1
|
Duguay BA, Tooley TH, Pringle ES, Rohde JR, McCormick C. A yeast-based reverse genetics system to generate HCoV-OC43 reporter viruses encoding an eighth subgenomic RNA. J Virol 2025:e0167124. [PMID: 39882907 DOI: 10.1128/jvi.01671-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 01/13/2025] [Indexed: 01/31/2025] Open
Abstract
Coronaviruses have large, positive-sense single-stranded RNA genomes that challenge conventional strategies for mutagenesis. Yeast genetics has been used to manipulate large viral genomes, including those of herpesviruses and coronaviruses. This method, known as transformation-associated recombination (TAR), involves assembling complete viral genomes from dsDNA copies of viral genome fragments via homologous recombination in Saccharomyces cerevisiae. Here, we report our development of a TAR assembly and mutagenesis system for the endemic, seasonal human coronavirus (HCoV) strain OC43. HCoV-OC43 generally causes mild respiratory symptoms and is classified as a biosafety level 2 agent, making it useful for studying fundamental aspects of coronavirus biology and for comparative studies of more highly pathogenic betacoronaviruses. Following cDNA synthesis from HCoV-OC43 viral RNA, we generated five plasmids encompassing ~7.2 kb portions of the ORF1ab gene, the NS2 to M segment, or the N gene and structured to facilitate reporter gene insertions in the M-to-N intergenic region. Using these plasmids, we completed independent assemblies of yeast centromeric plasmids encoding ORF1ab, NS2a to N, as well as full-length HCoV-OC43 plasmids. A wild-type virus (OC43YA), as well as mClover3-H2B (OC43-mCloYA), mRuby3-H2B (OC43-mRubyYA), and mCardinal (OC43-mCardYA) reporter viruses, were rescued. The OC43-mCloYA reporter virus replicated comparably to an OC43 reference strain and produced the mClover3-H2B protein from a novel subgenomic RNA through insertion of an eighth body transcription regulatory sequence, preventing the need to delete or mutate viral genes. This updated HCoV-OC43 reverse genetics system will contribute to a better understanding of betacoronavirus host-pathogen interactions and can accelerate studies of novel antivirals. IMPORTANCE Coronaviruses are ubiquitous pathogens that infect humans resulting in both mild and severe respiratory infections. Human coronavirus strain OC43 (HCoV-OC43) is one of many viruses responsible for common colds and is a useful model of more severe coronavirus infections. In this study, we describe an updated HCoV-OC43 mutagenesis system that uses yeast to capture six DNA fragments of the viral RNA genome and assemble them into full-length genomes in yeast/bacterial plasmids. The design of this system allowed for the rapid assembly and rescue of functional HCoV-OC43 viruses, including fluorescent reporter viruses with expanded genetic capacity. This updated reverse genetics system will enhance our ability to monitor viral replication, through building new reporter viruses, while also enhancing the study of betacoronavirus biology through the generation of mutant HCoV-OC43 viruses.
Collapse
Affiliation(s)
- Brett A Duguay
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Trinity H Tooley
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Eric S Pringle
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - John R Rohde
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Craig McCormick
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
2
|
Sterling CE, Wilson NR, Harris DY, Smith EC. A yeast-assembled, plasmid-launched reverse genetics system for the murine coronavirus MHV-A59. J Gen Virol 2025; 106. [PMID: 39785688 DOI: 10.1099/jgv.0.002065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
The Betacoronavirus murine hepatitis virus (MHV) is an important model system for studying coronavirus (CoV) molecular and cell biology. Despite this, few reagents for MHV are available through repositories such as ATCC or Addgene, potentially limiting the widespread adoption of MHV as a tractable model system. To overcome some challenges inherent in the existing MHV reverse genetics systems, we developed a plasmid-launched transformation-associated recombination (TAR) cloning-based system to assemble the MHV (strain A59; MHV-A59) genome. Following assembly in yeast, virus replication was launched by transfecting the fully assembled genome into HEK-293T cells. MHV-A59 recovered using this TAR cloning-based approach (WTTAR MHV-A59) replicated with kinetics identical to the virus recovered using a ligation- and T7-based approach (WTLIG MHV-A59). Additionally, WTTAR MHV-A59 can be detected at least 10 h post-transfection without requiring additional nucleocapsid (N) provided in trans. Lastly, we demonstrated the tractability of this TAR cloning-based system by recovering MHV-A59 expressing an 11 amino acid-containing HiBiT tag fused to the C-terminus of spike (S). While this virus, SC MHV-A59, replicated with reduced kinetics compared to WTTAR MHV-A59, the kinetics of virion production could be measured over time directly from the supernatant. This report represents the first plasmid-launched, TAR cloning-based system for MHV-A59. Furthermore, it describes a new reporter virus that could be used to study early steps during MHV-A59 entry and be used in the screening of antiviral compounds. To support future research with MHV-A59, we have made the necessary plasmids for this system available through ATCC.
Collapse
Affiliation(s)
- Cade E Sterling
- Biochemistry Program, The University of the South, Sewanee, TN, USA
- Present address: Center for Vaccine Research, Program in Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Natalie R Wilson
- Department of Biology, The University of the South, Sewanee, TN, USA
| | | | - Everett Clinton Smith
- Biochemistry Program, The University of the South, Sewanee, TN, USA
- Department of Biology, The University of the South, Sewanee, TN, USA
| |
Collapse
|
3
|
Shrestha LB, Tungatt K, Aggarwal A, Stubis A, Fewings NL, Fichter C, Akerman A, Rodrigo C, Tedla N, Lee S, Lloyd AR, Brilot F, Britton WJ, Kelleher A, Caterson ID, Douglas MW, Rockett R, Tangye SG, Triccas JA, Turville SG, Sandgren KJ, Bull RA, Cunningham AL. Bivalent Omicron BA.1 vaccine booster increases memory B cell breadth and neutralising antibodies against emerging SARS-CoV-2 variants. EBioMedicine 2024; 110:105461. [PMID: 39612651 DOI: 10.1016/j.ebiom.2024.105461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Current literature informs us that bivalent vaccines will generate a broader serum neutralizing antibody response to multiple SARS-CoV-2 variants, but studies on how this breadth relates to the memory B cell (MBC) and T cell responses are sparse. This study compared breadth of neutralising antibody, and memory B and T cell responses to monovalent or a bivalent ancestral/Omicron BA.1 COVID-19 booster vaccine. METHODS At baseline and 1-month post-booster, neutralisation activity and frequencies of receptor binding domain (RBD)-specific MBCs and Spike-specific memory T cells were measured against a panel of variants. FINDINGS Both vaccines boosted neutralising antibodies to 5 variants - Wuhan-Hu-1, Delta, BA.1, BA.5 and JN.1, the latter of which had not yet emerged at the time of sample collection. The bivalent vaccine induced a significantly larger increase in nAb against BA.1 and JN.1. Both vaccines boosted RBD-specific MBC responses to Wuhan-Hu-1, Delta, BA.1 and BA.5 variants with a significantly greater increase for BA.1 in the bivalent group. The breadth of MBCs was significantly higher in those who received the bivalent boost and correlated with nAb breadth. Both vaccines significantly boosted Spike-specific T cell responses to the Wuhan-Hu-1 and BA.5 variants, but only the bivalent vaccine boosted BA.1 responses. INTERPRETATION These results suggest that the bivalent vaccine confers an advantage against future novel variants due to increased frequency of broadly reactive RBD-specific B cells. FUNDING Work supported by NSW Health for the NSW Vaccine, Infection and Immunology Collaborative (VIIM).
Collapse
Affiliation(s)
- Lok Bahadur Shrestha
- The Kirby Institute, University of New South Wales, Sydney, NSW, Australia; School of Biomedical Sciences, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW, Australia
| | - Katie Tungatt
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Anupriya Aggarwal
- The Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Aija Stubis
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Nicole L Fewings
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Christina Fichter
- The Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Anouschka Akerman
- The Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Chaturaka Rodrigo
- School of Biomedical Sciences, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW, Australia
| | - Nicodemus Tedla
- School of Biomedical Sciences, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW, Australia
| | - Sharon Lee
- Research & Education Network, Western Sydney Local Health District, Westmead, NSW, Australia
| | - Andrew R Lloyd
- The Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Fabienne Brilot
- Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Westmead, NSW, Australia; Sydney Infectious Diseases Institute (Sydney ID), Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia; School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Warwick J Britton
- Centenary Institute, The University of Sydney, Camperdown, NSW, Australia; RPAH Vaccination Centre, Sydney Local Health District, Sydney, NSW, Australia
| | - Anthony Kelleher
- The Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Ian D Caterson
- RPAH Vaccination Centre, Sydney Local Health District, Sydney, NSW, Australia
| | - Mark W Douglas
- Sydney Infectious Diseases Institute (Sydney ID), Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia; Storr Liver Centre, The Westmead Institute for Medical Research, Westmead, NSW, Australia; Centre for Infectious Diseases and Microbiology, Westmead Hospital, Westmead, NSW, Australia
| | - Rebecca Rockett
- Sydney Infectious Diseases Institute (Sydney ID), Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia; School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - James A Triccas
- Sydney Infectious Diseases Institute (Sydney ID), Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia; School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Stuart G Turville
- The Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Kerrie J Sandgren
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia; Sydney Infectious Diseases Institute (Sydney ID), Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia; School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Rowena A Bull
- The Kirby Institute, University of New South Wales, Sydney, NSW, Australia; School of Biomedical Sciences, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW, Australia
| | - Anthony L Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia; Sydney Infectious Diseases Institute (Sydney ID), Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia; School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
4
|
Wang X, Zhang D, Tang A, Zhang M, Zhu S, Zhu Y, Li B, Meng C, Li C, Zhu J, Liu G. Establishment of a reverse genetics system for virulent systemic feline calicivirus using circular polymerase extension reaction. J Virol Methods 2024; 330:115031. [PMID: 39255871 DOI: 10.1016/j.jviromet.2024.115031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024]
Abstract
Feline caliciviruses can cause oral and upper respiratory tract infections in cats. However, a virulent and systemic feline calicivirus (VS-FCV) variant implicated in multisystem lesions and death in cats has emerged recently. To date, the mechanism underlying virulence variations in VS-FCV remains unclear. The aim of the present study was to provide a tool for exploring genetic variation in VS-FCV, by constructing an infectious clone of VS-FCV SH/2014. First, a full-length cDNA molecular clone of VS-FCV SH/2014 strain, which contains an Xba I recognition site generated by mutating one base (A→T) as a genetic marker, was constructed using the circular polymerase extension reaction (CPER) method. Second, the full-length cDNA clone was introduced into Crandell-Rees feline kidney cells using liposomes to rescue recombinant VS-FCV SH/2014 (rVS-FCV SH/2014). Third, the rescued viruses were identified by real-time PCR, immunofluorescence assay, western blotting, and electron microscopy. The full-length cDNA molecular clone of the VS-FCV SH/2014 strain was successfully constructed and that rVS-FCV SH/2014 could be rescued efficiently. rVS-FCV SH/2014 had the expected genetic markers and morphology and growth characteristics similar to those of the parental virus. The reverse genetics system provides a research platform for future studies on VS-FCV genetic variation and pathogenesis.
Collapse
Affiliation(s)
- Xiao Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Da Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Aoxing Tang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Miao Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Shiqiang Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Yingqi Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Bo Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Chunchun Meng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Chuanfeng Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Jie Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China.
| | - Guangqing Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China.
| |
Collapse
|
5
|
Akerman A, Fichter C, Milogiannakis V, Esneau C, Silva MR, Ison T, Lopez JA, Naing Z, Caguicla J, Amatayakul-Chantler S, Roth N, Manni S, Hauser T, Barnes T, Boss T, Condylios A, Yeang M, Sato K, Bartlett NN, Darley D, Matthews G, Stark DJ, Promsri S, Rawlinson WD, Murrell B, Kelleher AD, Dwyer D, Sintchenko V, Kok J, Ellis S, Marris K, Knight E, Hoad VC, Irving DO, Gosbell I, Brilot F, Wood J, Aggarwal A, Turville SG. Cross-sectional and longitudinal genotype to phenotype surveillance of SARS-CoV-2 variants over the first four years of the COVID-19 pandemic. EBioMedicine 2024; 110:105415. [PMID: 39549677 PMCID: PMC11599457 DOI: 10.1016/j.ebiom.2024.105415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/25/2024] [Accepted: 10/08/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Continued phenotyping and ongoing molecular epidemiology are important in current and future monitoring of emerging SARS-CoV-2 lineages. Herein we developed pragmatic strategies to track the emergence, spread and phenotype of SARS-CoV-2 variants in Australia in an era of decreasing diagnostic PCR testing and focused cohort-based studies. This was aligned to longitudinal studies that span 4 years of the COVID-19 pandemic. METHODS Throughout 2023, we partnered with diagnostic pathology providers and pathogen genomics teams to identify relevant emerging or circulating variants in the New South Wales (NSW) community. We monitored emerging variants through viral culture, growth algorithms, neutralisation responses and changing entry requirements defined by ACE2 and TMPRSS2 receptor use. To frame this in the context of the pandemic stage, we continued to longitudinally track neutralisation responses at the population level using pooled Intravenous Immunoglobulins (IVIG) derived from in excess of 700,000 donations. FINDINGS In antibodies derived from recent individual donations and thousands of donations pooled in IVIGs, we observed continued neutralisation across prior and emerging variants with EG.5.1, HV.1, XCT and JN.1 ranked as the most evasive SARS-CoV-2 variants. Changes in the type I antibody site at Spike positions 452, 455 and 456 were associated with lowered neutralisation responses in XBB lineages. In longitudinal tracking of population immunity spanning three years, we observed continued maturation of neutralisation breadth to all SARS-CoV-2 variants over time. Whilst neutralisation responses initially displayed high levels of imprinting towards Ancestral and early pre-Omicron lineages, this was slowly countered by increased cross reactive breadth to all variants. We predicted JN.1 to have a marked transmission advantage in late 2023 and this eventuated globally at the start of 2024. We could not attribute this advantage to neutralisation resistance but rather propose that this growth advantage arises from the preferential utilisation of ACE2 pools that cannot engage TMPRSS2 at its Collectrin-Like Domain (CLD). INTERPRETATION The emergence of many SARS-CoV-2 lineages documented at the end of 2023 was found to be initially associated with lowered neutralisation responses. This continued to be countered by the gradual maturation of cross-reactive neutralisation responses over time. The later appearance and dominance of the divergent JN.1 lineage cannot be attributed to a lack of neutralisation responses alone, and our data supports that its dominance is a culmination of both lowered neutralisation and changes in ACE2/TMPRSS2 entry preferences. FUNDING This work was primarily supported by Australian Medical Foundation research grants MRF2005760 (ST, GM & WDR), MRF2001684 (ADK and ST) and Medical Research Future Fund Antiviral Development Call grant (WDR), Medical Research Future Fund COVID-19 grant (MRFF2001684, ADK & SGT) and the New South Wales Health COVID-19 Research Grants Round 2 (SGT).
Collapse
Affiliation(s)
- Anouschka Akerman
- The Kirby Institute, The University of New South Wales, Sydney, New South Wales, Australia
| | - Christina Fichter
- The Kirby Institute, The University of New South Wales, Sydney, New South Wales, Australia
| | - Vanessa Milogiannakis
- The Kirby Institute, The University of New South Wales, Sydney, New South Wales, Australia
| | - Camille Esneau
- Hunter Medical Research Institute, University of Newcastle, Callaghan, Australia
| | - Mariana Ruiz Silva
- The Kirby Institute, The University of New South Wales, Sydney, New South Wales, Australia
| | - Tim Ison
- The Kirby Institute, The University of New South Wales, Sydney, New South Wales, Australia
| | - Joseph A Lopez
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Zin Naing
- Serology and Virology Division (SAViD), NSW HP SEALS, Randwick, Australia
| | - Joanna Caguicla
- Serology and Virology Division (SAViD), NSW HP SEALS, Randwick, Australia
| | | | - Nathan Roth
- Department of Bioanalytical Sciences, Plasma Product Development, Research & Development, CSL Behring AG, Bern, Switzerland
| | - Sandro Manni
- Department of Bioanalytical Sciences, Plasma Product Development, Research & Development, CSL Behring AG, Bern, Switzerland
| | - Thomas Hauser
- Department of Bioanalytical Sciences, Plasma Product Development, Research & Development, CSL Behring AG, Bern, Switzerland
| | - Thomas Barnes
- Department of Bioanalytical Sciences, Plasma Product Development, Research & Development, CSL Behring AG, Bern, Switzerland
| | - Tino Boss
- Department of Bioanalytical Sciences, Plasma Product Development, Research & Development, CSL Behring AG, Bern, Switzerland
| | - Anna Condylios
- Serology and Virology Division (SAViD), NSW HP SEALS, Randwick, Australia
| | - Malinna Yeang
- Serology and Virology Division (SAViD), NSW HP SEALS, Randwick, Australia
| | - Kenta Sato
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Nathan N Bartlett
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - David Darley
- St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Gail Matthews
- The Kirby Institute, The University of New South Wales, Sydney, New South Wales, Australia; St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Damien J Stark
- Molecular Diagnostic Medicine Laboratory, Sydpath, St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Susan Promsri
- Histopath, Pinnacle Office Park, Building B, Level 2/4 Drake Ave, Macquarie Park NSW, 2113, Australia
| | | | - Benjamin Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Anthony D Kelleher
- The Kirby Institute, The University of New South Wales, Sydney, New South Wales, Australia
| | - Dominic Dwyer
- Centre for Infectious Diseases & Microbiology - Public Health and Institute of Clinical Pathology & Medical Research (ICPMR), New South Wales Health Pathology, Westmead, New South Wales, 2145, Australia
| | - Vitali Sintchenko
- Centre for Infectious Diseases & Microbiology - Public Health and Institute of Clinical Pathology & Medical Research (ICPMR), New South Wales Health Pathology, Westmead, New South Wales, 2145, Australia
| | - Jen Kok
- Centre for Infectious Diseases & Microbiology - Public Health and Institute of Clinical Pathology & Medical Research (ICPMR), New South Wales Health Pathology, Westmead, New South Wales, 2145, Australia
| | - Sally Ellis
- New South Wales Ministry of Health, St Leonards, Australia
| | - Kelsi Marris
- New South Wales Ministry of Health, St Leonards, Australia
| | | | - Veronic C Hoad
- Australian Red Cross Lifeblood, Melbourne, Victoria, Australia
| | - David O Irving
- Australian Red Cross Lifeblood, Melbourne, Victoria, Australia
| | - Iain Gosbell
- Australian Red Cross Lifeblood, Melbourne, Victoria, Australia
| | - Fabienne Brilot
- Brain Autoimmunity Group, Kids Neuroscience Centre, Kids Research at the Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - James Wood
- School of Population Health, UNSW Sydney, Kensington, New South Wales, 2052, Australia
| | - Anupriya Aggarwal
- The Kirby Institute, The University of New South Wales, Sydney, New South Wales, Australia
| | - Stuart G Turville
- The Kirby Institute, The University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
6
|
Yan K, Dumenil T, Stewart R, Bishop CR, Tang B, Nguyen W, Suhrbier A, Rawle DJ. TMEM106B-mediated SARS-CoV-2 infection allows for robust ACE2-independent infection in vitro but not in vivo. Cell Rep 2024; 43:114921. [PMID: 39480813 DOI: 10.1016/j.celrep.2024.114921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/17/2024] [Accepted: 10/14/2024] [Indexed: 11/02/2024] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) is the primary entry receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but ACE2-independent entry has been observed in vitro for strains with the spike-E484D substitution. Here, we conduct a whole-genome CRISPR-Cas9 knockout screen using SARS-CoV-2 mouse adapted 1 (SARS-CoV-2MA1), which carries spike-E484D, to identify the ACE2-independent entry mechanisms. SARS-CoV-2MA1 infection in HEK293T cells relies on heparan sulfate and endocytic pathways, with TMEM106B, a transmembrane lysosomal protein, the most significant contributor. While SARS-CoV-2MA1 productively infects human brain organoids and K18-hACE2 mouse brains, it does not infect C57BL/6J or Ifnar-/- mouse brains. This suggests that ACE2-independent entry via TMEM106B, which is predominantly expressed in the brain, does not overtly increase the risk of SARS-CoV-2 neuroinvasiveness in mice with endogenous Ace2 expression. Importantly, SARS-CoV-2MA1 does not replicate in the Ace2-/- mouse respiratory tract. Overall, this suggests that robust ACE2-independent infection by SARS-CoV-2MA1 is likely an in vitro phenomenon with no apparent implications for infection in vivo.
Collapse
Affiliation(s)
- Kexin Yan
- Infection and Inflammation Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Troy Dumenil
- Infection and Inflammation Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Romal Stewart
- Infection and Inflammation Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Cameron R Bishop
- Infection and Inflammation Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Bing Tang
- Infection and Inflammation Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Wilson Nguyen
- Infection and Inflammation Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Andreas Suhrbier
- Infection and Inflammation Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia; Australian Infectious Disease Research Centre, GVN Center of Excellence, Brisbane, QLD, Australia
| | - Daniel J Rawle
- Infection and Inflammation Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia.
| |
Collapse
|
7
|
Carolin A, Yan K, Bishop CR, Tang B, Nguyen W, Rawle DJ, Suhrbier A. Tracking inflammation resolution signatures in lungs after SARS-CoV-2 omicron BA.1 infection of K18-hACE2 mice. PLoS One 2024; 19:e0302344. [PMID: 39531435 PMCID: PMC11556745 DOI: 10.1371/journal.pone.0302344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes Coronavirus Disease 2019 (COVID-19), which can result in severe disease, often characterised by a 'cytokine storm' and the associated acute respiratory distress syndrome. However, many infections with SARS-CoV-2 are mild or asymptomatic throughout the course of infection. Although blood biomarkers of severe disease are well studied, less well understood are the inflammatory signatures in lung tissues associated with mild disease or silent infections, wherein infection and inflammation are rapidly resolved leading to sequelae-free recovery. Herein we described RNA-Seq and histological analyses of lungs over time in an omicron BA.1/K18-hACE2 mouse infection model, which displays these latter features. Although robust infection was evident at 2 days post infection (dpi), viral RNA was largely cleared by 10 dpi. Acute inflammatory signatures showed a slightly different pattern of cytokine signatures compared with severe infection models, and where much diminished 30 dpi and absent by 66 dpi. Cellular deconvolution identified significantly increased abundance scores for a number of anti-inflammatory pro-resolution cell types at 5/10 dpi. These included type II innate lymphoid cells, T regulatory cells, and interstitial macrophages. Genes whose expression trended downwards over 2-66 dpi included biomarkers of severe disease and were associated with 'cytokine storm' pathways. Genes whose expression trended upward during this period were associated with recovery of ciliated cells, AT2 to AT1 transition, reticular fibroblasts and innate lymphoid cells, indicating a return to homeostasis. Very few differentially expressed host genes were identified at 66 dpi, suggesting near complete recovery. The parallels between mild or subclinical infections in humans and those observed in this BA.1/K18-hACE2 mouse model are discussed with reference to the concept of "protective inflammation".
Collapse
Affiliation(s)
- Agnes Carolin
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Kexin Yan
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Cameron R. Bishop
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Bing Tang
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Wilson Nguyen
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Daniel J. Rawle
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- GVN Centre of Excellence, Australian Infectious Disease Research Centre, Brisbane, Queensland, Australia
| |
Collapse
|
8
|
Mengist HM, Denman P, Frost C, Sng JDJ, Logan S, Yarlagadda T, Spann KM, Barner L, Fairfull-Smith KE, Short KR, Boase NR. High-Throughput Synthesis and Evaluation of Antiviral Copolymers for Enveloped Respiratory Viruses. Biomacromolecules 2024; 25:7377-7391. [PMID: 39367828 DOI: 10.1021/acs.biomac.4c01049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
COVID-19 made apparent the devastating impact viral pandemics have had on global health and order. Development of broad-spectrum antivirals to provide early protection upon the inevitable emergence of new viral pandemics is critical. In this work, antiviral polymers are discovered using a combination of high-throughput polymer synthesis and antiviral screening, enabling diverse polymer compositions to be explored. Amphipathic polymers, with ionizable tertiary amine groups, are the most potent antivirals, effective against influenza virus and SARS-CoV-2, with minimal cytotoxicity. It is hypothesized that these polymers interact with the viral membrane as they showed no activity against a nonenveloped virus (rhinovirus). The switchable chemistry of the polymers during endosomal acidification was evaluated using lipid monolayers, indicating that a complex synergy between hydrophobicity and ionization drives polymer-membrane interactions. This new high-throughput methodology can be adapted to continue to engineer the potency of the lead candidates or develop antiviral polymers against other emerging viral classes.
Collapse
Affiliation(s)
| | - Paul Denman
- Centre for Materials Science, Queensland University of Technology, Brisbane 4000, Australia
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4000, Australia
| | - Charlotte Frost
- Centre for Materials Science, Queensland University of Technology, Brisbane 4000, Australia
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4000, Australia
| | - Julian D J Sng
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Saskia Logan
- Centre for Materials Science, Queensland University of Technology, Brisbane 4000, Australia
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4000, Australia
| | - Tejasri Yarlagadda
- Centre for Immunology and Infection Control, Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane 4000, Australia
| | - Kirsten M Spann
- Centre for Immunology and Infection Control, Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane 4000, Australia
| | - Leonie Barner
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4000, Australia
| | - Kathryn E Fairfull-Smith
- Centre for Materials Science, Queensland University of Technology, Brisbane 4000, Australia
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4000, Australia
| | - Kirsty R Short
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Nathan Rb Boase
- Centre for Materials Science, Queensland University of Technology, Brisbane 4000, Australia
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4000, Australia
| |
Collapse
|
9
|
Moles CM, Basu R, Weijmarshausen P, Ho B, Farhat M, Flaat T, Smith BF. Leveraging Synthetic Virology for the Rapid Engineering of Vesicular Stomatitis Virus (VSV). Viruses 2024; 16:1641. [PMID: 39459973 PMCID: PMC11512388 DOI: 10.3390/v16101641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Vesicular stomatitis virus (VSV) is a prototype RNA virus that has been instrumental in advancing our understanding of viral molecular biology and has applications in vaccine development, cancer therapy, antiviral screening, and more. Current VSV genome plasmids for purchase or contract virus services provide limited options for modification, restricted to predefined cloning sites and insert locations. Improved methods and tools to engineer VSV will unlock further insights into long-standing virology questions and new opportunities for innovative therapies. Here, we report the design and construction of a full-length VSV genome. The 11,161 base pair synthetic VSV (synVSV) was assembled from four modularized DNA fragments. Following rescue and titration, phenotypic analysis showed no significant differences between natural and synthetic viruses. To demonstrate the utility of a synthetic virology platform, we then engineered VSV with a foreign glycoprotein, a common use case for studying viral entry and developing anti-virals. To show the freedom of design afforded by this platform, we then modified the genome of VSV by rearranging the gene order, switching the positions of VSV-P and VSV-M genes. This work represents a significant technical advance, providing a flexible, cost-efficient platform for the rapid construction of VSV genomes, facilitating the development of innovative therapies.
Collapse
Affiliation(s)
- Chad M. Moles
- Humane Genomics, New York, NY 10014, USA; (R.B.); (P.W.); (B.H.); (M.F.); (T.F.)
| | - Rupsa Basu
- Humane Genomics, New York, NY 10014, USA; (R.B.); (P.W.); (B.H.); (M.F.); (T.F.)
| | - Peter Weijmarshausen
- Humane Genomics, New York, NY 10014, USA; (R.B.); (P.W.); (B.H.); (M.F.); (T.F.)
| | - Brenda Ho
- Humane Genomics, New York, NY 10014, USA; (R.B.); (P.W.); (B.H.); (M.F.); (T.F.)
| | - Manal Farhat
- Humane Genomics, New York, NY 10014, USA; (R.B.); (P.W.); (B.H.); (M.F.); (T.F.)
| | - Taylor Flaat
- Humane Genomics, New York, NY 10014, USA; (R.B.); (P.W.); (B.H.); (M.F.); (T.F.)
| | - Bruce F. Smith
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA;
| |
Collapse
|
10
|
Waqas M, Ullah S, Ullah A, Halim SA, Rehman NU, Khalid A, Ali A, Khan A, Gibbons S, Csuk R, Al-Harrasi A. Disrupting protease and deubiquitinase activities of SARS-CoV-2 papain-like protease by natural and synthetic products discovered through multiple computational and biochemical approaches. Int J Biol Macromol 2024; 277:134476. [PMID: 39111477 DOI: 10.1016/j.ijbiomac.2024.134476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
The single-stranded RNA genome of SARS-CoV-2 encodes several structural and non-structural proteins, among which the papain-like protease (PLpro) is crucial for viral replication and immune evasion and has emerged as a promising therapeutic target. The current study aims to discover new inhibitors of PLpro that can simultaneously disrupt its protease and deubiquitinase activities. Using multiple computational approaches, six compounds (CP1-CP6) were selected from our in-house compounds database, with higher docking scores (-7.97 kcal/mol to -8.14 kcal/mol) and fitted well in the active pocket of PLpro. Furthermore, utilizing microscale molecular dynamics simulations (MD), the dynamic behavior of selected compounds was studied. Those molecules strongly binds at the PLpro active site and forms stable complexes. The dynamic motions suggest that the binding of CP1-CP6 brought the protein to a closed conformational state, thereby altering its normal function. In an in vitro evaluation, CP2 showed the most significant inhibitory potential for PLpro (protease activity = 2.71 ± 0.33 μM and deubiquitinase activity = 3.11 ± 0.75 μM), followed by CP1, CP5, CP4 and CP6. Additionally, CP1-CP6 showed no cytotoxicity at a concentration of 30 μM in the human BJ cell line.
Collapse
Affiliation(s)
- Muhammad Waqas
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra 2100, Pakistan
| | - Saeed Ullah
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Sultanate of Oman
| | - Atta Ullah
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Sultanate of Oman
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Sultanate of Oman
| | - Najeeb Ur Rehman
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Sultanate of Oman
| | - Asaad Khalid
- Health Research Center, Jazan University, P.O. Box: 114, Jazan 45142, Saudi Arabia
| | - Amjad Ali
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra 2100, Pakistan.
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Sultanate of Oman.
| | - Simon Gibbons
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Sultanate of Oman
| | - Rene Csuk
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Sultanate of Oman.
| |
Collapse
|
11
|
Burton TD, Carrera Montoya J, Frota T, Mackenzie JM. Human norovirus cultivation models, immune response and vaccine landscape. Adv Virus Res 2024; 120:1-37. [PMID: 39455167 DOI: 10.1016/bs.aivir.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Norovirus infections are a leading cause of gastroenteritis worldwide. Despite the substantial global health burden and economic impact, there are currently no approved antiviral therapeutics or vaccines. Additionally, much of our knowledge of norovirus comes from experiments using surrogate viruses, such as murine norovirus and feline calicivirus. The challenge surrounding human norovirus research arises from a lack of robust cell culture systems and efficient animal models. In this review, we explore recent advances in the in vitro cultivation of human norovirus and reverse genetics systems and discuss commonly used in vivo models. We summarize the current understanding of both innate and adaptive immune responses to norovirus infection and provide an overview of vaccine strategies and the current clinical trial landscape, with a focus on the only vaccine candidate that has reached phase III clinical development stage.
Collapse
Affiliation(s)
- Thomas D Burton
- Department of Microbiology and Immunology, University of Melbourne, within the Peter Doherty Institute for Infection and Immunity, Parkville, Melbourne, VIC, Australia
| | - Julio Carrera Montoya
- Department of Microbiology and Immunology, University of Melbourne, within the Peter Doherty Institute for Infection and Immunity, Parkville, Melbourne, VIC, Australia
| | - Thalia Frota
- Department of Microbiology and Immunology, University of Melbourne, within the Peter Doherty Institute for Infection and Immunity, Parkville, Melbourne, VIC, Australia
| | - Jason M Mackenzie
- Department of Microbiology and Immunology, University of Melbourne, within the Peter Doherty Institute for Infection and Immunity, Parkville, Melbourne, VIC, Australia.
| |
Collapse
|
12
|
Carolin A, Frazer D, Yan K, Bishop CR, Tang B, Nguyen W, Helman SL, Horvat J, Larcher T, Rawle DJ, Suhrbier A. The effects of iron deficient and high iron diets on SARS-CoV-2 lung infection and disease. Front Microbiol 2024; 15:1441495. [PMID: 39296289 PMCID: PMC11408339 DOI: 10.3389/fmicb.2024.1441495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/22/2024] [Indexed: 09/21/2024] Open
Abstract
Introduction The severity of Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is often dictated by a range of comorbidities. A considerable literature suggests iron deficiency and iron overload may contribute to increased infection, inflammation and disease severity, although direct causal relationships have been difficult to establish. Methods Here we generate iron deficient and iron loaded C57BL/6 J mice by feeding standard low and high iron diets, with mice on a normal iron diet representing controls. All mice were infected with a primary SARS-CoV-2 omicron XBB isolate and lung inflammatory responses were analyzed by histology, immunohistochemistry and RNA-Seq. Results Compared with controls, iron deficient mice showed no significant changes in lung viral loads or histopathology, whereas, iron loaded mice showed slightly, but significantly, reduced lung viral loads and histopathology. Transcriptional changes were modest, but illustrated widespread dysregulation of inflammation signatures for both iron deficient vs. controls, and iron loaded vs. controls. Some of these changes could be associated with detrimental outcomes, whereas others would be viewed as beneficial. Discussion Diet-associated iron deficiency or overload thus induced modest modulations of inflammatory signatures, but no significant histopathologically detectable disease exacerbations.
Collapse
Affiliation(s)
- Agnes Carolin
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - David Frazer
- Molecular Nutrition, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Kexin Yan
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Cameron R Bishop
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Bing Tang
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Wilson Nguyen
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Sheridan L Helman
- Molecular Nutrition, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jay Horvat
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW, Australia
| | | | - Daniel J Rawle
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Andreas Suhrbier
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- GVN Centre of Excellence, Australian Infectious Disease Research Centre, Brisbane, QLD, Australia
| |
Collapse
|
13
|
Ullah I, Symmes K, Keita K, Zhu L, Grunst MW, Li W, Mothes W, Kumar P, Uchil PD. Beta Spike-Presenting SARS-CoV-2 Virus-like Particle Vaccine Confers Broad Protection against Other VOCs in Mice. Vaccines (Basel) 2024; 12:1007. [PMID: 39340037 PMCID: PMC11435481 DOI: 10.3390/vaccines12091007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Virus-like particles (VLPs) are non-infectious and serve as promising vaccine platforms because they mimic the membrane-embedded conformations of fusion glycoproteins on native viruses. Here, we employed SARS-CoV-2 VLPs (SMEN) presenting ancestral, Beta, or Omicron spikes to identify the variant spike that elicits potent and cross-protective immune responses in the highly sensitive K18-hACE2 challenge mouse model. A combined intranasal and intramuscular SMEN vaccine regimen generated the most effective immune responses to significantly reduce disease burden. Protection was primarily mediated by antibodies, with minor but distinct contributions from T cells in reducing virus spread and inflammation. Immunization with SMEN carrying ancestral spike resulted in 100, 75, or 0% protection against ancestral, Delta, or Beta variant-induced mortality, respectively. However, SMEN with an Omicron spike provided only limited protection against ancestral (50%), Delta (0%), and Beta (25%) challenges. By contrast, SMEN with Beta spikes offered 100% protection against the variants used in this study. Thus, the Beta variant not only overcame the immunity produced by other variants, but the Beta spike also elicited diverse and effective humoral immune responses. Our findings suggest that leveraging the Beta variant spike protein can enhance SARS-CoV-2 immunity, potentially leading to a more comprehensive vaccine against emerging variants.
Collapse
Affiliation(s)
- Irfan Ullah
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; (I.U.); (K.S.); (L.Z.); (P.K.)
| | - Kelly Symmes
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; (I.U.); (K.S.); (L.Z.); (P.K.)
| | - Kadiatou Keita
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA; (K.K.); (M.W.G.); (W.L.); (W.M.)
| | - Li Zhu
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; (I.U.); (K.S.); (L.Z.); (P.K.)
| | - Michael W. Grunst
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA; (K.K.); (M.W.G.); (W.L.); (W.M.)
| | - Wenwei Li
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA; (K.K.); (M.W.G.); (W.L.); (W.M.)
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA; (K.K.); (M.W.G.); (W.L.); (W.M.)
| | - Priti Kumar
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; (I.U.); (K.S.); (L.Z.); (P.K.)
| | - Pradeep D. Uchil
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA; (K.K.); (M.W.G.); (W.L.); (W.M.)
| |
Collapse
|
14
|
Hick TAH, Geertsema C, Nguyen W, Bishop CR, van Oosten L, Abbo SR, Dumenil T, van Kuppeveld FJM, Langereis MA, Rawle DJ, Tang B, Yan K, van Oers MM, Suhrbier A, Pijlman GP. Safety concern of recombination between self-amplifying mRNA vaccines and viruses is mitigated in vivo. Mol Ther 2024; 32:2519-2534. [PMID: 38894543 PMCID: PMC11405153 DOI: 10.1016/j.ymthe.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/02/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024] Open
Abstract
Self-amplifying mRNA (SAM) vaccines can be rapidly deployed in the event of disease outbreaks. A legitimate safety concern is the potential for recombination between alphavirus-based SAM vaccines and circulating viruses. This theoretical risk needs to be assessed in the regulatory process for SAM vaccine approval. Herein, we undertake extensive in vitro and in vivo assessments to explore recombination between SAM vaccine and a wide selection of alphaviruses and a coronavirus. SAM vaccines were found to effectively limit alphavirus co-infection through superinfection exclusion, although some co-replication was still possible. Using sensitive cell-based assays, replication-competent alphavirus chimeras were generated in vitro as a result of rare, but reproducible, RNA recombination events. The chimeras displayed no increased fitness in cell culture. Viable alphavirus chimeras were not detected in vivo in C57BL/6J, Rag1-/- and Ifnar-/- mice, in which high levels of SAM vaccine and alphavirus co-replicated in the same tissue. Furthermore, recombination between a SAM-spike vaccine and a swine coronavirus was not observed. In conclusion we state that although the ability of SAM vaccines to recombine with alphaviruses might be viewed as an environmental safety concern, several key factors substantially mitigate against in vivo emergence of chimeric viruses from SAM vaccine recipients.
Collapse
Affiliation(s)
- Tessy A H Hick
- Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands
| | - Corinne Geertsema
- Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands
| | - Wilson Nguyen
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Cameron R Bishop
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Linda van Oosten
- Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands
| | - Sandra R Abbo
- Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands
| | - Troy Dumenil
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Frank J M van Kuppeveld
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, the Netherlands
| | - Martijn A Langereis
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, the Netherlands
| | - Daniel J Rawle
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Bing Tang
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Kexin Yan
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
| | - Monique M van Oers
- Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands
| | - Andreas Suhrbier
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia; Global Virus Network Centre of Excellence, Australian Infectious Diseases Research Centre, Brisbane, QLD 4072 and 4029, Australia.
| | - Gorben P Pijlman
- Laboratory of Virology, Wageningen University and Research, Wageningen, the Netherlands.
| |
Collapse
|
15
|
Bilotti K, Keep S, Sikkema AP, Pryor JM, Kirk J, Foldes K, Doyle N, Wu G, Freimanis G, Dowgier G, Adeyemi O, Tabatabaei SK, Lohman GJS, Bickerton E. One-pot Golden Gate Assembly of an avian infectious bronchitis virus reverse genetics system. PLoS One 2024; 19:e0307655. [PMID: 39052682 PMCID: PMC11271894 DOI: 10.1371/journal.pone.0307655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024] Open
Abstract
Avian infectious bronchitis is an acute respiratory disease of poultry of particular concern for global food security. Investigation of infectious bronchitis virus (IBV), the causative agent of avian infectious bronchitis, via reverse genetics enables deeper understanding of virus biology and a rapid response to emerging variants. Classic methods of reverse genetics for IBV can be time consuming, rely on recombination for the introduction of mutations, and, depending on the system, can be subject to genome instability and unreliable success rates. In this study, we have applied data-optimized Golden Gate Assembly design to create a rapidly executable, flexible, and faithful reverse genetics system for IBV. The IBV genome was divided into 12 fragments at high-fidelity fusion site breakpoints. All fragments were synthetically produced and propagated in E. coli plasmids, amenable to standard molecular biology techniques for DNA manipulation. The assembly can be carried out in a single reaction, with the products used directly in subsequent viral rescue steps. We demonstrate the use of this system for generation of point mutants and gene replacements. This Golden Gate Assembly-based reverse genetics system will enable rapid response to emerging variants of IBV, particularly important to vaccine development for controlling spread within poultry populations.
Collapse
Affiliation(s)
- Katharina Bilotti
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Sarah Keep
- The Pirbright Institute, Woking, United Kingdom
| | - Andrew P. Sikkema
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - John M. Pryor
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - James Kirk
- The Pirbright Institute, Woking, United Kingdom
| | | | | | - Ge Wu
- The Pirbright Institute, Woking, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
16
|
Hu Z, López-Muñoz AD, Kosik I, Li T, Callahan V, Brooks K, Yee DS, Holly J, Santos JJS, Castro Brant A, Johnson RF, Takeda K, Zheng ZM, Brenchley JM, Yewdell JW, Fox JM. Recombinant OC43 SARS-CoV-2 spike replacement virus: An improved BSL-2 proxy virus for SARS-CoV-2 neutralization assays. Proc Natl Acad Sci U S A 2024; 121:e2310421121. [PMID: 38976733 PMCID: PMC11260102 DOI: 10.1073/pnas.2310421121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 05/24/2024] [Indexed: 07/10/2024] Open
Abstract
We generated a replication-competent OC43 human seasonal coronavirus (CoV) expressing the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike in place of the native spike (rOC43-CoV2 S). This virus is highly attenuated relative to OC43 and SARS-CoV-2 in cultured cells and animals and is classified as a biosafety level 2 (BSL-2) agent by the NIH biosafety committee. Neutralization of rOC43-CoV2 S and SARS-CoV-2 by S-specific monoclonal antibodies and human sera is highly correlated, unlike recombinant vesicular stomatitis virus-CoV2 S. Single-dose immunization with rOC43-CoV2 S generates high levels of neutralizing antibodies against SARS-CoV-2 and fully protects human ACE2 transgenic mice from SARS-CoV-2 lethal challenge, despite nondetectable replication in respiratory and nonrespiratory organs. rOC43-CoV2 S induces S-specific serum and airway mucosal immunoglobulin A and IgG responses in rhesus macaques. rOC43-CoV2 S has enormous value as a BSL-2 agent to measure S-specific antibodies in the context of a bona fide CoV and is a candidate live attenuated SARS-CoV-2 mucosal vaccine that preferentially replicates in the upper airway.
Collapse
Affiliation(s)
- Zhe Hu
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Alberto Domingo López-Muñoz
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Ivan Kosik
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Tiansheng Li
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Victoria Callahan
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Kelsie Brooks
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Debra S. Yee
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Jaroslav Holly
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Jefferson J. S. Santos
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Ayslan Castro Brant
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, National Cancer Institute, NIH, Frederick, MD21702
| | - Reed F. Johnson
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Kazuyo Takeda
- Microscopy and Imaging Core Facility, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, National Cancer Institute, NIH, Frederick, MD21702
| | - Jason M. Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Jonathan W. Yewdell
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Julie M. Fox
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| |
Collapse
|
17
|
Álvarez ÁL, Arboleya A, Abade dos Santos FA, García-Manso A, Nicieza I, Dalton KP, Parra F, Martín-Alonso JM. Highs and Lows in Calicivirus Reverse Genetics. Viruses 2024; 16:866. [PMID: 38932159 PMCID: PMC11209508 DOI: 10.3390/v16060866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
In virology, the term reverse genetics refers to a set of methodologies in which changes are introduced into the viral genome and their effects on the generation of infectious viral progeny and their phenotypic features are assessed. Reverse genetics emerged thanks to advances in recombinant DNA technology, which made the isolation, cloning, and modification of genes through mutagenesis possible. Most virus reverse genetics studies depend on our capacity to rescue an infectious wild-type virus progeny from cell cultures transfected with an "infectious clone". This infectious clone generally consists of a circular DNA plasmid containing a functional copy of the full-length viral genome, under the control of an appropriate polymerase promoter. For most DNA viruses, reverse genetics systems are very straightforward since DNA virus genomes are relatively easy to handle and modify and are also (with few notable exceptions) infectious per se. This is not true for RNA viruses, whose genomes need to be reverse-transcribed into cDNA before any modification can be performed. Establishing reverse genetics systems for members of the Caliciviridae has proven exceptionally challenging due to the low number of members of this family that propagate in cell culture. Despite the early successful rescue of calicivirus from a genome-length cDNA more than two decades ago, reverse genetics methods are not routine procedures that can be easily extrapolated to other members of the family. Reports of calicivirus reverse genetics systems have been few and far between. In this review, we discuss the main pitfalls, failures, and delays behind the generation of several successful calicivirus infectious clones.
Collapse
Affiliation(s)
- Ángel L. Álvarez
- Instituto Universitario de Biotecnología de Asturias (IUBA), Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Aroa Arboleya
- Instituto Universitario de Biotecnología de Asturias (IUBA), Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Fábio A. Abade dos Santos
- Instituto Universitario de Biotecnología de Asturias (IUBA), Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Spain
- Instituto Nacional de Investigação Agrária e Veterinária, 2780-157 Oeiras, Portugal
| | - Alberto García-Manso
- Instituto Universitario de Biotecnología de Asturias (IUBA), Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Inés Nicieza
- Instituto Universitario de Biotecnología de Asturias (IUBA), Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Kevin P. Dalton
- Instituto Universitario de Biotecnología de Asturias (IUBA), Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Francisco Parra
- Instituto Universitario de Biotecnología de Asturias (IUBA), Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Spain
| | - José M. Martín-Alonso
- Instituto Universitario de Biotecnología de Asturias (IUBA), Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
18
|
Yu R, Dong S, Chen B, Si F, Li C. Developing Next-Generation Live Attenuated Vaccines for Porcine Epidemic Diarrhea Using Reverse Genetic Techniques. Vaccines (Basel) 2024; 12:557. [PMID: 38793808 PMCID: PMC11125984 DOI: 10.3390/vaccines12050557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is the etiology of porcine epidemic diarrhea (PED), a highly contagious digestive disease in pigs and especially in neonatal piglets, in which a mortality rate of up to 100% will be induced. Immunizing pregnant sows remains the most promising and effective strategy for protecting their neonatal offspring from PEDV. Although half a century has passed since its first report in Europe and several prophylactic vaccines (inactivated or live attenuated) have been developed, PED still poses a significant economic concern to the swine industry worldwide. Hence, there is an urgent need for novel vaccines in clinical practice, especially live attenuated vaccines (LAVs) that can induce a strong protective lactogenic immune response in pregnant sows. Reverse genetic techniques provide a robust tool for virological research from the function of viral proteins to the generation of rationally designed vaccines. In this review, after systematically summarizing the research progress on virulence-related viral proteins, we reviewed reverse genetics techniques for PEDV and their application in the development of PED LAVs. Then, we probed into the potential methods for generating safe, effective, and genetically stable PED LAV candidates, aiming to provide new ideas for the rational design of PED LAVs.
Collapse
Affiliation(s)
| | | | | | - Fusheng Si
- Institute of Animal Husbandry and Veterinary Medicine, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201106, China; (R.Y.); (S.D.); (B.C.)
| | - Chunhua Li
- Institute of Animal Husbandry and Veterinary Medicine, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai 201106, China; (R.Y.); (S.D.); (B.C.)
| |
Collapse
|
19
|
Bishop CR, Yan K, Nguyen W, Rawle DJ, Tang B, Larcher T, Suhrbier A. Microplastics dysregulate innate immunity in the SARS-CoV-2 infected lung. Front Immunol 2024; 15:1382655. [PMID: 38803494 PMCID: PMC11128561 DOI: 10.3389/fimmu.2024.1382655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/24/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction Global microplastic (MP) pollution is now well recognized, with humans and animals consuming and inhaling MPs on a daily basis, with a growing body of concern surrounding the potential impacts on human health. Methods Using a mouse model of mild COVID-19, we describe herein the effects of azide-free 1 μm polystyrene MP beads, co-delivered into lungs with a SARS-CoV-2 omicron BA.5 inoculum. The effect of MPs on the host response to SARS-CoV-2 infection was analysed using histopathology and RNA-Seq at 2 and 6 days post-infection (dpi). Results Although infection reduced clearance of MPs from the lung, virus titres and viral RNA levels were not significantly affected by MPs, and overt MP-associated clinical or histopathological changes were not observed. However, RNA-Seq of infected lungs revealed that MP exposure suppressed innate immune responses at 2 dpi and increased pro-inflammatory signatures at 6 dpi. The cytokine profile at 6 dpi showed a significant correlation with the 'cytokine release syndrome' signature observed in some COVID-19 patients. Discussion The findings are consistent with the recent finding that MPs can inhibit phagocytosis of apoptotic cells via binding of Tim4. They also add to a growing body of literature suggesting that MPs can dysregulate inflammatory processes in specific disease settings.
Collapse
Affiliation(s)
- Cameron R. Bishop
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Kexin Yan
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Wilson Nguyen
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Daniel J. Rawle
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Bing Tang
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Thibaut Larcher
- Institut National de Recherche Agronomique, Unité Mixte de Recherche, Oniris, Nantes, France
| | - Andreas Suhrbier
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Australian Infectious Disease Research Centre, Global Virus Network (GVN) Center of Excellence, Brisbane, QLD, Australia
| |
Collapse
|
20
|
Wang LL, Cheng Q, Newton ND, Wolfinger MT, Morgan MS, Slonchak A, Khromykh AA, Cheng TY, Parry RH. Xinyang flavivirus, from Haemaphysalis flava ticks in Henan Province, China, defines a basal, likely tick-only Orthoflavivirus clade. J Gen Virol 2024; 105:001991. [PMID: 38809251 PMCID: PMC11165663 DOI: 10.1099/jgv.0.001991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/08/2024] [Indexed: 05/30/2024] Open
Abstract
Tick-borne orthoflaviviruses (TBFs) are classified into three conventional groups based on genetics and ecology: mammalian, seabird and probable-TBF group. Recently, a fourth basal group has been identified in Rhipicephalus ticks from Africa: Mpulungu flavivirus (MPFV) in Zambia and Ngoye virus (NGOV) in Senegal. Despite attempts, isolating these viruses in vertebrate and invertebrate cell lines or intracerebral injection of newborn mice with virus-containing homogenates has remained unsuccessful. In this study, we report the discovery of Xinyang flavivirus (XiFV) in Haemaphysalis flava ticks from Xìnyáng, Henan Province, China. Phylogenetic analysis shows that XiFV was most closely related to MPFV and NGOV, marking the first identification of this tick orthoflavivirus group in Asia. We developed a reverse transcriptase quantitative PCR assay to screen wild-collected ticks and egg clutches, with absolute infection rates of 20.75 % in adult females and 15.19 % in egg clutches, suggesting that XiFV could be potentially spread through transovarial transmission. To examine potential host range, dinucleotide composition analyses revealed that XiFV, MPFV and NGOV share a closer composition to classical insect-specific orthoflaviviruses than to vertebrate-infecting TBFs, suggesting that XiFV could be a tick-only orthoflavivirus. Additionally, both XiFV and MPFV lack a furin cleavage site in the prM protein, unlike other TBFs, suggesting these viruses might exist towards a biased immature particle state. To examine this, chimeric Binjari virus with XIFV-prME (bXiFV) was generated, purified and analysed by SDS-PAGE and negative-stain transmission electron microscopy, suggesting prototypical orthoflavivirus size (~50 nm) and bias towards uncleaved prM. In silico structural analyses of the 3'-untranslated regions show that XiFV forms up to five pseudo-knot-containing stem-loops and a prototypical orthoflavivirus dumbbell element, suggesting the potential for multiple exoribonuclease-resistant RNA structures.
Collapse
Affiliation(s)
- Lan-Lan Wang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, PR China
| | - Qia Cheng
- Children’s Medical Center, Hunan Provincial People’s Hospital, Changsha, PR China
| | - Natalee D. Newton
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Michael T. Wolfinger
- Department of Theoretical Chemistry, University of Vienna, Vienna, Austria
- Research Group Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Vienna, Austria
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany
- RNA Forecast e.U., Vienna, Austria
| | - Mahali S. Morgan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Andrii Slonchak
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Alexander A. Khromykh
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
- GVN Center of Excellence, Australian Infectious Diseases Research Centre, Brisbane, QLD, Australia
| | - Tian-Yin Cheng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, PR China
| | - Rhys H. Parry
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
21
|
Wu G, Li Q, Dai J, Mao G, Ma Y. Design and Application of Biosafe Coronavirus Engineering Systems without Virulence. Viruses 2024; 16:659. [PMID: 38793541 PMCID: PMC11126016 DOI: 10.3390/v16050659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 05/26/2024] Open
Abstract
In the last twenty years, three deadly zoonotic coronaviruses (CoVs)-namely, severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2-have emerged. They are considered highly pathogenic for humans, particularly SARS-CoV-2, which caused the 2019 CoV disease pandemic (COVID-19), endangering the lives and health of people globally and causing unpredictable economic losses. Experiments on wild-type viruses require biosafety level 3 or 4 laboratories (BSL-3 or BSL-4), which significantly hinders basic virological research. Therefore, the development of various biosafe CoV systems without virulence is urgently needed to meet the requirements of different research fields, such as antiviral and vaccine evaluation. This review aimed to comprehensively summarize the biosafety of CoV engineering systems. These systems combine virological foundations with synthetic genomics techniques, enabling the development of efficient tools for attenuated or non-virulent vaccines, the screening of antiviral drugs, and the investigation of the pathogenic mechanisms of novel microorganisms.
Collapse
Affiliation(s)
- Guoqiang Wu
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (G.W.); (Q.L.); (J.D.)
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR 999078, China
| | - Qiaoyu Li
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (G.W.); (Q.L.); (J.D.)
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Junbiao Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (G.W.); (Q.L.); (J.D.)
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Guobin Mao
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (G.W.); (Q.L.); (J.D.)
| | - Yingxin Ma
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (G.W.); (Q.L.); (J.D.)
| |
Collapse
|
22
|
Tamura T, Yamamoto H, Ogino S, Morioka Y, Tsujino S, Suzuki R, Hiono T, Suzuki S, Isoda N, Sakoda Y, Fukuhara T. A rapid and versatile reverse genetics approach for generating recombinant positive-strand RNA viruses that use IRES-mediated translation. J Virol 2024; 98:e0163823. [PMID: 38353536 PMCID: PMC10949505 DOI: 10.1128/jvi.01638-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/24/2024] [Indexed: 03/20/2024] Open
Abstract
Reverse genetics systems have played a central role in developing recombinant viruses for a wide spectrum of virus research. The circular polymerase extension reaction (CPER) method has been applied to studying positive-strand RNA viruses, allowing researchers to bypass molecular cloning of viral cDNA clones and thus leading to the rapid generation of recombinant viruses. However, thus far, the CPER protocol has only been established using cap-dependent RNA viruses. Here, we demonstrate that a modified version of the CPER method can be successfully applied to positive-strand RNA viruses that use cap-independent, internal ribosomal entry site (IRES)-mediated translation. As a proof-of-concept, we employed mammalian viruses with different types (classes I, II, and III) of IRES to optimize the CPER method. Using the hepatitis C virus (HCV, class III), we found that inclusion in the CPER assembly of an RNA polymerase I promoter and terminator, instead of those from polymerase II, allowed greater viral production. This approach was also successful in generating recombinant bovine viral diarrhea virus (class III) following transfection of MDBK/293T co-cultures to overcome low transfection efficiency. In addition, we successfully generated the recombinant viruses from clinical specimens. Our modified CPER could be used for producing hepatitis A virus (HAV, type I) as well as de novo generation of encephalomyocarditis virus (type II). Finally, we generated recombinant HCV and HAV reporter viruses that exhibited replication comparable to that of the wild-type parental viruses. The recombinant HAV reporter virus helped evaluate antivirals. Taking the findings together, this study offers methodological advances in virology. IMPORTANCE The lack of versatility of reverse genetics systems remains a bottleneck in viral research. Especially when (re-)emerging viruses reach pandemic levels, rapid characterization and establishment of effective countermeasures using recombinant viruses are beneficial in disease control. Indeed, numerous studies have attempted to establish and improve the methods. The circular polymerase extension reaction (CPER) method has overcome major obstacles in generating recombinant viruses. However, this method has not yet been examined for positive-strand RNA viruses that use cap-independent, internal ribosome entry site-mediated translation. Here, we engineered a suitable gene cassette to expand the CPER method for all positive-strand RNA viruses. Furthermore, we overcame the difficulty of generating recombinant viruses because of low transfection efficiency. Using this modified method, we also successfully generated reporter viruses and recombinant viruses from a field sample without virus isolation. Taking these findings together, our adapted methodology is an innovative technology that could help advance virologic research.
Collapse
Affiliation(s)
- Tomokazu Tamura
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Hirotaka Yamamoto
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Saho Ogino
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yuhei Morioka
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Shuhei Tsujino
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Rigel Suzuki
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Japan
| | - Takahiro Hiono
- Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Saori Suzuki
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Japan
| | - Norikazu Isoda
- Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yoshihiro Sakoda
- Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Takasuke Fukuhara
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| |
Collapse
|
23
|
Ullah I, Escudie F, Scandale I, Gilani Z, Gendron-Lepage G, Gaudette F, Mowbray C, Fraisse L, Bazin R, Finzi A, Mothes W, Kumar P, Chatelain E, Uchil PD. Bioluminescence imaging reveals enhanced SARS-CoV-2 clearance in mice with combinatorial regimens. iScience 2024; 27:109049. [PMID: 38361624 PMCID: PMC10867665 DOI: 10.1016/j.isci.2024.109049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/21/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024] Open
Abstract
Direct acting antivirals (DAAs) represent critical tools for combating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) that have escaped vaccine-elicited spike-based immunity and future coronaviruses with pandemic potential. Here, we used bioluminescence imaging to evaluate therapeutic efficacy of DAAs that target SARS-CoV-2 RNA-dependent RNA polymerase (favipiravir, molnupiravir) or main protease (nirmatrelvir) against Delta or Omicron VOCs in K18-hACE2 mice. Nirmatrelvir displayed the best efficacy followed by molnupiravir and favipiravir in suppressing viral loads in the lung. Unlike neutralizing antibody treatment, DAA monotherapy regimens did not eradicate SARS-CoV-2 in mice, but combining molnupiravir with nirmatrelvir exhibited superior additive efficacy and led to virus clearance. Furthermore, combining molnupiravir with caspase-1/4 inhibitor mitigated inflammation and lung pathology whereas combining molnupiravir with COVID-19 convalescent plasma demonstrated synergy, rapid virus clearance, and 100% survival. Thus, our study provides insights into in vivo treatment efficacies of DAAs and other effective combinations to bolster COVID-19 therapeutic arsenal.
Collapse
Affiliation(s)
- Irfan Ullah
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Fanny Escudie
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| | - Ivan Scandale
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| | - Zoela Gilani
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | - Fleur Gaudette
- Centre de Recherche du CHUM, Montréal, QC H2X0A9, Canada
| | - Charles Mowbray
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| | - Laurent Fraisse
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| | - Renée Bazin
- Hema-Quebec, Affaires Médicales et Innovation, Québec, QC G1V 5C3, Canada
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montréal, QC H2X0A9, Canada
- Departement de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X0A9, Canada
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Priti Kumar
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Eric Chatelain
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| | - Pradeep D. Uchil
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
24
|
Waqas M, Ullah S, Halim SA, Rehman NU, Ali A, Jan A, Muhsinah AB, Khan A, Al-Harrasi A. Targeting papain-like protease by natural products as novel therapeutic potential SARS-CoV-2. Int J Biol Macromol 2024; 258:128812. [PMID: 38114011 DOI: 10.1016/j.ijbiomac.2023.128812] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/27/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023]
Abstract
The highly infectious respiratory illness 'COVID-19' was caused by SARS-CoV-2 and is responsible for millions of deaths. SARS-single-stranded viral RNA genome encodes several structural and nonstructural proteins, including papain-like protease (PLpro), which is essential for viral replication and immune evasion and serve as a potential therapeutic target. Multiple computational techniques were used to search the natural compounds that may block the protease and deubiquitinase activities of PLpro. Five compounds showed strong interactions and binding energy (ranges between -8.18 to -8.69 Kcal/mol) in our in-silico studies. Interestingly, those molecules strongly bind in the PLpro active site and form a stable complex, as shown by microscale molecular dynamic simulations (MD). The dynamic movements indicate that PLpro acquires closed conformation by the attachment of these molecules, thereby changing its normal function. In the in-vitro evaluation, compound COMP4 showed the most potent inhibitory potential for PLpro (protease activity: 2.24 ± 0.17 μM and deubiquitinase activity: 1.43 ± 0.14 μM), followed by COMP1, 2, 3, and 5. Furthermore, the cytotoxic effect of COMP1-COMP5 on a human BJ cell line revealed that these compounds demonstrate negligible cytotoxicity at a dosage of 30 μM. The results suggest that these entities bear therapeutic efficacy for SARS-CoV-2 PLpro.
Collapse
Affiliation(s)
- Muhammad Waqas
- Department of Biotechnology and Genetic Engineering, Hazara University Mansehra, Mansehra 2100, Pakistan
| | - Saeed Ullah
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Sultanate of Oman
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Sultanate of Oman
| | - Najeeb Ur Rehman
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Sultanate of Oman
| | - Amjad Ali
- Department of Biotechnology and Genetic Engineering, Hazara University Mansehra, Mansehra 2100, Pakistan.
| | - Afnan Jan
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Abdullatif Bin Muhsinah
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Sultanate of Oman.
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Sultanate of Oman.
| |
Collapse
|
25
|
McMillan CLD, Wijesundara DK, Choo JJY, Amarilla AA, Modhiran N, Fernando GJP, Khromykh AA, Watterson D, Young PR, Muller DA. Enhancement of cellular immunity following needle-free vaccination of mice with SARS-CoV-2 spike protein. J Gen Virol 2024; 105. [PMID: 38271027 DOI: 10.1099/jgv.0.001947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024] Open
Abstract
The COVID-19 pandemic has highlighted the need for vaccines capable of providing rapid and robust protection. One way to improve vaccine efficacy is delivery via microarray patches, such as the Vaxxas high-density microarray patch (HD-MAP). We have previously demonstrated that delivery of a SARS-CoV-2 protein vaccine candidate, HexaPro, via the HD-MAP induces potent humoral immune responses. Here, we investigate the cellular responses induced by HexaPro HD-MAP vaccination. We found that delivery via the HD-MAP induces a type one biassed cellular response of much greater magnitude as compared to standard intramuscular immunization.
Collapse
Affiliation(s)
- Christopher L D McMillan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, Queensland 4072 and 4029, Australia
| | - Danushka K Wijesundara
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
- Vaxxas Biomedical Facility, Hamilton, Queensland 4007, Australia
| | - Jovin J Y Choo
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Alberto A Amarilla
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Naphak Modhiran
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Germain J P Fernando
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
- Vaxxas Biomedical Facility, Hamilton, Queensland 4007, Australia
| | - Alexander A Khromykh
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, Queensland 4072 and 4029, Australia
| | - Daniel Watterson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, Queensland 4072 and 4029, Australia
| | - Paul R Young
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, Queensland 4072 and 4029, Australia
| | - David A Muller
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, Queensland 4072 and 4029, Australia
| |
Collapse
|
26
|
Tong MZW, Sng JDJ, Carney M, Cooper L, Brown S, Lineburg KE, Chew KY, Collins N, Ignacio K, Airey M, Burr L, Joyce BA, Jayasinghe D, McMillan CLD, Muller DA, Adhikari A, Gallo LA, Dorey ES, Barrett HL, Gras S, Smith C, Good‐Jacobson K, Short KR. Elevated BMI reduces the humoral response to SARS-CoV-2 infection. Clin Transl Immunology 2023; 12:e1476. [PMID: 38050635 PMCID: PMC10693902 DOI: 10.1002/cti2.1476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/05/2023] [Accepted: 11/09/2023] [Indexed: 12/06/2023] Open
Abstract
Objective Class III obesity (body mass index [BMI] ≥ 40 kg m-2) significantly impairs the immune response to SARS-CoV-2 vaccination. However, the effect of an elevated BMI (≥ 25 kg m-2) on humoral immunity to SARS-CoV-2 infection and COVID-19 vaccination remains unclear. Methods We collected blood samples from people who recovered from SARS-CoV-2 infection approximately 3 and 13 months of post-infection (noting that these individuals were not exposed to SARS-CoV-2 or vaccinated in the interim). We also collected blood samples from people approximately 5 months of post-second dose COVID-19 vaccination (the majority of whom did not have a prior SARS-CoV-2 infection). We measured their humoral responses to SARS-CoV-2, grouping individuals based on a BMI greater or less than 25 kg m-2. Results Here, we show that an increased BMI (≥ 25 kg m-2), when accounting for age and sex differences, is associated with reduced antibody responses after SARS-CoV-2 infection. At 3 months of post-infection, an elevated BMI was associated with reduced antibody titres. At 13 months of post-infection, an elevated BMI was associated with reduced antibody avidity and a reduced percentage of spike-positive B cells. In contrast, no significant association was noted between a BMI ≥ 25 kg m-2 and humoral immunity to SARS-CoV-2 at 5 months of post-secondary vaccination. Conclusions Taken together, these data showed that elevated BMI is associated with an impaired humoral immune response to SARS-CoV-2 infection. The impairment of infection-induced immunity in individuals with a BMI ≥ 25 kg m-2 suggests an added impetus for vaccination rather than relying on infection-induced immunity.
Collapse
Affiliation(s)
- Marcus ZW Tong
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSt LuciaQLDAustralia
| | - Julian DJ Sng
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSt LuciaQLDAustralia
| | - Meagan Carney
- School of Mathematics and PhysicsThe University of QueenslandSt LuciaQLDAustralia
| | - Lucy Cooper
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVICAustralia
- Immunity Program, Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia
| | - Samuel Brown
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSt LuciaQLDAustralia
| | - Katie E Lineburg
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Infection and Inflammation ProgramQIMR Berghofer Medical Research InstituteHerstonQLDAustralia
| | - Keng Yih Chew
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSt LuciaQLDAustralia
| | - Neve Collins
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSt LuciaQLDAustralia
| | - Kirsten Ignacio
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSt LuciaQLDAustralia
| | - Megan Airey
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSt LuciaQLDAustralia
| | - Lucy Burr
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Infection and Inflammation ProgramQIMR Berghofer Medical Research InstituteHerstonQLDAustralia
- Department of Respiratory MedicineMater HealthBrisbaneQLDAustralia
| | - Briony A Joyce
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSt LuciaQLDAustralia
| | - Dhilshan Jayasinghe
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVICAustralia
- Department of Biochemistry and ChemistryLa Trobe Institute for Molecular Science, La Trobe UniversityBundooraVICAustralia
| | - Christopher LD McMillan
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSt LuciaQLDAustralia
- Australian Infectious Diseases Research CentreThe University of QueenslandSt LuciaQLDAustralia
| | - David A Muller
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSt LuciaQLDAustralia
- Australian Infectious Diseases Research CentreThe University of QueenslandSt LuciaQLDAustralia
| | - Anurag Adhikari
- Department of Biochemistry and ChemistryLa Trobe Institute for Molecular Science, La Trobe UniversityBundooraVICAustralia
| | - Linda A Gallo
- School of HealthUniversity of the Sunshine CoastPetrieQLDAustralia
| | - Emily S Dorey
- Mater ResearchThe University of QueenslandSouth BrisbaneQLDAustralia
| | - Helen L Barrett
- Mater ResearchThe University of QueenslandSouth BrisbaneQLDAustralia
- University of New South Wales MedicineKensingtonNSWAustralia
- Obstetric MedicineRoyal Hospital for WomenRandwickNSWAustralia
| | - Stephanie Gras
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVICAustralia
- Department of Biochemistry and ChemistryLa Trobe Institute for Molecular Science, La Trobe UniversityBundooraVICAustralia
| | - Corey Smith
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Translational and Human Immunology Laboratory, Infection and Inflammation ProgramQIMR Berghofer Medical Research InstituteHerstonQLDAustralia
| | - Kim Good‐Jacobson
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVICAustralia
- Immunity Program, Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia
| | - Kirsty R Short
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSt LuciaQLDAustralia
- Australian Infectious Diseases Research CentreThe University of QueenslandSt LuciaQLDAustralia
| |
Collapse
|
27
|
Aguado J, Amarilla AA, Taherian Fard A, Albornoz EA, Tyshkovskiy A, Schwabenland M, Chaggar HK, Modhiran N, Gómez-Inclán C, Javed I, Baradar AA, Liang B, Peng L, Dharmaratne M, Pietrogrande G, Padmanabhan P, Freney ME, Parry R, Sng JDJ, Isaacs A, Khromykh AA, Valenzuela Nieto G, Rojas-Fernandez A, Davis TP, Prinz M, Bengsch B, Gladyshev VN, Woodruff TM, Mar JC, Watterson D, Wolvetang EJ. Senolytic therapy alleviates physiological human brain aging and COVID-19 neuropathology. NATURE AGING 2023; 3:1561-1575. [PMID: 37957361 PMCID: PMC10724067 DOI: 10.1038/s43587-023-00519-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 10/03/2023] [Indexed: 11/15/2023]
Abstract
Aging is a major risk factor for neurodegenerative diseases, and coronavirus disease 2019 (COVID-19) is linked to severe neurological manifestations. Senescent cells contribute to brain aging, but the impact of virus-induced senescence on neuropathologies is unknown. Here we show that senescent cells accumulate in aged human brain organoids and that senolytics reduce age-related inflammation and rejuvenate transcriptomic aging clocks. In postmortem brains of patients with severe COVID-19 we observed increased senescent cell accumulation compared with age-matched controls. Exposure of human brain organoids to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induced cellular senescence, and transcriptomic analysis revealed a unique SARS-CoV-2 inflammatory signature. Senolytic treatment of infected brain organoids blocked viral replication and prevented senescence in distinct neuronal populations. In human-ACE2-overexpressing mice, senolytics improved COVID-19 clinical outcomes, promoted dopaminergic neuron survival and alleviated viral and proinflammatory gene expression. Collectively our results demonstrate an important role for cellular senescence in driving brain aging and SARS-CoV-2-induced neuropathology, and a therapeutic benefit of senolytic treatments.
Collapse
Affiliation(s)
- Julio Aguado
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland, Australia.
| | - Alberto A Amarilla
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
| | - Atefeh Taherian Fard
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland, Australia
| | - Eduardo A Albornoz
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St Lucia, Queensland, Australia
| | - Alexander Tyshkovskiy
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Marius Schwabenland
- Institute of Neuropathology and Center for Basics in NeuroModulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Harman K Chaggar
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland, Australia
| | - Naphak Modhiran
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
| | - Cecilia Gómez-Inclán
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland, Australia
| | - Ibrahim Javed
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland, Australia
- Centre for Pharmaceutical Innovation, School of Pharmacy and Medical Sciences, UniSA Clinical and Health Sciences, The University of South Australia, Adelaide, South Australia, Australia
| | - Alireza A Baradar
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland, Australia
| | - Benjamin Liang
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
| | - Lianli Peng
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland, Australia
| | - Malindrie Dharmaratne
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland, Australia
| | - Giovanni Pietrogrande
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland, Australia
| | - Pranesh Padmanabhan
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Morgan E Freney
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
| | - Rhys Parry
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
| | - Julian D J Sng
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
| | - Ariel Isaacs
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
| | - Alexander A Khromykh
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
- Australian Infectious Disease Research Centre, Global Virus Network Centre of Excellence, Brisbane, Queensland, Australia
| | - Guillermo Valenzuela Nieto
- Institute of Medicine, Faculty of Medicine & Center for Interdisciplinary Studies on the Nervous System, CISNE, Universidad Austral de Chile, Valdivia, Chile
| | - Alejandro Rojas-Fernandez
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Berking Biotechnology, Valdivia, Chile
| | - Thomas P Davis
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland, Australia
| | - Marco Prinz
- Institute of Neuropathology and Center for Basics in NeuroModulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Bertram Bengsch
- Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Disease, University Medical Center Freiburg, Freiburg, Germany
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Trent M Woodruff
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St Lucia, Queensland, Australia
| | - Jessica C Mar
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland, Australia
| | - Daniel Watterson
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
| | - Ernst J Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
28
|
Cai HL, Huang YW. Reverse genetics systems for SARS-CoV-2: Development and applications. Virol Sin 2023; 38:837-850. [PMID: 37832720 PMCID: PMC10786661 DOI: 10.1016/j.virs.2023.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023] Open
Abstract
The recent emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused serious harm to human health and struck a blow to global economic development. Research on SARS-CoV-2 has greatly benefited from the use of reverse genetics systems, which have been established to artificially manipulate the viral genome, generating recombinant and reporter infectious viruses or biosafety level 2 (BSL-2)-adapted non-infectious replicons with desired modifications. These tools have been instrumental in studying the molecular biological characteristics of the virus, investigating antiviral therapeutics, and facilitating the development of attenuated vaccine candidates. Here, we review the construction strategies, development, and applications of reverse genetics systems for SARS-CoV-2, which may be applied to other CoVs as well.
Collapse
Affiliation(s)
- Hou-Li Cai
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yao-Wei Huang
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China; State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
29
|
Kipfer ET, Hauser D, Lett MJ, Otte F, Urda L, Zhang Y, Lang CMR, Chami M, Mittelholzer C, Klimkait T. Rapid cloning-free mutagenesis of new SARS-CoV-2 variants using a novel reverse genetics platform. eLife 2023; 12:RP89035. [PMID: 37988285 PMCID: PMC10662946 DOI: 10.7554/elife.89035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023] Open
Abstract
Reverse genetic systems enable the engineering of RNA virus genomes and are instrumental in studying RNA virus biology. With the recent outbreak of the coronavirus disease 2019 pandemic, already established methods were challenged by the large genome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Herein we present an elaborated strategy for the rapid and straightforward rescue of recombinant plus-stranded RNA viruses with high sequence fidelity using the example of SARS-CoV-2. The strategy called CLEVER (CLoning-free and Exchangeable system for Virus Engineering and Rescue) is based on the intracellular recombination of transfected overlapping DNA fragments allowing the direct mutagenesis within the initial PCR-amplification step. Furthermore, by introducing a linker fragment - harboring all heterologous sequences - viral RNA can directly serve as a template for manipulating and rescuing recombinant mutant virus, without any cloning step. Overall, this strategy will facilitate recombinant SARS-CoV-2 rescue and accelerate its manipulation. Using our protocol, newly emerging variants can quickly be engineered to further elucidate their biology. To demonstrate its potential as a reverse genetics platform for plus-stranded RNA viruses, the protocol has been successfully applied for the cloning-free rescue of recombinant Chikungunya and Dengue virus.
Collapse
Affiliation(s)
- Enja Tatjana Kipfer
- Molecular Virology, Department of Biomedicine, University of BaselBaselSwitzerland
| | - David Hauser
- Molecular Virology, Department of Biomedicine, University of BaselBaselSwitzerland
| | - Martin J Lett
- Molecular Virology, Department of Biomedicine, University of BaselBaselSwitzerland
| | - Fabian Otte
- Molecular Virology, Department of Biomedicine, University of BaselBaselSwitzerland
| | - Lorena Urda
- Molecular Virology, Department of Biomedicine, University of BaselBaselSwitzerland
| | - Yuepeng Zhang
- Molecular Virology, Department of Biomedicine, University of BaselBaselSwitzerland
| | - Christopher MR Lang
- Molecular Virology, Department of Biomedicine, University of BaselBaselSwitzerland
| | - Mohamed Chami
- BioEM Lab, Biozentrum, University of Basel, MattenstrasseBaselSwitzerland
| | | | - Thomas Klimkait
- Molecular Virology, Department of Biomedicine, University of BaselBaselSwitzerland
| |
Collapse
|
30
|
Gunasinghe Pattiya Arachchillage KG, Chandra S, Williams A, Rangan S, Piscitelli P, Florence L, Ghosal Gupta S, Artes Vivancos JM. A single-molecule RNA electrical biosensor for COVID-19. Biosens Bioelectron 2023; 239:115624. [PMID: 37639885 DOI: 10.1016/j.bios.2023.115624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023]
Abstract
The COVID-19 pandemic shows a critical need for rapid, inexpensive, and ultrasensitive early detection methods based on biomarker analysis to reduce mortality rates by containing the spread of epidemics. This can be achieved through the electrical detection of nucleic acids at the single-molecule level. In particular, the scanning tunneling microscopic-assisted break junction (STM-BJ) method can be utilized to detect individual nucleic acid molecules with high specificity and sensitivity in liquid samples. Here, we demonstrate single-molecule electrical detection of RNA coronavirus biomarkers, including those of SARS-CoV-2 as well as those of different variants and subvariants. Our target sequences include a conserved sequence in the human coronavirus family, a conserved target specific for the SARS-CoV-2 family, and specific targets at the variant and subvariant levels. Our results demonstrate that it is possible to distinguish between different variants of the COVID-19 virus using electrical conductance signals, as recently suggested by theoretical approaches. Our results pave the way for future miniaturized single-molecule electrical biosensors that could be game changers for infectious diseases and other public health applications.
Collapse
Affiliation(s)
| | - Subrata Chandra
- Department of Chemistry, University of Massachusetts Lowell, Lowell, 01854, MA, USA
| | - Ajoke Williams
- Department of Chemistry, University of Massachusetts Lowell, Lowell, 01854, MA, USA
| | - Srijith Rangan
- Department of Chemistry, University of Massachusetts Lowell, Lowell, 01854, MA, USA
| | - Patrick Piscitelli
- Department of Chemistry, University of Massachusetts Lowell, Lowell, 01854, MA, USA
| | - Lily Florence
- Department of Chemistry, University of Massachusetts Lowell, Lowell, 01854, MA, USA
| | | | - Juan M Artes Vivancos
- Department of Chemistry, University of Massachusetts Lowell, Lowell, 01854, MA, USA.
| |
Collapse
|
31
|
Gilbertson B, Subbarao K. What Have We Learned by Resurrecting the 1918 Influenza Virus? Annu Rev Virol 2023; 10:25-47. [PMID: 37774132 DOI: 10.1146/annurev-virology-111821-104408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
The 1918 Spanish influenza pandemic was one of the deadliest infectious disease events in recorded history, resulting in approximately 50-100 million deaths worldwide. The origins of the 1918 virus and the molecular basis for its exceptional virulence remained a mystery for much of the 20th century because the pandemic predated virologic techniques to isolate, passage, and store influenza viruses. In the late 1990s, overlapping fragments of influenza viral RNA preserved in the tissues of several 1918 victims were amplified and sequenced. The use of influenza reverse genetics then permitted scientists to reconstruct the 1918 virus entirely from cloned complementary DNA, leading to new insights into the origin of the virus and its pathogenicity. Here, we discuss some of the advances made by resurrection of the 1918 virus, including the rise of innovative molecular research, which is a topic in the dual use debate.
Collapse
Affiliation(s)
- Brad Gilbertson
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, Victoria, Australia
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia;
| |
Collapse
|
32
|
Jiang H, Wang T, Kong L, Li B, Peng Q. Reverse Genetics Systems for Emerging and Re-Emerging Swine Coronaviruses and Applications. Viruses 2023; 15:2003. [PMID: 37896780 PMCID: PMC10611186 DOI: 10.3390/v15102003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Emerging and re-emerging swine coronaviruses (CoVs), including porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV), and swine acute diarrhea syndrome-CoV (SADS-CoV), cause severe diarrhea in neonatal piglets, and CoV infection is associated with significant economic losses for the swine industry worldwide. Reverse genetics systems realize the manipulation of RNA virus genome and facilitate the development of new vaccines. Thus far, five reverse genetics approaches have been successfully applied to engineer the swine CoV genome: targeted RNA recombination, in vitro ligation, bacterial artificial chromosome-based ligation, vaccinia virus -based recombination, and yeast-based method. This review summarizes the advantages and limitations of these approaches; it also discusses the latest research progress in terms of their use for virus-related pathogenesis elucidation, vaccine candidate development, antiviral drug screening, and virus replication mechanism determination.
Collapse
Affiliation(s)
- Hui Jiang
- Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang 330045, China; (H.J.); (T.W.)
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330045, China
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
| | - Ting Wang
- Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang 330045, China; (H.J.); (T.W.)
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330045, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lingbao Kong
- Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang 330045, China; (H.J.); (T.W.)
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330045, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
| | - Qi Peng
- Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang 330045, China; (H.J.); (T.W.)
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330045, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
| |
Collapse
|
33
|
Kipfer E, Hauser D, Lett MJ, Otte F, Urda L, Zhang Y, Lang CMR, Chami M, Mittelholzer C, Klimkait T. Rapid cloning-free mutagenesis of new SARS-CoV-2 variants using a novel reverse genetics platform. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.11.540343. [PMID: 37292682 PMCID: PMC10245781 DOI: 10.1101/2023.05.11.540343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Reverse genetic systems enable the engineering of RNA virus genomes and are instrumental in studying RNA virus biology. With the recent outbreak of the COVID-19 pandemic, already established methods were challenged by the large genome of SARS-CoV-2. Herein we present an elaborated strategy for the rapid and straightforward rescue of recombinant plus-stranded RNA viruses with high sequence fidelity, using the example of SARS-CoV-2. The strategy called CLEVER (CLoning-free and Exchangeable system for Virus Engineering and Rescue) is based on the intracellular recombination of transfected overlapping DNA fragments allowing the direct mutagenesis within the initial PCR-amplification step. Furthermore, by introducing a linker fragment - harboring all heterologous sequences - viral RNA can directly serve as a template for manipulating and rescuing recombinant mutant virus, without any cloning step. Overall, this strategy will facilitate recombinant SARS-CoV-2 rescue and accelerate its manipulation. Using our protocol, newly emerging variants can quickly be engineered to further elucidate their biology. To demonstrate its potential as a reverse genetics platform for plus-stranded RNA viruses, the protocol has been successfully applied for the cloning-free rescue of recombinant Chikungunya and Dengue virus.
Collapse
Affiliation(s)
- Enja Kipfer
- Molecular Virology, Department of Biomedicine, University of Basel, Petersplatz 10, 4009 Basel, Switzerland
| | - David Hauser
- Molecular Virology, Department of Biomedicine, University of Basel, Petersplatz 10, 4009 Basel, Switzerland
| | - Martin J. Lett
- Molecular Virology, Department of Biomedicine, University of Basel, Petersplatz 10, 4009 Basel, Switzerland
| | - Fabian Otte
- Molecular Virology, Department of Biomedicine, University of Basel, Petersplatz 10, 4009 Basel, Switzerland
| | - Lorena Urda
- Molecular Virology, Department of Biomedicine, University of Basel, Petersplatz 10, 4009 Basel, Switzerland
| | - Yuepeng Zhang
- Molecular Virology, Department of Biomedicine, University of Basel, Petersplatz 10, 4009 Basel, Switzerland
| | - Christopher M. R. Lang
- Molecular Virology, Department of Biomedicine, University of Basel, Petersplatz 10, 4009 Basel, Switzerland
| | - Mohamed Chami
- BioEM Lab, Biozentrum, University of Basel, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Christian Mittelholzer
- Molecular Virology, Department of Biomedicine, University of Basel, Petersplatz 10, 4009 Basel, Switzerland
| | - Thomas Klimkait
- Molecular Virology, Department of Biomedicine, University of Basel, Petersplatz 10, 4009 Basel, Switzerland
| |
Collapse
|
34
|
Takahashi T, Ueno S, Sugiura Y, Shimizu K, Kamitani W. Establishment of a new reverse genetics system for respiratory syncytial virus under the control of RNA polymerase II. Microbiol Immunol 2023; 67:413-421. [PMID: 37424190 DOI: 10.1111/1348-0421.13088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/30/2023] [Accepted: 06/20/2023] [Indexed: 07/11/2023]
Abstract
A reverse genetics system for the respiratory syncytial virus (RSV), which causes acute respiratory illness, is an effective tool for understanding the pathogenicity of RSV. To date, a method dependent on T7 RNA polymerase is commonly used for RSV. Although this method is well established and recombinant RSV is well rescued from transfected cells, the requirement for artificial supply of T7 RNA polymerase limits its application. To overcome this, we established a reverse genetics system dependent on RNA polymerase II, which is more convenient for the recovery of recombinant viruses from various cell lines. First, we identified human cell lines with high transfection efficiency in which RSV can replicate effectively. Two human cell lines, Huh-7 and 293T, permitted the propagation of recombinant green fluorescent protein-expressing RSV. Our minigenome system revealed that efficient transcription and replication of RSV occurred in both Huh-7 and 293T cells. We then confirmed that recombinant green fluorescent protein-expressing RSV was rescued in both Huh-7 and 293T cells. Furthermore, the growth capability of viruses rescued from Huh-7 and 293T cells was similar to that of recombinant RSV rescued using the conventional method. Thus, we succeeded in establishing a new reverse genetics system for RSV that is dependent on RNA polymerase II.
Collapse
Affiliation(s)
- Tatsuki Takahashi
- Department of Infectious Diseases and Host Defense, Graduate School of Medicine, Maebashi-shi, Gunma, Japan
| | - Shiori Ueno
- Department of Infectious Diseases and Host Defense, Graduate School of Medicine, Maebashi-shi, Gunma, Japan
| | - Yoshiro Sugiura
- Department of Infectious Diseases and Host Defense, Graduate School of Medicine, Maebashi-shi, Gunma, Japan
| | - Kenta Shimizu
- Department of Infectious Diseases and Host Defense, Graduate School of Medicine, Maebashi-shi, Gunma, Japan
| | - Wataru Kamitani
- Department of Infectious Diseases and Host Defense, Graduate School of Medicine, Maebashi-shi, Gunma, Japan
| |
Collapse
|
35
|
Rafique Q, Rehman A, Afghan MS, Ahmad HM, Zafar I, Fayyaz K, Ain Q, Rayan RA, Al-Aidarous KM, Rashid S, Mushtaq G, Sharma R. Reviewing methods of deep learning for diagnosing COVID-19, its variants and synergistic medicine combinations. Comput Biol Med 2023; 163:107191. [PMID: 37354819 PMCID: PMC10281043 DOI: 10.1016/j.compbiomed.2023.107191] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/28/2023] [Accepted: 06/19/2023] [Indexed: 06/26/2023]
Abstract
The COVID-19 pandemic has necessitated the development of reliable diagnostic methods for accurately detecting the novel coronavirus and its variants. Deep learning (DL) techniques have shown promising potential as screening tools for COVID-19 detection. In this study, we explore the realistic development of DL-driven COVID-19 detection methods and focus on the fully automatic framework using available resources, which can effectively investigate various coronavirus variants through modalities. We conducted an exploration and comparison of several diagnostic techniques that are widely used and globally validated for the detection of COVID-19. Furthermore, we explore review-based studies that provide detailed information on synergistic medicine combinations for the treatment of COVID-19. We recommend DL methods that effectively reduce time, cost, and complexity, providing valuable guidance for utilizing available synergistic combinations in clinical and research settings. This study also highlights the implication of innovative diagnostic technical and instrumental strategies, exploring public datasets, and investigating synergistic medicines using optimised DL rules. By summarizing these findings, we aim to assist future researchers in their endeavours by providing a comprehensive overview of the implication of DL techniques in COVID-19 detection and treatment. Integrating DL methods with various diagnostic approaches holds great promise in improving the accuracy and efficiency of COVID-19 diagnostics, thus contributing to effective control and management of the ongoing pandemic.
Collapse
Affiliation(s)
- Qandeel Rafique
- Department of Internal Medicine, Sahiwal Medical College, Sahiwal, 57040, Pakistan.
| | - Ali Rehman
- Department of General Medicine Govt. Eye and General Hospital Lahore, 54000, Pakistan.
| | - Muhammad Sher Afghan
- Department of Internal Medicine District Headquarter Hospital Faislaabad, 62300, Pakistan.
| | - Hafiz Muhamad Ahmad
- Department of Internal Medicine District Headquarter Hospital Bahawalnagar, 62300, Pakistan.
| | - Imran Zafar
- Department of Bioinformatics and Computational Biology, Virtual University Pakistan, 44000, Pakistan.
| | - Kompal Fayyaz
- Department of National Centre for Bioinformatics, Quaid-I-Azam University Islamabad, 45320, Pakistan.
| | - Quratul Ain
- Department of Chemistry, Government College Women University Faisalabad, 03822, Pakistan.
| | - Rehab A Rayan
- Department of Epidemiology, High Institute of Public Health, Alexandria University, 21526, Egypt.
| | - Khadija Mohammed Al-Aidarous
- Department of Computer Science, College of Science and Arts in Sharurah, Najran University, 51730, Saudi Arabia.
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj, 11942, Saudi Arabia.
| | - Gohar Mushtaq
- Center for Scientific Research, Faculty of Medicine, Idlib University, Idlib, Syria.
| | - Rohit Sharma
- Department of Rasashastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India.
| |
Collapse
|
36
|
Conde JN, Himmler GE, Mladinich MC, Setoh YX, Amarilla AA, Schutt WR, Saladino N, Gorbunova EE, Salamango DJ, Benach J, Kim HK, Mackow ER. Establishment of a CPER reverse genetics system for Powassan virus defines attenuating NS1 glycosylation sites and an infectious NS1-GFP11 reporter virus. mBio 2023; 14:e0138823. [PMID: 37489888 PMCID: PMC10470542 DOI: 10.1128/mbio.01388-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 07/26/2023] Open
Abstract
Powassan virus (POWV) is an emerging tick-borne Flavivirus that causes lethal encephalitis and long-term neurologic damage. Currently, there are no POWV therapeutics, licensed vaccines, or reverse genetics systems for producing infectious POWVs from recombinant DNA. Using a circular polymerase extension reaction (CPER), we generated recombinant LI9 (recLI9) POWVs with attenuating NS1 protein mutations and a recLI9-split-eGFP reporter virus. NS1 proteins are highly conserved glycoproteins that regulate replication, spread, and neurovirulence. POWV NS1 contains three putative N-linked glycosylation sites that we modified individually in infectious recLI9 mutants (N85Q, N208Q, and N224Q). NS1 glycosylation site mutations reduced replication kinetics and were attenuated, with 1-2 log decreases in titer. Severely attenuated recLI9-N224Q exhibited a 2- to 3-day delay in focal cell-to-cell spread and reduced NS1 secretion but was lethal when intracranially inoculated into suckling mice. However, footpad inoculation of recLI9-N224Q resulted in the survival of 80% of mice and demonstrated that NS1-N224Q mutations reduce POWV neuroinvasion in vivo. To monitor NS1 trafficking, we CPER fused a split GFP11-tag to the NS1 C-terminus and generated an infectious reporter virus, recLI9-NS1-GFP11. Cells infected with recLI9-NS1-GFP11 revealed NS1 trafficking in live cells and the novel formation of large NS1-lined intracellular vesicles. An infectious recLI9-NS1-GFP11 reporter virus permits real-time analysis of NS1 functions in POWV replication, assembly, and secretion and provides a platform for evaluating antiviral compounds. Collectively, our robust POWV reverse genetics system permits analysis of viral spread and neurovirulence determinants in vitro and in vivo and enables the rational genetic design of live attenuated POWV vaccines. IMPORTANCE Our findings newly establish a mechanism for genetically modifying Powassan viruses (POWVs), systematically defining pathogenic determinants and rationally designing live attenuated POWV vaccines. This initial study demonstrates that mutating POWV NS1 glycosylation sites attenuates POWV spread and neurovirulence in vitro and in vivo. Our findings validate a robust circular polymerase extension reaction approach as a mechanism for developing, and evaluating, attenuated genetically modified POWVs. We further designed an infectious GFP-tagged reporter POWV that permits us to monitor secretory trafficking of POWV in live cells, which can be applied to screen potential POWV replication inhibitors. This robust system for modifying POWVs provides the ability to define attenuating POWV mutations and create genetically attenuated recPOWV vaccines.
Collapse
Affiliation(s)
- Jonas N. Conde
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
| | - Grace E. Himmler
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
- Molecular and Cell Biology Program, Stony Brook University, Stony Brook, New York, USA
| | - Megan C. Mladinich
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
| | - Yin Xiang Setoh
- Microbiology and Molecular Epidemiology Division, Environmental Health Institute, National Environmental Agency, Singapore, Singapore
| | - Alberto A. Amarilla
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland, Australia
| | - William R. Schutt
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Disease, Stony Brook University, Stony Brook, New York, USA
| | - Nicholas Saladino
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Elena E. Gorbunova
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Disease, Stony Brook University, Stony Brook, New York, USA
| | - Daniel J. Salamango
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Jorge Benach
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Disease, Stony Brook University, Stony Brook, New York, USA
| | - Hwan Keun Kim
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Molecular and Cell Biology Program, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Disease, Stony Brook University, Stony Brook, New York, USA
| | - Erich R. Mackow
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Molecular and Cell Biology Program, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Disease, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
37
|
Marano JM, Cereghino C, Finkielstein CV, Weger-Lucarelli J. An in vitro workflow to create and modify infectious clones using replication cycle reaction. Virology 2023; 585:109-116. [PMID: 37331111 PMCID: PMC10528026 DOI: 10.1016/j.virol.2023.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/25/2023] [Accepted: 05/28/2023] [Indexed: 06/20/2023]
Abstract
Reverse genetics systems are critical tools in combating emerging viruses which enable a better understanding of the genetic mechanisms by which viruses cause disease. Traditional cloning approaches using bacteria are fraught with difficulties due to the bacterial toxicity of many viral sequences, resulting in unwanted mutations within the viral genome. Here, we describe a novel in vitro workflow that leverages gene synthesis and replication cycle reaction to produce a supercoiled infectious clone plasmid that is easy to distribute and manipulate. We developed two infectious clones as proof of concept: a low passage dengue virus serotype 2 isolate (PUO-218) and the USA-WA1/2020 strain of SARS-CoV-2, which replicated similarly to their respective parental viruses. Furthermore, we generated a medically relevant mutant of SARS-CoV-2, Spike D614G. Results indicate that our workflow is a viable method to generate and manipulate infectious clones for viruses that are notoriously difficult for traditional bacterial-based cloning methods.
Collapse
Affiliation(s)
- Jeffrey M Marano
- Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Roanoke, VA, USA; Department of Biomedical Sciences and Pathobiology, Virginia Tech, VA-MD Regional College of Veterinary Medicine, Blacksburg, VA, United States; Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, United States.
| | - Chelsea Cereghino
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, VA-MD Regional College of Veterinary Medicine, Blacksburg, VA, United States; Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, United States.
| | - Carla V Finkielstein
- Molecular Diagnostics Laboratory, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA, USA; Integrated Cellular Responses Laboratory, Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA; Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - James Weger-Lucarelli
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, VA-MD Regional College of Veterinary Medicine, Blacksburg, VA, United States; Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, United States.
| |
Collapse
|
38
|
Shi YJ, Li JQ, Zhang HQ, Deng CL, Zhu QX, Zhang B, Li XD. A high throughput antiviral screening platform for alphaviruses based on Semliki Forest virus expressing eGFP reporter gene. Virol Sin 2023; 38:585-594. [PMID: 37390870 PMCID: PMC10436050 DOI: 10.1016/j.virs.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/20/2023] [Indexed: 07/02/2023] Open
Abstract
Alphaviruses, which contain a variety of mosquito-borne pathogens, are important pathogens of emerging/re-emerging infectious diseases and potential biological weapons. Currently, no specific antiviral drugs are available for the treatment of alphaviruses infection. For most highly pathogenic alphaviruses are classified as risk group-3 agents, the requirement of biosafety level 3 (BSL-3) facilities limits the live virus-based antiviral study. To facilitate the antiviral development of alphaviruses, we developed a high throughput screening (HTS) platform based on a recombinant Semliki Forest virus (SFV) which can be manipulated in BSL-2 laboratory. Using the reverse genetics approach, the recombinant SFV and SFV reporter virus expressing eGFP (SFV-eGFP) were successfully rescued. The SFV-eGFP reporter virus exhibited robust eGFP expression and remained relatively stable after four passages in BHK-21 cells. Using a broad-spectrum alphavirus inhibitor ribavirin, we demonstrated that the SFV-eGFP can be used as an effective tool for antiviral study. The SFV-eGFP reporter virus-based HTS assay in a 96-well format was then established and optimized with a robust Z' score. A section of reference compounds that inhibit highly pathogenic alphaviruses were used to validate that the SFV-eGFP reporter virus-based HTS assay enables rapid screening of potent broad-spectrum inhibitors of alphaviruses. This assay provides a safe and convenient platform for antiviral study of alphaviruses.
Collapse
Affiliation(s)
- Yu-Jia Shi
- Hunan Normal University, School of Medicine, Changsha, 410081, China
| | - Jia-Qi Li
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong-Qing Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng-Lin Deng
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qin-Xuan Zhu
- Hunan Normal University, School of Medicine, Changsha, 410081, China
| | - Bo Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiao-Dan Li
- Hunan Normal University, School of Medicine, Changsha, 410081, China.
| |
Collapse
|
39
|
Dong HL, He MJ, Wang QY, Cui JZ, Chen ZL, Xiong XH, Zhang LC, Cheng H, Xiong GQ, Hu A, Lu YY, Cheng CL, Meng ZX, Zhu C, Zhao G, Liu G, Chen HP. Rapid Generation of Recombinant Flaviviruses Using Circular Polymerase Extension Reaction. Vaccines (Basel) 2023; 11:1250. [PMID: 37515065 PMCID: PMC10383701 DOI: 10.3390/vaccines11071250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
The genus Flavivirus is a group of arthropod-borne single-stranded RNA viruses, which includes important human and animal pathogens such as Japanese encephalitis virus (JEV), Zika virus (ZIKV), Dengue virus (DENV), yellow fever virus (YFV), West Nile virus (WNV), and Tick-borne encephalitis virus (TBEV). Reverse genetics has been a useful tool for understanding biological properties and the pathogenesis of flaviviruses. However, the conventional construction of full-length infectious clones for flavivirus is time-consuming and difficult due to the toxicity of the flavivirus genome to E. coli. Herein, we applied a simple, rapid, and bacterium-free circular polymerase extension reaction (CPER) method to synthesize recombinant flaviviruses in vertebrate cells as well as insect cells. We started with the de novo synthesis of the JEV vaccine strain SA-14-14-2 in Vero cells using CPER, and then modified the CPER method to recover insect-specific flaviviruses (ISFs) in mosquito C6/36 cells. Chimeric Zika virus (ChinZIKV) based on the Chaoyang virus (CYV) backbone and the Culex flavivirus reporter virus expressing green fluorescent protein (CxFV-GFP) were subsequently rescued in C6/36 cells. CPER is a simple method for the rapid generation of flaviviruses and other potential RNA viruses. A CPER-based recovery system for flaviviruses of different host ranges was established, which would facilitate the development of countermeasures against flavivirus outbreaks in the future.
Collapse
Affiliation(s)
- Hao-Long Dong
- Academy of Military Medical Sciences, Beijing 100071, China
| | - Mei-Juan He
- Academy of Military Medical Sciences, Beijing 100071, China
| | - Qing-Yang Wang
- Academy of Military Medical Sciences, Beijing 100071, China
| | - Jia-Zhen Cui
- Academy of Military Medical Sciences, Beijing 100071, China
| | - Zhi-Li Chen
- Academy of Military Medical Sciences, Beijing 100071, China
| | | | | | - Hao Cheng
- Academy of Military Medical Sciences, Beijing 100071, China
| | - Guo-Qing Xiong
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230000, China
| | - Ao Hu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230000, China
| | - Yuan-Yuan Lu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230000, China
| | - Chun-Lin Cheng
- School of Life Science, Hebei University, Baoding 071000, China
| | - Zhi-Xin Meng
- School of Life Science, Hebei University, Baoding 071000, China
| | - Chen Zhu
- Academy of Military Medical Sciences, Beijing 100071, China
| | - Guang Zhao
- Academy of Military Medical Sciences, Beijing 100071, China
| | - Gang Liu
- Academy of Military Medical Sciences, Beijing 100071, China
| | - Hui-Peng Chen
- Academy of Military Medical Sciences, Beijing 100071, China
| |
Collapse
|
40
|
Albornoz EA, Amarilla AA, Modhiran N, Parker S, Li XX, Wijesundara DK, Aguado J, Zamora AP, McMillan CLD, Liang B, Peng NYG, Sng JDJ, Saima FT, Fung JN, Lee JD, Paramitha D, Parry R, Avumegah MS, Isaacs A, Lo MW, Miranda-Chacon Z, Bradshaw D, Salinas-Rebolledo C, Rajapakse NW, Wolvetang EJ, Munro TP, Rojas-Fernandez A, Young PR, Stacey KJ, Khromykh AA, Chappell KJ, Watterson D, Woodruff TM. SARS-CoV-2 drives NLRP3 inflammasome activation in human microglia through spike protein. Mol Psychiatry 2023; 28:2878-2893. [PMID: 36316366 PMCID: PMC10615762 DOI: 10.1038/s41380-022-01831-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 09/19/2022] [Accepted: 10/07/2022] [Indexed: 01/21/2023]
Abstract
Coronavirus disease-2019 (COVID-19) is primarily a respiratory disease, however, an increasing number of reports indicate that SARS-CoV-2 infection can also cause severe neurological manifestations, including precipitating cases of probable Parkinson's disease. As microglial NLRP3 inflammasome activation is a major driver of neurodegeneration, here we interrogated whether SARS-CoV-2 can promote microglial NLRP3 inflammasome activation. Using SARS-CoV-2 infection of transgenic mice expressing human angiotensin-converting enzyme 2 (hACE2) as a COVID-19 pre-clinical model, we established the presence of virus in the brain together with microglial activation and NLRP3 inflammasome upregulation in comparison to uninfected mice. Next, utilising a model of human monocyte-derived microglia, we identified that SARS-CoV-2 isolates can bind and enter human microglia in the absence of viral replication. This interaction of virus and microglia directly induced robust inflammasome activation, even in the absence of another priming signal. Mechanistically, we demonstrated that purified SARS-CoV-2 spike glycoprotein activated the NLRP3 inflammasome in LPS-primed microglia, in a ACE2-dependent manner. Spike protein also could prime the inflammasome in microglia through NF-κB signalling, allowing for activation through either ATP, nigericin or α-synuclein. Notably, SARS-CoV-2 and spike protein-mediated microglial inflammasome activation was significantly enhanced in the presence of α-synuclein fibrils and was entirely ablated by NLRP3-inhibition. Finally, we demonstrate SARS-CoV-2 infected hACE2 mice treated orally post-infection with the NLRP3 inhibitory drug MCC950, have significantly reduced microglial inflammasome activation, and increased survival in comparison with untreated SARS-CoV-2 infected mice. These results support a possible mechanism of microglial innate immune activation by SARS-CoV-2, which could explain the increased vulnerability to developing neurological symptoms akin to Parkinson's disease in COVID-19 infected individuals, and a potential therapeutic avenue for intervention.
Collapse
Affiliation(s)
- Eduardo A Albornoz
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Alberto A Amarilla
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Naphak Modhiran
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, 4072, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Sandra Parker
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Xaria X Li
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Danushka K Wijesundara
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, 4072, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
- Vaxxas Pty. Ltd., Woolloongabba, QLD, 4102, Australia
| | - Julio Aguado
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Adriana Pliego Zamora
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Christopher L D McMillan
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Benjamin Liang
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Nias Y G Peng
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Julian D J Sng
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Fatema Tuj Saima
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Jenny N Fung
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St Lucia, QLD, 4072, Australia
| | - John D Lee
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Devina Paramitha
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Rhys Parry
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Michael S Avumegah
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, 4072, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Ariel Isaacs
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Martin W Lo
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Zaray Miranda-Chacon
- Institute of Medicine, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Molecular Medicine Laboratory, Medical School, Universidad de Costa Rica, San Pedro, Costa Rica
| | - Daniella Bradshaw
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St Lucia, QLD, 4072, Australia
| | | | - Niwanthi W Rajapakse
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Ernst J Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Trent P Munro
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, 4072, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | | | - Paul R Young
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, 4072, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
- Australian Infectious Disease Research Centre, Global Virus Network Centre of Excellence Brisbane, Brisbane, QLD, 4072 and 4029, Australia
| | - Katryn J Stacey
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Alexander A Khromykh
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, 4072, Australia
- Australian Infectious Disease Research Centre, Global Virus Network Centre of Excellence Brisbane, Brisbane, QLD, 4072 and 4029, Australia
| | - Keith J Chappell
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, 4072, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
- Australian Infectious Disease Research Centre, Global Virus Network Centre of Excellence Brisbane, Brisbane, QLD, 4072 and 4029, Australia
| | - Daniel Watterson
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Trent M Woodruff
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St Lucia, QLD, 4072, Australia.
- Queensland Brain Institute, University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
41
|
Tu WJ, Melino M, Dunn J, McCuaig RD, Bielefeldt-Ohmann H, Tsimbalyuk S, Forwood JK, Ahuja T, Vandermeide J, Tan X, Tran M, Nguyen Q, Zhang L, Nam A, Pan L, Liang Y, Smith C, Lineburg K, Nguyen TH, Sng JDJ, Tong ZWM, Chew KY, Short KR, Le Grand R, Seddiki N, Rao S. In vivo inhibition of nuclear ACE2 translocation protects against SARS-CoV-2 replication and lung damage through epigenetic imprinting. Nat Commun 2023; 14:3680. [PMID: 37369668 DOI: 10.1038/s41467-023-39341-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
In vitro, ACE2 translocates to the nucleus to induce SARS-CoV-2 replication. Here, using digital spatial profiling of lung tissues from SARS-CoV-2-infected golden Syrian hamsters, we show that a specific and selective peptide inhibitor of nuclear ACE2 (NACE2i) inhibits viral replication two days after SARS-CoV-2 infection. Moreover, the peptide also prevents inflammation and macrophage infiltration, and increases NK cell infiltration in bronchioles. NACE2i treatment increases the levels of the active histone mark, H3K27ac, restores host translation in infected hamster bronchiolar cells, and leads to an enrichment in methylated ACE2 in hamster bronchioles and lung macrophages, a signature associated with virus protection. In addition, ACE2 methylation is increased in myeloid cells from vaccinated patients and associated with reduced SARS-CoV-2 spike protein expression in monocytes from individuals who have recovered from infection. This protective epigenetic scarring of ACE2 is associated with a reduced latent viral reservoir in monocytes/macrophages and enhanced immune protection against SARS-CoV-2. Nuclear ACE2 may represent a therapeutic target independent of the variant and strain of viruses that use the ACE2 receptor for host cell entry.
Collapse
Affiliation(s)
- Wen Juan Tu
- Gene Regulation and Translational Medicine Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Michelle Melino
- Gene Regulation and Translational Medicine Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jenny Dunn
- Gene Regulation and Translational Medicine Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Robert D McCuaig
- Gene Regulation and Translational Medicine Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Helle Bielefeldt-Ohmann
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Sofiya Tsimbalyuk
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
| | - Jade K Forwood
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
| | - Taniya Ahuja
- Gene Regulation and Translational Medicine Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - John Vandermeide
- Gene Regulation and Translational Medicine Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Xiao Tan
- Genomics and Machine Learning Lab, Division of Genetics and Genomics, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Minh Tran
- Genomics and Machine Learning Lab, Division of Genetics and Genomics, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Quan Nguyen
- Genomics and Machine Learning Lab, Division of Genetics and Genomics, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Liang Zhang
- NanoString Technologies Inc., Seattle, WA, 98109, USA
| | - Andy Nam
- NanoString Technologies Inc., Seattle, WA, 98109, USA
| | - Liuliu Pan
- NanoString Technologies Inc., Seattle, WA, 98109, USA
| | - Yan Liang
- NanoString Technologies Inc., Seattle, WA, 98109, USA
| | - Corey Smith
- Translational and Human Immunology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Katie Lineburg
- Translational and Human Immunology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Tam H Nguyen
- Flow and Imaging Facility, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Julian D J Sng
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Zhen Wei Marcus Tong
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Keng Yih Chew
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Kirsty R Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD, Australia
| | - Roger Le Grand
- Université Paris-Saclay, INSERM U1184, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, France
| | - Nabila Seddiki
- Université Paris-Saclay, INSERM U1184, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, France
| | - Sudha Rao
- Gene Regulation and Translational Medicine Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
| |
Collapse
|
42
|
Ullah I, Escudie F, Scandale I, Gilani Z, Gendron-Lepage G, Gaudette F, Mowbray C, Fraisse L, Bazin R, Finzi A, Mothes W, Kumar P, Chatelain E, Uchil PD. Combinatorial Regimens Augment Drug Monotherapy for SARS-CoV-2 Clearance in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.31.543159. [PMID: 37398307 PMCID: PMC10312581 DOI: 10.1101/2023.05.31.543159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Direct acting antivirals (DAAs) represent critical tools for combating SARS-CoV-2 variants of concern (VOCs) that evolve to escape spike-based immunity and future coronaviruses with pandemic potential. Here, we used bioluminescence imaging to evaluate therapeutic efficacy of DAAs that target SARS-CoV-2 RNA-dependent RNA polymerase (favipiravir, molnupiravir) or Main protease (nirmatrelvir) against Delta or Omicron VOCs in K18-hACE2 mice. Nirmatrelvir displayed the best efficacy followed by molnupiravir and favipiravir in suppressing viral loads in the lung. Unlike neutralizing antibody treatment, DAA monotherapy did not eliminate SARS-CoV-2 in mice. However, targeting two viral enzymes by combining molnupiravir with nirmatrelvir resulted in superior efficacy and virus clearance. Furthermore, combining molnupiravir with Caspase-1/4 inhibitor mitigated inflammation and lung pathology whereas combining molnupiravir with COVID-19 convalescent plasma yielded rapid virus clearance and 100% survival. Thus, our study provides insights into treatment efficacies of DAAs and other effective combinations to bolster COVID-19 therapeutic arsenal.
Collapse
|
43
|
Delrue C, De Bruyne S, Speeckaert MM. Unlocking the Diagnostic Potential of Saliva: A Comprehensive Review of Infrared Spectroscopy and Its Applications in Salivary Analysis. J Pers Med 2023; 13:907. [PMID: 37373896 DOI: 10.3390/jpm13060907] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/20/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Infrared (IR) spectroscopy is a noninvasive and rapid analytical technique that provides information on the chemical composition, structure, and conformation of biomolecules in saliva. This technique has been widely used to analyze salivary biomolecules, owing to its label-free advantages. Saliva contains a complex mixture of biomolecules including water, electrolytes, lipids, carbohydrates, proteins, and nucleic acids which are potential biomarkers for several diseases. IR spectroscopy has shown great promise for the diagnosis and monitoring of diseases such as dental caries, periodontitis, infectious diseases, cancer, diabetes mellitus, and chronic kidney disease, as well as for drug monitoring. Recent advancements in IR spectroscopy, such as Fourier-transform infrared (FTIR) spectroscopy and attenuated total reflectance (ATR) spectroscopy, have further enhanced its utility in salivary analysis. FTIR spectroscopy enables the collection of a complete IR spectrum of the sample, whereas ATR spectroscopy enables the analysis of samples in their native form, without the need for sample preparation. With the development of standardized protocols for sample collection and analysis and further advancements in IR spectroscopy, the potential for salivary diagnostics using IR spectroscopy is vast.
Collapse
Affiliation(s)
- Charlotte Delrue
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Sander De Bruyne
- Department of Clinical Biology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Marijn M Speeckaert
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium
- Research Foundation-Flanders (FWO), 1000 Brussels, Belgium
| |
Collapse
|
44
|
Chen DY, Turcinovic J, Feng S, Kenney DJ, Chin CV, Choudhary MC, Conway HL, Semaan M, Close BJ, Tavares AH, Seitz S, Khan N, Kapell S, Crossland NA, Li JZ, Douam F, Baker SC, Connor JH, Saeed M. Cell culture systems for isolation of SARS-CoV-2 clinical isolates and generation of recombinant virus. iScience 2023; 26:106634. [PMID: 37095858 PMCID: PMC10083141 DOI: 10.1016/j.isci.2023.106634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/22/2023] [Accepted: 04/05/2023] [Indexed: 04/26/2023] Open
Abstract
A simple and robust cell culture system is essential for generating authentic SARS-CoV-2 stocks for evaluation of viral pathogenicity, screening of antiviral compounds, and preparation of inactivated vaccines. Evidence suggests that Vero E6, a cell line commonly used in the field to grow SARS-CoV-2, does not support efficient propagation of new viral variants and triggers rapid cell culture adaptation of the virus. We generated a panel of 17 human cell lines overexpressing SARS-CoV-2 entry factors and tested their ability to support viral infection. Two cell lines, Caco-2/AT and HuH-6/AT, demonstrated exceptional susceptibility, yielding highly concentrated virus stocks. Notably, these cell lines were more sensitive than Vero E6 cells in recovering SARS-CoV-2 from clinical specimens. Further, Caco-2/AT cells provided a robust platform for producing genetically reliable recombinant SARS-CoV-2 through a reverse genetics system. These cellular models are a valuable tool for the study of SARS-CoV-2 and its continuously emerging variants.
Collapse
Affiliation(s)
- Da-Yuan Chen
- Department of Biochemistry, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Jacquelyn Turcinovic
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
- Department of Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Shuchen Feng
- Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Devin J. Kenney
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
- Department of Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Chue Vin Chin
- Department of Biochemistry, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Manish C. Choudhary
- Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Cambridge, MA, USA
| | - Hasahn L. Conway
- Department of Biochemistry, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Marc Semaan
- Department of Biochemistry, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Brianna J. Close
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
- Department of Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Alexander H. Tavares
- Department of Biochemistry, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Scott Seitz
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
- Department of Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Nazimuddin Khan
- Department of Biochemistry, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Sebastian Kapell
- Department of Biochemistry, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Nicholas A. Crossland
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Jonathan Z. Li
- Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Cambridge, MA, USA
| | - Florian Douam
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
- Department of Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Susan C. Baker
- Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - John H. Connor
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
- Department of Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Mohsan Saeed
- Department of Biochemistry, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| |
Collapse
|
45
|
Taha TY, Chen IP, Hayashi JM, Tabata T, Walcott K, Kimmerly GR, Syed AM, Ciling A, Suryawanshi RK, Martin HS, Bach BH, Tsou CL, Montano M, Khalid MM, Sreekumar BK, Renuka Kumar G, Wyman S, Doudna JA, Ott M. Rapid assembly of SARS-CoV-2 genomes reveals attenuation of the Omicron BA.1 variant through NSP6. Nat Commun 2023; 14:2308. [PMID: 37085489 PMCID: PMC10120482 DOI: 10.1038/s41467-023-37787-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/31/2023] [Indexed: 04/23/2023] Open
Abstract
Although the SARS-CoV-2 Omicron variant (BA.1) spread rapidly across the world and effectively evaded immune responses, its viral fitness in cell and animal models was reduced. The precise nature of this attenuation remains unknown as generating replication-competent viral genomes is challenging because of the length of the viral genome (~30 kb). Here, we present a plasmid-based viral genome assembly and rescue strategy (pGLUE) that constructs complete infectious viruses or noninfectious subgenomic replicons in a single ligation reaction with >80% efficiency. Fully sequenced replicons and infectious viral stocks can be generated in 1 and 3 weeks, respectively. By testing a series of naturally occurring viruses as well as Delta-Omicron chimeric replicons, we show that Omicron nonstructural protein 6 harbors critical attenuating mutations, which dampen viral RNA replication and reduce lipid droplet consumption. Thus, pGLUE overcomes remaining barriers to broadly study SARS-CoV-2 replication and reveals deficits in nonstructural protein function underlying Omicron attenuation.
Collapse
Affiliation(s)
- Taha Y Taha
- Gladstone Institutes, San Francisco, CA, USA.
| | - Irene P Chen
- Gladstone Institutes, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
| | | | | | | | | | - Abdullah M Syed
- Gladstone Institutes, San Francisco, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Alison Ciling
- Gladstone Institutes, San Francisco, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | | | - Hannah S Martin
- Gladstone Institutes, San Francisco, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - Bryan H Bach
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | | | | | | | | | | | - Stacia Wyman
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Jennifer A Doudna
- Gladstone Institutes, San Francisco, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA
| | - Melanie Ott
- Gladstone Institutes, San Francisco, CA, USA.
- Department of Medicine, University of California, San Francisco, CA, USA.
- Chan Zuckerberg Biohub - San Francisco, San Francisco, CA, USA.
| |
Collapse
|
46
|
Furusawa Y, Kiso M, Iida S, Uraki R, Hirata Y, Imai M, Suzuki T, Yamayoshi S, Kawaoka Y. In SARS-CoV-2 delta variants, Spike-P681R and D950N promote membrane fusion, Spike-P681R enhances spike cleavage, but neither substitution affects pathogenicity in hamsters. EBioMedicine 2023; 91:104561. [PMID: 37043872 PMCID: PMC10083686 DOI: 10.1016/j.ebiom.2023.104561] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/18/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND The SARS-CoV-2 delta (B.1.617.2 lineage) variant was first identified at the end of 2020 and possessed two unique amino acid substitutions in its spike protein: S-P681R, at the S1/S2 cleavage site, and S-D950N, in the HR1 of the S2 subunit. However, the roles of these substitutions in virus phenotypes have not been fully characterized. METHODS We used reverse genetics to generate Wuhan-D614G viruses with these substitutions and delta viruses lacking these substitutions and explored how these changes affected their viral characteristics in vitro and in vivo. FINDINGS S-P681R enhanced spike cleavage and membrane fusion, whereas S-D950N slightly promoted membrane fusion. Although S-681R reduced the virus replicative ability especially in VeroE6 cells, neither substitution affected virus replication in Calu-3 cells and hamsters. The pathogenicity of all recombinant viruses tested in hamsters was slightly but not significantly affected. INTERPRETATION Our observations suggest that the S-P681R and S-D950N substitutions alone do not increase virus pathogenicity, despite of their enhancement of spike cleavage or fusogenicity. FUNDING A full list of funding bodies that contributed to this study can be found under Acknowledgments.
Collapse
Affiliation(s)
- Yuri Furusawa
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan; The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Maki Kiso
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Shun Iida
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ryuta Uraki
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan; The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Yuichiro Hirata
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masaki Imai
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan; The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan; International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Seiya Yamayoshi
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan; The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan; International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
| | - Yoshihiro Kawaoka
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan; The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan; Pandemic Preparedness, Infection, and Advanced Research Center, The University of Tokyo, Tokyo, Japan; Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
47
|
Liu G, Gack MU. An optimized circular polymerase extension reaction-based method for functional analysis of SARS-CoV-2. Virol J 2023; 20:63. [PMID: 37029393 PMCID: PMC10080526 DOI: 10.1186/s12985-023-02025-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/29/2023] [Indexed: 04/09/2023] Open
Abstract
BACKGROUND Reverse genetics systems have been crucial for studying specific viral genes and their relevance in the virus lifecycle, and become important tools for the rational attenuation of viruses and thereby for vaccine design. Recent rapid progress has been made in the establishment of reverse genetics systems for functional analysis of SARS-CoV-2, a coronavirus that causes the ongoing COVID-19 pandemic that has resulted in detrimental public health and economic burden. Among the different reverse genetics approaches, circular polymerase extension reaction (CPER) has become one of the leading methodologies to generate recombinant SARS-CoV-2 infectious clones. Although CPER has greatly facilitated SARS-CoV-2 analysis, it still has certain intrinsic limitations that impede the efficiency and robustness of virus rescue. RESULTS We developed an optimized CPER methodology which, through the use of a modified linker plasmid and by performing DNA nick ligation and direct transfection of permissive cells, overcomes certain intrinsic limitations of the 'traditional' CPER approaches for SARS-CoV-2, allowing for efficient virus rescue. CONCLUSIONS The herein described optimized CPER system may facilitate research studies to assess the contribution of SARS-CoV-2 genes and individual motifs or residues to virus replication, pathogenesis and immune escape, and may also be adapted to other viruses.
Collapse
Affiliation(s)
- GuanQun Liu
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL, USA.
| | - Michaela U Gack
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL, USA.
| |
Collapse
|
48
|
Wang X, Liu Y, Li K, Hao Z. Roles of p53-Mediated Host–Virus Interaction in Coronavirus Infection. Int J Mol Sci 2023; 24:ijms24076371. [PMID: 37047343 PMCID: PMC10094438 DOI: 10.3390/ijms24076371] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
The emergence of the SARS-CoV-2 coronavirus has garnered global attention due to its highly pathogenic nature and the resulting health crisis and economic burden. Although drugs such as Remdesivir have been considered a potential cure by targeting the virus on its RNA polymerase, the high mutation rate and unique 3’ to 5’ exonuclease with proofreading function make it challenging to develop effective anti-coronavirus drugs. As a result, there is an increasing focus on host–virus interactions because coronaviruses trigger stress responses, cell cycle changes, apoptosis, autophagy, and the dysregulation of immune function and inflammation in host cells. The p53 tumor suppressor molecule is a critical regulator of cell signaling pathways, cellular stress responses, DNA repair, and apoptosis. However, viruses can activate or inhibit p53 during viral infections to enhance viral replication and spread. Given its pivotal role in cell physiology, p53 represents a potential target for anti-coronavirus drugs. This review aims to summarize the relationship between p53 and coronaviruses from various perspectives, to shed light on potential targets for antiviral drug development and vaccine design.
Collapse
Affiliation(s)
| | | | | | - Zhihui Hao
- Correspondence: ; Tel./Fax: +86-010-6273-1192
| |
Collapse
|
49
|
Kim BK, Choi WS, Jeong JH, Oh S, Park JH, Yun YS, Min SC, Kang DH, Kim EG, Ryu H, Kim HK, Baek YH, Choi YK, Song MS. A Rapid Method for Generating Infectious SARS-CoV-2 and Variants Using Mutagenesis and Circular Polymerase Extension Cloning. Microbiol Spectr 2023; 11:e0338522. [PMID: 36877070 PMCID: PMC10100849 DOI: 10.1128/spectrum.03385-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/12/2023] [Indexed: 03/07/2023] Open
Abstract
The appearance of SARS-CoV-2 variants in late 2020 raised alarming global public health concerns. Despite continued scientific progress, the genetic profiles of these variants bring changes in viral properties that threaten vaccine efficacy. Thus, it is critically important to investigate the biologic profiles and significance of these evolving variants. In this study, we demonstrate the application of circular polymerase extension cloning (CPEC) to the generation of full-length clones of SARS-CoV-2. We report that, combined with a specific primer design scheme, this yields a simpler, uncomplicated, and versatile approach for engineering SARS-CoV-2 variants with high viral recovery efficiency. This new strategy for genomic engineering of SARS-CoV-2 variants was implemented and evaluated for its efficiency in generating point mutations (K417N, L452R, E484K, N501Y, D614G, P681H, P681R, Δ69-70, Δ157-158, E484K+N501Y, and Ins-38F) and multiple mutations (N501Y/D614G and E484K/N501Y/D614G), as well as a large truncation (ΔORF7A) and insertion (GFP). The application of CPEC to mutagenesis also allows the inclusion of a confirmatory step prior to assembly and transfection. This method could be of value in the molecular characterization of emerging SARS-CoV-2 variants as well as the development and testing of vaccines, therapeutic antibodies, and antivirals. IMPORTANCE Since the first emergence of the SARS-CoV-2 variant in late 2020, novel variants have been continuously introduced to the human population, causing severe public health threats. In general, because these variants acquire new genetic mutation/s, it is critical to analyze the biological function of viruses that such mutations can confer. Therefore, we devised a method that can construct SARS-CoV-2 infectious clones and their variants rapidly and efficiently. The method was developed based on a PCR-based circular polymerase extension cloning (CPEC) combined with a specific primer design scheme. The efficiency of the newly designed method was evaluated by generating SARS-CoV-2 variants with single point mutations, multiple point mutations, and a large truncation and insertion. This method could be of value for the molecular characterization of emerging SARS-CoV-2 variants and the development and testing of vaccines and antiviral agents.
Collapse
Affiliation(s)
- Beom Kyu Kim
- Department of Microbiology, Chungbuk National University, College of Medicine and Medical Research Institute, Cheongju, Chungbuk, Republic of Korea
| | - Won-Suk Choi
- Department of Microbiology, Chungbuk National University, College of Medicine and Medical Research Institute, Cheongju, Chungbuk, Republic of Korea
| | - Ju Hwan Jeong
- Department of Microbiology, Chungbuk National University, College of Medicine and Medical Research Institute, Cheongju, Chungbuk, Republic of Korea
| | - Sol Oh
- Department of Microbiology, Chungbuk National University, College of Medicine and Medical Research Institute, Cheongju, Chungbuk, Republic of Korea
| | - Ji-Hyun Park
- Department of Microbiology, Chungbuk National University, College of Medicine and Medical Research Institute, Cheongju, Chungbuk, Republic of Korea
| | - Yu Soo Yun
- Department of Microbiology, Chungbuk National University, College of Medicine and Medical Research Institute, Cheongju, Chungbuk, Republic of Korea
| | - Seong Cheol Min
- Department of Microbiology, Chungbuk National University, College of Medicine and Medical Research Institute, Cheongju, Chungbuk, Republic of Korea
| | - Da Hyeon Kang
- Department of Microbiology, Chungbuk National University, College of Medicine and Medical Research Institute, Cheongju, Chungbuk, Republic of Korea
| | - Eung-Gook Kim
- Department of Biochemistry, Chungbuk National University, College of Medicine and Medical Research Institute, Cheongju, Chungbuk, Republic of Korea
| | - Hojin Ryu
- Department of Biological Sciences and Biotechnology, College of Natural Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Hye Kwon Kim
- Department of Biological Sciences and Biotechnology, College of Natural Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Yun Hee Baek
- Department of Microbiology, Chungbuk National University, College of Medicine and Medical Research Institute, Cheongju, Chungbuk, Republic of Korea
| | - Young Ki Choi
- Department of Microbiology, Chungbuk National University, College of Medicine and Medical Research Institute, Cheongju, Chungbuk, Republic of Korea
- Center for Study of Emerging and Re-emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Min-Suk Song
- Department of Microbiology, Chungbuk National University, College of Medicine and Medical Research Institute, Cheongju, Chungbuk, Republic of Korea
| |
Collapse
|
50
|
Dumenil T, Le TT, Rawle DJ, Yan K, Tang B, Nguyen W, Bishop C, Suhrbier A. Warmer ambient air temperatures reduce nasal turbinate and brain infection, but increase lung inflammation in the K18-hACE2 mouse model of COVID-19. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160163. [PMID: 36395835 PMCID: PMC9659553 DOI: 10.1016/j.scitotenv.2022.160163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Warmer climatic conditions have been associated with fewer COVID-19 cases. Herein we infected K18-hACE2 mice housed at the standard animal house temperature of ∼22 °C, or at ∼31 °C, which is considered to be thermoneutral for mice. On day 2 post infection, RNA-Seq analyses showed no significant differential gene expression lung in lungs of mice housed at the two temperatures, with almost identical viral loads and type I interferon responses. There was also no significant difference in viral loads in lungs on day 5, but RNA-Seq and histology analyses showed clearly elevated inflammatory signatures and infiltrates. Thermoneutrality thus promoted lung inflammation. On day 2 post infection mice housed at 31 °C showed reduced viral loads in nasal turbinates, consistent with increased mucociliary clearance at the warmer ambient temperature. These mice also had reduced virus levels in the brain, and an ensuing amelioration of weight loss and a delay in mortality. Warmer air temperatures may thus reduce infection of the upper respiratory track and the olfactory epithelium, resulting in reduced brain infection. Potential relevance for anosmia and neurological sequelae in COVID-19 patients is discussed.
Collapse
Affiliation(s)
- Troy Dumenil
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Thuy T Le
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Daniel J Rawle
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Kexin Yan
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Bing Tang
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Wilson Nguyen
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Cameron Bishop
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Andreas Suhrbier
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia; Australian Infectious Disease Research Centre, GVN Center of Excellence, Brisbane, Queensland 4029, 4072, Australia.
| |
Collapse
|