1
|
Diwan Z, Kang J, Tsztoo E, Siekmann AF. Alk1/Endoglin signaling restricts vein cell size increases in response to hemodynamic cues. Angiogenesis 2024; 28:5. [PMID: 39656297 PMCID: PMC11632009 DOI: 10.1007/s10456-024-09955-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/20/2024] [Indexed: 12/13/2024]
Abstract
Hemodynamic cues are thought to control blood vessel hierarchy through a shear stress set point, where flow increases lead to blood vessel diameter expansion, while decreases in blood flow cause blood vessel narrowing. Aberrations in blood vessel diameter control can cause congenital arteriovenous malformations (AVMs). We show in zebrafish embryos that while arteries behave according to the shear stress set point model, veins do not. This behavior is dependent on distinct arterial and venous endothelial cell (EC) shapes and sizes. We show that arterial ECs enlarge more strongly when experiencing higher flow, as compared to vein cells. Through the generation of chimeric embryos, we discover that this behavior of vein cells depends on the bone morphogenetic protein (BMP) pathway components Endoglin and Alk1. Endoglin (eng) or alk1 (acvrl1) mutant vein cells enlarge when in normal hemodynamic environments, while we do not observe a phenotype in either acvrl1 or eng mutant ECs in arteries. We further show that an increase in vein diameters initiates AVMs in eng mutants, secondarily leading to higher flow to arteries. These enlarge in response to higher flow through increasing arterial EC sizes, fueling the AVM. This study thus reveals a mechanism through which BMP signaling limits vein EC size increases in response to flow and provides a framework for our understanding of how a small number of mutant vein cells via flow-mediated secondary effects on wildtype arterial ECs can precipitate larger AVMs in disease conditions, such as hereditary hemorrhagic telangiectasia (HHT).
Collapse
Affiliation(s)
- Zeenat Diwan
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, 1114 Biomedical Research Building, 421 Curie Boulevard, Philadelphia, PA, 19104, USA
| | - Jia Kang
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, 1114 Biomedical Research Building, 421 Curie Boulevard, Philadelphia, PA, 19104, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Emma Tsztoo
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, 1114 Biomedical Research Building, 421 Curie Boulevard, Philadelphia, PA, 19104, USA
| | - Arndt F Siekmann
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, 1114 Biomedical Research Building, 421 Curie Boulevard, Philadelphia, PA, 19104, USA.
| |
Collapse
|
2
|
Yin J, Maggi L, Wiesner C, Affolter M, Belting HG. Oscillatory contractile forces refine endothelial cell-cell interactions for continuous lumen formation governed by Heg1/Ccm1. Angiogenesis 2024; 27:845-860. [PMID: 39249713 PMCID: PMC11564304 DOI: 10.1007/s10456-024-09945-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024]
Abstract
The formation and organization of complex blood vessel networks rely on various biophysical forces, yet the mechanisms governing endothelial cell-cell interactions under different mechanical inputs are not well understood. Using the dorsal longitudinal anastomotic vessel (DLAV) in zebrafish as a model, we studied the roles of multiple biophysical inputs and cerebral cavernous malformation (CCM)-related genes in angiogenesis. Our research identifies heg1 and krit1 (ccm1) as crucial for the formation of endothelial cell-cell interfaces during anastomosis. In mutants of these genes, cell-cell interfaces are entangled with fragmented apical domains. A Heg1 live reporter demonstrated that Heg1 is dynamically involved in the oscillatory constrictions along cell-cell junctions, whilst a Myosin live reporter indicated that heg1 and krit1 mutants lack actomyosin contractility along these junctions. In wild-type embryos, the oscillatory contractile forces at junctions refine endothelial cell-cell interactions by straightening junctions and eliminating excessive cell-cell interfaces. Conversely, in the absence of junctional contractility, the cell-cell interfaces become entangled and prone to collapse in both mutants, preventing the formation of a continuous luminal space. By restoring junctional contractility via optogenetic activation of RhoA, contorted junctions are straightened and disentangled. Additionally, haemodynamic forces complement actomyosin contractile forces in resolving entangled cell-cell interfaces in both wild-type and mutant embryos. Overall, our study reveals that oscillatory contractile forces governed by Heg1 and Krit1 are essential for maintaining proper endothelial cell-cell interfaces and thus for the formation of a continuous luminal space, which is essential to generate a functional vasculature.
Collapse
Affiliation(s)
- Jianmin Yin
- Department of Cell Biology, Biozentrum, University of Basel, Spitalstrasse 41, Basel, 4056, Switzerland.
| | - Ludovico Maggi
- Department of Cell Biology, Biozentrum, University of Basel, Spitalstrasse 41, Basel, 4056, Switzerland
| | - Cora Wiesner
- Department of Cell Biology, Biozentrum, University of Basel, Spitalstrasse 41, Basel, 4056, Switzerland
| | - Markus Affolter
- Department of Cell Biology, Biozentrum, University of Basel, Spitalstrasse 41, Basel, 4056, Switzerland.
| | - Heinz-Georg Belting
- Department of Cell Biology, Biozentrum, University of Basel, Spitalstrasse 41, Basel, 4056, Switzerland.
| |
Collapse
|
3
|
Montoya-Garcia A, Guerrero-Fonseca IM, Chanez-Paredes SD, Hernandez-Almaraz KB, Leon-Vega II, Silva-Olivares A, Betanzos A, Mondragon-Castelan M, Mondragon-Flores R, Salinas-Lara C, Vargas-Robles H, Schnoor M. Arpin deficiency increases actomyosin contractility and vascular permeability. eLife 2024; 12:RP90692. [PMID: 39298260 PMCID: PMC11412691 DOI: 10.7554/elife.90692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024] Open
Abstract
Arpin was discovered as an inhibitor of the Arp2/3 complex localized at the lamellipodial tip of fibroblasts, where it regulated migration steering. Recently, we showed that arpin stabilizes the epithelial barrier in an Arp2/3-dependent manner. However, the expression and functions of arpin in endothelial cells (EC) have not yet been described. Arpin mRNA and protein are expressed in EC and downregulated by pro-inflammatory cytokines. Arpin depletion in Human Umbilical Vein Endothelial Cells causes the formation of actomyosin stress fibers leading to increased permeability in an Arp2/3-independent manner. Instead, inhibitors of ROCK1 and ZIPK, kinases involved in the generation of stress fibers, normalize the loss-of-arpin effects on actin filaments and permeability. Arpin-deficient mice are viable but show a characteristic vascular phenotype in the lung including edema, microhemorrhage, and vascular congestion, increased F-actin levels, and vascular permeability. Our data show that, apart from being an Arp2/3 inhibitor, arpin is also a regulator of actomyosin contractility and endothelial barrier integrity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Abigail Betanzos
- Department of Infectomics and Molecular Pathogenesis, CINVESTAV-IPN, Mexico City, Mexico
| | | | | | - Citlaltepetl Salinas-Lara
- Laboratorio de Patogénesis Molecular, Facultad de Estudios Superiores de Iztacala, Tlalnepantla de Baz, Mexico
| | | | - Michael Schnoor
- Department of Molecular Biomedicine, CINVESTAV-IPN, Mexico City, Mexico
| |
Collapse
|
4
|
Aw WY, Sawhney A, Rathod M, Whitworth CP, Doherty EL, Madden E, Lu J, Westphal K, Stack R, Polacheck WJ. Dysfunctional mechanotransduction regulates the progression of PIK3CA-driven vascular malformations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.22.609165. [PMID: 39229154 PMCID: PMC11370454 DOI: 10.1101/2024.08.22.609165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Somatic activating mutations in PIK3CA are common drivers of vascular and lymphatic malformations. Despite common biophysical signatures of tissues susceptible to lesion formation, including compliant extracellular matrix and low rates of perfusion, lesions vary in clinical presentation from localized cystic dilatation to diffuse and infiltrative vascular dysplasia. The mechanisms driving the differences in disease severity and variability in clinical presentation and the role of the biophysical microenvironment in potentiating progression are poorly understood. Here, we investigate the role of hemodynamic forces and the biophysical microenvironment in the pathophysiology of vascular malformations, and we identify hemodynamic shear stress and defective endothelial cell mechanotransduction as key regulators of lesion progression. We found that constitutive PI3K activation impaired flow-mediated endothelial cell alignment and barrier function. We show that defective shear stress sensing in PIK3CA E542K endothelial cells is associated with reduced myosin light chain phosphorylation, junctional instability, and defective recruitment of vinculin to cell-cell junctions. Using 3D microfluidic models of the vasculature, we demonstrate that PIK3CA E542K microvessels apply reduced traction forces and are unaffected by flow interruption. We further found that draining transmural flow resulted in increased sprouting and invasion responses in PIK3CA E542K microvessels. Mechanistically, constitutive PI3K activation decreased cellular and nuclear elasticity resulting in defective cellular tensional homeostasis in endothelial cells which may underlie vascular dilation, tissue hyperplasia, and hypersprouting in PIK3CA-driven venous and lymphatic malformations. Together, these results suggest that defective nuclear mechanics, impaired cellular mechanotransduction, and maladaptive hemodynamic responses contribute to the development and progression of PIK3CA-driven vascular malformations.
Collapse
Affiliation(s)
- Wen Yih Aw
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC and Raleigh, NC, USA
| | - Aanya Sawhney
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC and Raleigh, NC, USA
| | - Mitesh Rathod
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC and Raleigh, NC, USA
| | - Chloe P. Whitworth
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC and Raleigh, NC, USA
- Department of Genetics and Molecular Biology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Elizabeth L. Doherty
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC and Raleigh, NC, USA
| | - Ethan Madden
- Department of Genetics and Molecular Biology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Jingming Lu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC and Raleigh, NC, USA
| | - Kaden Westphal
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC and Raleigh, NC, USA
| | - Ryan Stack
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC and Raleigh, NC, USA
| | - William J. Polacheck
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC and Raleigh, NC, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
5
|
Larionov A, Hammer CM, Fiedler K, Filgueira L. Dynamics of Endothelial Cell Diversity and Plasticity in Health and Disease. Cells 2024; 13:1276. [PMID: 39120307 PMCID: PMC11312403 DOI: 10.3390/cells13151276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024] Open
Abstract
Endothelial cells (ECs) are vital structural units of the cardiovascular system possessing two principal distinctive properties: heterogeneity and plasticity. Endothelial heterogeneity is defined by differences in tissue-specific endothelial phenotypes and their high predisposition to modification along the length of the vascular bed. This aspect of heterogeneity is closely associated with plasticity, the ability of ECs to adapt to environmental cues through the mobilization of genetic, molecular, and structural alterations. The specific endothelial cytoarchitectonics facilitate a quick structural cell reorganization and, furthermore, easy adaptation to the extrinsic and intrinsic environmental stimuli, known as the epigenetic landscape. ECs, as universally distributed and ubiquitous cells of the human body, play a role that extends far beyond their structural function in the cardiovascular system. They play a crucial role in terms of barrier function, cell-to-cell communication, and a myriad of physiological and pathologic processes. These include development, ontogenesis, disease initiation, and progression, as well as growth, regeneration, and repair. Despite substantial progress in the understanding of endothelial cell biology, the role of ECs in healthy conditions and pathologies remains a fascinating area of exploration. This review aims to summarize knowledge and concepts in endothelial biology. It focuses on the development and functional characteristics of endothelial cells in health and pathological conditions, with a particular emphasis on endothelial phenotypic and functional heterogeneity.
Collapse
Affiliation(s)
- Alexey Larionov
- Faculty of Science and Medicine, Anatomy, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland; (C.M.H.); (L.F.)
| | - Christian Manfred Hammer
- Faculty of Science and Medicine, Anatomy, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland; (C.M.H.); (L.F.)
| | - Klaus Fiedler
- Independent Researcher, CH-1700 Fribourg, Switzerland;
| | - Luis Filgueira
- Faculty of Science and Medicine, Anatomy, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland; (C.M.H.); (L.F.)
| |
Collapse
|
6
|
Malchow J, Eberlein J, Li W, Hogan BM, Okuda KS, Helker CSM. Neural progenitor-derived Apelin controls tip cell behavior and vascular patterning. SCIENCE ADVANCES 2024; 10:eadk1174. [PMID: 38968355 PMCID: PMC11225789 DOI: 10.1126/sciadv.adk1174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 05/31/2024] [Indexed: 07/07/2024]
Abstract
During angiogenesis, vascular tip cells guide nascent vascular sprouts to form a vascular network. Apelin, an agonist of the G protein-coupled receptor Aplnr, is enriched in vascular tip cells, and it is hypothesized that vascular-derived Apelin regulates sprouting angiogenesis. We identify an apelin-expressing neural progenitor cell population in the dorsal neural tube. Vascular tip cells exhibit directed elongation and migration toward and along the apelin-expressing neural progenitor cells. Notably, restoration of neural but not vascular apelin expression in apelin mutants remedies the angiogenic defects of mutants. By functional analyses, we show the requirement of Apelin signaling for tip cell behaviors, like filopodia formation and cell elongation. Through genetic interaction studies and analysis of transgenic activity reporters, we identify Apelin signaling as a modulator of phosphoinositide 3-kinase and extracellular signal-regulated kinase signaling in tip cells in vivo. Our results suggest a previously unidentified neurovascular cross-talk mediated by Apelin signaling that is important for tip cell function during sprouting angiogenesis.
Collapse
Affiliation(s)
- Julian Malchow
- Faculty of Biology, Cell Signaling and Dynamics, Philipps-University of Marburg, Marburg, Germany
| | - Jean Eberlein
- Faculty of Biology, Cell Signaling and Dynamics, Philipps-University of Marburg, Marburg, Germany
| | - Wei Li
- Faculty of Biology, Cell Signaling and Dynamics, Philipps-University of Marburg, Marburg, Germany
| | - Benjamin M. Hogan
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria 3000, Australia
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Kazuhide S. Okuda
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria 3000, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria, Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Christian S. M. Helker
- Faculty of Biology, Cell Signaling and Dynamics, Philipps-University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus-Liebig-University Giessen, Marburg, Germany
| |
Collapse
|
7
|
Wei YR, Hou YL, Yin YJ, Li Z, Liu Y, Han NX, Wang ZX, Liu L, Wang XQ, Hao YJ, Ma K, Gu JJ, Jia ZH. Tongxinluo Activates PI3K/AKT Signaling Pathway to Inhibit Endothelial Mesenchymal Transition and Attenuate Myocardial Fibrosis after Ischemia-Reperfusion in Mice. Chin J Integr Med 2024; 30:608-615. [PMID: 38386252 DOI: 10.1007/s11655-024-3652-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2023] [Indexed: 02/23/2024]
Abstract
OBJECTIVE To investigate the potential role of Tongxinluo (TXL) in attenuating myocardial fibrosis after myocardial ischemia-reperfusion injury (MIRI) in mice. METHODS A MIRI mouse model was established by left anterior descending coronary artery ligation for 45 min. According to a random number table, 66 mice were randomly divided into 6 groups (n=11 per group): the sham group, the model group, the LY-294002 group, the TXL group, the TXL+LY-294002 group and the benazepril (BNPL) group. The day after modeling, TXL and BNPL were administered by gavage. Intraperitoneal injection of LY-294002 was performed twice a week for 4 consecutive weeks. Echocardiography was used to measure cardiac function in mice. Masson staining was used to evaluate the degree of myocardial fibrosis in mice. Qualitative and quantitative analysis of endothelial mesenchymal transition (EndMT) after MIRI was performed by immunohistochemistry, immunofluorescence staining and flow cytometry, respectively. The protein expressions of platelet endothelial cell adhesion molecule-1 (CD31), α-smoth muscle actin (α-SMA), phosphatidylinositol-3-kinase (PI3K) and phospho protein kinase B (p-AKT) were assessed using Western blot. RESULTS TXL improved cardiac function in MIRI mice, reduced the degree of myocardial fibrosis, increased the expression of CD31 and inhibited the expression of α-SMA, thus inhibited the occurrence of EndMT (P<0.05 or P<0.01). TXL significantly increased the protein expressions of PI3K and p-AKT (P<0.05 or P<0.01). There was no significant difference between TXL and BNPL group (P>0.05). In addition, the use of the PI3K/AKT pathway-specific inhibitor LY-294002 to block this pathway and combination with TXL intervention, eliminated the protective effect of TXL, further supporting the protective effect of TXL. CONCLUSION TXL activated the PI3K/AKT signaling pathway to inhibit EndMT and attenuated myocardial fibrosis after MIRI in mice.
Collapse
Affiliation(s)
- Ya-Ru Wei
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050090, China
| | - Yun-Long Hou
- Shijiazhuang Yiling Pharmaceutical New Drug Evaluation Center, Shijiazhuang, 050035, China
| | - Yu-Jie Yin
- Hebei Institute of Integrated Traditional and Western Medicine, Shijiazhuang, 050035, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- Department of Cardiology, Hebei Yiling Hospital, Shijiazhuang, 050091, China
| | - Zhen Li
- Graduate School, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yi Liu
- Graduate School, Hebei Medical University, Shijiazhuang, 050017, China
| | - Ning-Xin Han
- Graduate School, Hebei Medical University, Shijiazhuang, 050017, China
| | - Zi-Xuan Wang
- Graduate School, Hebei Medical University, Shijiazhuang, 050017, China
| | - Lu Liu
- Hebei Institute of Integrated Traditional and Western Medicine, Shijiazhuang, 050035, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- Department of Cardiology, Hebei Yiling Hospital, Shijiazhuang, 050091, China
| | - Xiao-Qi Wang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050090, China
| | - Yuan-Jie Hao
- Graduate School, Hebei Medical University, Shijiazhuang, 050017, China
| | - Kun Ma
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050090, China
| | - Jiao-Jiao Gu
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050090, China
| | - Zhen-Hua Jia
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050090, China.
- Hebei Institute of Integrated Traditional and Western Medicine, Shijiazhuang, 050035, China.
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China.
- Department of Cardiology, Hebei Yiling Hospital, Shijiazhuang, 050091, China.
| |
Collapse
|
8
|
Fonódi M, Nagy L, Boratkó A. Role of Protein Phosphatases in Tumor Angiogenesis: Assessing PP1, PP2A, PP2B and PTPs Activity. Int J Mol Sci 2024; 25:6868. [PMID: 38999976 PMCID: PMC11241275 DOI: 10.3390/ijms25136868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Tumor angiogenesis, the formation of new blood vessels to support tumor growth and metastasis, is a complex process regulated by a multitude of signaling pathways. Dysregulation of signaling pathways involving protein kinases has been extensively studied, but the role of protein phosphatases in angiogenesis within the tumor microenvironment remains less explored. However, among angiogenic pathways, protein phosphatases play critical roles in modulating signaling cascades. This review provides a comprehensive overview of the involvement of protein phosphatases in tumor angiogenesis, highlighting their diverse functions and mechanisms of action. Protein phosphatases are key regulators of cellular signaling pathways by catalyzing the dephosphorylation of proteins, thereby modulating their activity and function. This review aims to assess the activity of the protein tyrosine phosphatases and serine/threonine phosphatases. These phosphatases exert their effects on angiogenic signaling pathways through various mechanisms, including direct dephosphorylation of angiogenic receptors and downstream signaling molecules. Moreover, protein phosphatases also crosstalk with other signaling pathways involved in angiogenesis, further emphasizing their significance in regulating tumor vascularization, including endothelial cell survival, sprouting, and vessel maturation. In conclusion, this review underscores the pivotal role of protein phosphatases in tumor angiogenesis and accentuate their potential as therapeutic targets for anti-angiogenic therapy in cancer.
Collapse
Affiliation(s)
| | | | - Anita Boratkó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (M.F.); (L.N.)
| |
Collapse
|
9
|
Seetharaman S, Devany J, Kim HR, van Bodegraven E, Chmiel T, Tzu-Pin S, Chou WH, Fang Y, Gardel ML. Mechanosensitive FHL2 tunes endothelial function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.16.599227. [PMID: 38948838 PMCID: PMC11212908 DOI: 10.1101/2024.06.16.599227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Endothelial tissues are essential mechanosensors in the vasculature and facilitate adaptation to various blood flow-induced mechanical cues. Defects in endothelial mechanoresponses can perturb tissue remodelling and functions leading to cardiovascular disease progression. In this context, the precise mechanisms of endothelial mechanoresponses contributing to normal and diseased tissue functioning remain elusive. Here, we sought to uncover how flow-mediated transcriptional regulation drives endothelial mechanoresponses in healthy and atherosclerotic-prone tissues. Using bulk RNA sequencing, we identify novel mechanosensitive genes in response to healthy unidirectional flow (UF) and athero-prone disturbed flow (DF). We find that the transcription as well as protein expression of Four-and-a-half LIM protein 2 (FHL2) are enriched in athero-prone DF both in vitro and in vivo. We then demonstrate that the exogenous expression of FHL2 is necessary and sufficient to drive discontinuous adherens junction morphology and increased tissue permeability. This athero-prone phenotype requires the force-sensitive binding of FHL2 to actin. In turn, the force-dependent localisation of FHL2 to stress fibres promotes microtubule dynamics to release the RhoGEF, GEF-H1, and activate the Rho-ROCK pathway. Thus, we unravelled a novel mechanochemical feedback wherein force-dependent FHL2 localisation promotes hypercontractility. This misregulated mechanoresponse creates highly permeable tissues, depicting classic hallmarks of atherosclerosis progression. Overall, we highlight crucial functions for the FHL2 force-sensitivity in tuning multi-scale endothelial mechanoresponses.
Collapse
Affiliation(s)
- Shailaja Seetharaman
- Department of Physics, The University of Chicago, Chicago, IL 60637, USA
- James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - John Devany
- Department of Physics, The University of Chicago, Chicago, IL 60637, USA
- James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Ha Ram Kim
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
- Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, 60637, USA
| | - Emma van Bodegraven
- Department of Translational Neuroscience, Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Theresa Chmiel
- Department of Physics, The University of Chicago, Chicago, IL 60637, USA
- James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Shentu Tzu-Pin
- Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, 60637, USA
| | - Wen-hung Chou
- James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Yun Fang
- Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, 60637, USA
| | - Margaret Lise Gardel
- Department of Physics, The University of Chicago, Chicago, IL 60637, USA
- James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
10
|
Abdelilah-Seyfried S, Ola R. Shear stress and pathophysiological PI3K involvement in vascular malformations. J Clin Invest 2024; 134:e172843. [PMID: 38747293 PMCID: PMC11093608 DOI: 10.1172/jci172843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024] Open
Abstract
Molecular characterization of vascular anomalies has revealed that affected endothelial cells (ECs) harbor gain-of-function (GOF) mutations in the gene encoding the catalytic α subunit of PI3Kα (PIK3CA). These PIK3CA mutations are known to cause solid cancers when occurring in other tissues. PIK3CA-related vascular anomalies, or "PIKopathies," range from simple, i.e., restricted to a particular form of malformation, to complex, i.e., presenting with a range of hyperplasia phenotypes, including the PIK3CA-related overgrowth spectrum. Interestingly, development of PIKopathies is affected by fluid shear stress (FSS), a physiological stimulus caused by blood or lymph flow. These findings implicate PI3K in mediating physiological EC responses to FSS conditions characteristic of lymphatic and capillary vessel beds. Consistent with this hypothesis, increased PI3K signaling also contributes to cerebral cavernous malformations, a vascular disorder that affects low-perfused brain venous capillaries. Because the GOF activity of PI3K and its signaling partners are excellent drug targets, understanding PIK3CA's role in the development of vascular anomalies may inform therapeutic strategies to normalize EC responses in the diseased state. This Review focuses on PIK3CA's role in mediating EC responses to FSS and discusses current understanding of PIK3CA dysregulation in a range of vascular anomalies that particularly affect low-perfused regions of the vasculature. We also discuss recent surprising findings linking increased PI3K signaling to fast-flow arteriovenous malformations in hereditary hemorrhagic telangiectasias.
Collapse
Affiliation(s)
| | - Roxana Ola
- Experimental Pharmacology Mannheim, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
11
|
Stepanova D, Byrne HM, Maini PK, Alarcón T. Computational modeling of angiogenesis: The importance of cell rearrangements during vascular growth. WIREs Mech Dis 2024; 16:e1634. [PMID: 38084799 DOI: 10.1002/wsbm.1634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 03/16/2024]
Abstract
Angiogenesis is the process wherein endothelial cells (ECs) form sprouts that elongate from the pre-existing vasculature to create new vascular networks. In addition to its essential role in normal development, angiogenesis plays a vital role in pathologies such as cancer, diabetes and atherosclerosis. Mathematical and computational modeling has contributed to unraveling its complexity. Many existing theoretical models of angiogenic sprouting are based on the "snail-trail" hypothesis. This framework assumes that leading ECs positioned at sprout tips migrate toward low-oxygen regions while other ECs in the sprout passively follow the leaders' trails and proliferate to maintain sprout integrity. However, experimental results indicate that, contrary to the snail-trail assumption, ECs exchange positions within developing vessels, and the elongation of sprouts is primarily driven by directed migration of ECs. The functional role of cell rearrangements remains unclear. This review of the theoretical modeling of angiogenesis is the first to focus on the phenomenon of cell mixing during early sprouting. We start by describing the biological processes that occur during early angiogenesis, such as phenotype specification, cell rearrangements and cell interactions with the microenvironment. Next, we provide an overview of various theoretical approaches that have been employed to model angiogenesis, with particular emphasis on recent in silico models that account for the phenomenon of cell mixing. Finally, we discuss when cell mixing should be incorporated into theoretical models and what essential modeling components such models should include in order to investigate its functional role. This article is categorized under: Cardiovascular Diseases > Computational Models Cancer > Computational Models.
Collapse
Affiliation(s)
- Daria Stepanova
- Laboratorio Subterráneo de Canfranc, Canfranc-Estación, Huesca, Spain
| | - Helen M Byrne
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, UK
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Philip K Maini
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, UK
| | - Tomás Alarcón
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
- Centre de Recerca Matemàtica, Bellaterra, Barcelona, Spain
- Departament de Matemàtiques, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
12
|
Medina-Dols A, Cañellas G, Capó T, Solé M, Mola-Caminal M, Cullell N, Jaume M, Nadal-Salas L, Llinàs J, Gómez L, Tur S, Jiménez C, Díaz RM, Carrera C, Muiño E, Gallego-Fabrega C, Soriano-Tárraga C, Ruiz-Guerra L, Pol-Fuster J, Asensio V, Muncunill J, Fleischer A, Iglesias A, Giralt-Steinhauer E, Lazcano U, Fernández-Pérez I, Jiménez-Balado J, Gabriel-Salazar M, Garcia-Gabilondo M, Lei T, Torres-Aguila NP, Cárcel-Márquez J, Lladó J, Olmos G, Rosell A, Montaner J, Planas AM, Rabionet R, Hernández-Guillamon M, Jiménez-Conde J, Fernández-Cadenas I, Vives-Bauzá C. Role of PATJ in stroke prognosis by modulating endothelial to mesenchymal transition through the Hippo/Notch/PI3K axis. Cell Death Discov 2024; 10:85. [PMID: 38368420 PMCID: PMC10874379 DOI: 10.1038/s41420-024-01857-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 02/19/2024] Open
Abstract
Through GWAS studies we identified PATJ associated with functional outcome after ischemic stroke (IS). The aim of this study was to determine PATJ role in brain endothelial cells (ECs) in the context of stroke outcome. PATJ expression analyses in patient's blood revealed that: (i) the risk allele of rs76221407 induces higher expression of PATJ, (ii) PATJ is downregulated 24 h after IS, and (iii) its expression is significantly lower in those patients with functional independence, measured at 3 months with the modified Rankin scale ((mRS) ≤2), compared to those patients with marked disability (mRS = 4-5). In mice brains, PATJ was also downregulated in the injured hemisphere at 48 h after ischemia. Oxygen-glucose deprivation and hypoxia-dependent of Hypoxia Inducible Factor-1α also caused PATJ depletion in ECs. To study the effects of PATJ downregulation, we generated PATJ-knockdown human microvascular ECs. Their transcriptomic profile evidenced a complex cell reprogramming involving Notch, TGF-ß, PI3K/Akt, and Hippo signaling that translates in morphological and functional changes compatible with endothelial to mesenchymal transition (EndMT). PATJ depletion caused loss of cell-cell adhesion, upregulation of metalloproteases, actin cytoskeleton remodeling, cytoplasmic accumulation of the signal transducer C-terminal transmembrane Mucin 1 (MUC1-C) and downregulation of Notch and Hippo signaling. The EndMT phenotype of PATJ-depleted cells was associated with the nuclear recruitment of MUC1-C, YAP/TAZ, β-catenin, and ZEB1. Our results suggest that PATJ downregulation 24 h after IS promotes EndMT, an initial step prior to secondary activation of a pro-angiogenic program. This effect is associated with functional independence suggesting that activation of EndMT shortly after stroke onset is beneficial for stroke recovery.
Collapse
Affiliation(s)
- Aina Medina-Dols
- Neurobiology Laboratory, Research Unit, Hospital Universitari Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma, Spain
| | - Guillem Cañellas
- Neurobiology Laboratory, Research Unit, Hospital Universitari Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma, Spain
- Department of Biology, University of Balearic Islands (UIB), Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), Palma, Spain
| | - Toni Capó
- Neurobiology Laboratory, Research Unit, Hospital Universitari Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma, Spain
- Department of Biology, University of Balearic Islands (UIB), Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), Palma, Spain
| | - Montse Solé
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marina Mola-Caminal
- Neurology, Hospital del Mar Medical Research Institute, Barcelona, Spain
- Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Natalia Cullell
- Neurology, Hospital Universitari Mútua de Terrassa/Fundacio Docència i Recerca Mútua Terrassa, Terrassa, Spain
- Stroke Pharmacogenomics and Genetics, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - Marina Jaume
- Neurobiology Laboratory, Research Unit, Hospital Universitari Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma, Spain
- Department of Biology, University of Balearic Islands (UIB), Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), Palma, Spain
| | - Laura Nadal-Salas
- Neurobiology Laboratory, Research Unit, Hospital Universitari Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma, Spain
- Department of Biology, University of Balearic Islands (UIB), Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), Palma, Spain
| | - Jaume Llinàs
- Neurobiology Laboratory, Research Unit, Hospital Universitari Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma, Spain
- Department of Biology, University of Balearic Islands (UIB), Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), Palma, Spain
| | - Lluis Gómez
- Neurobiology Laboratory, Research Unit, Hospital Universitari Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma, Spain
- Department of Biology, University of Balearic Islands (UIB), Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), Palma, Spain
| | - Silvia Tur
- Neurobiology Laboratory, Research Unit, Hospital Universitari Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma, Spain
- Department of Neurology, Hospital Universitari Son Espases (HUSE), Palma, Spain
| | - Carmen Jiménez
- Neurobiology Laboratory, Research Unit, Hospital Universitari Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma, Spain
- Department of Neurology, Hospital Universitari Son Espases (HUSE), Palma, Spain
| | - Rosa M Díaz
- Neurobiology Laboratory, Research Unit, Hospital Universitari Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma, Spain
- Department of Neurology, Hospital Universitari Son Espases (HUSE), Palma, Spain
| | - Caty Carrera
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
- Stroke Pharmacogenomics and Genetics, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - Elena Muiño
- Stroke Pharmacogenomics and Genetics, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - Cristina Gallego-Fabrega
- Stroke Pharmacogenomics and Genetics, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | | | - Laura Ruiz-Guerra
- Neurobiology Laboratory, Research Unit, Hospital Universitari Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma, Spain
| | - Josep Pol-Fuster
- Neurobiology Laboratory, Research Unit, Hospital Universitari Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma, Spain
- Department of Biology, University of Balearic Islands (UIB), Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), Palma, Spain
| | - Víctor Asensio
- Department of Genetics (GEN-IB), HUSE, IdISBa, Palma, Spain
| | | | | | - Amanda Iglesias
- Department of Respiratory Medicine,, Hospital Universitari Son Espases-IdISBa Palma, Spain; CIBERES, Instituto de Salud Carlos III, Madrid, Spain
- CIBER of Respiratory Diseases (CIBERES), Madrid, Spain
| | | | - Uxue Lazcano
- Neurology, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | | | | | - Marina Gabriel-Salazar
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Miguel Garcia-Gabilondo
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ting Lei
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Nuria-Paz Torres-Aguila
- Stroke Pharmacogenomics and Genetics, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - Jara Cárcel-Márquez
- Stroke Pharmacogenomics and Genetics, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - Jerònia Lladó
- Neurobiology Laboratory, Research Unit, Hospital Universitari Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma, Spain
- Department of Biology, University of Balearic Islands (UIB), Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), Palma, Spain
| | - Gabriel Olmos
- Neurobiology Laboratory, Research Unit, Hospital Universitari Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma, Spain
- Department of Biology, University of Balearic Islands (UIB), Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), Palma, Spain
| | - Anna Rosell
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joan Montaner
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
- Institute of Biomedicine of Seville, IBiS/Hospital Universitario Virgen del Rocío/CSIC/University of Seville & Department of Neurology, Hospital Universitario Virgen Macarena, Seville, Spain
| | - Anna M Planas
- Department of Neuroscience and Experimental Therapeutics, Institut d'Investigacions Biomèdiques de Barcelona (IIBB)-Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
- Area of Neuroscience, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Raquel Rabionet
- Department of Genetics, Microbiology & Statistics, IBUB, University of Barcelona (UB), Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Mar Hernández-Guillamon
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Israel Fernández-Cadenas
- Stroke Pharmacogenomics and Genetics, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - Cristòfol Vives-Bauzá
- Neurobiology Laboratory, Research Unit, Hospital Universitari Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma, Spain.
- Department of Biology, University of Balearic Islands (UIB), Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), Palma, Spain.
| |
Collapse
|
13
|
Darrigrand JF, Salowka A, Torres-Cano A, Tapia-Rojo R, Zhu T, Garcia-Manyes S, Spagnoli FM. Acinar-ductal cell rearrangement drives branching morphogenesis of the murine pancreas in an IGF/PI3K-dependent manner. Dev Cell 2024; 59:326-338.e5. [PMID: 38237591 DOI: 10.1016/j.devcel.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 10/24/2023] [Accepted: 12/20/2023] [Indexed: 02/08/2024]
Abstract
During organ formation, progenitor cells need to acquire different cell identities and organize themselves into distinct structural units. How these processes are coordinated and how tissue architecture(s) is preserved despite the dramatic cell rearrangements occurring in developing organs remain unclear. Here, we identified cellular rearrangements between acinar and ductal progenitors as a mechanism to drive branching morphogenesis in the pancreas while preserving the integrity of the acinar-ductal functional unit. Using ex vivo and in vivo mouse models, we found that pancreatic ductal cells form clefts by protruding and pulling on the acinar basement membrane, which leads to acini splitting. Newly formed acini remain connected to the bifurcated branches generated by ductal cell rearrangement. Insulin growth factor (IGF)/phosphatidylinositol 3-kinase (PI3K) pathway finely regulates this process by controlling pancreatic ductal tissue fluidity, with a simultaneous impact on branching and cell fate acquisition. Together, our results explain how acinar structure multiplication and branch bifurcation are synchronized during pancreas organogenesis.
Collapse
Affiliation(s)
- Jean-Francois Darrigrand
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, Great Maze Pond, SE1 9RT London, UK
| | - Anna Salowka
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, Great Maze Pond, SE1 9RT London, UK
| | - Alejo Torres-Cano
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, Great Maze Pond, SE1 9RT London, UK
| | - Rafael Tapia-Rojo
- Department of Physics, London Centre for Nanotechnology, King's College London, London, UK
| | - Tong Zhu
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King's College London, London, UK; Single-Molecule Mechanobiology Laboratory, The Francis Crick Institute, London, UK
| | - Sergi Garcia-Manyes
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King's College London, London, UK; Single-Molecule Mechanobiology Laboratory, The Francis Crick Institute, London, UK
| | - Francesca M Spagnoli
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, Great Maze Pond, SE1 9RT London, UK.
| |
Collapse
|
14
|
Kobialka P, Llena J, Deleyto-Seldas N, Munar-Gelabert M, Dengra JA, Villacampa P, Albinyà-Pedrós A, Muixi L, Andrade J, van Splunder H, Angulo-Urarte A, Potente M, Grego-Bessa J, Castillo SD, Vanhaesebroeck B, Efeyan A, Graupera M. PI3K-C2β limits mTORC1 signaling and angiogenic growth. Sci Signal 2023; 16:eadg1913. [PMID: 38015911 DOI: 10.1126/scisignal.adg1913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 11/07/2023] [Indexed: 11/30/2023]
Abstract
Phosphoinositide 3-kinases (PI3Ks) phosphorylate intracellular inositol lipids to regulate signaling and intracellular vesicular trafficking. Mammals have eight PI3K isoforms, of which class I PI3Kα and class II PI3K-C2α are essential for vascular development. The class II PI3K-C2β is also abundant in endothelial cells. Using in vivo and in vitro approaches, we found that PI3K-C2β was a critical regulator of blood vessel growth by restricting endothelial mTORC1 signaling. Mice expressing a kinase-inactive form of PI3K-C2β displayed enlarged blood vessels without corresponding changes in endothelial cell proliferation or migration. Instead, inactivation of PI3K-C2β resulted in an increase in the size of endothelial cells, particularly in the sprouting zone of angiogenesis. Mechanistically, we showed that the aberrantly large size of PI3K-C2β mutant endothelial cells was caused by mTORC1 activation, which sustained growth in these cells. Consistently, pharmacological inhibition of mTORC1 with rapamycin normalized vascular morphogenesis in PI3K-C2β mutant mice. Together, these results identify PI3K-C2β as a crucial determinant of endothelial signaling and illustrate the importance of mTORC1 regulation during angiogenic growth.
Collapse
Affiliation(s)
- Piotr Kobialka
- Endothelial Pathobiology and Microenvironment Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Catalonia, Spain
| | - Judith Llena
- Endothelial Pathobiology and Microenvironment Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Catalonia, Spain
| | - Nerea Deleyto-Seldas
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Center (CNIO), Melchor Fernandez Almagro 3, Madrid 28029, Spain
| | - Margalida Munar-Gelabert
- Endothelial Pathobiology and Microenvironment Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Catalonia, Spain
| | - Jose A Dengra
- Endothelial Pathobiology and Microenvironment Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Catalonia, Spain
| | - Pilar Villacampa
- Endothelial Pathobiology and Microenvironment Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Catalonia, Spain
| | - Alba Albinyà-Pedrós
- Endothelial Pathobiology and Microenvironment Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Catalonia, Spain
| | - Laia Muixi
- Endothelial Pathobiology and Microenvironment Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Catalonia, Spain
| | - Jorge Andrade
- Angiogenesis & Metabolism Laboratory, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 10178 Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Hielke van Splunder
- Endothelial Pathobiology and Microenvironment Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Catalonia, Spain
| | - Ana Angulo-Urarte
- Endothelial Pathobiology and Microenvironment Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Catalonia, Spain
| | - Michael Potente
- Angiogenesis & Metabolism Laboratory, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 10178 Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Joaquim Grego-Bessa
- Endothelial Pathobiology and Microenvironment Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Catalonia, Spain
| | - Sandra D Castillo
- Endothelial Pathobiology and Microenvironment Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Catalonia, Spain
| | - Bart Vanhaesebroeck
- Cancer Institute, Paul O'Gorman Building, University College London, WC1N 1EH London, UK
| | - Alejo Efeyan
- Metabolism and Cell Signaling Laboratory, Spanish National Cancer Research Center (CNIO), Melchor Fernandez Almagro 3, Madrid 28029, Spain
| | - Mariona Graupera
- Endothelial Pathobiology and Microenvironment Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Catalonia, Spain
- ICREA, Institució Catalana de Recerca i Estudis Avançats, Pg. Lluís Companys 23, 08010 Barcelona, Spain
- CIBERONC, Instituto de Salud Carlos III, Av. de Monforte de Lemos, 5, 28029 Madrid, Spain
| |
Collapse
|
15
|
Kulikauskas MR, Oatley M, Yu T, Liu Z, Matsumura L, Kidder E, Ruter D, Bautch VL. Endothelial cell SMAD6 balances Alk1 function to regulate adherens junctions and hepatic vascular development. Development 2023; 150:dev201811. [PMID: 37787089 PMCID: PMC10629679 DOI: 10.1242/dev.201811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023]
Abstract
BMP signaling is crucial to blood vessel formation and function, but how pathway components regulate vascular development is not well-understood. Here, we find that inhibitory SMAD6 functions in endothelial cells to negatively regulate ALK1-mediated responses, and it is required to prevent vessel dysmorphogenesis and hemorrhage in the embryonic liver vasculature. Reduced Alk1 gene dosage rescued embryonic hepatic hemorrhage and microvascular capillarization induced by Smad6 deletion in endothelial cells in vivo. At the cellular level, co-depletion of Smad6 and Alk1 rescued the destabilized junctions and impaired barrier function of endothelial cells depleted for SMAD6 alone. Mechanistically, blockade of actomyosin contractility or increased PI3K signaling rescued endothelial junction defects induced by SMAD6 loss. Thus, SMAD6 normally modulates ALK1 function in endothelial cells to regulate PI3K signaling and contractility, and SMAD6 loss increases signaling through ALK1 that disrupts endothelial cell junctions. ALK1 loss-of-function also disrupts vascular development and function, indicating that balanced ALK1 signaling is crucial for proper vascular development and identifying ALK1 as a 'Goldilocks' pathway in vascular biology that requires a certain signaling amplitude, regulated by SMAD6, to function properly.
Collapse
Affiliation(s)
- Molly R. Kulikauskas
- Cell Biology and Physiology Curriculum, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Morgan Oatley
- Department of Biology, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Tianji Yu
- Department of Biology, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Ziqing Liu
- Department of Biology, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Lauren Matsumura
- Department of Biology, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Elise Kidder
- Department of Biology, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Dana Ruter
- Department of Biology, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Victoria L. Bautch
- Cell Biology and Physiology Curriculum, The University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Biology, The University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, The University of North Carolina, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
16
|
Buglak DB, Bougaran P, Kulikauskas MR, Liu Z, Monaghan-Benson E, Gold AL, Marvin AP, Burciu A, Tanke NT, Oatley M, Ricketts SN, Kinghorn K, Johnson BN, Shiau CE, Rogers S, Guilluy C, Bautch VL. Nuclear SUN1 stabilizes endothelial cell junctions via microtubules to regulate blood vessel formation. eLife 2023; 12:83652. [PMID: 36989130 PMCID: PMC10059686 DOI: 10.7554/elife.83652] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Endothelial cells line all blood vessels, where they coordinate blood vessel formation and the blood-tissue barrier via regulation of cell-cell junctions. The nucleus also regulates endothelial cell behaviors, but it is unclear how the nucleus contributes to endothelial cell activities at the cell periphery. Here, we show that the nuclear-localized linker of the nucleoskeleton and cytoskeleton (LINC) complex protein SUN1 regulates vascular sprouting and endothelial cell-cell junction morphology and function. Loss of murine endothelial Sun1 impaired blood vessel formation and destabilized junctions, angiogenic sprouts formed but retracted in SUN1-depleted sprouts, and zebrafish vessels lacking Sun1b had aberrant junctions and defective cell-cell connections. At the cellular level, SUN1 stabilized endothelial cell-cell junctions, promoted junction function, and regulated contractility. Mechanistically, SUN1 depletion altered cell behaviors via the cytoskeleton without changing transcriptional profiles. Reduced peripheral microtubule density, fewer junction contacts, and increased catastrophes accompanied SUN1 loss, and microtubule depolymerization phenocopied effects on junctions. Depletion of GEF-H1, a microtubule-regulated Rho activator, or the LINC complex protein nesprin-1 rescued defective junctions of SUN1-depleted endothelial cells. Thus, endothelial SUN1 regulates peripheral cell-cell junctions from the nucleus via LINC complex-based microtubule interactions that affect peripheral microtubule dynamics and Rho-regulated contractility, and this long-range regulation is important for proper blood vessel sprouting and junction integrity.
Collapse
Affiliation(s)
- Danielle B Buglak
- Curriculum in Cell Biology and Physiology, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Pauline Bougaran
- Department of Biology, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Molly R Kulikauskas
- Curriculum in Cell Biology and Physiology, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Ziqing Liu
- Department of Biology, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Elizabeth Monaghan-Benson
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State UniversityRaleighUnited States
| | - Ariel L Gold
- Department of Biology, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Allison P Marvin
- Department of Biology, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Andrew Burciu
- Department of Biology, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Natalie T Tanke
- Curriculum in Cell Biology and Physiology, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Morgan Oatley
- Department of Biology, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Shea N Ricketts
- Department of Pathology, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Karina Kinghorn
- Curriculum in Cell Biology and Physiology, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Bryan N Johnson
- Department of Biology, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Celia E Shiau
- Department of Biology, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Stephen Rogers
- Department of Biology, The University of North Carolina at Chapel HillChapel HillUnited States
| | - Christophe Guilluy
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State UniversityRaleighUnited States
| | - Victoria L Bautch
- Curriculum in Cell Biology and Physiology, The University of North Carolina at Chapel HillChapel HillUnited States
- Department of Biology, The University of North Carolina at Chapel HillChapel HillUnited States
- McAllister Heart Institute, The University of North Carolina at Chapel HillChapel HillUnited States
| |
Collapse
|
17
|
Aw WY, Cho C, Wang H, Cooper AH, Doherty EL, Rocco D, Huang SA, Kubik S, Whitworth CP, Armstrong R, Hickey AJ, Griffith B, Kutys ML, Blatt J, Polacheck WJ. Microphysiological model of PIK3CA-driven vascular malformations reveals a role of dysregulated Rac1 and mTORC1/2 in lesion formation. SCIENCE ADVANCES 2023; 9:eade8939. [PMID: 36791204 PMCID: PMC9931220 DOI: 10.1126/sciadv.ade8939] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/13/2023] [Indexed: 05/09/2023]
Abstract
Somatic activating mutations of PIK3CA are associated with development of vascular malformations (VMs). Here, we describe a microfluidic model of PIK3CA-driven VMs consisting of human umbilical vein endothelial cells expressing PIK3CA activating mutations embedded in three-dimensional hydrogels. We observed enlarged, irregular vessel phenotypes and the formation of cyst-like structures consistent with clinical signatures and not previously observed in cell culture models. Pathologic morphologies occurred concomitant with up-regulation of Rac1/p21-activated kinase (PAK), mitogen-activated protein kinase cascades (MEK/ERK), and mammalian target of rapamycin (mTORC1/2) signaling networks. We observed differential effects between alpelisib, a PIK3CA inhibitor, and rapamycin, an mTORC1 inhibitor, in mitigating matrix degradation and network topology. While both were effective in preventing vessel enlargement, rapamycin failed to reduce MEK/ERK and mTORC2 activity and resulted in hyperbranching, while inhibiting PAK, MEK1/2, and mTORC1/2 mitigates abnormal growth and vascular dilation. Collectively, these findings demonstrate an in vitro platform for VMs and establish a role of dysregulated Rac1/PAK and mTORC1/2 signaling in PIK3CA-driven VMs.
Collapse
Affiliation(s)
- Wen Yih Aw
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA and North Carolina State University, Raleigh, NC, USA
- UNC Catalyst for Rare Diseases, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Crescentia Cho
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA and North Carolina State University, Raleigh, NC, USA
| | - Hao Wang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA and North Carolina State University, Raleigh, NC, USA
| | - Anne Hope Cooper
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA and North Carolina State University, Raleigh, NC, USA
| | - Elizabeth L. Doherty
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA and North Carolina State University, Raleigh, NC, USA
- UNC Catalyst for Rare Diseases, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David Rocco
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Stephanie A. Huang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA and North Carolina State University, Raleigh, NC, USA
| | - Sarah Kubik
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA and North Carolina State University, Raleigh, NC, USA
| | - Chloe P. Whitworth
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA and North Carolina State University, Raleigh, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Ryan Armstrong
- Department of Physics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anthony J. Hickey
- UNC Catalyst for Rare Diseases, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Boyce Griffith
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA and North Carolina State University, Raleigh, NC, USA
- Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Computational Medicine Program, University of North Carolina, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Matthew L. Kutys
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Julie Blatt
- Department of Pediatrics (Division of Pediatric Hematology Oncology), University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - William J. Polacheck
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA and North Carolina State University, Raleigh, NC, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
18
|
Shaping subcellular tubes through vesicle trafficking: Common and distinct pathways. Semin Cell Dev Biol 2023; 133:74-82. [PMID: 35365398 DOI: 10.1016/j.semcdb.2022.03.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 11/23/2022]
Abstract
Cells with subcellular lumens form some of the most miniature tubes in the tubular organs of animals. These are often crucial components of the system, executing functions at remote body locations. Unlike tubes formed by intercellular or autocellular junctions, the cells with junctionless subcellular lumens face unique challenges in modifying the cell shape and plasma membrane organization to incorporate a membrane-bound tube within, often associated with dramatic cellular growth and extensions. Results in the recent years have shown that membrane dynamics, including both the primary delivery and recycling, is crucial in providing the cell with the flexibility to face these challenges. A significant portion of this information has come from two in vivo invertebrate models; the Drosophila tracheal terminal cells and the C. elegans excretory cell. This review focuses on the data obtained from these systems in the recent past about how trafficking pathways influence subcellular tube and branching morphogenesis. Given that such tubes occur in vertebrate vasculature, these insights are relevant to human health, and we contrast our conclusions with the less understood subcellular tubes of angiogenesis.
Collapse
|
19
|
Angulo-Urarte A, Graupera M. When, where and which PIK3CA mutations are pathogenic in congenital disorders. NATURE CARDIOVASCULAR RESEARCH 2022; 1:700-714. [PMID: 39196083 DOI: 10.1038/s44161-022-00107-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/22/2022] [Indexed: 08/29/2024]
Abstract
PIK3CA encodes the class I PI3Kα isoform and is frequently mutated in cancer. Activating mutations in PIK3CA also cause a range of congenital disorders featuring asymmetric tissue overgrowth, known as the PIK3CA-related overgrowth spectrum (PROS), with frequent vascular involvement. In PROS, PIK3CA mutations arise postzygotically, during embryonic development, leading to a mosaic body pattern distribution resulting in a variety of phenotypic features. A clear skewed pattern of overgrowth favoring some mesoderm-derived and ectoderm-derived tissues is observed but not understood. Here, we summarize our current knowledge of the determinants of PIK3CA-related pathogenesis in PROS, including intrinsic factors such as cell lineage susceptibility and PIK3CA variant bias, and extrinsic factors, which refers to environmental modifiers. We also include a section on PIK3CA-related vascular malformations given that the vasculature is frequently affected in PROS. Increasing our biological understanding of PIK3CA mutations in PROS will contribute toward unraveling the onset and progression of these conditions and ultimately impact on their treatment. Given that PIK3CA mutations are similar in PROS and cancer, deeper insights into one will also inform about the other.
Collapse
Affiliation(s)
- Ana Angulo-Urarte
- Endothelial Pathobiology and Microenvironment Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain.
| | - Mariona Graupera
- Endothelial Pathobiology and Microenvironment Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
20
|
Ugur D, Gungul TB, Yucel S, Ozcivici E, Yalcin-Ozuysal O, Mese G. Connexin 32 overexpression increases proliferation, reduces gap junctional intercellular communication, motility and epithelial-to-mesenchymal transition in Hs578T breast cancer cells. J Cell Commun Signal 2022; 16:361-376. [PMID: 35781670 DOI: 10.1007/s12079-021-00665-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 12/14/2021] [Indexed: 11/29/2022] Open
Abstract
Connexins (Cx) are primary components of gap junctions that selectively allow molecules to be exchanged between adjacent cells, regulating multiple cellular functions. Along with their channel forming functions, connexins play a variety of roles in different stages of tumorigenesis and their roles in tumor initiation and progression is isoform- and tissue-specific. While Cx26 and Cx43 were downregulated during breast tumorigenesis, Cx32 was accumulated in the cytoplasm of the cells in lymph node metastasis of breast cancers and Cx32 was further upregulated in metastasis. Cx32's effect on cell proliferation, gap junctional communication, hemichannel activity, cellular motility and epithelial-to-mesenchymal transition (EMT) were investigated by overexpressing Cx32 in Hs578T and MCF7 breast cancer cells. Additionally, the expression and localization of Cx26 and Cx43 upon Cx32 overexpression were examined by Western blot and immunostaining experiments, respectively. We observed that MCF7 cells had endogenous Cx32 while Hs578T cells did not and when Cx32 was overexpressed in these cells, it caused a significant increase in the percentages of Hs578T cells at the S phase in addition to increasing their proliferation. Further, while Cx32 overexpression did not induce hemichannel activity in either cell, it decreased gap junctional communication between Hs578T cells. Additionally, Cx32 was mainly observed in the cytoplasm in both cells, where it did not form gap junction plaques but Cx32 overexpression reduced Cx43 levels without affecting Cx26. Moreover, migration and invasion potentials of Hs578T and migration in MCF7 were reduced upon Cx32 overexpression. Finally, the protein level of mesenchymal marker N-cadherin decreased while epithelial marker ZO-1 and E-cadherin increased in Hs578T cells. We observed that Cx32 overexpression altered cell proliferation, communication, migration and EMT in Hs578T, suggesting a tumor suppressor role in these cells while it had minor effects on MCF7 cells.
Collapse
Affiliation(s)
- Deniz Ugur
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir, 35430, Turkey.,Department of Molecular Biology and Genetics, Avrasya University, Trabzon, Turkey
| | - Taha Bugra Gungul
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir, 35430, Turkey
| | - Simge Yucel
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir, 35430, Turkey
| | - Engin Ozcivici
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Ozden Yalcin-Ozuysal
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir, 35430, Turkey
| | - Gulistan Mese
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir, 35430, Turkey.
| |
Collapse
|
21
|
Lange M, Ohnesorge N, Hoffmann D, Rocha SF, Benedito R, Siekmann AF. Zebrafish mutants in vegfab can affect endothelial cell proliferation without altering ERK phosphorylation and are phenocopied by loss of PI3K signaling. Dev Biol 2022; 486:26-43. [PMID: 35337795 PMCID: PMC11238767 DOI: 10.1016/j.ydbio.2022.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/23/2022]
Abstract
The formation of appropriately patterned blood vessel networks requires endothelial cell migration and proliferation. Signaling through the Vascular Endothelial Growth Factor A (VEGFA) pathway is instrumental in coordinating these processes. mRNA splicing generates short (diffusible) and long (extracellular matrix bound) Vegfa isoforms. The differences between these isoforms in controlling cellular functions are not understood. In zebrafish, vegfaa generates short and long isoforms, while vegfab only generates long isoforms. We found that mutations in vegfaa had an impact on endothelial cell (EC) migration and proliferation. Surprisingly, mutations in vegfab more strongly affected EC proliferation in distinct blood vessels, such as intersegmental blood vessels in the zebrafish trunk and central arteries in the head. Analysis of downstream signaling pathways revealed no change in MAPK (ERK) activation, while inhibiting PI3 kinase signaling phenocopied vegfab mutant phenotypes in affected blood vessels. Together, these results suggest that extracellular matrix bound Vegfa might act through PI3K signaling to control EC proliferation in a distinct set of blood vessels during angiogenesis.
Collapse
Affiliation(s)
- Martin Lange
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, D-48149, Muenster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Muenster, Muenster, Germany
| | - Nils Ohnesorge
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, D-48149, Muenster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Muenster, Muenster, Germany
| | - Dennis Hoffmann
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, D-48149, Muenster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Muenster, Muenster, Germany
| | - Susana F Rocha
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, E28029, Spain
| | - Rui Benedito
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, E28029, Spain
| | - Arndt F Siekmann
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, D-48149, Muenster, Germany; Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Muenster, Muenster, Germany; Department of Cell and Developmental Biology and Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
22
|
Monelli E, Villacampa P, Zabala-Letona A, Martinez-Romero A, Llena J, Beiroa D, Gouveia L, Chivite I, Zagmutt S, Gama-Perez P, Osorio-Conles O, Muixi L, Martinez-Gonzalez A, Castillo SD, Martín-Martín N, Castel P, Valcarcel-Jimenez L, Garcia-Gonzalez I, Villena JA, Fernandez-Ruiz S, Serra D, Herrero L, Benedito R, Garcia-Roves P, Vidal J, Cohen P, Nogueiras R, Claret M, Carracedo A, Graupera M. Angiocrine polyamine production regulates adiposity. Nat Metab 2022; 4:327-343. [PMID: 35288722 DOI: 10.1038/s42255-022-00544-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/02/2022] [Indexed: 02/07/2023]
Abstract
Reciprocal interactions between endothelial cells (ECs) and adipocytes are fundamental to maintain white adipose tissue (WAT) homeostasis, as illustrated by the activation of angiogenesis upon WAT expansion, a process that is impaired in obesity. However, the molecular mechanisms underlying the crosstalk between ECs and adipocytes remain poorly understood. Here, we show that local production of polyamines in ECs stimulates adipocyte lipolysis and regulates WAT homeostasis in mice. We promote enhanced cell-autonomous angiogenesis by deleting Pten in the murine endothelium. Endothelial Pten loss leads to a WAT-selective phenotype, characterized by reduced body weight and adiposity in pathophysiological conditions. This phenotype stems from enhanced fatty acid β-oxidation in ECs concomitant with a paracrine lipolytic action on adipocytes, accounting for reduced adiposity. Combined analysis of murine models, isolated ECs and human specimens reveals that WAT lipolysis is mediated by mTORC1-dependent production of polyamines by ECs. Our results indicate that angiocrine metabolic signals are important for WAT homeostasis and organismal metabolism.
Collapse
Affiliation(s)
- Erika Monelli
- Endothelial Pathobiology and Microenviroment Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain
| | - Pilar Villacampa
- Endothelial Pathobiology and Microenviroment Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain
| | - Amaia Zabala-Letona
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Anabel Martinez-Romero
- Endothelial Pathobiology and Microenviroment Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain
| | - Judith Llena
- Endothelial Pathobiology and Microenviroment Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain
| | - Daniel Beiroa
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Leonor Gouveia
- Endothelial Pathobiology and Microenviroment Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Iñigo Chivite
- Neuronal Control of Metabolism Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Sebastián Zagmutt
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Pau Gama-Perez
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona and Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Oscar Osorio-Conles
- Department of Endocrinology, IDIBAPS, Hospital Clinic, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Laia Muixi
- Endothelial Pathobiology and Microenviroment Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain
| | - Ainara Martinez-Gonzalez
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Sandra D Castillo
- Endothelial Pathobiology and Microenviroment Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain
| | - Natalia Martín-Martín
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Traslational prostate cancer Research lab, CIC bioGUNE-Basurto, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Pau Castel
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Lorea Valcarcel-Jimenez
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Irene Garcia-Gonzalez
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Josep A Villena
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Laboratory of Metabolism and Obesity, Vall d'Hebron-Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sonia Fernandez-Ruiz
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Dolors Serra
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Laura Herrero
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Rui Benedito
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Pablo Garcia-Roves
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona and Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Josep Vidal
- Department of Endocrinology, IDIBAPS, Hospital Clinic, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Paul Cohen
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA
| | - Rubén Nogueiras
- CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Galician Agency of Investigation, Xunta de Galicia, La Coruña, Spain
| | - Marc Claret
- Neuronal Control of Metabolism Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Arkaitz Carracedo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Traslational prostate cancer Research lab, CIC bioGUNE-Basurto, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), Bilbao, Spain
- Ikerbasque; Basque Foundation for Science, Bilbao, Spain
| | - Mariona Graupera
- Endothelial Pathobiology and Microenviroment Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
23
|
Tehranian C, Fankhauser L, Harter PN, Ratcliffe CDH, Zeiner PS, Messmer JM, Hoffmann DC, Frey K, Westphal D, Ronellenfitsch MW, Sahai E, Wick W, Karreman MA, Winkler F. The PI3K/Akt/mTOR pathway as a preventive target in melanoma brain metastasis. Neuro Oncol 2022; 24:213-225. [PMID: 34216217 PMCID: PMC8804893 DOI: 10.1093/neuonc/noab159] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Brain metastases (BM) are a frequent complication of malignant melanoma (MM), with limited treatment options and poor survival. Prevention of BM could be more effective and better tolerated than treating established BM in various conditions. METHODS To investigate the temporospatial dynamics of PI3K/Akt/mTOR (PAM) pathway activation during BM formation and the preventive potential of its inhibition, in vivo molecular imaging with an Akt biosensor was performed, and long-term intravital multiphoton microscopy through a chronic cranial window in mice. RESULTS In vivo molecular imaging revealed invariable PAM pathway activation during the earliest steps of brain colonization. In order to perform a long-term intravascular arrest and to extravasate, circulating MM cells needed to activate their PAM pathway during this process. However, the PAM pathway was quite heterogeneously activated in established human brain metastases, and its inhibition with the brain-penetrant PAM inhibitor GNE-317 resulted in only modest therapeutic effects in mice. In contrast, giving GNE-317 in preventive schedules that included very low doses effectively reduced the growth rate and number of BM in two MM mouse models over time, and led to an overall survival benefit. Longitudinal intravital multiphoton microscopy found that the first, rate-limiting steps of BM formation-permanent intravascular arrest, extravasation, and initial perivascular growth-are most vulnerable to dual PI3K/mTOR inhibition. CONCLUSION These findings establish a key role of PAM pathway activation for critical steps of early metastatic brain colonization and reveal its pharmacological inhibition as a potent avenue to prevent the formation of clinically relevant BM.
Collapse
Affiliation(s)
- Cedric Tehranian
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Laura Fankhauser
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Patrick N Harter
- Edinger Institute, Institute of Neurology, University of Frankfurt am Main, Frankfurt am Main, Germany
- German Cancer Research Center DKFZ Heidelberg, Germany and German Cancer Consortium DKTK partner site, Frankfurt/Mainz Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
| | | | - Pia S Zeiner
- Edinger Institute, Institute of Neurology, University of Frankfurt am Main, Frankfurt am Main, Germany
- Senckenberg Institute of Neurooncology, University of Frankfurt am Main, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
| | - Julia M Messmer
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Dirk C Hoffmann
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Katharina Frey
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dana Westphal
- Department of Dermatology, Medical Faculty and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Michael W Ronellenfitsch
- Senckenberg Institute of Neurooncology, University of Frankfurt am Main, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
| | - Erik Sahai
- Tumour Cell Biology Laboratory, The Francis Crick Institute, London, UK
| | - Wolfgang Wick
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Matthia A Karreman
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Frank Winkler
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
24
|
Rosa A, Giese W, Meier K, Alt S, Klaus-Bergmann A, Edgar LT, Bartels E, Collins R, Szymborska A, Coxam B, Bernabeu MO, Gerhardt H. Wasp controls oriented migration of endothelial cells to achieve functional vascular patterning. Development 2021; 149:273808. [PMID: 34931661 PMCID: PMC8918813 DOI: 10.1242/dev.200195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/10/2021] [Indexed: 11/21/2022]
Abstract
Endothelial cell migration and proliferation are essential for the establishment of a hierarchical organization of blood vessels and optimal distribution of blood. However, how these cellular processes are quantitatively coordinated to drive vascular network morphogenesis remains unknown. Here, using the zebrafish vasculature as a model system, we demonstrate that the balanced distribution of endothelial cells, as well as the resulting regularity of vessel calibre, is a result of cell migration from veins towards arteries and cell proliferation in veins. We identify the Wiskott-Aldrich Syndrome protein (WASp) as an important molecular regulator of this process and show that loss of coordinated migration from veins to arteries upon wasb depletion results in aberrant vessel morphology and the formation of persistent arteriovenous shunts. We demonstrate that WASp achieves its function through the coordination of junctional actin assembly and PECAM1 recruitment and provide evidence that this is conserved in humans. Overall, we demonstrate that functional vascular patterning in the zebrafish trunk is established through differential cell migration regulated by junctional actin, and that interruption of differential migration may represent a pathomechanism in vascular malformations. Summary: Regular diameter of developing veins and arteries in the zebrafish trunk is controlled by differential endothelial cell proliferation and WASp-driven directed cell migration.
Collapse
Affiliation(s)
- André Rosa
- Integrative Vascular Biology Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany
| | - Wolfgang Giese
- Integrative Vascular Biology Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany
| | - Katja Meier
- Integrative Vascular Biology Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany
| | - Silvanus Alt
- Integrative Vascular Biology Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany
| | - Alexandra Klaus-Bergmann
- Integrative Vascular Biology Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany
| | - Lowell T Edgar
- Usher Institute, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK
| | - Eireen Bartels
- Integrative Vascular Biology Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany
| | - Russell Collins
- Integrative Vascular Biology Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany
| | - Anna Szymborska
- Integrative Vascular Biology Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany
| | - Baptiste Coxam
- Integrative Vascular Biology Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany
| | - Miguel O Bernabeu
- Usher Institute, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK.,The Bayes Centre, The University of Edinburgh, Edinburgh, United Kingdom. 5 Berlin Institute of Health (BIH), Berlin, Germany
| | - Holger Gerhardt
- Integrative Vascular Biology Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany
| |
Collapse
|
25
|
Ballasy NN, Jadli AS, Edalat P, Kang S, Fatehi Hassanabad A, Gomes KP, Fedak PWM, Patel VB. Potential role of epicardial adipose tissue in coronary artery endothelial cell dysfunction in type 2 diabetes. FASEB J 2021; 35:e21878. [PMID: 34469050 DOI: 10.1096/fj.202100684rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 11/11/2022]
Abstract
Cardiovascular disease is the most prevalent cause of morbidity and mortality in diabetes. Epicardial adipose tissue (EAT) lies in direct contact with the myocardium and coronary arteries and can influence cardiac (patho) physiology through paracrine signaling pathways. This study hypothesized that the proteins released from EAT represent a critical molecular link between the diabetic state and coronary artery endothelial cell dysfunction. To simulate type 2 diabetes-associated metabolic and inflammatory status in an ex vivo tissue culture model, human EAT samples were treated with a cocktail composed of high glucose, high palmitate, and lipopolysaccharide (gplEAT) and were compared with control EAT (conEAT). Compared to conEAT, gplEAT showed a markedly increased gene expression profile of proinflammatory cytokines, corroborating EAT inflammation, a hallmark feature observed in patients with type 2 diabetes. Luminex assay of EAT-secretome identified increased release of various proinflammatory cytokines, including tumor necrosis factor-alpha (TNF-alpha), interferon-alpha 2 (IFNA2), interleukin 1 beta (IL1B), interleukin 5 (IL5), interleukin 13 (IL13), and CCL5, among others, in response to high glucose, high palmitate, and lipopolysaccharide. Conditioned culture media was used to collect the concentrated proteins (CPs). In response to gplEAT-CPs, human coronary artery endothelial cells (HCAECs) exhibited an inflammatory endothelial cell phenotype, featuring a significantly increased gene expression of proinflammatory cytokines and cell surface expression of VCAM-1. Moreover, gplEAT-CPs severely decreased Akt-eNOS signaling, nitric oxide production, and angiogenic potential of HCAECs, when compared with conEAT-CPs. These findings indicate that EAT inflammation may play a key role in coronary artery endothelial cell dysfunction in type 2 diabetes.
Collapse
Affiliation(s)
- Noura N Ballasy
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Anshul S Jadli
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Pariya Edalat
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Sean Kang
- Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada.,Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ali Fatehi Hassanabad
- Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada.,Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Karina P Gomes
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Paul W M Fedak
- Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada.,Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Vaibhav B Patel
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
26
|
Lee M, Betz C, Yin J, Paatero I, Schellinx N, Carte AN, Wilson CW, Ye W, Affolter M, Belting HG. Control of dynamic cell behaviors during angiogenesis and anastomosis by Rasip1. Development 2021; 148:271819. [PMID: 34383884 PMCID: PMC8380458 DOI: 10.1242/dev.197509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 06/08/2021] [Indexed: 11/23/2022]
Abstract
Organ morphogenesis is driven by a wealth of tightly orchestrated cellular behaviors, which ensure proper organ assembly and function. Many of these cell activities involve cell-cell interactions and remodeling of the F-actin cytoskeleton. Here, we analyze the requirement for Rasip1 (Ras-interacting protein 1), an endothelial-specific regulator of junctional dynamics, during blood vessel formation. Phenotype analysis of rasip1 mutants in zebrafish embryos reveals distinct functions of Rasip1 during sprouting angiogenesis, anastomosis and lumen formation. During angiogenic sprouting, loss of Rasip1 causes cell pairing defects due to a destabilization of tricellular junctions, indicating that stable tricellular junctions are essential to maintain multicellular organization within the sprout. During anastomosis, Rasip1 is required to establish a stable apical membrane compartment; rasip1 mutants display ectopic, reticulated junctions and the apical compartment is frequently collapsed. Loss of Ccm1 and Heg1 function mimics the junctional defects of rasip1 mutants. Furthermore, downregulation of ccm1 and heg1 leads to a delocalization of Rasip1 at cell junctions, indicating that junctional tethering of Rasip1 is required for its function in junction formation and stabilization during sprouting angiogenesis. Summary:In vivo analysis of rasip1 mutants reveals multiple roles for Rasip1 during angiogenic sprouting, anastomosis and lumen formation, including stabilization of tricellular junctions to permit coordinated cell rearrangements and multicellular tube formation.
Collapse
Affiliation(s)
- Minkyoung Lee
- Department of Cell Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Charles Betz
- Department of Cell Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Jianmin Yin
- Department of Cell Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Ilkka Paatero
- Department of Cell Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Niels Schellinx
- Department of Cell Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Adam N Carte
- Department of Cell Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Christopher W Wilson
- Department of Molecular Biology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Weilan Ye
- Department of Molecular Biology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Markus Affolter
- Department of Cell Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Heinz-Georg Belting
- Department of Cell Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| |
Collapse
|
27
|
Watterston C, Halabi R, McFarlane S, Childs SJ. Endothelial Semaphorin 3fb regulates Vegf pathway-mediated angiogenic sprouting. PLoS Genet 2021; 17:e1009769. [PMID: 34424892 PMCID: PMC8412281 DOI: 10.1371/journal.pgen.1009769] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 09/02/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Vessel growth integrates diverse extrinsic signals with intrinsic signaling cascades to coordinate cell migration and sprouting morphogenesis. The pro-angiogenic effects of Vascular Endothelial Growth Factor (VEGF) are carefully controlled during sprouting to generate an efficiently patterned vascular network. We identify crosstalk between VEGF signaling and that of the secreted ligand Semaphorin 3fb (Sema3fb), one of two zebrafish paralogs of mammalian Sema3F. The sema3fb gene is expressed by endothelial cells in actively sprouting vessels. Loss of sema3fb results in abnormally wide and stunted intersegmental vessel artery sprouts. Although the sprouts initiate at the correct developmental time, they have a reduced migration speed. These sprouts have persistent filopodia and abnormally spaced nuclei suggesting dysregulated control of actin assembly. sema3fb mutants show simultaneously higher expression of pro-angiogenic (VEGF receptor 2 (vegfr2) and delta-like 4 (dll4)) and anti-angiogenic (soluble VEGF receptor 1 (svegfr1)/ soluble Fms Related Receptor Tyrosine Kinase 1 (sflt1)) pathway components. We show increased phospho-ERK staining in migrating angioblasts, consistent with enhanced Vegf activity. Reducing Vegfr2 kinase activity in sema3fb mutants rescues angiogenic sprouting. Our data suggest that Sema3fb plays a critical role in promoting endothelial sprouting through modulating the VEGF signaling pathway, acting as an autocrine cue that modulates intrinsic growth factor signaling.
Collapse
Affiliation(s)
- Charlene Watterston
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Rami Halabi
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Sarah McFarlane
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Canada
| | - Sarah J. Childs
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
| |
Collapse
|
28
|
The blood flow-klf6a-tagln2 axis drives vessel pruning in zebrafish by regulating endothelial cell rearrangement and actin cytoskeleton dynamics. PLoS Genet 2021; 17:e1009690. [PMID: 34319989 PMCID: PMC8318303 DOI: 10.1371/journal.pgen.1009690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/30/2021] [Indexed: 12/11/2022] Open
Abstract
Recent studies have focused on capillary pruning in various organs and species. However, the way in which large-diameter vessels are pruned remains unclear. Here we show that pruning of the zebrafish caudal vein (CV) from ventral capillaries of the CV plexus in different transgenic embryos is driven by endothelial cell (EC) rearrangement, which involves EC nucleus migration, junction remodeling, and actin cytoskeleton remodeling. Further observation reveals a growing difference in blood flow velocity between the two vessels in CV pruning in zebrafish embryos. With this model, we identify the critical role of Kruppel-like factor 6a (klf6a) in CV pruning. Disruption of klf6a functioning impairs CV pruning in zebrafish. klf6a is required for EC nucleus migration, junction remodeling, and actin cytoskeleton dynamics in zebrafish embryos. Moreover, actin-related protein transgelin 2 (tagln2) is a direct downstream target of klf6a in CV pruning in zebrafish embryos. Together these results demonstrate that the klf6a-tagln2 axis regulates CV pruning by promoting EC rearrangement. Vascular remodeling is critical for vascular physiology and pathology. The primitive vascular plexus formed by angiogenesis, subsequently undergoes extensive vascular remodeling to establish a functionally and hierarchically branched network of blood vessels. Vascular remodeling mainly consists of vessel pruning and fusion. Endothelial cell rearrangement plays an essential role in vessel pruning, which involves endothelial cell migration and polarity. Dysfunction of flow-induced vascular remodeling will cause arteriovenous malformation and impair reperfusion of ischemia stroke. In this study, we show that the large-diameter vessel of the caudal vein is pruned from ventral capillaries of the caudal vein plexus in zebrafish embryos. With this model, we observe a growing difference in blood flow velocity between two branches in vessel pruning. We identify that the klf6a-tagln2 axis regulates CV pruning by promoting endothelial cell rearrangement and junction remodeling. Our results suggest that the caudal vein formation is an ideal model for screening the potential genes involved in vascular remodeling-related disease.
Collapse
|
29
|
Di-Luoffo M, Ben-Meriem Z, Lefebvre P, Delarue M, Guillermet-Guibert J. PI3K functions as a hub in mechanotransduction. Trends Biochem Sci 2021; 46:878-888. [PMID: 34112586 DOI: 10.1016/j.tibs.2021.05.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/22/2021] [Accepted: 05/12/2021] [Indexed: 01/18/2023]
Abstract
Mammalian cells integrate different types of stimuli that govern their fate. These stimuli encompass biochemical as well as biomechanical cues (shear, tensile, and compressive stresses) that are usually studied separately. The phosphatidylinositol 3-kinase (PI3K) enzymes, producing signaling phosphoinositides at plasma and intracellular membranes, are key in intracellular signaling and vesicular trafficking pathways. Recent evidence in cancer research demonstrates that these enzymes are essential in mechanotransduction. Despite this, the importance of the integration of biomechanical cues and PI3K-driven biochemical signals is underestimated. In this opinion article, we make the hypothesis that modeling of biomechanical cues is critical to understand PI3K oncogenicity. We also identify known/missing knowledge in terms of isoform specificity and molecular pathways of activation, knowledge that is needed for clinical applications.
Collapse
Affiliation(s)
- M Di-Luoffo
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, Institut National de la Santé et de la Recherche Médicale (Inserm) U1037, Centre National de la Recherche Scientifique (CNRS) U5071, Toulouse, France; Laboratoire D'analyse et D'architectures Des Systems (LAAS)-CNRS (Centre National de la Recherche Scientifique), Toulouse, France
| | - Z Ben-Meriem
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, Institut National de la Santé et de la Recherche Médicale (Inserm) U1037, Centre National de la Recherche Scientifique (CNRS) U5071, Toulouse, France; Laboratoire D'analyse et D'architectures Des Systems (LAAS)-CNRS (Centre National de la Recherche Scientifique), Toulouse, France
| | - P Lefebvre
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, Institut National de la Santé et de la Recherche Médicale (Inserm) U1037, Centre National de la Recherche Scientifique (CNRS) U5071, Toulouse, France; Laboratoire D'analyse et D'architectures Des Systems (LAAS)-CNRS (Centre National de la Recherche Scientifique), Toulouse, France
| | - M Delarue
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, Institut National de la Santé et de la Recherche Médicale (Inserm) U1037, Centre National de la Recherche Scientifique (CNRS) U5071, Toulouse, France; Laboratoire D'analyse et D'architectures Des Systems (LAAS)-CNRS (Centre National de la Recherche Scientifique), Toulouse, France
| | - J Guillermet-Guibert
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Université de Toulouse, Institut National de la Santé et de la Recherche Médicale (Inserm) U1037, Centre National de la Recherche Scientifique (CNRS) U5071, Toulouse, France; TouCAN (Laboratoire d'Excellence Toulouse Cancer), Toulouse, France.
| |
Collapse
|
30
|
Soriano O, Alcón-Pérez M, Vicente-Manzanares M, Castellano E. The Crossroads between RAS and RHO Signaling Pathways in Cellular Transformation, Motility and Contraction. Genes (Basel) 2021; 12:genes12060819. [PMID: 34071831 PMCID: PMC8229961 DOI: 10.3390/genes12060819] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023] Open
Abstract
Ras and Rho proteins are GTP-regulated molecular switches that control multiple signaling pathways in eukaryotic cells. Ras was among the first identified oncogenes, and it appears mutated in many forms of human cancer. It mainly promotes proliferation and survival through the MAPK pathway and the PI3K/AKT pathways, respectively. However, the myriad proteins close to the plasma membrane that activate or inhibit Ras make it a major regulator of many apparently unrelated pathways. On the other hand, Rho is weakly oncogenic by itself, but it critically regulates microfilament dynamics; that is, actin polymerization, disassembly and contraction. Polymerization is driven mainly by the Arp2/3 complex and formins, whereas contraction depends on myosin mini-filament assembly and activity. These two pathways intersect at numerous points: from Ras-dependent triggering of Rho activators, some of which act through PI3K, to mechanical feedback driven by actomyosin action. Here, we describe the main points of connection between the Ras and Rho pathways as they coordinately drive oncogenic transformation. We emphasize the biochemical crosstalk that drives actomyosin contraction driven by Ras in a Rho-dependent manner. We also describe possible routes of mechanical feedback through which myosin II activation may control Ras/Rho activation.
Collapse
Affiliation(s)
- Olga Soriano
- Tumor Biophysics Laboratory, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain;
| | - Marta Alcón-Pérez
- Tumour-Stroma Signalling Laboratory, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain;
| | - Miguel Vicente-Manzanares
- Tumor Biophysics Laboratory, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain;
- Correspondence: (M.V.-M.); (E.C.)
| | - Esther Castellano
- Tumour-Stroma Signalling Laboratory, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain;
- Correspondence: (M.V.-M.); (E.C.)
| |
Collapse
|
31
|
A junctional PACSIN2/EHD4/MICAL-L1 complex coordinates VE-cadherin trafficking for endothelial migration and angiogenesis. Nat Commun 2021; 12:2610. [PMID: 33972531 PMCID: PMC8110786 DOI: 10.1038/s41467-021-22873-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 03/31/2021] [Indexed: 11/24/2022] Open
Abstract
Angiogenic sprouting relies on collective migration and coordinated rearrangements of endothelial leader and follower cells. VE-cadherin-based adherens junctions have emerged as key cell-cell contacts that transmit forces between cells and trigger signals during collective cell migration in angiogenesis. However, the underlying molecular mechanisms that govern these processes and their functional importance for vascular development still remain unknown. We previously showed that the F-BAR protein PACSIN2 is recruited to tensile asymmetric adherens junctions between leader and follower cells. Here we report that PACSIN2 mediates the formation of endothelial sprouts during angiogenesis by coordinating collective migration. We show that PACSIN2 recruits the trafficking regulators EHD4 and MICAL-L1 to the rear end of asymmetric adherens junctions to form a recycling endosome-like tubular structure. The junctional PACSIN2/EHD4/MICAL-L1 complex controls local VE-cadherin trafficking and thereby coordinates polarized endothelial migration and angiogenesis. Our findings reveal a molecular event at force-dependent asymmetric adherens junctions that occurs during the tug-of-war between endothelial leader and follower cells, and allows for junction-based guidance during collective migration in angiogenesis. Communication between endothelial leader and follower cells during collective cell migration is crucial for vascular development. Here, the authors show that PACSIN2 guides collective cell migration and angiogenesis by recruiting a protein trafficking complex to asymmetric cell-cell junctions, controlling local junction plasticity.
Collapse
|
32
|
Mechanosensation and Mechanotransduction by Lymphatic Endothelial Cells Act as Important Regulators of Lymphatic Development and Function. Int J Mol Sci 2021; 22:ijms22083955. [PMID: 33921229 PMCID: PMC8070425 DOI: 10.3390/ijms22083955] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Our understanding of the function and development of the lymphatic system is expanding rapidly due to the identification of specific molecular markers and the availability of novel genetic approaches. In connection, it has been demonstrated that mechanical forces contribute to the endothelial cell fate commitment and play a critical role in influencing lymphatic endothelial cell shape and alignment by promoting sprouting, development, maturation of the lymphatic network, and coordinating lymphatic valve morphogenesis and the stabilization of lymphatic valves. However, the mechanosignaling and mechanotransduction pathways involved in these processes are poorly understood. Here, we provide an overview of the impact of mechanical forces on lymphatics and summarize the current understanding of the molecular mechanisms involved in the mechanosensation and mechanotransduction by lymphatic endothelial cells. We also discuss how these mechanosensitive pathways affect endothelial cell fate and regulate lymphatic development and function. A better understanding of these mechanisms may provide a deeper insight into the pathophysiology of various diseases associated with impaired lymphatic function, such as lymphedema and may eventually lead to the discovery of novel therapeutic targets for these conditions.
Collapse
|
33
|
Organismal roles for the PI3Kα and β isoforms: their specificity, redundancy or cooperation is context-dependent. Biochem J 2021; 478:1199-1225. [DOI: 10.1042/bcj20210004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/16/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023]
Abstract
PI3Ks are important lipid kinases that produce phosphoinositides phosphorylated in position 3 of the inositol ring. There are three classes of PI3Ks: class I PI3Ks produce PIP3 at plasma membrane level. Although D. melanogaster and C. elegans have only one form of class I PI3K, vertebrates have four class I PI3Ks called isoforms despite being encoded by four different genes. Hence, duplication of these genes coincides with the acquisition of coordinated multi-organ development. Of the class I PI3Ks, PI3Kα and PI3Kβ, encoded by PIK3CA and PIK3CB, are ubiquitously expressed. They present similar putative protein domains and share PI(4,5)P2 lipid substrate specificity. Fifteen years after publication of their first isoform-selective pharmacological inhibitors and genetically engineered mouse models (GEMMs) that mimic their complete and specific pharmacological inhibition, we review the knowledge gathered in relation to the redundant and selective roles of PI3Kα and PI3Kβ. Recent data suggest that, further to their redundancy, they cooperate for the integration of organ-specific and context-specific signal cues, to orchestrate organ development, physiology, and disease. This knowledge reinforces the importance of isoform-selective inhibitors in clinical settings.
Collapse
|
34
|
Moore NS, Mans RA, McCauley MK, Allgood CS, Barksdale KA. Critical Effects on Akt Signaling in Adult Zebrafish Brain Following Alterations in Light Exposure. Cells 2021; 10:cells10030637. [PMID: 33809219 PMCID: PMC8000057 DOI: 10.3390/cells10030637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 11/16/2022] Open
Abstract
Evidence from human and animal studies indicate that disrupted light cycles leads to alterations of the sleep state, poor cognition, and the risk of developing neuroinflammatory and generalized health disorders. Zebrafish exhibit a diurnal circadian rhythm and are an increasingly popular model in studies of neurophysiology and neuropathophysiology. Here, we investigate the effect of alterations in light cycle on the adult zebrafish brain: we measured the effect of altered, unpredictable light exposure in adult zebrafish telencephalon, homologous to mammalian hippocampus, and the optic tectum, a significant visual processing center with extensive telencephalon connections. The expression of heat shock protein-70 (HSP70), an important cell stress mediator, was significantly decreased in optic tectum of adult zebrafish brain following four days of altered light exposure. Further, pSer473-Akt (protein kinase B) was significantly reduced in telencephalon following light cycle alteration, and pSer9-GSK3β (glycogen synthase kinase-3β) was significantly reduced in both the telencephalon and optic tectum of light-altered fish. Animals exposed to five minutes of environmental enrichment showed significant increase in pSer473Akt, which was significantly attenuated by four days of altered light exposure. These data show for the first time that unpredictable light exposure alters HSP70 expression and dysregulates Akt-GSK3β signaling in the adult zebrafish brain.
Collapse
|
35
|
Chaudhuri P, Smith AH, Putta P, Graham LM, Rosenbaum MA. P110α and P110δ catalytic subunits of PI3 kinase regulate lysophosphatidylcholine-induced TRPC6 externalization. Am J Physiol Cell Physiol 2021; 320:C731-C741. [PMID: 33625929 DOI: 10.1152/ajpcell.00425.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Lipid oxidation products, including lysophosphatidylcholine (lysoPC) inhibit endothelial cell (EC) migration in vitro and impair EC healing of arterial injuries in vivo, in part by activating phosphatidylinositol 3-kinase (PI3K), which increases the externalization of canonical transient receptor potential 6 (TRPC6) channels and the subsequent increase in intracellular calcium. Inhibition of PI3K is a potential method to decrease TRPC6 activation and restore migration, but PI3K is involved in multiple intracellular signaling pathways and has multiple downstream effectors. The goal of this study is to identify the specific p110 catalytic subunit isoforms responsible for lysoPC-induced TRPC6 externalization to identify a target for intervention while minimizing impact on alternative signaling pathways. Down-regulation of the p110α and p110δ isoforms, but not the p110β or p110γ isoforms, with small interfering RNA significantly decreased phosphatidylinositol (3,4,5)-trisphosphate production and TRPC6 externalization, and significantly improved EC migration in the presence of lysoPC. These results identify an additional role of p110α in EC and reveal for the first time a specific role of p110δ in EC, providing a foundation for subsequent in vivo studies to investigate the impact of p110 isoform inhibition on arterial healing after injury.
Collapse
Affiliation(s)
- Pinaki Chaudhuri
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio
| | - Andrew H Smith
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio.,Department of Vascular Surgery, Cleveland Clinic, Cleveland, Ohio
| | - Priya Putta
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio
| | - Linda M Graham
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio.,Department of Vascular Surgery, Cleveland Clinic, Cleveland, Ohio
| | - Michael A Rosenbaum
- Surgical Service, Louis B. Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio
| |
Collapse
|
36
|
Stepanova D, Byrne HM, Maini PK, Alarcón T. A multiscale model of complex endothelial cell dynamics in early angiogenesis. PLoS Comput Biol 2021; 17:e1008055. [PMID: 33411727 PMCID: PMC7817011 DOI: 10.1371/journal.pcbi.1008055] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 01/20/2021] [Accepted: 11/19/2020] [Indexed: 12/30/2022] Open
Abstract
We introduce a hybrid two-dimensional multiscale model of angiogenesis, the process by which endothelial cells (ECs) migrate from a pre-existing vascular bed in response to local environmental cues and cell-cell interactions, to create a new vascular network. Recent experimental studies have highlighted a central role of cell rearrangements in the formation of angiogenic networks. Our model accounts for this phenomenon via the heterogeneous response of ECs to their microenvironment. These cell rearrangements, in turn, dynamically remodel the local environment. The model reproduces characteristic features of angiogenic sprouting that include branching, chemotactic sensitivity, the brush border effect, and cell mixing. These properties, rather than being hardwired into the model, emerge naturally from the gene expression patterns of individual cells. After calibrating and validating our model against experimental data, we use it to predict how the structure of the vascular network changes as the baseline gene expression levels of the VEGF-Delta-Notch pathway, and the composition of the extracellular environment, vary. In order to investigate the impact of cell rearrangements on the vascular network structure, we introduce the mixing measure, a scalar metric that quantifies cell mixing as the vascular network grows. We calculate the mixing measure for the simulated vascular networks generated by ECs of different lineages (wild type cells and mutant cells with impaired expression of a specific receptor). Our results show that the time evolution of the mixing measure is directly correlated to the generic features of the vascular branching pattern, thus, supporting the hypothesis that cell rearrangements play an essential role in sprouting angiogenesis. Furthermore, we predict that lower cell rearrangement leads to an imbalance between branching and sprout elongation. Since the computation of this statistic requires only individual cell trajectories, it can be computed for networks generated in biological experiments, making it a potential biomarker for pathological angiogenesis. Angiogenesis, the process by which new blood vessels are formed by sprouting from the pre-existing vascular bed, plays a key role in both physiological and pathological processes, including tumour growth. The structure of a growing vascular network is determined by the coordinated behaviour of endothelial cells in response to various signalling cues. Recent experimental studies have highlighted the importance of cell rearrangements as a driver for sprout elongation. However, the functional role of this phenomenon remains unclear. We formulate a new multiscale model of angiogenesis which, by accounting explicitly for the complex dynamics of endothelial cells within growing angiogenic sprouts, is able to reproduce generic features of angiogenic structures (branching, chemotactic sensitivity, cell mixing, etc.) as emergent properties of its dynamics. We validate our model against experimental data and then use it to quantify the phenomenon of cell mixing in vascular networks generated by endothelial cells of different lineages. Our results show that there is a direct correlation between the time evolution of cell mixing in a growing vascular network and its branching structure, thus paving the way for understanding the functional role of cell rearrangements in angiogenesis.
Collapse
Affiliation(s)
- Daria Stepanova
- Centre de Recerca Matemàtica, Bellaterra (Barcelona), Spain
- Departament de Matemàtiques, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
- * E-mail:
| | - Helen M. Byrne
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, UK
| | - Philip K. Maini
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, UK
| | - Tomás Alarcón
- Centre de Recerca Matemàtica, Bellaterra (Barcelona), Spain
- Departament de Matemàtiques, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Barcelona Graduate School of Mathematics (BGSMath), Barcelona, Spain
| |
Collapse
|
37
|
Probing the Effects of the FGFR-Inhibitor Derazantinib on Vascular Development in Zebrafish Embryos. Pharmaceuticals (Basel) 2020; 14:ph14010025. [PMID: 33396726 PMCID: PMC7824571 DOI: 10.3390/ph14010025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 11/24/2022] Open
Abstract
Angiogenesis is a fundamental developmental process and a hallmark of cancer progression. Receptor tyrosine kinases (RTK) are targets for cancer therapy which may include their action as anti-angiogenic agents. Derazantinib (DZB) is an inhibitor of the fibroblast growth factor receptors (FGFRs) 1–3 as well as other kinase targets including vascular endothelial growth factor receptor 2 (VEGFR2), colony stimulating factor-1 receptor (CSF1R) and platelet-derived growth factor beta receptor (PDGFRbeta). This study aimed to investigate the effect of DZB on blood vessel morphogenesis and to compare its activity to known specific FGFR and VEGFR inhibitors. For this purpose, we used the developing vasculature in the zebrafish embryo as a model system for angiogenesis in vivo. We show that DZB interferes with multiple angiogenic processes that are linked to FGF and VEGF signalling, revealing a potential dual role for DZB as a potent anti-angiogenic treatment.
Collapse
|
38
|
Jones EAV, Graupera M, van Buul JD, Huveneers S. Editorial: Endothelial Dynamics in Health and Disease. Front Physiol 2020; 11:611117. [PMID: 33329063 PMCID: PMC7711136 DOI: 10.3389/fphys.2020.611117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 10/20/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Elizabeth A V Jones
- Centre for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium.,Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Mariona Graupera
- Vascular Biology and Signalling Group, ProCURE, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.,CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Jaap D van Buul
- Sanquin Research and Landsteiner Laboratory, Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Stephan Huveneers
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
39
|
Wang S, Wang R, Li GQ, Cho JL, Deng Y, Li Y. Myosin light chain kinase mediates intestinal barrier dysfunction following simulated microgravity based on proteomic strategy. J Proteomics 2020; 231:104001. [PMID: 33035716 DOI: 10.1016/j.jprot.2020.104001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/25/2020] [Accepted: 09/29/2020] [Indexed: 01/30/2023]
Abstract
Microgravity induces injury of intestinal barrier. However, the underlying mechanism remains unclear. The present study aimed to investigate the pathological change of intestinal mucosa induced by long term simulated microgravity and to explore its etiological mechanism using a proteomic approach. The well accepted tail-suspended rat model was used to simulate microgravity. The damage of rat small intestine was evaluated via histological and molecular test, and a label-free comparative proteomic strategy was used to determine the molecular mechanism. Simulated microgravity for 21 days damaged intestine barrier with decreased numbers of the goblet cells, large intercellular space, and down-regulated adhesion molecules, accompanied by increased intestinal permeability. Proteomic analysis identified 416 differentially expressed proteins and showed simulated microgravity dramatically down-regulated the adhesion molecules and deteriorated several pathways for metabolism, focal adhesion, and regulation of actin cytoskeleton. Western-blot analysis confirmed that myosin regulatory light chain (MLC) 12B was significantly down-regulated, while rho-associated protein kinase, myosin light chain kinase (MLCK), and phosphorylated MLC were dramatically up-regulated. Taken together, these data reveal that down-regulation of adhesion molecules and MLCK dependent up-regulation MLC phosphorylation mediate intestinal barrier dysfunction during simulated microgravity injury. Our results also indicate that regulation of epithelial MLCK is a potential target for the therapeutic treatment of microgravity injury.
Collapse
Affiliation(s)
- Shibo Wang
- School of Life Science, Beijing Institute of Technology, No.5 Zhongguangcun South Street, Haidian District, Beijing 100081, China
| | - Rui Wang
- School of Life Science, Beijing Institute of Technology, No.5 Zhongguangcun South Street, Haidian District, Beijing 100081, China
| | - George Q Li
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia
| | - Jun-Lae Cho
- Centre for Advanced Food Enginomics, School of Chemical and Biomolecular Engineering, University of Sydney, NSW 2006, Australia
| | - Yulin Deng
- School of Life Science, Beijing Institute of Technology, No.5 Zhongguangcun South Street, Haidian District, Beijing 100081, China
| | - Yujuan Li
- School of Life Science, Beijing Institute of Technology, No.5 Zhongguangcun South Street, Haidian District, Beijing 100081, China.
| |
Collapse
|
40
|
Fonseca CG, Barbacena P, Franco CA. Endothelial cells on the move: dynamics in vascular morphogenesis and disease. VASCULAR BIOLOGY 2020; 2:H29-H43. [PMID: 32935077 PMCID: PMC7487603 DOI: 10.1530/vb-20-0007] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/02/2020] [Indexed: 12/11/2022]
Abstract
The vascular system is a hierarchically organized network of blood vessels that play crucial roles in embryogenesis, homeostasis and disease. Blood vessels are built by endothelial cells – the cells lining the interior of blood vessels – through a process named vascular morphogenesis. Endothelial cells react to different biomechanical signals in their environment by adjusting their behavior to: (1) invade, proliferate and fuse to form new vessels (angiogenesis); (2) remodel, regress and establish a hierarchy in the network (patterning); and (3) maintain network stability (quiescence). Each step involves the coordination of endothelial cell differentiation, proliferation, polarity, migration, rearrangements and shape changes to ensure network integrity and an efficient barrier between blood and tissues. In this review, we highlighted the relevance and the mechanisms involving endothelial cell migration during different steps of vascular morphogenesis. We further present evidence on how impaired endothelial cell dynamics can contribute to pathology.
Collapse
Affiliation(s)
- Catarina G Fonseca
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Pedro Barbacena
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Claudio A Franco
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
41
|
Ma X, Uchida Y, Wei T, Liu C, Adams RH, Kubota Y, Gutkind JS, Mukouyama YS, Adelstein RS. Nonmuscle myosin 2 regulates cortical stability during sprouting angiogenesis. Mol Biol Cell 2020; 31:1974-1987. [PMID: 32583739 PMCID: PMC7543065 DOI: 10.1091/mbc.e20-03-0175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Among the three nonmuscle myosin 2 (NM2) paralogs, NM 2A and 2B, but not 2C, are detected in endothelial cells. To study the role of NM2 in vascular formation, we ablate NM2 in endothelial cells in mice. Ablating NM2A, but not NM2B, results in reduced blood vessel coverage and increased vascular branching in the developing mouse skin and coronary vasculature. NM2B becomes essential for vascular formation when NM2A expression is limited. Mice ablated for NM2B and one allele of NM2A develop vascular abnormalities similar to those in NM2A ablated mice. Using the embryoid body angiogenic sprouting assay in collagen gels reveals that NM2A is required for persistent angiogenic sprouting by stabilizing the endothelial cell cortex, and thereby preventing excessive branching and ensuring persistent migration of the endothelial sprouts. Mechanistically, NM2 promotes focal adhesion formation and cortical protrusion retraction during angiogenic sprouting. Further studies demonstrate the critical role of Rho kinase–activated NM2 signaling in the regulation of angiogenic sprouting in vitro and in vivo.
Collapse
Affiliation(s)
- Xuefei Ma
- Laboratory of Molecular Cardiology, National Institutes of Health, Bethesda, MD 20892-1762
| | - Yutaka Uchida
- Laboratory of Stem Cell and Neurovascular Biology, National Institutes of Health, Bethesda, MD 20892-1762
| | - Tingyi Wei
- Laboratory of Molecular Cardiology, National Institutes of Health, Bethesda, MD 20892-1762
| | - Chengyu Liu
- Transgenic Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1762
| | - Ralf H Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and Faculty of Medicine, University of Munster, D-48149 Munster, Germany
| | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo160-8582, Japan
| | - J Silvio Gutkind
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093
| | - Yoh-Suke Mukouyama
- Laboratory of Stem Cell and Neurovascular Biology, National Institutes of Health, Bethesda, MD 20892-1762
| | - Robert S Adelstein
- Laboratory of Molecular Cardiology, National Institutes of Health, Bethesda, MD 20892-1762
| |
Collapse
|
42
|
Vähätupa M, Järvinen TAH, Uusitalo-Järvinen H. Exploration of Oxygen-Induced Retinopathy Model to Discover New Therapeutic Drug Targets in Retinopathies. Front Pharmacol 2020; 11:873. [PMID: 32595503 PMCID: PMC7300227 DOI: 10.3389/fphar.2020.00873] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 05/27/2020] [Indexed: 12/11/2022] Open
Abstract
Oxygen-induced retinopathy (OIR) is a pure hypoxia-driven angiogenesis model and the most widely used model for ischemic retinopathies, such as retinopathy of prematurity (ROP), proliferative diabetic retinopathy (PDR), and retinal vein occlusion (RVO). OIR model has been used to test new potential anti-angiogenic factors for human diseases. We have recently performed the most comprehensive characterization of OIR by a relatively novel mass spectrometry (MS) technique, sequential window acquisition of all theoretical fragment ion mass spectra (SWATH-MS) proteomics and used genetically modified mice strains to identify novel molecular drug targets in angiogenic retinal diseases. We have confirmed the relevance of the identified molecular targets to human diseases by determining their expression pattern in neovascular membranes obtained from PDR and RVO patients. Based on our results, crystallins were the most prominent proteins induced by early hypoxic environment during the OIR, while actomyosin complex and Filamin A-R-Ras axis, that regulates vascular permeability of the angiogenic blood vessels, stood out at the peak of angiogenesis. Our results have revealed potential new therapeutic targets to address hypoxia-induced pathological angiogenesis and the associated vascular permeability in number of retinal diseases.
Collapse
Affiliation(s)
- Maria Vähätupa
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Tero A. H. Järvinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Orthopedics and Traumatology, Tampere University Hospital, Tampere, Finland
| | - Hannele Uusitalo-Järvinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Eye Centre, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
43
|
Martinez-Corral I, Zhang Y, Petkova M, Ortsäter H, Sjöberg S, Castillo SD, Brouillard P, Libbrecht L, Saur D, Graupera M, Alitalo K, Boon L, Vikkula M, Mäkinen T. Blockade of VEGF-C signaling inhibits lymphatic malformations driven by oncogenic PIK3CA mutation. Nat Commun 2020; 11:2869. [PMID: 32513927 PMCID: PMC7280302 DOI: 10.1038/s41467-020-16496-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 04/30/2020] [Indexed: 12/18/2022] Open
Abstract
Lymphatic malformations (LMs) are debilitating vascular anomalies presenting with large cysts (macrocystic) or lesions that infiltrate tissues (microcystic). Cellular mechanisms underlying LM pathology are poorly understood. Here we show that the somatic PIK3CAH1047R mutation, resulting in constitutive activation of the p110α PI3K, underlies both macrocystic and microcystic LMs in human. Using a mouse model of PIK3CAH1047R-driven LM, we demonstrate that both types of malformations arise due to lymphatic endothelial cell (LEC)-autonomous defects, with the developmental timing of p110α activation determining the LM subtype. In the postnatal vasculature, PIK3CAH1047R promotes LEC migration and lymphatic hypersprouting, leading to microcystic LMs that grow progressively in a vascular endothelial growth factor C (VEGF-C)-dependent manner. Combined inhibition of VEGF-C and the PI3K downstream target mTOR using Rapamycin, but neither treatment alone, promotes regression of lesions. The best therapeutic outcome for LM is thus achieved by co-inhibition of the upstream VEGF-C/VEGFR3 and the downstream PI3K/mTOR pathways. Lymphatic malformation (LM) is a debilitating often incurable vascular disease. Using a mouse model of LM driven by a disease-causative PIK3CA mutation, the authors show that vascular growth is dependent on the upstream lymphangiogenic VEGF-C signalling, permitting effective therapeutic intervention.
Collapse
Affiliation(s)
- Ines Martinez-Corral
- Uppsala University, Department of Immunology, Genetics and Pathology, Dag Hammarskjölds väg 20, 751 85, Uppsala, Sweden
| | - Yan Zhang
- Uppsala University, Department of Immunology, Genetics and Pathology, Dag Hammarskjölds väg 20, 751 85, Uppsala, Sweden
| | - Milena Petkova
- Uppsala University, Department of Immunology, Genetics and Pathology, Dag Hammarskjölds väg 20, 751 85, Uppsala, Sweden
| | - Henrik Ortsäter
- Uppsala University, Department of Immunology, Genetics and Pathology, Dag Hammarskjölds väg 20, 751 85, Uppsala, Sweden
| | - Sofie Sjöberg
- Uppsala University, Department of Immunology, Genetics and Pathology, Dag Hammarskjölds väg 20, 751 85, Uppsala, Sweden
| | - Sandra D Castillo
- Vascular Signaling Laboratory, Institut d´Investigació Biomèdica de Bellvitge (IDIBELL), 08908L´Hospitalet de Llobregat, Barcelona, Spain
| | - Pascal Brouillard
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium
| | - Louis Libbrecht
- Center for Vascular Anomalies, Division of Pathology, Cliniques universitaires Saint Luc, University of Louvain, 10 avenue Hippocrate, B-1200, Brussels, Belgium
| | - Dieter Saur
- Department of Internal Medicine 2, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, 81675, München, Germany
| | - Mariona Graupera
- Vascular Signaling Laboratory, Institut d´Investigació Biomèdica de Bellvitge (IDIBELL), 08908L´Hospitalet de Llobregat, Barcelona, Spain
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Biology Program, Biomedicum Helsinki, FIN-00014 University of Helsinki, Helsinki, Finland
| | - Laurence Boon
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium.,Center for Vascular Anomalies, Division of Plastic Surgery, Cliniques universitaires Saint Luc, University of Louvain, 10 avenue Hippocrate, B-1200, Brussels, Belgium
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium.,Walloon Excellence in Lifesciences and Biotechnology (WELBIO), University of Louvain, Brussels, Belgium
| | - Taija Mäkinen
- Uppsala University, Department of Immunology, Genetics and Pathology, Dag Hammarskjölds väg 20, 751 85, Uppsala, Sweden.
| |
Collapse
|
44
|
Campinho P, Vilfan A, Vermot J. Blood Flow Forces in Shaping the Vascular System: A Focus on Endothelial Cell Behavior. Front Physiol 2020; 11:552. [PMID: 32581842 PMCID: PMC7291788 DOI: 10.3389/fphys.2020.00552] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/30/2020] [Indexed: 01/16/2023] Open
Abstract
The endothelium is the cell monolayer that lines the interior of the blood vessels separating the vessel lumen where blood circulates, from the surrounding tissues. During embryonic development, endothelial cells (ECs) must ensure that a tight barrier function is maintained whilst dynamically adapting to the growing vascular tree that is being formed and remodeled. Blood circulation generates mechanical forces, such as shear stress and circumferential stretch that are directly acting on the endothelium. ECs actively respond to flow-derived mechanical cues by becoming polarized, migrating and changing neighbors, undergoing shape changes, proliferating or even leaving the tissue and changing identity. It is now accepted that coordinated changes at the single cell level drive fundamental processes governing vascular network morphogenesis such as angiogenic sprouting, network pruning, lumen formation, regulation of vessel caliber and stability or cell fate transitions. Here we summarize the cell biology and mechanics of ECs in response to flow-derived forces, discuss the latest advances made at the single cell level with particular emphasis on in vivo studies and highlight potential implications for vascular pathologies.
Collapse
Affiliation(s)
- Pedro Campinho
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Department of Development and Stem Cells, Université de Strasbourg, Illkirch, France
| | - Andrej Vilfan
- Department of Living Matter Physics, Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Department of Condensed Matter Physics, J. Stefan Institute, Ljubljana, Slovenia
| | - Julien Vermot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Department of Development and Stem Cells, Université de Strasbourg, Illkirch, France
- Department of Bioengineering, Imperial College London, London, United Kingdom
| |
Collapse
|
45
|
Figueiredo AM, Villacampa P, Diéguez-Hurtado R, José Lozano J, Kobialka P, Cortazar AR, Martinez-Romero A, Angulo-Urarte A, Franco CA, Claret M, Aransay AM, Adams RH, Carracedo A, Graupera M. Phosphoinositide 3-Kinase-Regulated Pericyte Maturation Governs Vascular Remodeling. Circulation 2020; 142:688-704. [PMID: 32466671 DOI: 10.1161/circulationaha.119.042354] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Pericytes regulate vessel stabilization and function, and their loss is associated with diseases such as diabetic retinopathy or cancer. Despite their physiological importance, pericyte function and molecular regulation during angiogenesis remain poorly understood. METHODS To decipher the transcriptomic programs of pericytes during angiogenesis, we crossed Pdgfrb(BAC)-CreERT2 mice into RiboTagflox/flox mice. Pericyte morphological changes were assessed in mural cell-specific R26-mTmG reporter mice, in which low doses of tamoxifen allowed labeling of single-cell pericytes at high resolution. To study the role of phosphoinositide 3-kinase (PI3K) signaling in pericyte biology during angiogenesis, we used genetic mouse models that allow selective inactivation of PI3Kα and PI3Kβ isoforms and their negative regulator phosphate and tensin homolog deleted on chromosome 10 (PTEN) in mural cells. RESULTS At the onset of angiogenesis, pericytes exhibit molecular traits of cell proliferation and activated PI3K signaling, whereas during vascular remodeling, pericytes upregulate genes involved in mature pericyte cell function, together with a remarkable decrease in PI3K signaling. Immature pericytes showed stellate shape and high proliferation, and mature pericytes were quiescent and elongated. Unexpectedly, we demonstrate that PI3Kβ, but not PI3Kα, regulates pericyte proliferation and maturation during vessel formation. Genetic PI3Kβ inactivation in pericytes triggered early pericyte maturation. Conversely, unleashing PI3K signaling by means of PTEN deletion delayed pericyte maturation. Pericyte maturation was necessary to undergo vessel remodeling during angiogenesis. CONCLUSIONS Our results identify new molecular and morphological traits associated with pericyte maturation and uncover PI3Kβ activity as a checkpoint to ensure appropriate vessel formation. In turn, our results may open new therapeutic opportunities to regulate angiogenesis in pathological processes through the manipulation of pericyte PI3Kβ activity.
Collapse
Affiliation(s)
- Ana M Figueiredo
- Vascular Biology and Signalling Group, ProCURE, Oncobell Program, Institut d´Investigació Biomèdica de Bellvitge (IDIBELL), Gran Via de l'Hospitalet 199, 08908 L´Hospitalet de Llobregat, Barcelona, Spain (A.M.F., P.V., P.K., A.M.-R., A.A.-U., M.G.)
| | - Pilar Villacampa
- Vascular Biology and Signalling Group, ProCURE, Oncobell Program, Institut d´Investigació Biomèdica de Bellvitge (IDIBELL), Gran Via de l'Hospitalet 199, 08908 L´Hospitalet de Llobregat, Barcelona, Spain (A.M.F., P.V., P.K., A.M.-R., A.A.-U., M.G.)
| | - Rodrigo Diéguez-Hurtado
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, and Faculty of Medicine, University of Münster, Germany (R.D.-H., R.H.A.)
| | - Juan José Lozano
- Bioinformatics Platform, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain (J.J.L.)
| | - Piotr Kobialka
- Vascular Biology and Signalling Group, ProCURE, Oncobell Program, Institut d´Investigació Biomèdica de Bellvitge (IDIBELL), Gran Via de l'Hospitalet 199, 08908 L´Hospitalet de Llobregat, Barcelona, Spain (A.M.F., P.V., P.K., A.M.-R., A.A.-U., M.G.)
| | - Ana Rosa Cortazar
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain (A.R.C., A.M.A., A.C.)
| | - Anabel Martinez-Romero
- Vascular Biology and Signalling Group, ProCURE, Oncobell Program, Institut d´Investigació Biomèdica de Bellvitge (IDIBELL), Gran Via de l'Hospitalet 199, 08908 L´Hospitalet de Llobregat, Barcelona, Spain (A.M.F., P.V., P.K., A.M.-R., A.A.-U., M.G.)
| | - Ana Angulo-Urarte
- Vascular Biology and Signalling Group, ProCURE, Oncobell Program, Institut d´Investigació Biomèdica de Bellvitge (IDIBELL), Gran Via de l'Hospitalet 199, 08908 L´Hospitalet de Llobregat, Barcelona, Spain (A.M.F., P.V., P.K., A.M.-R., A.A.-U., M.G.)
| | - Claudio A Franco
- CIBERONC (A.R.C., A.M.A., A.C., M.G.) and CIBERehd (A.M.A.), Instituto de Salud Carlos III, Madrid, Spain. Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal (C.A.F.)
| | - Marc Claret
- Neuronal Control of Metabolism Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (M.C.)
| | - Ana María Aransay
- CIBERONC (A.R.C., A.M.A., A.C., M.G.) and CIBERehd (A.M.A.), Instituto de Salud Carlos III, Madrid, Spain. Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal (C.A.F.)
| | - Ralf H Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, and Faculty of Medicine, University of Münster, Germany (R.D.-H., R.H.A.)
| | - Arkaitz Carracedo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain (A.R.C., A.M.A., A.C.)
| | - Mariona Graupera
- Vascular Biology and Signalling Group, ProCURE, Oncobell Program, Institut d´Investigació Biomèdica de Bellvitge (IDIBELL), Gran Via de l'Hospitalet 199, 08908 L´Hospitalet de Llobregat, Barcelona, Spain (A.M.F., P.V., P.K., A.M.-R., A.A.-U., M.G.)
| |
Collapse
|
46
|
Zhang G, Varkey M, Wang Z, Xie B, Hou R, Atala A. ECM concentration and cell‐mediated traction forces play a role in vascular network assembly in 3D bioprinted tissue. Biotechnol Bioeng 2020; 117:1148-1158. [DOI: 10.1002/bit.27250] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 12/05/2019] [Accepted: 12/12/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Guangliang Zhang
- Wake Forest School of Medicine Wake Forest Institute for Regenerative Medicine Winston‐Salem North Carolina
- Ruihua Affiliated Hospital of Soochow University Suzhou China
| | - Mathew Varkey
- Wake Forest School of Medicine Wake Forest Institute for Regenerative Medicine Winston‐Salem North Carolina
| | - Zhan Wang
- Wake Forest School of Medicine Wake Forest Institute for Regenerative Medicine Winston‐Salem North Carolina
| | - Beibei Xie
- Wake Forest School of Medicine Wake Forest Institute for Regenerative Medicine Winston‐Salem North Carolina
- Ruihua Affiliated Hospital of Soochow University Suzhou China
| | - Ruixing Hou
- Ruihua Affiliated Hospital of Soochow University Suzhou China
| | - Anthony Atala
- Wake Forest School of Medicine Wake Forest Institute for Regenerative Medicine Winston‐Salem North Carolina
| |
Collapse
|
47
|
Hiepen C, Jatzlau J, Hildebrandt S, Kampfrath B, Goktas M, Murgai A, Cuellar Camacho JL, Haag R, Ruppert C, Sengle G, Cavalcanti-Adam EA, Blank KG, Knaus P. BMPR2 acts as a gatekeeper to protect endothelial cells from increased TGFβ responses and altered cell mechanics. PLoS Biol 2019; 17:e3000557. [PMID: 31826007 PMCID: PMC6927666 DOI: 10.1371/journal.pbio.3000557] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 12/23/2019] [Accepted: 11/14/2019] [Indexed: 12/12/2022] Open
Abstract
Balanced transforming growth factor-beta (TGFβ)/bone morphogenetic protein (BMP)-signaling is essential for tissue formation and homeostasis. While gain in TGFβ signaling is often found in diseases, the underlying cellular mechanisms remain poorly defined. Here we show that the receptor BMP type 2 (BMPR2) serves as a central gatekeeper of this balance, highlighted by its deregulation in diseases such as pulmonary arterial hypertension (PAH). We show that BMPR2 deficiency in endothelial cells (ECs) does not abolish pan-BMP-SMAD1/5 responses but instead favors the formation of mixed-heteromeric receptor complexes comprising BMPR1/TGFβR1/TGFβR2 that enable enhanced cellular responses toward TGFβ. These include canonical TGFβ-SMAD2/3 and lateral TGFβ-SMAD1/5 signaling as well as formation of mixed SMAD complexes. Moreover, BMPR2-deficient cells express genes indicative of altered biophysical properties, including up-regulation of extracellular matrix (ECM) proteins such as fibrillin-1 (FBN1) and of integrins. As such, we identified accumulation of ectopic FBN1 fibers remodeled with fibronectin (FN) in junctions of BMPR2-deficient ECs. Ectopic FBN1 deposits were also found in proximity to contractile intimal cells in pulmonary artery lesions of BMPR2-deficient heritable PAH (HPAH) patients. In BMPR2-deficient cells, we show that ectopic FBN1 is accompanied by active β1-integrin highly abundant in integrin-linked kinase (ILK) mechano-complexes at cell junctions. Increased integrin-dependent adhesion, spreading, and actomyosin-dependent contractility facilitates the retrieval of active TGFβ from its latent fibrillin-bound depots. We propose that loss of BMPR2 favors endothelial-to-mesenchymal transition (EndMT) allowing cells of myo-fibroblastic character to create a vicious feed-forward process leading to hyperactivated TGFβ signaling. In summary, our findings highlight a crucial role for BMPR2 as a gatekeeper of endothelial homeostasis protecting cells from increased TGFβ responses and integrin-mediated mechano-transduction.
Collapse
Affiliation(s)
- Christian Hiepen
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Berlin, Germany
| | - Jerome Jatzlau
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies, Charité Universitätsmedizin Berlin, Germany
| | - Susanne Hildebrandt
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies, Charité Universitätsmedizin Berlin, Germany
| | - Branka Kampfrath
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Berlin, Germany
| | - Melis Goktas
- Max Planck Institute of Colloids and Interfaces, Mechano(bio)chemistry, Potsdam, Germany
| | - Arunima Murgai
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies, Charité Universitätsmedizin Berlin, Germany
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | - Rainer Haag
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Berlin, Germany
| | - Clemens Ruppert
- Universities of Giessen and Marburg Lung Center (UGMLC), Medical Clinic II, Justus Liebig University, Giessen, Germany
| | - Gerhard Sengle
- University of Cologne, Center for Biochemistry, Medical Faculty, Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | | | - Kerstin G. Blank
- Max Planck Institute of Colloids and Interfaces, Mechano(bio)chemistry, Potsdam, Germany
| | - Petra Knaus
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Berlin, Germany
| |
Collapse
|
48
|
Kobialka P, Graupera M. Revisiting PI3-kinase signalling in angiogenesis. VASCULAR BIOLOGY (BRISTOL, ENGLAND) 2019; 1:H125-H134. [PMID: 32923964 PMCID: PMC7439845 DOI: 10.1530/vb-19-0025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 11/29/2019] [Indexed: 12/12/2022]
Abstract
PI3Ks belong to a family of lipid kinases that comprises eight isoforms. They phosphorylate the third position of the inositol ring present in phosphatidylinositol lipids and, in turn, activate a broad range of proteins. The PI3K pathway regulates primal cellular responses, including proliferation, migration, metabolism and vesicular traffic. These processes are fundamental for endothelial cell function during sprouting angiogenesis, the most common type of blood vessel formation. Research in animal models has revealed key functions of PI3K family members and downstream effectors in angiogenesis. In addition, perturbations in PI3K signalling have been associated with aberrant vascular growth including tumour angiogenesis and vascular malformations. Together, this highlights that endothelial cells are uniquely sensitive to fluctuations in PI3K signalling. Here, we aim to update the current view on this important signalling cue in physiological and pathological blood vessel growth.
Collapse
Affiliation(s)
- Piotr Kobialka
- Vascular Biology and Signalling Group, Program Against Cancer Therapeutic Resistance (ProCURE), Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat-Barcelona, Spain
- ProCure Research Program, Instituto de Salud Carlos III, Madrid, Spain
- OncoBell Program, Instituto de Salud Carlos III, Madrid, Spain
| | - Mariona Graupera
- Vascular Biology and Signalling Group, Program Against Cancer Therapeutic Resistance (ProCURE), Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat-Barcelona, Spain
- ProCure Research Program, Instituto de Salud Carlos III, Madrid, Spain
- OncoBell Program, Instituto de Salud Carlos III, Madrid, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
49
|
Carvajal S, Perramón M, Casals G, Oró D, Ribera J, Morales-Ruiz M, Casals E, Casado P, Melgar-Lesmes P, Fernández-Varo G, Cutillas P, Puntes V, Jiménez W. Cerium Oxide Nanoparticles Protect against Oxidant Injury and Interfere with Oxidative Mediated Kinase Signaling in Human-Derived Hepatocytes. Int J Mol Sci 2019; 20:ijms20235959. [PMID: 31783479 PMCID: PMC6928882 DOI: 10.3390/ijms20235959] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 12/15/2022] Open
Abstract
Cerium oxide nanoparticles (CeO2NPs) possess powerful antioxidant properties, thus emerging as a potential therapeutic tool in non-alcoholic fatty liver disease (NAFLD) progression, which is characterized by a high presence of reactive oxygen species (ROS). The aim of this study was to elucidate whether CeO2NPs can prevent or attenuate oxidant injury in the hepatic human cell line HepG2 and to investigate the mechanisms involved in this phenomenon. The effect of CeO2NPs on cell viability and ROS scavenging was determined, the differential expression of pro-inflammatory and oxidative stress-related genes was analyzed, and a proteomic analysis was performed to assess the impact of CeO2NPs on cell phosphorylation in human hepatic cells under oxidative stress conditions. CeO2NPs did not modify HepG2 cell viability in basal conditions but reduced H2O2- and lipopolysaccharide (LPS)-induced cell death and prevented H2O2-induced overexpression of MPO, PTGS1 and iNOS. Phosphoproteomic analysis showed that CeO2NPs reverted the H2O2-mediated increase in the phosphorylation of peptides related to cellular proliferation, stress response, and gene transcription regulation, and interfered with H2O2 effects on mTOR, MAPK/ERK, CK2A1 and PKACA signaling pathways. In conclusion, CeO2NPs protect HepG2 cells from cell-induced oxidative damage, reducing ROS generation and inflammatory gene expression as well as regulation of kinase-driven cell survival pathways.
Collapse
Affiliation(s)
- Silvia Carvajal
- Biochemistry and Molecular Genetics Service, Hospital Clínic Universitari, IDIBAPS, CIBERehd, 08036 Barcelona, Spain; (S.C.); (M.P.); (D.O.); (J.R.); (M.M.-R.); (P.M.-L.); (G.F.-V.); (W.J.)
| | - Meritxell Perramón
- Biochemistry and Molecular Genetics Service, Hospital Clínic Universitari, IDIBAPS, CIBERehd, 08036 Barcelona, Spain; (S.C.); (M.P.); (D.O.); (J.R.); (M.M.-R.); (P.M.-L.); (G.F.-V.); (W.J.)
| | - Gregori Casals
- Biochemistry and Molecular Genetics Service, Hospital Clínic Universitari, IDIBAPS, CIBERehd, 08036 Barcelona, Spain; (S.C.); (M.P.); (D.O.); (J.R.); (M.M.-R.); (P.M.-L.); (G.F.-V.); (W.J.)
- Correspondence: ; Tel.: +34-932275400-2667
| | - Denise Oró
- Biochemistry and Molecular Genetics Service, Hospital Clínic Universitari, IDIBAPS, CIBERehd, 08036 Barcelona, Spain; (S.C.); (M.P.); (D.O.); (J.R.); (M.M.-R.); (P.M.-L.); (G.F.-V.); (W.J.)
| | - Jordi Ribera
- Biochemistry and Molecular Genetics Service, Hospital Clínic Universitari, IDIBAPS, CIBERehd, 08036 Barcelona, Spain; (S.C.); (M.P.); (D.O.); (J.R.); (M.M.-R.); (P.M.-L.); (G.F.-V.); (W.J.)
| | - Manuel Morales-Ruiz
- Biochemistry and Molecular Genetics Service, Hospital Clínic Universitari, IDIBAPS, CIBERehd, 08036 Barcelona, Spain; (S.C.); (M.P.); (D.O.); (J.R.); (M.M.-R.); (P.M.-L.); (G.F.-V.); (W.J.)
- Department of Biomedicine, University of Barcelona, 08036 Barcelona, Spain
| | - Eudald Casals
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China;
| | - Pedro Casado
- Cell Signalling and Proteomics Group, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (P.C.); (P.C.)
| | - Pedro Melgar-Lesmes
- Biochemistry and Molecular Genetics Service, Hospital Clínic Universitari, IDIBAPS, CIBERehd, 08036 Barcelona, Spain; (S.C.); (M.P.); (D.O.); (J.R.); (M.M.-R.); (P.M.-L.); (G.F.-V.); (W.J.)
- Department of Biomedicine, University of Barcelona, 08036 Barcelona, Spain
| | - Guillermo Fernández-Varo
- Biochemistry and Molecular Genetics Service, Hospital Clínic Universitari, IDIBAPS, CIBERehd, 08036 Barcelona, Spain; (S.C.); (M.P.); (D.O.); (J.R.); (M.M.-R.); (P.M.-L.); (G.F.-V.); (W.J.)
- Department of Biomedicine, University of Barcelona, 08036 Barcelona, Spain
| | - Pedro Cutillas
- Cell Signalling and Proteomics Group, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK; (P.C.); (P.C.)
| | - Victor Puntes
- Institut Català de Recerca i Estudis Avançats, (ICREA), 08010 Barcelona, Spain;
- Vall d’Hebron Insitute of Research (VHIR), 08035 Barcelona, Spain
- Institut Català de Nanociència i Nanotecnologia (ICN2), 08193 Bellaterra, Spain
| | - Wladimiro Jiménez
- Biochemistry and Molecular Genetics Service, Hospital Clínic Universitari, IDIBAPS, CIBERehd, 08036 Barcelona, Spain; (S.C.); (M.P.); (D.O.); (J.R.); (M.M.-R.); (P.M.-L.); (G.F.-V.); (W.J.)
- Department of Biomedicine, University of Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
50
|
Duchemin AL, Vignes H, Vermot J, Chow R. Mechanotransduction in cardiovascular morphogenesis and tissue engineering. Curr Opin Genet Dev 2019; 57:106-116. [PMID: 31586750 DOI: 10.1016/j.gde.2019.08.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/06/2019] [Accepted: 08/10/2019] [Indexed: 12/13/2022]
Abstract
Cardiovascular morphogenesis involves cell behavior and cell identity changes that are activated by mechanical forces associated with heart function. Recently, advances in in vivo imaging, methods to alter blood flow, and computational modelling have greatly advanced our understanding of how forces produced by heart contraction and blood flow impact different morphogenetic processes. Meanwhile, traditional genetic approaches have helped to elucidate how endothelial cells respond to forces at the cellular and molecular level. Here we discuss the principles of endothelial mechanosensitity and their interplay with cellular processes during cardiovascular morphogenesis. We then discuss their implications in the field of cardiovascular tissue engineering.
Collapse
Affiliation(s)
- Anne-Laure Duchemin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France
| | - Helene Vignes
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France
| | - Julien Vermot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France.
| | - Renee Chow
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France
| |
Collapse
|