1
|
Wang L, Liu J, Yin P, Gao Y, Jiang Y, Kan H, Zhou M, Ao H, Chen R. Mortality risk and burden of sudden cardiac arrest associated with hot nights, heatwaves, cold spells, and non-optimum temperatures in 0.88 million patients: An individual-level case-crossover study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175208. [PMID: 39097015 DOI: 10.1016/j.scitotenv.2024.175208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/15/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Sudden cardiac arrest (SCA) is a global health concern, imposing a substantial mortality burden. However, the understanding of the impact of various extreme temperature events, when accounting for the effect of daily average temperature on SCA, remains incomplete. Additionally, the assessment of SCA mortality burden associated with temperatures from an individual-level design is limited. This nationwide case-crossover study collected individual SCA death records across all (2844) county-level administrative units in the Chinese Mainland from 2013 to 2019. Four definitions for hot nights and ten for both cold spells and heatwaves were established using various temperature thresholds and durations. Conditional logistic regression models combined with distributed lag nonlinear models were employed to estimate the cumulative exposure-response relationships. Based on 887,662 SCA decedents, this analysis found that both hot nights [odds ratio (OR): 1.28; attributable fraction (AF): 1.32 %] and heatwaves (OR: 1.40; AF: 1.29 %) exhibited significant added effects on SCA mortality independent of daily average temperatures, while cold spells were not associated with an elevated SCA risk after accounting for effects of temperatures. Cold temperatures [below the minimum mortality temperature (MMT)] accounted for a larger mortality burden than high temperatures (above the MMT) [AF: 12.2 % vs. 1.5 %]. Higher temperature-related mortality risks and burdens were observed in patients who experienced out-of-hospital cardiac arrest compared to those with in-hospital cardiac arrest. This nationwide study presents the most compelling and comprehensive evidence of the elevated mortality risk and burden of SCA associated with extreme temperature events and ambient temperatures amid global warming.
Collapse
Affiliation(s)
- Lijun Wang
- National Center for Chronic Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jiangdong Liu
- Department of Environmental Health, School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China
| | - Peng Yin
- National Center for Chronic Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ya Gao
- Department of Environmental Health, School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China
| | - Yixuan Jiang
- Department of Environmental Health, School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China
| | - Haidong Kan
- Department of Environmental Health, School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China
| | - Maigeng Zhou
- National Center for Chronic Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hushan Ao
- Department of Anesthesiology, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center of Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Renjie Chen
- Department of Environmental Health, School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Jingesi M, Yin Z, Huang S, Liu N, Ji J, Lv Z, Wang P, Peng J, Cheng J, Yin P. Cardiovascular morbidity risk attributable to thermal stress: analysis of emergency ambulance dispatch data from Shenzhen, China. BMC Public Health 2024; 24:2861. [PMID: 39420322 PMCID: PMC11488127 DOI: 10.1186/s12889-024-20144-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/19/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Climate change has raised scientific interest in examining the associations of weather conditions with adverse health effects, while most studies determined human thermal stress using ambient air temperature rather than the thermophysiological index. OBJECTIVES To evaluate the association between emergency ambulance dispatches (EADs) related to cardiovascular causes and heat/cold stress in Shenzhen, a city in southern China, with the aim of providing new insights for local policymakers. METHODS A time series analysis using ambulance dispatch data of cardiovascular diseases in Shenzhen, China (2013-2019) was conducted. A quasi-Poisson nonlinear distributed lag model was applied to explore the relationship between emergency ambulance dispatches (EADs) due to cardiovascular causes and thermal stress (determined by Universal Thermal Climate Index, UTCI). Attributable fractions were estimated to identify which UTCI ranges have a greater health impact. RESULTS The relationship between UTCI and EADs due to cardiovascular diseases exhibits a reverse J-shaped curve. The effects of cold stress were immediate and long-lasting, whereas the effects of heat stress were non-significant. Compared with the optimal equivalent temperature (71st percentile of UTCI, 29.22 °C), the relative risks for cumulative (0-21 days) exposures to cold stress (1st percentile, - 0.13 °C; 5th percentile, 7.68 °C) were 1.55 (95%CI:1.28,1.88) and 1.44 (95%CI:1.22,1.69), respectively. Thermal (cold and heat) stress was responsible for 10.81% (95%eCI: 5.67%,15.43%) of EADs for cardiovascular diseases, with 9.46% (95%eCI: 3.98%,14.40%) attributed to moderate cold stress (2.5th ~ 71st percentile). Greater susceptibility to cold stress was observed for males and the elderly. Heat stress showed harmful effects in the warm season. CONCLUSIONS Our results demonstrated that cold exposure elevates the risk of EADs for cardiovascular causes in Shenzhen, and moderate cold stress cause the highest burden of ambulance dispatches. Health authorities should consider effective adaptation strategies and interventions responding to cold stress to reduce the morbidity of cardiovascular diseases.
Collapse
Affiliation(s)
- Maidina Jingesi
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, Hubei, 430030, China
| | - Ziming Yin
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, Hubei, 430030, China
- Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Suli Huang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Ning Liu
- Department of Environment and Health, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Jiajia Ji
- Department of Environment and Health, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Ziquan Lv
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Peng Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, Hubei, 430030, China
| | - Ji Peng
- Shenzhen Center for Chronic Disease Control, Shenzhen, China
| | - Jinquan Cheng
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Ping Yin
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, Hubei, 430030, China.
| |
Collapse
|
3
|
Zhao C, Huang Y, Cheng Y, Zhang R, Wang Y, Tong S, He J, Guo J, Xia F, Li Y, Yao X. Association between heatwaves and risk and economic burden of injury related hospitalizations in China. ENVIRONMENTAL RESEARCH 2024; 259:119509. [PMID: 38945512 DOI: 10.1016/j.envres.2024.119509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND Public health is greatly affected by heatwaves, especially as a result of climate change. It is unclear whether heatwaves affect injury hospitalization, especially as developing countries facing the impact of climate change. OBJECTIVES To assess the impact of heatwaves on injury-related hospitalization and the economic burden. METHODS The daily hospitalizations and meteorological data from 2014 to 2019 were collected from 23 study sites in 11 meteorological geographic zones in China. We conducted a two-stage time series analysis based on a time-stratified case-crossover design, combined with DLNM to assess the association between heatwaves and daily injury hospitalization, and to further assess the regional and national economic losses resulting from hospitalization by calculating excess hospitalization costs (direct economic losses) and labor losses (indirect economic losses). To determine the vulnerable groups and areas, we also carried out stratified analyses by age, sex, and region. RESULTS We found that 6.542% (95%CI: 3.939%, 9.008 %) of injury hospitalization were attributable to heatwaves during warm season (May to September) from 2014 to 2019. Approximately 361,447 injury hospitalizations were attributed to heatwaves each year in China, leading to an excess economic loss of 5.173 (95%CI: 3.104, 7.196) billion CNY, of which 3.114 (95%CI: 1.454, 4.720) billion CNY for males and 4.785 (95%CI: 3.203, 6.321) billion CNY for people aged 15-64 years. The attributable fraction (AF) of injury hospitalizations due to heatwaves was the highest in the plateau mountain climate zone, followed by the subtropical monsoon climate zone and the temperate monsoon climate zone. CONCLUSIONS Heatwaves significantly increase the disease and economic burden of injury hospitalizations, and vary across populations and regions. Our findings implicate the necessity for targeted measures, including raising public awareness, improving healthcare infrastructure, and developing climate resilience policies, to reduce the threat of heatwaves to vulnerable populations and the associated disease and economic burden.
Collapse
Affiliation(s)
- Cheng Zhao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China.
| | - Yushu Huang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China; Department of Big Data in Health Science School of Public Health, and Center of Clinical Big Data and Analytics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yibin Cheng
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Rui Zhang
- Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Yu Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Shilu Tong
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China; School of Public Health, Institute of Environment and Population Health, Anhui Medical University, Hefei, 230032, China; School of Public Health and Social Work, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Jiang He
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Jia Guo
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Fan Xia
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Yonghong Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China.
| | - Xiaoyuan Yao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China.
| |
Collapse
|
4
|
Bianco G, Espinoza-Chávez RM, Ashigbie PG, Junio H, Borhani C, Miles-Richardson S, Spector J. Projected impact of climate change on human health in low- and middle-income countries: a systematic review. BMJ Glob Health 2024; 8:e015550. [PMID: 39357915 DOI: 10.1136/bmjgh-2024-015550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/23/2024] [Indexed: 10/04/2024] Open
Abstract
Low- and middle-income countries (LMICs) contribute relatively little to global carbon emissions but are recognised to be among the most vulnerable parts of the world to health-related consequences of climate change. To help inform resilient health systems and health policy strategies, we sought to systematically analyse published projections of the impact of rising global temperatures and other weather-related events on human health in LMICs. A systematic search involving multiple databases was conducted in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines to identify studies with modelled projections of the future impact of climate change on human health. Qualitative studies, reviews and meta-analyses were excluded. The search yielded more than 2500 articles, of which 70 studies involving 37 countries met criteria for inclusion. China, Brazil and India were the most studied countries while the sub-Saharan African region was represented in only 9% of studies. Forty specific health outcomes were grouped into eight categories. Non-disease-specific temperature-related mortality was the most studied health outcome, followed by neglected tropical infections (predominantly dengue), malaria and cardiovascular diseases. Nearly all health outcomes studied were projected to increase in burden and/or experience a geographic shift in prevalence over the next century due to climate change. Progressively severe climate change scenarios were associated with worse health outcomes. Knowledge gaps identified in this analysis included insufficient studies of various high burden diseases, asymmetric distribution of studies across LMICs and limited use of some climate parameters as independent variables. Findings from this review could be the basis for future research to help inform climate mitigation and adaptation programmes aimed at safeguarding population health in LMICs.
Collapse
Affiliation(s)
- Gaia Bianco
- Biomedical Research, Novartis, Basel, Switzerland
| | | | - Paul G Ashigbie
- Biomedical Research, Novartis, Cambridge, Massachusetts, USA
| | - Hiyas Junio
- University of the Philippines, Diliman, Philippines
| | - Cameron Borhani
- Global Health and Sustainability, Novartis, Basel, Switzerland
| | | | | |
Collapse
|
5
|
Zhang F, Yang C, Wang F, Li P, Zhang L. Health Co-Benefits of Environmental Changes in the Context of Carbon Peaking and Carbon Neutrality in China. HEALTH DATA SCIENCE 2024; 4:0188. [PMID: 39360234 PMCID: PMC11446102 DOI: 10.34133/hds.0188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 08/04/2024] [Accepted: 08/23/2024] [Indexed: 10/04/2024]
Abstract
IMPORTANCE Climate change mitigation policies aimed at limiting greenhouse gas (GHG) emissions would bring substantial health co-benefits by directly alleviating climate change or indirectly reducing air pollution. As one of the largest developing countries and GHG emitter globally, China's carbon-peaking and carbon neutrality goals would lead to substantial co-benefits on global environment and therefore on human health. This review summarized the key findings and gaps in studies on the impact of China's carbon mitigation strategies on human health. HIGHLIGHTS There is a wide consensus that limiting the temperature rise well below 2 °C would markedly reduce the climate-related health impacts compared with high emission scenario, although heat-related mortalities, labor productivity reduction rates, and infectious disease morbidities would continue increasing over time as temperature rises. Further, hundreds of thousands of air pollutant-related mortalities (mainly due to PM2.5 and O3) could be avoided per year compared with the reference scenario without climate policy. Carbon reduction policies can also alleviate morbidities due to acute exposure to PM2.5. Further research with respect to morbidities attributed to nonoptimal temperature and air pollution, and health impacts attributed to precipitation and extreme weather events under current carbon policy in China or its equivalent in other developing countries is needed to improve our understanding of the disease burden in the coming decades. CONCLUSIONS This review provides up-to-date evidence of potential health co-benefits under Chinese carbon policies and highlights the importance of considering these co-benefits into future climate policy development in both China and other nations endeavoring carbon reductions.
Collapse
Affiliation(s)
- Feifei Zhang
- National Institute of Health Data Science at Peking University, Health Science Center of Peking University, Beijing 100191, China
- Institute of Medical Technology, Health Science Center of Peking University, Beijing 100191, China
| | - Chao Yang
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing 100034, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing 100034, China
- Advanced Institute of Information Technology, Peking University, Hangzhou 311215, China
| | - Fulin Wang
- National Institute of Health Data Science at Peking University, Health Science Center of Peking University, Beijing 100191, China
- Institute of Medical Technology, Health Science Center of Peking University, Beijing 100191, China
| | - Pengfei Li
- Advanced Institute of Information Technology, Peking University, Hangzhou 311215, China
| | - Luxia Zhang
- National Institute of Health Data Science at Peking University, Health Science Center of Peking University, Beijing 100191, China
- Institute of Medical Technology, Health Science Center of Peking University, Beijing 100191, China
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing 100034, China
- Advanced Institute of Information Technology, Peking University, Hangzhou 311215, China
| |
Collapse
|
6
|
Psistaki K, Kouis P, Michanikou A, Yiallouros PK, Papatheodorou SI, Paschalidou AΚ. Temporal trends in temperature-related mortality and evidence for maladaptation to heat and cold in the Eastern Mediterranean region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173899. [PMID: 38862043 DOI: 10.1016/j.scitotenv.2024.173899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/24/2024] [Accepted: 06/08/2024] [Indexed: 06/13/2024]
Abstract
The eastern Mediterranean region is characterized by rising temperature trends exceeding the corresponding global averages and is considered a climate change hot-spot. Although previous studies have thoroughly investigated the impact of extreme heat and cold on human mortality and morbidity, both for the current and future climate change scenarios, the temporal trends in temperature-related mortality or the potential historical adaptation to heat and cold extremes has never been studied in this region. This study focuses on cardiovascular mortality and assesses the temporal evolution of the Minimum Mortality Temperature (MMT), as well as the disease-specific cold- and heat-attributable fraction of mortality in three typical eastern Mediterranean environments (Athens, Thessaloniki and Cyprus). Data on daily cardiovascular mortality (ICD-10 code: I00-I99) and meteorological parameters were available between 1999 and 2019 for Athens, 1999 to 2018 for Thessaloniki and 2004 to 2019 for Cyprus. Estimation of cardiovascular MMT and mortality fractions relied on time-series Poisson regressions with distributed lag nonlinear models (DLNM) controlling for seasonal and long-term trends, performed over a series of rolling sub-periods at each site. The results indicated that in Athens, the MMT decreased from 23 °C (67.5th percentile) in 1999-2007 to 21.8 °C (62nd percentile) in 2011-2019, while in Cyprus the MMT decreased from 26.3 °C (79th percentile) in 2004-2012 to 23.9 °C (66.5th percentile) in 2011-2019. In Thessaloniki, the decrease in MMT was rather negligible. In all regions under study, the fractions of mortality attributed to both cold and heat followed an upward trend throughout the years. In conclusion, the demonstrated increase in cold attributable fraction and the decreasing temporal trend of MMT across the examined sites are suggestive of maladaptation to extreme temperatures in regions with warm climate and highlight the need for relevant public health policies and interventions.
Collapse
Affiliation(s)
- Kyriaki Psistaki
- Department of Forestry and Management of the Environment and Natural Resources, Democritus University of Thrace, Orestiada, Greece.
| | | | | | | | - Stefania I Papatheodorou
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA; Department of Biostatistics and Epidemiology, Rutgers School of Public Health, New Brunswick, NJ, USA.
| | - Anastasia Κ Paschalidou
- Department of Forestry and Management of the Environment and Natural Resources, Democritus University of Thrace, Orestiada, Greece.
| |
Collapse
|
7
|
Crouzier C, Van Schaeybroeck B, Duchêne F, Duchêne M, Hamdi R, Kirakoya-Samadoulougou F, Demoury C. The impact of climate and demographic changes on future mortality in Brussels, Belgium. Public Health 2024; 236:261-267. [PMID: 39276564 DOI: 10.1016/j.puhe.2024.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/12/2024] [Accepted: 07/28/2024] [Indexed: 09/17/2024]
Abstract
OBJECTIVES City populations are particularly vulnerable to climate change, but it is difficult to reliably estimate the impact on health due to the lack of high-resolution data. We used recently developed regional climate model projections at kilometre resolution combined with demographic projections to estimate the future mortality burden associated with temperatures in the region of Brussels, Belgium. STUDY DESIGN The study incorporated a time-series analysis. METHODS Based on quasi-Poisson regression with distributed-lag non-linear models for the historical temperature-mortality relationship, we derive the mortality burden for the near (2020-2044) and mid (2045-2069) future and disaggregated the contributions of demographic and climate changes. RESULTS The cold-related attributable fraction of deaths is expected to decrease from 6.22% (95% empirical confidence interval: 1.76%; 10.52%) in 1994-2019 to 5.17% (1.08%; 9.09%) in 2045-2069, whereas for heat, this fraction will increase from 1.02% (0.59%; 1.47%) to 1.83% (0.82%; 2.96%), with contributions of both climate and demographic changes. In stratified analyses by age, we found that because of demographic changes, the number of cold-attributable deaths will increase for people aged above 85 years, with 6815 (95% empirical confidence interval: 1424; 12,003) deaths expected in 2045-2069 compared to 5245 (1462; 8867) deaths in 1994-2019. For people aged below 65 years, on the other hand, the number of heat-related deaths will decrease from 456 (265; 658) to 344 (154; 561) deaths. CONCLUSIONS Public health policies that especially target the elderly and the summer-time period are needed to limit the impact of climate change on health.
Collapse
Affiliation(s)
- C Crouzier
- Sciensano, Risk and Health Impact Assessment, Brussels, Belgium; Centre de Recherche en Epidémiologie, Biostatistique et Recherche Clinique, Ecole de Santé Publique, Université Libre de Bruxelles, Brussels, Belgium
| | | | - F Duchêne
- Royal Meteorological Institute of Belgium, Brussels, Belgium
| | - M Duchêne
- Royal Meteorological Institute of Belgium, Brussels, Belgium
| | - R Hamdi
- Royal Meteorological Institute of Belgium, Brussels, Belgium
| | - F Kirakoya-Samadoulougou
- Centre de Recherche en Epidémiologie, Biostatistique et Recherche Clinique, Ecole de Santé Publique, Université Libre de Bruxelles, Brussels, Belgium
| | - C Demoury
- Sciensano, Risk and Health Impact Assessment, Brussels, Belgium.
| |
Collapse
|
8
|
Wu WT, Kono M, Lee CP, Chang YY, Yang YH, Lin CC, Liu TM, Li HC, Chen YM, Chen PC. Climate Change Projections for Stroke Incidence in Taiwan: Impact of 2 °C and 4 °C Global Warming Level. J Epidemiol Glob Health 2024; 14:1319-1331. [PMID: 39222225 PMCID: PMC11442790 DOI: 10.1007/s44197-024-00289-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVES This study aimed to establish the exposure-lag-response effect between daily maximum temperature and stroke-related emergency department visits and to project heat-induced stroke impacts under global warming levels (GWL) of 2 °C and 4 °C. METHODS Stroke-related emergency department visits in Taiwan from 2001 to 2020 were identified using the National Health Insurance Research Database (NHIRD). The study population consisted of 1,100,074 initial stroke cases matched with 2,200,148 non-stroke controls. We employed Distributed Lag Nonlinear Models (DLNM) in a case-crossover study to investigate the association between temperature and stroke. Generalized Estimating Equations (GEE) models with a Poisson function were used to correlate high-temperature exposure with annual stroke incidence rates. Projections were made under two global warming scenarios, GWL 2.0 °C and 4.0 °C, using Coupled General Circulation Model (GCMs). Baseline data from 1995 to 2014 were transformed for spatial distribution at the township level. Geographic Information System (GIS) spatial analysis was performed using Quantum GIS 3.2.0 software. RESULTS DLNM exposure-lag-response effect revealed that daily maximum temperature exceeding 34 °C significantly increased the risk of stroke-related emergency department visits, particularly for ischemic stroke. Under the 2 °C GWL scenario, the frequency of days with temperatures surpassing 34 °C is projected to rise substantially by the median year of 2042, with a further increase to 92.6 ± 18.0 days/year by 2065 under the 4 °C GWL scenario. Ischemic stroke showed the highest increase in temperature-related incidence rates, notably rising from 7.80% under the GWL 2 °C to 36.06% under the GWL 4 °C. Specifically, the annual temperature-related incidence rate for ischemic stroke is expected to increase significantly by 2065. Regions such as Taichung, Hsinchu, Yilan, and Taitung demonstrated pronounced changes in heat-related ischemic stroke incidence under the GWL 4 °C. CONCLUSIONS The findings emphasize the importance of addressing temperature-related stroke risks, particularly in regions projected to experience significant temperature increases. Effective mitigation strategies are crucial to reduce the impact of rising temperatures on stroke incidence and safeguard public health.
Collapse
Affiliation(s)
- Wei-Te Wu
- National Institute of Environmental Health Sciences, National Health Research Institutes, No. 35, Keyan Rd., Zhunan Township, Miaoli County, 350401, Taiwan, ROC.
- Institute of Environmental and Occupational Health Sciences, National Yang-Ming Chiao Tung University, Taipei, Taiwan.
| | - Miku Kono
- National Institute of Environmental Health Sciences, National Health Research Institutes, No. 35, Keyan Rd., Zhunan Township, Miaoli County, 350401, Taiwan, ROC
| | - Chuan-Pin Lee
- Health Information and Epidemiology Laboratory, Chang Gung Memorial Hospital, Chiayi County, Taiwan
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Chiayi County, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Yin Chang
- National Institute of Environmental Health Sciences, National Health Research Institutes, No. 35, Keyan Rd., Zhunan Township, Miaoli County, 350401, Taiwan, ROC
| | - Yao-Hsu Yang
- Health Information and Epidemiology Laboratory, Chang Gung Memorial Hospital, Chiayi County, Taiwan
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Chiayi County, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ching-Chun Lin
- Institute of Environmental and Occupational Health Sciences, National Taiwan University College of Public Health, Taipei, Taiwan
| | - Tzu-Ming Liu
- National Science and Technology Center for Disaster Reduction, New Taipei City, Taiwan
| | - Hsin-Chi Li
- National Science and Technology Center for Disaster Reduction, New Taipei City, Taiwan
| | - Yung-Ming Chen
- National Science and Technology Center for Disaster Reduction, New Taipei City, Taiwan
| | - Pau-Chung Chen
- National Institute of Environmental Health Sciences, National Health Research Institutes, No. 35, Keyan Rd., Zhunan Township, Miaoli County, 350401, Taiwan, ROC
- Institute of Environmental and Occupational Health Sciences, National Taiwan University College of Public Health, Taipei, Taiwan
- Department of Public Health, National Taiwan University College of Public Health, Taipei, Taiwan
- Department of Environmental and Occupational Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
9
|
He G, Lin Y, Hu J, Chen Y, Guo Y, Yu M, Zeng F, Duan H, Meng R, Zhou C, Xiao Y, Huang B, Gong W, Liu J, Liu T, Zhou M, Ma W. The trends of non-accidental mortality burden attributed to compound hot-dry events in China and its provinces in a global warming world. ENVIRONMENT INTERNATIONAL 2024; 191:108977. [PMID: 39216332 DOI: 10.1016/j.envint.2024.108977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/22/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Global warming has provoked more co-occurrence of hot extreme and dry extreme, namely compound hot-dry events (CHDEs). However, their health impacts have seldom been investigated. This study aimed to characterize CHDEs and assess its mortality burden in China from 1990 to 2100. METHODS CHDEs were defined as a day when daily maximum temperature > its 90th percentile and Standardized Precipitation Index < its 50th percentile. A two-stage approach, including a distributed lag nonlinear model (DLNM) and a multivariate meta-analysis, was used to estimate exposure-response associations of CHDEs with mortality in 358 counties/districts during 2006-2017 in China, which was then applied to assess the national mortality burden attributable to CHDEs from 1990 to 2100. FINDINGS We observed a significant increasing trend of CHDEs in China until mid-21st century, and then flatted, while the duration and intensity of CHDEs continuously increased across the 21st century. CHDEs were much riskier (ER=17.82 %, 95 %CI: 14.17 %-21.60 %) than independent hot events (ER=5.86 %,95 %CI: -0.04 %,12.45 %) or dry events (ER=0.07 %,95 %CI: -1.22 %, 1.38 %), and there was significantly additive interaction between hot events and dry events (AP=0.10,95 %CI: 0.04, 0.16). Females (ER=24.28 %, 95 %CI: 19.21 %-29.56 %), the elderly (ER=23.28 %, 95 %CI: 18.23 %-28.55 %), and people living in humid area (ER=18.98 %, 95 %CI: 15.08 %-23.02 %) had higher mortality risks than their counterparts. Mortality burden attributed to CHDEs significantly increased during historical observation and became stable since mid-21st century in China. INTERPRETATION CHDEs would significantly increase mortality with higher risk for females, the elderly and people living in humid areas. Mortality burden has significantly increased during historical observation and will keep relatively steady since mid-21st century.
Collapse
Affiliation(s)
- Guanhao He
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Yi Lin
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Jianxiong Hu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Yang Chen
- State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Yanfang Guo
- Bao'an Chronic Diseases Prevent and Cure Hospital, Shenzhen 518100, China
| | - Min Yu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310009, China
| | - Fangfang Zeng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Hailai Duan
- Climate Center of Guangdong Province, Guangzhou 510640, China
| | - Ruilin Meng
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Chunliang Zhou
- Hunan Provincial Center for Disease Control and Prevention, Changsha 410005, China
| | - Yize Xiao
- Yunnan Provincial Center for Disease Control and Prevention, Kunming 650034, China
| | - Biao Huang
- Jilin Provincial Center for Disease Control and Prevention, Changchun 130062, China
| | - Weiwei Gong
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310009, China
| | - Jiangmei Liu
- The National Center for Chronic and Noncommunicable Disease Control and Prevention, Beijing 100050, China
| | - Tao Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Maigeng Zhou
- The National Center for Chronic and Noncommunicable Disease Control and Prevention, Beijing 100050, China
| | - Wenjun Ma
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
10
|
Kocoglu-Tanyer D, Dengiz KS, Sacikara Z. Nursing students' conceptualization of environmental problems: a descriptive cross-sectional study. NURSE EDUCATION TODAY 2024; 140:106296. [PMID: 38972168 DOI: 10.1016/j.nedt.2024.106296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/28/2024] [Accepted: 06/23/2024] [Indexed: 07/09/2024]
Abstract
BACKGROUND The significant challenges of the twenty-first century revolve around environmental issues. Knowing individuals' environmental attitudes and what they see as environmental problems is crucial to mobilizing them to action. Nurses hold a significant responsibility in addressing and combating environmental challenges. RESEARCH AIM This study had two objectives: understanding how nursing students classify environmental issues and examining the effects of gender, economic status, school district, family environmental awareness, and perception of global responsibility on their conceptualization of environmental issues. DESIGN A descriptive cross-sectional study using a questionnaire. SETTING AND PARTICIPANTS The sample consisted of 1466 nursing students from four faculties of two public universities in Turkiye. The study was conducted between January and April 2023. METHODS Data were collected using a form that included 19 issues ranging from ecological problems to social problems related to the environment, as well as the Global Social Responsibility Scale (GSRS). The data were analyzed using explanatory factor analysis, multiple regression, and mediator analysis. RESULTS Participants classified the environmental issues as eco-social-oriented and human-oriented. First-year students (B = -0.201), male students (B = -0.263), those studying in rural schools (B = -0.123), and those who rarely discuss environmental issues in the family (B = -0.197) describe the problems in the eco-social oriented dimension as less "environmental." The increase in the action-oriented responsibility (B = 0.014) and ecological responsibility (B = 0.077) scores of The Global Social Responsibility Scale leads to an increase in recognizing the problems in this area as environmental issues. Similarly, first-year students (B = -0.340), male students (B = -0.293), and those who rarely discussed environmental issues in the family (B = -0.243) led to a decrease in recognizing problems as environmental in the human-oriented issues dimension. In contrast, poor socioeconomic perception (B = 0.245), negative perception of the future (B = 0.145), and increased action-oriented responsibility (B = 0.024) and ecological responsibility (B = 0.042) led to an increase in recognition of human-oriented issues. The increase in the national responsibility score decreased the score of environmental assessment of the problems in this area (B = -0.017). In addition, the perception of global responsibility partially mediates between students' sociodemographic characteristics and environmental issues recognition scores in both sub-dimensions. CONCLUSION This study presents results that point to individual differences among nursing students in addressing environmental issues, reveal the impact of family on these differences, and finally show the importance of curricula to increase students' global social responsibility during their education.
Collapse
Affiliation(s)
| | - Kubra Sultan Dengiz
- Necmettin Erbakan University, Faculty of Nursing, Public Health Department Konya, Turkiye
| | - Zeynep Sacikara
- Necmettin Erbakan University, Faculty of Nursing, Public Health Department Konya, Turkiye
| |
Collapse
|
11
|
Yi W, Bach A, Tong S, Cheng J, Yang J, Zheng H, Ho HC, Song J, Pan R, Su H, Xu Z. Quantifying the historical and future heat-related mortality above the heat alert thresholds of the inaugural Chinese national heat-health action plan. ENVIRONMENTAL RESEARCH 2024; 262:119869. [PMID: 39218339 DOI: 10.1016/j.envres.2024.119869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND China published its inaugural national heat-health action plan (HHAP) in 2023, but the mortality burden associated with temperatures exceeding the heat alert thresholds specified by this HHAP (maximum temperatures >35, 37, or 40 °C) remains unknown. We aimed to estimate the historical and future mortality burden associated with temperatures above the heat alert thresholds of the Chinese national HHAP. METHODS We conducted time-series analyses to estimate the mortality burden associated with temperatures exceeding the three heat alert thresholds from 2016 to 2019 in Jiangsu Province (including 13 cities, population ∼80.7 million), China. A quasi-Poisson regression in conjunction with a distributed lag non-linear model was used to estimate the dose-response association between maximum temperature and mortality risk from 2016 to 2019, adjusting for potential covariates. We then projected the future mortality burden associated with temperatures exceeding these thresholds under three distinct levels of greenhouse gas (GHG) emission scenarios via scenario shared socioeconomic pathways [SSP] 1-2.6 (low), SSP2-4.5 (intermediate), and SSP5-8.5 (high), respectively, by assuming that there will be no adaptation to heat. Climate scenarios derived from the General Circulation Model (GCM) under the Coupled Model Intercomparison Project Phase 6 (CMIP6) were used. RESULTS From 2016 to 2019, temperatures above 35 °C were associated with 0.51% of mortality, including 0.40% associated with 35 °C-37 °C and 0.11% associated with >37 °C. Heat-related mortality risk was most prominent in those who were single/divorced/widowed and had <10 years of education. Under SSP2-4.5, compared with the 2020s, the excess mortality associated with >37 °C would increase by 1.4 times in the 2050s and 1.7 times in the 2090s. Under SSP5-8.5, the annual number of days with maximum temperature >37 °C would approximately double every 20 years (67 days annually in the 2090s). Consequently, compared with the 2020s, the excess mortality associated with >37 °C would increase by 2.8 times in the 2050s and 18.4 times in the 2090s. CONCLUSION Significant mortality risk is associated with temperatures above the lowest heat alert threshold of the Chinese national HHAP (35 °C). If the high GHG emission scenario occurred, the annual number of days and excess mortality associated with maximum temperatures >37 °C would largely increase in the coming decades.
Collapse
Affiliation(s)
- Weizhuo Yi
- School of Public Health, Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China; School of Medicine and Dentistry, Griffith University, Gold Coast, Australia
| | - Aaron Bach
- School of Health Sciences and Social Work, Griffith University, Gold Coast, Australia; Cities Research Institute, Griffith University, Gold Coast, Australia
| | - Shilu Tong
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; School of Public Health and Social Work, Queensland University of Technology, Brisbane, Australia
| | - Jian Cheng
- School of Public Health, Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Jun Yang
- School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Hao Zheng
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Hung Chak Ho
- Department of Public and International Affairs, City University of Hong Kong, Hong Kong, China
| | - Jian Song
- School of Public Health, Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Rubing Pan
- School of Public Health, Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Hong Su
- School of Public Health, Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China; Center for Big Data and Population Health of IHM, Hefei, China; Anhui Mental Health Center (Affiliated Psychological Hospital of Anhui Medical University), Hefei, China.
| | - Zhiwei Xu
- School of Medicine and Dentistry, Griffith University, Gold Coast, Australia; Cities Research Institute, Griffith University, Gold Coast, Australia.
| |
Collapse
|
12
|
Wang J, Li Y, Liu W, Gou A. Spatial and temporal evolution characteristics and factors of heat vulnerability in the Pearl River Delta urban agglomeration from 2001 to 2022. Heliyon 2024; 10:e34116. [PMID: 39091952 PMCID: PMC11292507 DOI: 10.1016/j.heliyon.2024.e34116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 08/04/2024] Open
Abstract
To explore the spatiotemporal evolution characteristics of heat vulnerability in the Pearl River Delta urban agglomeration during heatwave disasters, this research employs the Entropy Weight Method (EWM) to calculate the heat vulnerability assessment results for nine cities in the region spanning from 2001 to 2022. Through the application of kernel density estimation, Moran's I, and the Geographically and Temporally Weighted Regression (GTWR) model, which is proven to be superior to traditional model such as OLS, this study analyzes the dynamic distribution patterns of heat vulnerability in the study area and dissect the trends of influencing factors. The results reveal that from 2001 to 2022, the overall heat vulnerability index in the study area demonstrates a fluctuating downward trend. Key contributors to heat vulnerability include high-frequency and long-duration heatwaves, population sensitivity, and changes in residents' consumption levels. Throughout this period of development, the disparity in heat vulnerability among cities has gradually widened, indicating an overall pattern of uneven development in the region. Future attention should be focused on formulating heat adaptation strategies in areas with high vulnerability to enhance the overall sustainability of the study area.
Collapse
Affiliation(s)
- Jiangbo Wang
- College of Architecture, Nanjing Tech University, Nanjing, 211816, China
| | - Yishu Li
- College of Architecture, Nanjing Tech University, Nanjing, 211816, China
| | - Wei Liu
- Jiangsu Provincial Planning and Design Group, Nanjing, 210019, China
| | - Aiping Gou
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| |
Collapse
|
13
|
Niu YL, Lu F, Liu XJ, Wang J, Liu DL, Liu QY, Yang J. Global climate change: Effects of future temperatures on emergency department visits for mental disorders in Beijing, China. ENVIRONMENTAL RESEARCH 2024; 252:119044. [PMID: 38697599 DOI: 10.1016/j.envres.2024.119044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/08/2024] [Accepted: 04/27/2024] [Indexed: 05/05/2024]
Abstract
Rising temperatures can increase the risk of mental disorders. As climate change intensifies, the future disease burden due to mental disorders may be underestimated. Using data on the number of daily emergency department visits for mental disorders at 30 hospitals in Beijing, China during 2016-2018, the relationship between daily mean temperature and such visits was assessed using a quasi-Poisson model integrated with a distributed lag nonlinear model. Emergency department visits for mental disorders attributed to temperature changes were projected using 26 general circulation models under four climate change scenarios. Stratification analyses were then conducted by disease subtype, sex, and age. The results indicate that the temperature-related health burden from mental disorders was projected to increase consistently throughout the 21st century, mainly driven by high temperatures. The future temperature-related health burden was higher for patients with mental disorders due to the use of psychoactive substances and schizophrenia as well as for women and those aged <65 years. These findings enhance our knowledge of how climate change could affect mental well-being and can be used to advance and refine targeted approaches to mitigating and adapting to climate change with a view on addressing mental disorders.
Collapse
Affiliation(s)
- Yan-Lin Niu
- Institute for Nutrition and Food Hygiene, Beijing Center for Disease Prevention and Control, 100013 Beijing, China
| | - Feng Lu
- Beijing Municipal Health Big Data and Policy Research Center, 100034 Beijing, China
| | - Xue-Jiao Liu
- Department of Medical Record Management and Statistics, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China
| | - Jun Wang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - De Li Liu
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, NSW 2650, Australia; Climate Change Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Qi-Yong Liu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Jun Yang
- School of Public Health, Guangzhou Medical University, 511436 Guangzhou, China.
| |
Collapse
|
14
|
Hu K, Wang S, Fei F, Song J, Chen F, Zhao Q, Shen Y, Fu J, Zhang Y, Cheng J, Zhong J, Yang X, Wu J. Modifying temperature-related cardiovascular mortality through green-blue space exposure. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 20:100408. [PMID: 38560758 PMCID: PMC10979139 DOI: 10.1016/j.ese.2024.100408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/29/2024] [Accepted: 03/02/2024] [Indexed: 04/04/2024]
Abstract
Green-blue spaces (GBS) are pivotal in mitigating thermal discomfort. However, their management lacks guidelines rooted in epidemiological evidence for specific planning and design. Here we show how various GBS types modify the link between non-optimal temperatures and cardiovascular mortality across different thermal extremes. We merged fine-scale population density and GBS data to create novel GBS exposure index. A case time series approach was employed to analyse temperature-cardiovascular mortality association and the effect modifications of type-specific GBSs across 1085 subdistricts in south-eastern China. Our findings indicate that both green and blue spaces may significantly reduce high-temperature-related cardiovascular mortality risks (e.g., for low (5%) vs. high (95%) level of overall green spaces at 99th vs. minimum mortality temperature (MMT), Ratio of relative risk (RRR) = 1.14 (95% CI: 1.07, 1.21); for overall blue spaces, RRR = 1.20 (95% CI: 1.12, 1.29)), while specific blue space types offer protection against cold temperatures (e.g., for the rivers at 1st vs MMT, RRR = 1.17 (95% CI: 1.07, 1.28)). Notably, forests, parks, nature reserves, street greenery, and lakes are linked with lower heat-related cardiovascular mortality, whereas rivers and coasts mitigate cold-related cardiovascular mortality. Blue spaces provide greater benefits than green spaces. The severity of temperature extremes further amplifies GBS's protective effects. This study enhances our understanding of how type-specific GBS influences health risks associated with non-optimal temperatures, offering valuable insights for integrating GBS into climate adaptation strategies for maximal health benefits.
Collapse
Affiliation(s)
- Kejia Hu
- School of Public Health, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, 310058, China
| | - Shiyi Wang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Fangrong Fei
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China
| | - Jinglu Song
- Department of Urban Planning and Design, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Feng Chen
- Zhejiang Institute of Meteorological Sciences, Hangzhou, 310008, China
| | - Qi Zhao
- School of Public Health, Shandong University, Jinan, 250012, China
| | - Yujie Shen
- School of Public Health, Zhejiang University, Hangzhou, 310058, China
| | - Jingqiao Fu
- Ocean College, Zhejiang University, Zhoushan, 316021, China
| | - Yunquan Zhang
- School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Jian Cheng
- School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Jieming Zhong
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China
| | - Xuchao Yang
- Ocean College, Zhejiang University, Zhoushan, 316021, China
| | - Jiayu Wu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
15
|
Yang J, Zhou M, Guo C, Zhu S, Sakhvidi MJZ, Requia WJ, Sun Q, Tong S, Li M, Liu Q. Drivers of associations between daytime-nighttime compound temperature extremes and mortality in China. COMMUNICATIONS MEDICINE 2024; 4:125. [PMID: 38937621 PMCID: PMC11211425 DOI: 10.1038/s43856-024-00557-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/19/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Temperature extremes are anticipated to become more frequent and more intense under the context of climate change. While current evidence on health effects of compound extreme temperature event is scarce. METHODS This nationwide cross-sectional study collected daily data on weather and mortality for 161 Chinese districts/counties during 2007-2013. A quasi-Poisson generalized linear model was first applied to assess effects of daytime-only, nighttime-only and compound daytime-nighttime heat wave (and cold spell) on cause-specific mortality. Then a random-effect meta-analysis was used to produce pooled estimates at national level. Stratification analyses were performed by relative humidity, individual and regional characteristics. RESULTS Here we show that mortality risks of compound daytime-nighttime temperature extremes are much higher than those occurring only in the daytime or nighttime. Humid weather further exaggerates the mortality risk during heat waves, while dry air enhances the risk during cold weather. People who are elderly, illiterate, and those with ischemic heart disease and respiratory disease are particularly vulnerable to extreme temperature. At the community-level, population size, urbanization rate, proportion of elderly and PM2.5 are positively associated with increased risks associated with heat waves. Temperature, humidity and normalized difference vegetation index are positively associated with the effects of cold weather, with an opposite trend for latitude and diurnal temperature range. CONCLUSIONS This nationwide study highlights the importance of incorporating compound daytime-nighttime extreme temperature events and humid conditions into early warning systems and urban design/planning.
Collapse
Affiliation(s)
- Jun Yang
- School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Maigeng Zhou
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Beijing, 100050, China
| | - Cui Guo
- Department of Urban Planning and Design, Faculty of Architecture, The University of Hong Kong, Hong Kong SAR, China
| | - Sui Zhu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510080, China
| | - Mohammad Javad Zare Sakhvidi
- Department of Occupational Health, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Weeberb J Requia
- School of Public Policy and Government, Fundação Getúlio Vargas, Brasília, Distrito Federal, Brazil
| | - Qinghua Sun
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Shilu Tong
- Shanghai Children's Medical Center, Shanghai Jiao Tong University, Shanghai, 200127, China
- School of Public Health and Institute of Environment and Population Health, Anhui Medical University, Hefei, China
- School of Public Health and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Mengmeng Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qiyong Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
16
|
Zhou L, Liu C, He C, Lei J, Zhu Y, Gao Y, Xuan J, Kan H, Chen R. Quantification of the Heat-Related Risk and Burden of Hospitalizations for Cause-Specific Injuries and Contribution of Human-Induced Climate Change: A Time-Stratified Case-Crossover Study in China. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:57005. [PMID: 38752990 PMCID: PMC11098006 DOI: 10.1289/ehp14057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 04/07/2024] [Accepted: 04/26/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND Although ambient temperature has been linked with injury incidence, there have been few nationwide studies to quantify the temperature-related risk and burden of cause-specific injury hospitalizations. Additionally, the impact of human-induced climate change to injury burden remains unknown. OBJECTIVES Our objectives are to examine the associations between ambient temperature and injury hospitalizations from various causes and to quantify the contribution of human-induced warming to the heat-related burden. METHODS We collected injury hospitalization data from a nationwide hospital-based registry in China during 2000-2019. Using a time-stratified case-crossover design, we investigated the associations between daily mean temperature (°C) and cause-specific injury hospitalizations. We also quantified the burden of heat-related injuries under the scenarios with and without anthropogenic forcing, using the Detection and Attribution Model Intercomparison Project to assess the contribution of human-induced warming. RESULTS Our study included a total of 988,087 patients with hospitalization records for injuries. Overall, compared to the temperature at minimum risk of hospitalization (- 12.1 ° C ), the relative risk of hospitalization at extreme hot temperature (30.8°C, 97.5th percentile) was 1.18 [95% confidence interval (CI): 1.14, 1.22], with an approximately linear association between temperature and hospitalization. Vulnerability to heat-related injuries was more pronounced among males, young (< 18 years of age) or middle-aged (45-64 years of age) individuals, and those living in the North. The heat-related attributable fraction increased from 23.2% in the 2000s to 23.6% in the 2010s, with a corresponding increase in the contribution of human-induced change over time. In the 2010s, the heat-related attributable fractions for specific causes of injury ranged from 12.4% to 54.4%, with human-induced change accounting for 6.7% to 10.6% of the burden. DISCUSSION This nationwide study presents new evidence of significant associations between temperature and cause-specific injury hospitalizations in China and highlights the increasing contribution of human-induced warming to the injury burden. https://doi.org/10.1289/EHP14057.
Collapse
Affiliation(s)
- Lu Zhou
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Cong Liu
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Cheng He
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
- Institute of Epidemiology, Helmholtz Zentrum München—German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Jian Lei
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Yixiang Zhu
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Ya Gao
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Jianwei Xuan
- Health Economic Research Institute, School of Pharmacy, Sun Yat-Sen University, Guangzhou, China
| | - Haidong Kan
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
- National Center for Children’s Health, Children’s Hospital of Fudan University, Shanghai, China
| | - Renjie Chen
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
17
|
Xi D, Liu L, Zhang M, Huang C, Burkart KG, Ebi K, Zeng Y, Ji JS. Risk factors associated with heatwave mortality in Chinese adults over 65 years. Nat Med 2024; 30:1489-1498. [PMID: 38528168 DOI: 10.1038/s41591-024-02880-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/22/2024] [Indexed: 03/27/2024]
Abstract
Aging populations are susceptible to heat-related mortality because of physiological factors and comorbidities. However, the understanding of individual vulnerabilities in the aging population is incomplete. In the Chinese Longitudinal Healthy Longevity Survey, we assessed daily heatwave exposure individually for 13,527 participants (median age = 89 years) and 3,249 summer mortalities during follow-up from 2008 to 2018. The mortality risk during heatwave days according to relative temperature is approximately doubled (hazard ratio (HR) range = 1.78-1.98). We found that heatwave mortality risks were increased for individuals with functional declines in mobility (HR range = 2.32-3.20), dependency in activities of daily living (HR range = 2.22-3.27), cognitive impairment (HR = 2.22) and social isolation reflected by having nobody to ask for help during difficulties (HR range = 2.14-10.21). Contrary to current understanding, older age was not predictive of heatwave mortality risk after accounting for individual functional declines; no statistical differences were detected according to sex. Beyond age as a risk factor, our findings emphasize that functional aging is an underlying factor in enhancing heatwave resilience. Assessment of functional decline and implementing care strategies are crucial for targeted prevention of mortality during heatwaves.
Collapse
Affiliation(s)
- Di Xi
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Linxin Liu
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Min Zhang
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Cunrui Huang
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Katrin G Burkart
- Institute for Health Metric and Evaluation, University of Washington, Seattle, WA, USA
| | - Kristie Ebi
- Center for Health and the Global Environment, University of Washington, Seattle, WA, USA
| | - Yi Zeng
- Center for Healthy Aging and Development Studies, National School of Development, Peking University, Beijing, China
- Center for the Study of Aging and Human Development, Duke Medical School, Durham, NC, USA
| | - John S Ji
- Vanke School of Public Health, Tsinghua University, Beijing, China.
| |
Collapse
|
18
|
Wu Y, Wen B, Gasparrini A, Armstrong B, Sera F, Lavigne E, Li S, Guo Y. Temperature frequency and mortality: Assessing adaptation to local temperature. ENVIRONMENT INTERNATIONAL 2024; 187:108691. [PMID: 38718673 DOI: 10.1016/j.envint.2024.108691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/19/2024] [Accepted: 04/23/2024] [Indexed: 05/19/2024]
Abstract
Assessing the association between temperature frequency and mortality can provide insights into human adaptation to local ambient temperatures. We collected daily time-series data on mortality and temperature from 757 locations in 47 countries/regions during 1979-2020. We used a two-stage time series design to assess the association between temperature frequency and all-cause mortality. The results were pooled at the national, regional, and global levels. We observed a consistent decrease in the risk of mortality as the normalized frequency of temperature increases across the globe. The average increase in mortality risk comparing the 10th to 100th percentile of normalized frequency was 13.03% (95% CI: 12.17-13.91), with substantial regional differences (from 4.56% in Australia and New Zealand to 33.06% in South Europe). The highest increase in mortality was observed for high-income countries (13.58%, 95% CI: 12.56-14.61), followed by lower-middle-income countries (12.34%, 95% CI: 9.27-15.51). This study observed a declining risk of mortality associated with higher temperature frequency. Our findings suggest that populations can adapt to their local climate with frequent exposure, with the adapting ability varying geographically due to differences in climatic and socioeconomic characteristics.
Collapse
Affiliation(s)
- Yao Wu
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Bo Wen
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Antonio Gasparrini
- Department of Public Health Environments and Society, London School of Hygiene & Tropical Medicine, London, United Kingdom; Centre for Statistical Methodology, London School of Hygiene & Tropical Medicine, London, United Kingdom; Centre On Climate Change & Planetary Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Ben Armstrong
- Department of Public Health Environments and Society, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Francesco Sera
- Department of Statistics, Computer Science and Applications "G. Parenti", University of Florence, Florence, Italy
| | - Eric Lavigne
- School of Epidemiology & Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Shanshan Li
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia.
| | - Yuming Guo
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia.
| |
Collapse
|
19
|
Liu J, Li M, Yang Z, Liu D, Xiao T, Cheng J, Su H, Ou CQ, Yang J. Rising trend and regional disparities of the global burden of disease attributable to ambient low temperature, 1990-2019: An analysis of data from the Global Burden of Disease 2019 study. J Glob Health 2024; 14:04017. [PMID: 38635810 PMCID: PMC11026037 DOI: 10.7189/jogh.14.04017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Abstract
Background Previous studies on the effect of global warming on the global burden of disease have mainly focussed on the impact of high temperatures, thereby providing limited evidence of the effect of lower temperatures. Methods We adopted a three-stage analysis approach using data from the Global Burden of Disease 2019 study. First, we explored the global burden of disease attributable to low temperatures, examining variations by gender, age, cause, region, and country. Second, we analysed temporal trends in low-temperature-related disease burdens from 1990 to 2019 by meta-regression. Finally, we fitted a mixed-effects meta-regression model to explore the effect modification of country-level characteristics. Results In 2019, low temperatures were responsible for 2.92% of global deaths and 1.03% of disability-adjusted life years (DALYs), corresponding to a death rate of 21.36 (95% uncertainty interval (UI) = 18.26, 24.73) and a DALY rate of 335 (95% UI = 280, 399) per 100 000 population. Most of the deaths (85.12%) and DALYs (94.38%) attributable to low temperatures were associated with ischaemic heart disease, stroke, and chronic obstructive pulmonary disease. In the last three decades, we observed an upward trend for the annual number of attributable deaths (P < 0.001) and a downward trend for the rates of death (P < 0.001) and DALYs (P < 0.001). The disease burden associated with low temperatures varied considerably among regions and countries, with higher burdens observed in regions with middle or high-middle socio-demographic indices, as well as countries with higher gross domestic product per capita and a larger proportion of ageing population. Conclusions Our findings emphasise the significance of raising public awareness and prioritising policies to protect global population health from the adverse effects of low temperatures, even in the face of global warming. Particular efforts should be targeted towards individuals with underlying diseases (e.g. cardiovascular diseases) and vulnerable countries or regions (e.g. Central Asia and central Europe).
Collapse
Affiliation(s)
- Jiangdong Liu
- Department of Environmental Health, School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China
- State Key Laboratory of Organ Failure Research, Department of Biostatistics, School of Public Health, Southern Medical University, Guangzhou, China
| | - Mengmeng Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhou Yang
- State Key Laboratory of Organ Failure Research, Department of Biostatistics, School of Public Health, Southern Medical University, Guangzhou, China
| | - Di Liu
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Ting Xiao
- State Key Laboratory of Organ Failure Research, Department of Biostatistics, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jian Cheng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Hong Su
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Chun-Quan Ou
- State Key Laboratory of Organ Failure Research, Department of Biostatistics, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jun Yang
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- School of Public Health, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
20
|
Zhu Q, Zhou M, Zare Sakhvidi MJ, Yang S, Chen S, Feng P, Chen Z, Xu Z, Liu Q, Yang J. Projecting heat-related cardiovascular mortality burden attributable to human-induced climate change in China. EBioMedicine 2024; 103:105119. [PMID: 38631093 PMCID: PMC11035030 DOI: 10.1016/j.ebiom.2024.105119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Cardiovascular disease (CVD) has been found to be particularly vulnerable to climate change and temperature variability. This study aimed to assess the extent to which human-induced climate change contributes to future heat-related CVD burdens. METHODS Daily data on CVD mortality and temperature were collected in 161 Chinese communities from 2007 to 2013. The association between heat and CVD mortality was established using a two-stage time-series design. Under the natural forcing, human-induced, and combined scenarios, we then separately projected excess cause-/age-/region-/education-specific mortality from future high temperature in 2010-2100, assuming no adaptation and population changes. FINDINGS Under shared socioeconomic pathway with natural forcing scenario (SSP2-4.5-nat), heat-related attributable fraction of CVD deaths decreased slightly from 3.3% [95% empirical confidence interval (eCI): 0.3, 5.8] in the 2010s to 2.8% (95% eCI: 0.1, 5.2) in the 2090s, with relative change of -0.4% (95% eCI: -0.8, 0.0). However, for combined natural and human-induced forcings, this estimate would surge to 8.9% (95% eCI: 1.5, 15.7), 14.4% (95% eCI: 1.5, 25.3), 21.3% (95% eCI: -0.6, 39.4), and 28.7% (95% eCI: -3.3, 48.0) in the 2090s under SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios, respectively. When excluding the natural forcing, the number of human-induced heat-related CVD deaths would increase from approximately eight thousand (accounting for 31% of total heat-related CVD deaths) in the 2010s to 33,052 (68%), 63,283 (80%), 101,091 (87%), and 141,948 (90%) in the 2090s under SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios, respectively. Individuals with stroke, females, the elderly, people living in rural areas, and those with lower education level would exhibit heightened susceptibility to future high temperature. In addition, Southern and Eastern regions of China were expected to experience a faster increase in heat-related attributable fraction of CVD deaths. INTERPRETATION Human activities would significantly amplify the future burden of heat-related CVD. Our study findings suggested that active adaptation and mitigation measures towards future warming could yield substantial health benefits for the patients with CVD. FUNDING National Natural Science Foundation of China.
Collapse
Affiliation(s)
- Qiongyu Zhu
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China
| | - Maigeng Zhou
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Beijing, 100050, China
| | - Mohammad Javad Zare Sakhvidi
- Department of Occupational Health, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Siru Yang
- School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China
| | - Sujuan Chen
- School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China
| | - Puyu Feng
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
| | | | - Zhiwei Xu
- School of Medicine and Dentistry, Griffith University, Gold Coast, Queensland, Australia
| | - Qiyong Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| | - Jun Yang
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
21
|
Yin P, He C, Chen R, Huang J, Luo Y, Gao X, Xu Y, Ji JS, Cai W, Wei Y, Li H, Zhou M, Kan H. Projection of Mortality Burden Attributable to Nonoptimum Temperature with High Spatial Resolution in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6226-6235. [PMID: 38557021 DOI: 10.1021/acs.est.3c09162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The updated climate models provide projections at a fine scale, allowing us to estimate health risks due to future warming after accounting for spatial heterogeneity. Here, we utilized an ensemble of high-resolution (25 km) climate simulations and nationwide mortality data from 306 Chinese cities to estimate death anomalies attributable to future warming. Historical estimation (1986-2014) reveals that about 15.5% [95% empirical confidence interval (eCI):13.1%, 17.6%] of deaths are attributable to nonoptimal temperature, of which heat and cold corresponded to attributable fractions of 4.1% (eCI:2.4%, 5.5%) and 11.4% (eCI:10.7%, 12.1%), respectively. Under three climate scenarios (SSP126, SSP245, and SSP585), the national average temperature was projected to increase by 1.45, 2.57, and 4.98 °C by the 2090s, respectively. The corresponding mortality fractions attributable to heat would be 6.5% (eCI:5.2%, 7.7%), 7.9% (eCI:6.3%, 9.4%), and 11.4% (eCI:9.2%, 13.3%). More than half of the attributable deaths due to future warming would occur in north China and cardiovascular mortality would increase more drastically than respiratory mortality. Our study shows that the increased heat-attributable mortality burden would outweigh the decreased cold-attributable burden even under a moderate climate change scenario across China. The results are helpful for national or local policymakers to better address the challenges of future warming.
Collapse
Affiliation(s)
- Peng Yin
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Cheng He
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200082, China
- Institute of Epidemiology, Helmholtz Zentrum München─German Research Center for Environmental Health (GmbH), Neuherberg 85764, Germany
| | - Renjie Chen
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200082, China
| | - Jianbin Huang
- Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing 100084, China
| | - Yong Luo
- Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing 100084, China
| | - Xuejie Gao
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Climate Change Research Center, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100017, China
| | - Ying Xu
- National Climate Center, China Meteorological Administration, Beijing 100044, China
| | - John S Ji
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
| | - Wenjia Cai
- Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing 100084, China
| | - Yongjie Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Huichu Li
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Maigeng Zhou
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Haidong Kan
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200082, China
- National Center for Children's Health, Children's Hospital of Fudan University, Shanghai 200032, China
| |
Collapse
|
22
|
De Padua Durante AC, Lacaza R, Lapitan P, Kochhar N, Tan ES, Thomas M. Mixed effects modelling of excess mortality and COVID-19 lockdowns in Thailand. Sci Rep 2024; 14:8240. [PMID: 38589527 PMCID: PMC11001903 DOI: 10.1038/s41598-024-58358-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/28/2024] [Indexed: 04/10/2024] Open
Abstract
Accurate mortality data are critical for understanding the impact of COVID-19 and learning lessons from crisis responses. But published statistics risk misrepresenting deaths due to limited testing, underreporting, and lack of subnational data, especially in developing countries. Thailand experienced four COVID-19 waves between January 2020 and December 2021, and used a color-coded, province-level system for lockdowns. To account for deaths directly and indirectly caused by COVID-19, this paper uses mixed effects modelling to estimate counterfactual deaths for 2020-2021 and construct a monthly time series of provincial excess mortality. A fixed effects negative binomial and mixed effects Poisson model both substantiate other studies' estimates of excess deaths using subnational data for the first time. Then, panel regression methods are used to characterize the correlations among restrictions, mobility, and excess mortality. The regressions show that mobility reductions modestly curbed mortality immediately upon imposition, suggesting that aversion of non-COVID deaths was a major aspect of the lockdowns' effect in Thailand. However, the estimates are imprecise. An auto-regressive distributed lag model suggests that the effect of lockdowns was through reduced mobility, but the effectiveness appears to have varied over the course of the pandemic.
Collapse
Affiliation(s)
| | - Rutcher Lacaza
- Economic Research and Development Impact Department, Asian Development Bank, Mandaluyong, Philippines
| | - Pamela Lapitan
- Economic Research and Development Impact Department, Asian Development Bank, Mandaluyong, Philippines
| | - Nishtha Kochhar
- Department of Economics, Georgetown University, Washington, USA
| | - Elaine S Tan
- Economic Research and Development Impact Department, Asian Development Bank, Mandaluyong, Philippines
| | - Milan Thomas
- Economic Research and Development Impact Department, Asian Development Bank, Mandaluyong, Philippines.
| |
Collapse
|
23
|
Luo M, Wu S, Lau GNC, Pei T, Liu Z, Wang X, Ning G, Chan TO, Yang Y, Zhang W. Anthropogenic forcing has increased the risk of longer-traveling and slower-moving large contiguous heatwaves. SCIENCE ADVANCES 2024; 10:eadl1598. [PMID: 38552023 PMCID: PMC10980275 DOI: 10.1126/sciadv.adl1598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/26/2024] [Indexed: 04/01/2024]
Abstract
Heatwaves are consecutive hot days with devastating impacts on human health and the environment. These events may evolve across both space and time, characterizing a spatiotemporally contiguous propagation pattern that has not been fully understood. Here, we track the spatiotemporally contiguous heatwaves in both reanalysis datasets and model simulations and examine their moving patterns (i.e., moving distance, speed, and direction) in different continents and periods. Substantial changes in contiguous heatwaves have been identified from 1979 to 2020, with longer persistence, longer traveling distance, and slower propagation. These changes have been amplified since 1997, probably due to the weakening of eddy kinetic energy, zonal wind, and anthropogenic forcing. The results suggest that longer-lived, longer-traveling, and slower-moving contiguous heatwaves will cause more devastating impacts on human health and the environment in the future if greenhouse gas emissions keep rising and no effective measures are taken immediately. Our findings provide important implications for the adaption and mitigation of globally connected extreme heatwaves.
Collapse
Affiliation(s)
- Ming Luo
- Guangdong Provincial Key Laboratory of Urbanization and Geo-simulation, School of Geography and Planning, Sun Yat-sen University, Guangzhou 510006, China
- Institute of Environment, Energy, and Sustainability, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Sijia Wu
- Guangdong Provincial Key Laboratory of Urbanization and Geo-simulation, School of Geography and Planning, Sun Yat-sen University, Guangzhou 510006, China
| | - Gabriel Ngar-Cheung Lau
- Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ 08540-6654, USA
| | - Tao Pei
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhen Liu
- Earth, Ocean, and Atmospheric Sciences (EOAS) Thrust, Function Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China
| | - Xiaoyu Wang
- Guangdong Provincial Key Laboratory of Urbanization and Geo-simulation, School of Geography and Planning, Sun Yat-sen University, Guangzhou 510006, China
| | - Guicai Ning
- School of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Ting On Chan
- Guangdong Provincial Key Laboratory of Urbanization and Geo-simulation, School of Geography and Planning, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuanjian Yang
- School of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Wei Zhang
- Department of Plants, Soils, and Climate, Utah State University, Logan, UT 84322-4820, USA
| |
Collapse
|
24
|
Xie Y, Zhou Z, Sun Q, Zhao M, Pu J, Li Q, Sun Y, Dai H, Li T. Social-economic transitions and vulnerability to extreme temperature events from 1960 to 2020 in Chinese cities. iScience 2024; 27:109066. [PMID: 38361620 PMCID: PMC10867637 DOI: 10.1016/j.isci.2024.109066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/13/2023] [Accepted: 01/25/2024] [Indexed: 02/17/2024] Open
Abstract
Climate change leads to more frequent and intense extreme temperature events, causing a significant number of excess deaths. Using an epidemiological approach, we analyze all-cause deaths related to heatwaves and cold spells in 2,852 Chinese counties from 1960 to 2020. Economic losses associated with these events are determined through the value of statistical life. Findings reveal that cold-related cumulative excess deaths (1,133 thousand) are approximately 2.5 times higher than heat-related deaths, despite an increase in heat-related fatalities in recent decades. Monetized mortality due to heat-related events is estimated at 1,284 billion CNY, while cold-related economic loss is 1,510 billion CNY. Notably, cities located in colder regions experience more heat-related excess deaths, and vice versa. Economic development does not significantly reduce mortality risks to heatwaves across China. This study provides insights into the spatial-temporal heterogeneity of heatwaves and cold spells mortality, essential for policymakers ensuring long-term climate adaptation and sustainability.
Collapse
Affiliation(s)
- Yang Xie
- School of Economics and Management, Beihang University, Beijing, China
| | - Ziqiao Zhou
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Qinghua Sun
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Mengdan Zhao
- School of Economics and Management, Beihang University, Beijing, China
| | - Jinlu Pu
- School of Economics and Management, Beihang University, Beijing, China
| | - Qiutong Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yue Sun
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hancheng Dai
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Tiantian Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
25
|
Yang L, Li Q, Li Q, Zhao L, Luo Z, Liu Y. Different explanations for surface and canopy urban heat island effects in relation to background climate. iScience 2024; 27:108863. [PMID: 38361609 PMCID: PMC10867416 DOI: 10.1016/j.isci.2024.108863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/28/2023] [Accepted: 01/08/2024] [Indexed: 02/17/2024] Open
Abstract
The background climatic conditions and urban morphology greatly influence urban heat island effects (UHIs), but one-size-fits-all solutions are frequently employed to mitigate UHIs. Here, attribution models for surface UHIs (SUHIs) and canopy UHIs (CUHIs) were developed to describe UHI formation. The contribution of factors to SUHIs and CUHIs shows similar dependencies on background climate and urban morphology. Furthermore, the factors that mainly contributed to CUHIs were more complex, and anthropogenic heat was the more critical factor. Influence from urban morphology also highlights that there is no one-size-fit-all solution for heat mitigation at the neighborhood. In particular, maintaining a low building density should be prioritized, especially mitigating CUHIs. Moreover, it is more effective to prioritize urban irrigation maintenance over increasing green cover in arid regions but the opposite in humid regions. The work can provide scientific evidence to support developing general and regional guidelines for urban heat mitigation.
Collapse
Affiliation(s)
- Liu Yang
- State Key Laboratory of Green Building, Department of Architecture, Xi’an University of Architecture and Technology, Xi’an, Shaanxi 710055, P.R. China
| | - Qi Li
- State Key Laboratory of Green Building, Department of Architecture, Xi’an University of Architecture and Technology, Xi’an, Shaanxi 710055, P.R. China
- State Key Laboratory of Subtropical Building and Urban Science, School of Architecture, South China University of Technology, Guangzhou 510640, P.R. China
| | - Qiong Li
- State Key Laboratory of Subtropical Building and Urban Science, School of Architecture, South China University of Technology, Guangzhou 510640, P.R. China
| | - Lei Zhao
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Zhiwen Luo
- Welsh School of Architecture, Cardiff University, Cardiff, UK
| | - Yan Liu
- State Key Laboratory of Green Building, Department of Architecture, Xi’an University of Architecture and Technology, Xi’an, Shaanxi 710055, P.R. China
| |
Collapse
|
26
|
Liang C, Yuan J, Tang X, Kan H, Cai W, Chen J. The influence of humid heat on morbidity of megacity Shanghai in China. ENVIRONMENT INTERNATIONAL 2024; 183:108424. [PMID: 38219539 DOI: 10.1016/j.envint.2024.108424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/12/2023] [Accepted: 01/03/2024] [Indexed: 01/16/2024]
Abstract
BACKGROUND Increased attention has been paid to humid-heat extremes as they are projected to increase in both frequency and intensity. However, it remains unclear how compound extremes of heat and humidity affects morbidity when the climate is projected to continue warming in the future, in particular for a megacity with a large population. METHODS We chose the Wet-Bulb Globe Temperature (WBGT) index as the metric to characterize the humid-heat exposure. The historical associations between daily outpatient visits and daily mean WBGT was established using a Distributed Lag Non-linear Model (DLNM) during the warm season (June to September) from 2013 to 2015 in Shanghai, a prominent megacity of China. Future morbidity burden related to the combined effect of high temperature and humidity were projected under four greenhouse gases (GHGs) emission scenarios (SSP126, SSP245, SSP370 and SSP585). RESULTS The humid-heat weather was significantly associated with a higher risk of outpatient visits in Shanghai than the high-temperature conditions. Relative to the baseline period (2010-2019), the morbidity burden due to humid-heat weather was projected to increase 4.4 % (95 % confidence interval (CI): 1.1 %-10.1 %) even under the strict emission control scenario (SSP126) by 2100. Under the high-GHGs emission scenario (SSP585), this burden was projected to be 25.4 % (95 % CI: 15.8 %-38.4 %), which is 10.1 % (95 % CI: 6.5 %-15.8 %) more than that due to high-temperature weather. Our results also indicate that humid-hot nights could cause large morbidity risks under high-GHGs emission scenarios particularly in heat-sensible diseases such as the respiratory and cardiovascular disease by the end of this century. CONCLUSIONS Humid heat exposures significantly increased the all-cause morbidity risk in the megacity Shanghai, especially in humid-hot nights. Our findings suggest that the combined effect of elevated temperature and humidity is projected to have more substantial impact on health compared to high temperature alone in a warming climate.
Collapse
Affiliation(s)
- Chen Liang
- Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences & CMA-FDU Joint Laboratory of Marine Meteorology, Fudan University, Shanghai 200438, China; IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai 200438, China
| | - Jiacan Yuan
- Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences & CMA-FDU Joint Laboratory of Marine Meteorology, Fudan University, Shanghai 200438, China; IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai 200438, China.
| | - Xu Tang
- Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences & CMA-FDU Joint Laboratory of Marine Meteorology, Fudan University, Shanghai 200438, China; IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai 200438, China
| | - Haidong Kan
- IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai 200438, China; School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Wenjia Cai
- Department of Earth System Science, Institute for Global Change Studies, Ministry of Education Ecological Field Station for East Asian Migratory Birds, Tsinghua University, Beijing 100084, China
| | - Jianmin Chen
- Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences & CMA-FDU Joint Laboratory of Marine Meteorology, Fudan University, Shanghai 200438, China; IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai 200438, China
| |
Collapse
|
27
|
Yin P, Gao Y, Chen R, Liu W, He C, Hao J, Zhou M, Kan H. Temperature-related death burden of various neurodegenerative diseases under climate warming: a nationwide modelling study. Nat Commun 2023; 14:8236. [PMID: 38086884 PMCID: PMC10716387 DOI: 10.1038/s41467-023-44066-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Limited knowledge exists regarding the ramifications of climate warming on death burden from neurodegenerative diseases. Here, we conducted a nationwide, individual-level, case-crossover study between 2013 and 2019 to investigate the effects of non-optimal temperatures on various neurodegenerative diseases and to predict the potential death burden under different climate change scenarios. Our findings reveal that both low and high temperatures are linked to increased risks of neurodegenerative diseases death. We project that heat-related neurodegenerative disease deaths would increase, while cold-related deaths would decrease. This is characterized by a steeper slope in the high-emission scenario, but a less pronounced trend in the scenarios involving mitigation strategies. Furthermore, we predict that the net changes in attributable death would increase after the mid-21st century, especially under the unrestricted-emission scenario. These results highlight the urgent need for effective climate and public health policies to address the growing challenges of neurodegenerative diseases associated with global warming.
Collapse
Affiliation(s)
- Peng Yin
- National Center for Chronic Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ya Gao
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China
| | - Wei Liu
- National Center for Chronic Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Cheng He
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China
| | - Junwei Hao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.
- National Center for Neurological Disorders, Beijing, China.
| | - Maigeng Zhou
- National Center for Chronic Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China.
| |
Collapse
|
28
|
Liu J, Varghese BM, Hansen A, Dear K, Morgan G, Driscoll T, Zhang Y, Gourley M, Capon A, Bi P. Projection of high temperature-related burden of kidney disease in Australia under different climate change, population and adaptation scenarios: population-based study. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2023; 41:100916. [PMID: 37867620 PMCID: PMC10587708 DOI: 10.1016/j.lanwpc.2023.100916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/21/2023] [Accepted: 09/11/2023] [Indexed: 10/24/2023]
Abstract
Background The dual impacts of a warming climate and population ageing lead to an increasing kidney disease prevalence, highlighting the importance of quantifying the burden of kidney disease (BoKD) attributable to high temperature, yet studies on this subject are limited. The study aims to quantify the BoKD attributable to high temperatures in Australia across all states and territories, and project future BoKD under climatic, population and adaptation scenarios. Methods Data on disability-adjusted-life-years (DALYs) due to kidney disease, including years of life lost (YLL), and years lived with disability (YLD), were collected during 2003-2018 (baseline) across all states and territories in Australia. The temperature-response association was estimated using a meta-regression model. Future temperature projections were calculated using eight downscaled climate models to estimate changes in attributable BoKD centred around 2030s and 2050s, under two greenhouse gas emissions scenarios (RCP4.5 and RCP8.5), while considering changes in population size and age structure, and human adaptation to climate change. Findings Over the baseline (2003-2018), high-temperature contributed to 2.7% (Standard Deviation: 0.4%) of the observed BoKD in Australia. The future population attributable fraction and the attributable BoKD, projected using RCP4.5 and RCP8.5, showed a gradually increasing trend when assuming no human adaptation. Future projections were most strongly influenced by the population change, with the high temperature-related BoKD increasing by 18.4-67.4% compared to the baseline under constant population and by 100.2-291.2% when accounting for changes in population size and age structure. However, when human adaptation was adopted (from no to partial to full), the high temperature-related BoKD became smaller. Interpretation It is expected that increasing high temperature exposure will substantially contribute to higher BoKD across Australia, underscoring the urgent need for public health interventions to mitigate the negative health impacts of a warming climate on BoKD. Funding Australian Research Council Discovery Program.
Collapse
Affiliation(s)
- Jingwen Liu
- School of Public Health, The University of Adelaide, Australia
| | | | - Alana Hansen
- School of Public Health, The University of Adelaide, Australia
| | - Keith Dear
- School of Public Health, The University of Adelaide, Australia
| | - Geoffrey Morgan
- Sydney School of Public Health, The University of Sydney, Australia
| | - Timothy Driscoll
- Sydney School of Public Health, The University of Sydney, Australia
| | - Ying Zhang
- Sydney School of Public Health, The University of Sydney, Australia
| | - Michelle Gourley
- Burden of Disease and Mortality Unit, Australian Institute of Health and Welfare, Australia
| | - Anthony Capon
- Monash Sustainable Development Institute, Monash University, Australia
| | - Peng Bi
- School of Public Health, The University of Adelaide, Australia
| |
Collapse
|
29
|
Shapira S, Teschner N. No heat, no eat: (Dis)entangling insecurities and their implications for health and well-being. Soc Sci Med 2023; 336:116252. [PMID: 37769511 DOI: 10.1016/j.socscimed.2023.116252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/16/2023] [Accepted: 09/15/2023] [Indexed: 10/03/2023]
Abstract
This study explores the associations between energy poverty, food insecurity, and a set of outcomes-including the self-reported burden of chronic illness, physical disabilities, and mental health-among social-aid recipients across Israel. We highlight the socio-demographic characteristics and housing conditions of energy-poor households and analyze the association between energy poverty and health and well-being using multivariate regression models. Of 1390 aid-recipient respondents, more than 85% met the criteria for living in an energy-poor household, and almost all of them also struggled with food insecurity and were raised in poor households as children. In addition, the severity of energy poverty was positively and significantly associated with the occurrence of diabetes, hypertension, and mental illness, and, as compared with energy-secure households, severely energy-poor households were more prone to forgo acquiring prescription medications, medical aid, or required health treatments due to financial hardships. These findings highlight the nuanced negotiation over necessities that aid-supported households make; despite being at greater risk of being sick, energy-poor households are more likely to forgo buying medicines and seeking healthcare so as to pay the electricity bills. Hidden energy poverty, coupled with what might be hidden morbidity, may have significant implications for healthcare systems, and a climate-sensitive health policy at both the municipal and national levels is required to strengthen resilience among low-income households.
Collapse
Affiliation(s)
- Stav Shapira
- School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva, Israel.
| | - Naama Teschner
- Department of Environmental, Geoinformatic & Urban Planning Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva, Israel.
| |
Collapse
|
30
|
Zhang G, Han L, Yao J, Yang J, Xu Z, Cai X, Huang J, Pei L. Assessing future heat stress across China: combined effects of heat and relative humidity on mortality. Front Public Health 2023; 11:1282497. [PMID: 37854241 PMCID: PMC10581210 DOI: 10.3389/fpubh.2023.1282497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/15/2023] [Indexed: 10/20/2023] Open
Abstract
This study utilizes China's records of non-accidental mortality along with twenty-five simulations from the NASA Earth Exchange Global Daily Downscaled Projections to evaluate forthcoming heat stress and heat-related mortality across China across four distinct scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5). The findings demonstrate a projected escalation in the heat stress index (HSI) throughout China from 2031 to 2100. The most substantial increments compared to the baseline (1995-2014) are observed under SSP5-8.5, indicating a rise of 7.96°C by the year 2100, while under SSP1-2.6, the increase is relatively modest at 1.54°C. Disparities in HSI growth are evident among different subregions, with South China encountering the most significant elevation, whereas Northwest China exhibits the lowest increment. Projected future temperatures align closely with HSI patterns, while relative humidity is anticipated to decrease across the majority of areas. The study's projections indicate that China's heat-related mortality is poised to surpass present levels over the forthcoming decades, spanning a range from 215% to 380% from 2031 to 2100. Notably, higher emission scenarios correspond to heightened heat-related mortality. Additionally, the investigation delves into the respective contributions of humidity and temperature to shifts in heat-related mortality. At present, humidity exerts a greater impact on fluctuations in heat-related mortality within China and its subregions. However, with the projected increase in emissions and global warming, temperature is expected to assume a dominant role in shaping these outcomes. In summary, this study underscores the anticipated escalation of heat stress and heat-related mortality across China in the future. It highlights the imperative of emission reduction as a means to mitigate these risks and underscores the variances in susceptibility to heat stress across different regions.
Collapse
Affiliation(s)
- Guwei Zhang
- Institute of Urban Meteorology, China Meteorological Administration, Beijing, China
- Key Laboratory of Urban Meteorology, China Meteorological Administration, Beijing, China
- Key Laboratory of Transforming Climate Resources to Economy, China Meteorological Administration, Chongqing, China
| | - Ling Han
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jiajun Yao
- Shengzhou Meteorological Bureau, Shaoxing, China
| | - Jiaxi Yang
- Institute of Urban Meteorology, China Meteorological Administration, Beijing, China
- Key Laboratory of Urban Meteorology, China Meteorological Administration, Beijing, China
- Key Laboratory of Transforming Climate Resources to Economy, China Meteorological Administration, Chongqing, China
| | - Zhiqi Xu
- Institute of Urban Meteorology, China Meteorological Administration, Beijing, China
- Key Laboratory of Urban Meteorology, China Meteorological Administration, Beijing, China
- Key Laboratory of Transforming Climate Resources to Economy, China Meteorological Administration, Chongqing, China
| | - Xiuhua Cai
- Chinese Academy of Meteorological Sciences, Beijing, China
| | - Jin Huang
- Chifeng City Center Hospital Ningcheng County, Chifeng, China
| | - Lin Pei
- Institute of Urban Meteorology, China Meteorological Administration, Beijing, China
- Key Laboratory of Urban Meteorology, China Meteorological Administration, Beijing, China
- Key Laboratory of Transforming Climate Resources to Economy, China Meteorological Administration, Chongqing, China
| |
Collapse
|
31
|
Zhang Q, Yin Z, Lu X, Gong J, Lei Y, Cai B, Cai C, Chai Q, Chen H, Dai H, Dong Z, Geng G, Guan D, Hu J, Huang C, Kang J, Li T, Li W, Lin Y, Liu J, Liu X, Liu Z, Ma J, Shen G, Tong D, Wang X, Wang X, Wang Z, Xie Y, Xu H, Xue T, Zhang B, Zhang D, Zhang S, Zhang S, Zhang X, Zheng B, Zheng Y, Zhu T, Wang J, He K. Synergetic roadmap of carbon neutrality and clean air for China. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 16:100280. [PMID: 37273886 PMCID: PMC10236195 DOI: 10.1016/j.ese.2023.100280] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 06/06/2023]
Abstract
It is well recognized that carbon dioxide and air pollutants share similar emission sources so that synergetic policies on climate change mitigation and air pollution control can lead to remarkable co-benefits on greenhouse gas reduction, air quality improvement, and improved health. In the context of carbon peak, carbon neutrality, and clean air policies, this perspective tracks and analyzes the process of the synergetic governance of air pollution and climate change in China by developing and monitoring 18 indicators. The 18 indicators cover the following five aspects: air pollution and associated weather-climate conditions, progress in structural transition, sources, inks, and mitigation pathway of atmospheric composition, health impacts and benefits of coordinated control, and synergetic governance system and practices. By tracking the progress in each indicator, this perspective presents the major accomplishment of coordinated control, identifies the emerging challenges toward the synergetic governance, and provides policy recommendations for designing a synergetic roadmap of Carbon Neutrality and Clean Air for China.
Collapse
Affiliation(s)
- Qiang Zhang
- Ministry of Education Key Laboratory for Earth System Modelling, Department of Earth System Science, Tsinghua University, Beijing, 100084, China
| | - Zhicong Yin
- Key Laboratory of Meteorological Disaster, Ministry of Education/Joint International Research Laboratory of Climate and Environment Change (ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Xi Lu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
- Institute for Carbon Neutrality, Tsinghua University, Beijing, 100084, China
| | - Jicheng Gong
- State Key Joint Laboratory for Environment Simulation and Pollution Control, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing, 100871, China
| | - Yu Lei
- Center of Air Quality Simulation and System Analysis, Chinese Academy of Environmental Planning, Beijing, 100012, China
- Center for Carbon Neutrality, Chinese Academy of Environmental Planning, Beijing, 100012, China
| | - Bofeng Cai
- Center for Carbon Neutrality, Chinese Academy of Environmental Planning, Beijing, 100012, China
| | - Cilan Cai
- Ministry of Education Key Laboratory for Earth System Modelling, Department of Earth System Science, Tsinghua University, Beijing, 100084, China
| | - Qimin Chai
- National Center for Climate Change, Strategy and International Cooperation, Beijing, 100035, China
| | - Huopo Chen
- Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Hancheng Dai
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Zhanfeng Dong
- Institute of Environmental Policy Management, Chinese Academy of Environmental Planning, Beijing, 100012, China
| | - Guannan Geng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Dabo Guan
- Ministry of Education Key Laboratory for Earth System Modelling, Department of Earth System Science, Tsinghua University, Beijing, 100084, China
| | - Jianlin Hu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Cunrui Huang
- Vanke School of Public Health, Tsinghua University, Beijing, 100084, China
| | - Jianing Kang
- Center for Energy and Environmental Policy Research, Beijing Institute of Technology, Beijing, 100081, China
| | - Tiantian Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Wei Li
- Ministry of Education Key Laboratory for Earth System Modelling, Department of Earth System Science, Tsinghua University, Beijing, 100084, China
| | - Yongsheng Lin
- School of Economics and Resource Management, Beijing Normal University, Beijing, 100875, China
| | - Jun Liu
- Department of Environmental Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xin Liu
- Energy Foundation China, Beijing, 100004, China
| | - Zhu Liu
- Ministry of Education Key Laboratory for Earth System Modelling, Department of Earth System Science, Tsinghua University, Beijing, 100084, China
| | - Jinghui Ma
- Shanghai Typhoon Institute, Shanghai Meteorological Service, Shanghai, 200030, China
| | - Guofeng Shen
- College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Dan Tong
- Ministry of Education Key Laboratory for Earth System Modelling, Department of Earth System Science, Tsinghua University, Beijing, 100084, China
| | - Xuhui Wang
- College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Xuying Wang
- Center of Air Quality Simulation and System Analysis, Chinese Academy of Environmental Planning, Beijing, 100012, China
| | - Zhili Wang
- State Key Laboratory of Severe Weather and Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing, 100081, China
| | - Yang Xie
- School of Economics and Management, Beihang University, Beijing, 100191, China
| | - Honglei Xu
- Laboratory of Transport Pollution Control and Monitoring Technology, Transport Planning and Research Institute, Ministry of Transport of the People's Republic of China, Beijing, 100028, China
| | - Tao Xue
- Institute of Reproductive and Child Health/Ministry of Health Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100080, China
| | - Bing Zhang
- State Key Laboratory of Pollution Control & Resource Reuse School of Environment, Nanjing University, Nanjing, 210008, China
| | - Da Zhang
- Institute of Energy, Environment, and Economy, Tsinghua University, Beijing, 100084, China
| | - Shaohui Zhang
- School of Economics and Management, Beihang University, Beijing, 100191, China
| | - Shaojun Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xian Zhang
- The Administrative Centre for China's Agenda 21 (ACCA21), Ministry of Science and Technology (MOST), Beijing, 100038, China
| | - Bo Zheng
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yixuan Zheng
- Center of Air Quality Simulation and System Analysis, Chinese Academy of Environmental Planning, Beijing, 100012, China
| | - Tong Zhu
- State Key Joint Laboratory for Environment Simulation and Pollution Control, College of Environmental Sciences and Engineering and Center for Environment and Health, Peking University, Beijing, 100871, China
| | - Jinnan Wang
- Center of Air Quality Simulation and System Analysis, Chinese Academy of Environmental Planning, Beijing, 100012, China
- Center for Carbon Neutrality, Chinese Academy of Environmental Planning, Beijing, 100012, China
- Institute of Environmental Policy Management, Chinese Academy of Environmental Planning, Beijing, 100012, China
| | - Kebin He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
- Institute for Carbon Neutrality, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
32
|
Song J, Gasparrini A, Fischer T, Hu K, Lu Y. Effect Modifications of Overhead-View and Eye-Level Urban Greenery on Heat-Mortality Associations: Small-Area Analyses Using Case Time Series Design and Different Greenery Measurements. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:97007. [PMID: 37728899 PMCID: PMC10510815 DOI: 10.1289/ehp12589] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND The protective effect of urban greenery from adverse heat impacts remains inconclusive. Existing inconsistent findings could be attributed to the different estimation techniques used. OBJECTIVES We investigated how effect modifications of urban greenery on heat-mortality associations vary when using different greenery measurements reflecting overhead-view and eye-level urban greenery. METHODS We collected meteorological and daily mortality data for 286 territory planning units between 2005 and 2018 in Hong Kong. Three greenery measurements were extracted for each unit: a) the normalized difference vegetation index (NDVI) from Landsat remote sensing images, b) the percentage of greenspace based on land use data, and c) eye-level street greenery from street view images via a deep learning technique. Time-series analyses were performed using the case time series design with a linear interaction between the temperature term and each of the three greenery measurements. Effect modifications were also estimated for different age groups, sex categories, and cause-specific diseases. RESULTS Higher mortality risks were associated with both moderate and extreme heat, with relative risks (RRs) of 1.022 (95% CI: 1.000, 1.044) and 1.045 (95% CI: 1.013, 1.079) at the 90th and 99th percentiles of temperatures relative to the minimum mortality temperature (MMT). Lower RRs were observed in greener areas whichever of the three greenery measurements was used, but the disparity of RRs between areas with low and high levels of urban greenery was more apparent when using eye-level street greenery as the index at high temperatures (99th percentile relative to MMT), with RRs for low and high levels of greenery, respectively, of 1.096 (95% CI: 1.035, 1.161) and 0.985 (95% CI: 0.920, 1.055) for NDVI (p = 0.0193 ), 1.068 (95% CI: 1.021, 1.117) and 0.990 (95% CI: 0.906, 1.081) for the percentage of greenspace (p = 0.1338 ), and 1.103 (95% CI: 1.034, 1.177) and 0.943 (95% CI: 0.841, 1.057) for eye-level street greenery (p = 0.0186 ). Health discrepancies remained for nonaccidental mortality and cardiorespiratory diseases and were more apparent for older adults (≥ 65 years of age) and females. DISCUSSION This study provides new evidence that eye-level street greenery shows stronger associations with reduced heat-mortality risks compared with overhead-view greenery based on NDVI and percentage of greenspace. The effect modification of urban greenery tends to be amplified as temperatures rise and are more apparent in older adults and females. Heat mitigation strategies and health interventions, in particular with regard to accessible and visible greenery, are needed for helping heat-sensitive subpopulation groups in coping with extreme heat. https://doi.org/10.1289/EHP12589.
Collapse
Affiliation(s)
- Jinglu Song
- Department of Urban Planning and Design, Xi’an Jiaotong-Liverpool University, Suzhou, China
| | - Antonio Gasparrini
- Department of Public Health, Environment and Society, London School of Hygiene and Tropical Medicine, London, UK
| | - Thomas Fischer
- Environmental Assessment and Management Research Centre, Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, UK
- Research Unit for Environmental Sciences and Management, Faculty of Natural and Agricultural Sciences, North West University, Potchefstroom, South Africa
| | - Kejia Hu
- Institute of Big Data in Health Science, School of Public Health, Zhejiang University, Hangzhou, China
| | - Yi Lu
- Department of Architecture and Civil Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| |
Collapse
|
33
|
Zhu Y, He C, Bell M, Zhang Y, Fatmi Z, Zhang Y, Zaid M, Bachwenkizi J, Liu C, Zhou L, Chen R, Kan H. Association of Ambient Temperature With the Prevalence of Intimate Partner Violence Among Partnered Women in Low- and Middle-Income South Asian Countries. JAMA Psychiatry 2023; 80:952-961. [PMID: 37379013 PMCID: PMC10308303 DOI: 10.1001/jamapsychiatry.2023.1958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/24/2023] [Indexed: 06/29/2023]
Abstract
Importance Intimate partner violence (IPV), including physical, sexual, and emotional violence, constitutes a critical public health problem, particularly in low- and middle-income countries. While climate change could escalate violent events, data quantifying its possible association with IPV are scant. Objective To evaluate the association of ambient temperature with the prevalence of IPV among partnered women in low- and middle-income countries in South Asia, and to estimate the association of future climate warming with IPV. Design, Setting, and Participants This cross-sectional study used data from the Demographic and Health Survey and included 194 871 ever-partnered women aged 15 to 49 years from 3 South Asian countries (India, Nepal, and Pakistan). The study applied the mixed-effect multivariable logistic regression model to investigate the association of ambient temperature with IPV prevalence. The study further modeled the change in IPV prevalence under various future climate change scenarios. The data included in the analyses were collected from October 1, 2010, to April 30, 2018, and the current analyses were performed from January 2, 2022, to July 11, 2022. Exposure Annual ambient temperature exposure for each woman, estimated based on an atmospheric reanalysis model of the global climate. Main Outcomes and Measures The prevalence of IPV and its types (physical, sexual, and emotional violence) were assessed based on self-reported questionnaires from October 1, 2010, to April 30, 2018, and the changes in the prevalence with climate changes were estimated through the 2090s. Results The study included 194 871 ever-partnered women aged 15 to 49 years (mean [SD] age, 35.4 [7.6] years; overall IPV prevalence, 27.0%) from 3 South Asian countries. The prevalence of physical violence was highest (23.0%), followed by emotional (12.5%), and sexual violence (9.5%). The annual temperature ranges were mostly between 20 °C and 30 °C. A significant association was found between high ambient temperature and the prevalence of IPV against women, with each 1 °C increase in the annual mean temperature associated with a mean increase in IPV prevalence of 4.49% (95% CI, 4.20%-4.78%). According to the study's projections under the unlimited emissions scenarios (SSPs [shared socioeconomic pathways], as defined by the Intergovernmental Panel on Climate Change] 5-8.5), IPV prevalence would increase by 21.0% by the end of the 21st century, while it would only moderately increase under increasingly stricter scenarios (SSP2-4.5 [9.8%] and SSP1-2.6 [5.8%]). In addition, the projected increases in the prevalence of physical (28.3%) and sexual (26.1%) violence were greater than that of emotional violence (8.9%). In the 2090s, India was estimated to experience the highest IPV prevalence increase (23.5%) among the 3 countries, compared with Nepal (14.8%) and Pakistan (5.9%). Conclusions and Relevance This cross-sectional, multicountry study provides ample epidemiological evidence to support that high ambient temperature may be associated with the risk of IPV against women. These findings highlight the vulnerabilities and inequalities of women experiencing IPV in low- and middle-income countries in the context of global climate warming.
Collapse
Affiliation(s)
- Yixiang Zhu
- School of Public Health, Key Laboratory of Public Health Safety of the Ministry of Education, and National Health Commission Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
| | - Cheng He
- School of Public Health, Key Laboratory of Public Health Safety of the Ministry of Education, and National Health Commission Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
- IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China
- Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Institute of Epidemiology, Neuherberg, Germany
| | - Michelle Bell
- School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut
| | - Yuqiang Zhang
- Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Durham
| | - Zafar Fatmi
- Department of Community Health Sciences, Aga Khan University, Karachi, Pakistan
| | - Ying Zhang
- School of Public Health, University of Sydney, Sydney, New South Wales, Australia
| | - Maryam Zaid
- School of Public Health, Key Laboratory of Public Health Safety of the Ministry of Education, and National Health Commission Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
| | - Jovine Bachwenkizi
- Department of Environmental and Occupational Health, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Cong Liu
- School of Public Health, Key Laboratory of Public Health Safety of the Ministry of Education, and National Health Commission Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
- IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China
| | - Lu Zhou
- School of Public Health, Key Laboratory of Public Health Safety of the Ministry of Education, and National Health Commission Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
| | - Renjie Chen
- School of Public Health, Key Laboratory of Public Health Safety of the Ministry of Education, and National Health Commission Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
- IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China
| | - Haidong Kan
- School of Public Health, Key Laboratory of Public Health Safety of the Ministry of Education, and National Health Commission Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
- IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China
- Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| |
Collapse
|
34
|
Zhang H, Sun M, Yao X, Xie Z, Zhang M. Increasing probability of record-population exposure to high temperature and related health-risks in China. ENVIRONMENTAL RESEARCH 2023; 231:116176. [PMID: 37209980 DOI: 10.1016/j.envres.2023.116176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Combining the comprehensive effects of temperature and humidity, this study applies a heat stress index to project future population exposure to high temperature and related health-risks over China under different climate change scenarios. Results show that the number of high temperature days, population exposure and their related health-risks will increase significantly in the future compared to the reference period (1985-2014), which is mainly caused by the change of >T99p (the wet bulb globe temperature >99th percentile derived from the reference period). The population effect is absolutely dominant in influencing the decrease in exposure to T90-95p (the wet bulb globe temperature is in the range of (90th, 95th]) and T95-99p (the wet bulb globe temperature is in the range of (95th, 99th]), and the climate effect is the most prominent contributor to the upsurge in exposure to > T99p in most areas. An additional 0.1 billion person-days increase in population exposure to T90-95p, T95-99p and >T99p in a given year is associated with the number of deaths by 1002 (95% CI: 570-1434), 2926 (95% CI: 1783-4069) and 2635 (95% CI: 1345-3925), respectively. Compared with the reference period, total exposure to high temperature under the SSP2-4.5 (SSP5-8.5) scenario will increase to 1.92 (2.01) times in the near-term (2021-2050) and 2.16 (2.35) times in the long-term (2071-2100), which will increase the number of people at heat risk by 1.2266 (95% CI: 0.6341-1.8192) [1.3575 (95% CI: 0.6926-2.0223)] and 1.5885 (95% CI: 0.7869-2.3902) [1.8901 (95% CI:0.9230-2.8572)] million, respectively. Significant geographic variations exist in the changes of exposure and related health-risks. The change is greatest in the southwest and south, whereas it is relatively small in the northeast and north. The findings provide several theoretical references for climate change adaptation.
Collapse
Affiliation(s)
- Haiyan Zhang
- College of Geography and Environment Sciences, Northwest Normal University, Lanzhou, China; Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, China
| | - Meiping Sun
- College of Geography and Environment Sciences, Northwest Normal University, Lanzhou, China; Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, China; Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Xiaojun Yao
- College of Geography and Environment Sciences, Northwest Normal University, Lanzhou, China; Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, China
| | - Zhenyu Xie
- College of Geography and Environment Sciences, Northwest Normal University, Lanzhou, China; Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, China
| | - Mingjun Zhang
- College of Geography and Environment Sciences, Northwest Normal University, Lanzhou, China; Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, China
| |
Collapse
|
35
|
Lee J, Dessler AE. Future Temperature-Related Deaths in the U.S.: The Impact of Climate Change, Demographics, and Adaptation. GEOHEALTH 2023; 7:e2023GH000799. [PMID: 37588982 PMCID: PMC10426332 DOI: 10.1029/2023gh000799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/31/2023] [Accepted: 06/19/2023] [Indexed: 08/18/2023]
Abstract
Mortality due to extreme temperatures is one of the most worrying impacts of climate change. In this analysis, we use historic mortality and temperature data from 106 cities in the United States to develop a model that predicts deaths attributable to temperature. With this model and projections of future temperature from climate models, we estimate temperature-related deaths in the United States due to climate change, changing demographics, and adaptation. We find that temperature-related deaths increase rapidly as the climate warms, but this is mainly due to an expanding and aging population. For global average warming below 3°C above pre-industrial levels, we find that climate change slightly reduces temperature-related mortality in the U.S. because the reduction of cold-related mortality exceeds the increase in heat-related deaths. Above 3°C warming, whether the increase in heat-related deaths exceeds the decrease in cold-related deaths depends on the level of adaptation. Southern U.S. cities are already well adapted to hot temperatures and the reduction of cold-related mortality drives overall lower mortality. Cities in the Northern U.S. are not well adapted to high temperatures, so the increase in heat-related mortality exceeds the reduction in cold-related mortality. Thus, while the total number of climate-related mortality may not change much, climate change will shift mortality in the U.S. to higher latitudes.
Collapse
Affiliation(s)
- Jangho Lee
- Department of Atmospheric SciencesTexas A&M UniversityCollege StationTXUSA
| | - Andrew E. Dessler
- Department of Atmospheric SciencesTexas A&M UniversityCollege StationTXUSA
| |
Collapse
|
36
|
Liu J, Lv C, Zheng J, Pan C, Zhang G, Tan H, Ma Y, Zhu Y, Han X, Li C, Yan S, Ma J, Zhang J, Wang C, Bian Y, Cheng K, Liu R, Hou Y, Chen Q, Zhang X, Chen Y, Chen R, Xu F. The impact of non-optimum temperatures, heatwaves and cold spells on out-of-hospital cardiac arrest onset in a changing climate in China: a multi-center, time-stratified, case-crossover study. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2023; 36:100778. [PMID: 37547045 PMCID: PMC10398603 DOI: 10.1016/j.lanwpc.2023.100778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/26/2023] [Accepted: 04/16/2023] [Indexed: 08/08/2023]
Abstract
Background Out-of-hospital cardiac arrest (OHCA) is a time-critical and fatal medical emergency that has been linked to non-optimal temperatures. However, the future burden of OHCA due to non-optimal temperatures, heatwaves, and cold spells under climate change has not been well evaluated. Methods We conducted a time-stratified case-crossover study in 15 Northern Chinese cities throughout 2020 to estimate the exposure-response relationships of non-optimal temperatures, heatwaves, and cold spells with hourly OHCA onset in hot and cold seasons. We obtained future daily average temperatures by using 20 general circulation models under two greenhouse gas emission scenarios: one with certain emission control and the other with relaxed control. Lastly, we projected the change of OHCA burden under these two climate scenarios. Findings We analyzed a total of 29,671 OHCA patients and found that high temperatures and heatwaves as well as low temperatures and cold spells were all significantly associated with an increased risk of OHCA onset. Under the scenario of uncontrolled emissions, the attributable fraction (AF) of OHCA due to high temperatures and heatwaves would increase by 4.94% and 6.99% from the 2010s to 2090s, respectively. The AF due to low temperatures would decrease by 1.27% by the 2090s and the effects of cold spells were projected to be marginal after the 2050s. Under a medium emission control scenario, the upward trend of heat-related OHCA burden would become flat, and the decline in cold-related OHCA burden would also slow down. Interpretation Our study provides evidence of significant morbidity risk and burden of OHCA associated with global warming across Northern China. Our findings indicate that the increase in OHCA burden attributable to heat could not be offset by the decrements attributable to cold, emphasizing the importance of mitigation policies for limiting global warming and reducing the associated risks of OHCA onset. Funding National Science & Technology Fundamental Resources Investigation Project (2018FY100600, 2018FY100602), National Key R&D Program of China (2020YFC1512700, 2020YFC1512705, 2020YFC1512703), Key R&D Program of Shandong Province (2021ZLGX02, 2021SFGC0503), Natural Science Foundation of Shandong Province (ZR2021MH231), Taishan Pandeng Scholar Program of Shandong Province (tspd20181220), the Interdisciplinary Young Researcher Groups Program of Shandong University (2020QNQT004), ECCM Program of Clinical Research Center of Shandong University (2021SDUCRCA001, 2021SDUCRCA002), foundation from Clinical Research Center of Shandong University (2020SDUCRCB003), National Natural Science Foundation of China (82272240).
Collapse
Affiliation(s)
- Jiangdong Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Chuanzhu Lv
- Emergency Medicine Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, Hainan, China
| | - Jiaqi Zheng
- Department of Emergency Medicine, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Chang Pan
- Department of Emergency Medicine, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Guoqiang Zhang
- Department of Emergency Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Huiqiong Tan
- Emergency and Intensive Care Center, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Ma
- Department of Intensive Care Unit, Chongqing Key Laboratory of Emergency Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, China
| | - Yimin Zhu
- Department of Emergency Medicine, Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Hunan Provincial Institute of Emergency Medicine, Hunan Provincial People’s Hospital/The First Affiliated Hospital, Hunan Normal University, Changsha, Hunan, China
| | - Xiaotong Han
- Department of Emergency Medicine, Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Hunan Provincial Institute of Emergency Medicine, Hunan Provincial People’s Hospital/The First Affiliated Hospital, Hunan Normal University, Changsha, Hunan, China
| | - Chaoqian Li
- Department of Emergency, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shengtao Yan
- Department of Emergency Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Jingjing Ma
- Department of Emergency Medicine, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jianbo Zhang
- Department of Emergency Medicine, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Chunyi Wang
- Department of Emergency Medicine, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yuan Bian
- Department of Emergency Medicine, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Kai Cheng
- Department of Emergency Medicine, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Rugang Liu
- Department of Emergency Medicine, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yaping Hou
- Department of Emergency Medicine, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Qiran Chen
- Department of Emergency Medicine, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xuan Zhang
- Department of Emergency Medicine, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yuguo Chen
- Department of Emergency Medicine, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Feng Xu
- Department of Emergency Medicine, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
37
|
Chen W, Lu X, Yuan D, Chen Y, Li Z, Huang Y, Fung T, Sun H, Fung JCH. Global PM 2.5 Prediction and Associated Mortality to 2100 under Different Climate Change Scenarios. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37377020 DOI: 10.1021/acs.est.3c03804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Ambient fine particulate matter (PM2.5) has severe adverse health impacts, making it crucial to reduce PM2.5 exposure for public health. Meteorological and emissions factors, which considerably affect the PM2.5 concentrations in the atmosphere, vary substantially under different climate change scenarios. In this work, global PM2.5 concentrations from 2021 to 2100 were generated by combining the deep learning technique, reanalysis data, emission data, and bias-corrected CMIP6 future climate scenario data. Based on the estimated PM2.5 concentrations, the future premature mortality burden was assessed using the Global Exposure Mortality Model. Our results reveal that SSP3-7.0 scenario is associated with the highest PM2.5 exposure, with a global concentration of 34.5 μg/m3 in 2100, while SSP1-2.6 scenario has the lowest exposure, with an estimated of 15.7 μg/m3 in 2100. PM2.5-related deaths for individuals under 75 years will decrease by 16.3 and 10.5% under SSP1-2.6 and SSP5-8.5, respectively, from 2030s to 2090s. However, premature mortality for elderly individuals (>75 years) will increase, causing the contrary trends of improved air quality and increased total PM2.5-related deaths in the four SSPs. Our results emphasize the need for stronger air pollution mitigation measures to offset the future burden posed by population age.
Collapse
Affiliation(s)
- Wanying Chen
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong SAR 999077, China
- Atmospheric Research Center, Guangzhou HKUST Fok Ying Tung Research Institute, Guangzhou 511458, China
| | - Xingcheng Lu
- Department of Geography and Resource Management, Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Dehao Yuan
- Department of Computer Science, University of Maryland, College Park, Maryland 20742, United States
| | - Yiang Chen
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong SAR 999077, China
- Atmospheric Research Center, Guangzhou HKUST Fok Ying Tung Research Institute, Guangzhou 511458, China
| | - Zhenning Li
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong SAR 999077, China
| | - Yeqi Huang
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong SAR 999077, China
| | - Tung Fung
- Department of Geography and Resource Management, Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Haochen Sun
- Department of Mathematics, The Hong Kong University of Science and Technology, Hong Kong SAR 999077, China
- Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR 999077, China
| | - Jimmy C H Fung
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong SAR 999077, China
- Atmospheric Research Center, Guangzhou HKUST Fok Ying Tung Research Institute, Guangzhou 511458, China
- Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR 999077, China
| |
Collapse
|
38
|
Sharma A, Lin YK, Chen CC, Deng L, Wang YC. Projections of temperature-associated mortality risks under the changing climate in an ageing society. Public Health 2023; 221:23-30. [PMID: 37356324 DOI: 10.1016/j.puhe.2023.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/09/2023] [Accepted: 05/22/2023] [Indexed: 06/27/2023]
Abstract
OBJECTIVES This study aimed to project future temperature-associated mortality risk and additional deaths among Taiwan's elderly (aged >65 years) population. STUDY DESIGN This study investigated retrospective temperature-mortality risk associations and future mortality projections. METHODS A distributed lag non-linear model and random effect meta-analyses were employed to assess the risk of daily temperature-associated deaths in all-cause, circulatory, and respiratory diseases. Using the statistical downscaling temperature projections of the Representative Concentration Pathways (RCPs; i.e. RCP2.6, RCP6.0 and RCP8.5), future risk of mortalities were projected among the elderly for 2030-2039, 2060-2069 and 2090-2099, with a 30%, 40% and 50% expected increase in elderly population proportions, respectively. RESULTS The baseline analysis from 2005 to 2018 identified that Taiwan's population is more vulnerable to cold effects than heat, with the highest cold-related mortality risk being attributed to circulatory diseases, followed by all-cause and respiratory diseases. However, future projections suggest a declining trend in cold-related mortalities and a significant rise in heat-related mortalities under different RCP scenarios. Heat-attributable mortalities under the RCP8.5 scenario by 2090-2099 would account for almost 170,360, 36,557 and 29,386 additional annual deaths among the elderly due to all-cause, circulatory and respiratory diseases, respectively. Heat-attributable all-cause mortalities among the elderly would increase by 3%, 11% and 30% under RCP2.6, RCP6.0 and RCP8.5, respectively, by 2090-2099. CONCLUSIONS The findings of this study provide predictions on future temperature-related mortality among the elderly in a developed, ageing society with a hot and humid climate. The results from this study can guide public health interventions and policies for climate change and ageing society-associated health risks.
Collapse
Affiliation(s)
- A Sharma
- Department of Environmental Engineering, College of Engineering, Chung Yuan Christian University, 200 Chung-Pei Road, Zhongli 320, Taiwan; Department of Civil Engineering, College of Engineering, Chung Yuan Christian University, 200 Chung-Pei Road, Zhongli 320, Taiwan
| | - Y-K Lin
- Department of Health and Welfare, University of Taipei, College of City Management, 101, Sec. 2, Zhongcheng Road, Taipei 111, Taiwan
| | - C-C Chen
- Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institute, Taiwan
| | - L Deng
- Department of Environmental Engineering, College of Engineering, Chung Yuan Christian University, 200 Chung-Pei Road, Zhongli 320, Taiwan
| | - Y-C Wang
- Department of Environmental Engineering, College of Engineering, Chung Yuan Christian University, 200 Chung-Pei Road, Zhongli 320, Taiwan; Research Center for Environmental Changes, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan.
| |
Collapse
|
39
|
Liu J, Hansen A, Varghese BM, Dear K, Tong M, Prescott V, Dolar V, Gourley M, Driscoll T, Zhang Y, Morgan G, Capon A, Bi P. Estimating the burden of disease attributable to high ambient temperature across climate zones: methodological framework with a case study. Int J Epidemiol 2023; 52:783-795. [PMID: 36511334 PMCID: PMC10244055 DOI: 10.1093/ije/dyac229] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 11/30/2022] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND With high temperature becoming an increasing health risk due to a changing climate, it is important to quantify the scale of the problem. However, estimating the burden of disease (BoD) attributable to high temperature can be challenging due to differences in risk patterns across geographical regions and data accessibility issues. METHODS We present a methodological framework that uses Köppen-Geiger climate zones to refine exposure levels and quantifies the difference between the burden observed due to high temperatures and what would have been observed if the population had been exposed to the theoretical minimum risk exposure distribution (TMRED). Our proposed method aligned with the Australian Burden of Disease Study and included two parts: (i) estimation of the population attributable fractions (PAF); and then (ii) estimation of the BoD attributable to high temperature. We use suicide and self-inflicted injuries in Australia as an example, with most frequent temperatures (MFTs) as the minimum risk exposure threshold (TMRED). RESULTS Our proposed framework to estimate the attributable BoD accounts for the importance of geographical variations of risk estimates between climate zones, and can be modified and adapted to other diseases and contexts that may be affected by high temperatures. CONCLUSIONS As the heat-related BoD may continue to increase in the future, this method is useful in estimating burdens across climate zones. This work may have important implications for preventive health measures, by enhancing the reproducibility and transparency of BoD research.
Collapse
Affiliation(s)
- Jingwen Liu
- School of Public Health, University of Adelaide, Adelaide, SA, Australia
| | - Alana Hansen
- School of Public Health, University of Adelaide, Adelaide, SA, Australia
| | - Blesson M Varghese
- School of Public Health, University of Adelaide, Adelaide, SA, Australia
| | - Keith Dear
- School of Public Health, University of Adelaide, Adelaide, SA, Australia
| | - Michael Tong
- School of Public Health, University of Adelaide, Adelaide, SA, Australia
| | - Vanessa Prescott
- Burden of Disease and Mortality Unit, Australian Institute of Health and Welfare, Canberra, ACT, Australia
| | - Vergil Dolar
- Burden of Disease and Mortality Unit, Australian Institute of Health and Welfare, Canberra, ACT, Australia
| | - Michelle Gourley
- Burden of Disease and Mortality Unit, Australian Institute of Health and Welfare, Canberra, ACT, Australia
| | - Timothy Driscoll
- Sydney School of Public Health, University of Sydney, Sydney, NSW, Australia
| | - Ying Zhang
- Sydney School of Public Health, University of Sydney, Sydney, NSW, Australia
| | - Geoffrey Morgan
- Sydney School of Public Health, University of Sydney, Sydney, NSW, Australia
| | - Anthony Capon
- Monash Sustainable Development Institute, Monash University, Melbourne, VIC, Australia
| | - Peng Bi
- School of Public Health, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
40
|
Liu J, Dong H, Li M, Wu Y, Zhang C, Chen J, Yang Z, Lin G, Liu DL, Yang J. Projecting the excess mortality due to heatwave and its characteristics under climate change, population and adaptation scenarios. Int J Hyg Environ Health 2023; 250:114157. [PMID: 36989996 DOI: 10.1016/j.ijheh.2023.114157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/07/2023] [Accepted: 03/11/2023] [Indexed: 03/29/2023]
Abstract
BACKGROUND Heatwaves have significant adverse effects on human health. The frequency, duration, and intensity of heatwaves are projected to increase dramatically, in the context of global warming. However, there are few comprehensive assessments of the health impact of heatwaves considering different definitions, and their characteristics under climate change scenarios. OBJECTIVE We aimed to compare future excess mortality related to heatwaves among different definitions under climate change, population, and adaptation scenarios in China and further explore the mortality burden associated with heatwave characteristics. METHODS Daily data during 2010-2019 were collected in Guangzhou, China. We adopted nine common heatwave definitions and applied quasi-Poisson models to estimate the effects of heatwaves and their characteristics' impact on mortality. We then projected the excess mortality associated with heatwaves and their characteristics concerning climate change, population, and adaptation scenarios. RESULTS The relative risks of the nine common heatwave definitions ranged from 1.05 (95% CI: 1.01, 1.10) to 1.24 (95% CI: 1.13, 1.35). Heatwave-related excess mortality will consistently increase in the future decades considering multiple heatwave definitions, with more rapidly increasing rates under the Shared Socioeconomic Path5-8.5 and non-adaptability scenarios. Regarding heatwave characteristics, the intensity is the main factor involved in the threat of heatwaves. The increasing trend of characteristic-related mortality burden is similar to that of heatwaves, and the mortality burden caused by the duration of the heatwaves was the largest among all characteristics. CONCLUSIONS This study provides a comprehensive picture of the impact of heatwaves and their characteristics on public health under various climate change scenarios, population changes, and adaptive assumptions. The results may provide important public health implications for policymakers in planning climate change adaptation and mitigation policies, and implementing specific plans.
Collapse
|
41
|
Zhou Y, Gao Y, Yin P, He C, Liu W, Kan H, Zhou M, Chen R. Assessing the Burden of Suicide Death Associated With Nonoptimum Temperature in a Changing Climate. JAMA Psychiatry 2023; 80:488-497. [PMID: 36988931 PMCID: PMC10061320 DOI: 10.1001/jamapsychiatry.2023.0301] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/11/2023] [Indexed: 03/30/2023]
Abstract
Importance Few studies have projected future suicide burden associated with daily temperatures in a warming climate. Objectives To assess the burden of suicide death associated with daily nonoptimal temperature and to project the change of suicide burden associated with nonoptimal temperature in different regions and seasons under various climate change scenarios. Design, Setting, and Participants Between January 1, 2013, and December 31, 2019, we conducted a time-stratified, case-control study among more than 430 000 individual suicide decedents from all counties in mainland China. Exposures Daily meteorological data were obtained from the European Centre for Medium-Range Weather Forecasts Reanalysis Fifth Generation (ERA5) reanalysis product. Historical and future temperature series were projected under 3 scenarios of greenhouse-gas emissions from 1980 to 2099, with 10 general circulation models. Main Outcomes and Measures The relative risk (RR) and burden of suicide death associated with nonoptimal temperature (ie, temperatures greater than or less than minimum-mortality temperature); the change of suicide burden associated with future climate warming in different regions and seasons under various climate change scenarios. Results Of 432 008 individuals (mean [SD] age; 57.6 [19.0] years; 253 093 male [58.6%]) who died by suicide, 85.8% (370 577) had a middle school education or less. The temperature-suicide associations were approximately linear, with increasing death risks at higher temperatures. The excess risk was more prominent among older adults (ie, ≥75 years; RR, 1.71; 95% CI, 1.46-1.99) and those with low education level (ie, middle school education or less; RR, 1.46; 95% CI, 1.36-1.57). There were 15.2% suicide deaths (95% estimated CI [eCI], 14.6%-15.6%) associated with nonoptimal temperature nationally. Consistent and drastic increases in excess suicide deaths over this century were predicted under the high-emission scenario, whereas a leveling-off trend after the mid-21st century was predicted under the medium- and low-emission scenarios. Nationally, compared with the historical period (1980-2009), excess suicide deaths were predicted to increase by 8.3% to 11.4% in the 2050s and 8.5% to 21.7% in the 2090s under the 3 scenarios. The projected percentage increments of excess suicide deaths were predicted to be greater in the South (55.0%; 95% eCI, 30.5%-85.6%) and in winter (54.5%; 95% eCI, 30.4%-77.0%) in the 2090s under the high-emission scenario. Conclusions and Relevance Findings of this nationwide case-control study suggest that higher temperature may be associated with the risk and burden of suicide death in China. These findings highlight the importance of implementing effective climate policies to reduce greenhouse gas emissions and tailoring public health policies to adapt to global warming.
Collapse
Affiliation(s)
- Yuchang Zhou
- National Center for Chronic Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ya Gao
- Department of Environmental Health, School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Integrated Research on Disaster Risk International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China
| | - Peng Yin
- National Center for Chronic Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Cheng He
- Department of Environmental Health, School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Integrated Research on Disaster Risk International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China
| | - Wei Liu
- National Center for Chronic Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Haidong Kan
- Department of Environmental Health, School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Integrated Research on Disaster Risk International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China
| | - Maigeng Zhou
- National Center for Chronic Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Renjie Chen
- Department of Environmental Health, School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, Integrated Research on Disaster Risk International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China
| |
Collapse
|
42
|
Ma X, Zhang B, Duan H, Wu H, Dong J, Guo X, Lu Z, Ma J, Xi B. Estimating future PM 2.5-attributed acute myocardial infarction incident cases under climate mitigation and population change scenarios in Shandong Province, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114893. [PMID: 37059016 DOI: 10.1016/j.ecoenv.2023.114893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND The effects of fine particulate matter (PM2.5) on acute myocardial infarction (AMI) have been widely recognized. However, no studies have comprehensively evaluated future PM2.5-attributed AMI burdens under different climate mitigation and population change scenarios. We aimed to quantify the PM2.5-AMI association and estimate the future change in PM2.5-attributed AMI incident cases under six integrated scenarios in 2030 and 2060 in Shandong Province, China. METHODS Daily AMI incident cases and air pollutant data were collected from 136 districts/counties in Shandong Province from 2017 - 2019. A two-stage analysis with a distributed lag nonlinear model was conducted to quantify the baseline PM2.5-AMI association. The future change in PM2.5-attributed AMI incident cases was estimated by combining the fitted PM2.5-AMI association with the projected daily PM2.5 concentrations under six integrated scenarios. We further analyzed the factors driving changes in PM2.5-related AMI incidence using a decomposition method. RESULTS Each 10 μg/m3 increase in PM2.5 exposure at lag05 was related to an excess risk of 1.3 % (95 % confidence intervals: 0.9 %, 1.7 %) for AMI incidence from 2017 - 2019 in Shandong Province. The estimated total PM2.5-attributed AMI incident cases would increase by 10.9-125.9 % and 6.4-244.6 % under Scenarios 1 - 3 in 2030 and 2060, whereas they would decrease by 0.9-5.2 % and 33.0-46.2 % under Scenarios 5 - 6 in 2030 and 2060, respectively. Furthermore, the percentage increases in PM2.5-attributed female cases (2030: -0.3 % to 135.1 %; 2060: -33.2 % to 321.5 %) and aging cases (2030: 15.2-171.8 %; 2060: -21.5 % to 394.2 %) would wholly exceed those in male cases (2030: -1.8 % to 133.2 %; 2060: -41.1 % to 264.3 %) and non-aging cases (2030: -41.0 % to 45.7 %; 2060: -89.5 % to -17.0 %) under six scenarios in 2030 and 2060. Population aging is the main driver of increased PM2.5-related AMI incidence under Scenarios 1 - 3 in 2030 and 2060, while improved air quality can offset these negative effects of population aging under the implementation of the carbon neutrality and 1.5 °C targets. CONCLUSION The combination of ambitious climate policies (i.e., 1.5 °C warming limits and carbon neutrality targets) with stringent clean air policies is necessary to reduce the health impacts of air pollution in Shandong Province, China, regardless of population aging.
Collapse
Affiliation(s)
- Xiaoyun Ma
- Department of Epidemiology, School of Public Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Bingyin Zhang
- Shandong Center for Disease Control and Prevention, and Academy of Preventive Medicine, Shandong University, Jinan, Shandong, China
| | - Haiping Duan
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, Shandong, China
| | - Han Wu
- Department of Epidemiology, School of Public Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jing Dong
- Shandong Center for Disease Control and Prevention, and Academy of Preventive Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaolei Guo
- Shandong Center for Disease Control and Prevention, and Academy of Preventive Medicine, Shandong University, Jinan, Shandong, China
| | - Zilong Lu
- Shandong Center for Disease Control and Prevention, and Academy of Preventive Medicine, Shandong University, Jinan, Shandong, China
| | - Jixiang Ma
- Shandong Center for Disease Control and Prevention, and Academy of Preventive Medicine, Shandong University, Jinan, Shandong, China.
| | - Bo Xi
- Department of Epidemiology, School of Public Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
43
|
Jiang S. Compound Heat Vulnerability in the Record-Breaking Hot Summer of 2022 over the Yangtze River Delta Region. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20085539. [PMID: 37107821 PMCID: PMC10138504 DOI: 10.3390/ijerph20085539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/19/2023] [Accepted: 04/12/2023] [Indexed: 05/11/2023]
Abstract
Hourly meteorological data and multisource socioeconomic data collected in the Yangtze River Delta (YRD) region were used to analyze its heat vulnerability during the record-breaking hot summer of 2022 in both daytime and nighttime. Over forty consecutive days, daytime temperatures exceeded 40 °C, and 58.4% of the YRD region experienced 400 h with temperatures hotter than 26 °C during the nighttime. Only 7.5% of the YRD region was under low heat risk during both daytime and nighttime. Strong heat risk combined with strong heat sensitivity and weak heat adaptability led to strong heat vulnerability during both daytime and nighttime in most areas (72.6%). Inhomogeneity in heat sensitivity and heat adaptability further aggravated the heterogeneity of heat vulnerability, leading to compound heat vulnerability in most regions. The ratios of heat-vulnerable areas generated by multiple causes were 67.7% and 79.3% during daytime and nighttime, respectively. For Zhejiang and Shanghai, projects designed to decrease the urban heat island effect and lower the local heat sensitivity are most important. For Jiangsu and Anhui, measures aiming to decrease the urban heat island effect and improve heat adaptability are most important. It is urgent to take efficient measures to address heat vulnerability during both daytime and nighttime.
Collapse
Affiliation(s)
- Shaojing Jiang
- Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo 315211, China;
- State Key Laboratory of Earth Surface Processes and Resource Ecology, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
44
|
Ren C, Zhou X, Wang C, Guo Y, Diao Y, Shen S, Reis S, Li W, Xu J, Gu B. Ageing threatens sustainability of smallholder farming in China. Nature 2023; 616:96-103. [PMID: 36813965 DOI: 10.1038/s41586-023-05738-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 01/18/2023] [Indexed: 02/24/2023]
Abstract
Rapid demographic ageing substantially affects socioeconomic development1-4 and presents considerable challenges for food security and agricultural sustainability5-8, which have so far not been well understood. Here, by using data from more than 15,000 rural households with crops but no livestock across China, we show that rural population ageing reduced farm size by 4% through transferring cropland ownership and land abandonment (approximately 4 million hectares) in 2019, taking the population age structure in 1990 as a benchmark. These changes led to a reduction of agricultural inputs, including chemical fertilizers, manure and machinery, which decreased agricultural output and labour productivity by 5% and 4%, respectively, further lowering farmers' income by 15%. Meanwhile, fertilizer loss increased by 3%, resulting in higher pollutant emissions to the environment. In new farming models, such as cooperative farming, farms tend to be larger and operated by younger farmers, who have a higher average education level, hence improving agricultural management. By encouraging the transition to new farming models, the negative consequences of ageing can be reversed. Agricultural input, farm size and farmer's income would grow by approximately 14%, 20% and 26%, respectively, and fertilizer loss would reduce by 4% in 2100 compared with that in 2020. This suggests that management of rural ageing will contribute to a comprehensive transformation of smallholder farming to sustainable agriculture in China.
Collapse
Affiliation(s)
- Chenchen Ren
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- Department of Land Management, Zhejiang University, Hangzhou, China
- Policy Simulation Laboratory, Zhejiang University, Hangzhou, China
| | - Xinyue Zhou
- School of Management, Zhejiang University, Hangzhou, China
| | - Chen Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- Policy Simulation Laboratory, Zhejiang University, Hangzhou, China
| | - Yaolin Guo
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Yu Diao
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Sisi Shen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Stefan Reis
- UK Centre for Ecology & Hydrology, Penicuik, UK
- University of Exeter Medical School, Truro, UK
- School of Chemistry, University of Edinburgh, Edinburgh, UK
| | - Wanyue Li
- School of Management, Zhejiang University, Hangzhou, China
| | - Jianming Xu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Baojing Gu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, China.
| |
Collapse
|
45
|
Wang Y, Lin L, Xu Z, Wang L, Huang J, Zhou M, Li G. Have residents adapted to heat wave and cold spell in the 21st century? Evidence from 136 Chinese cities. ENVIRONMENT INTERNATIONAL 2023; 173:107811. [PMID: 36878108 DOI: 10.1016/j.envint.2023.107811] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Global climate change has increased the probability and intensity of extreme weather events. The adverse health effect of extreme temperature has gone through a temporal variation over years. Time-series data including city-level daily cardiovascular death records and meteorological data were collected from 136 Chinese cities during 2006 and 2019. A time-varying distributed lag model with interaction terms was applied to assess the temporal change of mortality risk and attributable mortality of heat wave and cold spell. The mortality effect of heat wave generally increased and that of cold spell decreased significantly in the total population during the study period. The heat wave effect increased especially among the female and people aged 65 to 74. As for the cold spell, the reduced susceptibility was detected both in the temperate and cold climatic zone. Our findings appeal for counterpart measures corresponding to sub-populations and regions responding to future extreme climate events from the public and individuals.
Collapse
Affiliation(s)
- Yuxin Wang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Lin Lin
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing 100050, China
| | - Zhihu Xu
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Lijun Wang
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing 100050, China
| | - Jing Huang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Maigeng Zhou
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing 100050, China.
| | - Guoxing Li
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, 38 Xueyuan Road, Haidian District, Beijing 100191, China; Environmental Research Group, MRC Centre for Environment and Health, Sir Michael Uren Building, Imperial College London, White City Campus, 80-92 Wood Lane, London W12 0BZ, United Kingdom.
| |
Collapse
|
46
|
Cole R, Hajat S, Murage P, Heaviside C, Macintyre H, Davies M, Wilkinson P. The contribution of demographic changes to future heat-related health burdens under climate change scenarios. ENVIRONMENT INTERNATIONAL 2023; 173:107836. [PMID: 36822002 DOI: 10.1016/j.envint.2023.107836] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/14/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Anthropogenic climate change will have a detrimental impact on global health, including the direct impact of higher ambient temperatures. Existing projections of heat-related health outcomes in a changing climate often consider increasing ambient temperatures alone. Population growth and structure has been identified as a key source of uncertainty in future projections. Age acts as a modifier of heat risk, with heat-risk generally increasing in older age-groups. In many countries the population is ageing as lower birth rates and increasing life expectancy alter the population structure. Preparing for an older population, in particular in the context of a warmer climate should therefore be a priority in public health research and policy. We assess the level of inclusion of population growth and demographic changes in research projecting exposure to heat and heat-related health outcomes. To assess the level of inclusion of population changes in the literature, keyword searches of two databases were implemented, followed by reference and citation scans to identify any missed papers. Relevant papers, those including a projection of the heat health burden under climate change, were then checked for inclusion of population scenarios. Where sensitivity to population change was studied the impact of this on projections was extracted. Our analysis suggests that projecting the heat health burden is a growing area of research, however, some areas remain understudied including Africa and the Middle East and morbidity is rarely explored with most studies focusing on mortality. Of the studies pairing projections of population and climate, specifically SSPs and RCPs, many used pairing considered to be unfeasible. We find that not including any projected changes in population or demographics leads to underestimation of health burdens of on average 64 %. Inclusion of population changes increased the heat health burden across all but two studies.
Collapse
Affiliation(s)
- Rebecca Cole
- Public and Environmental Health Research Unit, London School of Hygiene and Tropical Medicine, London, United Kingdom.
| | - Shakoor Hajat
- Public and Environmental Health Research Unit, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Peninah Murage
- Public and Environmental Health Research Unit, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Clare Heaviside
- UCL Institute for Environmental Design and Engineering, The Bartlett Faculty of Environment, University College London, London, United Kingdom
| | - Helen Macintyre
- Climate Change and Health Unit, UK Health Security Agency, Chilton, United Kingdom; School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Michael Davies
- UCL Institute for Environmental Design and Engineering, The Bartlett Faculty of Environment, University College London, London, United Kingdom
| | - Paul Wilkinson
- Public and Environmental Health Research Unit, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
47
|
Röthlisberger M, Papritz L. Quantifying the physical processes leading to atmospheric hot extremes at a global scale. NATURE GEOSCIENCE 2023; 16:210-216. [PMID: 36920151 PMCID: PMC10005943 DOI: 10.1038/s41561-023-01126-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
Heat waves are among the deadliest climate hazards. Yet the relative importance of the physical processes causing their near-surface temperature anomalies (𝑇')-advection of air from climatologically warmer regions, adiabatic warming in subsiding air and diabatic heating-is still a matter of debate. Here we quantify the importance of these processes by evaluating the 𝑇' budget along air-parcel backward trajectories. We first show that the extreme near-surface 𝑇' during the June 2021 heat wave in western North America was produced primarily by diabatic heating and, to a smaller extent, by adiabatic warming. Systematically decomposing 𝑇' during the hottest days of each year (TX1day events) in 1979-2020 globally, we find strong geographical variations with a dominance of advection over mid-latitude oceans, adiabatic warming near mountain ranges and diabatic heating over tropical and subtropical land masses. In many regions, however, TX1day events arise from a combination of these processes. In the global mean, TX1day anomalies form along trajectories over roughly 60 h and 1,000 km, although with large regional variability. This study thus reveals inherently non-local and regionally distinct formation pathways of hot extremes, quantifies the crucial factors determining their magnitude and enables new quantitative ways of climate model evaluation regarding hot extremes.
Collapse
Affiliation(s)
| | - Lukas Papritz
- Institute for Atmospheric and Climate Science, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
48
|
Niu Y, Yang J, Zhao Q, Gao Y, Xue T, Yin Q, Yin P, Wang J, Zhou M, Liu Q. The main and added effects of heat on mortality in 33 Chinese cities from 2007 to 2013. FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING 2023; 17:81. [PMID: 39450420 PMCID: PMC7616734 DOI: 10.1007/s11783-023-1681-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/17/2022] [Accepted: 11/29/2022] [Indexed: 10/26/2024]
Abstract
Increases in ambient temperatures and the frequency of extreme heat events constitute important burdens on global public health. However, evidence on their effects on public health is limited and inconclusive in China. In this study, data on daily deaths recorded in 33 Chinese cities from 2007 to 2013 was used to evaluate the effect of heat on mortality in China. In addition to the definition of a heatwave established by the China Meteorological Administration, we combined four city-specific relative thresholds (90th, 92.5th, 95th, and 97.5th percentiles) of the daily mean temperature during the study period and three durations of ⩾ 2, ⩾ 3, and ⩾ 4 days, from which 13 heatwave definitions were developed. Then, we estimated the main and added effects of heat at the city level using a quasi-Poisson generalized additive model combined with a distributed lag nonlinear model. Next, the estimates for the effects were pooled at the national level using a multivariable meta-analysis. Subgroup analysis was performed according to sex, age, educational attainment, and spatially stratified heterogeneity. The results showed that the mortality risk increased from 22.3% to 37.1% due to the effects of the different heatwave definitions. The added effects were much lower, with the 2 Front. Environ. Sci. Eng. 2023, 17(7): 81 highest increase of 3.9% (95% CI: 1.7%-6.1%) in mortality risk. Females, the elderly, populations with low educational levels, and populations living inland in China were found to be the most vulnerable to the detrimental effects of heat. These findings have important implications for the improvement of early warning systems for heatwaves.
Collapse
Affiliation(s)
- Yanlin Niu
- Beijing Center for Disease Prevention and Control, Institute for Nutrition and Food Hygiene, Beijing100013, China
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing102206, China
- University College London, London, WC1H 0NN, UK
| | - Jun Yang
- School of Public Health, Guangzhou Medical University, Guangzhou511436, China
| | - Qi Zhao
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan250012, China
- Shandong University Climate Change and Health Center, Shandong University, Jinan250100, China
- Department of Epidemiology, IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf40225, Germany
| | - Yuan Gao
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC3004, Australia
| | - Tao Xue
- Institute of Reproductive and Child Health, Ministry of Health Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing100191, China
| | - Qian Yin
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographical Sciences and Nature Resources Research, Chinese Academy of Sciences, Beijing100101, China
| | - Peng Yin
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing100050, China
| | - Jinfeng Wang
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographical Sciences and Nature Resources Research, Chinese Academy of Sciences, Beijing100101, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Maigeng Zhou
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing100050, China
| | - Qiyong Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing102206, China
- Shandong University Climate Change and Health Center, Shandong University, Jinan250100, China
| |
Collapse
|
49
|
Navas-Martín MÁ, López-Bueno JA, Ascaso-Sánchez MS, Follos F, Vellón JM, Mirón IJ, Luna MY, Sánchez-Martínez G, Linares C, Díaz J. Heat Adaptation among the Elderly in Spain (1983-2018). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1314. [PMID: 36674069 PMCID: PMC9858820 DOI: 10.3390/ijerph20021314] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
The capacity for adaptation to climate change is limited, and the elderly rank high among the most exposed population groups. To date, few studies have addressed the issue of heat adaptation, and little is known about the long-term effects of exposure to heat. One indicator that allows the ascertainment of a population's level of adaptation to heat is the minimum mortality temperature (MMT), which links temperature and daily mortality. The aim of this study was to ascertain, firstly, adaptation to heat among persons aged ≥ 65 years across the period 1983 to 2018 through analysis of the MMT; and secondly, the trend in such adaptation to heat over time with respect to the total population. A retrospective longitudinal ecological time series study was conducted, using data on daily mortality and maximum daily temperature across the study period. Over time, the MMT was highest among elderly people, with a value of 28.6 °C (95%CI 28.3-28.9) versus 28.2 °C (95%CI 27.83-28.51) for the total population, though this difference was not statistically significant. A total of 62% of Spanish provinces included populations of elderly people that had adapted to heat during the study period. In general, elderly persons' level of adaptation registered an average value of 0.11 (°C/decade).
Collapse
Affiliation(s)
- Miguel Ángel Navas-Martín
- National School of Public Health, Carlos III Institute of Health, 28029 Madrid, Spain
- Doctorate Program in Biomedical Sciences and Public Health, National University of Distance Education, 28015 Madrid, Spain
| | | | | | - Fernando Follos
- Tdot Soluciones Sostenibles, SL., Ferrol, 15401 A Coruña, Spain
| | | | - Isidro Juan Mirón
- Regional Health Authority of Castile La Mancha, 45500 Torrijos, Spain
| | | | | | - Cristina Linares
- National School of Public Health, Carlos III Institute of Health, 28029 Madrid, Spain
| | - Julio Díaz
- National School of Public Health, Carlos III Institute of Health, 28029 Madrid, Spain
| |
Collapse
|
50
|
Hu J, He G, Meng R, Gong W, Ren Z, Shi H, Lin Z, Liu T, Zeng F, Yin P, Bai G, Qin M, Hou Z, Dong X, Zhou C, Pingcuo Z, Xiao Y, Yu M, Huang B, Xu X, Lin L, Xiao J, Zhong J, Jin D, Zhao Q, Li Y, Gama C, Xu Y, Lv L, Zeng W, Li X, Luo L, Zhou M, Huang C, Ma W. Temperature-related mortality in China from specific injury. Nat Commun 2023; 14:37. [PMID: 36596791 PMCID: PMC9810693 DOI: 10.1038/s41467-022-35462-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 12/05/2022] [Indexed: 01/04/2023] Open
Abstract
Injury poses heavy burden on public health, accounting for nearly 8% of all deaths globally, but little evidence on the role of climate change on injury exists. We collect data during 2013-2019 in six provinces of China to examine the effects of temperature on injury mortality, and to project future mortality burden attributable to temperature change driven by climate change based on the assumption of constant injury mortality and population scenario. The results show that a 0.50% (95% confident interval (CI): 0.13%-0.88%) increase of injury mortality risk for each 1 °C rise in daily temperature, with higher risk for intentional injury (1.13%, 0.55%-1.71%) than that for unintentional injury (0.40%, 0.04%-0.77%). Compared to the 2010s, total injury deaths attributable to temperature change in China would increase 156,586 (37,654-272,316) in the 2090 s under representative concentration pathways 8.5 scenario with the highest for transport injury (64,764, 8,517-115,743). Populations living in Western China, people aged 15-69 years, and male may suffer more injury mortality burden from increased temperature caused by climate change. Our findings may be informative for public health policy development to effectively adapt to climate change.
Collapse
Affiliation(s)
- Jianxiong Hu
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Guanhao He
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 511443, China
| | - Ruilin Meng
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Weiwei Gong
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310009, China
| | - Zhoupeng Ren
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Heng Shi
- Tibet Autonomous Region Center for Disease Control and Prevention, Lhasa, 850002, China
| | - Ziqiang Lin
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 511443, China
| | - Tao Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 511443, China
| | - Fangfang Zeng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 511443, China
| | - Peng Yin
- The National Center for Chronic and Noncommunicable Disease Control and Prevention, Beijing, 100050, China
| | - Guoxia Bai
- Tibet Autonomous Region Center for Disease Control and Prevention, Lhasa, 850002, China
| | - Mingfang Qin
- Yunnan Provincial Center for Disease Control and Prevention, Kunming, 650034, China
| | - Zhulin Hou
- Jilin Provincial Center for Disease Control and Prevention, Changchun, 130062, China
| | - Xiaomei Dong
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 511443, China
| | - Chunliang Zhou
- Hunan Provincial Center for Disease Control and Prevention, Changsha, 410005, China
| | - Zhuoma Pingcuo
- Tibet Autonomous Region Center for Disease Control and Prevention, Lhasa, 850002, China
| | - Yize Xiao
- Yunnan Provincial Center for Disease Control and Prevention, Kunming, 650034, China
| | - Min Yu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310009, China
| | - Biao Huang
- Jilin Provincial Center for Disease Control and Prevention, Changchun, 130062, China
| | - Xiaojun Xu
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Lifeng Lin
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Jianpeng Xiao
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Jieming Zhong
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310009, China
| | - Donghui Jin
- Hunan Provincial Center for Disease Control and Prevention, Changsha, 410005, China
| | - Qinglong Zhao
- Jilin Provincial Center for Disease Control and Prevention, Changchun, 130062, China
| | - Yajie Li
- Tibet Autonomous Region Center for Disease Control and Prevention, Lhasa, 850002, China
| | - Cangjue Gama
- Tibet Autonomous Region Center for Disease Control and Prevention, Lhasa, 850002, China
| | - Yiqing Xu
- Hunan Provincial Center for Disease Control and Prevention, Changsha, 410005, China
| | - Lingshuang Lv
- Hunan Provincial Center for Disease Control and Prevention, Changsha, 410005, China
| | - Weilin Zeng
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Xing Li
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Liying Luo
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Maigeng Zhou
- The National Center for Chronic and Noncommunicable Disease Control and Prevention, Beijing, 100050, China
| | - Cunrui Huang
- Vanke School of Public Health, Tsinghua University, Beijing, 100084, China
| | - Wenjun Ma
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 511443, China.
| |
Collapse
|