbis EMM, Mebius RE, de Vries HE. The role of CD56 bright NK cells in neurodegenerative disorders. J Neuroinflammation 2024; 21:48. [PMID: 38350967 PMCID: PMC10865604 DOI: 10.1186/s12974-024-03040-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/07/2024] [Indexed: 02/15/2024] Open
Abstract
Emerging evidence suggests a potential role for natural killer (NK) cells in neurodegenerative diseases, such as multiple sclerosis, Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. However, the precise function of NK cells in these diseases remains ambiguous. The existence of two NK cell subsets, CD56bright and CD56dim NK cells, complicates the understanding of the contribution of NK cells in neurodegeneration as their functions within the context of neurodegenerative diseases may differ significantly. CD56bright NK cells are potent cytokine secretors and are considered more immunoregulatory and less terminally differentiated than their mostly cytotoxic CD56dim counterparts. Hence, this review focusses on NK cells, specifically on CD56bright NK cells, and their role in neurodegenerative diseases. Moreover, it explores the mechanisms underlying their ability to enter the central nervous system. By consolidating current knowledge, we aim to provide a comprehensive overview on the role of CD56bright NK cells in neurodegenerative diseases. Elucidating their impact on neurodegeneration may have implications for future therapeutic interventions, potentially ameliorating disease pathogenesis.
Collapse
Affiliation(s)
- Carla Rodriguez-Mogeda
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Chaja M J van Ansenwoude
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Lennart van der Molen
- IQ Health Science Department, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Eva M M Strijbis
- Amsterdam Neuroscience, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
- Department of Neurology, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Reina E Mebius
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Amsterdam, The Netherlands.
- MS Center Amsterdam, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands.
| |
Collapse
|
29
|
To TT, Oparaugo NC, Kheshvadjian AR, Nelson AM, Agak GW. Understanding Type 3 Innate Lymphoid Cells and Crosstalk with the Microbiota: A Skin Connection. Int J Mol Sci 2024; 25:2021. [PMID: 38396697 PMCID: PMC10888374 DOI: 10.3390/ijms25042021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Innate lymphoid cells (ILCs) are a diverse population of lymphocytes classified into natural killer (NK) cells, ILC1s, ILC2s, ILC3s, and ILCregs, broadly following the cytokine secretion and transcription factor profiles of classical T cell subsets. Nonetheless, the ILC lineage does not have rearranged antigen-specific receptors and possesses distinct characteristics. ILCs are found in barrier tissues such as the skin, lungs, and intestines, where they play a role between acquired immune cells and myeloid cells. Within the skin, ILCs are activated by the microbiota and, in turn, may influence the microbiome composition and modulate immune function through cytokine secretion or direct cellular interactions. In particular, ILC3s provide epithelial protection against extracellular bacteria. However, the mechanism by which these cells modulate skin health and homeostasis in response to microbiome changes is unclear. To better understand how ILC3s function against microbiota perturbations in the skin, we propose a role for these cells in response to Cutibacterium acnes, a predominant commensal bacterium linked to the inflammatory skin condition, acne vulgaris. In this article, we review current evidence describing the role of ILC3s in the skin and suggest functional roles by drawing parallels with ILC3s from other organs. We emphasize the limited understanding and knowledge gaps of ILC3s in the skin and discuss the potential impact of ILC3-microbiota crosstalk in select skin diseases. Exploring the dialogue between the microbiota and ILC3s may lead to novel strategies to ameliorate skin immunity.
Collapse
Affiliation(s)
- Thao Tam To
- Division of Dermatology, Department of Medicine, University of California (UCLA), Los Angeles, CA 90095, USA
| | - Nicole Chizara Oparaugo
- Division of Dermatology, Department of Medicine, University of California (UCLA), Los Angeles, CA 90095, USA
| | - Alexander R. Kheshvadjian
- Division of Dermatology, Department of Medicine, University of California (UCLA), Los Angeles, CA 90095, USA
| | - Amanda M. Nelson
- Department of Dermatology, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - George W. Agak
- Division of Dermatology, Department of Medicine, University of California (UCLA), Los Angeles, CA 90095, USA
| |
Collapse
|
30
|
Ohara D, Takeuchi Y, Watanabe H, Lee Y, Mukoyama H, Ohteki T, Kondoh G, Hirota K. Notch2 with retinoic acid license IL-23 expression by intestinal EpCAM+ DCIR2+ cDC2s in mice. J Exp Med 2024; 221:e20230923. [PMID: 38180443 PMCID: PMC10770806 DOI: 10.1084/jem.20230923] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/06/2023] [Accepted: 12/07/2023] [Indexed: 01/06/2024] Open
Abstract
Despite the importance of IL-23 in mucosal host defense and disease pathogenesis, the mechanisms regulating the development of IL-23-producing mononuclear phagocytes remain poorly understood. Here, we employed an Il23aVenus reporter strain to investigate the developmental identity and functional regulation of IL-23-producing cells. We showed that flagellin stimulation or Citrobacter rodentium infection led to robust induction of IL-23-producing EpCAM+ DCIR2+ CD103- cDC2s, termed cDCIL23, which was confined to gut-associated lymphoid tissues, including the mesenteric lymph nodes, cryptopatches, and isolated lymphoid follicles. Furthermore, we demonstrated that Notch2 signaling was crucial for the development of EpCAM+ DCIR2+ cDC2s, and the combination of Notch2 signaling with retinoic acid signaling controlled their terminal differentiation into cDCIL23, supporting a two-step model for the development of gut cDCIL23. Our findings provide fundamental insights into the developmental pathways and cellular dynamics of IL-23-producing cDC2s at steady state and during pathogen infection.
Collapse
Affiliation(s)
- Daiya Ohara
- Laboratory of Integrative Biological Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yusuke Takeuchi
- Laboratory of Integrative Biological Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hitomi Watanabe
- Laboratory of Integrative Biological Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yoonha Lee
- Laboratory of Integrative Biological Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hiroki Mukoyama
- Laboratory of Integrative Biological Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Toshiaki Ohteki
- Department of Biodefense Research, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Gen Kondoh
- Laboratory of Integrative Biological Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Keiji Hirota
- Laboratory of Integrative Biological Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
31
|
Yang Y, Deng Y, Zhang G, Xu X, Xiong X, Yu S, Peng F, Tian X, Ye W, Chen H, Yu B, Liu Z, He X, Huang Z. α-mangostin derivatives ameliorated mouse DSS-induced chronic colitis via regulating Th17/Treg balance. Mol Immunol 2024; 166:110-118. [PMID: 38280829 DOI: 10.1016/j.molimm.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/08/2023] [Accepted: 11/22/2023] [Indexed: 01/29/2024]
Abstract
Th17 cell, an important subpopulation of helper T cell, plays an important role in the development of inflammatory bowel disease (IBD) and is thought to be a potential target for the treatment of IBD. In our previous study, we demonstrated that α-mangostin could relieve lupus nephritis via inhibiting Th17 cell function. In our preliminary study, we obtained four derivatives by adding chemical modification of α-mangostin which could also inhibit Th17 cell differentiation in vitro. In this study, we constructed a chronic IBD mouse model and demonstrated the therapeutic effects of α-mangostin and its derivatives as therapeutic agents for IBD. In compounds treating groups, intestinal inflammation showed significant improvement in symptoms which included weight loss, high disease activity index, colon length shorten and the change of intestinal flora. We also found that compounds could effectively either suppress the number of Th17 cell or increase the number of Treg cell detected by flow cytometry, thus reducing the Th17/Treg ratio and suppressing the level of intestinal inflammation. Notably, IL17-F levels, rather than IL17-A, were reduced in the colon of mice of compounds treating groups. Thus, α-mangostin and its derivatives ameliorate DSS-induced chronic colitis in mice by regulating Th17/Treg balance to alleviate intestinal inflammation and can modulate the intestinal microbial community. These results suggest that α-mangostin and its derivatives may be the new therapeutic option for chronic colitis.
Collapse
Affiliation(s)
- Yuying Yang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
| | - Yuqing Deng
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
| | - Guoqiang Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Xiaoting Xu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
| | - Xiaoxiao Xiong
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
| | - Si Yu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Fanrong Peng
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
| | - Xuyan Tian
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
| | - Weiying Ye
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Huanpeng Chen
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Bolan Yu
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Zhonghua Liu
- Animal Experiment Center, South China Agricultural University, Guangzhou, China.
| | - Xixin He
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Zhaofeng Huang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
| |
Collapse
|
32
|
Li T, Han B, Wang L, Sun L, Cai Y, Yu M, Xiao W, Yang H. Activation of mucosal insulin receptor exacerbates intestinal inflammation by promoting tissue resident memory T cells differentiation through EZH2. J Transl Med 2024; 22:78. [PMID: 38243324 PMCID: PMC10797971 DOI: 10.1186/s12967-023-04789-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 12/09/2023] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND Inflammatory Bowel Diseases (IBD), an autoimmune disease characterised by abnormal intestinal immunity, are related to vital morbidity around the world. However, therapeutic agents for IBD have not achieved desired benefit. Exploring new therapeutic targets for IBD, especially based on its abnormally intestinal immunity, could alleviate the flare-up and worsening of IBD. Tissue resident memory T cells (TRM) are core of multiple autoimmune diseases, including IBD. However, the mechanism of TRM differentiation remains to be investigated. METHODS The alterations in mRNA and lncRNA profile of intestinal intraepithelial lymphocytes (IELs), the largest component of intestinal TRM, were analyzed in DSS-induced chronic colitis. Based on it, we examined the function of rectal insulin instillation in a dextran sodium sulfate (DSS) induced chronic colitis. Furthermore, we investigated the downstream-target of the insulin pathway-EZH2 and the crucial role of EZH2 in intestinal tissue resident memory T cell differentiation by utilizing EZH2fl/flCD4cre mice. RESULTS Insulin receptor (INSR) expression was found to be significantly reduced. Activation of mucosal insulin pathway by rectal insulin instillation exacerbated colitis by disrupting IELs subgroups and up-regulating TNF-ɑ and IL-17 expression. Rectal insulin instillation promoted EZH2 expression and EZH2 inhibition alleviated chronic colitis. EZH2fl/flCD4cre mice restored the normal IEL subgroups and suppressed TNF-ɑ and IL-17 expression, exhibiting alleviated colitis. IELs from EZH2fl/flCD4cre mice exhibit significant changes in TRM related phenotype. CD4+TRM was significantly increased in chronic colitis and decreased in EZH2fl/flCD4cre mice. CONCLUSION Insulin receptor of intestinal mucosal T-cells could promote intestinal TRM differentiation via EZH2. Our discoveries suggest that therapies targeting colonic INSR and EZH2 could be potential treatment for IBD based on its regulatory effects on TRM. Insulin receptor inhibitors rather than insulin should be applied during colitis-active phase. In addition, EZH2 shows to be a downstream signal of the insulin pathway and EZH2 inhibitor could alleviating intestinal inflammation. However, the critical role of EZH2 in TRM differentiation restricts the anti-tumor effects of EZH2 inhibitor in vivo.
Collapse
Affiliation(s)
- Teming Li
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
- Department of General Surgery, Army 953 Hospital, Shigatse Branch of Xinqiao Hospital, Army Medical University, Shigatse, 857000, China
| | - Ben Han
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Liucan Wang
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Lihua Sun
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Yujiao Cai
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Min Yu
- Department of General Surgery, Chongqing General Hospital, Chongqing, 401147, China.
| | - Weidong Xiao
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| | - Hua Yang
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
- Department of General Surgery, Chongqing General Hospital, Chongqing, 401147, China.
| |
Collapse
|
33
|
Peña-Juárez MC, Guadarrama-Escobar OR, Serrano-Castañeda P, Méndez-Albores A, Vázquez-Durán A, Vera-Graziano R, Rodríguez-Pérez B, Salgado-Machuca M, Anguiano-Almazán E, Morales-Florido MI, Rodríguez-Cruz IM, Escobar-Chávez JJ. Synergistic Effect of Retinoic Acid and Lactoferrin in the Maintenance of Gut Homeostasis. Biomolecules 2024; 14:78. [PMID: 38254678 PMCID: PMC10813542 DOI: 10.3390/biom14010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/26/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Lactoferrin (LF) is a glycoprotein that binds to iron ions (Fe2+) and other metallic ions, such as Mg2+, Zn2+, and Cu2+, and has antibacterial and immunomodulatory properties. The antibacterial properties of LF are due to its ability to sequester iron. The immunomodulatory capability of LF promotes homeostasis in the enteric environment, acting directly on the beneficial microbiota. LF can modulate antigen-presenting cell (APC) biology, including migration and cell activation. Nonetheless, some gut microbiota strains produce toxic metabolites, and APCs are responsible for initiating the process that inhibits the inflammatory response against them. Thus, eliminating harmful strains lowers the risk of inducing chronic inflammation, and consequently, metabolic disease, which can progress to type 2 diabetes mellitus (T2DM). LF and retinoic acid (RA) exhibit immunomodulatory properties such as decreasing cytokine production, thus modifying the inflammatory response. Their activities have been observed both in vitro and in vivo. The combined, simultaneous effect of these molecules has not been studied; however, the synergistic effect of LF and RA may be employed for enhancing the secretion of humoral factors, such as IgA. We speculate that the combination of LF and RA could be a potential prophylactic alternative for the treatment of metabolic dysregulations such as T2DM. The present review focuses on the importance of a healthy diet for a balanced gut and describes how probiotics and prebiotics with immunomodulatory activity as well as inductors of differentiation and cell proliferation could be acquired directly from the diet or indirectly through the oral administration of formulations aimed to maintain gut health or restore a eubiotic state in an intestinal environment that has been dysregulated by external factors such as stress and a high-fat diet.
Collapse
Affiliation(s)
- Ma. Concepción Peña-Juárez
- Unidad de Investigación Multidisciplinaria Lab-12 (Sistemas Transdérmicos y Materiales Nanoestructurados), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Carretera Cuautitlán Teoloyucan, Km 2.5, San Sebastián Xhala, Cuautitlán Izcalli 54714, Mexico; (M.C.P.-J.); (O.R.G.-E.); (P.S.-C.); (M.S.-M.); (E.A.-A.); (M.I.M.-F.)
| | - Omar Rodrigo Guadarrama-Escobar
- Unidad de Investigación Multidisciplinaria Lab-12 (Sistemas Transdérmicos y Materiales Nanoestructurados), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Carretera Cuautitlán Teoloyucan, Km 2.5, San Sebastián Xhala, Cuautitlán Izcalli 54714, Mexico; (M.C.P.-J.); (O.R.G.-E.); (P.S.-C.); (M.S.-M.); (E.A.-A.); (M.I.M.-F.)
| | - Pablo Serrano-Castañeda
- Unidad de Investigación Multidisciplinaria Lab-12 (Sistemas Transdérmicos y Materiales Nanoestructurados), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Carretera Cuautitlán Teoloyucan, Km 2.5, San Sebastián Xhala, Cuautitlán Izcalli 54714, Mexico; (M.C.P.-J.); (O.R.G.-E.); (P.S.-C.); (M.S.-M.); (E.A.-A.); (M.I.M.-F.)
| | - Abraham Méndez-Albores
- Unidad de Investigación Multidisciplinaria Lab-14 (Ciencia y Tecnología de los Materiales), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Carretera Cuautitlán Teoloyucan, Km 2.5, San Sebastián Xhala, Cuautitlán Izcalli 54714, Mexico; (A.M.-A.); (A.V.-D.)
| | - Alma Vázquez-Durán
- Unidad de Investigación Multidisciplinaria Lab-14 (Ciencia y Tecnología de los Materiales), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Carretera Cuautitlán Teoloyucan, Km 2.5, San Sebastián Xhala, Cuautitlán Izcalli 54714, Mexico; (A.M.-A.); (A.V.-D.)
| | - Ricardo Vera-Graziano
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-360, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico;
| | - Betsabé Rodríguez-Pérez
- Laboratorio de Servicio de Análisis de Propóleos (LASAP), Unidad de Investigación Multidisciplinaria (UIM), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54714, Mexico;
| | - Mariana Salgado-Machuca
- Unidad de Investigación Multidisciplinaria Lab-12 (Sistemas Transdérmicos y Materiales Nanoestructurados), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Carretera Cuautitlán Teoloyucan, Km 2.5, San Sebastián Xhala, Cuautitlán Izcalli 54714, Mexico; (M.C.P.-J.); (O.R.G.-E.); (P.S.-C.); (M.S.-M.); (E.A.-A.); (M.I.M.-F.)
| | - Ericka Anguiano-Almazán
- Unidad de Investigación Multidisciplinaria Lab-12 (Sistemas Transdérmicos y Materiales Nanoestructurados), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Carretera Cuautitlán Teoloyucan, Km 2.5, San Sebastián Xhala, Cuautitlán Izcalli 54714, Mexico; (M.C.P.-J.); (O.R.G.-E.); (P.S.-C.); (M.S.-M.); (E.A.-A.); (M.I.M.-F.)
| | - Miriam Isabel Morales-Florido
- Unidad de Investigación Multidisciplinaria Lab-12 (Sistemas Transdérmicos y Materiales Nanoestructurados), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Carretera Cuautitlán Teoloyucan, Km 2.5, San Sebastián Xhala, Cuautitlán Izcalli 54714, Mexico; (M.C.P.-J.); (O.R.G.-E.); (P.S.-C.); (M.S.-M.); (E.A.-A.); (M.I.M.-F.)
- Laboratorio de Farmacia Molecular y Liberación Controlada, Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico
| | - Isabel Marlene Rodríguez-Cruz
- Unidad de Enseñanza e Investigación, Hospital Regional e Alta Especialidad de Sumpango, Carretera Zumpango-Jilotzingo #400, Barrio de Santiago, 2ª Sección, Zumpango 55600, Mexico;
| | - José Juan Escobar-Chávez
- Unidad de Investigación Multidisciplinaria Lab-12 (Sistemas Transdérmicos y Materiales Nanoestructurados), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Carretera Cuautitlán Teoloyucan, Km 2.5, San Sebastián Xhala, Cuautitlán Izcalli 54714, Mexico; (M.C.P.-J.); (O.R.G.-E.); (P.S.-C.); (M.S.-M.); (E.A.-A.); (M.I.M.-F.)
| |
Collapse
|
34
|
Zhou YW, Ren Y, Lu MM, Xu LL, Cheng WX, Zhang MM, Ding LP, Chen D, Gao JG, Du J, Jin CL, Chen CX, Li YF, Cheng T, Jiang PL, Yang YD, Qian PX, Xu PF, Jin X. Crohn's disease as the intestinal manifestation of pan-lymphatic dysfunction: An exploratory proposal based on basic and clinical data. World J Gastroenterol 2024; 30:34-49. [PMID: 38293325 PMCID: PMC10823898 DOI: 10.3748/wjg.v30.i1.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/08/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024] Open
Abstract
Crohn's disease (CD) is caused by immune, environmental, and genetic factors. It can involve the entire gastrointestinal tract, and although its prevalence is rapidly increasing its etiology remains unclear. Emerging biological and small-molecule drugs have advanced the treatment of CD; however, a considerable proportion of patients are non-responsive to all known drugs. To achieve a breakthrough in this field, innovations that could guide the further development of effective therapies are of utmost urgency. In this review, we first propose the innovative concept of pan-lymphatic dysfunction for the general distribution of lymphatic dysfunction in various diseases, and suggest that CD is the intestinal manifestation of pan-lymphatic dysfunction based on basic and clinical preliminary data. The supporting evidence is fully summarized, including the existence of lymphatic system dysfunction, recognition of the inside-out model, disorders of immune cells, changes in cell plasticity, partial overlap of the underlying mechanisms, and common gut-derived fatty and bile acid metabolism. Another benefit of this novel concept is that it proposes adopting the zebrafish model for studying intestinal diseases, especially CD, as this model is good at presenting and mimicking lymphatic dysfunction. More importantly, the ensuing focus on improving lymphatic function may lead to novel and promising therapeutic strategies for CD.
Collapse
Affiliation(s)
- Yu-Wei Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Yue Ren
- Department of Gastroenterology, The Second Hospital of Jiaxing, Jiaxing 314000, Zhejiang Province, China
| | - Miao-Miao Lu
- Endoscopy Center, Children’s Hospital of Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Ling-Ling Xu
- Department of Gastroenterology, The Second People’s Hospital of Yuhang District, Hangzhou 310000, Zhejiang Province, China
| | - Wei-Xin Cheng
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Meng-Meng Zhang
- Department of Gastroenterology, Hangzhou Shangcheng District People’s Hospital, Hangzhou 310003, Zhejiang Province, China
| | - Lin-Ping Ding
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Dong Chen
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Jian-Guo Gao
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Juan Du
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Ci-Liang Jin
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Chun-Xiao Chen
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Yun-Fei Li
- Women’s Hospital and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| | - Tao Cheng
- Women’s Hospital and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| | - Peng-Lei Jiang
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Yi-Da Yang
- Department of Infectious Disease, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Peng-Xu Qian
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Peng-Fei Xu
- Women’s Hospital and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| | - Xi Jin
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
35
|
Doan HT, Cheng LC, Chiu YL, Cheng YK, Hsu CC, Chen YC, Lo HJ, Chiang HS. Candida tropicalis-derived vitamin B3 exerts protective effects against intestinal inflammation by promoting IL-17A/IL-22-dependent epithelial barrier function. Gut Microbes 2024; 16:2416922. [PMID: 39462273 PMCID: PMC11524206 DOI: 10.1080/19490976.2024.2416922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/16/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024] Open
Abstract
Candida tropicalis-a prevalent gut commensal fungus in healthy individuals - contributes to intestinal health and disease. However, how commensal C. tropicalis influences intestinal homeostasis and barrier function is poorly understood. Here, we demonstrated that the reference strain of C. tropicalis (MYA-3404) ameliorated intestinal inflammation in murine models of chemically induced colitis and bacterial infection. Intestinal colonization of C. tropicalis robustly upregulated the expression of IL-17A and IL-22 to increase barrier function and promote proliferation of intestinal epithelial cells in the mouse colon. Metabolomics analysis of fecal samples from mice colonized with C. tropicalis revealed alterations in vitamin B3 metabolism, promoting conversion of nicotinamide to nicotinic acid. Although nicotinamide worsened colitis, treatment with nicotinic acid alleviated disease symptoms and enhanced epithelial proliferation and Th17 cell differentiation. Oral gavage of C. tropicalis mitigated nicotinamide-induced intestinal dysfunction in experimental colitis. Blockade of nicotinic acid production with nicotinamidase inhibitors lowered the protective effects against colitis in mice treated with C. tropicalis. Notably, a clinical C. tropicalis strain isolated from patients with candidemia lacked the protective effects against murine colitis observed with the reference strain. Together, our results highlight a novel role for C. tropicalis in resolving intestinal inflammation through the modulation of vitamin B3 metabolism.
Collapse
Affiliation(s)
- Ha T Doan
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Li-Chieh Cheng
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yi-Ling Chiu
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yuan-Kai Cheng
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
- Leeuwenhoek Laboratories Co. Ltd, Taipei, Taiwan
| | - Yee-Chun Chen
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hsiu-Jung Lo
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Hao-Sen Chiang
- Department of Life Science, National Taiwan University, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
36
|
Vebr M, Pomahačová R, Sýkora J, Schwarz J. A Narrative Review of Cytokine Networks: Pathophysiological and Therapeutic Implications for Inflammatory Bowel Disease Pathogenesis. Biomedicines 2023; 11:3229. [PMID: 38137450 PMCID: PMC10740682 DOI: 10.3390/biomedicines11123229] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/11/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a lifelong inflammatory immune mediated disorder, encompassing Crohn's disease (CD) and ulcerative colitis (UC); however, the cause and specific pathogenesis of IBD is yet incompletely understood. Multiple cytokines produced by different immune cell types results in complex functional networks that constitute a highly regulated messaging network of signaling pathways. Applying biological mechanisms underlying IBD at the single omic level, technologies and genetic engineering enable the quantification of the pattern of released cytokines and new insights into the cytokine landscape of IBD. We focus on the existing literature dealing with the biology of pro- or anti-inflammatory cytokines and interactions that facilitate cell-based modulation of the immune system for IBD inflammation. We summarize the main roles of substantial cytokines in IBD related to homeostatic tissue functions and the remodeling of cytokine networks in IBD, which may be specifically valuable for successful cytokine-targeted therapies via marketed products. Cytokines and their receptors are validated targets for multiple therapeutic areas, we review the current strategies for therapeutic intervention and developing cytokine-targeted therapies. New biologics have shown efficacy in the last few decades for the management of IBD; unfortunately, many patients are nonresponsive or develop therapy resistance over time, creating a need for novel therapeutics. Thus, the treatment options for IBD beyond the immune-modifying anti-TNF agents or combination therapies are expanding rapidly. Further studies are needed to fully understand the immune response, networks of cytokines, and the direct pathogenetic relevance regarding individually tailored, safe and efficient targeted-biotherapeutics.
Collapse
Affiliation(s)
- Marek Vebr
- Departments of Pediatrics, Faculty Hospital, Faculty of Medicine in Pilsen, Charles University of Prague, 323 00 Pilsen, Czech Republic; (R.P.); (J.S.); (J.S.)
| | | | | | | |
Collapse
|
37
|
Duan B, Hu Q, Ding F, Huang F, Wang W, Yin N, Liu Z, Zhang S, He D, Lu Q. The effect and mechanism of Huangqin-Baishao herb pair in the treatment of dextran sulfate sodium-induced ulcerative colitis. Heliyon 2023; 9:e23082. [PMID: 38144295 PMCID: PMC10746484 DOI: 10.1016/j.heliyon.2023.e23082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 10/03/2023] [Accepted: 11/27/2023] [Indexed: 12/26/2023] Open
Abstract
Background The haungqing (Scutellariae Radix) and baishao (Paeoniae Radix Alba) herb pair (HBHP) is a common prescribed herbal formula or is added to other traditional Chinese medicine (TCM) prescriptions to treat ulcerative colitis (UC). However, the underlying mechanism is unclear. Purpose Elucidate the efficacy and potential mechanism of HBHP against UC. Methods First, The UC model of mice induced by dextran sulfate sodium (DSS) was established. The mice were randomly divided into Control group, DSS group, SASP group (390 mg/kg), and HPHP group (1.95 g/kg), with 8 mice per group. Drugs were administrated via oral gavage for 7 days. Then, Disease activity index (DAI), length of the colon, histopathology, and changes in inflammatory cytokines in colonic tissues were analyzed to assess the effect of HBHP on UC. Besides, Network pharmacology was applied to identify the active compounds, core targets of HBHP in the treatment of UC, and the corresponding signaling pathways to explore the underlying mechanisms. Finally, Western blot (WB), immunohistochemistry (IHC) and molecular docking were performed to validate the results. Results HBHP significantly reduced DAI score and decreased colon length shortening in DSS-induced UC mice. The administration of HBHP was able to effectively alleviated mucosal ulceration and epithelial destruction. In addition, HBHP treatment obviously - reduced the expressions of TNF-α, IL-6, and IL-1β in colon tissues (p < 0.05 or p < 0.01). 35 bioactive compounds and 290 HBHP targets related to UC were obtained. Among them 3 key active compounds (baicalein, panicolin, and norwogonin) with higher degree values in the drug-compound-target network and 21 hub genes (STAT3, JAK2, SRC, AKT1, PIK3CA, and VEGFA, etc.) were identified. KEGG enrichment analysis suggested that HBHP's mechanisms mainly involve the JAK-STAT pathway. Abnormal activation of JAK/STAT signaling is believed to be involved in the pathogeneses of UC. Notably, WB and IHC showed that HBHP significantly down-regulated the protein expression levels of p-JAK2 (p < 0.05) and p-STAT3 (p < 0.05 or p < 0.01). JAK2 and STAT3 might be core targets for the action of HBHP; this possibility was also supported by molecular docking. Conclusions HBHP could alleviate DSS-induced UC, reduce tissue inflammation, and its mechanism might primarily be achieved by inhibiting JAK2/STAT3 signaling pathway. Meanwhile, our work revealed that network pharmacology combined with experimental verification is a cogent means of studying the mechanism of TCM.
Collapse
Affiliation(s)
- Bailu Duan
- Postdoctoral Research Station, General Hospital of Central Theater Command of PLA, Wuhan, 430070, China
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Qiong Hu
- First People's Hospital of Jiangxia District, Wuhan City & Union Jiangnan Hospital, HUST, Wuhan, 430200, China
| | - Fengmin Ding
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Fang Huang
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Wei Wang
- Postdoctoral Research Station, General Hospital of Central Theater Command of PLA, Wuhan, 430070, China
- Department of Orthopedics, Hubei Provincial Hospital of TCM Affiliated to Hubei University of Chinese Medicine, Wuhan, 430061, China
| | - Nina Yin
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Zhe Liu
- Postdoctoral Research Station, General Hospital of Central Theater Command of PLA, Wuhan, 430070, China
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Song Zhang
- Postdoctoral Research Station, General Hospital of Central Theater Command of PLA, Wuhan, 430070, China
| | - Dongchu He
- Postdoctoral Research Station, General Hospital of Central Theater Command of PLA, Wuhan, 430070, China
| | - Qiping Lu
- Postdoctoral Research Station, General Hospital of Central Theater Command of PLA, Wuhan, 430070, China
- Department of General Surgery, General Hospital of Central Theater Command of PLA, Wuhan, 430070, China
| |
Collapse
|
38
|
Srivastava RK, Sapra L, Bhardwaj A, Mishra PK, Verma B, Baig Z. Unravelling the immunobiology of innate lymphoid cells (ILCs): Implications in health and disease. Cytokine Growth Factor Rev 2023; 74:56-75. [PMID: 37743134 DOI: 10.1016/j.cytogfr.2023.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/09/2023] [Accepted: 09/13/2023] [Indexed: 09/26/2023]
Abstract
Innate lymphoid cells (ILCs), a growing class of immune cells, imitate the appearance and abilities of T cells. However, unlike T cells, ILCs lack acquired antigen receptors, and they also do not undergo clonal selection or proliferation in response to antigenic stimuli. Despite lacking antigen-specific receptors, ILCs respond quickly to signals from infected or damaged tissues and generate an array of cytokines that regulate the development of adaptive immune response. ILCs can be categorized into four types based on their signature cytokines and transcription factors: ILC1, ILC2, ILC3 (including Lymphoid Tissue inducer- LTi cells), and regulatory ILCs (ILCregs). ILCs play key functions in controlling and resolving inflammation, and variations in their proportion are linked to various pathological diseases including cancer, gastrointestinal, pulmonary, and skin diseases. We highlight current advancements in the biology and classification of ILCs in this review. Additionally, we provide a thorough overview of their contributions to several inflammatory bone-related pathologies, including osteoporosis, rheumatoid arthritis, periodontitis, and ankylosing spondylitis. Understanding the multiple functions of ILCs in both physiological and pathological conditions will further mobilize future research towards targeting ILCs for therapeutic purposes.
Collapse
Affiliation(s)
- Rupesh K Srivastava
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India.
| | - Leena Sapra
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Asha Bhardwaj
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | | | - Bhupendra Verma
- Department of Biotechnology, All India Institute of Medical Sciences(AIIMS), New Delhi-110029, India
| | - Zainab Baig
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| |
Collapse
|
39
|
Li N, Ma P, Li Y, Shang X, Nan X, Shi L, Han X, Liu J, Hong Y, Li Q, Cui J, Li J, Peng G. Gut microbiota-derived 12-ketolithocholic acid suppresses the IL-17A secretion from colonic group 3 innate lymphoid cells to prevent the acute exacerbation of ulcerative colitis. Gut Microbes 2023; 15:2290315. [PMID: 38062857 PMCID: PMC10730201 DOI: 10.1080/19490976.2023.2290315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Intestinal microbiota dysbiosis and metabolic disruption are well-known as the primary triggers of ulcerative colitis (UC). However, their role in regulating the group 3 innate lymphoid cells (ILC3s), which are essential for intestinal health, remains unexplored during the development of disease severity. Here, our results showed that the microbiota structure of patients with severe UC (SUCs) differed from those with mild UC (MiUCs), moderate UC (MoUCs), and healthy controls (HCs). Microbes producing secondary bile acids (SBAs) and SBAs decreased with the aggravation of UC, and a strong positive correlation existed between them. Next, fecal microbiota transfer was used to reproduce the human-derived microbiota in mice and decipher the microbiota-mediated inflammatory modulation during an increase in disease severity. Mice receiving SUC-derived microbiota exhibited enhancive inflammation, a lowered percentage of ILC3s, and the down-regulated expressions of bile acid receptors, including vitamin D receptor (VDR) and pregnane X receptor (PXR), in the colon. Similar to clinical results, SBA-producing microbes, deoxycholic acids (DCA), and 12-ketolithocholic acids (12-KLCA) were diminished in the intestine of these recipients. Finally, we compared the therapeutic potential of DCA and 12-KLCA in preventing colitis and the regulatory mechanisms mediated by ILC3s. 12-KLCA but not DCA represented a strong anti-inflammatory effect associated with the higher expression of VDR and the lower secretion of IL-17A from colonic ILC3s. Collectively, these findings provide new signatures for monitoring the acute deterioration of UC by targeting gut microbiota and bile acid metabolism and demonstrate the therapeutic and preventive potential of a novel microbiota-derived metabolite, 12-KLCA.
Collapse
Affiliation(s)
- Na Li
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Peiguang Ma
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Yalan Li
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Xuekai Shang
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Xinmei Nan
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Lei Shi
- Department of Gastroenterology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Xiao Han
- Department of Gastroenterology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Jiajing Liu
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Yanfei Hong
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Qiuyi Li
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Jiaqi Cui
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Junxiang Li
- Department of Gastroenterology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Guiying Peng
- Department of Immunology and Microbiology, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| |
Collapse
|
40
|
He Y, Wang Y, He R, Abdelsalam AM, Zhong G. IL-23 receptor signaling licenses group 3-like innate lymphoid cells to restrict a live-attenuated oral Chlamydia vaccine in the gut. Infect Immun 2023; 91:e0037123. [PMID: 37850749 PMCID: PMC10652955 DOI: 10.1128/iai.00371-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 09/14/2023] [Indexed: 10/19/2023] Open
Abstract
An IFNγ-susceptible mutant of Chlamydia muridarum is attenuated in pathogenicity in the genital tract and was recently licensed as an intracellular Oral vaccine vector or intrOv. Oral delivery of intrOv induces transmucosal protection in the genital tract, but intrOv itself is cleared from the gut (without shedding any infectious particles externally) by IFNγ from group 3-like innate lymphoid cells (ILC3s). We further characterized the intrOv interactions with ILC3s in the current study, since the interactions may impact both the safety and efficacy of intrOv as an oral Chlamydia vaccine. Intracolonic inoculation with intrOv induced IFNγ that in return inhibited intrOv. The intrOv-IFNγ interactions were dependent on RORγt, a signature transcriptional factor of ILC3s. Consistently, the transfer of oral intrOv-induced ILC3s from RORγt-GFP reporter mice to IFNγ-deficient mice rescued the inhibition of intrOv. Thus, IFNγ produced by intrOv-induced ILC3s is likely responsible for inhibiting intrOv, which is further supported by the observation that oral intrOv did induce significant levels of IFNγ-producing LC3s (IFNγ+ILC3s). Interestingly, IL-23 receptor knockout (IL-23R-/-) mice no longer inhibited intrOv, which was accompanied by reduced colonic IFNγ. Transfer of oral intrOv-induced ILC3s rescued the IL-23R-/- mice to inhibit intrOv, validating the dependence of ILC3s on IL-23R signaling for inhibiting intrOv. Clearly, intrOv induces intestinal IFNγ+ILC3s for its own inhibition in the gut, which is facilitated by IL-23R signaling. These findings have provided a mechanism for ensuring the safety of intrOv as an oral Chlamydia vaccine and a platform for investigating how oral intrOv induces transmucosal protection in the genital tract.
Collapse
Affiliation(s)
- Ying He
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yihui Wang
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Rongze He
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Ahmed Mohamed Abdelsalam
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Guangming Zhong
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
41
|
Di Ciaula A, Bonfrate L, Khalil M, Portincasa P. The interaction of bile acids and gut inflammation influences the pathogenesis of inflammatory bowel disease. Intern Emerg Med 2023; 18:2181-2197. [PMID: 37515676 PMCID: PMC10635993 DOI: 10.1007/s11739-023-03343-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 06/08/2023] [Indexed: 07/31/2023]
Abstract
Bile acids (BA) are amphipathic molecules originating from cholesterol in the liver and from microbiota-driven biotransformation in the colon. In the gut, BA play a key role in fat digestion and absorption and act as potent signaling molecules on the nuclear farnesoid X receptor (FXR) and membrane-associated G protein-coupled BA receptor-1 (GPBAR-1). BA are, therefore, involved in the maintenance of gut barrier integrity, gene expression, metabolic homeostasis, and microbiota profile and function. Disturbed BA homeostasis can activate pro-inflammatory pathways in the gut, while inflammatory bowel diseases (IBD) can induce gut dysbiosis and qualitative and/or quantitative changes of the BA pool. These factors contribute to impaired repair capacity of the mucosal barrier, due to chronic inflammation. A better understanding of BA-dependent mechanisms paves the way to innovative therapeutic tools by administering hydrophilic BA and FXR agonists and manipulating gut microbiota with probiotics and prebiotics. We discuss the translational value of pathophysiological and therapeutic evidence linking BA homeostasis to gut inflammation in IBD.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Clinica Medica "A. Murri" and Division Internal Medicine, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University "Aldo Moro" Medical School, Policlinico Hospital, Piazza G. Cesare 11, 70124, Bari, Italy
| | - Leonilde Bonfrate
- Clinica Medica "A. Murri" and Division Internal Medicine, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University "Aldo Moro" Medical School, Policlinico Hospital, Piazza G. Cesare 11, 70124, Bari, Italy.
| | - Mohamad Khalil
- Clinica Medica "A. Murri" and Division Internal Medicine, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University "Aldo Moro" Medical School, Policlinico Hospital, Piazza G. Cesare 11, 70124, Bari, Italy
| | - Piero Portincasa
- Clinica Medica "A. Murri" and Division Internal Medicine, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University "Aldo Moro" Medical School, Policlinico Hospital, Piazza G. Cesare 11, 70124, Bari, Italy
| |
Collapse
|
42
|
Donald K, Finlay BB. Early-life interactions between the microbiota and immune system: impact on immune system development and atopic disease. Nat Rev Immunol 2023; 23:735-748. [PMID: 37138015 DOI: 10.1038/s41577-023-00874-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2023] [Indexed: 05/05/2023]
Abstract
Prenatal and early postnatal life represent key periods of immune system development. In addition to genetics and host biology, environment has a large and irreversible role in the immune maturation and health of an infant. One key player in this process is the gut microbiota, a diverse community of microorganisms that colonizes the human intestine. The diet, environment and medical interventions experienced by an infant determine the establishment and progression of the intestinal microbiota, which interacts with and trains the developing immune system. Several chronic immune-mediated diseases have been linked to an altered gut microbiota during early infancy. The recent rise in allergic disease incidence has been explained by the 'hygiene hypothesis', which states that societal changes in developed countries have led to reduced early-life microbial exposures, negatively impacting immunity. Although human cohort studies across the globe have established a correlation between early-life microbiota composition and atopy, mechanistic links and specific host-microorganism interactions are still being uncovered. Here, we detail the progression of immune system and microbiota maturation in early life, highlight the mechanistic links between microbes and the immune system, and summarize the role of early-life host-microorganism interactions in allergic disease development.
Collapse
Affiliation(s)
- Katherine Donald
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - B Brett Finlay
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
43
|
Wu D, Li Z, Zhang Y, Zhang Y, Ren G, Zeng Y, Liu H, Guan W, Zhao X, Li P, Hu L, Hou Z, Gong J, Li J, Jin W, Hu Z, Jiang C, Li H, Zhong C. Proline uptake promotes activation of lymphoid tissue inducer cells to maintain gut homeostasis. Nat Metab 2023; 5:1953-1968. [PMID: 37857730 DOI: 10.1038/s42255-023-00908-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023]
Abstract
Metabolic regulation is integral to the proper functioning of innate lymphoid cells, yet the underlying mechanisms remain elusive. Here, we show that disruption of exogenous proline uptake, either through dietary restriction or by deficiency of the proline transporter Slc6a7, in lymphoid tissue inducer (LTi) cells, impairs LTi activation and aggravates dextran sodium sulfate-induced colitis in mice. With an integrative transcriptomic and metabolomic analysis, we profile the metabolic characteristics of various innate lymphoid cell subsets and reveal a notable enrichment of proline metabolism in LTi cells. Mechanistically, defective proline uptake diminishes the generation of reactive oxygen species, previously known to facilitate LTi activation. Additionally, LTi cells deficient in Slc6a7 display downregulation of Cebpb and Kdm6b, resulting in compromised transcriptional and epigenetic regulation of interleukin-22. Furthermore, our study uncovers the therapeutic potential of proline supplementation in alleviating colitis. Therefore, these findings shed light on the role of proline in facilitating LTi activation and ultimately contributing to gut homeostasis.
Collapse
Affiliation(s)
- Di Wu
- Institute of Systems Biomedicine, Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Zongxian Li
- Institute of Systems Biomedicine, Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Yime Zhang
- Institute of Systems Biomedicine, Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Yinlian Zhang
- Institute of Systems Biomedicine, Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Guanqun Ren
- Institute of Systems Biomedicine, Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Yanyu Zeng
- Institute of Systems Biomedicine, Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Huiying Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Weiqiang Guan
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Xingyu Zhao
- Institute of Systems Biomedicine, Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Peng Li
- Institute of Systems Biomedicine, Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Luni Hu
- Institute of Systems Biomedicine, Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Zhiyuan Hou
- Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, China
| | - Jingjing Gong
- Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, China
| | - Jun Li
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Wenfei Jin
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Zeping Hu
- School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Houhua Li
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Chao Zhong
- Institute of Systems Biomedicine, Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
44
|
Liang B, Xing D. Unveiling the mystery of ILC3s: Their functions and interactions in mucosal immunity. Int Immunopharmacol 2023; 123:110772. [PMID: 37552906 DOI: 10.1016/j.intimp.2023.110772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/10/2023]
Abstract
Innate lymphoid cells (ILCs) are a recently discovered subset of immune cells that play a crucial role in preserving tissue health and combating infections. Among these, ILC3s are particularly vital in regulating mucosal immunity across multiple organs such as the gut, lungs, and skin. The purpose of this article is to present a comprehensive and detailed overview of current knowledge on ILC3s, with a specific emphasis on their intricate interactions with various components of the intestinal microenvironment. Recent research on the complex, bidirectional communication pathways between ILC3s and intestinal epithelial cells, stromal cells, immune cells, microbiota, their metabolites, and diet are highlighted. Furthermore, this review comprehensively examines the diverse functions of ILC3s, which include lymphoid tissue development, tissue repair, infection, inflammation, and metabolic diseases, as well as the effector molecules that facilitate these functions. Overall, this review provides valuable insights into the biological and functional aspects of ILC3s and underscores their potential for developing innovative therapies for immune-mediated disorders, while also acknowledging the remaining knowledge gaps and challenges that need to be addressed.
Collapse
Affiliation(s)
- Bing Liang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China; Qingdao Cancer Institute, Qingdao University, Qingdao, China.
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China; Qingdao Cancer Institute, Qingdao University, Qingdao, China; School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
45
|
Alhasan MM, Hölsken O, Duerr C, Helfrich S, Branzk N, Philipp A, Leitz D, Duerr J, Almousa Y, Barrientos G, Mohn WW, Gamradt S, Conrad ML. Antibiotic use during pregnancy is linked to offspring gut microbial dysbiosis, barrier disruption, and altered immunity along the gut-lung axis. Eur J Immunol 2023; 53:e2350394. [PMID: 37431194 DOI: 10.1002/eji.202350394] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/16/2023] [Accepted: 06/21/2023] [Indexed: 07/12/2023]
Abstract
Antibiotic use during pregnancy is associated with increased asthma risk in children. Since approximately 25% of women use antibiotics during pregnancy, it is important to identify the pathways involved in this phenomenon. We investigate how mother-to-offspring transfer of antibiotic-induced gut microbial dysbiosis influences immune system development along the gut-lung axis. Using a mouse model of maternal antibiotic exposure during pregnancy, we immunophenotyped offspring in early life and after asthma induction. In early life, prenatal-antibiotic exposed offspring exhibited gut microbial dysbiosis, intestinal inflammation (increased fecal lipocalin-2 and IgA), and dysregulated intestinal ILC3 subtypes. Intestinal barrier dysfunction in the offspring was indicated by a FITC-dextran intestinal permeability assay and circulating lipopolysaccharide. This was accompanied by increased T-helper (Th)17 cell percentages in the offspring's blood and lungs in both early life and after allergy induction. Lung tissue additionally showed increased percentages of RORγt T-regulatory (Treg) cells at both time points. Our investigation of the gut-lung axis identifies early-life gut dysbiosis, intestinal inflammation, and barrier dysfunction as a possible developmental programming event promoting increased expression of RORγt in blood and lung CD4+ T cells that may contribute to increased asthma risk.
Collapse
Affiliation(s)
- Moumen M Alhasan
- Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Oliver Hölsken
- Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Anesthesiology and Intensive Care Medicine, Charité Campus Benjamin Franklin, Berlin, Germany
- German Rheuma Research Center Berlin (DRFZ), Mucosal and Developmental Immunology, Berlin, Germany
- Heidelberg Biosciences International Graduate School (HBIGS), Heidelberg University, Heidelberg, Germany
| | - Claudia Duerr
- Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Sofia Helfrich
- Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Nora Branzk
- Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Alina Philipp
- Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Dominik Leitz
- Department of Pediatric Pulmonology, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Julia Duerr
- Department of Pediatric Pulmonology, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Yahia Almousa
- Laboratory of Molecular Tumor Pathology, Institute of Pathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Gabriela Barrientos
- Laboratorio de Medicina Experimental, Hospital Alemán. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - William W Mohn
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stefanie Gamradt
- Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Melanie L Conrad
- Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
46
|
Dharra R, Kumar Sharma A, Datta S. Emerging aspects of cytokine storm in COVID-19: The role of proinflammatory cytokines and therapeutic prospects. Cytokine 2023; 169:156287. [PMID: 37402337 PMCID: PMC10291296 DOI: 10.1016/j.cyto.2023.156287] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/24/2023] [Indexed: 07/06/2023]
Abstract
COVID-19 has claimed millions of lives during the last 3 years since initial cases were reported in Wuhan, China, in 2019. Patients with COVID-19 suffer from severe pneumonia, high fever, acute respiratory distress syndrome (ARDS), and multiple-organ dysfunction, which may also result in fatality in extreme cases. Cytokine storm (CS) is hyperactivation of the immune system, wherein the dysregulated production of proinflammatory cytokines could result in excessive immune cell infiltrations in the pulmonary tissues, resulting in tissue damage. The immune cell infiltration could also occur in other tissues and organs and result in multiple organs' dysfunction. The key cytokines implicated in the onset of disease severity include TNF-α, IFN-γ, IL-6, IL-1β, GM-CSF, and G-CSF. Controlling the CS is critical in treating COVID-19 disease. Therefore, different strategies are employed to mitigate the effects of CS. These include using monoclonal antibodies directed against soluble cytokines or the cytokine receptors, combination therapies, mesenchymal stem cell therapy, therapeutic plasma exchange, and some non-conventional treatment methods to improve patient immunity. The current review describes the role/s of critical cytokines in COVID-19-mediated CS and the respective treatment modalities.
Collapse
Affiliation(s)
- Renu Dharra
- CSIR-Institute of Microbial Technology, Sector 39 A, Chandigarh 160036, India
| | - Anil Kumar Sharma
- Department of Bio-Science and Technology, M. M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India
| | - Sonal Datta
- Department of Bio-Science and Technology, M. M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India.
| |
Collapse
|
47
|
Ryu S, Lim M, Kim J, Kim HY. Versatile roles of innate lymphoid cells at the mucosal barrier: from homeostasis to pathological inflammation. Exp Mol Med 2023; 55:1845-1857. [PMID: 37696896 PMCID: PMC10545731 DOI: 10.1038/s12276-023-01022-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 09/13/2023] Open
Abstract
Innate lymphoid cells (ILCs) are innate lymphocytes that do not express antigen-specific receptors and largely reside and self-renew in mucosal tissues. ILCs can be categorized into three groups (ILC1-3) based on the transcription factors that direct their functions and the cytokines they produce. Their signature transcription factors and cytokines closely mirror those of their Th1, Th2, and Th17 cell counterparts. Accumulating studies show that ILCs are involved in not only the pathogenesis of mucosal tissue diseases, especially respiratory diseases, and colitis, but also the resolution of such diseases. Here, we discuss recent advances regarding our understanding of the biology of ILCs in mucosal tissue health and disease. In addition, we describe the current research on the immune checkpoints by which other cells regulate ILC activities: for example, checkpoint molecules are potential new targets for therapies that aim to control ILCs in mucosal diseases. In addition, we review approved and clinically- trialed drugs and drugs in clinical trials that can target ILCs and therefore have therapeutic potential in ILC-mediated diseases. Finally, since ILCs also play important roles in mucosal tissue homeostasis, we explore the hitherto sparse research on cell therapy with regulatory ILCs. This review highlights various therapeutic approaches that could be used to treat ILC-mediated mucosal diseases and areas of research that could benefit from further investigation.
Collapse
Affiliation(s)
- Seungwon Ryu
- Department of Microbiology, Gachon University College of Medicine, Incheon, 21999, South Korea
| | - MinYeong Lim
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, South Korea
- CIRNO, Sungkyunkwan University, Suwon, South Korea
| | - Jinwoo Kim
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, South Korea
- CIRNO, Sungkyunkwan University, Suwon, South Korea
| | - Hye Young Kim
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea.
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, South Korea.
- CIRNO, Sungkyunkwan University, Suwon, South Korea.
| |
Collapse
|
48
|
Bayraktar N, Eren MA, Bayraktar M, Öztürk A, Erdoğdu H. Analysis of Interleukin-17, Interleukin-23, neopterin and Nesfatin-1 levels in the sera of Hashimoto patients. J Med Biochem 2023; 42:460-468. [PMID: 37790207 PMCID: PMC10542705 DOI: 10.5937/jomb0-40683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 12/27/2022] [Indexed: 10/05/2023] Open
Abstract
Background Hashimoto's thyroiditis (HT) is an autoimmune disorder affecting the thyroid gland and may present as goiter or atrophic thyroiditis that may result in various metabolic and inflammatory disorders. The aim of this study is to determine the changes in serum levels of interleukin-17 (IL-17), IL-23, neopterin, and nesfatin-1 parameters in HT patients and to evaluate the possible relationship among these parameters. Methods 90 HT patients and 30 healthy individuals were included in this study. Demographic data of the patients included in the study were recorded and detailed physical examinations were performed. IL-17, IL-23, neopterin, and nesfatin-1 levels were measured in the serum samples of the participants by the ELISA method.
Collapse
Affiliation(s)
- Nihayet Bayraktar
- Harran University, Faculty of Medicine, Department of Medical Biochemistry, Şanlıurfa, Turkey
| | - Mehmet Ali Eren
- Harran University, Faculty of Medicine, Department of Endocrinology, Şanlıurfa, Turkey
| | - Mustafa Bayraktar
- Yıldırım Beyazıt University, Faculty of Medicine, Department of Internal Medicine, Ankara, Turkey
| | - Ali Öztürk
- Niğde Ömer Halisdemir University, Faculty of Medicine, Department of Medical Microbiology, Niğde, Turkey
| | - Hamza Erdoğdu
- Harran University, Faculty of Business Administration, Department of Statistics, Şanlıurfa, Turkey
| |
Collapse
|
49
|
Wang Y, Zhuang H, Jiang XH, Zou RH, Wang HY, Fan ZN. Unveiling the key genes, environmental toxins, and drug exposures in modulating the severity of ulcerative colitis: a comprehensive analysis. Front Immunol 2023; 14:1162458. [PMID: 37539055 PMCID: PMC10394652 DOI: 10.3389/fimmu.2023.1162458] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/19/2023] [Indexed: 08/05/2023] Open
Abstract
Background As yet, the genetic abnormalities involved in the exacerbation of Ulcerative colitis (UC) have not been adequately explored based on bioinformatic methods. Materials and methods The gene microarray data and clinical information were downloaded from Gene Expression Omnibus (GEO) repository. The scale-free gene co-expression networks were constructed by R package "WGCNA". Gene enrichment analysis was performed via Metascape database. Differential expression analysis was performed using "Limma" R package. The "randomForest" packages in R was used to construct the random forest model. Unsupervised clustering analysis performed by "ConsensusClusterPlus"R package was utilized to identify different subtypes of UC patients. Heat map was established using the R package "pheatmap". Diagnostic parameter capability was evaluated by ROC curve. The"XSum"packages in R was used to screen out small-molecule drugs for the exacerbation of UC based on cMap database. Molecular docking was performed with Schrodinger molecular docking software. Results Via WGCNA, a total 77 high Mayo score-associated genes specific in UC were identified. Subsequently, the 9 gene signatures of the exacerbation of UC was screened out by random forest algorithm and Limma analysis, including BGN,CHST15,CYYR1,GPR137B,GPR4,ITGA5,LILRB1,SLFN11 and ST3GAL2. The ROC curve suggested good predictive performance of the signatures for exacerbation of UC in both the training set and the validation set. We generated a novel genotyping scheme based on the 9 signatures. The percentage of patients achieved remission after 4 weeks intravenous corticosteroids (CS-IV) treatment was higher in cluster C1 than that in cluster C2 (54% vs. 27%, Chi-square test, p=0.02). Energy metabolism-associated signaling pathways were significantly up-regulated in cluster C1, including the oxidative phosphorylation, pentose and glucuronate interconversions and citrate cycle TCA cycle pathways. The cluster C2 had a significant higher level of CD4+ T cells. The"XSum"algorithm revealed that Exisulind has a therapeutic potential for UC. Exisulind showed a good binding affinity for GPR4, ST3GAL2 and LILRB1 protein with the docking glide scores of -7.400 kcal/mol, -7.191 kcal/mol and -6.721 kcal/mol, respectively.We also provided a comprehensive review of the environmental toxins and drug exposures that potentially impact the progression of UC. Conclusion Using WGCNA and random forest algorithm, we identified 9 gene signatures of the exacerbation of UC. A novel genotyping scheme was constructed to predict the severity of UC and screen UC patients suitable for CS-IV treatment. Subsequently, we identified a small molecule drug (Exisulind) with potential therapeutic effects for UC. Thus, our study provided new ideas and materials for the personalized clinical treatment plans for patients with UC.
Collapse
Affiliation(s)
| | | | | | | | - Hai-yang Wang
- Digestive Endoscopy Department, Jiangsu Province Hospital, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Zhi-ning Fan
- Digestive Endoscopy Department, Jiangsu Province Hospital, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| |
Collapse
|
50
|
Li J, Fan J, Wu L, Tu J, He L, Chen S, Chen X. Astragalus regulates the intestinal immune response during sepsis by mediating ILC3 proliferation through RORγt. Heliyon 2023; 9:e17766. [PMID: 37539221 PMCID: PMC10395125 DOI: 10.1016/j.heliyon.2023.e17766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/18/2023] [Accepted: 06/27/2023] [Indexed: 08/05/2023] Open
Abstract
Background Sepsis is a common complication of many diseases and is associated with high morbidity and mortality rates. Astragalus can improve humoral and innate immunity, inhibit inflammatory responses, and protect immune cells and organs from damage. However, to the best of our knowledge there are no reports on whether astragalus can regulate intestinal innate immune function during sepsis. Methods In this study, a rat cecal ligation and puncture model of sepsis was used to investigate the effects of astragalus treatment, following which the apoptosis rate of lymphocytes from Peyer's patches (PP) was determined. Type 3 innate lymphoid cells (ILC3) were cultured in vitro to further evaluate the effects and mechanisms of astragalus. Results The apoptosis level of lymphocytes from PP in rats with sepsis was significantly increased, and the number of ILC3 was significantly reduced, compared with the sham operation group, which aggravated intestinal injury and ultimately led to the death of rats. Astragalus treatment significantly inhibited the apoptosis of lymphocytes from PP, increased the number of ILC3, and improved the intestinal inflammatory environment compared to the sepsis group. RT-PCR revealed that astragalus and the retinoic acid-related orphan receptor γt (RORγt) agonist LYC-55716 both promote the expression of interleukin (IL)-17A, IL-17F, IL-22, interferon-γ, and granulocyte-macrophage colony-stimulating factor mRNA. Mechanistically, astragalus promotes the proliferation of ILC3 through RORγt, thereby reducing intestinal inflammatory damage. Conclusion Astragalus, via RORγt, promotes the generation of ILC3, improves the inflammatory environment in rats with sepsis.
Collapse
Affiliation(s)
- Jin Li
- Emergency Department of the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jun Fan
- Emergency Department of the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lidong Wu
- Emergency Department of the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Juan Tu
- Medical Records Department of the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Liang He
- Emergency Department of the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shufang Chen
- Emergency Department of the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xi Chen
- Emergency Department of the Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|