1
|
See WR, Yousefi M, Ooi YS. A review of virus host factor discovery using CRISPR screening. mBio 2024:e0320523. [PMID: 39422472 DOI: 10.1128/mbio.03205-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
The emergence of genome-scale forward genetic screening techniques, such as Haploid Genetic screen and clustered regularly interspaced short palindromic repeats (CRISPR) knockout screen has opened new horizons in our understanding of virus infection biology. CRISPR screening has become a popular tool for the discovery of novel host factors for several viruses due to its specificity and efficiency in genome editing. Here, we review how CRISPR screening has revolutionized our understanding of virus-host interactions from scientific and technological viewpoints. A summary of the published screens conducted thus far to uncover virus host factors is presented, highlighting their experimental design and significant findings. We will outline relevant methods for customizing the CRISPR screening process to answer more specific hypotheses and compile a glossary of conducted CRISPR screens to show their design aspects. Furthermore, using flaviviruses and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as examples, we hope to offer a broad-based perspective on the capabilities of CRISPR screening to serve as a reference point to guide future unbiased discovery of virus host factors.
Collapse
Affiliation(s)
- Wayne Ren See
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Meisam Yousefi
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Yaw Shin Ooi
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
2
|
Barreira-Silva P, Lian Y, Kaufmann SHE, Moura-Alves P. The role of the AHR in host-pathogen interactions. Nat Rev Immunol 2024:10.1038/s41577-024-01088-4. [PMID: 39415055 DOI: 10.1038/s41577-024-01088-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2024] [Indexed: 10/18/2024]
Abstract
Host-microorganism encounters take place in many different ways and with different types of outcomes. Three major types of microorganisms need to be distinguished: (1) pathogens that cause harm to the host and must be controlled; (2) environmental microorganisms that can be ignored but must be controlled at higher abundance; and (3) symbiotic microbiota that require support by the host. Recent evidence indicates that the aryl hydrocarbon receptor (AHR) senses and initiates signalling and gene expression in response to a plethora of microorganisms and infectious conditions. It was originally identified as a receptor that binds xenobiotics. However, it was subsequently found to have a critical role in numerous biological processes, including immunity and inflammation and was recently classified as a pattern recognition receptor. Here we review the role of the AHR in host-pathogen interactions, focusing on AHR sensing of different microbial classes, the ligands involved, responses elicited and disease outcomes. Moreover, we explore the therapeutic potential of targeting the AHR in the context of infection.
Collapse
Affiliation(s)
- Palmira Barreira-Silva
- IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Yilong Lian
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Stefan H E Kaufmann
- Max Planck Institute for Infection Biology, Berlin, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Hagler Institute for Advanced Study, Texas A&M University, College Station, TX, USA
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Pedro Moura-Alves
- IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
3
|
Fehsel K. Metabolic Side Effects from Antipsychotic Treatment with Clozapine Linked to Aryl Hydrocarbon Receptor (AhR) Activation. Biomedicines 2024; 12:2294. [PMID: 39457607 PMCID: PMC11505606 DOI: 10.3390/biomedicines12102294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Metabolic syndrome (MetS) is the most common adverse drug reaction from psychiatric pharmacotherapy. Neuroreceptor blockade by the antipsychotic drug clozapine induces MetS in about 30% of patients. Similar to insulin resistance, clozapine impedes Akt kinase activation, leading to intracellular glucose and glutathione depletion. Additional cystine shortage triggers tryptophan degradation to kynurenine, which is a well-known AhR ligand. Ligand-bound AhR downregulates the intracellular iron pool, thereby increasing the risk of mitochondrial dysfunction. Scavenging iron stabilizes the transcription factor HIF-1, which shifts the metabolism toward transient glycolysis. Furthermore, the AhR inhibits AMPK activation, leading to obesity and liver steatosis. Increasing glucose uptake by AMPK activation prevents dyslipidemia and liver damage and, therefore, reduces the risk of MetS. In line with the in vitro results, feeding experiments with rats revealed a disturbed glucose-/lipid-/iron-metabolism from clozapine treatment with hyperglycemia and hepatic iron deposits in female rats and steatosis and anemia in male animals. Decreased energy expenditure from clozapine treatment seems to be the cause of the fast weight gain in the first weeks of treatment. In patients, this weight gain due to neuroleptic treatment correlates with an improvement in psychotic syndromes and can even be used to anticipate the therapeutic effect of the treatment.
Collapse
Affiliation(s)
- Karin Fehsel
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine-University, Bergische Landstrasse 2, 40629 Duesseldorf, Germany
| |
Collapse
|
4
|
Vyhlídalová B, Ondrová K, Zůvalová I. Dietary monoterpenoids and human health: Unlocking the potential for therapeutic use. Biochimie 2024:S0300-9084(24)00202-5. [PMID: 39260556 DOI: 10.1016/j.biochi.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/16/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
Natural products are widely used in different aspects of our lives - from household cleaners and food production, via cosmetics and aromatherapy, to both alternative and traditional medicine. In our research group, we have recently described several monoterpenoids with potential in the antiviral and anticancer therapy by allosteric targeting of aryl hydrocarbon receptor (AhR). Prior to any practical application, biological effects on human organism must be taken in concern. This review article is focused on the biological effects of 5 monoterpenoids on the human health previously identified as AhR antagonists with a therapeutic potential as antiviral and anticancer agents. We have thoroughly described cytotoxic, anti-inflammatory, anti-proliferative, and anticancer effects, as well as known interactions with nuclear receptors. As clearly demonstrated, monoterpenoids in general represent almost an inexhaustible reservoir of natural compounds possessing the ability to influence, modulate and improve human health.
Collapse
Affiliation(s)
- Barbora Vyhlídalová
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Karolína Ondrová
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Iveta Zůvalová
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| |
Collapse
|
5
|
Pariano M, Gidari A, Stincardini C, Pierucci S, Bastianelli S, Puccetti M, Giovagnoli S, Bellet MM, Fabi C, Castronari R, Antognelli C, Costantini C, Ricci M, Francisci D, Romani L. Protective Effect of Indole-3-Aldehyde in Murine COVID-19-Associated Pulmonary Aspergillosis. J Fungi (Basel) 2024; 10:510. [PMID: 39057395 PMCID: PMC11278170 DOI: 10.3390/jof10070510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/10/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Aspergillus fumigatus is an environmental fungus recently included in the fungal high-priority pathogens by the World Health Organization. While immunodeficiency and/or pre-existing lung damage represent a well-recognized fertile ground for fungal growth, it is increasingly being recognized that severe viral infections may similarly favor A. fumigatus colonization and infection, as recently experienced in the Coronavirus disease 2019 (COVID-19) pandemic. Herein, in a murine model of COVID-19-associated pulmonary aspergillosis (CAPA), obtained by the concomitant exposure to the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Spike protein and A. fumigatus conidia, we found that the microbial compound indole-3-aldehyde (3-IAld) was able to ameliorate CAPA by working at multiple levels during viral infection and fungal superinfection, including epithelial barrier protection, promotion of antiviral responses, and limiting viral replication. As a consequence, 3-IAld limited the pathogenic sequelae of fungal superinfection as revealed by the controlled fungal burden and restrained inflammatory pathology. These results point to indole compounds as potential agents to prevent CAPA.
Collapse
Affiliation(s)
- Marilena Pariano
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.P.); (A.G.); (C.S.); (S.P.); (S.B.); (M.M.B.); (C.F.); (R.C.); (C.A.); (C.C.); (D.F.)
| | - Anna Gidari
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.P.); (A.G.); (C.S.); (S.P.); (S.B.); (M.M.B.); (C.F.); (R.C.); (C.A.); (C.C.); (D.F.)
| | - Claudia Stincardini
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.P.); (A.G.); (C.S.); (S.P.); (S.B.); (M.M.B.); (C.F.); (R.C.); (C.A.); (C.C.); (D.F.)
| | - Sara Pierucci
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.P.); (A.G.); (C.S.); (S.P.); (S.B.); (M.M.B.); (C.F.); (R.C.); (C.A.); (C.C.); (D.F.)
| | - Sabrina Bastianelli
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.P.); (A.G.); (C.S.); (S.P.); (S.B.); (M.M.B.); (C.F.); (R.C.); (C.A.); (C.C.); (D.F.)
| | - Matteo Puccetti
- Department of Pharmaceutical Sciences, University of Perugia, 06132 Perugia, Italy; (M.P.); (S.G.); (M.R.)
| | - Stefano Giovagnoli
- Department of Pharmaceutical Sciences, University of Perugia, 06132 Perugia, Italy; (M.P.); (S.G.); (M.R.)
| | - Marina M. Bellet
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.P.); (A.G.); (C.S.); (S.P.); (S.B.); (M.M.B.); (C.F.); (R.C.); (C.A.); (C.C.); (D.F.)
| | - Consuelo Fabi
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.P.); (A.G.); (C.S.); (S.P.); (S.B.); (M.M.B.); (C.F.); (R.C.); (C.A.); (C.C.); (D.F.)
| | - Roberto Castronari
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.P.); (A.G.); (C.S.); (S.P.); (S.B.); (M.M.B.); (C.F.); (R.C.); (C.A.); (C.C.); (D.F.)
| | - Cinzia Antognelli
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.P.); (A.G.); (C.S.); (S.P.); (S.B.); (M.M.B.); (C.F.); (R.C.); (C.A.); (C.C.); (D.F.)
| | - Claudio Costantini
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.P.); (A.G.); (C.S.); (S.P.); (S.B.); (M.M.B.); (C.F.); (R.C.); (C.A.); (C.C.); (D.F.)
| | - Maurizio Ricci
- Department of Pharmaceutical Sciences, University of Perugia, 06132 Perugia, Italy; (M.P.); (S.G.); (M.R.)
| | - Daniela Francisci
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.P.); (A.G.); (C.S.); (S.P.); (S.B.); (M.M.B.); (C.F.); (R.C.); (C.A.); (C.C.); (D.F.)
| | - Luigina Romani
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (M.P.); (A.G.); (C.S.); (S.P.); (S.B.); (M.M.B.); (C.F.); (R.C.); (C.A.); (C.C.); (D.F.)
| |
Collapse
|
6
|
Bouzari B, Chugaeva UY, Karampoor S, Mirzaei R. Immunometabolites in viral infections: Action mechanism and function. J Med Virol 2024; 96:e29807. [PMID: 39037069 DOI: 10.1002/jmv.29807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/10/2024] [Accepted: 07/05/2024] [Indexed: 07/23/2024]
Abstract
The interplay between viral pathogens and host metabolism plays a pivotal role in determining the outcome of viral infections. Upon viral detection, the metabolic landscape of the host cell undergoes significant changes, shifting from oxidative respiration via the tricarboxylic acid (TCA) cycle to increased aerobic glycolysis. This metabolic shift is accompanied by elevated nutrient accessibility, which is vital for cell function, development, and proliferation. Furthermore, depositing metabolites derived from fatty acids, TCA intermediates, and amino acid catabolism accelerates the immunometabolic transition, facilitating pro-inflammatory and antimicrobial responses. Immunometabolites refer to small molecules involved in cellular metabolism regulating the immune response. These molecules include nutrients, such as glucose and amino acids, along with metabolic intermediates and signaling molecules adenosine, lactate, itaconate, succinate, kynurenine, and prostaglandins. Emerging evidence suggests that immunometabolites released by immune cells establish a complex interaction network within local niches, orchestrating and fine-tuning immune responses during viral diseases. However, our current understanding of the immense capacity of metabolites to convey essential cell signals from one cell to another or within cellular compartments remains incomplete. Unraveling these complexities would be crucial for harnessing the potential of immunometabolites in therapeutic interventions. In this review, we discuss specific immunometabolites and their mechanisms of action in viral infections, emphasizing recent findings and future directions in this rapidly evolving field.
Collapse
Affiliation(s)
- Behnaz Bouzari
- Department of Pathology, Firouzgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Uliana Y Chugaeva
- Department of Pediatric, Preventive Dentistry and Orthodontics, Institute of Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
7
|
Buchynskyi M, Oksenych V, Kamyshna I, Vorobets I, Halabitska I, Kamyshnyi O. Modulatory Roles of AHR, FFAR2, FXR, and TGR5 Gene Expression in Metabolic-Associated Fatty Liver Disease and COVID-19 Outcomes. Viruses 2024; 16:985. [PMID: 38932276 PMCID: PMC11209102 DOI: 10.3390/v16060985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is a risk factor for severe COVID-19. This study explores the potential influence of gut hormone receptor and immune response gene expression on COVID-19 outcomes in MAFLD patients. METHODS We investigated gene expression levels of AHR, FFAR2, FXR, and TGR5 in patients with MAFLD and COVID-19 compared to controls. We examined associations between gene expression and clinical outcomes. RESULTS COVID-19 patients displayed altered AHR expression, potentially impacting immune response and recovery. Downregulated AHR in patients with MAFLD correlated with increased coagulation parameters. Elevated FFAR2 expression in patients with MAFLD was linked to specific immune cell populations and hospital stay duration. A significantly lower FXR expression was observed in both MAFLD and severe COVID-19. CONCLUSION Our findings suggest potential modulatory roles for AHR, FFAR2, and FXR in COVID-19 and MAFLD.
Collapse
Affiliation(s)
- Mykhailo Buchynskyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Iryna Kamyshna
- Department of Medical Rehabilitation, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | - Ihor Vorobets
- Ophthalmology Clinic “Vizex”, Naukova St. 96B, 79060 Lviv, Ukraine
| | - Iryna Halabitska
- Department of Therapy and Family Medicine, I. Horbachevsky Ternopil National Medical University, Voli Square, 1, 46001 Ternopil, Ukraine;
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| |
Collapse
|
8
|
Xu L, Lin L, Xie N, Chen W, Nong W, Li R. Role of aryl hydrocarbon receptors in infection and inflammation. Front Immunol 2024; 15:1367734. [PMID: 38680494 PMCID: PMC11045974 DOI: 10.3389/fimmu.2024.1367734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/02/2024] [Indexed: 05/01/2024] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a transcription factor that is activated by various ligands, including pollutants, microorganisms, and metabolic substances. It is expressed extensively in pulmonary and intestinal epithelial cells, where it contributes to barrier defense. The expression of AhR is pivotal in regulating the inflammatory response to microorganisms. However, dysregulated AhR expression can result in endocrine disorders, leading to immunotoxicity and potentially promoting the development of carcinoma. This review focuses on the crucial role of the AhR in facilitating and limiting the proliferation of pathogens, specifically in relation to the host cell type and the species of etiological agents involved in microbial pathogen infections. The activation of AhR is enhanced through the IDO1-AhR-IDO1 positive feedback loop, which is manipulated by viruses. AhR primarily promotes the infection of SARS-CoV-2 by inducing the expression of angiotensin-converting enzyme 2 (ACE2) and the secretion of pro-inflammatory cytokines. AhR also plays a significant role in regulating various types of T-cells, including CD4+ T cells and CD8+ T cells, in the context of pulmonary infections. The AhR pathway plays a crucial role in regulating immune responses within the respiratory and intestinal barriers when they are invaded by viruses, bacteria, parasites, and fungi. Additionally, we propose that targeting the agonist and antagonist of AhR signaling pathways could serve as a promising therapeutic approach for combating pathogen infections, especially in light of the growing prevalence of drug resistance to multiple antibiotics.
Collapse
Affiliation(s)
- Linglan Xu
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Department of Obstetrics and Gynecology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, China
| | - Luping Lin
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Department of Obstetrics and Gynecology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Nan Xie
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, China
| | - Weiwei Chen
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, China
| | - Weihua Nong
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Department of Obstetrics and Gynecology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Ranhui Li
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, China
- Hunan Prevention and Treatment Institute for Occupational Diseases and Affiliated Prevention and Treatment Institute for Occupational Diseases, University of South China, Changsha, China
| |
Collapse
|
9
|
Veland N, Gleneadie HJ, Brown KE, Sardini A, Pombo J, Dimond A, Burns V, Sarkisyan K, Schiering C, Webster Z, Merkenschlager M, Fisher AG. Bioluminescence imaging of Cyp1a1-luciferase reporter mice demonstrates prolonged activation of the aryl hydrocarbon receptor in the lung. Commun Biol 2024; 7:442. [PMID: 38600349 PMCID: PMC11006662 DOI: 10.1038/s42003-024-06089-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 03/21/2024] [Indexed: 04/12/2024] Open
Abstract
Aryl hydrocarbon receptor (AHR) signalling integrates biological processes that sense and respond to environmental, dietary, and metabolic challenges to ensure tissue homeostasis. AHR is a transcription factor that is inactive in the cytosol but upon encounter with ligand translocates to the nucleus and drives the expression of AHR targets, including genes of the cytochrome P4501 family of enzymes such as Cyp1a1. To dynamically visualise AHR activity in vivo, we generated reporter mice in which firefly luciferase (Fluc) was non-disruptively targeted into the endogenous Cyp1a1 locus. Exposure of these animals to FICZ, 3-MC or to dietary I3C induced strong bioluminescence signal and Cyp1a1 expression in many organs including liver, lung and intestine. Longitudinal studies revealed that AHR activity was surprisingly long-lived in the lung, with sustained Cyp1a1 expression evident in discrete populations of cells including columnar epithelia around bronchioles. Our data link diet to lung physiology and also reveal the power of bespoke Cyp1a1-Fluc reporters to longitudinally monitor AHR activity in vivo.
Collapse
Affiliation(s)
- Nicolas Veland
- Epigenetic Memory Group, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 OHS, UK
| | - Hannah J Gleneadie
- Epigenetic Memory Group, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 OHS, UK
| | - Karen E Brown
- Epigenetic Memory Group, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 OHS, UK
| | - Alessandro Sardini
- Whole Animal Physiology and Imaging, MRC Laboratory of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0HS, UK
| | - Joaquim Pombo
- Senescence Group, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 0HS, UK
| | - Andrew Dimond
- Epigenetic Memory Group, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 OHS, UK
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Vanessa Burns
- Epigenetic Memory Group, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 OHS, UK
| | - Karen Sarkisyan
- Synthetic Biology Group, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 0HS, UK
| | - Chris Schiering
- Inflammation and Obesity Group, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 0HS, UK
| | - Zoe Webster
- Transgenics & Embryonic Stem Cell Facility, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 0HS, UK
| | - Matthias Merkenschlager
- Lymphocyte Development Group, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 0HS, UK
| | - Amanda G Fisher
- Epigenetic Memory Group, MRC Laboratory of Medical Sciences, Imperial College London Hammersmith Hospital Campus, Du Cane Road, London, W12 OHS, UK.
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK.
| |
Collapse
|
10
|
Perdijk O, Azzoni R, Marsland BJ. The microbiome: an integral player in immune homeostasis and inflammation in the respiratory tract. Physiol Rev 2024; 104:835-879. [PMID: 38059886 DOI: 10.1152/physrev.00020.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/07/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023] Open
Abstract
The last decade of microbiome research has highlighted its fundamental role in systemic immune and metabolic homeostasis. The microbiome plays a prominent role during gestation and into early life, when maternal lifestyle factors shape immune development of the newborn. Breast milk further shapes gut colonization, supporting the development of tolerance to commensal bacteria and harmless antigens while preventing outgrowth of pathogens. Environmental microbial and lifestyle factors that disrupt this process can dysregulate immune homeostasis, predisposing infants to atopic disease and childhood asthma. In health, the low-biomass lung microbiome, together with inhaled environmental microbial constituents, establishes the immunological set point that is necessary to maintain pulmonary immune defense. However, in disease perturbations to immunological and physiological processes allow the upper respiratory tract to act as a reservoir of pathogenic bacteria, which can colonize the diseased lung and cause severe inflammation. Studying these host-microbe interactions in respiratory diseases holds great promise to stratify patients for suitable treatment regimens and biomarker discovery to predict disease progression. Preclinical studies show that commensal gut microbes are in a constant flux of cell division and death, releasing microbial constituents, metabolic by-products, and vesicles that shape the immune system and can protect against respiratory diseases. The next major advances may come from testing and utilizing these microbial factors for clinical benefit and exploiting the predictive power of the microbiome by employing multiomics analysis approaches.
Collapse
Affiliation(s)
- Olaf Perdijk
- Department of Immunology, School of Translational Science, Monash University, Melbourne, Victoria, Australia
| | - Rossana Azzoni
- Department of Immunology, School of Translational Science, Monash University, Melbourne, Victoria, Australia
| | - Benjamin J Marsland
- Department of Immunology, School of Translational Science, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
11
|
Zheng C, Wang Y, Cheng Y, Wang X, Wei H, King I, Li Y. scNovel: a scalable deep learning-based network for novel rare cell discovery in single-cell transcriptomics. Brief Bioinform 2024; 25:bbae112. [PMID: 38555470 PMCID: PMC10981759 DOI: 10.1093/bib/bbae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/05/2024] [Accepted: 02/20/2024] [Indexed: 04/02/2024] Open
Abstract
Single-cell RNA sequencing has achieved massive success in biological research fields. Discovering novel cell types from single-cell transcriptomics has been demonstrated to be essential in the field of biomedicine, yet is time-consuming and needs prior knowledge. With the unprecedented boom in cell atlases, auto-annotation tools have become more prevalent due to their speed, accuracy and user-friendly features. However, existing tools have mostly focused on general cell-type annotation and have not adequately addressed the challenge of discovering novel rare cell types. In this work, we introduce scNovel, a powerful deep learning-based neural network that specifically focuses on novel rare cell discovery. By testing our model on diverse datasets with different scales, protocols and degrees of imbalance, we demonstrate that scNovel significantly outperforms previous state-of-the-art novel cell detection models, reaching the most AUROC performance(the only one method whose averaged AUROC results are above 94%, up to 16.26% more comparing to the second-best method). We validate scNovel's performance on a million-scale dataset to illustrate the scalability of scNovel further. Applying scNovel on a clinical COVID-19 dataset, three potential novel subtypes of Macrophages are identified, where the COVID-related differential genes are also detected to have consistent expression patterns through deeper analysis. We believe that our proposed pipeline will be an important tool for high-throughput clinical data in a wide range of applications.
Collapse
Affiliation(s)
- Chuanyang Zheng
- Department of Computer Science and Engineering, CUHK, Hong Kong SAR, China
| | - Yixuan Wang
- Department of Computer Science and Engineering, CUHK, Hong Kong SAR, China
| | - Yuqi Cheng
- College of Computing, Georgia Institute of Technology, Atlanta, GA, USA
| | - Xuesong Wang
- Department of Computer Science and Engineering, CUHK, Hong Kong SAR, China
| | - Hongxin Wei
- MLR Lab, Southern University of Science and Technology
| | - Irwin King
- Department of Computer Science and Engineering, CUHK, Hong Kong SAR, China
| | - Yu Li
- Department of Computer Science and Engineering, CUHK, Hong Kong SAR, China
- The CUHK Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China
- Institute for Medical Enginering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
12
|
Haid S, Matthaei A, Winkler M, Sake SM, Gunesch AP, Milke V, Köhler NM, Rückert J, Vieyres G, Kühl D, Nguyen TT, Göhl M, Lasswitz L, Zapatero-Belinchón FJ, Brogden G, Gerold G, Wiegmann B, Bilitewski U, Brown RJP, Brönstrup M, Schulz TF, Pietschmann T. Repurposing screen identifies novel candidates for broad-spectrum coronavirus antivirals and druggable host targets. Antimicrob Agents Chemother 2024; 68:e0121023. [PMID: 38319076 PMCID: PMC10916382 DOI: 10.1128/aac.01210-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Libraries composed of licensed drugs represent a vast repertoire of molecules modulating physiological processes in humans, providing unique opportunities for the discovery of host-targeting antivirals. We screened the Repurposing, Focused Rescue, and Accelerated Medchem (ReFRAME) repurposing library with approximately 12,000 molecules for broad-spectrum coronavirus antivirals and discovered 134 compounds inhibiting an alphacoronavirus and mapping to 58 molecular target categories. Dominant targets included the 5-hydroxytryptamine receptor, the dopamine receptor, and cyclin-dependent kinases. Gene knock-out of the drugs' host targets including cathepsin B and L (CTSB/L; VBY-825), the aryl hydrocarbon receptor (AHR; Phortress), the farnesyl-diphosphate farnesyltransferase 1 (FDFT1; P-3622), and the kelch-like ECH-associated protein 1 (KEAP1; Omaveloxolone), significantly modulated HCoV-229E infection, providing evidence that these compounds inhibited the virus through acting on their respective host targets. Counter-screening of all 134 primary compound candidates with SARS-CoV-2 and validation in primary cells identified Phortress, an AHR activating ligand, P-3622-targeting FDFT1, and Omaveloxolone, which activates the NFE2-like bZIP transcription factor 2 (NFE2L2) by liberating it from its endogenous inhibitor KEAP1, as antiviral candidates for both an Alpha- and a Betacoronavirus. This study provides an overview of HCoV-229E repurposing candidates and reveals novel potentially druggable viral host dependency factors hijacked by diverse coronaviruses.
Collapse
Affiliation(s)
- Sibylle Haid
- Institute for Experimental Virology, Twincore - Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Alina Matthaei
- Institute for Experimental Virology, Twincore - Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Melina Winkler
- Institute for Experimental Virology, Twincore - Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Svenja M. Sake
- Institute for Experimental Virology, Twincore - Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Antonia P. Gunesch
- Institute for Experimental Virology, Twincore - Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Vanessa Milke
- Institute for Experimental Virology, Twincore - Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Natalie M. Köhler
- Institute for Experimental Virology, Twincore - Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Jessica Rückert
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research, Hannover-Braunschweig Site, Hannover, Germany
| | - Gabrielle Vieyres
- Junior Research Group “Cell Biology of RNA Viruses”, Leibniz Institute of Experimental Virology, Hamburg, Germany
- Integrative Analysis of Pathogen-Induced Compartments, Leibniz ScienceCampus InterACt, Hamburg, Germany
| | - David Kühl
- Junior Research Group “Cell Biology of RNA Viruses”, Leibniz Institute of Experimental Virology, Hamburg, Germany
| | - Tu-Trinh Nguyen
- Calibr, a Division of The Scripps Research Institute, La Jolla, California, USA
| | - Matthias Göhl
- German Center for Infection Research, Hannover-Braunschweig Site, Hannover, Germany
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Lisa Lasswitz
- Institute for Experimental Virology, Twincore - Centre for Experimental and Clinical Infection Research, Hannover, Germany
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Francisco J. Zapatero-Belinchón
- Institute for Experimental Virology, Twincore - Centre for Experimental and Clinical Infection Research, Hannover, Germany
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Graham Brogden
- Institute for Experimental Virology, Twincore - Centre for Experimental and Clinical Infection Research, Hannover, Germany
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Gisa Gerold
- Institute for Experimental Virology, Twincore - Centre for Experimental and Clinical Infection Research, Hannover, Germany
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
- Department of Clinical Microbiology, Virology, 901 87 Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine (WCMM), 901 87 Umeå University, Umeå, Sweden
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Bettina Wiegmann
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development, Hannover Medical School, Hannover, Germany
- BREATH (Biomedical Research in Endstage and Obstructive Lung Disease Hannover), German Center for Lung Research (DZL), Carl-Neuberg Str. 1, Hannover, Germany
| | | | - Richard J. P. Brown
- Division of Veterinary Medicine, Paul Ehrlich Institute, Langen, Germany
- Department of Molecular and Medical Virology, Ruhr University, Bochum, Germany
| | - Mark Brönstrup
- German Center for Infection Research, Hannover-Braunschweig Site, Hannover, Germany
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Thomas F. Schulz
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research, Hannover-Braunschweig Site, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Thomas Pietschmann
- Institute for Experimental Virology, Twincore - Centre for Experimental and Clinical Infection Research, Hannover, Germany
- German Center for Infection Research, Hannover-Braunschweig Site, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
13
|
Robak O, Kastner MT, Voill-Glaninger A, Viveiros A, Steininger C. The Distinct Regulation of the Vitamin D and Aryl Hydrocarbon Receptors in COVID-19. Nutrients 2024; 16:598. [PMID: 38474725 DOI: 10.3390/nu16050598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/11/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
(1) Background: SARS-CoV-2 affects several immune pathways, including the vitamin D (VDR) and the aryl hydrocarbon receptor pathways (AhR). The aim of the study was the evaluation of the VDR and AhR pathways in the blood of COVID-19 patients with regard to the severity of disease. (2) Methods: Observational, single-center, case-control design. A total of 240 samples were selected for exploration. Patients who tested negative for SARS-CoV-2 but suffered from other respiratory infections (ORIs) served as a control group. (3) Results: VDR-specific mRNA in the blood of patients with mild symptoms (131.2 ± 198.6) was significantly upregulated relative to the VDR expression of the ORI group (23.24 ± 42.60; p < 0.0001); however, VDR expression of critically ill patients showed an impaired upregulation (54.73 ± 68.34; p < 0.001). CYP27B1 expression was not significantly regulated during SARS-CoV-2 infection. There was a downregulation of VDR and CYP27B1 compared to survivors. There was no significant difference in 25(OH)-vitamin D3 levels between critically ill patients with regard to survival (24.3 ± 9.4 vs. 27.1 ± 11.3; p = 0.433). (4) Conclusion: The VDR and AhR pathways are distinctively regulated in patients suffering from COVID-19 depending on the severity of disease. A combination treatment of antiviral drugs and vitamin D substitution should be evaluated for potentially improved prognosis in COVID-19.
Collapse
Affiliation(s)
- Oliver Robak
- Department of Internal Medicine I, Medical University of Vienna, 1090 Vienna, Austria
| | - Marie-Theres Kastner
- Department of Internal Medicine I, Medical University of Vienna, 1090 Vienna, Austria
| | | | - André Viveiros
- Department of Laboratory Medicine, Klinik Landstraße, 1030 Vienna, Austria
| | - Christoph Steininger
- Department of Internal Medicine I, Medical University of Vienna, 1090 Vienna, Austria
- Karl-Landsteiner Institute for Microbiome Research, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
14
|
Yousefi M, Lee WS, Chan WOY, He W, Mah MG, Yong CL, Deerain JM, Wang L, Arcinas C, Yan B, Tan D, Sia WR, Gamage AM, Yang J, Hsu ACY, Li S, Linster M, Yang X, Ghosh S, Anderson DE, Smith GJD, Tan CW, Wang LF, Ooi YS. Betacoronaviruses SARS-CoV-2 and HCoV-OC43 infections in IGROV-1 cell line require aryl hydrocarbon receptor. Emerg Microbes Infect 2023; 12:2256416. [PMID: 37672505 PMCID: PMC10512916 DOI: 10.1080/22221751.2023.2256416] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023]
Abstract
The emergence of novel betacoronaviruses has posed significant financial and human health burdens, necessitating the development of appropriate tools to combat future outbreaks. In this study, we have characterized a human cell line, IGROV-1, as a robust tool to detect, propagate, and titrate betacoronaviruses SARS-CoV-2 and HCoV-OC43. IGROV-1 cells can be used for serological assays, antiviral drug testing, and isolating SARS-CoV-2 variants from patient samples. Using time-course transcriptomics, we confirmed that IGROV-1 cells exhibit a robust innate immune response upon SARS-CoV-2 infection, recapitulating the response previously observed in primary human nasal epithelial cells. We performed genome-wide CRISPR knockout genetic screens in IGROV-1 cells and identified Aryl hydrocarbon receptor (AHR) as a critical host dependency factor for both SARS-CoV-2 and HCoV-OC43. Using DiMNF, a small molecule inhibitor of AHR, we observed that the drug selectively inhibits HCoV-OC43 infection but not SARS-CoV-2. Transcriptomic analysis in primary normal human bronchial epithelial cells revealed that DiMNF blocks HCoV-OC43 infection via basal activation of innate immune responses. Our findings highlight the potential of IGROV-1 cells as a valuable diagnostic and research tool to combat betacoronavirus diseases.
Collapse
Affiliation(s)
- Meisam Yousefi
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Wai Suet Lee
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Wharton O. Y. Chan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Wei He
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Marcus G. Mah
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Cythia Lingli Yong
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Joshua M. Deerain
- Victorian Infectious Diseases Reference Laboratory, The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Lijin Wang
- Centre for Computational Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Camille Arcinas
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Biaoguo Yan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Dewei Tan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Wan Rong Sia
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Akshamal M. Gamage
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Jinxuan Yang
- Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, People’s Republic of China
| | - Alan Chen-Yu Hsu
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, Australia
- College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, Australia
| | - Shang Li
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Martin Linster
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Xinglou Yang
- Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, People’s Republic of China
| | - Sujoy Ghosh
- Centre for Computational Biology, Duke-NUS Medical School, Singapore, Singapore
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Danielle E. Anderson
- Victorian Infectious Diseases Reference Laboratory, The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Gavin J. D. Smith
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Chee Wah Tan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- Infectious Diseases Translation Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lin-Fa Wang
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Yaw Shin Ooi
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- Infectious Diseases Labs, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
15
|
Chaussé AM, Roche SM, Moroldo M, Hennequet-Antier C, Holbert S, Kempf F, Barilleau E, Trotereau J, Velge P. Epithelial cell invasion by salmonella typhimurium induces modulation of genes controlled by aryl hydrocarbon receptor signaling and involved in extracellular matrix biogenesis. Virulence 2023; 14:2158663. [PMID: 36600181 PMCID: PMC9828750 DOI: 10.1080/21505594.2022.2158663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Salmonella is the only bacterium able to enter a host cell by the two known mechanisms: trigger and zipper. The trigger mechanism relies on the injection of bacterial effectors into the host cell through the Salmonella type III secretion system 1. In the zipper mechanism, mediated by the invasins Rck and PagN, the bacterium takes advantage of a cellular receptor for invasion. This study describes the transcriptomic reprogramming of the IEC-6 intestinal epithelial cell line to Salmonella Typhimurium strains that invaded cells by a trigger, a zipper, or both mechanisms. Using S. Typhimurium strains invalidated for one or other entry mechanism, we have shown that IEC-6 cells could support both entries. Comparison of the gene expression profiles of exposed cells showed that irrespective of the mechanism used for entry, the transcriptomic reprogramming of the cell was nearly the same. On the other hand, when gene expression was compared between cells unexposed or exposed to the bacterium, the transcriptomic reprogramming of exposed cells was significantly different. It is particularly interesting to note the modulation of expression of numerous target genes of the aryl hydrocarbon receptor showing that this transcription factor was activated by S. Typhimurium infection. Numerous genes associated with the extracellular matrix were also modified. This was confirmed at the protein level by western-blotting showing a dramatic modification in some extracellular matrix proteins. Analysis of a selected set of modulated genes showed that the expression of the majority of these genes was modulated during the intracellular life of S. Typhimurium.
Collapse
Affiliation(s)
| | | | - Marco Moroldo
- INRAE, AgroParisTech, Université Paris Saclay, Jouy-en-Josas, France
| | | | | | | | | | | | - Philippe Velge
- INRAE, ISP, Université de Tours, Nouzilly, France,CONTACT Philippe Velge
| |
Collapse
|
16
|
Papadopoulos KI, Papadopoulou A, Aw TC. Live to die another day: novel insights may explain the pathophysiology behind smoker's paradox in SARS-CoV-2 infection. Mol Cell Biochem 2023; 478:2517-2526. [PMID: 36867341 PMCID: PMC9983545 DOI: 10.1007/s11010-023-04681-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 02/17/2023] [Indexed: 03/04/2023]
Abstract
The severe acute respiratory coronavirus 2 (SARS-CoV-2) infection demonstrates a highly variable and unpredictable course. Several reports have claimed a smoker's paradox in coronavirus disease 2019 (COVID-19), in line with previous suggestions that smoking is associated with better survival after acute myocardial infarction and appears protective in preeclampsia. Several plausible physiological explanations exist accounting for the paradoxical observation of smoking engendering protection against SARS-CoV-2 infection. In this review, we delineate novel mechanisms whereby smoking habits and smokers' genetic polymorphism status affecting various nitric oxide (NO) pathways (endothelial NO synthase, cytochrome P450 (CYP450), erythropoietin receptor (EPOR); β-common receptor (βcR)), along with tobacco smoke modulation of microRNA-155 and aryl-hydrocarbon receptor (AHR) effects, may be important determinators of SARS-CoV-2 infection and COVID-19 course. While transient NO bioavailability increase and beneficial immunoregulatory modulations through the above-mentioned pathways using exogenous, endogenous, genetic and/or therapeutic modalities may have direct and specific, viricidal SARS-CoV-2 effects, employing tobacco smoke inhalation to achieve protection equals self-harm. Tobacco smoking remains the leading cause of death, illness, and impoverishment.
Collapse
Affiliation(s)
- K. I. Papadopoulos
- THAI StemLife, 566/3 Soi Ramkhamhaeng 39 (Thepleela 1), Prachaouthit Rd., Wangthonglang, Wangthonglang, 10310 Bangkok Thailand
| | - A. Papadopoulou
- Occupational and Environmental Health Services, Feelgood Lund, Ideon Science Park, Scheelevägen 17, 223 63 Lund, Sweden
| | - T. C. Aw
- Department of Laboratory Medicine, Changi General Hospital, 2 Simei Street 3, Singapore, 529889 Singapore
- Department of Medicine, National University of Singapore, Singapore, 119228 Singapore
| |
Collapse
|
17
|
Vrzal R, Marcalíková A, Krasulová K, Zemánková L, Dvořák Z. Jasmone Is a Ligand-Selective Allosteric Antagonist of Aryl Hydrocarbon Receptor (AhR). Int J Mol Sci 2023; 24:15655. [PMID: 37958638 PMCID: PMC10648586 DOI: 10.3390/ijms242115655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Herbal extracts represent a wide spectrum of biologically active ingredients with potential medical applications. By screening minor constituents of jasmine essential oil towards aryl hydrocarbon receptor (AhR) activity using a gene reporter assay (GRA), we found the antagonist effects of jasmone (3-methyl-2-[(2Z)-pent-2-en-1-yl]cyclopent-2-en-1-one). It inhibited 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-, benzo[a]pyrene (BaP)-, and 6-formylindolo[3,2-b]carbazole (FICZ)-triggered AhR-dependent luciferase activity in a concentration-dependent manner. However, the inhibition differed markedly between TCDD, BaP, and FICZ, with the latter being significantly less inhibited. The dose-response analysis confirmed an allosteric type of AhR antagonism. Furthermore, jasmone efficiently inhibited AhR activation by AhR agonists and microbial catabolites of tryptophan (MICTs). TCDD- and FICZ-inducible CYP1A1 expression in primary human hepatocytes was inhibited by jasmone, whereas in the human HepG2 and LS180 cells, jasmone antagonized only TCDD-activated AhR. Jasmone only partially displaced radiolabeled TCDD from its binding to mouse Ahr, suggesting it is not a typical orthosteric ligand of AhR. TCDD-elicited AhR nuclear translocation was not affected by jasmone, whereas downstream signaling events, including the formation of the AhR:ARNT complex and enrichment of the CYP1A1 promoter, were inhibited by jasmone. In conclusion, we show that jasmone is a potent allosteric antagonist of AhR. Such discovery may help to find and/or clarify the use of jasmone in pharmaco- and phytotherapy for conditions where AhR plays a key role.
Collapse
Affiliation(s)
- Radim Vrzal
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | | | | | | | | |
Collapse
|
18
|
Cerracchio C, Amoroso MG, Piccolo M, Ferraro MG, Nocera FP, De Martino L, Serra F, Irace C, Tenore GC, Novellino E, Santamaria R, Fiorito F. Antiviral activity of Taurisolo® during bovine alphaherpesvirus 1 infection. Virus Res 2023; 336:199217. [PMID: 37666327 PMCID: PMC10504091 DOI: 10.1016/j.virusres.2023.199217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
Bovine alphaherpesvirus 1 (BoAHV-1), the pathogen causing Infectious Bovine Rhinotracheitis (IBR) and predisposing to polymicrobial infections in cattle, provokes farm economic losses and trading restrictions in the world. However, nontoxic antiviral agents for BoAHV-1 infection are still unavailable, but plant extracts, such as flavonoid derivatives possess activity against BoAHV-1. Taurisolo®, a nutraceutical produced by Aglianico grape pomace, has recently shown promising antiviral activity. Herein, the potential activity of Taurisolo® during BoAHV-1 infection in Madin Darby bovine kidney (MDBK) cells was tested. Taurisolo® enhanced cell viability and reduced morphological death signs in BoAHV-1-infected cells. Moreover, Taurisolo® influenced the expression of bICP0, the key regulatory protein of BoAHV-1, and it strongly diminished virus yield. These effects were associated with an up-regulation of aryl hydrocarbon receptor (AhR), a transcription factor involved in microbial metabolism and immune response. In conclusion, our findings indicate that Taurisolo® may represent a potential antiviral agent against BoAHV-1 infection. Noteworthy, AhR could be involved in the observed effects and become a new target in antiviral therapy.
Collapse
Affiliation(s)
- Claudia Cerracchio
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy
| | | | - Marialuisa Piccolo
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | | | - Francesca Paola Nocera
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy
| | - Luisa De Martino
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy
| | - Francesco Serra
- Istituto Zooprofilattico del Mezzogiorno, 80055 Portici, Naples, Italy
| | - Carlo Irace
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy.
| | - Gian Carlo Tenore
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Ettore Novellino
- Department of Medicine and Surgery, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Rita Santamaria
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Filomena Fiorito
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy.
| |
Collapse
|
19
|
Xiong R, Shao D, Do S, Chan WK. Activation of Chaperone-Mediated Autophagy Inhibits the Aryl Hydrocarbon Receptor Function by Degrading This Receptor in Human Lung Epithelial Carcinoma A549 Cells. Int J Mol Sci 2023; 24:15116. [PMID: 37894798 PMCID: PMC10606571 DOI: 10.3390/ijms242015116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/07/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor and a substrate protein of a Cullin 4B E3 ligase complex responsible for diverse cellular processes. In the lung, this receptor is responsible for the bioactivation of benzo[a]pyrene during tumorigenesis. Realizing that the AHR function is affected by its expression level, we are interested in the degradation mechanism of AHR in the lung. Here, we have investigated the mechanism responsible for AHR degradation using human lung epithelial A549 cells. We have observed that the AHR protein levels increase in the presence of chloroquine (CQ), an autophagy inhibitor, in a dose-dependent manner. Treatment with 6-aminonicotinamide (6-AN), a chaperone-mediated autophagy (CMA) activator, decreases AHR protein levels in a concentration-dependent and time-dependent manner. This decrease suppresses the ligand-dependent activation of the AHR target gene transcription, and can be reversed by CQ but not MG132. Knockdown of lysosome-associated membrane protein 2 (LAMP2), but not autophagy-related 5 (ATG5), suppresses the chloroquine-mediated increase in the AHR protein. AHR is resistant to CMA when its CMA motif is mutated. Suppression of the epithelial-to-mesenchymal transition in A549 cells is observed when the AHR gene is knocked out or the AHR protein level is reduced by 6-AN. Collectively, we have provided evidence supporting that AHR is continuously undergoing CMA and activation of CMA suppresses the AHR function in A549 cells.
Collapse
Affiliation(s)
| | | | | | - William K. Chan
- Department of Pharmaceutics & Medicinal Chemistry, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA 95211, USA; (R.X.); (D.S.); (S.D.)
| |
Collapse
|
20
|
Sládeková L, Zgarbová E, Vrzal R, Vanda D, Soural M, Jakubcová K, Vázquez-Gómez G, Vondráček J, Dvořák Z. Switching on/off aryl hydrocarbon receptor and pregnane X receptor activities by chemically modified tryptamines. Toxicol Lett 2023; 387:63-75. [PMID: 37778463 DOI: 10.1016/j.toxlet.2023.09.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/01/2023] [Accepted: 09/27/2023] [Indexed: 10/03/2023]
Abstract
Microbial indoles have been demonstrated as selective or dual agonists and ligands of the pregnane X receptor (PXR) and aryl hydrocarbon receptor (AhR). However, structural determinants of microbial indoles selectivity towards both receptors remain elusive. Here, we studied the effects of existing and newly synthesized derivatives of indole microbial metabolite tryptamine on the activity of AhR and PXR receptors. We show that the elongation of indolyl-3-alkaneamine chain, indole N-methylation and conversion of indolyl-3-alkaneamines to oleamides resulted in a major increase of PXR activity and in parallel loss of AhR activity. Using reporter gene assays, RT-PCR and TR-FRET techniques, we have characterized in detail the activation of PXR by novel indolyl-3-alkanyl-oleamides, 1-methyltryptamine and 1-methyltryptamine-acetamide. As a proof of concept, we demonstrated anti-inflammatory and epithelial barrier-protective activity of lead derivatives in intestinal Caco-2 cells, employing the measurement of expression of pro-inflammatory chemokines, tight junction genes, trans-epithelial electric resistance TEER, and dextran-FITC permeability assay. In conclusion, we show that a subtle chemical modifications of simple microbial indole metabolite tryptamine, leads to substantial changes in AhR and PXR agonist activities.
Collapse
Affiliation(s)
- Lucia Sládeková
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Eliška Zgarbová
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Radim Vrzal
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - David Vanda
- Department of Organic Chemistry, Faculty of Science, Palacký University, 17. Listopadu 12, 771 46 Olomouc, Czech Republic
| | - Miroslav Soural
- Department of Organic Chemistry, Faculty of Science, Palacký University, 17. Listopadu 12, 771 46 Olomouc, Czech Republic
| | - Klára Jakubcová
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic
| | - Gerardo Vázquez-Gómez
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic
| | - Zdeněk Dvořák
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
21
|
Cerracchio C, Salvatore MM, Del Sorbo L, Serra F, Amoroso MG, DellaGreca M, Nicoletti R, Andolfi A, Fiorito F. In Vitro Evaluation of Antiviral Activities of Funicone-like Compounds Vermistatin and Penisimplicissin against Canine Coronavirus Infection. Antibiotics (Basel) 2023; 12:1319. [PMID: 37627739 PMCID: PMC10451237 DOI: 10.3390/antibiotics12081319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Recent studies have demonstrated that 3-O-methylfunicone (OMF), a fungal secondary metabolite from Talaromyces pinophilus belonging to the class of funicone-like compounds, has antiviral activity against canine coronaviruses (CCoV), which causes enteritis in dogs. Herein, we selected two additional funicone-like compounds named vermistatin (VER) and penisimplicissin (PS) and investigated their inhibitory activity towards CCoV infection. Thus, both compounds have been tested for their cytotoxicity and for antiviral activity against CCoV in A72 cells, a fibrosarcoma cell line suitable for investigating CCoV. Our findings showed an increase in cell viability, with an improvement of morphological features in CCoV-infected cells at the non-toxic doses of 1 μM for VER and 0.5 μM for PS. In addition, we observed that these compounds caused a strong inhibition in the expression of the aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor which is activated during CCoV infection. Our results also showed the alkalinization of lysosomes in the presence of VER or PS, which may be involved in the observed antiviral activities.
Collapse
Affiliation(s)
- Claudia Cerracchio
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (C.C.); (L.D.S.)
| | - Maria Michela Salvatore
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (M.M.S.); (M.D.)
- Institute for Sustainable Plant Protection, National Research Council, 80055 Portici, Italy
| | - Luca Del Sorbo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (C.C.); (L.D.S.)
| | - Francesco Serra
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Unit of Virology, Department of Animal Health, 80055 Portici, Italy;
| | - Maria Grazia Amoroso
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Unit of Virology, Department of Animal Health, 80055 Portici, Italy;
| | - Marina DellaGreca
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (M.M.S.); (M.D.)
| | - Rosario Nicoletti
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
- Council for Agricultural Research and Economics, Research Centre for Olive, Fruit and Citrus Crops, 81100 Caserta, Italy
| | - Anna Andolfi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (M.M.S.); (M.D.)
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Portici, Italy
| | - Filomena Fiorito
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (C.C.); (L.D.S.)
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Portici, Italy
| |
Collapse
|
22
|
Chong ZX, Yong CY, Ong AHK, Yeap SK, Ho WY. Deciphering the roles of aryl hydrocarbon receptor (AHR) in regulating carcinogenesis. Toxicology 2023; 495:153596. [PMID: 37480978 DOI: 10.1016/j.tox.2023.153596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/13/2023] [Accepted: 07/16/2023] [Indexed: 07/24/2023]
Abstract
Aryl hydrocarbon receptor (AHR) is a ligand-dependent receptor that belongs to the superfamily of basic helix-loop-helix (bHLH) transcription factors. The activation of the canonical AHR signaling pathway is known to induce the expression of cytochrome P450 enzymes, facilitating the detoxification metabolism in the human body. Additionally, AHR could interact with various signaling pathways such as epidermal growth factor receptor (EGFR), signal transducer and activator of transcription 3 (STAT3), hypoxia-inducible factor-1α (HIF-1α), nuclear factor ekappa B (NF-κβ), estrogen receptor (ER), and androgen receptor (AR) signaling pathways. Over the past 30 years, several studies have reported that various chemical, physical, or biological agents, such as tobacco, hydrocarbon compounds, industrial and agricultural chemical wastes, drugs, UV, viruses, and other toxins, could affect AHR expression or activity, promoting cancer development. Thus, it is valuable to overview how these factors regulate AHR-mediated carcinogenesis. Current findings have reported that many compounds could act as AHR ligands to drive the expressions of AHR-target genes, such as CYP1A1, CYP1B1, MMPs, and AXL, and other targets that exert a pro-proliferation or anti-apoptotic effect, like XIAP. Furthermore, some other physical and chemical agents, such as UV and 3-methylcholanthrene, could promote AHR signaling activities, increasing the signaling activities of a few oncogenic pathways, such as the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) and mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathways. Understanding how various factors regulate AHR-mediated carcinogenesis processes helps clinicians and scientists plan personalized therapeutic strategies to improve anti-cancer treatment efficacy. As many studies that have reported the roles of AHR in regulating carcinogenesis are preclinical or observational clinical studies that did not explore the detailed mechanisms of how different chemical, physical, or biological agents promote AHR-mediated carcinogenesis processes, future studies should focus on conducting large-scale and functional studies to unravel the underlying mechanism of how AHR interacts with different factors in regulating carcinogenesis processes.
Collapse
Affiliation(s)
- Zhi Xiong Chong
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia
| | - Chean Yeah Yong
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, 43900 Sepang, Selangor, Malaysia
| | - Alan Han Kiat Ong
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, 43000 Kajang, Malaysia
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, 43900 Sepang, Selangor, Malaysia.
| | - Wan Yong Ho
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia.
| |
Collapse
|
23
|
Guo L, Appelman B, Mooij-Kalverda K, Houtkooper RH, van Weeghel M, Vaz FM, Dijkhuis A, Dekker T, Smids BS, Duitman JW, Bugiani M, Brinkman P, Sikkens JJ, Lavell HAA, Wüst RCI, van Vugt M, Lutter R. Prolonged indoleamine 2,3-dioxygenase-2 activity and associated cellular stress in post-acute sequelae of SARS-CoV-2 infection. EBioMedicine 2023; 94:104729. [PMID: 37506544 PMCID: PMC10406961 DOI: 10.1016/j.ebiom.2023.104729] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 06/08/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Post-acute sequela of SARS-CoV-2 infection (PASC) encompass fatigue, post-exertional malaise and cognitive problems. The abundant expression of the tryptophan-catabolizing enzyme indoleamine 2,3-dioxygenase-2 (IDO2) in fatal/severe COVID-19, led us to determine, in an exploratory observational study, whether IDO2 is expressed and active in PASC, and may correlate with pathophysiology. METHODS Plasma or serum, and peripheral blood mononuclear cells (PBMC) were obtained from well-characterized PASC patients and SARS-CoV-2-infected individuals without PASC. We assessed tryptophan and its degradation products by UPLC-MS/MS. IDO2 activity, its potential consequences, and the involvement of the aryl hydrocarbon receptor (AHR) in IDO2 expression were determined in PBMC from another PASC cohort by immunohistochemistry (IHC) for IDO2, IDO1, AHR, kynurenine metabolites, autophagy, and apoptosis. These PBMC were also analyzed by metabolomics and for mitochondrial functioning by respirometry. IHC was also performed on autopsy brain material from two PASC patients. FINDINGS IDO2 is expressed and active in PBMC from PASC patients, as well as in brain tissue, long after SARS-CoV-2 infection. This is paralleled by autophagy, and in blood cells by reduced mitochondrial functioning, reduced intracellular levels of amino acids and Krebs cycle-related compounds. IDO2 expression and activity is triggered by SARS-CoV-2-infection, but the severity of SARS-CoV-2-induced pathology appears related to the generated specific kynurenine metabolites. Ex vivo, IDO2 expression and autophagy can be halted by an AHR antagonist. INTERPRETATION SARS-CoV-2 infection triggers long-lasting IDO2 expression, which can be halted by an AHR antagonist. The specific kynurenine catabolites may relate to SARS-CoV-2-induced symptoms and pathology. FUNDING None.
Collapse
Affiliation(s)
- Lihui Guo
- Department Experimental Immunology, Amsterdam Infection and Immunity Center, Amsterdam University Medical Centers (UMC), location Academic Medical Center (AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Brent Appelman
- Center for Experimental and Molecular Medicine, Amsterdam UMC, Amsterdam Institute for Infection and Immunity, location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Kirsten Mooij-Kalverda
- Department Pulmonary Medicine, Amsterdam UMC, location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology and Metabolism Institute, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences Institute, Amsterdam, the Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology and Metabolism Institute, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences Institute, Amsterdam, the Netherlands; Core Facility Metabolomics, Amsterdam UMC, location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Frédéric M Vaz
- Core Facility Metabolomics, Amsterdam UMC, location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Amsterdam UMC, location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of Metabolism, Amsterdam, the Netherlands
| | - Annemiek Dijkhuis
- Department Experimental Immunology, Amsterdam Infection and Immunity Center, Amsterdam University Medical Centers (UMC), location Academic Medical Center (AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Tamara Dekker
- Department Experimental Immunology, Amsterdam Infection and Immunity Center, Amsterdam University Medical Centers (UMC), location Academic Medical Center (AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Barbara S Smids
- Department Experimental Immunology, Amsterdam Infection and Immunity Center, Amsterdam University Medical Centers (UMC), location Academic Medical Center (AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Jan Willem Duitman
- Department Experimental Immunology, Amsterdam Infection and Immunity Center, Amsterdam University Medical Centers (UMC), location Academic Medical Center (AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Department Pulmonary Medicine, Amsterdam UMC, location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Marianna Bugiani
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Paul Brinkman
- Department Pulmonary Medicine, Amsterdam UMC, location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Jonne J Sikkens
- Department of Internal Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - H A Ayesha Lavell
- Department of Internal Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Rob C I Wüst
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Michèle van Vugt
- Division of Infectious Diseases, Department of Internal Medicine, Amsterdam UMC, location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - René Lutter
- Department Experimental Immunology, Amsterdam Infection and Immunity Center, Amsterdam University Medical Centers (UMC), location Academic Medical Center (AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Department Pulmonary Medicine, Amsterdam UMC, location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands.
| |
Collapse
|
24
|
Poniedziałek B, Rzymski P, Zarębska-Michaluk D, Rogalska M, Rorat M, Czupryna P, Kozielewicz D, Hawro M, Kowalska J, Jaroszewicz J, Sikorska K, Flisiak R. Short-term exposure to ambient air pollution and COVID-19 severity during SARS-CoV-2 Delta and Omicron waves: A multicenter study. J Med Virol 2023; 95:e28962. [PMID: 37466326 DOI: 10.1002/jmv.28962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/15/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023]
Abstract
Air pollution may affect the clinical course of respiratory diseases, including COVID-19. This study aimed to evaluate the relationship between exposure of adult patients to mean 24 h levels of particulate matter sized <10 μm (PM10 ) and <2.5 μm (PM2.5 ) and benzo(a)pyrene (B(a)P) during a week before their hospitalization due to SARS-CoV-2 infection and symptomatology, hyperinflammation, coagulopathy, the clinical course of disease, and outcome. The analyses were conducted during two pandemic waves: (i) dominated by highly pathogenic Delta variant (n = 1440) and (ii) clinically less-severe Omicron (n = 785), while the analyzed associations were adjusted for patient's age, BMI, gender, and comorbidities. The exposure to mean 24 h B(a)P exceeding the limits was associated with increased odds of fever and fatigue as early COVID-19 symptoms, hyperinflammation due to serum C-reactive protein >200 mg/L and interleukin-6 >100 pg/mL, coagulopathy due to d-dimer >2 mg/L and fatal outcome. Elevated PM10 and PM2. 5 levels were associated with higher odds of respiratory symptoms, procalcitonin >0.25 ng/mL and interleukin >100 pg/mL, lower oxygen saturation, need for oxygen support, and death. The significant relationships between exposure to air pollutants and the course and outcomes of COVID-19 were observed during both pandemic waves. Short-term exposure to elevated PM and B(a)P levels can be associated with a worse clinical course of COVID-19 in patients requiring hospitalization and, ultimately, contribute to the health burden caused by SARS-CoV-2 variants of higher and lower clinical significance.
Collapse
Affiliation(s)
- Barbara Poniedziałek
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland
- Integrated Science Association (ISA), Universal Scientific Education and Research Network (USERN), Poznań, Poland
| | | | - Magdalena Rogalska
- Department of Infectious Diseases and Hepatology, Medical University of Białystok, Białystok, Poland
| | - Marta Rorat
- Department of Forensic Medicine, Wrocław Medical University, Wroclaw, Poland
| | - Piotr Czupryna
- Department of Infectious Diseases and Neuroinfections, Medical University of Białystok, Bialystok, Poland
| | - Dorota Kozielewicz
- Department of Infectious Diseases and Hepatology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Marcin Hawro
- Department of Infectious Diseases and Hepatology, Medical Center in Łańcut, Łańcut, Poland
| | - Justyna Kowalska
- Department of Adult's Infectious Diseases, Hospital for Infectious Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Jerzy Jaroszewicz
- Department of Infectious Diseases and Hepatology, Medical University of Silesia in Katowice, Bytom, Poland
| | - Katarzyna Sikorska
- Division of Tropical Medicine and Epidemiology, Faculty of Health Sciences, Medical University of Gdańsk, Gdańsk, Poland
- Division of Tropical and Parasitic Diseases, Faculty of Health Sciences, Medical University of Gdańsk, Gdańsk, Poland
| | - Robert Flisiak
- Department of Infectious Diseases and Hepatology, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
25
|
Sládeková L, Mani S, Dvořák Z. Ligands and agonists of the aryl hydrocarbon receptor AhR: Facts and myths. Biochem Pharmacol 2023; 213:115626. [PMID: 37247746 DOI: 10.1016/j.bcp.2023.115626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2023]
Abstract
The aryl hydrocarbon receptor (AhR) belongs to the essential helix-loop-helix transcription factors family. This receptor has a central role in determining host physiology and a variety of pathophysiologies ranging from inflammation and metabolism to cancer. AhR is a ligand-driven receptor with intricate pharmacology of activation depending on the type and quantity of ligand present. Therefore, a better understanding of AhR ligands per se is critical to move the field forward. In this minireview, we clarify some facts and myths about AhR ligands and how further studies could shed light on the true nature of AhR activation by these ligands. The review covers select chemical classes and explores parameters that qualify them as true receptor ligands.
Collapse
Affiliation(s)
- Lucia Sládeková
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Sridhar Mani
- Department of Genetics and Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Zdeněk Dvořák
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
26
|
Shi J, Du T, Wang J, Tang C, Lei M, Yu W, Yang Y, Ma Y, Huang P, Chen H, Wang X, Sun J, Wang H, Zhang Y, Luo F, Huang Q, Li B, Lu S, Hu Y, Peng X. Aryl hydrocarbon receptor is a proviral host factor and a candidate pan-SARS-CoV-2 therapeutic target. SCIENCE ADVANCES 2023; 9:eadf0211. [PMID: 37256962 PMCID: PMC10413656 DOI: 10.1126/sciadv.adf0211] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 04/25/2023] [Indexed: 06/02/2023]
Abstract
The emergence of a series of SARS-CoV-2 variants has necessitated the search for broad-spectrum antiviral targets. The aryl hydrocarbon receptor (AhR) senses tryptophan metabolites and is an immune regulator. However, the role of AhR in SARS-CoV-2 infection and whether AhR can be used as the target of antiviral therapy against SARS-CoV-2 and its variants are yet unclear. Here, we show that infection with SARS-CoV-2 activates AhR signaling and facilitates viral replication by interfering with IFN-I-driven antiviral immunity and up-regulating ACE2 receptor expression. The pharmacological AhR blockade or AhR knockout reduces SARS-CoV-2 and its variants' replication in vitro. Drug targeting of AhR with AhR antagonists markedly reduced SARS-CoV-2 and its variants' replication in vivo and ameliorated lung inflammation caused by SARS-CoV-2 infection in hamsters. Overall, AhR was a SARS-CoV-2 proviral host factor and a candidate host-directed broad-spectrum target for antiviral therapy against SARS-CoV-2 and its variants, including Delta and Omicron, and potentially other variants in the future.
Collapse
Affiliation(s)
- Jiandong Shi
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tingfu Du
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junbin Wang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cong Tang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengyue Lei
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenhai Yu
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yun Yang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Ma
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pu Huang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongli Chen
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xu Wang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Sun
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haixuan Wang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yong Zhang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fangyu Luo
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qing Huang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bai Li
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuaiyao Lu
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yunzhang Hu
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaozhong Peng
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing China
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing China
| |
Collapse
|
27
|
Ondrová K, Zůvalová I, Vyhlídalová B, Krasulová K, Miková E, Vrzal R, Nádvorník P, Nepal B, Kortagere S, Kopečná M, Kopečný D, Šebela M, Rastinejad F, Pu H, Soural M, Rolfes KM, Haarmann-Stemmann T, Li H, Mani S, Dvořák Z. Monoterpenoid aryl hydrocarbon receptor allosteric antagonists protect against ultraviolet skin damage in female mice. Nat Commun 2023; 14:2728. [PMID: 37169746 PMCID: PMC10174618 DOI: 10.1038/s41467-023-38478-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 05/02/2023] [Indexed: 05/13/2023] Open
Abstract
The human aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that is a pivotal regulator of human physiology and pathophysiology. Allosteric inhibition of AhR was previously thought to be untenable. Here, we identify carvones as noncompetitive, insurmountable antagonists of AhR and characterize the structural and functional consequences of their binding. Carvones do not displace radiolabeled ligands from binding to AhR but instead bind allosterically within the bHLH/PAS-A region of AhR. Carvones do not influence the translocation of ligand-activated AhR into the nucleus but inhibit the heterodimerization of AhR with its canonical partner ARNT and subsequent binding of AhR to the promoter of CYP1A1. As a proof of concept, we demonstrate physiologically relevant Ahr-antagonism by carvones in vivo in female mice. These substances establish the molecular basis for selective targeting of AhR regardless of the type of ligand(s) present and provide opportunities for the treatment of disease processes modified by AhR.
Collapse
Affiliation(s)
- Karolína Ondrová
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Iveta Zůvalová
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Barbora Vyhlídalová
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Kristýna Krasulová
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Eva Miková
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Radim Vrzal
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Petr Nádvorník
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Binod Nepal
- Department of Microbiology & Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Sandhya Kortagere
- Department of Microbiology & Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Martina Kopečná
- Department of Experimental Biology, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - David Kopečný
- Department of Experimental Biology, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Marek Šebela
- Department of Biochemistry, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Fraydoon Rastinejad
- Target Discovery Institute Nuffield Department of Medicine Research Building Brasenose College University of Oxford, Oxford, UK
| | - Hua Pu
- Target Discovery Institute Nuffield Department of Medicine Research Building Brasenose College University of Oxford, Oxford, UK
| | - Miroslav Soural
- Department of Organic Chemistry, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | | | | | - Hao Li
- Department of Medicine, Oncology, Molecular Pharmacology, and Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sridhar Mani
- Department of Medicine, Oncology, Molecular Pharmacology, and Genetics, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Zdeněk Dvořák
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Olomouc, Czech Republic.
| |
Collapse
|
28
|
Zhao L, Yao L, Chen R, He J, Lin T, Qiu S, Chen G, Chen H, Qiu SX. Pinostrobin from plants and propolis against human coronavirus HCoV-OC43 by modulating host AHR/CYP1A1 pathway and lipid metabolism. Antiviral Res 2023; 212:105570. [PMID: 36863496 PMCID: PMC9974210 DOI: 10.1016/j.antiviral.2023.105570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 03/04/2023]
Abstract
Coronaviruses, as enveloped positive-strand RNA viruses, manipulate host lipid compositions to enable robust viral replication. Temporal modulation of the host lipid metabolism is a potential novel strategy against coronaviruses. Here, the dihydroxyflavone pinostrobin (PSB) was identified through bioassay that inhibited the increment of human coronavirus OC43 (HCoV-OC43) in human ileocecal colorectal adenocarcinoma cells. Lipid metabolomic studies showed that PSB interfered with linoleic acid and arachidonic acid metabolism pathways. PSB significantly decreased the level of 12, 13- epoxyoctadecenoic (12, 13-EpOME) and increased the level of prostaglandin E2. Interestingly, exogenous supplement of 12, 13-EpOME in HCoV-OC43-infected cells significantly stimulated HCoV-OC43 virus replication. Transcriptomic analyses showed that PSB is a negative modulator of aryl hydrocarbon receptor (AHR)/cytochrome P450 (CYP) 1A1signaling pathway and its antiviral effects can be counteracted by supplement of FICZ, a well-known AHR agonist. Integrative analyses of metabolomic and transcriptomic indicated that PSB could affect linoleic acid and arachidonic acid metabolism axis through AHR/CYP1A1 pathway. These results highlight the importance of the AHR/CYP1A1 pathway and lipid metabolism in the anti-coronavirus activity of the bioflavonoid PSB.
Collapse
Affiliation(s)
- Liyun Zhao
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, PR China
| | - Liyuan Yao
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Rui Chen
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Jiani He
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Tingting Lin
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, PR China
| | - Silin Qiu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, PR China
| | - Guohua Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, PR China
| | - Hongfeng Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, PR China
| | - Sheng-Xiang Qiu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, PR China.
| |
Collapse
|
29
|
Hu J, Ding Y, Liu W, Liu S. When AHR signaling pathways meet viral infections. Cell Commun Signal 2023; 21:42. [PMID: 36829212 PMCID: PMC9951170 DOI: 10.1186/s12964-023-01058-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 01/27/2023] [Indexed: 02/26/2023] Open
Abstract
Aryl hydrocarbon receptor (AHR) is a ligand-dependent transcriptional factor widely expressed among immune, epithelial, endothelial and stromal cells in barrier tissues. It can be activated by small molecules provided by pollutants, microorganisms, food, and metabolism. It has been demonstrated that AHR plays an important role in modulating the response to many microbial pathogens, and the abnormal expression of AHR signaling pathways may disrupt endocrine, cause immunotoxicity, and even lead to the occurrence of cancer. Most humans are infected with at least one known human cancer virus. While the initial infection with these viruses does not cause major disease, the metabolic activity of infected cells changes, thus affecting the activation of oncogenic signaling pathways. In the past few years, lots of studies have shown that viral infections can affect disease progression by regulating the transmission of multiple signaling pathways. This review aims to discuss the potential effects of virus infections on AHR signaling pathways so that we may find a new strategy to minimize the adverse effects of the AHR pathway on diseases. Video Abstract.
Collapse
Affiliation(s)
- Jieke Hu
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Qingdao, 266555, China.,Department of Pathogenic Biology, Qingdao University Medical College, 308 Ningxia Road, Qingdao, 266071, China
| | - Yuan Ding
- Department of Special Examination, Qingdao Women & Children Hospital, Qingdao, 266035, China
| | - Wen Liu
- Department of Pathogenic Biology, Qingdao University Medical College, 308 Ningxia Road, Qingdao, 266071, China.
| | - Shuzhen Liu
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Qingdao, 266555, China.
| |
Collapse
|
30
|
Pelaez MA, Torti MF, Alvarez De Lauro AE, Marquez AB, Giovannoni F, Damonte EB, García CC. Modulation of the Aryl Hydrocarbon Receptor Signaling Pathway Impacts on Junín Virus Replication. Viruses 2023; 15:v15020369. [PMID: 36851583 PMCID: PMC9967227 DOI: 10.3390/v15020369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
Junín virus (JUNV), a member of the family Arenaviridae, is the etiological agent of the Argentine hemorrhagic fever, an endemic disease in the rural region of Argentina lacking a specific chemotherapy. Aryl hydrocarbon receptor (AHR) is expressed in several mammalian tissues and has been indicated as a sensor of ligands from variable sources and a modulator of the cell immune response. Interestingly, recent studies have suggested that the activation or depression of the AHR signaling pathway may play a role in the outcome of diverse human viral infections. In the present report, the effect of the pharmacological modulation of AHR on JUNV in vitro infection was analyzed. An initial microarray screening showed that the AHR pathway was overexpressed in JUNV-infected hepatic cells. Concomitantly, the infection of Vero and Huh-7 cells with the JUNV strains IV4454 and Candid#1 was significantly inhibited in a dose-dependent manner by treatment with CH223191, a specific AHR antagonist, as detected by infectivity assays, real-time RT-PCR and immunofluorescence detection of viral proteins. Furthermore, the pro-viral role of AHR in JUNV infection appears to be independent of the IFN-I pathway. Our findings support the promising perspectives of the pharmacological modulation of AHR as a potential target for the control of AHF.
Collapse
Affiliation(s)
- Miguel Angel Pelaez
- Laboratory of Antiviral Strategies, Biochemistry Department, School of Sciences, University of Buenos Aires, IQUIBICEN, University of Buenos Aires/Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires 1428, Argentina
| | - María Florencia Torti
- Laboratory of Antiviral Strategies, Biochemistry Department, School of Sciences, University of Buenos Aires, IQUIBICEN, University of Buenos Aires/Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires 1428, Argentina
| | - Aaron Ezequiel Alvarez De Lauro
- Laboratory of Antiviral Strategies, Biochemistry Department, School of Sciences, University of Buenos Aires, IQUIBICEN, University of Buenos Aires/Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires 1428, Argentina
| | - Agostina Belén Marquez
- Laboratory of Antiviral Strategies, Biochemistry Department, School of Sciences, University of Buenos Aires, IQUIBICEN, University of Buenos Aires/Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires 1428, Argentina
| | - Federico Giovannoni
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Elsa Beatriz Damonte
- Laboratory of Antiviral Strategies, Biochemistry Department, School of Sciences, University of Buenos Aires, IQUIBICEN, University of Buenos Aires/Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires 1428, Argentina
- Correspondence: (E.B.D.); (C.C.G.)
| | - Cybele Carina García
- Laboratory of Antiviral Strategies, Biochemistry Department, School of Sciences, University of Buenos Aires, IQUIBICEN, University of Buenos Aires/Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires 1428, Argentina
- Correspondence: (E.B.D.); (C.C.G.)
| |
Collapse
|
31
|
Ayaz H, Aslam N, Awan FM, Basri R, Rauff B, Alzahrani B, Arif M, Ikram A, Obaid A, Naz A, Khan SN, Yang BB, Nazir A. Mapping CircRNA-miRNA-mRNA regulatory axis identifies hsa_circ_0080942 and hsa_circ_0080135 as a potential theranostic agents for SARS-CoV-2 infection. PLoS One 2023; 18:e0283589. [PMID: 37053191 PMCID: PMC10101458 DOI: 10.1371/journal.pone.0283589] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/11/2023] [Indexed: 04/14/2023] Open
Abstract
Non-coding RNAs (ncRNAs) can control the flux of genetic information; affect RNA stability and play crucial roles in mediating epigenetic modifications. A number of studies have highlighted the potential roles of both virus-encoded and host-encoded ncRNAs in viral infections, transmission and therapeutics. However, the role of an emerging type of non-coding transcript, circular RNA (circRNA) in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has not been fully elucidated so far. Moreover, the potential pathogenic role of circRNA-miRNA-mRNA regulatory axis has not been fully explored as yet. The current study aimed to holistically map the regulatory networks driven by SARS-CoV-2 related circRNAs, miRNAs and mRNAs to uncover plausible interactions and interplay amongst them in order to explore possible therapeutic options in SARS-CoV-2 infection. Patient datasets were analyzed systematically in a unified approach to explore circRNA, miRNA, and mRNA expression profiles. CircRNA-miRNA-mRNA network was constructed based on cytokine storm related circRNAs forming a total of 165 circRNA-miRNA-mRNA pairs. This study implies the potential regulatory role of the obtained circRNA-miRNA-mRNA network and proposes that two differentially expressed circRNAs hsa_circ_0080942 and hsa_circ_0080135 might serve as a potential theranostic agents for SARS-CoV-2 infection. Collectively, the results shed light on the functional role of circRNAs as ceRNAs to sponge miRNA and regulate mRNA expression during SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Hassan Ayaz
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Nouman Aslam
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Faryal Mehwish Awan
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Rabea Basri
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Bisma Rauff
- Department of Biomedical Engineering, University of Engineering and Technology (UET), Lahore, Narowal, Pakistan
| | - Badr Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Muhammad Arif
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Aqsa Ikram
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore (UOL), Lahore, Pakistan
| | - Ayesha Obaid
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Anam Naz
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore (UOL), Lahore, Pakistan
| | - Sadiq Noor Khan
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Burton B Yang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | - Azhar Nazir
- Department of Medical Lab Technology, The University of Haripur (UOH), Haripur, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
32
|
From Nucleus to Organs: Insights of Aryl Hydrocarbon Receptor Molecular Mechanisms. Int J Mol Sci 2022; 23:ijms232314919. [PMID: 36499247 PMCID: PMC9738205 DOI: 10.3390/ijms232314919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a markedly established regulator of a plethora of cellular and molecular processes. Its initial role in the detoxification of xenobiotic compounds has been partially overshadowed by its involvement in homeostatic and organ physiology processes. In fact, the discovery of its ability to bind specific target regulatory sequences has allowed for the understanding of how AHR modulates such processes. Thereby, AHR presents functions in transcriptional regulation, chromatin architecture modifications and participation in different key signaling pathways. Interestingly, such fields of influence end up affecting organ and tissue homeostasis, including regenerative response both to endogenous and exogenous stimuli. Therefore, from classical spheres such as canonical transcriptional regulation in embryonic development, cell migration, differentiation or tumor progression to modern approaches in epigenetics, senescence, immune system or microbiome, this review covers all aspects derived from the balance between regulation/deregulation of AHR and its physio-pathological consequences.
Collapse
|
33
|
Cerracchio C, Iovane V, Salvatore MM, Amoroso MG, Dakroub H, DellaGreca M, Nicoletti R, Andolfi A, Fiorito F. Effectiveness of the Fungal Metabolite 3- O-Methylfunicone towards Canine Coronavirus in a Canine Fibrosarcoma Cell Line (A72). Antibiotics (Basel) 2022; 11:1594. [PMID: 36421238 PMCID: PMC9687078 DOI: 10.3390/antibiotics11111594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 07/30/2023] Open
Abstract
Canine coronavirus (CCoV), an alphacoronavirus, may cause self-limiting enteric disease in dogs, especially in puppies. The noteworthy plasticity of coronaviruses (CoVs) occurs through mutation and recombination processes, which sometimes generate new dangerous variants. The ongoing SARS-CoV-2 pandemic and the isolation of a novel canine-feline recombinant alphacoronavirus from humans emphasizes the cross-species transmission ability of CoVs. In this context, exploring antiviral compounds is essential to find new tools for fighting against CoVs infections. Fungi produce secondary metabolites, which are often developed as antibiotics, fungicides, hormones, and plant growth regulators. Previous examinations of benzo-γ-pyrone 3-O-methylfunicone (OMF), obtained from Talaromyces pinophilus, showed that it reduces the infectivity of hepatitis C virus and bovine herpesvirus 1. Based on this evidence, this study evaluated the antiviral ability of OMF against CCoV infection in a canine fibrosarcoma (A72) cell line. During CCoV infection, a non-toxic dose of OMF markedly increased features of cell viability. Moreover, OMF induced a significant reduction in virus yield in the presence of an intense downregulation of the viral nucleocapsid protein (NP). These findings occurred in the presence of a marked reduction in the aryl hydrocarbon receptor (AhR) expression. Taken together, preliminary findings suggest that OMF inhibiting AhR shows promising activity against CCoV infection.
Collapse
Affiliation(s)
- Claudia Cerracchio
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy
| | - Valentina Iovane
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Maria Michela Salvatore
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
- Institute for Sustainable Plant Protection, National Research Council, 80055 Portici, Italy
| | - Maria Grazia Amoroso
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Unit of Virology, Department of Animal Health, 80055 Portici, Italy
| | - Hiba Dakroub
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Unit of Virology, Department of Animal Health, 80055 Portici, Italy
| | - Marina DellaGreca
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Rosario Nicoletti
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
- Council for Agricultural Research and Economics, Research Centre for Olive, Fruit and Citrus Crops, 81100 Caserta, Italy
| | - Anna Andolfi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Portici, Italy
| | - Filomena Fiorito
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Portici, Italy
| |
Collapse
|
34
|
Cerracchio C, Serra F, Amoroso MG, Fiorito F. Canine Coronavirus Activates Aryl Hydrocarbon Receptor during In Vitro Infection. Viruses 2022; 14:v14112437. [PMID: 36366535 PMCID: PMC9692492 DOI: 10.3390/v14112437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/20/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that interacts with substrates, including microbial metabolites. Recent advances reveal that AhR is involved in the host response to coronaviruses (CoVs) infection. Particularly, AhR antagonists decrease the expression of angiotensin-converting enzyme 2 (ACE2) via AhR up-regulation, resulting in suppression of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection in mammalian cells. Herein, we report that AhR is expressed in canine fibrosarcoma (A72) cells, where it is considerably activated by infection with genotype II of canine coronavirus (CCoV-II). The pharmacological inhibition of AhR, by CH223191, suppressed cell death signs and increased cell viability. Furthermore, the AhR antagonist induced a meaningful decline in virus yield, accompanied by the inhibition of the expression of viral nuclear protein (NP). Fascinatingly, during CCoV infection, a novel co-expression of NP and AhR expression was found. Taken together, our preliminary findings show that infection with CCoV activates AhR, and pharmacologic AhR inhibition reduces CCoV replication, identifying AhR as a possible candidate target for CCoV antiviral therapy.
Collapse
Affiliation(s)
- Claudia Cerracchio
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy
| | - Francesco Serra
- Department of Animal Health, Unit of Virology, Istituto Zooprofilattico del Mezzogiorno, 80055 Portici, Naples, Italy
| | - Maria Grazia Amoroso
- Department of Animal Health, Unit of Virology, Istituto Zooprofilattico del Mezzogiorno, 80055 Portici, Naples, Italy
| | - Filomena Fiorito
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy
- Correspondence: (F.F.); Tel.: +39-0812536180
| |
Collapse
|
35
|
Song S, Wood TK. Manipulating indole symbiont signalling. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:691-696. [PMID: 35667868 DOI: 10.1111/1758-2229.13100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Sooyeon Song
- Department of Animal Science, Jeonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
- Agricultural Convergence Technology, Jeonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Thomas K Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
36
|
Singh Y, Singh SK, Dua K, Gupta G. A molecular study of aryl hydrocarbon receptor activation in COVID 19 associated cognitive impairment - Correspondence. Int J Surg 2022; 105:106895. [PMID: 36096293 PMCID: PMC9458762 DOI: 10.1016/j.ijsu.2022.106895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 08/28/2022] [Indexed: 10/27/2022]
Affiliation(s)
- Yogendra Singh
- Department of Pharmacology, Maharishi Arvind College of Pharmacy, Ambabari Circle, Ambabari, Jaipur, 302023, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, 2007, Australia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, 302017, Jaipur, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India.
| |
Collapse
|
37
|
Tomalka JA, Suthar MS, Diamond MS, Sekaly RP. Innate antiviral immunity: how prior exposures can guide future responses. Trends Immunol 2022; 43:696-705. [PMID: 35907675 DOI: 10.1016/j.it.2022.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/22/2022] [Accepted: 07/01/2022] [Indexed: 02/07/2023]
Abstract
Innate immunity is an intrinsic baseline defense in cells, with its earliest origins in bacteria, and with key roles in defense against pathogens and in the activation of B and T cell responses. In mammals, the efficacy of innate immunity in initiating the cascades that lead to pathogen control results from the interplay of transcriptomic, epigenomic, and proteomic responses regulating immune activation and long-lived pathogen-specific memory responses. Recent studies suggest that intrinsic innate immunity is modulated by individual exposure histories - prior infections, vaccinations, and metabolites of microbial origin - and this promotes, or impairs, the development of efficacious innate immune responses. Understanding how environmental factors regulate innate immunity and boost protection from infection or response to vaccination could be a valuable tool for pandemic preparedness.
Collapse
Affiliation(s)
- Jeffrey A Tomalka
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Mehul S Suthar
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA; Department of Pediatrics, Emory National Primate Research Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, Pathology, and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Rafick P Sekaly
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
38
|
Ceballos FC, Virseda-Berdices A, Resino S, Ryan P, Martínez-González O, Peréz-García F, Martin-Vicente M, Brochado-Kith O, Blancas R, Bartolome-Sánchez S, Vidal-Alcántara EJ, Albóniga-Díez OE, Cuadros-González J, Blanca-López N, Martínez I, Martinez-Acitores IR, Barbas C, Fernández-Rodríguez A, Jiménez-Sousa MÁ. Metabolic Profiling at COVID-19 Onset Shows Disease Severity and Sex-Specific Dysregulation. Front Immunol 2022; 13:925558. [PMID: 35844615 PMCID: PMC9280146 DOI: 10.3389/fimmu.2022.925558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
Backgroundmetabolic changes through SARS-CoV-2 infection has been reported but not fully comprehended. This metabolic dysregulation affects multiple organs during COVID-19 and its early detection can be used as a prognosis marker of severity. Therefore, we aimed to characterize metabolic and cytokine profile at COVID-19 onset and its relationship with disease severity to identify metabolic profiles predicting disease progression.Material and Methodswe performed a retrospective cross-sectional study in 123 COVID-19 patients which were stratified as asymptomatic/mild, moderate and severe according to the highest COVID-19 severity status, and a group of healthy controls. We performed an untargeted plasma metabolic profiling (gas chromatography and capillary electrophoresis-mass spectrometry (GC and CE-MS)) and cytokine evaluation.ResultsAfter data filtering and identification we observed 105 metabolites dysregulated (66 GC-MS and 40 CE-MS) which shown different expression patterns for each COVID-19 severity status. These metabolites belonged to different metabolic pathways including amino acid, energy, and nitrogen metabolism among others. Severity-specific metabolic dysregulation was observed, as an increased transformation of L-tryptophan into L-kynurenine. Thus, metabolic profiling at hospital admission differentiate between severe and moderate patients in the later phase of worse evolution. Several plasma pro-inflammatory biomarkers showed significant correlation with deregulated metabolites, specially with L-kynurenine and L-tryptophan. Finally, we describe a strong sex-related dysregulation of metabolites, cytokines and chemokines between severe and moderate patients. In conclusion, metabolic profiling of COVID-19 patients at disease onset is a powerful tool to unravel the SARS-CoV-2 molecular pathogenesis.ConclusionsThis technique makes it possible to identify metabolic phenoconversion that predicts disease progression and explains the pronounced pathogenesis differences between sexes.
Collapse
Affiliation(s)
- Francisco C. Ceballos
- Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Health Institute Carlos III (ISCIII), Madrid, Spain
| | - Ana Virseda-Berdices
- Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Health Institute Carlos III (ISCIII), Madrid, Spain
| | - Salvador Resino
- Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Health Institute Carlos III (ISCIII), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Pablo Ryan
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Infectious Diseases, Hospital Universitario Infanta Leonor, Madrid, Spain
| | - Oscar Martínez-González
- Critical Care Department, Hospital Universitario del Tajo, Aranjuez, Spain
- Universidad Alfonso X el Sabio, Villanueva de la Cañada, Madrid, Spain
| | - Felipe Peréz-García
- Clinical Microbiology Department, Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Spain
- Department of Biomedicine and Biotecnology, Faculty of Medicine, University of Alcalá de Henares, Alcalá de Henares, Spain
| | - María Martin-Vicente
- Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Health Institute Carlos III (ISCIII), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Oscar Brochado-Kith
- Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Health Institute Carlos III (ISCIII), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Rafael Blancas
- Critical Care Department, Hospital Universitario del Tajo, Aranjuez, Spain
- Universidad Alfonso X el Sabio, Villanueva de la Cañada, Madrid, Spain
| | - Sofía Bartolome-Sánchez
- Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Health Institute Carlos III (ISCIII), Madrid, Spain
| | - Erick Joan Vidal-Alcántara
- Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Health Institute Carlos III (ISCIII), Madrid, Spain
| | - Oihane Elena Albóniga-Díez
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Madrid, Spain
| | - Juan Cuadros-González
- Clinical Microbiology Department, Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Spain
- Department of Biomedicine and Biotecnology, Faculty of Medicine, University of Alcalá de Henares, Alcalá de Henares, Spain
| | | | - Isidoro Martínez
- Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Health Institute Carlos III (ISCIII), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Coral Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Madrid, Spain
| | - Amanda Fernández-Rodríguez
- Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Health Institute Carlos III (ISCIII), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Amanda Fernández-Rodríguez, ; María Ángeles Jiménez-Sousa,
| | - María Ángeles Jiménez-Sousa
- Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Health Institute Carlos III (ISCIII), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Amanda Fernández-Rodríguez, ; María Ángeles Jiménez-Sousa,
| |
Collapse
|
39
|
Dewulf JP, Martin M, Marie S, Oguz F, Belkhir L, De Greef J, Yombi JC, Wittebole X, Laterre PF, Jadoul M, Gatto L, Bommer GT, Morelle J. Urine metabolomics links dysregulation of the tryptophan-kynurenine pathway to inflammation and severity of COVID-19. Sci Rep 2022; 12:9959. [PMID: 35705608 PMCID: PMC9198612 DOI: 10.1038/s41598-022-14292-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/03/2022] [Indexed: 12/15/2022] Open
Abstract
SARS-CoV-2 causes major disturbances in serum metabolite levels, associated with severity of the immune response. Despite the numerous advantages of urine for biomarker discovery, the potential association between urine metabolites and disease severity has not been investigated in coronavirus disease 2019 (COVID-19). In a proof-of-concept study, we performed quantitative urine metabolomics in patients hospitalized with COVID-19 and controls using LC-MS/MS. We assessed whether metabolites alterations were associated with COVID-19, disease severity, and inflammation. The study included 56 patients hospitalized with COVID-19 (26 non-critical and 30 critical disease); 16 healthy controls; and 3 controls with proximal tubule dysfunction unrelated to SARS-CoV-2. Metabolomic profiling revealed a major urinary increase of tryptophan metabolites kynurenine (P < 0.001), 3-hydroxykynurenine (P < 0.001) and 3-hydroxyanthranilate (P < 0.001) in SARS-CoV-2 infected patients. Urine levels of kynurenines were associated with disease severity and systemic inflammation (kynurenine, r 0.43, P = 0.001; 3-hydroxykynurenine, r 0.44, P < 0.001). Increased urinary levels of neutral amino acids and imino acid proline were also common in COVID-19, suggesting specific transport defects. Urine metabolomics identified major alterations in the tryptophan-kynurenine pathway, consistent with changes in host metabolism during SARS-CoV-2 infection. The association between increased urinary levels of kynurenines, inflammation and COVID-19 severity supports further evaluation of these easily available biomarkers.
Collapse
Affiliation(s)
- Joseph P Dewulf
- Laboratory of Inherited Metabolic Diseases/Biochemical Genetics, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium. .,Biochemistry, de Duve Institute, UCLouvain, Brussels, Belgium.
| | - Manon Martin
- Computational Biology and Bioinformatics Unit (CBIO), de Duve Institute, UCLouvain, Brussels, Belgium
| | - Sandrine Marie
- Laboratory of Inherited Metabolic Diseases/Biochemical Genetics, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium
| | - Fabie Oguz
- Division of Nephrology, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium
| | - Leila Belkhir
- Division of Infectious Diseases, Cliniques universitaires Saint-Luc, Brussels, Belgium.,Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Julien De Greef
- Division of Infectious Diseases, Cliniques universitaires Saint-Luc, Brussels, Belgium.,Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Jean Cyr Yombi
- Division of Infectious Diseases, Cliniques universitaires Saint-Luc, Brussels, Belgium.,Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Xavier Wittebole
- Department of Intensive Care Medicine, Cliniques universitaires Saint-Luc, Brussels, Belgium.,Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Pierre-François Laterre
- Department of Intensive Care Medicine, Cliniques universitaires Saint-Luc, Brussels, Belgium.,Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Michel Jadoul
- Division of Nephrology, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium.,Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Laurent Gatto
- Computational Biology and Bioinformatics Unit (CBIO), de Duve Institute, UCLouvain, Brussels, Belgium
| | - Guido T Bommer
- Biochemistry, de Duve Institute, UCLouvain, Brussels, Belgium
| | - Johann Morelle
- Division of Nephrology, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium. .,Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium.
| |
Collapse
|
40
|
Abstract
Infection with SARS-CoV-2, the causative agent of the COVID-19 pandemic, originated in China and quickly spread across the globe. Despite tremendous economic and healthcare devastation, research on this virus has contributed to a better understanding of numerous molecular pathways, including those involving γ-aminobutyric acid (GABA), that will positively impact medical science, including neuropsychiatry, in the post-pandemic era. SARS-CoV-2 primarily enters the host cells through the renin–angiotensin system’s component named angiotensin-converting enzyme-2 (ACE-2). Among its many functions, this protein upregulates GABA, protecting not only the central nervous system but also the endothelia, the pancreas, and the gut microbiota. SARS-CoV-2 binding to ACE-2 usurps the neuronal and non-neuronal GABAergic systems, contributing to the high comorbidity of neuropsychiatric illness with gut dysbiosis and endothelial and metabolic dysfunctions. In this perspective article, we take a closer look at the pathology emerging from the viral hijacking of non-neuronal GABA and summarize potential interventions for restoring these systems.
Collapse
|
41
|
Tokano M, Takagi R, Kawano M, Maesaki S, Tarumoto N, Matsushita S. Signaling via dopamine and adenosine receptors modulate viral peptide-specific and T-cell IL-8 response in COVID-19. Immunol Med 2022; 45:162-167. [PMID: 35623041 DOI: 10.1080/25785826.2022.2079369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
B-cell but not T-cell responses have been extensively studied using peripheral blood mononuclear cells (PBMCs) obtained from patients with coronavirus disease 2019 (COVID-19). Our recent study showed that not only T-helper (Th) 17 but also Th1 cells directly produce interleukin (IL)-8, a major source of neutrophilic inflammation, which is also known to induce disseminated intravascular coagulation (DIC) in COVID-19 patients. Neutrophilic inflammation caused by IL-17A or IL-8 can be fatal; thus, therapeutic intervention is highly expected. The present study aimed to investigate the T-cell responses in the Japanese patients. We synthesized spike protein-derived 15-mer peptides that are expected to bind to HLA class II allelic products frequently observed in the Japanese population, and checked the T-cell responses in Japanese patients with COVID-19. We have found that (i) patients show marked IL-8 but not IL-17A responses; (ii) these responses are restricted by HLA-DR; and (iii) IL-8 responses are abrogated by a dopamine D2 like receptor (D2R) agonist, ropinirole, and an adenosine A2a receptor (A2aR) antagonist, istradefylline. Compounds used for the treatment of Parkinson's disease may ease DIC in COVID-19. (183 words).
Collapse
Affiliation(s)
- Mieko Tokano
- Departments of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, Moroyama, Saitama, Japan.,Department of Infectious Disease and Infection Control, Saitama Medical University, Moroyama, Saitama, Japan
| | - Rie Takagi
- Departments of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, Moroyama, Saitama, Japan
| | - Masaaki Kawano
- Departments of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, Moroyama, Saitama, Japan
| | - Shigefumi Maesaki
- Department of Infectious Disease and Infection Control, Saitama Medical University, Moroyama, Saitama, Japan
| | - Norihito Tarumoto
- Department of Infectious Disease and Infection Control, Saitama Medical University, Moroyama, Saitama, Japan
| | - Sho Matsushita
- Departments of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, Moroyama, Saitama, Japan.,Allergy Center, Saitama Medical University, Moroyama, Saitama, Japan
| |
Collapse
|
42
|
Sex differences in global metabolomic profiles of COVID-19 patients. Cell Death Dis 2022; 13:461. [PMID: 35568706 PMCID: PMC9106988 DOI: 10.1038/s41419-022-04861-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 12/14/2022]
Abstract
Coronavirus disease (COVID-19), caused by SARS-CoV-2, leads to symptoms ranging from asymptomatic disease to death. Although males are more susceptible to severe symptoms and higher mortality due to COVID-19, patient sex has rarely been examined. Sex-associated metabolic changes may implicate novel biomarkers and therapeutic targets to treat COVID-19. Here, using serum samples, we performed global metabolomic analyses of uninfected and SARS-CoV-2-positive male and female patients with severe COVID-19. Key metabolic pathways that demonstrated robust sex differences in COVID-19 groups, but not in controls, involved lipid metabolism, pentose pathway, bile acid metabolism, and microbiome-related metabolism of aromatic amino acids, including tryptophan and tyrosine. Unsupervised statistical analysis showed a profound sexual dimorphism in correlations between patient-specific clinical parameters and their global metabolic profiles. Identification of sex-specific metabolic changes in severe COVID-19 patients is an important knowledge source for researchers striving for development of potential sex-associated biomarkers and druggable targets for COVID-19 patients.
Collapse
|
43
|
Guarnieri T. Hypothesis: Emerging Roles for Aryl Hydrocarbon Receptor in Orchestrating CoV-2-Related Inflammation. Cells 2022; 11:cells11040648. [PMID: 35203299 PMCID: PMC8869960 DOI: 10.3390/cells11040648] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 02/05/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is the pathogenic agent of Coronavirus-Induced Disease-2019 (COVID-19), a multi-organ syndrome which primarily targets the respiratory system. In this review, considering the large amount of data pointing out the role of the Aryl hydrocarbon Receptor (AhR) in the inflammatory response and in the modulation of innate and adaptive immunity, we describe some mechanisms that strongly suggest its involvement in the management of COVID-19′s inflammatory framework. It regulates both the expression of Angiotensin Converting Enzyme-2 (ACE-2) and its stabilizing partner, the Broad neutral Amino acid Transporter 1 (B0AT1). It induces Indolamine 2,3 dioxygenase (IDO-1), the enzyme which, starting from Tryptophan (Trp), produces Kynurenine (Kyn, Beta-Anthraniloyl-L-Alanine). The accumulation of Kyn and the depletion of Trp arrest T cell growth and induce apoptosis, setting up an immune-tolerant condition, whereas AhR and interferon type I (IFN-I) build a mutual inhibitory loop that also involves NF-kB and limits the innate response. AhR/Kyn binding boosts the production of Interleukin-6 (IL-6), thus reinforcing the inflammatory state and counteracting the IDO-dependent immune tolerance in the later stage of COVID-19. Taken together, these data depict a framework where sufficient clues suggest the possible participation of AhR in the management of COVID-19 inflammation, thus indicating an additional therapeutic target for this disease.
Collapse
Affiliation(s)
- Tiziana Guarnieri
- Cell Physiology Laboratory, Department of Biological, Geological and Environmental Sciences (BiGeA), Alma Mater Studiorum Università di Bologna, 40126 Bologna, Italy;
- Interuniversity Consortium “Istituto Nazionale Biostrutture e Biosistemi” (INBB–Biostructures and Biosystems National Institute), 00136 Rome, Italy
- Interdepartmental Center for Industrial Research in Life Sciences and Technologies, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
44
|
Hasankhani A, Bahrami A, Sheybani N, Aria B, Hemati B, Fatehi F, Ghaem Maghami Farahani H, Javanmard G, Rezaee M, Kastelic JP, Barkema HW. Differential Co-Expression Network Analysis Reveals Key Hub-High Traffic Genes as Potential Therapeutic Targets for COVID-19 Pandemic. Front Immunol 2021; 12:789317. [PMID: 34975885 PMCID: PMC8714803 DOI: 10.3389/fimmu.2021.789317] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/26/2021] [Indexed: 01/08/2023] Open
Abstract
Background The recent emergence of COVID-19, rapid worldwide spread, and incomplete knowledge of molecular mechanisms underlying SARS-CoV-2 infection have limited development of therapeutic strategies. Our objective was to systematically investigate molecular regulatory mechanisms of COVID-19, using a combination of high throughput RNA-sequencing-based transcriptomics and systems biology approaches. Methods RNA-Seq data from peripheral blood mononuclear cells (PBMCs) of healthy persons, mild and severe 17 COVID-19 patients were analyzed to generate a gene expression matrix. Weighted gene co-expression network analysis (WGCNA) was used to identify co-expression modules in healthy samples as a reference set. For differential co-expression network analysis, module preservation and module-trait relationships approaches were used to identify key modules. Then, protein-protein interaction (PPI) networks, based on co-expressed hub genes, were constructed to identify hub genes/TFs with the highest information transfer (hub-high traffic genes) within candidate modules. Results Based on differential co-expression network analysis, connectivity patterns and network density, 72% (15 of 21) of modules identified in healthy samples were altered by SARS-CoV-2 infection. Therefore, SARS-CoV-2 caused systemic perturbations in host biological gene networks. In functional enrichment analysis, among 15 non-preserved modules and two significant highly-correlated modules (identified by MTRs), 9 modules were directly related to the host immune response and COVID-19 immunopathogenesis. Intriguingly, systemic investigation of SARS-CoV-2 infection identified signaling pathways and key genes/proteins associated with COVID-19's main hallmarks, e.g., cytokine storm, respiratory distress syndrome (ARDS), acute lung injury (ALI), lymphopenia, coagulation disorders, thrombosis, and pregnancy complications, as well as comorbidities associated with COVID-19, e.g., asthma, diabetic complications, cardiovascular diseases (CVDs), liver disorders and acute kidney injury (AKI). Topological analysis with betweenness centrality (BC) identified 290 hub-high traffic genes, central in both co-expression and PPI networks. We also identified several transcriptional regulatory factors, including NFKB1, HIF1A, AHR, and TP53, with important immunoregulatory roles in SARS-CoV-2 infection. Moreover, several hub-high traffic genes, including IL6, IL1B, IL10, TNF, SOCS1, SOCS3, ICAM1, PTEN, RHOA, GDI2, SUMO1, CASP1, IRAK3, HSPA5, ADRB2, PRF1, GZMB, OASL, CCL5, HSP90AA1, HSPD1, IFNG, MAPK1, RAB5A, and TNFRSF1A had the highest rates of information transfer in 9 candidate modules and central roles in COVID-19 immunopathogenesis. Conclusion This study provides comprehensive information on molecular mechanisms of SARS-CoV-2-host interactions and identifies several hub-high traffic genes as promising therapeutic targets for the COVID-19 pandemic.
Collapse
Affiliation(s)
- Aliakbar Hasankhani
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Abolfazl Bahrami
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
- Biomedical Center for Systems Biology Science Munich, Ludwig-Maximilians-University, Munich, Germany
| | - Negin Sheybani
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Behzad Aria
- Department of Physical Education and Sports Science, School of Psychology and Educational Sciences, Yazd University, Yazd, Iran
| | - Behzad Hemati
- Biotechnology Research Center, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Farhang Fatehi
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | | | - Ghazaleh Javanmard
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Mahsa Rezaee
- Department of Medical Mycology, School of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - John P. Kastelic
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Herman W. Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
45
|
Wang N, Vuerich M, Kalbasi A, Graham JJ, Csizmadia E, Manickas-Hill ZJ, Woolley A, David C, Miller EM, Gorman K, Hecht JL, Shaefi S, Robson SC, Longhi MS. Limited TCR repertoire and ENTPD1 dysregulation mark late-stage COVID-19. iScience 2021; 24:103205. [PMID: 34608452 PMCID: PMC8482538 DOI: 10.1016/j.isci.2021.103205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/06/2021] [Accepted: 09/28/2021] [Indexed: 01/12/2023] Open
Abstract
T cell exhaustion and dysfunction are hallmarks of severe COVID-19. To gain insights into the pathways underlying these alterations, we performed a comprehensive transcriptome analysis of peripheral-blood-mononuclear-cells (PBMCs), spleen, lung, kidney, liver, and heart obtained at autopsy from COVID-19 patients and matched controls, using the nCounter CAR-T-Characterization panel. We found substantial gene alterations in COVID-19-impacted organs, especially the lung where altered TCR repertoires are noted. Reduced TCR repertoires are also observed in PBMCs of severe COVID-19 patients. ENTPD1/CD39, an ectoenzyme defining exhausted T-cells, is upregulated in the lung, liver, spleen, and PBMCs of severe COVID-19 patients where expression positively correlates with markers of vasculopathy. Heightened ENTPD1/CD39 is paralleled by elevations in STAT-3 and HIF-1α transcription factors; and by markedly reduced CD39-antisense-RNA, a long-noncoding-RNA negatively regulating ENTPD1/CD39 at the post-transcriptional level. Limited TCR repertoire and aberrant regulation of ENTPD1/CD39 could have permissive roles in COVID-19 progression and indicate potential therapeutic targets to reverse disease. Transcriptome profiling of COVID-19 autoptic tissue and PBMC was carried out There is limited TCR repertoire in lung, kidney and PBMC of severe COVID-19 cases There are increased CD39 levels in PBMC of severe COVID-19 patients High HIF-1a and STAT-3 and low CD39-antisense might be linked with CD39 increase
Collapse
Affiliation(s)
- Na Wang
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, Shandong 250021, China.,School of Medicine, Shandong University, 44 Wenhuaxilu, Jinan, Shandong 250021, China
| | - Marta Vuerich
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Ahmadreza Kalbasi
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Jonathon J Graham
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Eva Csizmadia
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | | | - Ann Woolley
- Division of Infectious Diseases, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Clement David
- NanoString Technologies, 530 Fairview Avenue N, Seattle, WA 98109, USA
| | - Eric M Miller
- NanoString Technologies, 530 Fairview Avenue N, Seattle, WA 98109, USA
| | - Kara Gorman
- NanoString Technologies, 530 Fairview Avenue N, Seattle, WA 98109, USA
| | - Jonathan L Hecht
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Shahzad Shaefi
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Simon C Robson
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA.,Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Maria Serena Longhi
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| |
Collapse
|