1
|
Lin L, Ruan Z, Li Y, Qiu H, Deng C, Qian L, Cui W, Tang W, Yang Z, Cheng Y, Liang Y, Su S. Brain Iron Alteration in Pediatric Tourette Syndrome: A Quantitative Susceptibility Mapping Study. Eur J Neurol 2025; 32:e70054. [PMID: 39895224 PMCID: PMC11788536 DOI: 10.1111/ene.70054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/30/2024] [Accepted: 01/09/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND The cortico-striato-thalamo-cortical circuits play a crucial role in the pathogenesis of Tourette syndrome (TS). While iron deficiency has been reported in adult TS, the iron content in pediatric TS remains poorly understood. This study aims to quantitatively assess whole-brain iron deposition in pediatric TS compared to typically developing (TD) children using quantitative susceptibility mapping (QSM). METHODS In this prospective study, we recruited 50 children with a clinical diagnosis of TS and 50 age- and gender-matched TD controls. Whole-brain images were acquired using 3D T1 and multi-echo gradient-recalled echo sequences. QSM maps were generated using the STISuite toolbox. After normalizing the QSM maps to Montreal Neurological Institute space, voxel-based analysis was applied to compare between-group differences in iron content. Additionally, we evaluated the relationship between iron content and tic severity in TS children using the Pearson's correlation test. RESULTS Compared to TD children, those with TS exhibited iron deficiency in the right anterior cingulum (pFDR < 0.001). Conversely, increased QSM values were observed in the bilateral putamen of TS children (pFDR < 0.001). Notably, QSM values in the left putamen showed a significant negative correlation with tic severity (p = 0.044). CONCLUSIONS Our findings suggest that disturbed brain iron homeostasis in specific regions is associated with pediatric TS. These results reinforce the importance of the cortico-striato-thalamo-cortical circuits in TS pathogenesis and highlight the potential role of iron dysregulation. Furthermore, our study demonstrates that QSM could serve as a valuable auxiliary biomarker for diagnosing and potentially monitoring pediatric TS.
Collapse
Affiliation(s)
- Liping Lin
- Department of RadiologyThe First Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhouChina
| | - Zhibin Ruan
- Department of RadiologyThe First Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhouChina
| | - Yufen Li
- Department of RadiologyThe First Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhouChina
| | - Huaqiong Qiu
- Department of RadiologyThe First Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhouChina
| | - Chengfen Deng
- Department of RadiologyThe First Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhouChina
| | - Long Qian
- Department of Biomedical Engineering, College of EngineeringPeking UniversityBeijingChina
| | - Wei Cui
- Department of Biomedical Engineering, College of EngineeringPeking UniversityBeijingChina
| | - Wen Tang
- Department of PediatricThe First Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhouChina
| | - Zhiyun Yang
- Department of RadiologyThe First Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhouChina
| | - Yanglei Cheng
- Department of EndocrineThe First Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhouChina
| | - Yujian Liang
- Department of PediatricThe First Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhouChina
| | - Shu Su
- Department of RadiologyThe First Affiliated Hospital, Sun Yat‐Sen UniversityGuangzhouChina
| |
Collapse
|
2
|
Ijomone OK, Oria RS, Ijomone OM, Aschner M, Bornhorst J. Dopaminergic Perturbation in the Aetiology of Neurodevelopmental Disorders. Mol Neurobiol 2025; 62:2420-2434. [PMID: 39110391 PMCID: PMC11772124 DOI: 10.1007/s12035-024-04418-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 08/01/2024] [Indexed: 01/28/2025]
Abstract
Brain development may be influenced by both genetic and environmental factors, with potential consequences that may last through the lifespan. Alterations during neurogenesis are linked to neurodevelopmental cognitive disorders. Many neurotransmitters and their systems play a vital role in brain development, as most are present prior to synaptogenesis, and they are involved in the aetiology of many neurodevelopmental disorders. For instance, dopamine (DA) receptor expression begins at the early stages of development and matures at adolescence. The long maturation period suggests how important it is for the stabilisation and integration of neural circuits. DA and dopaminergic (DAergic) system perturbations have been implicated in the pathogenesis of several neurological and neuropsychiatric disorders. The DAergic system controls key cognitive and behavioural skills including emotional and motivated behaviour through DA as a neurotransmitter and through the DA neuron projections to major parts of the brain. In this review, we summarise the current understanding of the DAergic system's influence on neurodevelopment and its involvement in the aetiology and progression of major disorders of the developing brain including autism, schizophrenia, attention deficit hyperactivity disorder, down syndrome, and fragile X syndrome.
Collapse
Affiliation(s)
- Olayemi K Ijomone
- Food Chemistry, Faculty of Mathematics and Natural Science, University of Wuppertal, Wuppertal, Germany.
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Laje Road, Ondo, Ondo State, Nigeria.
- Department of Anatomy, University of Medical Sciences, Laje Road, Ondo, Ondo State, Nigeria.
| | - Rademene Sunday Oria
- Department of Anatomy, University of Cross River State, Okuku Campus, Cross River, Nigeria
| | - Omamuyovwi M Ijomone
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Laje Road, Ondo, Ondo State, Nigeria.
- Department of Anatomy, University of Medical Sciences, Laje Road, Ondo, Ondo State, Nigeria.
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Julia Bornhorst
- Food Chemistry, Faculty of Mathematics and Natural Science, University of Wuppertal, Wuppertal, Germany
| |
Collapse
|
3
|
Zhang R, Liu Y, Zhang Z, Luo R, Lv B. Interpretable Machine Learning Model for Predicting Postpartum Depression: Retrospective Study. JMIR Med Inform 2025; 13:e58649. [PMID: 39864955 PMCID: PMC11769778 DOI: 10.2196/58649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/11/2024] [Accepted: 11/21/2024] [Indexed: 01/28/2025] Open
Abstract
Background Postpartum depression (PPD) is a prevalent mental health issue with significant impacts on mothers and families. Exploring reliable predictors is crucial for the early and accurate prediction of PPD, which remains challenging. Objective This study aimed to comprehensively collect variables from multiple aspects, develop and validate machine learning models to achieve precise prediction of PPD, and interpret the model to reveal clinical implications. Methods This study recruited pregnant women who delivered at the West China Second University Hospital, Sichuan University. Various variables were collected from electronic medical record data and screened using least absolute shrinkage and selection operator penalty regression. Participants were divided into training (1358/2055, 66.1%) and validation (697/2055, 33.9%) sets by random sampling. Machine learning-based predictive models were developed in the training cohort. Models were validated in the validation cohort with receiver operating curve and decision curve analysis. Multiple model interpretation methods were implemented to explain the optimal model. Results We recruited 2055 participants in this study. The extreme gradient boosting model was the optimal predictive model with the area under the receiver operating curve of 0.849. Shapley Additive Explanation indicated that the most influential predictors of PPD were antepartum depression, lower fetal weight, elevated thyroid-stimulating hormone, declined thyroid peroxidase antibodies, elevated serum ferritin, and older age. Conclusions This study developed and validated a machine learning-based predictive model for PPD. Several significant risk factors and how they impact the prediction of PPD were revealed. These findings provide new insights into the early screening of individuals with high risk for PPD, emphasizing the need for comprehensive screening approaches that include both physiological and psychological factors.
Collapse
Affiliation(s)
- Ren Zhang
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Yi Liu
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiwei Zhang
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Rui Luo
- College of Engineering, University of California, Berkeley, CA, United States
| | - Bin Lv
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
4
|
Petrie DJ, Parr AC, Sydnor V, Ojha A, Foran W, Tervo-Clemmens B, Calabro F, Luna B. Maturation of striatal dopamine supports the development of habitual behavior through adolescence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.06.631527. [PMID: 39829737 PMCID: PMC11741407 DOI: 10.1101/2025.01.06.631527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Developmental trajectories during the transition from adolescence to adulthood contribute to the establishment of stable, adult forms of operation. Understanding the neural mechanisms underlying this transition is crucial for identifying variability in normal development and the onset of psychiatric disorders, which typically emerge during this time. Habitual behaviors can serve as a model for understanding brain mechanisms underlying the stabilization of adult behavior, while also conferring risk for psychopathologies. Dopaminergic (DA) processes in the basal ganglia are thought to facilitate the formation of habits; however, developmental trajectories of habits and the brain systems supporting them have not been characterized in vivo in developing humans. The current study examined trajectories of habitual behavior from adolescence to adulthood and sought to understand how the maturing striatal DA system may act as a potential mechanism in the process of habit formation. We used data from two longitudinal studies (combined n = 217, 10 - 32 years of age, 1-3 visits each, 320 total sessions) to characterize normative developmental trajectories of basal ganglia tissue iron concentration (a proxy for DA-related neurophysiology) and goal-direct and habitual control behaviors in a two-stage decision-making task. Tissue iron concentrations across the basal ganglia and habitual responding during the two-stage sequential decision-making task both increased with age (all p < 0.001). Importantly, habitual responding was associated with tissue iron concentrations in the putamen (F = 4.34, p = 0.014), such that increases in habitual responding were supported by increases in putamen tissue iron concentration during childhood through late adolescence. Exploratory analyses of further subdivisions of anatomical regions found that this association was specific to the posterior putamen. These results provide novel evidence in humans that habitual behavior continues to mature into adulthood and may be supported by increased specialization of reward systems.
Collapse
Affiliation(s)
- Daniel J. Petrie
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, United States
| | - Ashley C. Parr
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, United States
| | - Valerie Sydnor
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, United States
| | - Amar Ojha
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, United States
| | - Will Foran
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, United States
| | - Brenden Tervo-Clemmens
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, 55454, United States
| | - Finnegan Calabro
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15213, United States
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, United States
| |
Collapse
|
5
|
Koirala S, Grimsrud G, Mooney MA, Larsen B, Feczko E, Elison JT, Nelson SM, Nigg JT, Tervo-Clemmens B, Fair DA. Neurobiology of attention-deficit hyperactivity disorder: historical challenges and emerging frontiers. Nat Rev Neurosci 2024; 25:759-775. [PMID: 39448818 DOI: 10.1038/s41583-024-00869-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2024] [Indexed: 10/26/2024]
Abstract
Extensive investigations spanning multiple levels of inquiry, from genetic to behavioural studies, have sought to unravel the mechanistic foundations of attention-deficit hyperactivity disorder (ADHD), with the aspiration of developing efficacious treatments for this condition. Despite these efforts, the pathogenesis of ADHD remains elusive. In this Review, we reflect on what has been learned about ADHD while also providing a framework that may serve as a roadmap for future investigations. We emphasize that ADHD is a highly heterogeneous disorder with multiple aetiologies that necessitates a multifactorial dimensional phenotype, rather than a fixed dichotomous conceptualization. We highlight new findings that suggest a more brain-wide, 'global' view of the disorder, rather than the traditional localizationist framework, which asserts that a limited set of brain regions or networks underlie ADHD. Last, we underscore how underpowered studies that have aimed to associate neurobiology with ADHD phenotypes have long precluded the field from making progress. However, a new age of ADHD research with refined phenotypes, advanced methods, creative study designs and adequately powered investigations is beginning to put the field on a good footing. Indeed, the field is at a promising juncture to advance the neurobiological understanding of ADHD and fulfil the promise of clinical utility.
Collapse
Affiliation(s)
- Sanju Koirala
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Gracie Grimsrud
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Michael A Mooney
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR, USA
- Departments of Psychiatry, Oregon Health & Science University, Portland, OR, USA
- Center for Mental Health Innovation, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Bart Larsen
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Eric Feczko
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Jed T Elison
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Steven M Nelson
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Joel T Nigg
- Departments of Psychiatry, Oregon Health & Science University, Portland, OR, USA
- Center for Mental Health Innovation, Oregon Health & Science University, Portland, OR, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Brenden Tervo-Clemmens
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Damien A Fair
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA.
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA.
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
6
|
Morales AM, Jones SA, Carlson B, Kliamovich D, Dehoney J, Simpson BL, Dominguez-Savage KA, Hernandez KO, Lopez DA, Baker FC, Clark DB, Goldston DB, Luna B, Nooner KB, Muller-Oehring EM, Tapert SF, Thompson WK, Nagel BJ. Associations between mesolimbic connectivity, and alcohol use from adolescence to adulthood. Dev Cogn Neurosci 2024; 70:101478. [PMID: 39577156 PMCID: PMC11617707 DOI: 10.1016/j.dcn.2024.101478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/18/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024] Open
Abstract
Dopaminergic projections from the ventral tegmental area (VTA) to limbic regions play a key role in the initiation and maintenance of substance use; however, the relationship between mesolimbic resting-state functional connectivity (RSFC) and alcohol use during development remains unclear. We examined the associations between alcohol use and VTA RSFC to subcortical structures in 796 participants (12-21 years old at baseline, 51 % female) across 9 waves of longitudinal data from the National Consortium on Alcohol and Neurodevelopment in Adolescence. Linear mixed effects models included interactions between age, sex, and alcohol use, and best fitting models were selected using log-likelihood ratio tests. Results demonstrated a positive association between alcohol use and VTA RSFC to the nucleus accumbens. Age was associated with VTA RSFC to the amygdala and hippocampus, and an age-by-alcohol use interaction on VTA-globus pallidus connectivity was driven by a positive association between alcohol and VTA-globus pallidus RSFC in adolescence, but not adulthood. On average, male participants exhibited greater VTA RSFC to the amygdala, nucleus accumbens, caudate, hippocampus, globus pallidus, and thalamus. Differences in VTA RSFC related to age, sex, and alcohol, may inform our understanding of neurobiological risk and resilience for alcohol use and other psychiatric disorders.
Collapse
Affiliation(s)
- Angelica M Morales
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States.
| | - Scott A Jones
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States
| | - Birgitta Carlson
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States
| | - Dakota Kliamovich
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States
| | - Joseph Dehoney
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| | - Brooke L Simpson
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States
| | | | - Kristina O Hernandez
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States
| | - Daniel A Lopez
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States
| | - Fiona C Baker
- Center for Health Sciences, SRI International, Menlo Park, CA, United States
| | - Duncan B Clark
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - David B Goldston
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kate B Nooner
- Department of Psychology, University of North Carolina Wilmington, Wilmington, NC, United States
| | - Eva M Muller-Oehring
- Center for Health Sciences, SRI International, Menlo Park, CA, United States; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, United States
| | - Susan F Tapert
- Department of Psychiatry, University of California, San Diego, CA, United States
| | | | - Bonnie J Nagel
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States; Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
7
|
Loughnan R, Ahern J, Boyle M, Jernigan TL, Hagler DJ, Iversen JR, Frei O, Smith DM, Andreassen O, Zaitlen N, Sugrue L, Thompson WK, Dale A, Schork AJ, Fan CC. Hemochromatosis neural archetype reveals iron disruption in motor circuits. SCIENCE ADVANCES 2024; 10:eadp4431. [PMID: 39576859 PMCID: PMC11584016 DOI: 10.1126/sciadv.adp4431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 10/23/2024] [Indexed: 11/24/2024]
Abstract
Our understanding of brain iron regulation and its disruption in disease is limited. Excess iron affects motor circuitry, contributing to Parkinson's disease (PD) risk. The molecular mechanisms regulating central iron levels, beyond a few well-known genes controlling peripheral iron, remain unclear. We generated scores based on the archetypal brain iron accumulation observed in magnetic resonance imaging scans of individuals with excessive dietary iron absorption and hemochromatosis risk. Genome-wide analysis revealed that this score is highly heritable, identifying loci associated with iron homeostasis, and driven by peripheral iron levels. Our score predicted gait abnormalities and showed a U-shaped relationship with PD risk, identifying individuals with threefold increased risk. These results establish a hormetic relationship between brain iron and PD risk, where central iron levels are strongly determined by genetics via peripheral iron. This framework combining forward and reverse genetics is a powerful study design to understand genomic drivers underlying high dimensional phenotypes.
Collapse
Affiliation(s)
- Robert Loughnan
- Department of Cognitive Science, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Center for Human Development, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92161, USA
- Center for Multimodal Imaging and Genetics, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92037, USA
- Center for Population Neuroscience and Genetics, Laureate Institute for Brain Research, Tulsa, OK 74103, USA
| | - Jonathan Ahern
- Department of Cognitive Science, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Center for Human Development, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92161, USA
| | - Mary Boyle
- Department of Cognitive Science, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Terry L Jernigan
- Department of Cognitive Science, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Center for Human Development, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92161, USA
- Department of Psychiatry, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92037, USA
- Department of Radiology, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92037, USA
| | - Donald J Hagler
- Center for Multimodal Imaging and Genetics, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92037, USA
- Department of Radiology, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92037, USA
| | - John R Iversen
- Center for Human Development, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92161, USA
- Swartz Center for Computational Neuroscience, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92161, USA
| | - Oleksandr Frei
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Diana M Smith
- Center for Human Development, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92161, USA
- Center for Multimodal Imaging and Genetics, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92037, USA
- Medical Scientist Training Program, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Ole Andreassen
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Noah Zaitlen
- Department of Neurology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Leo Sugrue
- Department of Radiology and Biomedical Imaging and Department of Psychiatry, University of California, San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Wesley K Thompson
- Center for Population Neuroscience and Genetics, Laureate Institute for Brain Research, Tulsa, OK 74103, USA
| | - Anders Dale
- Department of Cognitive Science, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Center for Multimodal Imaging and Genetics, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92037, USA
- Department of Radiology, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92037, USA
- Department of Neuroscience, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92037, USA
| | - Andrew J Schork
- Institute of Biological Psychiatry, Mental Health Center-Sct Hans, Copenhagen University Hospital, Copenhagen, Denmark
- Section for Geogenetics, GLOBE Institute, Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Chun Chieh Fan
- Center for Multimodal Imaging and Genetics, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92037, USA
- Center for Population Neuroscience and Genetics, Laureate Institute for Brain Research, Tulsa, OK 74103, USA
| |
Collapse
|
8
|
Del Giacco AC, Morales AM, Jones SA, Barnes SJ, Nagel BJ. Ventral striatal-cingulate resting-state functional connectivity in healthy adolescents relates to later depression symptoms in adulthood. J Affect Disord 2024; 365:205-212. [PMID: 39134157 PMCID: PMC11438492 DOI: 10.1016/j.jad.2024.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/10/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Depression is a significant public health concern. Identifying biopsychosocial risk factors for depression is important for developing targeted prevention. Studies have demonstrated that blunted striatal activation during reward processing is a risk factor for depression; however, few have prospectively examined whether adolescent reward-related resting-state functional connectivity (rsFC) predicts depression symptoms in adulthood and how this relates to known risk factors (e.g., childhood trauma). METHODS At baseline, 66 adolescents (mean age = 14.7, SD = 1.4, 68 % female) underwent rsFC magnetic resonance imaging and completed the Children's Depression Inventory (CDI). At follow-up (mean time between adolescent scan and adult follow-up = 10.1 years, SD = 1.6, mean adult age = 24.8 years, SD = 1.7), participants completed the Childhood Trauma Questionnaire (CTQ) and Beck Depression Inventory- Second Edition (BDI-2). Average rsFC was calculated between nodes in mesocorticolimbic reward circuitry: ventral striatum (VS), rostral anterior cingulate cortex (rACC), medial orbitofrontal cortex, and ventral tegmental area. Linear regressions assessed associations between rsFC, BDI-2, and CTQ, controlling for adolescent CDI, sex assigned at birth, and scan age (Bonferroni corrected). RESULTS Greater childhood trauma was associated with higher adulthood depression symptoms. Stronger VS-rACC rsFC during adolescence was associated with greater depression symptoms in adulthood and greater childhood trauma. LIMITATIONS The small sample size, limited depression severity, and seed-based approach are limitations. CONCLUSIONS The associations between adolescent striatal-cingulate rsFC and childhood trauma and adult depression symptoms suggest this connectivity may be an early neurobiological risk factor for depression and that early life experience plays an important role. Increased VS-rACC connectivity may represent an over-regulatory response on the striatum, commonly reported in depression, and warrants further investigation.
Collapse
Affiliation(s)
| | | | - Scott A Jones
- Department of Psychiatry, Oregon Health & Science University, USA
| | | | - Bonnie J Nagel
- Department of Psychiatry, Oregon Health & Science University, USA; Department of Behavioral Neuroscience, Oregon Health & Science University, USA
| |
Collapse
|
9
|
Li G, Shi S, Tan J, He L, Liu Q, Fang F, Fu H, Zhong M, Mai Z, Sun R, Liu K, Feng Z, Liang P, Yu Z, Wang X. Highly Efficient Synergistic Chemotherapy and Magnetic Resonance Imaging for Targeted Ovarian Cancer Therapy Using Hyaluronic Acid-Coated Coordination Polymer Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309464. [PMID: 39287149 PMCID: PMC11538696 DOI: 10.1002/advs.202309464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/24/2024] [Indexed: 09/19/2024]
Abstract
The diagnosis and treatment of ovarian cancer (OC) are still a grand challenge, more than 70% of patients are diagnosed at an advanced stage with a dismal prognosis. Magnetic resonance imaging (MRI) has shown superior results to other examinations in preoperative assessment, while cisplatin-based chemotherapy is the first-line treatment for OC. However, few previous studies have brought together the two rapidly expanding fields. Here a technique is presented using cisplatin prodrug (Pt-COOH), Fe3+, and natural polyphenols (Gossypol) to construct the nanoparticles (HA@PFG NPs) that have a stable structure, controllable drug release behavior, and high drug loading capacity. The acidic pH values in tumor sites facilitate the release of Fe3+, Pt-COOH, and Gossypol from HA@PFG NPs. Pt-COOH with GSH consumption and cisplatin-based chemotherapy plus Gossypol with pro-apoptotic effects displays a synergistic effect for killing tumor cells. Furthermore, the release of Fe3+ at the tumor sites promotes ferroptosis and enables MRI imaging of OC. In the patient-derived tumor xenograft (PDX) model, HA@PFG NPs alleviate the tumor activity. RNA sequencing analysis reveals that HA@PFG NPs ameliorate OC symptoms mainly through IL-6 signal pathways. This work combines MRI imaging with cisplatin-based chemotherapy, which holds great promise for OC diagnosis and synergistic therapy.
Collapse
Affiliation(s)
- Guang Li
- Department of Obstetrics and GynecologyThe Third Affiliated HospitalSouthern Medical UniversityGuangzhou510630China
- Department of Gynecological Oncology and Cervical LesionsHunan Provincial Maternal and Child Health Care HospitalChangsha410013China
| | - Shengying Shi
- Department of NursingNanfang HospitalSouthern Medical UniversityGuangzhou510000China
| | - Jingxiu Tan
- Department of Obstetrics and GynecologyThe Third Affiliated HospitalSouthern Medical UniversityGuangzhou510630China
| | - Lijuan He
- Department of Obstetrics and GynecologyThe Third Affiliated HospitalSouthern Medical UniversityGuangzhou510630China
| | - Qiwen Liu
- Department of Obstetrics and GynecologyThe Third Affiliated HospitalSouthern Medical UniversityGuangzhou510630China
| | - Feng Fang
- Department of Obstetrics and GynecologyThe Third Affiliated HospitalSouthern Medical UniversityGuangzhou510630China
| | - Huijiao Fu
- Department of Obstetrics and GynecologyThe Third Affiliated HospitalSouthern Medical UniversityGuangzhou510630China
| | - Min Zhong
- Department of Obstetrics and GynecologyThe Third Affiliated HospitalSouthern Medical UniversityGuangzhou510630China
| | - Ziyi Mai
- Department of PharmacyThe First Affiliated Hospital of Shenzhen UniversityShenzhen Second People's HospitalShenzhen518035China
| | - Rui Sun
- Department of Laboratory MedicineDongguan Institute of Clinical Cancer ResearchAffiliated Dongguan HospitalSouthern Medical UniversityDongguan523018China
| | - Kun Liu
- School of PharmacyGuangdong Medical UniversityDongguan523808China
| | - Zhenzhen Feng
- Department of Laboratory MedicineDongguan Institute of Clinical Cancer ResearchAffiliated Dongguan HospitalSouthern Medical UniversityDongguan523018China
| | - Peiqin Liang
- Department of Obstetrics and GynecologyThe Third Affiliated HospitalSouthern Medical UniversityGuangzhou510630China
| | - Zhiqiang Yu
- Department of Laboratory MedicineDongguan Institute of Clinical Cancer ResearchAffiliated Dongguan HospitalSouthern Medical UniversityDongguan523018China
| | - Xuefeng Wang
- Department of Obstetrics and GynecologyThe Third Affiliated HospitalSouthern Medical UniversityGuangzhou510630China
| |
Collapse
|
10
|
Calabro FJ, Parr AC, Sydnor VJ, Hetherington H, Prasad KM, Ibrahim TS, Sarpal DK, Famalette A, Verma P, Luna B. Leveraging ultra-high field (7T) MRI in psychiatric research. Neuropsychopharmacology 2024; 50:85-102. [PMID: 39251774 PMCID: PMC11525672 DOI: 10.1038/s41386-024-01980-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/21/2024] [Accepted: 07/23/2024] [Indexed: 09/11/2024]
Abstract
Non-invasive brain imaging has played a critical role in establishing our understanding of the neural properties that contribute to the emergence of psychiatric disorders. However, characterizing core neurobiological mechanisms of psychiatric symptomatology requires greater structural, functional, and neurochemical specificity than is typically obtainable with standard field strength MRI acquisitions (e.g., 3T). Ultra-high field (UHF) imaging at 7 Tesla (7T) provides the opportunity to identify neurobiological systems that confer risk, determine etiology, and characterize disease progression and treatment outcomes of major mental illnesses. Increases in scanner availability, regulatory approval, and sequence availability have made the application of UHF to clinical cohorts more feasible than ever before, yet the application of UHF approaches to the study of mental health remains nascent. In this technical review, we describe core neuroimaging methodologies which benefit from UHF acquisition, including high resolution structural and functional imaging, single (1H) and multi-nuclear (e.g., 31P) MR spectroscopy, and quantitative MR techniques for assessing brain tissue iron and myelin. We discuss advantages provided by 7T MRI, including higher signal- and contrast-to-noise ratio, enhanced spatial resolution, increased test-retest reliability, and molecular and neurochemical specificity, and how these have begun to uncover mechanisms of psychiatric disorders. Finally, we consider current limitations of UHF in its application to clinical cohorts, and point to ongoing work that aims to overcome technical hurdles through the continued development of UHF hardware, software, and protocols.
Collapse
Affiliation(s)
- Finnegan J Calabro
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Ashley C Parr
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Valerie J Sydnor
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Konasale M Prasad
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Tamer S Ibrahim
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Deepak K Sarpal
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alyssa Famalette
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Piya Verma
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
11
|
Wengler K, Trujillo P, Cassidy CM, Horga G. Neuromelanin-sensitive MRI for mechanistic research and biomarker development in psychiatry. Neuropsychopharmacology 2024; 50:137-152. [PMID: 39160355 PMCID: PMC11526017 DOI: 10.1038/s41386-024-01934-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/21/2024] [Accepted: 07/15/2024] [Indexed: 08/21/2024]
Abstract
Neuromelanin-sensitive MRI is a burgeoning non-invasive neuroimaging method with an increasing number of applications in psychiatric research. This MRI modality is sensitive to the concentration of neuromelanin, which is synthesized from intracellular catecholamines and accumulates in catecholaminergic nuclei including the dopaminergic substantia nigra and the noradrenergic locus coeruleus. Emerging data suggest the utility of neuromelanin-sensitive MRI as a proxy measure for variability in catecholamine metabolism and function, even in the absence of catecholaminergic cell loss. Given the importance of catecholamine function to several psychiatric disorders and their treatments, neuromelanin-sensitive MRI is ideally positioned as an informative and easy-to-acquire catecholaminergic index. In this review paper, we examine basic aspects of neuromelanin and neuromelanin-sensitive MRI and focus on its psychiatric applications in the contexts of mechanistic research and biomarker development. We discuss ongoing debates and state-of-the-art research into the mechanisms of the neuromelanin-sensitive MRI contrast, standardized protocols and optimized analytic approaches, and application of cutting-edge methods such as machine learning and artificial intelligence to enhance the feasibility and predictive power of neuromelanin-sensitive-MRI-based tools. We finally lay out important future directions to allow neuromelanin-sensitive-MRI to fulfill its potential as a key component of the research, and ultimately clinical, toolbox in psychiatry.
Collapse
Affiliation(s)
- Kenneth Wengler
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paula Trujillo
- Department of Neurology, Vanderbilt University Medical Center, Vanderbilt, TN, USA
| | - Clifford M Cassidy
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Guillermo Horga
- New York State Psychiatric Institute, New York, NY, USA.
- Department of Psychiatry, Columbia University, New York, NY, USA.
| |
Collapse
|
12
|
Calabro FJ, Parr AC. Can Neuromelanin-Sensitive MRI Provide Insight Into the Dopaminergic Pathways Contributing to Substance Use? Am J Psychiatry 2024; 181:949-951. [PMID: 39482949 DOI: 10.1176/appi.ajp.20240853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Affiliation(s)
- Finnegan J Calabro
- Department of Psychiatry (Calabro and Parr) and Department of Bioengineering (Calabro), University of Pittsburgh, Pittsburgh, PA
| | - Ashley C Parr
- Department of Psychiatry (Calabro and Parr) and Department of Bioengineering (Calabro), University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
13
|
Newbolds SF, Wenger MJ. Assessing the pattern electroretinogram as a proxy measure for dopamine in the context of iron deficiency. Nutr Neurosci 2024; 27:1131-1142. [PMID: 38272898 DOI: 10.1080/1028415x.2024.2304943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
OBJECTIVES Animal studies have suggested that dietary iron deficiency (ID) negatively affects dopamine (DA) synthesis and re-uptake, which in turn negatively affects memory and cognition. This study was intended to assess whether the pattern electroretinogram (pattern ERG) could be used as an indirect measure of DA in college-age women with and without ID by determining the extent to which features of the ERG were sensitive to iron status and were related to other indirect measures of DA. METHODS The pattern ERG was measured in 21 iron deficient non-anemic (IDNA) and 21 iron sufficient (IS) women, who also performed a contrast detection and probabilistic selection task, both with concurrent electroencephalography (EEG). Both spontaneous and task-related blink rates were also measured. RESULTS The implicit times of the A- and B-waves were significantly longer for the IDNA than for the IS women. Both the amplitudes and implicit times of the A- and B-waves were significantly correlated with levels of serum ferritin (sFt). Only the amplitude of the A-wave was correlated with spontaneous blink rate. It was possible to accurately identify a woman's iron status solely on the basis of the implicit time of the B-wave. Finally, the implicit times of the ERG features mediated the relationship between iron levels and accuracy in the probabilistic selection task. CONCLUSIONS Results suggest the utility of the pattern ERG in testing the hypothesis that iron deficiency affects DA levels in humans and that this may be one of the mechanisms by which iron deficiency negatively affects cognition.
Collapse
Affiliation(s)
- Sarah F Newbolds
- Psychology and Cellular and Behavioral Neurobiology, The University of Oklahoma, Norman, OK, USA
| | - Michael J Wenger
- Psychology and Cellular and Behavioral Neurobiology, The University of Oklahoma, Norman, OK, USA
| |
Collapse
|
14
|
Parr AC, Sydnor VJ, Calabro FJ, Luna B. Adolescent-to-adult gains in cognitive flexibility are adaptively supported by reward sensitivity, exploration, and neural variability. Curr Opin Behav Sci 2024; 58:101399. [PMID: 38826569 PMCID: PMC11138371 DOI: 10.1016/j.cobeha.2024.101399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Cognitive flexibility exhibits dynamic changes throughout development, with different forms of flexibility showing dissociable developmental trajectories. In this review, we propose that an adolescent-specific mode of flexibility in the face of changing environmental contingencies supports the emergence of adolescent-to-adult gains in cognitive shifting efficiency. We first describe how cognitive shifting abilities monotonically improve from childhood to adulthood, accompanied by increases in brain state flexibility, neural variability, and excitatory/inhibitory balance. We next summarize evidence supporting the existence of a dopamine-driven, adolescent peak in flexible behavior that results in reward seeking, undirected exploration, and environmental sampling. We propose a neurodevelopmental framework that relates these adolescent behaviors to the refinement of neural phenotypes relevant to mature cognitive flexibility, and thus highlight the importance of the adolescent period in fostering healthy neurocognitive trajectories.
Collapse
Affiliation(s)
- Ashley C. Parr
- Department of Psychiatry, University of Pittsburgh, Pittsburgh PA, 14213, USA
| | - Valerie J. Sydnor
- Department of Psychiatry, University of Pittsburgh, Pittsburgh PA, 14213, USA
| | - Finnegan J. Calabro
- Department of Psychiatry, University of Pittsburgh, Pittsburgh PA, 14213, USA
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh PA, 14213, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh PA, 14213, USA
| |
Collapse
|
15
|
Ravindranath O, Perica MI, Parr AC, Ojha A, McKeon SD, Montano G, Ullendorff N, Luna B, Edmiston EK. Adolescent neurocognitive development and decision-making abilities regarding gender-affirming care. Dev Cogn Neurosci 2024; 67:101351. [PMID: 38383174 PMCID: PMC11247355 DOI: 10.1016/j.dcn.2024.101351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 01/10/2024] [Accepted: 01/26/2024] [Indexed: 02/23/2024] Open
Abstract
Recently, politicians and legislative bodies have cited neurodevelopmental literature to argue that brain immaturity undermines decision-making regarding gender-affirming care (GAC) in youth. Here, we review this literature as it applies to adolescents' ability to make decisions regarding GAC. The research shows that while adolescence is a time of peak risk-taking behavior that may lead to impulsive decisions, neurocognitive systems supporting adult-level decisions are available given deliberative processes that minimize influence of short-term rewards and peers. Since GAC decisions occur over an extended period and with support from adult caregivers and clinicians, adolescents can engage adult-level decision-making in this context. We also weigh the benefits of providing GAC access during adolescence and consider the significant costs of blocking or delaying GAC. Transgender and non-binary (TNB) adolescents face significant mental health challenges, many of which are mitigated by GAC access. Further, initiating the GAC process during adolescence, which we define as beginning at pubertal onset, leads to better long-term mental health outcomes than waiting until adulthood. Taken together, existing research indicates that many adolescents can make informed decisions regarding gender-affirming care, and that this care is critical for the well-being of TNB youth. We highlight relevant considerations for policy makers, researchers, and clinicians.
Collapse
Affiliation(s)
- Orma Ravindranath
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Maria I Perica
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ashley C Parr
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amar Ojha
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shane D McKeon
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gerald Montano
- Division of Adolescent and Young Adult Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Naomi Ullendorff
- Division of Adolescent and Young Adult Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Beatriz Luna
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - E Kale Edmiston
- Department of Psychiatry, University of Massachusetts Chan School of Medicine, USA
| |
Collapse
|
16
|
Liu C, Filbey FM. Unlocking the age-old secrets of reward and substance use. Pharmacol Biochem Behav 2024; 239:173766. [PMID: 38604456 DOI: 10.1016/j.pbb.2024.173766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/25/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Although substance use is widespread across the lifespan from early adolescence to older adulthood, the prevalence of substance use disorder (SUD) differs between age groups. These age differences in SUD rates necessitate an investigation into how age moderates reward sensitivity, and consequently influences the risks and consequences related to substance use. This theoretical review integrates evidence from the literature to address the dynamic interplay between age and reward in the context of substance use. Overall, increasing evidence demonstrates that age moderates reward sensitivity and underlying reward system neurobiology. Reward sensitivity undergoes a non-linear trajectory across the lifespan. Low levels of reward sensitivity are associated with childhood and late adulthood. In contrast, high levels are associated with early to late adolescence, followed by a decline in the twenties. These fluctuations in reward sensitivity across the lifespan contribute to complex associations with substance use. This lends support to adolescence and young adulthood as vulnerable periods for the risk of subsequent SUD. More empirical research is needed to investigate reward sensitivity during SUD maintenance and recovery. Future research should also involve larger sample sizes and encompass a broader range of age groups, including older adults.
Collapse
Affiliation(s)
- Che Liu
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX 75235, United States of America.
| | - Francesca M Filbey
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX 75235, United States of America
| |
Collapse
|
17
|
Mas-Cuesta L, Baltruschat S, Cándido A, Verdejo-Lucas C, Catena-Verdejo E, Catena A. Brain changes following mindfulness: Reduced caudate volume is associated with decreased positive urgency. Behav Brain Res 2024; 461:114859. [PMID: 38216057 DOI: 10.1016/j.bbr.2024.114859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 11/22/2023] [Accepted: 01/06/2024] [Indexed: 01/14/2024]
Abstract
Mindfulness training has been shown to improve psychological health and general well-being. However, it is unclear which brain and personality systems may be affected by this practice for improving adaptive behavior and quality of life. The present study explores the effects of a 5-week mindfulness-based intervention (MBI) at the neuroanatomical level and its relationship with dispositional mindfulness and impulsivity. Sixty-six risky drivers were quasi-randomly assigned to a mindfulness training group (MT) or a control group (N). Participants underwent magnetic resonance imaging and completed the Five Facet Mindfulness Questionnaire (FFMQ) and the UPPS-P impulsivity scale twice, at baseline and after receiving the MBI. We observed that MBI changes dispositional mindfulness in the non-reactivity and observing facets. Further, we observed that the magnitude of change in impulsivity was associated with the change in dispositional mindfulness. Whole-brain voxel-wise analysis revealed that the volume of the right caudate nucleus of the MT group (n = 27) showed a reduction compared to that of the control group (n = 33), which increased in terms of the pre-post measurement (MT=-1.76 mm3; N = 6.31 mm3). We also observed that reduced caudate nucleus volume correlated with decreased positive urgency in the MT group. Taken together, our results show that MBI improves the skills of observing and non-reactivity to inner experience, while producing changes in the structure of the caudate nucleus. These structural changes are associated with a reduction in impulsivity levels, decreasing the tendency to act rashly in situations that generate positive emotions and thus facilitating more adaptive behavior.
Collapse
Affiliation(s)
- Laura Mas-Cuesta
- Mind, Brain and Behavior Research Center, University of Granada, Campus de Cartuja s/n, 18011 Granada, Spain.
| | - Sabina Baltruschat
- Brain Research Imaging Centre, Cardiff University, Maindy Rd, Cardiff CF24 4HQ, UK
| | - Antonio Cándido
- Mind, Brain and Behavior Research Center, University of Granada, Campus de Cartuja s/n, 18011 Granada, Spain
| | | | | | - Andrés Catena
- School of Psychology, University of Granada, Campus de Cartuja s/n, 18011 Granada, Spain
| |
Collapse
|
18
|
Wilbrecht L, Davidow JY. Goal-directed learning in adolescence: neurocognitive development and contextual influences. Nat Rev Neurosci 2024; 25:176-194. [PMID: 38263216 DOI: 10.1038/s41583-023-00783-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 01/25/2024]
Abstract
Adolescence is a time during which we transition to independence, explore new activities and begin pursuit of major life goals. Goal-directed learning, in which we learn to perform actions that enable us to obtain desired outcomes, is central to many of these processes. Currently, our understanding of goal-directed learning in adolescence is itself in a state of transition, with the scientific community grappling with inconsistent results. When we examine metrics of goal-directed learning through the second decade of life, we find that many studies agree there are steady gains in performance in the teenage years, but others report that adolescent goal-directed learning is already adult-like, and some find adolescents can outperform adults. To explain the current variability in results, sophisticated experimental designs are being applied to test learning in different contexts. There is also increasing recognition that individuals of different ages and in different states will draw on different neurocognitive systems to support goal-directed learning. Through adoption of more nuanced approaches, we can be better prepared to recognize and harness adolescent strengths and to decipher the purpose (or goals) of adolescence itself.
Collapse
Affiliation(s)
- Linda Wilbrecht
- Department of Psychology, University of California, Berkeley, CA, USA.
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA.
| | - Juliet Y Davidow
- Department of Psychology, Northeastern University, Boston, MA, USA.
| |
Collapse
|
19
|
Cabral L, Calabro FJ, Foran W, Parr AC, Ojha A, Rasmussen J, Ceschin R, Panigrahy A, Luna B. Multivariate and regional age-related change in basal ganglia iron in neonates. Cereb Cortex 2024; 34:bhad456. [PMID: 38059685 PMCID: PMC11494441 DOI: 10.1093/cercor/bhad456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 12/08/2023] Open
Abstract
In the perinatal period, reward and cognitive systems begin trajectories, influencing later psychiatric risk. The basal ganglia is important for reward and cognitive processing but early development has not been fully characterized. To assess age-related development, we used a measure of basal ganglia physiology, specifically brain tissue iron, obtained from nT2* signal in resting-state functional magnetic resonance imaging (rsfMRI), associated with dopaminergic processing. We used data from the Developing Human Connectome Project (n = 464) to assess how moving from the prenatal to the postnatal environment affects rsfMRI nT2*, modeling gestational and postnatal age separately for basal ganglia subregions in linear models. We did not find associations with tissue iron and gestational age [range: 24.29-42.29] but found positive associations with postnatal age [range:0-17.14] in the pallidum and putamen, but not the caudate. We tested if there was an interaction between preterm birth and postnatal age, finding early preterm infants (GA < 35 wk) had higher iron levels and changed less over time. To assess multivariate change, we used support vector regression to predict age from voxel-wise-nT2* maps. We could predict postnatal but not gestational age when maps were residualized for the other age term. This provides evidence subregions differentially change with postnatal experience and preterm birth may disrupt trajectories.
Collapse
Affiliation(s)
- Laura Cabral
- Department of Radiology University of Pittsburgh, Pittsburgh, PA 15224, United States
| | - Finnegan J Calabro
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, United States
- Department of Bioengineering, University of Pittsburgh, 15213, United States
| | - Will Foran
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Ashley C Parr
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Amar Ojha
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, United States
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Jerod Rasmussen
- Development, Health and Disease Research Program, University of California, Irvine, CA 92697, United States
- Department of Pediatrics, University of California, Irvine, CA 92697, United States
| | - Rafael Ceschin
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15224, United States
| | - Ashok Panigrahy
- Department of Radiology University of Pittsburgh, Pittsburgh, PA 15224, United States
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, United States
| |
Collapse
|
20
|
Petok JR, Merenstein JL, Bennett IJ. Iron content affects age group differences in associative learning-related fMRI activity. Neuroimage 2024; 285:120478. [PMID: 38036152 DOI: 10.1016/j.neuroimage.2023.120478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/25/2023] [Accepted: 11/28/2023] [Indexed: 12/02/2023] Open
Abstract
Brain regions accumulate different amounts of iron with age, with older adults having higher iron in the basal ganglia (globus pallidus, putamen, caudate) relative to the hippocampus. This has important implications for functional magnetic resonance imaging (fMRI) studies in aging as the presence of iron may influence both neuronal functioning as well as the measured fMRI (BOLD) signal, and these effects will vary across age groups and brain regions. To test this hypothesis, the current study examined the effect of iron on age group differences in task-related activity within each basal nuclei and the hippocampus. Twenty-eight younger and 22 older adults completed an associative learning task during fMRI acquisition. Iron content (QSM, R2*) was estimated from a multi-echo gradient echo sequence. As previously reported, older adults learned significantly less than younger adults and age group differences in iron content were largest in the basal ganglia (putamen, caudate). In the hippocampus (early task stage) and globus pallidus (late task stage), older adults had significantly higher learning-related activity than younger adults both before and after controlling for iron. In the putamen (late task stage), however, younger adults had significantly higher learning-related activity than older adults that was only seen after controlling for iron. These findings support the notion that age-related differences in iron influence both neuronal functioning and the measured fMRI signal in select basal nuclei. Moreover, previous fMRI studies in aging populations may have under-reported age group differences in task-related activity by not accounting for iron within these regions.
Collapse
Affiliation(s)
| | - Jenna L Merenstein
- Brain Imaging and Analysis Center, Duke University Medical Center, United States
| | - Ilana J Bennett
- Department of Psychology, University of California, Riverside, 900 University Avenue, Riverside CA, 92521-0426, United States.
| |
Collapse
|
21
|
Millevert C, Vidas-Guscic N, Vanherp L, Jonckers E, Verhoye M, Staelens S, Bertoglio D, Weckhuysen S. Resting-State Functional MRI and PET Imaging as Noninvasive Tools to Study (Ab)Normal Neurodevelopment in Humans and Rodents. J Neurosci 2023; 43:8275-8293. [PMID: 38073598 PMCID: PMC10711730 DOI: 10.1523/jneurosci.1043-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 06/09/2023] [Accepted: 09/13/2023] [Indexed: 12/18/2023] Open
Abstract
Neurodevelopmental disorders (NDDs) are a group of complex neurologic and psychiatric disorders. Functional and molecular imaging techniques, such as resting-state functional magnetic resonance imaging (rs-fMRI) and positron emission tomography (PET), can be used to measure network activity noninvasively and longitudinally during maturation in both humans and rodent models. Here, we review the current knowledge on rs-fMRI and PET biomarkers in the study of normal and abnormal neurodevelopment, including intellectual disability (ID; with/without epilepsy), autism spectrum disorder (ASD), and attention deficit hyperactivity disorder (ADHD), in humans and rodent models from birth until adulthood, and evaluate the cross-species translational value of the imaging biomarkers. To date, only a few isolated studies have used rs-fMRI or PET to study (abnormal) neurodevelopment in rodents during infancy, the critical period of neurodevelopment. Further work to explore the feasibility of performing functional imaging studies in infant rodent models is essential, as rs-fMRI and PET imaging in transgenic rodent models of NDDs are powerful techniques for studying disease pathogenesis, developing noninvasive preclinical imaging biomarkers of neurodevelopmental dysfunction, and evaluating treatment-response in disease-specific models.
Collapse
Affiliation(s)
- Charissa Millevert
- Applied & Translational Neurogenomics Group, Vlaams Instituut voor Biotechnology (VIB) Center for Molecular Neurology, VIB, Antwerp 2610, Belgium
- Department of Neurology, University Hospital of Antwerp, Antwerp 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Nicholas Vidas-Guscic
- Bio-Imaging Lab, University of Antwerp, Antwerp 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Liesbeth Vanherp
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Elisabeth Jonckers
- Bio-Imaging Lab, University of Antwerp, Antwerp 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Marleen Verhoye
- Bio-Imaging Lab, University of Antwerp, Antwerp 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Steven Staelens
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Antwerp 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Daniele Bertoglio
- Bio-Imaging Lab, University of Antwerp, Antwerp 2610, Belgium
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Antwerp 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Sarah Weckhuysen
- Applied & Translational Neurogenomics Group, Vlaams Instituut voor Biotechnology (VIB) Center for Molecular Neurology, VIB, Antwerp 2610, Belgium
- Department of Neurology, University Hospital of Antwerp, Antwerp 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
- Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp 2610, Belgium
| |
Collapse
|
22
|
Ji L, Yoon YB, Hendrix CL, Kennelly EC, Majbri A, Bhatia T, Taylor A, Thomason ME. Developmental coupling of brain iron and intrinsic activity in infants during the first 150 days. Dev Cogn Neurosci 2023; 64:101326. [PMID: 37979299 PMCID: PMC10692666 DOI: 10.1016/j.dcn.2023.101326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/30/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023] Open
Abstract
Brain iron is vital for core neurodevelopmental processes including myelination and neurotransmitter synthesis and, accordingly, iron accumulates in the brain with age. However, little is known about the association between brain iron and neural functioning and how they evolve with age in early infancy. This study investigated brain iron in 48 healthy infants (22 females) aged 64.00 ± 33.28 days by estimating R2 * relaxometry from multi-echo functional MRI (fMRI). Linked independent component analysis was performed to examine the association between iron deposition and spontaneous neural activity, as measured by the amplitude of low frequency fluctuations (ALFF) by interrogating shared component loadings across modalities. Further, findings were validated in an independent dataset (n = 45, 24 females, 77.93 ± 26.18 days). The analysis revealed developmental coupling between the global R2 * and ALFF within the default mode network (DMN). Furthermore, we observed that this coupling effect significantly increased with age (r = 0.78, p = 9.2e-11). Our results highlight the importance of iron-neural coupling during early development and suggest that the neural maturation of the DMN may correspond to growth in distributed brain iron.
Collapse
Affiliation(s)
- Lanxin Ji
- Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA.
| | - Youngwoo Bryan Yoon
- Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Cassandra L Hendrix
- Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
| | | | - Amyn Majbri
- Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Tanya Bhatia
- Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Alexis Taylor
- Department of Psychology, Wayne State University, USA
| | - Moriah E Thomason
- Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA; Department of Population Health, New York University School of Medicine, New York, NY, USA; Neuroscience Institute, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
23
|
Cascone AD, Calabro F, Foran W, Larsen B, Nugiel T, Parr AC, Tervo-Clemmens B, Luna B, Cohen JR. Brain tissue iron neurophysiology and its relationship with the cognitive effects of dopaminergic modulation in children with and without ADHD. Dev Cogn Neurosci 2023; 63:101274. [PMID: 37453207 PMCID: PMC10372187 DOI: 10.1016/j.dcn.2023.101274] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023] Open
Abstract
Children with attention-deficit/hyperactivity disorder (ADHD) exhibit impairments in response inhibition. These impairments are ameliorated by modulating dopamine (DA) via the administration of rewards or stimulant medication like methylphenidate (MPH). It is currently unclear whether intrinsic DA availability impacts these effects of dopaminergic modulation on response inhibition. Thus, we estimated intrinsic DA availability using magnetic resonance-based assessments of basal ganglia and thalamic tissue iron in 36 medication-naïve children with ADHD and 29 typically developing (TD) children (8-12 y) who underwent fMRI scans and completed standard and rewarded go/no-go tasks. Children with ADHD additionally participated in a double-blind, randomized, placebo-controlled, crossover MPH challenge. Using linear regressions covarying for age and sex, we determined there were no group differences in brain tissue iron. We additionally found that higher putamen tissue iron was associated with worse response inhibition performance in all participants. Crucially, we observed that higher putamen and caudate tissue iron was associated with greater responsivity to MPH, as measured by improved task performance, in participants with ADHD. These results begin to clarify the role of subcortical brain tissue iron, a measure associated with intrinsic DA availability, in the cognitive effects of reward- and MPH-related dopaminergic modulation in children with ADHD and TD children.
Collapse
Affiliation(s)
- Arianna D Cascone
- Neuroscience Curriculum, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Finnegan Calabro
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - William Foran
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bart Larsen
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tehila Nugiel
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ashley C Parr
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brenden Tervo-Clemmens
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jessica R Cohen
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
24
|
Gustavsson J, Johansson J, Falahati F, Andersson M, Papenberg G, Avelar-Pereira B, Bäckman L, Kalpouzos G, Salami A. The iron-dopamine D1 coupling modulates neural signatures of working memory across adult lifespan. Neuroimage 2023; 279:120323. [PMID: 37582419 DOI: 10.1016/j.neuroimage.2023.120323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/17/2023] Open
Abstract
Brain iron overload and decreased integrity of the dopaminergic system have been independently reported as brain substrates of cognitive decline in aging. Dopamine (DA), and iron are co-localized in high concentrations in the striatum and prefrontal cortex (PFC), but follow opposing age-related trajectories across the lifespan. DA contributes to cellular iron homeostasis and the activation of D1-like DA receptors (D1DR) alleviates oxidative stress-induced inflammatory responses, suggesting a mutual interaction between these two fundamental components. Still, a direct in-vivo study testing the iron-D1DR relationship and their interactions on brain function and cognition across the lifespan is rare. Using PET and MRI data from the DyNAMiC study (n=180, age=20-79, %50 female), we showed that elevated iron content was related to lower D1DRs in DLPFC, but not in striatum, suggesting that dopamine-rich regions are less susceptible to elevated iron. Critically, older individuals with elevated iron and lower D1DR exhibited less frontoparietal activations during the most demanding task, which in turn was related to poorer working-memory performance. Together, our findings suggest that the combination of elevated iron load and reduced D1DR contribute to disturbed PFC-related circuits in older age, and thus may be targeted as two modifiable factors for future intervention.
Collapse
Affiliation(s)
- Jonatan Gustavsson
- Aging Research Center, Karolinska Institutet and Stockholm University, Sweden.
| | - Jarkko Johansson
- Faculty of Medicine, Department of Radiation Sciences, Umeå University, Sweden; Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
| | - Farshad Falahati
- Aging Research Center, Karolinska Institutet and Stockholm University, Sweden
| | - Micael Andersson
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden; Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Goran Papenberg
- Aging Research Center, Karolinska Institutet and Stockholm University, Sweden
| | - Bárbara Avelar-Pereira
- Aging Research Center, Karolinska Institutet and Stockholm University, Sweden; Department of Psychiatry and Behavioural Sciences, School of Medicine, Stanford University, Stanford, California 94304, USA
| | - Lars Bäckman
- Aging Research Center, Karolinska Institutet and Stockholm University, Sweden
| | - Grégoria Kalpouzos
- Aging Research Center, Karolinska Institutet and Stockholm University, Sweden
| | - Alireza Salami
- Aging Research Center, Karolinska Institutet and Stockholm University, Sweden; Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden; Department of Integrative Medical Biology, Umeå University, Umeå, Sweden; Wallenberg Center for Molecular Medicine, Umeå University, Sweden
| |
Collapse
|
25
|
Johansson J, Nordin K, Pedersen R, Karalija N, Papenberg G, Andersson M, Korkki SM, Riklund K, Guitart-Masip M, Rieckmann A, Bäckman L, Nyberg L, Salami A. Biphasic patterns of age-related differences in dopamine D1 receptors across the adult lifespan. Cell Rep 2023; 42:113107. [PMID: 37676765 DOI: 10.1016/j.celrep.2023.113107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/14/2023] [Accepted: 08/22/2023] [Indexed: 09/09/2023] Open
Abstract
Age-related alterations in D1-like dopamine receptor (D1DR) have distinct implications for human cognition and behavior during development and aging, but the timing of these periods remains undefined. Enabled by a large sample of in vivo assessments (n = 180, age 20 to 80 years of age, 50% female), we discover that age-related D1DR differences pivot at approximately 40 years of age in several brain regions. Focusing on the most age-sensitive dopamine-rich region, we observe opposing pre- and post-forties interrelations among caudate D1DR, cortico-striatal functional connectivity, and memory. Finally, particularly caudate D1DR differences in midlife and beyond, but not in early adulthood, associate with manifestation of white matter lesions. The present results support a model by which excessive dopamine modulation in early adulthood and insufficient modulation in aging are deleterious to brain function and cognition, thus challenging a prevailing view of monotonic D1DR function across the adult lifespan.
Collapse
Affiliation(s)
- Jarkko Johansson
- Department of Radiation Sciences, Diagnostic Radiology, Umeå University, 90187 Umeå, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, 90187 Umeå, Sweden.
| | - Kristin Nordin
- Aging Research Center, Karolinska Institutet & Stockholm University, Tomtebodavägen 18A, 17165 Stockholm, Sweden
| | - Robin Pedersen
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, 90187 Umeå, Sweden; Department of Integrative Medical Biology, Umeå University, 90187 Umeå, Sweden; Wallenberg Center for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Nina Karalija
- Department of Radiation Sciences, Diagnostic Radiology, Umeå University, 90187 Umeå, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, 90187 Umeå, Sweden
| | - Goran Papenberg
- Aging Research Center, Karolinska Institutet & Stockholm University, Tomtebodavägen 18A, 17165 Stockholm, Sweden
| | - Micael Andersson
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, 90187 Umeå, Sweden; Department of Integrative Medical Biology, Umeå University, 90187 Umeå, Sweden
| | - Saana M Korkki
- Aging Research Center, Karolinska Institutet & Stockholm University, Tomtebodavägen 18A, 17165 Stockholm, Sweden
| | - Katrine Riklund
- Department of Radiation Sciences, Diagnostic Radiology, Umeå University, 90187 Umeå, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, 90187 Umeå, Sweden
| | - Marc Guitart-Masip
- Aging Research Center, Karolinska Institutet & Stockholm University, Tomtebodavägen 18A, 17165 Stockholm, Sweden; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, UK
| | - Anna Rieckmann
- Department of Radiation Sciences, Diagnostic Radiology, Umeå University, 90187 Umeå, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, 90187 Umeå, Sweden; Department of Integrative Medical Biology, Umeå University, 90187 Umeå, Sweden; The Munich Center for the Economics of Aging, Max Planck Institute for Social Law and Social Policy, 80799 Munich, Germany
| | - Lars Bäckman
- Aging Research Center, Karolinska Institutet & Stockholm University, Tomtebodavägen 18A, 17165 Stockholm, Sweden
| | - Lars Nyberg
- Department of Radiation Sciences, Diagnostic Radiology, Umeå University, 90187 Umeå, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, 90187 Umeå, Sweden; Department of Integrative Medical Biology, Umeå University, 90187 Umeå, Sweden; Wallenberg Center for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Alireza Salami
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, 90187 Umeå, Sweden; Aging Research Center, Karolinska Institutet & Stockholm University, Tomtebodavägen 18A, 17165 Stockholm, Sweden; Department of Integrative Medical Biology, Umeå University, 90187 Umeå, Sweden; Wallenberg Center for Molecular Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
26
|
Kanaan AS, Yu D, Metere R, Schäfer A, Schlumm T, Bilgic B, Anwander A, Mathews CA, Scharf JM, Müller-Vahl K, Möller HE. Convergent imaging-transcriptomic evidence for disturbed iron homeostasis in Gilles de la Tourette syndrome. Neurobiol Dis 2023; 185:106252. [PMID: 37536382 DOI: 10.1016/j.nbd.2023.106252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/11/2023] [Accepted: 08/01/2023] [Indexed: 08/05/2023] Open
Abstract
Gilles de la Tourette syndrome (GTS) is a neuropsychiatric movement disorder with reported abnormalities in various neurotransmitter systems. Considering the integral role of iron in neurotransmitter synthesis and transport, it is hypothesized that iron exhibits a role in GTS pathophysiology. As a surrogate measure of brain iron, quantitative susceptibility mapping (QSM) was performed in 28 patients with GTS and 26 matched controls. Significant susceptibility reductions in the patients, consistent with reduced local iron content, were obtained in subcortical regions known to be implicated in GTS. Regression analysis revealed a significant negative association of tic scores and striatal susceptibility. To interrogate genetic mechanisms that may drive these reductions, spatially specific relationships between susceptibility and gene-expression patterns from the Allen Human Brain Atlas were assessed. Correlations in the striatum were enriched for excitatory, inhibitory, and modulatory neurochemical signaling mechanisms in the motor regions, mitochondrial processes driving ATP production and iron‑sulfur cluster biogenesis in the executive subdivision, and phosphorylation-related mechanisms affecting receptor expression and long-term potentiation in the limbic subdivision. This link between susceptibility reductions and normative transcriptional profiles suggests that disruptions in iron regulatory mechanisms are involved in GTS pathophysiology and may lead to pervasive abnormalities in mechanisms regulated by iron-containing enzymes.
Collapse
Affiliation(s)
- Ahmad Seif Kanaan
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany.
| | - Dongmei Yu
- Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Riccardo Metere
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Andreas Schäfer
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Siemens Healthcare GmbH, Diagnostic Imaging, Magnetic Resonance, Research and Development, Erlangen, Germany
| | - Torsten Schlumm
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Berkin Bilgic
- Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA; Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alfred Anwander
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Carol A Mathews
- Department of Psychiatry, Center for OCD, Anxiety, and Related Disorders, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Jeremiah M Scharf
- Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Kirsten Müller-Vahl
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Harald E Möller
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| |
Collapse
|
27
|
Reynolds LM, Hernandez G, MacGowan D, Popescu C, Nouel D, Cuesta S, Burke S, Savell KE, Zhao J, Restrepo-Lozano JM, Giroux M, Israel S, Orsini T, He S, Wodzinski M, Avramescu RG, Pokinko M, Epelbaum JG, Niu Z, Pantoja-Urbán AH, Trudeau LÉ, Kolb B, Day JJ, Flores C. Amphetamine disrupts dopamine axon growth in adolescence by a sex-specific mechanism in mice. Nat Commun 2023; 14:4035. [PMID: 37419977 PMCID: PMC10329029 DOI: 10.1038/s41467-023-39665-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/21/2023] [Indexed: 07/09/2023] Open
Abstract
Initiating drug use during adolescence increases the risk of developing addiction or other psychopathologies later in life, with long-term outcomes varying according to sex and exact timing of use. The cellular and molecular underpinnings explaining this differential sensitivity to detrimental drug effects remain unexplained. The Netrin-1/DCC guidance cue system segregates cortical and limbic dopamine pathways in adolescence. Here we show that amphetamine, by dysregulating Netrin-1/DCC signaling, triggers ectopic growth of mesolimbic dopamine axons to the prefrontal cortex, only in early-adolescent male mice, underlying a male-specific vulnerability to enduring cognitive deficits. In adolescent females, compensatory changes in Netrin-1 protect against the deleterious consequences of amphetamine on dopamine connectivity and cognitive outcomes. Netrin-1/DCC signaling functions as a molecular switch which can be differentially regulated by the same drug experience as function of an individual's sex and adolescent age, and lead to divergent long-term outcomes associated with vulnerable or resilient phenotypes.
Collapse
Affiliation(s)
- Lauren M Reynolds
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
- Douglas Mental Health University Institute, Montréal, QC, Canada
- Plasticité du Cerveau CNRS UMR8249, École supérieure de physique et de chimie industrielles de la Ville de Paris (ESPCI Paris), Paris, France
| | | | - Del MacGowan
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
- Douglas Mental Health University Institute, Montréal, QC, Canada
| | - Christina Popescu
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
- Douglas Mental Health University Institute, Montréal, QC, Canada
| | - Dominique Nouel
- Douglas Mental Health University Institute, Montréal, QC, Canada
| | - Santiago Cuesta
- Douglas Mental Health University Institute, Montréal, QC, Canada
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Samuel Burke
- CNS Research Group, Department of Pharmacology and Physiology, Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Katherine E Savell
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Janet Zhao
- Douglas Mental Health University Institute, Montréal, QC, Canada
| | - Jose Maria Restrepo-Lozano
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
- Douglas Mental Health University Institute, Montréal, QC, Canada
| | - Michel Giroux
- Douglas Mental Health University Institute, Montréal, QC, Canada
| | - Sonia Israel
- Douglas Mental Health University Institute, Montréal, QC, Canada
| | - Taylor Orsini
- Douglas Mental Health University Institute, Montréal, QC, Canada
| | - Susan He
- Douglas Mental Health University Institute, Montréal, QC, Canada
| | | | - Radu G Avramescu
- Douglas Mental Health University Institute, Montréal, QC, Canada
| | - Matthew Pokinko
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
- Douglas Mental Health University Institute, Montréal, QC, Canada
| | - Julia G Epelbaum
- Douglas Mental Health University Institute, Montréal, QC, Canada
| | - Zhipeng Niu
- Douglas Mental Health University Institute, Montréal, QC, Canada
| | - Andrea Harée Pantoja-Urbán
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
- Douglas Mental Health University Institute, Montréal, QC, Canada
| | - Louis-Éric Trudeau
- CNS Research Group, Department of Pharmacology and Physiology, Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Bryan Kolb
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Jeremy J Day
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Cecilia Flores
- Douglas Mental Health University Institute, Montréal, QC, Canada.
- Department of Psychiatry and Department of Neurology and Neurosurgery, McGill University, Montréal, Canada.
| |
Collapse
|
28
|
Larsen B, Baller EB, Boucher AA, Calkins ME, Laney N, Moore TM, Roalf DR, Ruparel K, Gur RC, Gur RE, Georgieff MK, Satterthwaite TD. Development of Iron Status Measures during Youth: Associations with Sex, Neighborhood Socioeconomic Status, Cognitive Performance, and Brain Structure. Am J Clin Nutr 2023; 118:121-131. [PMID: 37146760 PMCID: PMC10375461 DOI: 10.1016/j.ajcnut.2023.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/24/2023] [Accepted: 05/01/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Iron is essential to brain function, and iron deficiency during youth may adversely impact neurodevelopment. Understanding the developmental time course of iron status and its association with neurocognitive functioning is important for identifying windows for intervention. OBJECTIVES This study aimed to characterize developmental change in iron status and understand its association with cognitive performance and brain structure during adolescence using data from a large pediatric health network. METHODS This study included a cross-sectional sample of 4899 participants (2178 males; aged 8-22 y at the time of participation, M [SD] = 14.24 [3.7]) who were recruited from the Children's Hospital of Philadelphia network. Prospectively collected research data were enriched with electronic medical record data that included hematological measures related to iron status, including serum hemoglobin, ferritin, and transferrin (33,015 total samples). At the time of participation, cognitive performance was assessed using the Penn Computerized Neurocognitive Battery, and brain white matter integrity was assessed using diffusion-weighted MRI in a subset of individuals. RESULTS Developmental trajectories were characterized for all metrics and revealed that sex differences emerged after menarche such that females had reduced iron status relative to males [all R2partial > 0.008; all false discovery rates (FDRs) < 0.05]. Higher socioeconomic status was associated with higher hemoglobin concentrations throughout development (R2partial = 0.005; FDR < 0.001), and the association was greatest during adolescence. Higher hemoglobin concentrations were associated with better cognitive performance during adolescence (R2partial = 0.02; FDR < 0.001) and mediated the association between sex and cognition (mediation effect = -0.107; 95% CI: -0.191, -0.02). Higher hemoglobin concentration was also associated with greater brain white matter integrity in the neuroimaging subsample (R2partial = 0.06, FDR = 0.028). CONCLUSIONS Iron status evolves during youth and is lowest in females and individuals of low socioeconomic status during adolescence. Diminished iron status during adolescence has consequences for neurocognition, suggesting that this critical period of neurodevelopment may be an important window for intervention that has the potential to reduce health disparities in at-risk populations.
Collapse
Affiliation(s)
- Bart Larsen
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, United States; Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, United States; Penn/Children's Hospital of Philadelphia Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA, United States.
| | - Erica B Baller
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, United States; Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, United States; Penn/Children's Hospital of Philadelphia Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Alexander A Boucher
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Minnesota, Minneapolis, MN, United States
| | - Monica E Calkins
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, United States; Penn/Children's Hospital of Philadelphia Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Nina Laney
- Penn/Children's Hospital of Philadelphia Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Tyler M Moore
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, United States; Penn/Children's Hospital of Philadelphia Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - David R Roalf
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, United States; Penn/Children's Hospital of Philadelphia Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Kosha Ruparel
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, United States; Penn/Children's Hospital of Philadelphia Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Ruben C Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, United States; Penn/Children's Hospital of Philadelphia Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA, United States; Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Raquel E Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, United States; Penn/Children's Hospital of Philadelphia Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA, United States; Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Michael K Georgieff
- Department of Pediatrics, Division of Neonatology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Theodore D Satterthwaite
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, United States; Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, United States; Penn/Children's Hospital of Philadelphia Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
29
|
Topel S, Ma I, Sleutels J, van Steenbergen H, de Bruijn ERA, van Duijvenvoorde ACK. Expecting the unexpected: a review of learning under uncertainty across development. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2023:10.3758/s13415-023-01098-0. [PMID: 37237092 PMCID: PMC10390612 DOI: 10.3758/s13415-023-01098-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/28/2023] [Indexed: 05/28/2023]
Abstract
Many of our decisions take place under uncertainty. To successfully navigate the environment, individuals need to estimate the degree of uncertainty and adapt their behaviors accordingly by learning from experiences. However, uncertainty is a broad construct and distinct types of uncertainty may differentially influence our learning. We provide a semi-systematic review to illustrate cognitive and neurobiological processes involved in learning under two types of uncertainty: learning in environments with stochastic outcomes, and with volatile outcomes. We specifically reviewed studies (N = 26 studies) that included an adolescent population, because adolescence is a period in life characterized by heightened exploration and learning, as well as heightened uncertainty due to experiencing many new, often social, environments. Until now, reviews have not comprehensively compared learning under distinct types of uncertainties in this age range. Our main findings show that although the overall developmental patterns were mixed, most studies indicate that learning from stochastic outcomes, as indicated by increased accuracy in performance, improved with age. We also found that adolescents tended to have an advantage compared with adults and children when learning from volatile outcomes. We discuss potential mechanisms explaining these age-related differences and conclude by outlining future research directions.
Collapse
Affiliation(s)
- Selin Topel
- Leiden University, Institute of Psychology, Wassenaarseweg 52, 2333, AK, Leiden, The Netherlands.
- Leiden Institute for Brain and Cognition, Leiden, The Netherlands.
| | - Ili Ma
- Leiden University, Institute of Psychology, Wassenaarseweg 52, 2333, AK, Leiden, The Netherlands
- Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| | - Jan Sleutels
- Leiden University, Institute of Psychology, Wassenaarseweg 52, 2333, AK, Leiden, The Netherlands
- Leiden University, Institute for Philosophy, Leiden, The Netherlands
| | - Henk van Steenbergen
- Leiden University, Institute of Psychology, Wassenaarseweg 52, 2333, AK, Leiden, The Netherlands
- Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| | - Ellen R A de Bruijn
- Leiden University, Institute of Psychology, Wassenaarseweg 52, 2333, AK, Leiden, The Netherlands
- Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| | - Anna C K van Duijvenvoorde
- Leiden University, Institute of Psychology, Wassenaarseweg 52, 2333, AK, Leiden, The Netherlands
- Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| |
Collapse
|
30
|
Kanaan AS, Yu D, Metere R, Schäfer A, Schlumm T, Bilgic B, Anwander A, Mathews CA, Scharf JM, Müller-Vahl K, Möller HE. Convergent imaging-transcriptomic evidence for disturbed iron homeostasis in Gilles de la Tourette syndrome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.15.23289978. [PMID: 37292704 PMCID: PMC10246056 DOI: 10.1101/2023.05.15.23289978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Gilles de la Tourette syndrome (GTS) is a neuropsychiatric movement disorder with reported abnormalities in various neurotransmitter systems. Considering the integral role of iron in neurotransmitter synthesis and transport, it is hypothesized that iron exhibits a role in GTS pathophysiology. As a surrogate measure of brain iron, quantitative susceptibility mapping (QSM) was performed in 28 patients with GTS and 26 matched controls. Significant susceptibility reductions in the patient cohort, consistent with reduced local iron content, were obtained in subcortical regions known to be implicated in GTS. Regression analysis revealed a significant negative association of tic scores and striatal susceptibility. To interrogate genetic mechanisms that may drive these reductions, spatially specific relationships between susceptibility and gene-expression patterns extracted from the Allen Human Brain Atlas were assessed. Correlations in the striatum were enriched for excitatory, inhibitory, and modulatory neurochemical signaling mechanisms in the motor regions, mitochondrial processes driving ATP production and iron-sulfur cluster biogenesis in the executive subdivision, and phosphorylation-related mechanisms that affect receptor expression and long-term potentiation. This link between susceptibility reductions and normative transcriptional profiles suggests that disruptions in iron regulatory mechanisms are involved in GTS pathophysiology and may lead to pervasive abnormalities in mechanisms regulated by iron-containing enzymes.
Collapse
Affiliation(s)
- Ahmad Seif Kanaan
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Dongmei Yu
- Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Riccardo Metere
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Andreas Schäfer
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Siemens Healthcare GmbH, Diagnostic Imaging, Magnetic Resonance, Research and Development, Erlangen, Germany
| | - Torsten Schlumm
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Berkin Bilgic
- Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
- Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alfred Anwander
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Carol A. Mathews
- Department of Psychiatry, Center for OCD, Anxiety, and Related Disorders, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Jeremiah M. Scharf
- Center for Human Genetics Research, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Kirsten Müller-Vahl
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Harald E. Möller
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
31
|
Towner E, Chierchia G, Blakemore SJ. Sensitivity and specificity in affective and social learning in adolescence. Trends Cogn Sci 2023:S1364-6613(23)00092-X. [PMID: 37198089 DOI: 10.1016/j.tics.2023.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 03/23/2023] [Accepted: 04/05/2023] [Indexed: 05/19/2023]
Abstract
Adolescence is a period of heightened affective and social sensitivity. In this review we address how this increased sensitivity influences associative learning. Based on recent evidence from human and rodent studies, as well as advances in computational biology, we suggest that, compared to other age groups, adolescents show features of heightened Pavlovian learning but tend to perform worse than adults at instrumental learning. Because Pavlovian learning does not involve decision-making, whereas instrumental learning does, we propose that these developmental differences might be due to heightened sensitivity to rewards and threats in adolescence, coupled with a lower specificity of responding. We discuss the implications of these findings for adolescent mental health and education.
Collapse
Affiliation(s)
- Emily Towner
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, UK.
| | - Gabriele Chierchia
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; Department of Psychology, University of Cambridge, Downing Street, Cambridge, UK
| | | |
Collapse
|
32
|
Chen Z, Liao C, Cao X, Poser BA, Xu Z, Lo WC, Wen M, Cho J, Tian Q, Wang Y, Feng Y, Xia L, Chen W, Liu F, Bilgic B. 3D-EPI blip-up/down acquisition (BUDA) with CAIPI and joint Hankel structured low-rank reconstruction for rapid distortion-free high-resolution T 2 * mapping. Magn Reson Med 2023; 89:1961-1974. [PMID: 36705076 PMCID: PMC10072851 DOI: 10.1002/mrm.29578] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 01/28/2023]
Abstract
PURPOSE This work aims to develop a novel distortion-free 3D-EPI acquisition and image reconstruction technique for fast and robust, high-resolution, whole-brain imaging as well as quantitativeT 2 * $$ {\mathrm{T}}_2^{\ast } $$ mapping. METHODS 3D Blip-up and -down acquisition (3D-BUDA) sequence is designed for both single- and multi-echo 3D gradient recalled echo (GRE)-EPI imaging using multiple shots with blip-up and -down readouts to encode B0 field map information. Complementary k-space coverage is achieved using controlled aliasing in parallel imaging (CAIPI) sampling across the shots. For image reconstruction, an iterative hard-thresholding algorithm is employed to minimize the cost function that combines field map information informed parallel imaging with the structured low-rank constraint for multi-shot 3D-BUDA data. Extending 3D-BUDA to multi-echo imaging permitsT 2 * $$ {\mathrm{T}}_2^{\ast } $$ mapping. For this, we propose constructing a joint Hankel matrix along both echo and shot dimensions to improve the reconstruction. RESULTS Experimental results on in vivo multi-echo data demonstrate that, by performing joint reconstruction along with both echo and shot dimensions, reconstruction accuracy is improved compared to standard 3D-BUDA reconstruction. CAIPI sampling is further shown to enhance image quality. ForT 2 * $$ {\mathrm{T}}_2^{\ast } $$ mapping, parameter values from 3D-Joint-CAIPI-BUDA and reference multi-echo GRE are within limits of agreement as quantified by Bland-Altman analysis. CONCLUSIONS The proposed technique enables rapid 3D distortion-free high-resolution imaging andT 2 * $$ {\mathrm{T}}_2^{\ast } $$ mapping. Specifically, 3D-BUDA enables 1-mm isotropic whole-brain imaging in 22 s at 3T and 9 s on a 7T scanner. The combination of multi-echo 3D-BUDA with CAIPI acquisition and joint reconstruction enables distortion-free whole-brainT 2 * $$ {\mathrm{T}}_2^{\ast } $$ mapping in 47 s at 1.1 × 1.1 × 1.0 mm3 resolution.
Collapse
Affiliation(s)
- Zhifeng Chen
- School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing & Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Charlestown, MA, USA
- Department of Data Science and AI, Faculty of IT, Monash University, Clayton, VIC, Australia
| | - Congyu Liao
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Xiaozhi Cao
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Benedikt A. Poser
- Maastricht Brain Imaging Center, Faculty of Psychology and Neuroscience, University of Maastricht, the Netherlands
| | - Zhongbiao Xu
- Department of Radiotherapy, Cancer Center, Guangdong Provincial People’s Hospital & Guangdong Academy of Medical Science, Guangzhou, China
| | | | - Manyi Wen
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Jaejin Cho
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Charlestown, MA, USA
| | - Qiyuan Tian
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Charlestown, MA, USA
| | - Yaohui Wang
- Division of Superconducting Magnet Science and Technology, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
| | - Yanqiu Feng
- School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing & Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence & Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| | - Ling Xia
- Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, China
| | - Wufan Chen
- School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing & Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
| | - Feng Liu
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD, Australia
| | - Berkin Bilgic
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Charlestown, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
33
|
Bu M, Deng X, Zhang Y, Chen SW, Jiang M, Chen BT. Brain iron content and cognitive function in patients with β-thalassemia. Ther Adv Hematol 2023; 14:20406207231167050. [PMID: 37151807 PMCID: PMC10155013 DOI: 10.1177/20406207231167050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 03/15/2023] [Indexed: 05/09/2023] Open
Abstract
Patients with β-thalassemia (β-TM) may have brain iron overload from long-term blood transfusions, ineffective erythropoiesis, and increased intestinal iron absorption, leading to cognitive impairment. Brain magnetic resonance imaging (MRI) methods such as the transverse relaxation rate, susceptibility-weighted imaging, and quantitative susceptibility mapping can provide quantitative, in vivo measurements of brain iron. This review assessed these MRI methods for brain iron quantification and the measurements for cognitive function in patients with β-TM. We aimed to identify the neural correlates of cognitive impairment, which should help to evaluate therapies for improving cognition and quality of life in patients with β-TM.
Collapse
Affiliation(s)
- Meiru Bu
- Department of Radiology, First Affiliated
Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Xi Deng
- Department of Radiology, First Affiliated
Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Yu Zhang
- Department of Radiology, First Affiliated
Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Sean W. Chen
- Department of Medical Oncology &
Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte,
CA, USA
| | - Muliang Jiang
- Department of Radiology, First Affiliated
Hospital of Guangxi Medical University, Nanning 530021, P. R. China
| | - Bihong T. Chen
- Department of Diagnostic Radiology, City of
Hope National Medical Center, Duarte, CA, USA
| |
Collapse
|
34
|
Fiani D, Engler S, Fields S, Calarge CA. Iron Deficiency in Attention-Deficit Hyperactivity Disorder, Autism Spectrum Disorder, Internalizing and Externalizing Disorders, and Movement Disorders. Child Adolesc Psychiatr Clin N Am 2023; 32:451-467. [PMID: 37147046 DOI: 10.1016/j.chc.2022.08.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
This article reviews the role of iron in brain development and function, with a focus on the association between iron deficiency (ID) and neuropsychiatric conditions. First, we describe how ID is defined and diagnosed. Second, the role of iron in brain development and function is summarized. Third, we review current findings implicating ID in a number of neuropsychiatric conditions in children and adolescents, including attention deficit hyperactivity disorder and other disruptive behavior disorders, depressive and anxiety disorders, autism spectrum disorder, movement disorders, and other situations relevant to mental health providers. Last, we discuss the impact of psychotropic medication on iron homeostasis.
Collapse
Affiliation(s)
- Dimitri Fiani
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, 8080 N Stadium Dr. Ste 180.35, Houston, TX 77054, USA. https://twitter.com/dimitrifiani
| | - Solangia Engler
- Department of Psychological & Brain Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Sherecce Fields
- Department of Psychological & Brain Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Chadi Albert Calarge
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, 8080 N Stadium Dr. Ste 180.35, Houston, TX 77054, USA; Department of Pediatrics, Baylor College of Medicine, 1102 Bates Avenue, Ste 790, Houston, TX 77030, USA.
| |
Collapse
|
35
|
Calabro FJ, Montez DF, Larsen B, Laymon CM, Foran W, Hallquist MN, Price JC, Luna B. Striatal dopamine supports reward expectation and learning: A simultaneous PET/fMRI study. Neuroimage 2023; 267:119831. [PMID: 36586541 PMCID: PMC9983071 DOI: 10.1016/j.neuroimage.2022.119831] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 10/16/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Converging evidence from both human neuroimaging and animal studies has supported a model of mesolimbic processing underlying reward learning behaviors, based on the computation of reward prediction errors. However, competing evidence supports human dopamine signaling in the basal ganglia as also contributing to the generation of higher order learning heuristics. Here, we present data from a large (N = 81, 18-30yo), multi-modal neuroimaging study using simultaneously acquired task fMRI, affording temporal resolution of reward system function, and PET imaging with [11C]Raclopride (RAC), assessing striatal dopamine (DA) D2/3 receptor binding, during performance of a probabilistic reward learning task. Both fMRI activation and PET DA measures showed ventral striatum involvement for signaling rewards. However, greater DA release was uniquely associated with learning strategies (i.e., learning rates) that were more task-optimal within the best fitting reinforcement learning model. This DA response was associated with BOLD activation of a network of regions including anterior cingulate cortex, medial prefrontal cortex, thalamus and posterior parietal cortex, primarily during expectation, rather than prediction error, task epochs. Together, these data provide novel, human in vivo evidence that striatal dopaminergic signaling interacts with a network of cortical regions to generate task-optimal learning strategies, rather than representing reward outcomes in isolation.
Collapse
Affiliation(s)
- Finnegan J Calabro
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| | - David F Montez
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Bart Larsen
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Charles M Laymon
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - William Foran
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael N Hallquist
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA; Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Julie C Price
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA; Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
36
|
Petty A, Howes O, Eyles D. Animal Models of Relevance to the Schizophrenia Prodrome. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:22-32. [PMID: 36712558 PMCID: PMC9874082 DOI: 10.1016/j.bpsgos.2021.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 02/01/2023] Open
Abstract
Patients with schizophrenia often undergo a prodromal phase prior to diagnosis. Given the absence of significant therapeutic improvements, attention has recently shifted to the possibility of intervention during this early stage to delay or diminish symptom severity or even prevent onset. Unfortunately, the 20 or so trials of intervention to date have not been successful in either preventing onset or improving long-term outcomes in subjects who are at risk of developing schizophrenia. One reason may be that the biological pathways an effective intervention must target are not static. The prodromal phase typically occurs during late adolescence, a period during which a number of brain circuits and structures are still maturing. We propose that developing a deeper understanding of which circuits/processes and brain structures are still maturing at this time and which processes drive the transition to schizophrenia will take us a step closer to developing better prophylactic interventions. Fortunately, such knowledge is now emerging from clinical studies, complemented by work in animal models. Our task here is to describe what would constitute an appropriate animal model to study and to potentially intervene in such processes. Such a model would allow invasive analysis of the cellular and molecular substrates of the progressive neurobiology that defines the schizophrenia prodrome and hopefully offer valuable insights into potential prophylactic targets.
Collapse
Affiliation(s)
- Alice Petty
- Neuroscience Research Australia, Sydney, New South Wales, Australia.,Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | | | - Darryl Eyles
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia.,Queensland Centre for Mental Health Research, Wacol, Queensland, Australia
| |
Collapse
|
37
|
Decreased basal ganglia and thalamic iron in early psychotic spectrum disorders are associated with increased psychotic and schizotypal symptoms. Mol Psychiatry 2022; 27:5144-5153. [PMID: 36071113 PMCID: PMC9772130 DOI: 10.1038/s41380-022-01740-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 01/14/2023]
Abstract
Iron deficits have been reported as a risk factor for psychotic spectrum disorders (PSD). However, examinations of brain iron in PSD remain limited. The current study employed quantitative MRI to examine iron content in several iron-rich subcortical structures in 49 young adult individuals with PSD (15 schizophrenia, 17 schizoaffective disorder, and 17 bipolar disorder with psychotic features) compared with 35 age-matched healthy controls (HC). A parametric approach based on a two-pool magnetization transfer model was applied to estimate longitudinal relaxation rate (R1), which reflects both iron and myelin, and macromolecular proton fraction (MPF), which is specific to myelin. To describe iron content, a synthetic effective transverse relaxation rate (R2*) was modeled using a linear fitting of R1 and MPF. PSD patients compared to HC showed significantly reduced R1 and synthetic R2* across examined regions including the pallidum, ventral diencephalon, thalamus, and putamen areas. This finding was primarily driven by decreases in the subgroup with schizophrenia, followed by schizoaffective disorder. No significant group differences were noted for MPF between PSD and HC while for regional volume, significant reductions in patients were only observed in bilateral caudate, suggesting that R1 and synthetic R2* reductions in schizophrenia and schizoaffective patients likely reflect iron deficits that either occur independently or precede structural and myelin changes. Subcortical R1 and synthetic R2* were also found to be inversely related to positive symptoms within the PSD group and to schizotypal traits across the whole sample. These findings that decreased iron in subcortical regions are associated with PSD risk and symptomatology suggest that brain iron deficiencies may play a role in PSD pathology and warrant further study.
Collapse
|
38
|
Keifman E, Coll C, Tubert C, Paz RM, Belforte JE, Murer MG, Braz BY. Preserved Motility after Neonatal Dopaminergic Lesion Relates to Hyperexcitability of Direct Pathway Medium Spiny Neurons. J Neurosci 2022; 42:8767-8779. [PMID: 36241384 PMCID: PMC9698699 DOI: 10.1523/jneurosci.1992-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 07/13/2022] [Accepted: 09/06/2022] [Indexed: 12/29/2022] Open
Abstract
In Parkinson's disease patients and rodent models, dopaminergic neuron loss (DAN) results in severe motor disabilities. In contrast, general motility is preserved after early postnatal DAN loss in rodents. Here we used mice of both sexes to show that the preserved motility observed after early DAN loss depends on functional changes taking place in medium spiny neurons (MSN) of the dorsomedial striatum (DMS) that belong to the direct pathway (dMSN). Previous animal model studies showed that adult loss of dopaminergic input depresses dMSN response to cortical input, which likely contributes to Parkinson's disease motor impairments. However, the response of DMS-dMSN to their preferred medial PFC input is preserved after neonatal DAN loss as shown by in vivo studies. Moreover, their response to inputs from adjacent cortical areas is increased, resulting in reduced cortical inputs selectivity. Additional ex vivo studies show that membrane excitability increases in dMSN. Furthermore, chemogenetic inhibition of DMS-dMSN has a more marked inhibitory effect on general motility in lesioned mice than in their control littermates, indicating that expression of normal levels of locomotion and general motility depend on dMSN activity after early DAN loss. Contrastingly, DMS-dMSN inhibition did not ameliorate a characteristic phenotype of the DAN-lesioned animals in a marble burying task demanding higher behavioral control. Thus, increased dMSN excitability likely promoting changes in corticostriatal functional connectivity may contribute to the distinctive behavioral phenotype emerging after developmental DAN loss, with implications for our understanding of the age-dependent effects of forebrain dopamine depletion and neurodevelopment disorders.SIGNIFICANCE STATEMENT The loss of striatal dopamine in the adult brain leads to life-threatening motor impairments. However, general motility remains largely unaffected after its early postnatal loss. Here, we show that the high responsiveness to cortical input of striatal neurons belonging to the direct basal ganglia pathway, crucial for proper motor functioning, is preserved after early dopamine neuron loss, in parallel with an increase in these cells' membrane excitability. Chemogenetic inhibition studies show that the preserved motility depends on this direct pathway hyperexcitability/hyperconnectivity, while other phenotypes characteristic of this condition remained unaltered despite the dMSN inhibition. This insight has implications for our understanding of the mechanism underlying the behavioral impairments observed in neuropsychiatric conditions linked to early dopaminergic hypofunction.
Collapse
Affiliation(s)
- Ettel Keifman
- Universidad de Buenos Aires, CONICET, Instituto de Fisiología y Biofísica Bernardo Houssay, Grupo de Neurociencia de Sistemas, 2155 Paraguay St, Buenos Aires, 1121, Argentina
| | - Camila Coll
- Universidad de Buenos Aires, CONICET, Instituto de Fisiología y Biofísica Bernardo Houssay, Grupo de Neurociencia de Sistemas, 2155 Paraguay St, Buenos Aires, 1121, Argentina
| | - Cecilia Tubert
- Universidad de Buenos Aires, CONICET, Instituto de Fisiología y Biofísica Bernardo Houssay, Grupo de Neurociencia de Sistemas, 2155 Paraguay St, Buenos Aires, 1121, Argentina
| | - Rodrigo M Paz
- Universidad de Buenos Aires, CONICET, Instituto de Fisiología y Biofísica Bernardo Houssay, Grupo de Neurociencia de Sistemas, 2155 Paraguay St, Buenos Aires, 1121, Argentina
| | - Juan E Belforte
- Universidad de Buenos Aires, CONICET, Instituto de Fisiología y Biofísica Bernardo Houssay, Grupo de Neurociencia de Sistemas, 2155 Paraguay St, Buenos Aires, 1121, Argentina
| | - Mario G Murer
- Universidad de Buenos Aires, CONICET, Instituto de Fisiología y Biofísica Bernardo Houssay, Grupo de Neurociencia de Sistemas, 2155 Paraguay St, Buenos Aires, 1121, Argentina
| | - Barbara Y Braz
- Universidad de Buenos Aires, CONICET, Instituto de Fisiología y Biofísica Bernardo Houssay, Grupo de Neurociencia de Sistemas, 2155 Paraguay St, Buenos Aires, 1121, Argentina
| |
Collapse
|
39
|
Reduced basal ganglia tissue-iron concentration in school-age children with attention-deficit/hyperactivity disorder is localized to limbic circuitry. Exp Brain Res 2022; 240:3271-3288. [PMID: 36301336 DOI: 10.1007/s00221-022-06484-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/10/2022] [Indexed: 11/04/2022]
Abstract
Dopamine-related abnormalities in the basal ganglia have been implicated in attention-deficit/hyperactivity disorder (ADHD). Iron plays a critical role in supporting dopaminergic function, and reduced brain iron and serum ferritin levels have been linked to ADHD symptom severity in children. Furthermore, the basal ganglia is a central brain region implicated in ADHD psychopathology and involved in motor and reward functions as well as emotional responding. The present study repurposed diffusion tensor imaging (DTI) to examine effects of an ADHD diagnosis and sex on iron deposition within the basal ganglia in children ages 8-12 years. We further explored associations between brain iron levels and ADHD symptom severity and affective symptoms. We observed reduced iron levels in children with ADHD in the bilateral limbic region of the striatum, as well as reduced levels of iron-deposition in males in the sensorimotor striatal subregion, regardless of diagnosis. Across the whole sample, iron-deposition increased with age in all regions. Brain-behavior analyses revealed that, across diagnostic groups, lower tissue-iron levels in bilateral limbic striatum correlated with greater ADHD symptom severity, whereas lower tissue-iron levels in the left limbic striatum only correlated with anxious, depressive and affective symptom severity. This study sheds light on the neurobiological underpinnings of ADHD, specifically highlighting the localization of tissue-iron deficiency in limbic regions, and providing support for repurposing DTI for brain iron analyses. Our findings highlight the need for further investigation of iron as a biomarker in the diagnosis and treatment of ADHD and sex differences.
Collapse
|
40
|
Wenger MJ, Murray Kolb LE, Scott SP, Boy E, Haas JD. Modeling relationships between iron status, behavior, and brain electrophysiology: evidence from a randomized study involving a biofortified grain in Indian adolescents. BMC Public Health 2022; 22:1299. [PMID: 35794587 PMCID: PMC9260997 DOI: 10.1186/s12889-022-13612-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 06/08/2022] [Indexed: 11/10/2022] Open
Abstract
Background Iron deficiency (ID) and iron deficiency anemia (IDA) are highly-prevalent nutrient deficiencies and have been shown to have a range of negative effects on cognition and brain function. Human intervention studies including measures at three levels—blood, brain, and behavior—are rare and our objective was to model the relationships among measures at these three levels in school-going Indian adolescents. Methods Male and female adolescents in rural India were screened for ID/IDA. Subjects consumed 2 meals/day for 6 months; half were randomly assigned to consume meals made from a standard grain (pearl millet) and half consumed meals made from an iron biofortified pearl millet (BPM). Prior to and then at the conclusion of the feeding trial, they completed a set of cognitive tests with concurrent electroencephalography (EEG). Results Overall, serum ferritin (sFt) levels improved over the course of the study. Ten of 21 possible measures of cognition showed improvements from baseline (BL) to endline (EL) that were larger for those consuming BPM than for those consuming the comparison pearl millet (CPM). Critically, the best model for the relationship between change in iron status and change in cognition had change in brain measures as a mediating factor, with both change in serum ferritin as a primary predictor and change in hemoglobin as a moderator. Conclusions A dietary intervention involving a biofortified staple grain was shown to be efficacious in improving blood iron biomarkers, behavioral measures of cognition, and EEG measures of brain function. Modeling the relationships among these variables strongly suggests multiple mechanisms by which blood iron level affects brain function and cognition. Trial registration Registered at ClinicalTrials.gov, NCT02152150, 02 June 2014. Supplementary Information The online version contains supplementary material available at (10.1186/s12889-022-13612-z).
Collapse
Affiliation(s)
- Michael J Wenger
- Department of Psychology, Cellular and Behavioral Neurobiology, The University of Oklahoma, Norman, OK, USA. .,Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA.
| | | | - Samuel P Scott
- Poverty Health and Nutrition Division, International Food Policy Research Institute, Washington, DC, USA
| | - Erick Boy
- HarvestPlus, International Food Policy Research Institute, Washington, DC, USA
| | - Jere D Haas
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| |
Collapse
|
41
|
Levine MA, Mandeville JB, Calabro F, Izquierdo-Garcia D, Chonde DB, Chen KT, Hong I, Price JC, Luna B, Catana C. Assessment of motion and model bias on the detection of dopamine response to behavioral challenge. J Cereb Blood Flow Metab 2022; 42:1309-1321. [PMID: 35118904 PMCID: PMC9207487 DOI: 10.1177/0271678x221078616] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Compartmental modeling analysis of 11C-raclopride (RAC) PET data can be used to measure the dopaminergic response to intra-scan behavioral tasks. Bias in estimates of binding potential (BPND) and its dynamic changes (ΔBPND) can arise both when head motion is present and when the compartmental model used for parameter estimation deviates from the underlying biology. The purpose of this study was to characterize the effects of motion and model bias within the context of a behavioral task challenge, examining the impacts of different mitigation strategies. Seventy healthy adults were administered bolus plus constant infusion RAC during a simultaneous PET/magnetic resonance (MR) scan with a reward task experiment. BPND and ΔBPND were estimated using an extension of the Multilinear Reference Tissue Model (E-MRTM2) and a new method (DE-MRTM2) was proposed to selectively discount the contribution of the initial uptake period. Motion was effectively corrected with a standard frame-based approach, which performed equivalently to a more complex reconstruction-based approach. DE-MRTM2 produced estimates of ΔBPND in putamen and nucleus accumbens that were significantly different from those estimated from E-MRTM2, while also decoupling ΔBPND values from first-pass k2' estimation and removing skew in the spatial bias distribution of parametric ΔBPND estimates within the striatum.
Collapse
Affiliation(s)
- Michael A Levine
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Joseph B Mandeville
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Finnegan Calabro
- Department of Psychiatry, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - David Izquierdo-Garcia
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, and Harvard Medical School, Charlestown, Massachusetts, USA.,Harvard-MIT Department of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Daniel B Chonde
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Kevin T Chen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Inki Hong
- Siemens Healthcare MI, Knoxville, Tennessee, USA
| | - Julie C Price
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Ciprian Catana
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, and Harvard Medical School, Charlestown, Massachusetts, USA
| |
Collapse
|
42
|
Sonnenschein SF, Parr AC, Larsen B, Calabro FJ, Foran W, Eack SM, Luna B, Sarpal DK. Subcortical brain iron deposition in individuals with schizophrenia. J Psychiatr Res 2022; 151:272-278. [PMID: 35523067 DOI: 10.1016/j.jpsychires.2022.04.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/01/2022] [Accepted: 04/18/2022] [Indexed: 11/28/2022]
Abstract
Subcortical structures play a critical role the pathophysiology and treatment of schizophrenia (SZ), yet underlying neurophysiological processes, in vivo, remain largely unexplored. Brain tissue iron, which can be measured with magnetic resonance-based methods, is a crucial component of a variety of neuronal functions including neurotransmitter synthesis. Here we used a proxy measure of tissue iron to examine basal ganglia and thalamic structures in an adult cohort of individuals with chronic SZ. A publicly available dataset of 72 individuals with SZ between ages 18 and 65, and a matched sample of 74 healthy control (HC) participants were included. A novel method that calculated the inverse-normalized T2*-weighted contrast (1/nT2*) was used to estimate brain iron within the basal ganglia and thalamus. Between group, age- and sex-related differences in 1/nT2* were examined, in addition to correlations with measures of psychopathology and cognition. Individuals with SZ showed greater 1/nT2* (iron index) compared to HCs in the thalamus (p < 0.01, FWE corrected). Age-related 1/nT2* accumulation was noted in regions of the basal ganglia, coinciding with prior work, and prominent sex-differences were noted in the caudate and thalamus (p < 0.01, FWE corrected). No significant relationship was observed between 1/nT2* and measures of neurocognition or psychopathology. Overall, our findings characterize a non-invasive proxy measure of tissue iron in SZ and highlight thalamic iron accumulation as a potential marker of illness.
Collapse
Affiliation(s)
| | | | - Bart Larsen
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Shaun M Eack
- Department of Psychiatry, USA; School of Social Work, USA
| | - Beatriz Luna
- Department of Psychiatry, USA; Department of Psychology, USA; Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
43
|
Kendricks DR, Boomhower SR, Newland MC. Adolescence as a sensitive period for neurotoxicity: Lifespan developmental effects of methylmercury. Pharmacol Biochem Behav 2022; 217:173389. [PMID: 35452710 DOI: 10.1016/j.pbb.2022.173389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 10/18/2022]
Abstract
Neurotoxicity resulting from the environmental contaminant, methylmercury (MeHg), is a source of concern for many human populations that rely heavily on the consumption of fish and rice as stable ingredients in the diet. The developmental period of exposure is important both to the qualitative effects of MeHg and to the dose required to produce those effects. MeHg exposure during the sensitive prenatal period causes deleterious and long-lasting changes in neurodevelopment at particularly low doses. The effects include a wide host of cognitive and behavioral outcomes expressed in adulthood and sometimes not until aging. However, neurotoxic outcomes of methylmercury when exposure occurs during adolescence are only recently revealing impacts on human populations and animal models. This review examines the current body of work and showcases the sensitivity of adolescence, a period that straddles early development and adulthood, to methylmercury neurotoxicity and the implications such toxicity has in our understanding of methylmercury's effects in human populations and animal models.
Collapse
Affiliation(s)
- Dalisa R Kendricks
- Department of Psychology, Auburn University, Auburn, AL, United States of America.
| | - Steven R Boomhower
- Gradient, Boston, MA, United States of America; Harvard Division of Continuing Education, Harvard University, Cambridge, MA, United States of America
| | | |
Collapse
|
44
|
Parr AC, Calabro F, Tervo-Clemmens B, Larsen B, Foran W, Luna B. Contributions of dopamine-related basal ganglia neurophysiology to the developmental effects of incentives on inhibitory control. Dev Cogn Neurosci 2022; 54:101100. [PMID: 35344773 PMCID: PMC8961188 DOI: 10.1016/j.dcn.2022.101100] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/23/2022] [Accepted: 03/16/2022] [Indexed: 01/19/2023] Open
Abstract
Inhibitory control can be less reliable in adolescence, however, in the presence of rewards, adolescents' performance often improves to adult levels. Dopamine is known to play a role in signaling rewards and supporting cognition, but its role in the enhancing effects of reward on adolescent cognition and inhibitory control remains unknown. Here, we assessed the contribution of basal ganglia dopamine-related neurophysiology using longitudinal MR-based assessments of tissue iron in rewarded inhibitory control, using an antisaccade task. In line with prior work, we show that neutral performance improves with age, and incentives enhance performance in adolescents to that of adults. We find that basal ganglia tissue iron is associated with individual differences in the magnitude of this reward boost, which is strongest in those with high levels of tissue iron, predominantly in adolescence. Our results provide novel evidence that basal ganglia neurophysiology supports developmental effects of rewards on cognition, which can inform neurodevelopmental models of the role of dopamine in reward processing during adolescence.
Collapse
Affiliation(s)
- Ashley C Parr
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 14213, United States.
| | - Finnegan Calabro
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 14213, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 14213, United States
| | | | - Bart Larsen
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Will Foran
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 14213, United States
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 14213, United States.
| |
Collapse
|
45
|
Namiranian R, Rahimi Malakshan S, Abrishami Moghaddam H, Khadem A, Jafari R. Normal development of the brain: a survey of joint structural-functional brain studies. Rev Neurosci 2022; 33:745-765. [PMID: 35304982 DOI: 10.1515/revneuro-2022-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 11/15/2022]
Abstract
Joint structural-functional (S-F) developmental studies present a novel approach to address the complex neuroscience questions on how the human brain works and how it matures. Joint S-F biomarkers have the inherent potential to model effectively the brain's maturation, fill the information gap in temporal brain atlases, and demonstrate how the brain's performance matures during the lifespan. This review presents the current state of knowledge on heterochronous and heterogeneous development of S-F links during the maturation period. The S-F relationship has been investigated in early-matured unimodal and prolonged-matured transmodal regions of the brain using a variety of structural and functional biomarkers and data acquisition modalities. Joint S-F unimodal studies have employed auditory and visual stimuli, while the main focus of joint S-F transmodal studies has been resting-state and cognitive experiments. However, nonsignificant associations between some structural and functional biomarkers and their maturation show that designing and developing effective S-F biomarkers is still a challenge in the field. Maturational characteristics of brain asymmetries have been poorly investigated by the joint S-F studies, and the results were partially inconsistent with previous nonjoint ones. The inherent complexity of the brain performance can be modeled using multifactorial and nonlinear techniques as promising methods to simulate the impact of age on S-F relations considering their analysis challenges.
Collapse
Affiliation(s)
- Roxana Namiranian
- Department of Biomedical Engineering, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran 16317-14191, Iran
| | - Sahar Rahimi Malakshan
- Department of Biomedical Engineering, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran 16317-14191, Iran
| | - Hamid Abrishami Moghaddam
- Department of Biomedical Engineering, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran 16317-14191, Iran.,Inserm UMR 1105, Université de Picardie Jules Verne, 80054 Amiens, France
| | - Ali Khadem
- Department of Biomedical Engineering, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran 16317-14191, Iran
| | - Reza Jafari
- Department of Electrical and Computer Engineering, Thompson Engineering Building, University of Western Ontario, London, ON N6A 5B9, Canada
| |
Collapse
|
46
|
Liu S, Wang YS, Zhang Q, Zhou Q, Cao LZ, Jiang C, Zhang Z, Yang N, Dong Q, Zuo XN. Chinese Color Nest Project : An accelerated longitudinal brain-mind cohort. Dev Cogn Neurosci 2021; 52:101020. [PMID: 34653938 PMCID: PMC8517840 DOI: 10.1016/j.dcn.2021.101020] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 10/02/2021] [Accepted: 10/07/2021] [Indexed: 12/12/2022] Open
Abstract
The ongoing Chinese Color Nest Project (CCNP) was established to create normative charts for brain structure and function across the human lifespan, and link age-related changes in brain imaging measures to psychological assessments of behavior, cognition, and emotion using an accelerated longitudinal design. In the initial stage, CCNP aims to recruit 1520 healthy individuals (6-90 years), which comprises three phases: developing (devCCNP: 6-18 years, N = 480), maturing (matCCNP: 20-60 years, N = 560) and aging (ageCCNP: 60-84 years, N = 480). In this paper, we present an overview of the devCCNP, including study design, participants, data collection and preliminary findings. The devCCNP has acquired data with three repeated measurements from 2013 to 2017 in Southwest University, Chongqing, China (CCNP-SWU, N = 201). It has been accumulating baseline data since July 2018 and the second wave data since September 2020 in Chinese Academy of Sciences, Beijing, China (CCNP-CAS, N = 168). Each participant in devCCNP was followed up for 2.5 years at 1.25-year intervals. The devCCNP obtained longitudinal neuroimaging, biophysical, social, behavioral and cognitive data via MRI, parent- and self-reported questionnaires, behavioral assessments, and computer tasks. Additionally, data were collected on children's learning, daily life and emotional states during the COVID-19 pandemic in 2020. We address data harmonization across the two sites and demonstrated its promise of characterizing the growth curves for the overall brain morphometry using multi-center longitudinal data. CCNP data will be shared via the National Science Data Bank and requests for further information on collaboration and data sharing are encouraged.
Collapse
Affiliation(s)
- Siman Liu
- Research Center for Lifespan Development of Mind and Brain, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yin-Shan Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; Developmental Population Neuroscience Research Center, International Data Group/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Qing Zhang
- Research Center for Lifespan Development of Mind and Brain, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Quan Zhou
- Research Center for Lifespan Development of Mind and Brain, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li-Zhi Cao
- Research Center for Lifespan Development of Mind and Brain, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Jiang
- School of Psychology, Capital Normal University, Beijing 100048, China
| | - Zhe Zhang
- Department of Psychology, College of Education, Hebei Normal University, Shijiazhuang 05024, Hebei, China
| | - Ning Yang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; Developmental Population Neuroscience Research Center, International Data Group/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Xi-Nian Zuo
- Research Center for Lifespan Development of Mind and Brain, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; Developmental Population Neuroscience Research Center, International Data Group/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
47
|
Galván A. Adolescent Brain Development and Contextual Influences: A Decade in Review. JOURNAL OF RESEARCH ON ADOLESCENCE : THE OFFICIAL JOURNAL OF THE SOCIETY FOR RESEARCH ON ADOLESCENCE 2021; 31:843-869. [PMID: 34820955 DOI: 10.1111/jora.12687] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Adolescence is a developmental period characterized by substantial psychological, biological, and neurobiological changes. This review discusses the past decade of research on the adolescent brain, as based on the overarching framework that development is a dynamic process both within the individual and between the individual and external inputs. As such, this review focuses on research showing that the development of the brain is influenced by multiple ongoing and dynamic elements. It highlights the implications this body of work on behavioral development and offers areas of opportunity for future research in the coming decade.
Collapse
|
48
|
NRM 2021 Abstract Booklet. J Cereb Blood Flow Metab 2021; 41:11-309. [PMID: 34905986 PMCID: PMC8851538 DOI: 10.1177/0271678x211061050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
49
|
Cler GJ, Krishnan S, Papp D, Wiltshire CEE, Chesters J, Watkins KE. Elevated iron concentration in putamen and cortical speech motor network in developmental stuttering. Brain 2021; 144:2979-2984. [PMID: 34750604 PMCID: PMC8634076 DOI: 10.1093/brain/awab283] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/17/2021] [Accepted: 07/16/2021] [Indexed: 11/12/2022] Open
Abstract
Theoretical accounts of developmental stuttering implicate dysfunctional cortico-striatal-thalamo-cortical motor loops through the putamen. However, the analysis of conventional MRI brain scans in individuals who stutter has failed to yield strong support for this theory in terms of reliable differences in the structure or function of the basal ganglia. Here, we performed quantitative mapping of brain tissue, which can be used to measure iron content alongside markers sensitive to myelin and thereby offers particular sensitivity to the measurement of iron-rich structures such as the basal ganglia. Analysis of these quantitative maps in 41 men and women who stutter and 32 individuals who are typically fluent revealed significant group differences in maps of R2*, indicative of higher iron content in individuals who stutter in the left putamen and in left hemisphere cortical regions important for speech motor control. Higher iron levels in brain tissue in individuals who stutter could reflect elevated dopamine levels or lysosomal dysfunction, both of which are implicated in stuttering. This study represents the first use of these quantitative measures in developmental stuttering and provides new evidence of microstructural differences in the basal ganglia and connected frontal cortical regions.
Collapse
Affiliation(s)
- Gabriel J Cler
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK
| | - Saloni Krishnan
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK
- Department of Psychology, Royal Holloway, University of London, Egham Hill, Surrey TW20 0EX, UK
| | - Daniel Papp
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX3 9DU, UK
| | - Charlotte E E Wiltshire
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK
| | - Jennifer Chesters
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK
- Bristol Speech and Language Therapy Research Unit, North Bristol NHS Trust, Bristol BS10 5NB, UK
| | - Kate E Watkins
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK
| |
Collapse
|
50
|
Xu J, Guan X, Wen J, Wang T, Zhang M, Xu X. Substantia nigra iron affects functional connectivity networks modifying working memory performance in younger adults. Eur J Neurosci 2021; 54:7959-7973. [PMID: 34779047 DOI: 10.1111/ejn.15532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 01/19/2023]
Abstract
Brain iron affects working memory (WM) but the impact of iron content in deep grey matter nuclei on WM networks is unknown. We aimed to test whether deep grey matter nuclei iron concentration can affect resting-state functional connectivity (rsFC) within brain networks modifying WM performance. An N-back WM paradigm was applied in a hundred healthy younger adults. The participants then underwent a resting-state functional magnetic resonance imaging (fMRI) for brain network analysis and quantitative susceptibility mapping (QSM) imaging for assessment of deep grey matter nuclei iron concentration. Higher substantia nigra (SN) iron concentration was associated with lower rsFC between SN and brain regions of the temporal/frontal lobe but with better WM performance after controlling for age, gender and education. A follow-up mediation analysis also indicated that functional connectivity may mediate the link between SN iron and WM performance. Our results suggest that high SN iron concentration may affect communication between the SN and temporal/frontal lobe and is associated with strengthened WM performance in younger adults.
Collapse
Affiliation(s)
- Jingjing Xu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojun Guan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaqi Wen
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Wang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|