1
|
Zou X, He Y, Zhao Z, Li J, Qu H, Liu Z, Chen P, Ji J, Zhao H, Shu D, Luo C. Single-cell RNA-seq offer new insights into the cell fate decision of the primordial germ cells. Int J Biol Macromol 2024:139136. [PMID: 39740725 DOI: 10.1016/j.ijbiomac.2024.139136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 11/19/2024] [Accepted: 12/22/2024] [Indexed: 01/02/2025]
Abstract
The faithful production of primordial germ cells (PGCs) in vitro opens a wide range of novel applications in reproductive biology and medicine. However, the reproducibility of PGCs culture conditions across different laboratories or breeds remains a challenge. Therefore, it is necessary to research the molecular dynamics that lead to the gradual establishment of cultured PGCs lines network. Here, the results of single-cell RNA-seq indicated that the cell cycle drove cellular heterogeneity. The active populations engaged in PGC self-renewal and the characteristics of the aging cell fate have been identified. The active self-renewal populations presented a rising expression of DNA repair genes, couple with a high proportion of cells in G1/S phase and a low frequency of cells in G2 phase. Notably, Hippo, FoxO, AMPK and MAPK pathways are active within these populations. The combination of six activator or inhibitors, targeting these active pathways, resulted in a significantly higher proliferation rate of PGCs and an increased number of cells entering the G1 and S phases. Importantly, they greatly reduced the establishment time to a minimum of 26 days and increased the efficiency of male PGC line establishment to 59 % in FS medium. Our results provided several new insights into the PGCs.
Collapse
Affiliation(s)
- Xian Zou
- State Key Laboratory of Swine and Poultry Breeding Industry & Guangdong Key Laboratory of Animal Breeding and Nutrition & Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yanhua He
- State Key Laboratory of Swine and Poultry Breeding Industry & Guangdong Key Laboratory of Animal Breeding and Nutrition & Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Zhifeng Zhao
- State Key Laboratory of Swine and Poultry Breeding Industry & Guangdong Key Laboratory of Animal Breeding and Nutrition & Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jianbo Li
- Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Hao Qu
- State Key Laboratory of Swine and Poultry Breeding Industry & Guangdong Key Laboratory of Animal Breeding and Nutrition & Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Zijing Liu
- State Key Laboratory of Swine and Poultry Breeding Industry & Guangdong Key Laboratory of Animal Breeding and Nutrition & Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Peng Chen
- State Key Laboratory of Swine and Poultry Breeding Industry & Guangdong Key Laboratory of Animal Breeding and Nutrition & Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jian Ji
- State Key Laboratory of Swine and Poultry Breeding Industry & Guangdong Key Laboratory of Animal Breeding and Nutrition & Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Haoyi Zhao
- State Key Laboratory of Swine and Poultry Breeding Industry & Guangdong Key Laboratory of Animal Breeding and Nutrition & Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Dingming Shu
- State Key Laboratory of Swine and Poultry Breeding Industry & Guangdong Key Laboratory of Animal Breeding and Nutrition & Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Chenglong Luo
- State Key Laboratory of Swine and Poultry Breeding Industry & Guangdong Key Laboratory of Animal Breeding and Nutrition & Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| |
Collapse
|
2
|
Huang L, Zhao B, Wan Y. Disruption of RNA-binding proteins in neurological disorders. Exp Neurol 2024; 385:115119. [PMID: 39709152 DOI: 10.1016/j.expneurol.2024.115119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/30/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
RNA-binding proteins (RBPs) are multifunctional proteins essential for the regulation of RNA processing and metabolism, contributing to the maintenance of cell homeostasis by modulating the expression of target genes. Many RBPs have been associated with neuron-specific processes vital for neuronal development and survival. RBP dysfunction may result in aberrations in RNA processing, which subsequently initiate a cascade of effects. Notably, RBPs are involved in the onset and progression of neurological disorders via diverse mechanisms. Disruption of RBPs not only affects RNA processing, but also promotes the abnormal aggregation of proteins into toxic inclusion bodies, and contributes to immune responses that drive the progression of neurological diseases. In this review, we summarize recent discoveries relating to the roles of RBPs in neurological diseases, discuss their contributions to such conditions, and highlight the unique functions of these RBPs within the nervous system.
Collapse
Affiliation(s)
- Luyang Huang
- Cancer Biology Laboratory, China-Japan Union Hospital of Jilin University, Changchun 130062, Jilin, China
| | - Bo Zhao
- Cancer Biology Laboratory, China-Japan Union Hospital of Jilin University, Changchun 130062, Jilin, China
| | - Youzhong Wan
- Cancer Biology Laboratory, China-Japan Union Hospital of Jilin University, Changchun 130062, Jilin, China.
| |
Collapse
|
3
|
Ciocia A, Mestre-Farràs N, Vicent-Nacht I, Guitart T, Gebauer F. CSDE1: a versatile regulator of gene expression in cancer. NAR Cancer 2024; 6:zcae014. [PMID: 38600987 PMCID: PMC11005786 DOI: 10.1093/narcan/zcae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/13/2024] [Accepted: 03/10/2024] [Indexed: 04/12/2024] Open
Abstract
RNA-binding proteins (RBPs) have garnered significant attention in the field of cancer due to their ability to modulate diverse tumor traits. Once considered untargetable, RBPs have sparked renewed interest in drug development, particularly in the context of RNA-binding modulators of translation. This review focuses on one such modulator, the protein CSDE1, and its pivotal role in regulating cancer hallmarks. We discuss context-specific functions of CSDE1 in tumor development, its mechanisms of action, and highlight features that support its role as a molecular adaptor. Additionally, we discuss the regulation of CSDE1 itself and its potential value as biomarker and therapeutic target.
Collapse
Affiliation(s)
- Annagiulia Ciocia
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Dr Aiguader 88, Barcelona, Spain
| | - Neus Mestre-Farràs
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona 08003, Spain
| | - Ignacio Vicent-Nacht
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Dr Aiguader 88, Barcelona, Spain
| | - Tanit Guitart
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona 08003, Spain
| | - Fátima Gebauer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Dr Aiguader 88, Barcelona, Spain
| |
Collapse
|
4
|
Hamilton HL, Kinscherf NA, Balmer G, Bresque M, Salamat SM, Vargas MR, Pehar M. FABP7 drives an inflammatory response in human astrocytes and is upregulated in Alzheimer's disease. GeroScience 2024; 46:1607-1625. [PMID: 37688656 PMCID: PMC10828232 DOI: 10.1007/s11357-023-00916-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/15/2023] [Indexed: 09/11/2023] Open
Abstract
Alzheimer's disease (AD), the most common cause of dementia in the elderly, is characterized by the accumulation of intracellular neurofibrillary tangles, extracellular amyloid plaques, and neuroinflammation. In partnership with microglial cells, astrocytes are key players in the regulation of neuroinflammation. Fatty acid binding protein 7 (FABP7) belongs to a family of conserved proteins that regulate lipid metabolism, energy homeostasis, and inflammation. FABP7 expression is largely restricted to astrocytes and radial glia-like cells in the adult central nervous system. We observed that treatment of primary hippocampal astrocyte cultures with amyloid β fragment 25-35 (Aβ25-35) induces FABP7 upregulation. In addition, FABP7 expression is upregulated in the brain of APP/PS1 mice, a widely used AD mouse model. Co-immunostaining with specific astrocyte markers revealed increased FABP7 expression in astrocytes. Moreover, astrocytes surrounding amyloid plaques displayed increased FABP7 staining when compared to non-plaque-associated astrocytes. A similar result was obtained in the brain of AD patients. Whole transcriptome RNA sequencing analysis of human astrocytes differentiated from induced pluripotent stem cells (i-astrocytes) overexpressing FABP7 identified 500 transcripts with at least a 2-fold change in expression. Gene Ontology enrichment analysis identified (i) positive regulation of cytokine production and (ii) inflammatory response as the top two statistically significant overrepresented biological processes. We confirmed that wild-type FABP7 overexpression induces an NF-κB-driven inflammatory response in human i-astrocytes. On the other hand, the expression of a ligand-binding impaired mutant FABP7 did not induce NF-κB activation. Together, our results suggest that the upregulation of FABP7 in astrocytes could contribute to the neuroinflammation observed in AD.
Collapse
Affiliation(s)
- Haylee L Hamilton
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, 600 Highland Avenue, CSC K6/447, Madison, WI, 53792, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Noah A Kinscherf
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, 600 Highland Avenue, CSC K6/447, Madison, WI, 53792, USA
| | - Garrett Balmer
- Department of Neurology, University of Wisconsin-Madison, Madison, WI, USA
| | - Mariana Bresque
- Department of Neurology, University of Wisconsin-Madison, Madison, WI, USA
| | - Shahriar M Salamat
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Department of Neurological Surgery, University of Wisconsin Madison, Madison, WI, USA
| | - Marcelo R Vargas
- Department of Neurology, University of Wisconsin-Madison, Madison, WI, USA
| | - Mariana Pehar
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, 600 Highland Avenue, CSC K6/447, Madison, WI, 53792, USA.
- Geriatric Research Education Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.
| |
Collapse
|
5
|
Li Y, Li C, Liu M, Liu S, Liu F, Wang L. The RNA-binding protein CSDE1 promotes hematopoietic stem and progenitor cell generation via translational control of Wnt signaling. Development 2023; 150:dev201890. [PMID: 37874038 PMCID: PMC10652045 DOI: 10.1242/dev.201890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/19/2023] [Indexed: 10/25/2023]
Abstract
In vertebrates, the earliest hematopoietic stem and progenitor cells (HSPCs) are derived from a subset of specialized endothelial cells, hemogenic endothelial cells, in the aorta-gonad-mesonephros region through endothelial-to-hematopoietic transition. HSPC generation is efficiently and accurately regulated by a variety of factors and signals; however, the precise control of these signals remains incompletely understood. Post-transcriptional regulation is crucial for gene expression, as the transcripts are usually bound by RNA-binding proteins (RBPs) to regulate RNA metabolism. Here, we report that the RBP protein Csde1-mediated translational control is essential for HSPC generation during zebrafish early development. Genetic mutants and morphants demonstrated that depletion of csde1 impaired HSPC production in zebrafish embryos. Mechanistically, Csde1 regulates HSPC generation through modulating Wnt/β-catenin signaling activity. We demonstrate that Csde1 binds to ctnnb1 mRNAs (encoding β-catenin, an effector of Wnt signaling) and regulates translation but not stability of ctnnb1 mRNA, which further enhances β-catenin protein level and Wnt signal transduction activities. Together, we identify Csde1 as an important post-transcriptional regulator and provide new insights into how Wnt/β-catenin signaling is precisely regulated at the post-transcriptional level.
Collapse
Affiliation(s)
- Ying Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Can Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Mengyao Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Shicheng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Feng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Lu Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| |
Collapse
|
6
|
Chen X, Song Y, Song W, Han J, Cao H, Xu X, Li S, Fu Y, Ding C, Lin F, Shi Y, Li J. Multi-omics reveal neuroprotection of Acer truncatum Bunge Seed extract on hypoxic-ischemia encephalopathy rats under high-altitude. Commun Biol 2023; 6:1001. [PMID: 37783835 PMCID: PMC10545756 DOI: 10.1038/s42003-023-05341-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/11/2023] [Indexed: 10/04/2023] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) at high-altitudes leads to neonatal mortality and long-term neurological complications without effective treatment. Acer truncatum Bunge Seed extract (ASO) is reported to have effect on cognitive improvement, but its molecular mechanisms on HIE are unclear. In this study, ASO administration contributed to reduced neuronal cell edema and improved motor ability in HIE rats at a simulated 4500-meter altitude. Transcriptomics and WGCNA analysis showed genes associated with lipid biosynthesis, redox homeostasis, neuronal growth, and synaptic plasticity regulated in the ASO group. Targeted and untargeted-lipidomics revealed decreased free fatty acids and increased phospholipids with favorable ω-3/ω-6/ω-9 fatty acid ratios, as well as reduced oxidized glycerophospholipids (OxGPs) in the ASO group. Combining multi-omics analysis demonstrated FA to FA-CoA, phospholipids metabolism, and lipid peroxidation were regulated by ASO treatment. Our results illuminated preliminary metabolism mechanism of ASO ingesting in rats, implying ASO administration as potential intervention strategy for HIE under high-altitude.
Collapse
Affiliation(s)
- Xianyang Chen
- Bao Feng Key Laboratory of Genetics and Metabolism, Beijing, China
| | - Yige Song
- Bao Feng Key Laboratory of Genetics and Metabolism, Beijing, China
| | - Wangting Song
- Bao Feng Key Laboratory of Genetics and Metabolism, Beijing, China
| | - Jiarui Han
- Bao Feng Key Laboratory of Genetics and Metabolism, Beijing, China
| | - Hongli Cao
- Department of Respiratory, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Xiao Xu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Plateau Medical Research Center of China Medical University, Shenyang, China
| | - Shujia Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Plateau Medical Research Center of China Medical University, Shenyang, China
| | - Yanmin Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Plateau Medical Research Center of China Medical University, Shenyang, China
| | - Chunguang Ding
- National Center for Occupational Safety and Health, Beijing, China
| | - Feng Lin
- Department of Neurology, Sanming First Hospital Affiliated to Fujian Medical University, Sanming, Fujian, China
| | - Yuan Shi
- Department of Neonatology, Children's Hospital Affiliated Chongqing Medical University, Chongqing, China
| | - Jiujun Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Plateau Medical Research Center of China Medical University, Shenyang, China.
| |
Collapse
|
7
|
Wardman R, Keles M, Pachkiv I, Hemanna S, Grein S, Schwarz J, Stein F, Ola R, Dobreva G, Hentze MW, Heineke J. RNA-Binding Proteins Regulate Post-Transcriptional Responses to TGF-β to Coordinate Function and Mesenchymal Activation of Murine Endothelial Cells. Arterioscler Thromb Vasc Biol 2023; 43:1967-1989. [PMID: 37650327 PMCID: PMC10521797 DOI: 10.1161/atvbaha.123.319925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Endothelial cells (ECs) are primed to respond to various signaling cues. For example, TGF (transforming growth factor)-β has major effects on EC function and phenotype by driving ECs towards a more mesenchymal state (ie, triggering endothelial to mesenchymal activation), a dynamic process associated with cardiovascular diseases. Although transcriptional regulation triggered by TGF-β in ECs is well characterized, post-transcriptional regulatory mechanisms induced by TGF-β remain largely unknown. METHODS Using RNA interactome capture, we identified global TGF-β driven changes in RNA-binding proteins in ECs. We investigated specific changes in the RNA-binding patterns of hnRNP H1 (heterogeneous nuclear ribonucleoprotein H1) and Csde1 (cold shock domain containing E1) using RNA immunoprecipitation and overlapped this with RNA-sequencing data after knockdown of either protein for functional insight. Using a modified proximity ligation assay, we visualized the specific interactions between hnRNP H1 and Csde1 and target RNAs in situ both in vitro and in mouse heart sections. RESULTS Characterization of TGF-β-regulated RBPs (RNA-binding proteins) revealed hnRNP H1 and Csde1 as key regulators of the cellular response to TGF-β at the post-transcriptional level, with loss of either protein-promoting mesenchymal activation in ECs. We found that TGF-β drives an increase in binding of hnRNP H1 to its target RNAs, offsetting mesenchymal activation, but a decrease in Csde1 RNA-binding, facilitating this process. Both, hnRNP H1 and Csde1, dynamically bind and regulate specific subsets of mRNAs related to mesenchymal activation and endothelial function. CONCLUSIONS Together, we show that RBPs play a key role in the endothelial response to TGF-β stimulation at the post-transcriptional level and that the RBPs hnRNP H1 and Csde1 serve to maintain EC function and counteract mesenchymal activation. We propose that TGF-β profoundly modifies RNA-protein interaction entailing feedback and feed-forward control at the post-transcriptional level, to fine-tune mesenchymal activation in ECs.
Collapse
Affiliation(s)
- Rhys Wardman
- Department of Cardiovascular Physiology (R.W., M.K., I.P., S.H., S.G., J.H.), European Center for Angioscience (ECAS), Medical Faculty Mannheim of Heidelberg University, Germany
- German Center for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim (R.W., M.K., S.H., S.G., G.D., J.H.)
| | - Merve Keles
- Department of Cardiovascular Physiology (R.W., M.K., I.P., S.H., S.G., J.H.), European Center for Angioscience (ECAS), Medical Faculty Mannheim of Heidelberg University, Germany
- German Center for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim (R.W., M.K., S.H., S.G., G.D., J.H.)
| | - Ihor Pachkiv
- Department of Cardiovascular Physiology (R.W., M.K., I.P., S.H., S.G., J.H.), European Center for Angioscience (ECAS), Medical Faculty Mannheim of Heidelberg University, Germany
| | - Shruthi Hemanna
- Department of Cardiovascular Physiology (R.W., M.K., I.P., S.H., S.G., J.H.), European Center for Angioscience (ECAS), Medical Faculty Mannheim of Heidelberg University, Germany
- German Center for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim (R.W., M.K., S.H., S.G., G.D., J.H.)
| | - Steve Grein
- Department of Cardiovascular Physiology (R.W., M.K., I.P., S.H., S.G., J.H.), European Center for Angioscience (ECAS), Medical Faculty Mannheim of Heidelberg University, Germany
- German Center for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim (R.W., M.K., S.H., S.G., G.D., J.H.)
| | - Jennifer Schwarz
- Proteomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany (J.S., F.S.)
| | - Frank Stein
- Proteomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany (J.S., F.S.)
| | - Roxana Ola
- Cardiovascular Pharmacology (R.O.), European Center for Angioscience (ECAS), Medical Faculty Mannheim of Heidelberg University, Germany
| | - Gergana Dobreva
- Cardiovascular Genomics and Epigenomics (G.D.), European Center for Angioscience (ECAS), Medical Faculty Mannheim of Heidelberg University, Germany
- German Center for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim (R.W., M.K., S.H., S.G., G.D., J.H.)
| | - Matthias W. Hentze
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany (M.W.H.)
| | - Joerg Heineke
- Department of Cardiovascular Physiology (R.W., M.K., I.P., S.H., S.G., J.H.), European Center for Angioscience (ECAS), Medical Faculty Mannheim of Heidelberg University, Germany
- German Center for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim (R.W., M.K., S.H., S.G., G.D., J.H.)
| |
Collapse
|
8
|
Meng X, Yao D, Imaizumi K, Chen X, Kelley KW, Reis N, Thete MV, Arjun McKinney A, Kulkarni S, Panagiotakos G, Bassik MC, Pașca SP. Assembloid CRISPR screens reveal impact of disease genes in human neurodevelopment. Nature 2023; 622:359-366. [PMID: 37758944 PMCID: PMC10567561 DOI: 10.1038/s41586-023-06564-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 08/22/2023] [Indexed: 09/29/2023]
Abstract
The assembly of cortical circuits involves the generation and migration of interneurons from the ventral to the dorsal forebrain1-3, which has been challenging to study at inaccessible stages of late gestation and early postnatal human development4. Autism spectrum disorder and other neurodevelopmental disorders (NDDs) have been associated with abnormal cortical interneuron development5, but which of these NDD genes affect interneuron generation and migration, and how they mediate these effects remains unknown. We previously developed a platform to study interneuron development and migration in subpallial organoids and forebrain assembloids6. Here we integrate assembloids with CRISPR screening to investigate the involvement of 425 NDD genes in human interneuron development. The first screen aimed at interneuron generation revealed 13 candidate genes, including CSDE1 and SMAD4. We subsequently conducted an interneuron migration screen in more than 1,000 forebrain assembloids that identified 33 candidate genes, including cytoskeleton-related genes and the endoplasmic reticulum-related gene LNPK. We discovered that, during interneuron migration, the endoplasmic reticulum is displaced along the leading neuronal branch before nuclear translocation. LNPK deletion interfered with this endoplasmic reticulum displacement and resulted in abnormal migration. These results highlight the power of this CRISPR-assembloid platform to systematically map NDD genes onto human development and reveal disease mechanisms.
Collapse
Affiliation(s)
- Xiangling Meng
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Stanford Brain Organogenesis Program, Wu Tsai Neurosciences Institute and Bio-X, Stanford, CA, USA
| | - David Yao
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Kent Imaizumi
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Stanford Brain Organogenesis Program, Wu Tsai Neurosciences Institute and Bio-X, Stanford, CA, USA
| | - Xiaoyu Chen
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Stanford Brain Organogenesis Program, Wu Tsai Neurosciences Institute and Bio-X, Stanford, CA, USA
| | - Kevin W Kelley
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Stanford Brain Organogenesis Program, Wu Tsai Neurosciences Institute and Bio-X, Stanford, CA, USA
| | - Noah Reis
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Stanford Brain Organogenesis Program, Wu Tsai Neurosciences Institute and Bio-X, Stanford, CA, USA
| | - Mayuri Vijay Thete
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Stanford Brain Organogenesis Program, Wu Tsai Neurosciences Institute and Bio-X, Stanford, CA, USA
| | - Arpana Arjun McKinney
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA
- Departments of Psychiatry and Neuroscience, Black Family Stem Cell Institute, Seaver Autism Center for Research and Treatment, Alper Center for Neural Development and Regeneration, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shravanti Kulkarni
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Stanford Brain Organogenesis Program, Wu Tsai Neurosciences Institute and Bio-X, Stanford, CA, USA
| | - Georgia Panagiotakos
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
- Departments of Psychiatry and Neuroscience, Black Family Stem Cell Institute, Seaver Autism Center for Research and Treatment, Alper Center for Neural Development and Regeneration, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Sergiu P Pașca
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
- Stanford Brain Organogenesis Program, Wu Tsai Neurosciences Institute and Bio-X, Stanford, CA, USA.
| |
Collapse
|
9
|
Kakumani PK, Ko Y, Ramakrishna S, Christopher G, Dodgson M, Shrinet J, Harvey LM, Shin C, Simard M. CSDE1 promotes miR-451 biogenesis. Nucleic Acids Res 2023; 51:9385-9396. [PMID: 37493604 PMCID: PMC10516617 DOI: 10.1093/nar/gkad619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 07/06/2023] [Accepted: 07/14/2023] [Indexed: 07/27/2023] Open
Abstract
MicroRNAs are sequentially processed by RNase III enzymes Drosha and Dicer. miR-451 is a highly conserved miRNA in vertebrates which bypasses Dicer processing and instead relies on AGO2 for its maturation. miR-451 is highly expressed in erythrocytes and regulates the differentiation of erythroblasts into mature red blood cells. However, the mechanistic details underlying miR-451 biogenesis in erythrocytes remains obscure. Here, we report that the RNA binding protein CSDE1 which is required for the development of erythroblasts into erythrocytes, controls the expression of miR-451 in erythroleukemia cells. CSDE1 binds miR-451 and regulates AGO2 processing of pre-miR-451 through its N-terminal domains. CSDE1 further interacts with PARN and promotes the trimming of intermediate miR-451 to the mature length. Together, our results demonstrate that CSDE1 promotes biogenesis of miR-451 in erythroid progenitors.
Collapse
Affiliation(s)
- Pavan Kumar Kakumani
- Department of Biochemistry, Memorial University of Newfoundland, 45 Arctic Avenue, St. John's NL A1C 5S7, Canada
| | - Yunkoo Ko
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Sushmitha Ramakrishna
- Department of Biochemistry, Memorial University of Newfoundland, 45 Arctic Avenue, St. John's NL A1C 5S7, Canada
| | - Grace Christopher
- Department of Biochemistry, Memorial University of Newfoundland, 45 Arctic Avenue, St. John's NL A1C 5S7, Canada
| | - Maria Dodgson
- Department of Biochemistry, Memorial University of Newfoundland, 45 Arctic Avenue, St. John's NL A1C 5S7, Canada
| | - Jatin Shrinet
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL 32306-4295, USA
| | - Louis-Mathieu Harvey
- Oncology Division, Centre Hospitalier Universitaire de Québec-Université Laval Research Center (L’Hôtel-Dieu de Québec), Quebec City, Québec G1R 3S3, Canada
- Laval University Cancer Research Centre, Québec City, Québec G1R 3S3, Canada
| | - Chanseok Shin
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Martin J Simard
- Oncology Division, Centre Hospitalier Universitaire de Québec-Université Laval Research Center (L’Hôtel-Dieu de Québec), Quebec City, Québec G1R 3S3, Canada
- Laval University Cancer Research Centre, Québec City, Québec G1R 3S3, Canada
| |
Collapse
|
10
|
Laddach A, Chng SH, Lasrado R, Progatzky F, Shapiro M, Erickson A, Sampedro Castaneda M, Artemov AV, Bon-Frauches AC, Amaniti EM, Kleinjung J, Boeing S, Ultanir S, Adameyko I, Pachnis V. A branching model of lineage differentiation underpinning the neurogenic potential of enteric glia. Nat Commun 2023; 14:5904. [PMID: 37737269 PMCID: PMC10516949 DOI: 10.1038/s41467-023-41492-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/06/2023] [Indexed: 09/23/2023] Open
Abstract
Glial cells have been proposed as a source of neural progenitors, but the mechanisms underpinning the neurogenic potential of adult glia are not known. Using single cell transcriptomic profiling, we show that enteric glial cells represent a cell state attained by autonomic neural crest cells as they transition along a linear differentiation trajectory that allows them to retain neurogenic potential while acquiring mature glial functions. Key neurogenic loci in early enteric nervous system progenitors remain in open chromatin configuration in mature enteric glia, thus facilitating neuronal differentiation under appropriate conditions. Molecular profiling and gene targeting of enteric glial cells in a cell culture model of enteric neurogenesis and a gut injury model demonstrate that neuronal differentiation of glia is driven by transcriptional programs employed in vivo by early progenitors. Our work provides mechanistic insight into the regulatory landscape underpinning the development of intestinal neural circuits and generates a platform for advancing glial cells as therapeutic agents for the treatment of neural deficits.
Collapse
Affiliation(s)
- Anna Laddach
- Nervous System Development and Homeostasis Laboratory, the Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| | - Song Hui Chng
- Nervous System Development and Homeostasis Laboratory, the Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Experimental Drug Development Centre A*STAR 10 Biopolis Road, Chromos, 138670, Singapore
| | - Reena Lasrado
- Nervous System Development and Homeostasis Laboratory, the Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- COMPASS Pathways PLC, Fora, 33 Broadwick St, London, W1F 0DQ, UK
| | - Fränze Progatzky
- Nervous System Development and Homeostasis Laboratory, the Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Michael Shapiro
- Nervous System Development and Homeostasis Laboratory, the Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Alek Erickson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Marisol Sampedro Castaneda
- Kinases and Brain Development Laboratory, the Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Artem V Artemov
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Bienna, 1090, Austria
- Boehringer Ingelheim RCV, Vienna, Austria
| | - Ana Carina Bon-Frauches
- Nervous System Development and Homeostasis Laboratory, the Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Eleni-Maria Amaniti
- Nervous System Development and Homeostasis Laboratory, the Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Sainsbury Wellcome Centre, London, UK
| | - Jens Kleinjung
- Nervous System Development and Homeostasis Laboratory, the Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge, CB21 6DG, UK
| | - Stefan Boeing
- Bioinformatics and Biostatistics Science Technology Platform, the Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Sila Ultanir
- Kinases and Brain Development Laboratory, the Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, 17165, Sweden
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Bienna, 1090, Austria
| | - Vassilis Pachnis
- Nervous System Development and Homeostasis Laboratory, the Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
11
|
Webb MJ, Kottke T, Kendall BL, Swanson J, Uzendu C, Tonne J, Thompson J, Metko M, Moore M, Borad M, Roberts L, Diaz RM, Olin M, Borgatti A, Vile R. Trap and ambush therapy using sequential primary and tumor escape-selective oncolytic viruses. Mol Ther Oncolytics 2023; 29:129-142. [PMID: 37313455 PMCID: PMC10258242 DOI: 10.1016/j.omto.2023.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/18/2023] [Indexed: 06/15/2023] Open
Abstract
In multiple models of oncolytic virotherapy, it is common to see an early anti-tumor response followed by recurrence. We have previously shown that frontline treatment with oncolytic VSV-IFN-β induces APOBEC proteins, promoting the selection of specific mutations that allow tumor escape. Of these mutations in B16 melanoma escape (ESC) cells, a C-T point mutation in the cold shock domain-containing E1 (CSDE1) gene was present at the highest frequency, which could be used to ambush ESC cells by vaccination with the mutant CSDE1 expressed within the virus. Here, we show that the evolution of viral ESC tumor cells harboring the escape-promoting CSDE1C-T mutation can also be exploited by a virological ambush. By sequential delivery of two oncolytic VSVs in vivo, tumors which would otherwise escape VSV-IFN-β oncolytic virotherapy could be cured. This also facilitated the priming of anti-tumor T cell responses, which could be further exploited using immune checkpoint blockade with the CD200 activation receptor ligand (CD200AR-L) peptide. Our findings here are significant in that they offer the possibility to develop oncolytic viruses as highly specific, escape-targeting viro-immunotherapeutic agents to be used in conjunction with recurrence of tumors following multiple different types of frontline cancer therapies.
Collapse
Affiliation(s)
- Mason J. Webb
- Division of Hematology/Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Timothy Kottke
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Jack Swanson
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Chisom Uzendu
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Jason Tonne
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Jill Thompson
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Muriel Metko
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Madelyn Moore
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Mitesh Borad
- Division of Hematology/Oncology, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Lewis Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Rosa M. Diaz
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Michael Olin
- Division of Pediatric Hematology and Oncology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Antonella Borgatti
- Department of Veterinary Clinical Sciences, University of Minnesota, St. Paul, MN 55108, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Clinical Investigation Center, University of Minnesota, St. Paul, MN 55108, USA
| | - Richard Vile
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
12
|
Lee HJ, Alirzayeva H, Koyuncu S, Rueber A, Noormohammadi A, Vilchez D. Cold temperature extends longevity and prevents disease-related protein aggregation through PA28γ-induced proteasomes. NATURE AGING 2023; 3:546-566. [PMID: 37118550 DOI: 10.1038/s43587-023-00383-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 02/17/2023] [Indexed: 04/30/2023]
Abstract
Aging is a primary risk factor for neurodegenerative disorders that involve protein aggregation. Because lowering body temperature is one of the most effective mechanisms to extend longevity in both poikilotherms and homeotherms, a better understanding of cold-induced changes can lead to converging modifiers of pathological protein aggregation. Here, we find that cold temperature (15 °C) selectively induces the trypsin-like activity of the proteasome in Caenorhabditis elegans through PSME-3, the worm orthologue of human PA28γ/PSME3. This proteasome activator is required for cold-induced longevity and ameliorates age-related deficits in protein degradation. Moreover, cold-induced PA28γ/PSME-3 diminishes protein aggregation in C. elegans models of age-related diseases such as Huntington's and amyotrophic lateral sclerosis. Notably, exposure of human cells to moderate cold temperature (36 °C) also activates trypsin-like activity through PA28γ/PSME3, reducing disease-related protein aggregation and neurodegeneration. Together, our findings reveal a beneficial role of cold temperature that crosses evolutionary boundaries with potential implications for multi-disease prevention.
Collapse
Affiliation(s)
- Hyun Ju Lee
- Institute for Integrated Stress Response Signaling, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Hafiza Alirzayeva
- Institute for Integrated Stress Response Signaling, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Seda Koyuncu
- Institute for Integrated Stress Response Signaling, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Amirabbas Rueber
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Alireza Noormohammadi
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - David Vilchez
- Institute for Integrated Stress Response Signaling, Faculty of Medicine, University Hospital Cologne, Cologne, Germany.
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
- Institute for Genetics, University of Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| |
Collapse
|
13
|
Yan C, Meng Y, Yang J, Chen J, Jiang W. Translational landscape in human early neural fate determination. Development 2023; 150:297188. [PMID: 36846898 DOI: 10.1242/dev.201177] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 02/19/2023] [Indexed: 03/01/2023]
Abstract
Gene expression regulation in eukaryotes is a multi-level process, including transcription, mRNA translation and protein turnover. Many studies have reported sophisticated transcriptional regulation during neural development, but the global translational dynamics are still ambiguous. Here, we differentiate human embryonic stem cells (ESCs) into neural progenitor cells (NPCs) with high efficiency and perform ribosome sequencing and RNA sequencing on both ESCs and NPCs. Data analysis reveals that translational controls engage in many crucial pathways and contribute significantly to regulation of neural fate determination. Furthermore, we show that the sequence characteristics of the untranslated region (UTR) might regulate translation efficiency. Specifically, genes with short 5'UTR and intense Kozak sequence are associated with high translation efficiency in human ESCs, whereas genes with long 3'UTR are related to high translation efficiency in NPCs. In addition, we have identified four biasedly used codons (GAC, GAT, AGA and AGG) and dozens of short open reading frames during neural progenitor differentiation. Thus, our study reveals the translational landscape during early human neural differentiation and provides insights into the regulation of cell fate determination at the translational level.
Collapse
Affiliation(s)
- Chenchao Yan
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yajing Meng
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jie Yang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jian Chen
- Chinese Institute for Brain Research (Beijing), Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, Beijing 102206, China
| | - Wei Jiang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Human Genetics Resource Preservation Center of Wuhan University, Wuhan 430071, China
| |
Collapse
|
14
|
Bader JM, Deigendesch N, Misch M, Mann M, Koch A, Meissner F. Proteomics separates adult-type diffuse high-grade gliomas in metabolic subgroups independent of 1p/19q codeletion and across IDH mutational status. Cell Rep Med 2023; 4:100877. [PMID: 36584682 PMCID: PMC9873829 DOI: 10.1016/j.xcrm.2022.100877] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 07/15/2022] [Accepted: 12/07/2022] [Indexed: 12/30/2022]
Abstract
High-grade adult-type diffuse gliomas are malignant neuroepithelial tumors with poor survival rates in combined chemoradiotherapy. The current WHO classification is based on IDH1/2 mutational and 1p/19q codeletion status. Glioma proteome alterations remain undercharacterized despite their promise for a better molecular patient stratification and therapeutic target identification. Here, we use mass spectrometry to characterize 42 formalin-fixed, paraffin-embedded (FFPE) samples from IDH-wild-type (IDHwt) gliomas, IDH-mutant (IDHmut) gliomas with and without 1p/19q codeletion, and non-neoplastic controls. Based on more than 5,500 quantified proteins and 5,000 phosphosites, gliomas separate by IDH1/2 mutational status but not by 1p/19q status. Instead, IDHmut gliomas split into two proteomic subtypes with widespread perturbations, including aerobic/anaerobic energy metabolism. Validations with three independent glioma proteome datasets confirm these subgroups and link the IDHmut subtypes to the established proneural and classic/mesenchymal subtypes in IDHwt glioma. This demonstrates common phenotypic subtypes across the IDH status with potential therapeutic implications for patients with IDHmut gliomas.
Collapse
Affiliation(s)
- Jakob Maximilian Bader
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Nikolaus Deigendesch
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Martin Misch
- Department of Neurosurgery, Charité, Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, Berlin Institute of Health, 13353 Berlin, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Arend Koch
- Department of Neuropathology, Charité, Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, Berlin Institute of Health, 13353 Berlin, Germany.
| | - Felix Meissner
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Department of Systems Immunology and Proteomics, Institute of Innate Immunity, University Hospital Bonn, 53127 Bonn, Germany.
| |
Collapse
|
15
|
Advances in Adrenal and Extra-adrenal Paraganglioma: Practical Synopsis for Pathologists. Adv Anat Pathol 2023; 30:47-57. [PMID: 36136370 DOI: 10.1097/pap.0000000000000365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Adrenal paraganglioma (or "pheochromocytoma") and extra-adrenal paraganglioma, collectively abbreviated PPGL, are rare but spectacular nonepithelial neuroendocrine neoplasms. These are the most inheritable neoplasia of all, with a metastatic potential in a varying degree. As of such, these lesions demand careful histologic, immunohistochemical, and genetic characterization to provide the clinical team with a detailed report taking into account the anticipated prognosis and risk of syndromic/inherited disease. While no histologic algorithm, immunohistochemical biomarker, or molecular aberration single-handedly can identify potentially lethal cases upfront, the combined analysis of various risk parameters may stratify PPGL patients more stringently than previously. Moreover, the novel 2022 WHO Classification of Endocrine and Neuroendocrine Tumors also brings some new concepts into play, not least the reclassification of special neuroendocrine neoplasms (cauda equina neuroendocrine tumor and composite gangliocytoma/neuroma-neuroendocrine tumor) previously thought to belong to the spectrum of PPGL. This review focuses on updated key diagnostic and prognostic concepts that will aid when facing this rather enigmatic tumor entity in clinical practice.
Collapse
|
16
|
Zhou Z, Zheng J, Lin D, Xu R, Chen Y, Hu X. Exosomes derived from dental pulp stem cells accelerate cutaneous wound healing by enhancing angiogenesis via the Cdc42/p38 MAPK pathway. Int J Mol Med 2022; 50:143. [PMID: 36321793 PMCID: PMC9662140 DOI: 10.3892/ijmm.2022.5199] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/18/2022] [Indexed: 11/22/2022] Open
Abstract
Skin wound healing is a common challenging clinical issue which requires advanced treatment strategies. The present study investigated the therapeutic effects of exosomes derived from dental pulp stem cells (DPSC‑Exos) on cutaneous wound healing and the underlying mechanisms. The effects of DPSC‑Exos on cutaneous wound healing in mice were examined by measuring wound closure rates, and using histological and immunohistochemical analysis. A series of functional assays were performed to evaluate the effects of DPSC‑Exos on the angiogenic activities of human umbilical vein endothelial cells (HUVECs) <i>in vitro</i>. Tandem mass tag‑based quantitative proteomics analysis of DPSCs and DPSC‑Exos was performed. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were used to evaluate the biological functions and pathways for the differentially expressed proteins in DPSC‑Exos. Western blot analysis was used to assess the protein levels of cell division control protein 42 (Cdc42) and p38 in DPSC‑Exos and in HUVECs subjected to DPSC‑Exos‑induced angiogenesis. SB203580, a p38 mitogen‑activated protein kinase (MAPK) signaling pathway inhibitor, was employed to verify the role of the p38 MAPK pathway <i>in vitro</i> and <i>in vivo</i>. Histological and immunohistochemical staining revealed that the DPSC‑Exos accelerated wound healing by promoting neovascularization. The DPSC‑Exos promoted the migration, proliferation and capillary formation capacity of HUVECs. Proteomics data demonstrated that proteins contained in DPSC‑Exos regulated vasculature development and angiogenesis. Pathway analysis revealed that proteins expressed in DPSC‑Exos were involved in several pathways, including MAPK pathway. Western blot analysis demonstrated that the DPSC‑Exos increased the protein levels of Cdc42 and phosphorylation of p38 in HUVECs. SB203580 suppressed the angiogenesis induced by DPSC‑Exos. On the whole, the present study demonstrates that DPSC‑Exos accelerate cutaneous wound healing by enhancing the angiogenic properties of HUVECs via the Cdc42/p38 MAPK signaling pathway.
Collapse
Affiliation(s)
| | - Jianmao Zheng
- Correspondence to: Dr Jianmao Zheng or Professor Xiaoli Hu, Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuan West Road, Guangzhou, Guangdong 510055, P.R. China, E-mail: , E-mail:
| | | | | | | | - Xiaoli Hu
- Correspondence to: Dr Jianmao Zheng or Professor Xiaoli Hu, Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuan West Road, Guangzhou, Guangdong 510055, P.R. China, E-mail: , E-mail:
| |
Collapse
|
17
|
Smith GA, Padmanabhan A, Lau BH, Pampana A, Li L, Lee CY, Pelonero A, Nishino T, Sadagopan N, Xia VQ, Jain R, Natarajan P, Wu RS, Black BL, Srivastava D, Shokat KM, Chorba JS. Cold shock domain-containing protein E1 is a posttranscriptional regulator of the LDL receptor. Sci Transl Med 2022; 14:eabj8670. [PMID: 36103516 PMCID: PMC10174261 DOI: 10.1126/scitranslmed.abj8670] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The low-density lipoprotein receptor (LDLR) controls cellular delivery of cholesterol and clears LDL from the bloodstream, protecting against atherosclerotic heart disease, the leading cause of death in the United States. We therefore sought to identify regulators of the LDLR beyond the targets of current therapies and known causes of familial hypercholesterolemia. We found that cold shock domain-containing protein E1 (CSDE1) enhanced hepatic LDLR messenger RNA (mRNA) decay via its 3' untranslated region and regulated atherogenic lipoproteins in vivo. Using parallel phenotypic genome-wide CRISPR interference screens in a tissue culture model, we identified 40 specific regulators of the LDLR that were not previously identified by observational human genetic studies. Among these, we demonstrated that, in HepG2 cells, CSDE1 regulated the LDLR at least as strongly as statins and proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors. In addition, we showed that hepatic gene silencing of Csde1 treated diet-induced dyslipidemia in mice to a similar degree as Pcsk9 silencing. These results suggest the therapeutic potential of targeting CSDE1 to manipulate the posttranscriptional regulation of the LDLR mRNA for the prevention of cardiovascular disease. Our approach of modeling a clinically relevant phenotype in a forward genetic screen, followed by mechanistic pharmacologic dissection and in vivo validation, may serve as a generalizable template for the identification of therapeutic targets in other human disease states.
Collapse
Affiliation(s)
- Geoffrey A Smith
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Arun Padmanabhan
- Division of Cardiology, UCSF Health, San Francisco, CA 94143, USA.,Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.,Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Bryan H Lau
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Akhil Pampana
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA.,Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Li Li
- Department of Medicine and Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Clara Y Lee
- Division of Cardiology, UCSF Health, San Francisco, CA 94143, USA.,Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.,Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Angelo Pelonero
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Tomohiro Nishino
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Nandhini Sadagopan
- Division of Cardiology, UCSF Health, San Francisco, CA 94143, USA.,Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.,Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Vivian Q Xia
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.,Division of Cardiology, Zuckerberg San Francisco General Hospital, San Francisco, CA 94110, USA
| | - Rajan Jain
- Department of Medicine and Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Cell and Developmental Biology, Institute of Regenerative Medicine, and Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Pradeep Natarajan
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA.,Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.,Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Roland S Wu
- Division of Cardiology, UCSF Health, San Francisco, CA 94143, USA.,Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.,Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Brian L Black
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Deepak Srivastava
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA.,Departments of Pediatrics and Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA.,Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA
| | - Kevan M Shokat
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA.,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - John S Chorba
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.,Division of Cardiology, Zuckerberg San Francisco General Hospital, San Francisco, CA 94110, USA
| |
Collapse
|
18
|
Chaudhary A, Chaurasia PK, Kushwaha S, Chauhan P, Chawade A, Mani A. Correlating multi-functional role of cold shock domain proteins with intrinsically disordered regions. Int J Biol Macromol 2022; 220:743-753. [PMID: 35987358 DOI: 10.1016/j.ijbiomac.2022.08.100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/26/2022] [Accepted: 08/14/2022] [Indexed: 11/05/2022]
Abstract
Cold shock proteins (CSPs) are an ancient and conserved family of proteins. They are renowned for their role in response to low-temperature stress in bacteria and nucleic acid binding activities. In prokaryotes, cold and non-cold inducible CSPs are involved in various cellular and metabolic processes such as growth and development, osmotic oxidation, starvation, stress tolerance, and host cell invasion. In prokaryotes, cold shock condition reduces cell transcription and translation efficiency. Eukaryotic cold shock domain (CSD) proteins are evolved form of prokaryotic CSPs where CSD is flanked by N- and C-terminal domains. Eukaryotic CSPs are multi-functional proteins. CSPs also act as nucleic acid chaperons by preventing the formation of secondary structures in mRNA at low temperatures. In human, CSD proteins play a crucial role in the progression of breast cancer, colon cancer, lung cancer, and Alzheimer's disease. A well-defined three-dimensional structure of intrinsically disordered regions of CSPs family members is still undetermined. In this article, intrinsic disorder regions of CSPs have been explored systematically to understand the pleiotropic role of the cold shock family of proteins.
Collapse
Affiliation(s)
- Amit Chaudhary
- Department of Metallurgical Engineering & Materials Science, Indian Institute of Technology Bombay
| | - Pankaj Kumar Chaurasia
- PG Department of Chemistry, L.S. College, Babasaheb Bhimrao Ambedkar Bihar University, Muzaffarpur, Bihar 842001, India
| | - Sandeep Kushwaha
- National Institute of Animal Biotechnology, Hyderabad 500032, India.
| | | | - Aakash Chawade
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 230 53 Alnarp, Sweden.
| | - Ashutosh Mani
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India.
| |
Collapse
|
19
|
Emerging Roles of RNA-Binding Proteins in Neurodevelopment. J Dev Biol 2022; 10:jdb10020023. [PMID: 35735914 PMCID: PMC9224834 DOI: 10.3390/jdb10020023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 02/06/2023] Open
Abstract
Diverse cell types in the central nervous system (CNS) are generated by a relatively small pool of neural stem cells during early development. Spatial and temporal regulation of stem cell behavior relies on precise coordination of gene expression. Well-studied mechanisms include hormone signaling, transcription factor activity, and chromatin remodeling processes. Much less is known about downstream RNA-dependent mechanisms including posttranscriptional regulation, nuclear export, alternative splicing, and transcript stability. These important functions are carried out by RNA-binding proteins (RBPs). Recent work has begun to explore how RBPs contribute to stem cell function and homeostasis, including their role in metabolism, transport, epigenetic regulation, and turnover of target transcripts. Additional layers of complexity are provided by the different target recognition mechanisms of each RBP as well as the posttranslational modifications of the RBPs themselves that alter function. Altogether, these functions allow RBPs to influence various aspects of RNA metabolism to regulate numerous cellular processes. Here we compile advances in RNA biology that have added to our still limited understanding of the role of RBPs in neurodevelopment.
Collapse
|
20
|
AGO-RBP crosstalk on target mRNAs: Implications in miRNA-guided gene silencing and cancer. Transl Oncol 2022; 21:101434. [PMID: 35477066 PMCID: PMC9136600 DOI: 10.1016/j.tranon.2022.101434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs) and RNA-binding proteins (RBPs) are important regulators of mRNA translation and stability in eukaryotes. While miRNAs can only bind their target mRNAs in association with Argonaute proteins (AGOs), RBPs directly bind their targets either as single entities or in complex with other RBPs to control mRNA metabolism. miRNA binding in 3' untranslated regions (3' UTRs) of mRNAs facilitates an intricate network of interactions between miRNA-AGO and RBPs, thus determining the fate of overlapping targets. Here, we review the current knowledge on the interplay between miRNA-AGO and multiple RBPs in different cellular contexts, the rules underlying their synergism and antagonism on target mRNAs, as well as highlight the implications of these regulatory modules in cancer initiation and progression.
Collapse
|
21
|
Avolio R, Inglés-Ferrándiz M, Ciocia A, Coll O, Bonnin S, Guitart T, Ribó A, Gebauer F. Coordinated post-transcriptional control of oncogene-induced senescence by UNR/CSDE1. Cell Rep 2022; 38:110211. [PMID: 35021076 DOI: 10.1016/j.celrep.2021.110211] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 08/27/2021] [Accepted: 12/14/2021] [Indexed: 02/06/2023] Open
Abstract
Oncogene-induced senescence (OIS) is a form of stable cell-cycle arrest arising in response to oncogenic stimulation. OIS must be bypassed for transformation, but the mechanisms of OIS establishment and bypass remain poorly understood, especially at the post-transcriptional level. Here, we show that the RNA-binding protein UNR/CSDE1 enables OIS in primary mouse keratinocytes. Depletion of CSDE1 leads to senescence bypass, cell immortalization, and tumor formation, indicating that CSDE1 behaves as a tumor suppressor. Unbiased high-throughput analyses uncovered that CSDE1 promotes OIS by two independent molecular mechanisms: enhancement of the stability of senescence-associated secretory phenotype (SASP) factor mRNAs and repression of Ybx1 mRNA translation. Importantly, depletion of YBX1 from immortal keratinocytes rescues senescence and uncouples proliferation arrest from the SASP, revealing multilayered mechanisms exerted by CSDE1 to coordinate senescence. Our data highlight the relevance of post-transcriptional control in the regulation of senescence.
Collapse
Affiliation(s)
- Rosario Avolio
- Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Marta Inglés-Ferrándiz
- Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Annagiulia Ciocia
- Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Olga Coll
- Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Sarah Bonnin
- Bioinformatics Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Tanit Guitart
- Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Anna Ribó
- Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Fátima Gebauer
- Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain.
| |
Collapse
|
22
|
Subhramanyam CS, Cao Q, Wang C, Heng ZSL, Zhou Z, Hu Q. piRNAs Interact with Cold-Shock Domain-Containing RNA Binding Proteins and Regulate Neuronal Gene Expression During Differentiation. Mol Neurobiol 2022; 59:1285-1300. [PMID: 34982407 DOI: 10.1007/s12035-021-02678-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/01/2021] [Indexed: 11/25/2022]
Abstract
piRNAs (PIWI-interacting RNAs) are a class of small non-coding RNAs (ncRNAs) abundantly expressed in germline cells and involved in suppressing the transposon activity. Interestingly, recent studies have found piRNA expression in the central nervous system (CNS), yet the underlying biological significance remains largely unknown. In this study, we investigated the expression and function of piRNAs during the retinoic acid (RA)-mediated neuronal differentiation in NT2 cells, a human embryonal carcinoma cell line. We identified a cohort of differentially expressed piRNAs by microarray. Two piRNAs, DQ582359 and DQ596268, were increasingly upregulated during the RA-induced differentiation and involved in regulating the expression of neuronal markers, MAP2 and TUBB3. Furthermore, these piRNAs were found to associate with cold-shock domain (CSD)-containing RNA binding proteins, DIS3, DIS3L2, and YB-1. Markedly, overexpression of these piRNAs further enhanced the protein levels of MAP2 and TUBB3, potentially by downregulating DIS3, DIS3L2, and YB-1. Hence, our study has identified a novel somatic function of piRNAs in regulating neuronal gene expression. The interaction of piRNA with some CSD-containing proteins can be further explored to enhance neuronal differentiation to treat neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Qiong Cao
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, Singapore, 117594, Singapore
| | - Cheng Wang
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, Singapore, 117594, Singapore
| | - Zealyn Shi-Lin Heng
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, Singapore, 117594, Singapore
| | - Zhihong Zhou
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, Singapore, 117593, Singapore
| | - Qidong Hu
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, Singapore, 117594, Singapore.
| |
Collapse
|
23
|
Evdokimova V. Y-box Binding Protein 1: Looking Back to the Future. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:S5-S145. [PMID: 35501983 DOI: 10.1134/s0006297922140024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 06/14/2023]
Abstract
Y-box binding protein 1 is a member of the cold shock domain (CSD) protein family and one of the most studied proteins associated with a large number of human diseases. This review aims to critically reassess the growing number of pathological functions ascribed to YB-1 in the past decades. The focus is given on the important role of YB-1 and related CSD proteins in the physiology of normal cells. The functional significance of these proteins is highlighted by their high evolutionary conservation from bacteria to men, where they are ubiquitously expressed and involved in coordinating all steps of mRNA biogenesis, including transcription, translation, storage, and degradation. Their activities are especially important under conditions requiring rapid change in the gene expression programs, such as early embryonic development, differentiation, stress, and adaptation to new environments. Therefore, to define a precise role of YB-1 in tumorigenic transformation and in other pathological conditions, it is important to understand its basic properties and functions in normal cells, and how they are interrupted in complex diseases including cancer.
Collapse
|
24
|
Kretov DA. Role of Y-Box Binding Proteins in Ontogenesis. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:S71-S74. [PMID: 35501987 DOI: 10.1134/s0006297922140061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 06/14/2023]
Abstract
Y-box binding proteins (YB proteins) are multifunctional DNA/RNA-binding proteins capable of regulating gene expression at multiple levels. At present, the most studied function of these proteins is the regulation of protein synthesis. Special attention in this review has been paid to the role of YB proteins in the control of mRNA translation and stability at the earliest stages of organism formation, from fertilization to gastrulation. Furthermore, the functions of YB proteins in the formation of germ cells, in which they accumulate in large amounts, are summarized. The review then discusses the contribution of YB proteins to the regulation of gene expression during the differentiation of various types of somatic cells. Finally, future directions in the study of YB proteins and their role in ontogenesis are considered.
Collapse
Affiliation(s)
- Dmitry A Kretov
- Department of Biochemistry, School of Medicine, Boston University, Boston, USA, 02218.
| |
Collapse
|
25
|
Landínez-Macías M, Urwyler O. The Fine Art of Writing a Message: RNA Metabolism in the Shaping and Remodeling of the Nervous System. Front Mol Neurosci 2021; 14:755686. [PMID: 34916907 PMCID: PMC8670310 DOI: 10.3389/fnmol.2021.755686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/18/2021] [Indexed: 01/25/2023] Open
Abstract
Neuronal morphogenesis, integration into circuits, and remodeling of synaptic connections occur in temporally and spatially defined steps. Accordingly, the expression of proteins and specific protein isoforms that contribute to these processes must be controlled quantitatively in time and space. A wide variety of post-transcriptional regulatory mechanisms, which act on pre-mRNA and mRNA molecules contribute to this control. They are thereby critically involved in physiological and pathophysiological nervous system development, function, and maintenance. Here, we review recent findings on how mRNA metabolism contributes to neuronal development, from neural stem cell maintenance to synapse specification, with a particular focus on axon growth, guidance, branching, and synapse formation. We emphasize the role of RNA-binding proteins, and highlight their emerging roles in the poorly understood molecular processes of RNA editing, alternative polyadenylation, and temporal control of splicing, while also discussing alternative splicing, RNA localization, and local translation. We illustrate with the example of the evolutionary conserved Musashi protein family how individual RNA-binding proteins are, on the one hand, acting in different processes of RNA metabolism, and, on the other hand, impacting multiple steps in neuronal development and circuit formation. Finally, we provide links to diseases that have been associated with the malfunction of RNA-binding proteins and disrupted post-transcriptional regulation.
Collapse
Affiliation(s)
- María Landínez-Macías
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.,Molecular Life Sciences Program, Life Science Zurich Graduate School, University of Zurich and Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Olivier Urwyler
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.,Molecular Life Sciences Program, Life Science Zurich Graduate School, University of Zurich and Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland.,Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland
| |
Collapse
|
26
|
Wang YJ, Downey MA, Choi S, Shoup TM, Elmaleh DR. Cromolyn platform suppresses fibrosis and inflammation, promotes microglial phagocytosis and neurite outgrowth. Sci Rep 2021; 11:22161. [PMID: 34772945 PMCID: PMC8589953 DOI: 10.1038/s41598-021-00465-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/07/2021] [Indexed: 12/18/2022] Open
Abstract
Neurodegenerative diseases are characterized by chronic neuroinflammation and may perpetuate ongoing fibrotic reactions within the central nervous system. Unfortunately, there is no therapeutic available that treats neurodegenerative inflammation and its sequelae. Here we utilize cromolyn, a mast cell inhibitor with anti-inflammatory capabilities, and its fluorinated analogue F-cromolyn to study fibrosis-related protein regulation and secretion downstream of neuroinflammation and their ability to promote microglial phagocytosis and neurite outgrowth. In this report, RNA-seq analysis shows that administration of the pro-inflammatory cytokine TNF-α to HMC3 human microglia results in a robust upregulation of fibrosis-associated genes. Subsequent treatment with cromolyn and F-cromolyn resulted in reduced secretion of collagen XVIII, fibronectin, and tenascin-c. Additionally, we show that cromolyn and F-cromolyn reduce pro-inflammatory proteins PLP1, PELP1, HSP90, IL-2, GRO-α, Eotaxin, and VEGF-Α, while promoting secretion of anti-inflammatory IL-4 in HMC3 microglia. Furthermore, cromolyn and F-cromolyn augment neurite outgrowth in PC12 neuronal cells in concert with nerve growth factor. Treatment also differentially altered secretion of neurogenesis-related proteins TTL, PROX1, Rab35, and CSDE1 in HMC3 microglia. Finally, iPSC-derived human microglia more readily phagocytose Aβ42 with cromolyn and F-cromolyn relative to controls. We propose the cromolyn platform targets multiple proteins upstream of PI3K/Akt/mTOR, NF-κB, and GSK-3β signaling pathways to affect cytokine, chemokine, and fibrosis-related protein expression.
Collapse
Affiliation(s)
| | | | - Sungwoon Choi
- Department of New Drug Discovery, Chungnam National University, Daejeon, South Korea
| | - Timothy M Shoup
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129-2060, USA
| | - David R Elmaleh
- AZTherapies, Inc., Boston, MA, USA.
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129-2060, USA.
| |
Collapse
|
27
|
Gangfuß A, Lochmüller H, Töpf A, O'Heir E, Horvath R, Kölbel H, Schweiger B, Schara-Schmidt U, Roos A. A de novo CSDE1 variant causing neurodevelopmental delay, intellectual disability, neurologic and psychiatric symptoms in a child of consanguineous parents. Am J Med Genet A 2021; 188:283-291. [PMID: 34519148 DOI: 10.1002/ajmg.a.62494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/02/2021] [Accepted: 08/21/2021] [Indexed: 01/02/2023]
Abstract
CSDE1 encodes the cytoplasmic cold shock domain-containing protein E1 (CSDE1), which is highly conserved across species and functions as an RNA-binding protein involved in translationally coupled mRNA turnover. CSDE1 displays a bidirectional role: promoting and repressing the translation of RNAs but also increasing and decreasing the abundance of RNAs. Preclinical studies highlighted an involvement of CSDE1 in different forms of cancer. Moreover, CSDE1 is highly expressed in human embryonic stem cells and plays a role in neuronal migration and differentiation. A genome-wide association study suggested CSDE1 as a potential autism-spectrum disorder risk gene. A multicenter next generation sequencing approach unraveled likely causative heterozygous variants in CSDE1 in 18 patients, identifying a new autism spectrum disorder-related syndrome consisting of autism, intellectual disability, and neurodevelopmental delay. Since then, no further patients with CSDE1 variants have been reported in the literature. Here, we report a 9.5-year-old girl from a consanguineous family of Turkish origin suffering from profound delayed speech and motor development, moderate intellectual disability, neurologic and psychiatric symptoms as well as hypoplasia of corpus callosum and mildly reduced brain volume on brain magnetic resonance imaging associated with a recurrent de novo mutation in CSDE1 (c.367C > T; p.R123*) expanding the phenotypical spectrum associated with pathogenic CSDE1 variants.
Collapse
Affiliation(s)
- Andrea Gangfuß
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany
| | - Hanns Lochmüller
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada.,Division of Neurology, Department of Medicine, The Ottawa Hospital, University of Ottawa, Ottawa, Canada.,Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada.,Department of Neuropediatrics and Muscle Disorders, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany.,Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain
| | - Ana Töpf
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, New-castle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Emily O'Heir
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Rita Horvath
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Heike Kölbel
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany
| | - Bernd Schweiger
- Department of Radiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ulrike Schara-Schmidt
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany
| | - Andreas Roos
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, Essen, Germany.,Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| |
Collapse
|
28
|
El Khouri E, Ghoumid J, Haye D, Giuliano F, Drevillon L, Briand-Suleau A, De La Grange P, Nau V, Gaillon T, Bienvenu T, Jacquemin-Sablon H, Goossens M, Amselem S, Giurgea I. Wnt/β-catenin pathway and cell adhesion deregulation in CSDE1-related intellectual disability and autism spectrum disorders. Mol Psychiatry 2021; 26:3572-3585. [PMID: 33867523 DOI: 10.1038/s41380-021-01072-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 03/08/2021] [Accepted: 03/19/2021] [Indexed: 12/26/2022]
Abstract
Among the genetic factors playing a key role in the etiology of intellectual disabilities (IDs) and autism spectrum disorders (ASDs), several encode RNA-binding proteins (RBPs). In this study, we deciphered the molecular and cellular bases of ID-ASD in a patient followed from birth to the age of 21, in whom we identified a de novo CSDE1 (Cold Shock Domain-containing E1) nonsense variation. CSDE1 encodes an RBP that regulates multiple cellular pathways by monitoring the translation and abundance of target transcripts. Analyses performed on the patient's primary fibroblasts showed that the identified CSDE1 variation leads to haploinsufficiency. We identified through RNA-seq assays the Wnt/β-catenin signaling and cellular adhesion as two major deregulated pathways. These results were further confirmed by functional studies involving Wnt-specific luciferase and substrate adhesion assays. Additional data support a disease model involving APC Down-Regulated-1 (APCDD1) and cadherin-2 (CDH2), two components of the Wnt/β-catenin pathway, CDH2 being also pivotal for cellular adhesion. Our study, which relies on both the deep phenotyping and long-term follow-up of a patient with CSDE1 haploinsufficiency and on ex vivo studies, sheds new light on the CSDE1-dependent deregulated pathways in ID-ASD.
Collapse
Affiliation(s)
- E El Khouri
- Sorbonne Université, INSERM, Maladies génétiques d'expression pédiatrique, Département de Génétique médicale, Assistance Publique Hôpitaux de Paris, Hôpital Trousseau, Paris, France
| | - J Ghoumid
- Département de Génétique, Groupe Hospitalier Henri Mondor, Créteil, France.,Service de Génétique Clinique, Hôpital Jeanne de Flandre, CHU Lille, Lille, France
| | - D Haye
- Service de Génétique Médicale Centre, Hospitalo-Universitaire de Nice, Nice, France
| | - F Giuliano
- Service de Génétique Médicale Centre, Hospitalo-Universitaire de Nice, Nice, France
| | - L Drevillon
- Département de Génétique, Groupe Hospitalier Henri Mondor, Créteil, France.,CHU Caen Normandie, Caen, France
| | - A Briand-Suleau
- Département de Génétique, Groupe Hospitalier Henri Mondor, Créteil, France.,Service de Génétique et Biologie Moléculaires, Hôpital Cochin, INSERM UMR1266 - Institute of Psychiatry and Neuroscience of Paris (IPNP) and University of Paris, Paris, France
| | | | - V Nau
- Sorbonne Université, INSERM, Maladies génétiques d'expression pédiatrique, Département de Génétique médicale, Assistance Publique Hôpitaux de Paris, Hôpital Trousseau, Paris, France
| | - T Gaillon
- Département de Génétique, Groupe Hospitalier Henri Mondor, Créteil, France
| | - T Bienvenu
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, INSERM UMR1266 - Institute of Psychiatry and Neuroscience of Paris (IPNP) and University of Paris, Paris, France
| | - H Jacquemin-Sablon
- INSERM UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, Bordeaux, France
| | - M Goossens
- Département de Génétique, Groupe Hospitalier Henri Mondor, Créteil, France
| | - S Amselem
- Sorbonne Université, INSERM, Maladies génétiques d'expression pédiatrique, Département de Génétique médicale, Assistance Publique Hôpitaux de Paris, Hôpital Trousseau, Paris, France
| | - I Giurgea
- Sorbonne Université, INSERM, Maladies génétiques d'expression pédiatrique, Département de Génétique médicale, Assistance Publique Hôpitaux de Paris, Hôpital Trousseau, Paris, France. .,Département de Génétique, Groupe Hospitalier Henri Mondor, Créteil, France.
| |
Collapse
|
29
|
Abstract
Abdominal paragangliomas and pheochromocytomas (PPGLs) are rare neuroendocrine tumors of the infradiaphragmatic paraganglia and adrenal medulla, respectively. Although few pathologists outside of endocrine tertiary centers will ever diagnose such a lesion, the tumors are well known through the medical community-possible due to a combination of the sheer rarity, their often-spectacular presentation due to excess catecholamine secretion as well as their unrivaled coupling to constitutional susceptibility gene mutations and hereditary syndromes. All PPGLs are thought to harbor malignant potential, and therefore pose several challenges to the practicing pathologist. Specifically, a responsible diagnostician should recognize both the capacity and limitations of histological, immunohistochemical, and molecular algorithms to pinpoint high risk for future metastatic disease. This focused review aims to provide the surgical pathologist with a condensed update regarding the current strategies available in order to deliver an accurate prognostication of these enigmatic lesions.
Collapse
Affiliation(s)
- C Christofer Juhlin
- Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden.
- Department of Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
30
|
Kakumani PK, Guitart T, Houle F, Harvey LM, Goyer B, Germain L, Gebauer F, Simard MJ. CSDE1 attenuates microRNA-mediated silencing of PMEPA1 in melanoma. Oncogene 2021; 40:3231-3244. [PMID: 33833398 DOI: 10.1038/s41388-021-01767-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 03/10/2021] [Accepted: 03/23/2021] [Indexed: 02/08/2023]
Abstract
MicroRNAs and RNA-binding proteins (RBPs) primarily target the 3' UTR of mRNAs to control their translation and stability. However, their co-regulatory effects on specific mRNAs in physiology and disease are yet to be fully explored. CSDE1 is an RBP that promotes metastasis in melanoma and mechanisms underlying its oncogenic activities need to be completely defined. Here we report that CSDE1 interacts with specific miRNA-induced silencing complexes (miRISC) in melanoma. We find an association of CSDE1 with AGO2, the essential component of miRISC, which is facilitated by target mRNAs and depends on the first cold shock domain of CSDE1. Both CSDE1 and AGO2 bind to 3' UTR of PMEPA1. CSDE1 counters AGO2 binding, leading to an increase of PMEPA1 expression. We also identify a miRNA, miR-129-5p, that represses PMEPA1 expression in melanoma. Collectively, our results show that PMEPA1 promotes tumorigenic traits and that CSDE1 along with miR-129-5p/AGO2 miRISC act antagonistically to fine-tune PMEPA1 expression toward the progression of melanoma.
Collapse
Affiliation(s)
- Pavan Kumar Kakumani
- CHU de Québec-Université Laval Research Center (Oncology Division), Québec, QC, Canada.
- Université Laval Cancer Research Centre, Québec, QC, Canada.
| | - Tanit Guitart
- Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Francois Houle
- CHU de Québec-Université Laval Research Center (Oncology Division), Québec, QC, Canada
- Université Laval Cancer Research Centre, Québec, QC, Canada
| | - Louis-Mathieu Harvey
- CHU de Québec-Université Laval Research Center (Oncology Division), Québec, QC, Canada
- Université Laval Cancer Research Centre, Québec, QC, Canada
| | - Benjamin Goyer
- Centre de recherche du CHU de Québec-Université Laval (Axe Médecine Régénératrice) and Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Département de chirurgie, Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Lucie Germain
- Centre de recherche du CHU de Québec-Université Laval (Axe Médecine Régénératrice) and Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Département de chirurgie, Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Fátima Gebauer
- Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Martin J Simard
- CHU de Québec-Université Laval Research Center (Oncology Division), Québec, QC, Canada.
- Université Laval Cancer Research Centre, Québec, QC, Canada.
| |
Collapse
|
31
|
Kottke T, Tonne J, Evgin L, Driscoll CB, van Vloten J, Jennings VA, Huff AL, Zell B, Thompson JM, Wongthida P, Pulido J, Schuelke MR, Samson A, Selby P, Ilett E, McNiven M, Roberts LR, Borad MJ, Pandha H, Harrington K, Melcher A, Vile RG. Oncolytic virotherapy induced CSDE1 neo-antigenesis restricts VSV replication but can be targeted by immunotherapy. Nat Commun 2021; 12:1930. [PMID: 33772027 PMCID: PMC7997928 DOI: 10.1038/s41467-021-22115-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/25/2021] [Indexed: 01/06/2023] Open
Abstract
In our clinical trials of oncolytic vesicular stomatitis virus expressing interferon beta (VSV-IFNβ), several patients achieved initial responses followed by aggressive relapse. We show here that VSV-IFNβ-escape tumors predictably express a point-mutated CSDE1P5S form of the RNA-binding Cold Shock Domain-containing E1 protein, which promotes escape as an inhibitor of VSV replication by disrupting viral transcription. Given time, VSV-IFNβ evolves a compensatory mutation in the P/M Inter-Genic Region which rescues replication in CSDE1P5S cells. These data show that CSDE1 is a major cellular co-factor for VSV replication. However, CSDE1P5S also generates a neo-epitope recognized by non-tolerized T cells. We exploit this predictable neo-antigenesis to drive, and trap, tumors into an escape phenotype, which can be ambushed by vaccination against CSDE1P5S, preventing tumor escape. Combining frontline therapy with escape-targeting immunotherapy will be applicable across multiple therapies which drive tumor mutation/evolution and simultaneously generate novel, targetable immunopeptidomes associated with acquired treatment resistance.
Collapse
Affiliation(s)
- Timothy Kottke
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jason Tonne
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Laura Evgin
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Jacob van Vloten
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Victoria A Jennings
- Chester Beatty Laboratories, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Amanda L Huff
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Brady Zell
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jill M Thompson
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Jose Pulido
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Adel Samson
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Peter Selby
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Elizabeth Ilett
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Mark McNiven
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Mitesh J Borad
- Division of Hematology/Oncology, Mayo Clinic, Scottsdale, AZ, USA
| | - Hardev Pandha
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Kevin Harrington
- Chester Beatty Laboratories, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Alan Melcher
- Chester Beatty Laboratories, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Richard G Vile
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA.
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK.
- Department of Immunology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
32
|
Tao L, He X, Wang X, Di R, Chu M. Litter Size of Sheep ( Ovis aries): Inbreeding Depression and Homozygous Regions. Genes (Basel) 2021; 12:109. [PMID: 33477586 PMCID: PMC7831309 DOI: 10.3390/genes12010109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 02/07/2023] Open
Abstract
Ovine litter size (LS) is an important trait showing variability within breeds. It remains largely unknown whether inbreeding depression on LS exists based on genomic homozygous regions, and whether the homozygous regions resulted from inbreeding are significantly associated with LS in sheep. We here reanalyze a set of single nucleotide polymorphism (SNP) chip of six breeds to characterize the patterns of runs of homozygosity (ROH), to evaluate inbreeding levels and inbreeding depressions on LS, and to identify candidate homozygous regions responsible for LS. Consequently, unique ROH patterns were observed among six sheep populations. Inbreeding depression on LS was only found in Hu sheep, where a significant reduction of 0.016, 0.02, and 0.02 per 1% elevated inbreeding FROH4-8, FROH>8 and the total inbreeding measure was observed, respectively. Nine significantly homozygous regions were found for LS in Hu sheep, where some promising genes for LS possibly via regulation of the development of oocytes (NGF, AKT1, and SYCP1), fertilization (SPAG17, MORC1, TDRD9, ZFYVE21, ADGRB3, and CKB), embryo implantation (PPP1R13B, INF2, and VANGL1) and development (DPPA2, DPPA4, CDCA4, CSDE1, and ADSSL1), and reproductive health (NRG3, BAG5, CKB, and XRCC3) were identified. These results from the present study would provide insights into the genetic management and complementary understandings of LS in sheep.
Collapse
Affiliation(s)
| | | | | | | | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.T.); (X.H.); (X.W.); (R.D.)
| |
Collapse
|
33
|
Heinemann U, Roske Y. Cold-Shock Domains-Abundance, Structure, Properties, and Nucleic-Acid Binding. Cancers (Basel) 2021; 13:cancers13020190. [PMID: 33430354 PMCID: PMC7825780 DOI: 10.3390/cancers13020190] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Proteins are composed of compact domains, often of known three-dimensional structure, and natively unstructured polypeptide regions. The abundant cold-shock domain is among the set of canonical nucleic acid-binding domains and conserved from bacteria to man. Proteins containing cold-shock domains serve a large variety of biological functions, which are mostly linked to DNA or RNA binding. These functions include the regulation of transcription, RNA splicing, translation, stability and sequestration. Cold-shock domains have a simple architecture with a conserved surface ideally suited to bind single-stranded nucleic acids. Because the binding is mostly by non-specific molecular interactions which do not involve the sugar-phosphate backbone, cold-shock domains are not strictly sequence-specific and do not discriminate reliably between DNA and RNA. Many, but not all functions of cold shock-domain proteins in health and disease can be understood based of the physical and structural properties of their cold-shock domains. Abstract The cold-shock domain has a deceptively simple architecture but supports a complex biology. It is conserved from bacteria to man and has representatives in all kingdoms of life. Bacterial cold-shock proteins consist of a single cold-shock domain and some, but not all are induced by cold shock. Cold-shock domains in human proteins are often associated with natively unfolded protein segments and more rarely with other folded domains. Cold-shock proteins and domains share a five-stranded all-antiparallel β-barrel structure and a conserved surface that binds single-stranded nucleic acids, predominantly by stacking interactions between nucleobases and aromatic protein sidechains. This conserved binding mode explains the cold-shock domains’ ability to associate with both DNA and RNA strands and their limited sequence selectivity. The promiscuous DNA and RNA binding provides a rationale for the ability of cold-shock domain-containing proteins to function in transcription regulation and DNA-damage repair as well as in regulating splicing, translation, mRNA stability and RNA sequestration.
Collapse
|
34
|
The intrinsic proteostasis network of stem cells. Curr Opin Cell Biol 2020; 67:46-55. [PMID: 32890906 DOI: 10.1016/j.ceb.2020.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 01/03/2023]
Abstract
The proteostasis network adjusts protein composition and maintains protein integrity, which are essential processes for cell function and viability. Current efforts, given their intrinsic characteristics, regenerative potential and fundamental biological functions, have been directed to define proteostasis of stem cells. These insights demonstrate that embryonic stem cells and induced pluripotent stem cells exhibit an endogenous proteostasis network that not only modulates their pluripotency and differentiation but also provides a striking ability to suppress aggregation of disease-related proteins. Moreover, recent findings establish a central role of enhanced proteostasis to prevent the aging of somatic stem cells in adult organisms. Notably, proteostasis is also required for the biological purpose of adult germline stem cells, that is to be passed from one generation to the next. Beyond these links between proteostasis and stem cell function, we also discuss the implications of these findings for disease, aging, and reproduction.
Collapse
|
35
|
Killoy KM, Harlan BA, Pehar M, Vargas MR. FABP7 upregulation induces a neurotoxic phenotype in astrocytes. Glia 2020; 68:2693-2704. [PMID: 32619303 DOI: 10.1002/glia.23879] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/07/2020] [Accepted: 06/07/2020] [Indexed: 01/15/2023]
Abstract
Fatty acid binding proteins (FABPs) are key regulators of lipid metabolism, energy homeostasis, and inflammation. They participate in fatty acid metabolism by regulating their uptake, transport, and availability of ligands to nuclear receptors. In the adult brain, FABP7 is especially abundant in astrocytes that are rich in cytoplasmic granules originated from damaged mitochondria. Mitochondrial dysfunction and oxidative stress have been implicated in the neurodegenerative process observed in amyotrophic lateral sclerosis (ALS), either as a primary cause or as a secondary component of the pathogenic process. Here we investigated the expression of FABP7 in animal models of human superoxide dismutase 1 (hSOD1)-linked ALS. In the spinal cord of symptomatic mutant hSOD1-expressing mice, FABP7 is upregulated in gray matter astrocytes. Using a coculture model, we examined the effect of increased FABP7 expression in astrocyte-motor neuron interaction. Our data show that FABP7 overexpression directly promotes an NF-κB-driven pro-inflammatory response in nontransgenic astrocytes that ultimately is detrimental for motor neuron survival. Addition of trophic factors, capable of supporting motor neuron survival in pure cultures, did not prevent motor neuron loss in cocultures with FABP7 overexpressing astrocytes. In addition, astrocyte cultures obtained from symptomatic hSOD1-expressing mice display upregulated FABP7 expression. Silencing endogenous FABP7 in these cultures decreases the expression of inflammatory markers and their toxicity toward cocultured motor neurons. Our results identify a key role of FABP7 in the regulation of the inflammatory response in astrocytes and identify FABP7 as a potential therapeutic target to prevent astrocyte-mediated motor neuron toxicity in ALS.
Collapse
Affiliation(s)
- Kelby M Killoy
- Biomedical Sciences Training Program, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Benjamin A Harlan
- Biomedical Sciences Training Program, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Mariana Pehar
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Marcelo R Vargas
- Department of Neurology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
36
|
Hinton SD. Pseudophosphatase MK-STYX: the atypical member of the MAP kinase phosphatases. FEBS J 2020; 287:4221-4231. [PMID: 32472731 DOI: 10.1111/febs.15426] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/25/2020] [Accepted: 05/26/2020] [Indexed: 01/03/2023]
Abstract
The regulation of the phosphorylation of mitogen-activated protein kinases (MAPKs) is essential for cellular processes such as proliferation, differentiation, survival, and death. Mutations within the MAPK signaling cascades are implicated in diseases such as cancer, neurodegenerative disorders, arthritis, obesity, and diabetes. MAPK phosphorylation is controlled by an intricate balance between MAPK kinases (enzymes that add phosphate groups) and MAPK phosphatases (MKPs) (enzymes that remove phosphate groups). MKPs are complex negative regulators of the MAPK pathway that control the amplitude and spatiotemporal regulation of MAPKs. MK-STYX (MAPK phosphoserine/threonine/tyrosine-binding protein) is a member of the MKP subfamily, which lacks the critical histidine and nucleophilic cysteine residues in the active site required for catalysis. MK-STYX does not influence the phosphorylation status of MAPK, but even so it adds to the complexity of signal transduction cascades as a signaling regulator. This review highlights the function of MK-STYX, providing insight into MK-STYX as a signal regulating molecule in the stress response, HDAC 6 dynamics, apoptosis, and neurite differentiation.
Collapse
Affiliation(s)
- Shantá D Hinton
- Department of Biology, Integrated Science Center, William & Mary, Williamsburg, VA, USA
| |
Collapse
|
37
|
The ubiquitin-conjugating enzyme UBE2K determines neurogenic potential through histone H3 in human embryonic stem cells. Commun Biol 2020; 3:262. [PMID: 32451438 PMCID: PMC7248108 DOI: 10.1038/s42003-020-0984-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 05/01/2020] [Indexed: 01/05/2023] Open
Abstract
Histones modulate gene expression by chromatin compaction, regulating numerous processes such as differentiation. However, the mechanisms underlying histone degradation remain elusive. Human embryonic stem cells (hESCs) have a unique chromatin architecture characterized by low levels of trimethylated histone H3 at lysine 9 (H3K9me3), a heterochromatin-associated modification. Here we assess the link between the intrinsic epigenetic landscape and ubiquitin-proteasome system of hESCs. We find that hESCs exhibit high expression of the ubiquitin-conjugating enzyme UBE2K. Loss of UBE2K upregulates the trimethyltransferase SETDB1, resulting in H3K9 trimethylation and repression of neurogenic genes during differentiation. Besides H3K9 trimethylation, UBE2K binds histone H3 to induce its polyubiquitination and degradation by the proteasome. Notably, ubc-20, the worm orthologue of UBE2K, also regulates histone H3 levels and H3K9 trimethylation in Caenorhabditis elegans germ cells. Thus, our results indicate that UBE2K crosses evolutionary boundaries to promote histone H3 degradation and reduce H3K9me3 repressive marks in immortal cells. Azra Fatima et al. show that ubiquitin-conjugating enzyme UBE2K regulates neurogenic potential through its target histone H3 in human embryonic stem cells. This study suggests that UBE2K promotes histone H3 degradation, reducing the H3K9me3 repressive marks in immortal cells of both worms and humans.
Collapse
|
38
|
Frapin M, Guignard S, Meistermann D, Grit I, Moullé VS, Paillé V, Parnet P, Amarger V. Maternal Protein Restriction in Rats Alters the Expression of Genes Involved in Mitochondrial Metabolism and Epitranscriptomics in Fetal Hypothalamus. Nutrients 2020; 12:nu12051464. [PMID: 32438566 PMCID: PMC7284977 DOI: 10.3390/nu12051464] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/18/2022] Open
Abstract
Fetal brain development is closely dependent on maternal nutrition and metabolic status. Maternal protein restriction (PR) is known to be associated with alterations in the structure and function of the hypothalamus, leading to impaired control of energy homeostasis and food intake. The objective of this study was to identify the cellular and molecular systems underlying these effects during fetal development. We combined a global transcriptomic analysis on the fetal hypothalamus from a rat model of maternal PR with in vitro neurosphere culture and cellular analyses. Several genes encoding proteins from the mitochondrial respiratory chain complexes were overexpressed in the PR group and mitochondrial metabolic activity in the fetal hypothalamus was altered. The level of the N6-methyladenosine epitranscriptomic mark was reduced in the PR fetuses, and the expression of several genes involved in the writing/erasing/reading of this mark was indeed altered, as well as genes encoding several RNA-binding proteins. Additionally, we observed a higher number of neuronal-committed progenitors at embryonic day 17 (E17) in the PR fetuses. Together, these data strongly suggest a metabolic adaptation to the amino acid shortage, combined with the post-transcriptional control of protein expression, which might reflect alterations in the control of the timing of neuronal progenitor differentiation.
Collapse
Affiliation(s)
- Morgane Frapin
- Nantes Université, INRAE, IMAD, CRNH-O, UMR 1280, PhAN, F-44000 Nantes, France; (M.F.); (S.G.); (I.G.); (V.S.M.); (V.P.); (P.P.)
| | - Simon Guignard
- Nantes Université, INRAE, IMAD, CRNH-O, UMR 1280, PhAN, F-44000 Nantes, France; (M.F.); (S.G.); (I.G.); (V.S.M.); (V.P.); (P.P.)
| | | | - Isabelle Grit
- Nantes Université, INRAE, IMAD, CRNH-O, UMR 1280, PhAN, F-44000 Nantes, France; (M.F.); (S.G.); (I.G.); (V.S.M.); (V.P.); (P.P.)
| | - Valentine S. Moullé
- Nantes Université, INRAE, IMAD, CRNH-O, UMR 1280, PhAN, F-44000 Nantes, France; (M.F.); (S.G.); (I.G.); (V.S.M.); (V.P.); (P.P.)
| | - Vincent Paillé
- Nantes Université, INRAE, IMAD, CRNH-O, UMR 1280, PhAN, F-44000 Nantes, France; (M.F.); (S.G.); (I.G.); (V.S.M.); (V.P.); (P.P.)
| | - Patricia Parnet
- Nantes Université, INRAE, IMAD, CRNH-O, UMR 1280, PhAN, F-44000 Nantes, France; (M.F.); (S.G.); (I.G.); (V.S.M.); (V.P.); (P.P.)
| | - Valérie Amarger
- Nantes Université, INRAE, IMAD, CRNH-O, UMR 1280, PhAN, F-44000 Nantes, France; (M.F.); (S.G.); (I.G.); (V.S.M.); (V.P.); (P.P.)
- Correspondence:
| |
Collapse
|
39
|
Nguyen DTT, Lu Y, Chu EL, Yang X, Park SM, Choo ZN, Chin CR, Prieto C, Schurer A, Barin E, Savino AM, Gourkanti S, Patel P, Vu LP, Leslie CS, Kharas MG. HyperTRIBE uncovers increased MUSASHI-2 RNA binding activity and differential regulation in leukemic stem cells. Nat Commun 2020; 11:2026. [PMID: 32332729 PMCID: PMC7181745 DOI: 10.1038/s41467-020-15814-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 03/25/2020] [Indexed: 01/16/2023] Open
Abstract
The cell-context dependency for RNA binding proteins (RBPs) mediated control of stem cell fate remains to be defined. Here we adapt the HyperTRIBE method using an RBP fused to a Drosophila RNA editing enzyme (ADAR) to globally map the mRNA targets of the RBP MSI2 in mammalian adult normal and malignant stem cells. We reveal a unique MUSASHI-2 (MSI2) mRNA binding network in hematopoietic stem cells that changes during transition to multipotent progenitors. Additionally, we discover a significant increase in RNA binding activity of MSI2 in leukemic stem cells compared with normal hematopoietic stem and progenitor cells, resulting in selective regulation of MSI2's oncogenic targets. This provides a basis for MSI2 increased dependency in leukemia cells compared to normal cells. Moreover, our study provides a way to measure RBP function in rare cells and suggests that RBPs can achieve differential binding activity during cell state transition independent of gene expression.
Collapse
Affiliation(s)
- Diu T T Nguyen
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Yuheng Lu
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Blavatnik Institute of System Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Eren L Chu
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Weill Cornell School of Medical Sciences, New York, NY, 10065, USA
| | - Xuejing Yang
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Sun-Mi Park
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Zi-Ning Choo
- Weill Cornell School of Medical Sciences, New York, NY, 10065, USA
| | | | - Camila Prieto
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Alexandra Schurer
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Ersilia Barin
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Angela M Savino
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Saroj Gourkanti
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Payal Patel
- Weill Cornell School of Medical Sciences, New York, NY, 10065, USA
| | - Ly P Vu
- Terry Fox Laboratory, British Columbia Cancer Research Centre, Vancouver, BC, V5Z 1L3, Canada
- Molecular Biology and Biochemistry, Simon Fraser University, Vancouver, BC, V5A 1S6, Canada
| | - Christina S Leslie
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael G Kharas
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
40
|
Thiruvalluvan A, de Mattos EP, Brunsting JF, Bakels R, Serlidaki D, Barazzuol L, Conforti P, Fatima A, Koyuncu S, Cattaneo E, Vilchez D, Bergink S, Boddeke EHWG, Copray S, Kampinga HH. DNAJB6, a Key Factor in Neuronal Sensitivity to Amyloidogenesis. Mol Cell 2020; 78:346-358.e9. [PMID: 32268123 DOI: 10.1016/j.molcel.2020.02.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 12/31/2019] [Accepted: 02/25/2020] [Indexed: 01/09/2023]
Abstract
CAG-repeat expansions in at least eight different genes cause neurodegeneration. The length of the extended polyglutamine stretches in the corresponding proteins is proportionally related to their aggregation propensity. Although these proteins are ubiquitously expressed, they predominantly cause toxicity to neurons. To understand this neuronal hypersensitivity, we generated induced pluripotent stem cell (iPSC) lines of spinocerebellar ataxia type 3 and Huntington's disease patients. iPSC generation and neuronal differentiation are unaffected by polyglutamine proteins and show no spontaneous aggregate formation. However, upon glutamate treatment, aggregates form in neurons but not in patient-derived neural progenitors. During differentiation, the chaperone network is drastically rewired, including loss of expression of the anti-amyloidogenic chaperone DNAJB6. Upregulation of DNAJB6 in neurons antagonizes glutamate-induced aggregation, while knockdown of DNAJB6 in progenitors results in spontaneous polyglutamine aggregation. Loss of DNAJB6 expression upon differentiation is confirmed in vivo, explaining why stem cells are intrinsically protected against amyloidogenesis and protein aggregates are dominantly present in neurons.
Collapse
Affiliation(s)
- Arun Thiruvalluvan
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Eduardo P de Mattos
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jeanette F Brunsting
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Rob Bakels
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Despina Serlidaki
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Lara Barazzuol
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Paola Conforti
- Department of Biosciences, University of Milan, Milan, Italy; Istituto Nazionale di Genetica Molecolare, Romeo ed Enrica Invernizzi, Milan, Italy
| | - Azra Fatima
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Seda Koyuncu
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Elena Cattaneo
- Department of Biosciences, University of Milan, Milan, Italy; Istituto Nazionale di Genetica Molecolare, Romeo ed Enrica Invernizzi, Milan, Italy
| | - David Vilchez
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Steven Bergink
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Erik H W G Boddeke
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Sjef Copray
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Harm H Kampinga
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
41
|
Kakumani PK, Harvey LM, Houle F, Guitart T, Gebauer F, Simard MJ. CSDE1 controls gene expression through the miRNA-mediated decay machinery. Life Sci Alliance 2020; 3:e201900632. [PMID: 32161113 PMCID: PMC7067469 DOI: 10.26508/lsa.201900632] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/15/2022] Open
Abstract
In animals, miRNAs are the most prevalent small non-coding RNA molecules controlling posttranscriptional gene regulation. The Argonaute proteins (AGO) mediate miRNA-guided gene silencing by recruiting multiple factors involved in translational repression, deadenylation, and decapping. Here, we report that CSDE1, an RNA-binding protein linked to stem cell maintenance and metastasis in cancer, interacts with AGO2 within miRNA-induced silencing complex and mediates gene silencing through its N-terminal domains. We show that CSDE1 interacts with LSM14A, a constituent of P-body assembly and further associates to the DCP1-DCP2 decapping complex, suggesting that CSDE1 could promote the decay of miRNA-induced silencing complex-targeted mRNAs. Together, our findings uncover a hitherto unknown mechanism used by CSDE1 in the control of gene expression mediated by the miRNA pathway.
Collapse
Affiliation(s)
- Pavan Kumar Kakumani
- St-Patrick Research Group in Basic Oncology, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, L'Hôtel-Dieu de Québec, Québec City, Canada
- Laval University Cancer Research Centre, Québec City, Canada
| | - Louis-Mathieu Harvey
- St-Patrick Research Group in Basic Oncology, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, L'Hôtel-Dieu de Québec, Québec City, Canada
- Laval University Cancer Research Centre, Québec City, Canada
| | - François Houle
- St-Patrick Research Group in Basic Oncology, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, L'Hôtel-Dieu de Québec, Québec City, Canada
- Laval University Cancer Research Centre, Québec City, Canada
| | - Tanit Guitart
- Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Fátima Gebauer
- Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Martin J Simard
- St-Patrick Research Group in Basic Oncology, Centre Hospitalier Universitaire de Québec-Université Laval Research Center, L'Hôtel-Dieu de Québec, Québec City, Canada
- Laval University Cancer Research Centre, Québec City, Canada
| |
Collapse
|
42
|
Driscoll CB, Schuelke MR, Kottke T, Thompson JM, Wongthida P, Tonne JM, Huff AL, Miller A, Shim KG, Molan A, Wetmore C, Selby P, Samson A, Harrington K, Pandha H, Melcher A, Pulido JS, Harris R, Evgin L, Vile RG. APOBEC3B-mediated corruption of the tumor cell immunopeptidome induces heteroclitic neoepitopes for cancer immunotherapy. Nat Commun 2020; 11:790. [PMID: 32034147 PMCID: PMC7005822 DOI: 10.1038/s41467-020-14568-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 01/21/2020] [Indexed: 12/21/2022] Open
Abstract
APOBEC3B, an anti-viral cytidine deaminase which induces DNA mutations, has been implicated as a mediator of cancer evolution and therapeutic resistance. Mutational plasticity also drives generation of neoepitopes, which prime anti-tumor T cells. Here, we show that overexpression of APOBEC3B in tumors increases resistance to chemotherapy, but simultaneously heightens sensitivity to immune checkpoint blockade in a murine model of melanoma. However, in the vaccine setting, APOBEC3B-mediated mutations reproducibly generate heteroclitic neoepitopes in vaccine cells which activate de novo T cell responses. These cross react against parental, unmodified tumors and lead to a high rate of cures in both subcutaneous and intra-cranial tumor models. Heteroclitic Epitope Activated Therapy (HEAT) dispenses with the need to identify patient specific neoepitopes and tumor reactive T cells ex vivo. Thus, actively driving a high mutational load in tumor cell vaccines increases their immunogenicity to drive anti-tumor therapy in combination with immune checkpoint blockade.
Collapse
Affiliation(s)
- Christopher B Driscoll
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, USA
- Virology and Gene Therapy Track, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, 55905, USA
| | - Matthew R Schuelke
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA
- Medical Scientist Training Program, Mayo Clinic, Rochester, MN, 55905, USA
| | - Timothy Kottke
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jill M Thompson
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | | | - Jason M Tonne
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Amanda L Huff
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, USA
- Virology and Gene Therapy Track, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, 55905, USA
| | - Amber Miller
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Kevin G Shim
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA
- Medical Scientist Training Program, Mayo Clinic, Rochester, MN, 55905, USA
| | - Amy Molan
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Cynthia Wetmore
- Center for Cancer and Blood Disorders, Phoenix Children's, Phoenix, AZ, 85016, USA
| | - Peter Selby
- Leeds Institute of Cancer and Pathology (LICAP), Faculty of Medicine and Health, St James' University Hospital, University of Leeds, West Yorkshire, UK
| | - Adel Samson
- Leeds Institute of Cancer and Pathology (LICAP), Faculty of Medicine and Health, St James' University Hospital, University of Leeds, West Yorkshire, UK
| | - Kevin Harrington
- Targeted Therapy Team, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Hardev Pandha
- Postgraduate Medical School, University of Surrey, Guildford, GU2 7XH, UK
| | - Alan Melcher
- Translational Immunotherapy Team, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Jose S Pulido
- Department of Ophthalmology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Reuben Harris
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Laura Evgin
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Richard G Vile
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, USA.
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA.
- Leeds Cancer Research UK Clinical Centre, Faculty of Medicine and Health, St James' University Hospital, University of Leeds, West Yorkshire, UK.
| |
Collapse
|
43
|
Guo AX, Cui JJ, Wang LY, Yin JY. The role of CSDE1 in translational reprogramming and human diseases. Cell Commun Signal 2020; 18:14. [PMID: 31987048 PMCID: PMC6986143 DOI: 10.1186/s12964-019-0496-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/16/2019] [Indexed: 02/06/2023] Open
Abstract
Abstract CSDE1 (cold shock domain containing E1) plays a key role in translational reprogramming, which determines the fate of a number of RNAs during biological processes. Interestingly, the role of CSDE1 is bidirectional. It not only promotes and represses the translation of RNAs but also increases and decreases the abundance of RNAs. However, the mechanisms underlying this phenomenon are still unknown. In this review, we propose a “protein-RNA connector” model to explain this bidirectional role and depict its three versions: sequential connection, mutual connection and facilitating connection. As described in this molecular model, CSDE1 binds to RNAs and cooperates with other protein regulators. CSDE1 connects with different RNAs and their regulators for different purposes. The triple complex of CSDE1, a regulator and an RNA reprograms translation in different directions for each transcript. Meanwhile, a number of recent studies have found important roles for CSDE1 in human diseases. This model will help us to understand the role of CSDE1 in translational reprogramming and human diseases. Video Abstract
Graphical abstract ![]()
Collapse
Affiliation(s)
- Ao-Xiang Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, People's Republic of China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Jia-Jia Cui
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, People's Republic of China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Lei-Yun Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, People's Republic of China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, People's Republic of China. .,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, People's Republic of China. .,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China. .,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China. .,Hunan Provincial Gynecological Cancer Diagnosis and Treatment Engineering Research Center, Changsha, 410078, People's Republic of China. .,Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Changsha, 410078, People's Republic of China.
| |
Collapse
|
44
|
Guo H, Li Y, Shen L, Wang T, Jia X, Liu L, Xu T, Ou M, Hoekzema K, Wu H, Gillentine MA, Liu C, Ni H, Peng P, Zhao R, Zhang Y, Phornphutkul C, Stegmann APA, Prada CE, Hopkin RJ, Shieh JT, McWalter K, Monaghan KG, van Hasselt PM, van Gassen K, Bai T, Long M, Han L, Quan Y, Chen M, Zhang Y, Li K, Zhang Q, Tan J, Zhu T, Liu Y, Pang N, Peng J, Scott DA, Lalani SR, Azamian M, Mancini GMS, Adams DJ, Kvarnung M, Lindstrand A, Nordgren A, Pevsner J, Osei-Owusu IA, Romano C, Calabrese G, Galesi O, Gecz J, Haan E, Ranells J, Racobaldo M, Nordenskjold M, Madan-Khetarpal S, Sebastian J, Ball S, Zou X, Zhao J, Hu Z, Xia F, Liu P, Rosenfeld JA, de Vries BBA, Bernier RA, Xu ZQD, Li H, Xie W, Hufnagel RB, Eichler EE, Xia K. Disruptive variants of CSDE1 associate with autism and interfere with neuronal development and synaptic transmission. SCIENCE ADVANCES 2019; 5:eaax2166. [PMID: 31579823 PMCID: PMC6760934 DOI: 10.1126/sciadv.aax2166] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/27/2019] [Indexed: 05/30/2023]
Abstract
RNA binding proteins are key players in posttranscriptional regulation and have been implicated in neurodevelopmental and neuropsychiatric disorders. Here, we report a significant burden of heterozygous, likely gene-disrupting variants in CSDE1 (encoding a highly constrained RNA binding protein) among patients with autism and related neurodevelopmental disabilities. Analysis of 17 patients identifies common phenotypes including autism, intellectual disability, language and motor delay, seizures, macrocephaly, and variable ocular abnormalities. HITS-CLIP revealed that Csde1-binding targets are enriched in autism-associated gene sets, especially FMRP targets, and in neuronal development and synaptic plasticity-related pathways. Csde1 knockdown in primary mouse cortical neurons leads to an overgrowth of the neurites and abnormal dendritic spine morphology/synapse formation and impaired synaptic transmission, whereas mutant and knockdown experiments in Drosophila result in defects in synapse growth and synaptic transmission. Our study defines a new autism-related syndrome and highlights the functional role of CSDE1 in synapse development and synaptic transmission.
Collapse
Affiliation(s)
- Hui Guo
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Ying Li
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Lu Shen
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Tianyun Wang
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Xiangbin Jia
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Lijuan Liu
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, China
| | - Tao Xu
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Laboratory of Brain Disorders (Ministry of Science and Technology), Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Mengzhu Ou
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, China
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Huidan Wu
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Madelyn A. Gillentine
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Cenying Liu
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Hailun Ni
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Pengwei Peng
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Rongjuan Zhao
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yu Zhang
- Key Laboratory of Developmental Disorders in Children, Liuzhou Maternity and Child Healthcare Hospital, Liuzhou, Guangxi, China
| | - Chanika Phornphutkul
- Division of Human Genetics, Warren Alpert Medical School of Brown University, Hasbro Children's Hospital/Rhode Island Hospital, Providence, RI, USA
| | | | - Carlos E. Prada
- Department of Pediatrics, University of Cincinnati College of Medicine, Division of Human Genetics, Cincinnati Children’s Hospital, Cincinnati, OH, USA
| | - Robert J. Hopkin
- Department of Pediatrics, University of Cincinnati College of Medicine, Division of Human Genetics, Cincinnati Children’s Hospital, Cincinnati, OH, USA
| | - Joseph T. Shieh
- Institute for Human Genetics and Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | | | | | | | | | - Ting Bai
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Min Long
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Lin Han
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yingting Quan
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Meilin Chen
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yaowen Zhang
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Kuokuo Li
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Qiumeng Zhang
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Jieqiong Tan
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Tengfei Zhu
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yaning Liu
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Nan Pang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Daryl A. Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Seema R. Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Mahshid Azamian
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Grazia M. S. Mancini
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Darius J. Adams
- Goryeb Children’s Hospital, Atlantic Health System, Morristown, NJ, USA
| | - Malin Kvarnung
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Jonathan Pevsner
- Department of Neurology, Kennedy Krieger Institute, Baltimore, MD, USA
- Program in Human Genetics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Ikeoluwa A. Osei-Owusu
- Department of Neurology, Kennedy Krieger Institute, Baltimore, MD, USA
- Program in Human Genetics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | | | | | - Jozef Gecz
- School of Medicine and the Robinson Research Institute, University of Adelaide at the Women’s and Children’s Hospital, Adelaide, South Australia, Australia
| | - Eric Haan
- Adult Genetics Unit, Royal Adelaide Hospital, and School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Judith Ranells
- Department of Pediatrics, University of South Florida, Tampa, FL, USA
| | - Melissa Racobaldo
- Department of Pediatrics, University of South Florida, Tampa, FL, USA
| | - Magnus Nordenskjold
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Suneeta Madan-Khetarpal
- Division of Medical Genetics, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA
| | - Jessica Sebastian
- Division of Medical Genetics, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA
| | - Susie Ball
- Central Washington Genetics Program, Virginia Mason Memorial, Yakima, WA, USA
| | - Xiaobing Zou
- Children Development Behavior Center of the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jingping Zhao
- Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhengmao Hu
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Fan Xia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics, Houston, TX, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics, Houston, TX, USA
| | - Jill A. Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Bert B. A. de Vries
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Zhi-Qing David Xu
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Laboratory of Brain Disorders (Ministry of Science and Technology), Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Honghui Li
- Key Laboratory of Developmental Disorders in Children, Liuzhou Maternity and Child Healthcare Hospital, Liuzhou, Guangxi, China
| | - Wei Xie
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, China
| | - Robert B. Hufnagel
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, NIH, Bethesda, MD, USA
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Kun Xia
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Key Laboratory of Medical Information Research, Central South University, Changsha, Hunan, China
- CAS Center for Excellence in Brain Science and Intelligences Technology (CEBSIT), Chinese Academy of Sciences, Shanghai 200030, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan 410078, China
| |
Collapse
|
45
|
Saez I, Gerbracht JV, Koyuncu S, Lee HJ, Horn M, Kroef V, Denzel MS, Dieterich C, Gehring NH, Vilchez D. The E3 ubiquitin ligase UBR5 interacts with the H/ACA ribonucleoprotein complex and regulates ribosomal RNA biogenesis in embryonic stem cells. FEBS Lett 2019; 594:175-188. [PMID: 31365120 DOI: 10.1002/1873-3468.13559] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 12/27/2022]
Abstract
UBR5 is an E3 ubiquitin ligase involved in distinct processes such as transcriptional regulation and development. UBR5 is highly upregulated in embryonic stem cells (ESCs), whereas its expression decreases with differentiation, suggesting a role for UBR5 in ESC function. However, little is known about how UBR5 regulates ESC identity. Here, we define the protein interactome of UBR5 in ESCs and find interactions with distinct components of the H/ACA ribonucleoprotein complex, which is required for proper maturation of ribosomal RNA (rRNA). Notably, loss of UBR5 induces an abnormal accumulation of rRNA processing intermediates, resulting in diminished ribosomal levels. Consequently, lack of UBR5 triggers an increase in p53 levels and a concomitant decrease in cellular proliferation rates. Thus, our results indicate a link between UBR5 and rRNA maturation.
Collapse
Affiliation(s)
- Isabel Saez
- Institute for Genetics and Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany
| | | | - Seda Koyuncu
- Institute for Genetics and Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany
| | - Hyun Ju Lee
- Institute for Genetics and Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany
| | - Moritz Horn
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Virginia Kroef
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Martin S Denzel
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Christoph Dieterich
- Section of Bioinformatics and Systems Cardiology, Department of Internal Medicine III and Klaus, Tschira Institute for Computational Cardiology, University Hospital, Heidelberg, Germany
| | - Niels H Gehring
- Institute for Genetics, Department of Biology, University of Cologne, Germany
| | - David Vilchez
- Institute for Genetics and Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany
| |
Collapse
|
46
|
Ma Y, Deng M, Liu M. Effect of Differently Polarized Macrophages on Proliferation and Differentiation of Ependymal Cells from Adult Spinal Cord. J Neurotrauma 2019; 36:2337-2347. [PMID: 30638124 DOI: 10.1089/neu.2018.6133] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Yonggang Ma
- 1Department of Orthopedics, Renmin Hospital, School of Basic Medical Sciences, Wuhan University, Wuhan City, China
| | - Ming Deng
- 1Department of Orthopedics, Renmin Hospital, School of Basic Medical Sciences, Wuhan University, Wuhan City, China
| | - Min Liu
- 2Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan City, China
| |
Collapse
|
47
|
Booy EP, McRae EK, Ezzati P, Choi T, Gussakovsky D, McKenna SA. Comprehensive analysis of the BC200 ribonucleoprotein reveals a reciprocal regulatory function with CSDE1/UNR. Nucleic Acids Res 2019; 46:11575-11591. [PMID: 30247708 PMCID: PMC6265466 DOI: 10.1093/nar/gky860] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/12/2018] [Indexed: 12/11/2022] Open
Abstract
BC200 is a long non-coding RNA primarily expressed in brain but aberrantly expressed in various cancers. To gain a further understanding of the function of BC200, we performed proteomic analyses of the BC200 ribonucleoprotein (RNP) by transfection of 3′ DIG-labelled BC200. Protein binding partners of the functionally related murine RNA BC1 as well as a scrambled BC200 RNA were also assessed in both human and mouse cell lines. Stringent validation of proteins identified by mass spectrometry confirmed 14 of 84 protein binding partners and excluded eight proteins that did not appreciably bind BC200 in reverse experiments. Gene ontology analyses revealed general roles in RNA metabolic processes, RNA processing and splicing. Protein/RNA interaction sites were mapped with a series of RNA truncations revealing three distinct modes of interaction involving either the 5′ Alu-domain, 3′ A-rich or 3′ C-rich regions. Due to their high enrichment values in reverse experiments, CSDE1 and STRAP were further analyzed demonstrating a direct interaction between CSDE1 and BC200 and indirect binding of STRAP to BC200 via heterodimerization with CSDE1. Knock-down studies identified a reciprocal regulatory relationship between CSDE1 and BC200 and immunofluorescence analysis of BC200 knock-down cells demonstrated a dramatic reorganization of CSDE1 into distinct nuclear foci.
Collapse
Affiliation(s)
- Evan P Booy
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ewan Ks McRae
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Peyman Ezzati
- Manitoba Centre for Proteomics and Systems Biology, Section of Biomedical Proteomics, Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba and Health Sciences Centre, Winnipeg, Manitoba, Canada
| | - Taegi Choi
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Daniel Gussakovsky
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sean A McKenna
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
48
|
Irmak D, Fatima A, Gutiérrez-Garcia R, Rinschen MM, Wagle P, Altmüller J, Arrigoni L, Hummel B, Klein C, Frese CK, Sawarkar R, Rada-Iglesias A, Vilchez D. Mechanism suppressing H3K9 trimethylation in pluripotent stem cells and its demise by polyQ-expanded huntingtin mutations. Hum Mol Genet 2019; 27:4117-4134. [PMID: 30452683 DOI: 10.1093/hmg/ddy304] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/10/2018] [Indexed: 02/06/2023] Open
Abstract
Pluripotent stem cells are invaluable resources to study development and disease, holding a great promise for regenerative medicine. Here we use human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) from patients with Huntington's disease (HD-iPSCs) to shed light into the normal function of huntingtin (HTT) and its demise in disease. We find that HTT binds ATF7IP, a regulator of the histone H3 methyltransferase SETDB1. HTT inhibits the interaction of the ATF7IP-SETDB1 complex with other heterochromatin regulators and transcriptional repressors, maintaining low levels of H3K9 trimethylation (H3K9me3) in hESCs. Loss of HTT promotes global increased H3K9me3 levels and enrichment of H3K9me3 marks at distinct genes, including transcriptional regulators of neuronal differentiation. Although these genes are normally expressed at low amounts in hESCs, HTT knockdown (KD) reduces their induction during neural differentiation. Notably, mutant expanded polyglutamine repeats in HTT diminish its interaction with ATF7IP-SETDB1 complex and trigger H3K9me3 in HD-iPSCs. Conversely, KD of ATF7IP in HD-iPSCs reduces H3K9me3 alterations and ameliorates gene expression changes in their neural counterparts. Taken together, our results indicate ATF7IP as a potential target to correct aberrant H3K9me3 levels induced by mutant HTT.
Collapse
Affiliation(s)
- Dilber Irmak
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, Cologne, Germany
| | - Azra Fatima
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, Cologne, Germany
| | - Ricardo Gutiérrez-Garcia
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, Cologne, Germany
| | - Markus M Rinschen
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, Cologne, Germany
| | - Prerana Wagle
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, Cologne, Germany
| | - Janine Altmüller
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Strasse 21, Cologne, Germany.,Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
| | - Laura Arrigoni
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Barbara Hummel
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Corinna Klein
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, Cologne, Germany
| | - Christian K Frese
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, Cologne, Germany
| | - Ritwick Sawarkar
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Alvaro Rada-Iglesias
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Strasse 21, Cologne, Germany
| | - David Vilchez
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, Cologne, Germany
| |
Collapse
|
49
|
Culjkovic-Kraljacic B, Borden KLB. The Impact of Post-transcriptional Control: Better Living Through RNA Regulons. Front Genet 2018; 9:512. [PMID: 30455716 PMCID: PMC6230556 DOI: 10.3389/fgene.2018.00512] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 10/12/2018] [Indexed: 12/26/2022] Open
Abstract
Traditionally, cancer is viewed as a disease driven by genetic mutations and/or epigenetic and transcriptional dysregulation. While these are undoubtedly important drivers, many recent studies highlight the disconnect between the proteome and the genome or transcriptome. At least in part, this disconnect arises as a result of dysregulated RNA metabolism which underpins the altered proteomic landscape observed. Thus, it is important to understand the basic mechanisms governing post-transcriptional control and how these processes can be co-opted to drive cancer cell phenotypes. In some cases, groups of mRNAs that encode protein involved in specific oncogenic processes can be co-regulated at multiple processing levels in order to turn on entire biochemical pathways. Indeed, the RNA regulon model was postulated as a means to understand how cells coordinately regulate transcripts encoding proteins in the same biochemical pathways. In this review, we describe some of the basic mRNA processes that are dysregulated in cancer and the biological impact this has on the cell. This dysregulation can affect networks of RNAs simultaneously thereby underpinning the oncogenic phenotypes observed.
Collapse
Affiliation(s)
- Biljana Culjkovic-Kraljacic
- Institute for Research in Immunology and Cancer, Department of Pathology and Cell Biology, University of Montreal, Montreal, QC, Canada
| | - Katherine L B Borden
- Institute for Research in Immunology and Cancer, Department of Pathology and Cell Biology, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
50
|
Lindquist JA, Mertens PR. Cold shock proteins: from cellular mechanisms to pathophysiology and disease. Cell Commun Signal 2018; 16:63. [PMID: 30257675 PMCID: PMC6158828 DOI: 10.1186/s12964-018-0274-6] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 09/13/2018] [Indexed: 12/21/2022] Open
Abstract
Cold shock proteins are multifunctional RNA/DNA binding proteins, characterized by the presence of one or more cold shock domains. In humans, the best characterized members of this family are denoted Y-box binding proteins, such as Y-box binding protein-1 (YB-1). Biological activities range from the regulation of transcription, splicing and translation, to the orchestration of exosomal RNA content. Indeed, the secretion of YB-1 from cells via exosomes has opened the door to further potent activities. Evidence links a skewed cold shock protein expression pattern with cancer and inflammatory diseases. In this review the evidence for a causative involvement of cold shock proteins in disease development and progression is summarized. Furthermore, the potential application of cold shock proteins for diagnostics and as targets for therapy is elucidated.
Collapse
Affiliation(s)
- Jonathan A Lindquist
- Clinic for Nephrology and Hypertension, Diabetology and Endocrinology, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany
| | - Peter R Mertens
- Clinic for Nephrology and Hypertension, Diabetology and Endocrinology, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany.
| |
Collapse
|