1
|
Wu J, Jiang M, Li J, Hu X, Long Q, Song S, Ye H, He Y, Ma X, Yu W, Chen X, Zhao L, Wu F, Chen X, Zheng J, Wang M, Zheng B, Yang S, Bu L, Chen Q, Li K, Zheng Y, Gao Z. Heterogeneity of SARS-CoV-2 immune responses after the nationwide Omicron wave in China. Microbiol Spectr 2024; 12:e0111724. [PMID: 39287459 PMCID: PMC11536994 DOI: 10.1128/spectrum.01117-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
It remains unclear how previous infections and vaccinations influenced and shaped heterogeneous immune responses against Omicron and its variants in diverse populations in China. After the national wave of Omicron in early 2023, we evaluated serum levels of neutralizing antibodies (nAbs) against Omicron (B.1.1.529) and its variants (BA.5, BF.7, and CH1.1) in 33 COVID-19 convalescents and 40 uninfected vaccinees, using vesicular stomatitis virus-based pseudovirus neutralizing assay. In addition, we followed 34 Delta convalescent patients to compare their immune responses against Omicron before (late 2021) and after the Omicron wave (early 2023). NAbs at the acute phase of the disease were investigated in 50 Omicron inpatients, including 24 vaccinated and 26 unvaccinated patients. Among them, nasal mucosal IgA levels were measured in 42 subjects. Compared to vaccination, breakthrough infections significantly increased the breadth and magnitude of serum nAbs and mucosal IgA levels against Omicron variants. Exposure to Omicron but not Delta elicited stronger pan-Omicron responses. In Omicron inpatients, nAbs continued to rise as vaccination doses increased. However, in both vaccinees and convalescents, a fourth dose vaccination did not elicit higher nAbs against Omicron. Furthermore, nAbs against Omicron variants lasted longer than nAbs against WT SARS-CoV-2. Breakthrough infections of Omicron variants elicited specific immune responses against Omicron compared to vaccination and Delta infection. Although repeated vaccination revealed limited impacts on serum nAbs, populations at high risk of hospitalization may still benefit from continued vaccination.IMPORTANCEThe study described the specific humoral immunity against Omicron and its variants (BA.5, BF.7, and CH1.1) in diverse populations, including Delta-positive convalescent patients, Omicron-infected patients with a previous or current confirmed Delta infection, Omicron-positive patients, and healthy controls. In addition, we followed Delta convalescents for 1 year to evaluate the effect of a booster vaccine, breakthrough infection, and reinfection. Nasal mucosal IgA levels against SARS-CoV-2 were also examined. The findings of this study demonstrated the varied responses of individuals in different states following the outbreak of Omicron, highlighting the potential advantages of ongoing immunization for groups that are more vulnerable and have a greater likelihood of being hospitalized.
Collapse
Affiliation(s)
- Jing Wu
- Department of Respiratory, Critical Care and Sleep Medicine, School of Medicine, Xiamen University, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
- Institute of Chest and Lung Diseases, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Mingzheng Jiang
- Department of Respiratory, Critical Care and Sleep Medicine, School of Medicine, Xiamen University, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
- Institute of Chest and Lung Diseases, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Jiwei Li
- Department of Respiratory, Critical Care and Sleep Medicine, School of Medicine, Xiamen University, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
- Institute of Chest and Lung Diseases, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Xiaoyi Hu
- Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing, China
| | - Qiuyue Long
- Department of Respiratory, Critical Care and Sleep Medicine, School of Medicine, Xiamen University, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
- Institute of Chest and Lung Diseases, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Shixu Song
- Department of Respiratory, Critical Care and Sleep Medicine, School of Medicine, Xiamen University, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
- Institute of Chest and Lung Diseases, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Hongli Ye
- Department of Respiratory, Critical Care and Sleep Medicine, School of Medicine, Xiamen University, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
- Institute of Chest and Lung Diseases, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Yukun He
- Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing, China
| | - Xinqian Ma
- Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing, China
| | - Wenyi Yu
- Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing, China
| | - Xi Chen
- Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing, China
| | - Lili Zhao
- Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing, China
| | - Fangfang Wu
- Department of Respiratory, Critical Care and Sleep Medicine, School of Medicine, Xiamen University, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
- Institute of Chest and Lung Diseases, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Xiaoyong Chen
- Department of Respiratory, Critical Care and Sleep Medicine, School of Medicine, Xiamen University, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
- Institute of Chest and Lung Diseases, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Jianshi Zheng
- Department of Respiratory, Critical Care and Sleep Medicine, School of Medicine, Xiamen University, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
- Institute of Chest and Lung Diseases, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Minghui Wang
- Department of Respiratory, Critical Care and Sleep Medicine, School of Medicine, Xiamen University, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
- Institute of Chest and Lung Diseases, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Binghan Zheng
- Department of Respiratory, Critical Care and Sleep Medicine, School of Medicine, Xiamen University, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
- Institute of Chest and Lung Diseases, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Shuoqi Yang
- Institute of Chest and Lung Diseases, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
- Department of Thoracic Surgery, School of Medicine, Xiamen University, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Liang Bu
- Institute of Chest and Lung Diseases, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
- Department of Thoracic Surgery, School of Medicine, Xiamen University, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Qin Chen
- Department of Cardiovascular Medicine, School of Medicine, Xiamen University, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Ke Li
- Department of Critical Care Medicine, School of Medicine, Xiamen University, Xiang’an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Yali Zheng
- Department of Respiratory, Critical Care and Sleep Medicine, School of Medicine, Xiamen University, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
- Institute of Chest and Lung Diseases, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Zhancheng Gao
- Department of Respiratory, Critical Care and Sleep Medicine, School of Medicine, Xiamen University, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
- Institute of Chest and Lung Diseases, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
- Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing, China
| |
Collapse
|
2
|
Russell MW, Kilian M, Mestecky J. Role of IgA1 protease-producing bacteria in SARS-CoV-2 infection and transmission: a hypothesis. mBio 2024; 15:e0083324. [PMID: 39207101 PMCID: PMC11492985 DOI: 10.1128/mbio.00833-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Secretory (S) IgA antibodies against severe acute respiratory syndrome (SARS)-CoV-2 are induced in saliva and upper respiratory tract (URT) secretions by natural infection and may be critical in determining the outcome of initial infection. Secretory IgA1 (SIgA1) is the predominant isotype of antibodies in these secretions. Neutralization of SARS-CoV-2 is most effectively accomplished by polymeric antibodies such as SIgA. We hypothesize that cleavage of SIgA1 antibodies against SARS-CoV-2 by unique bacterial IgA1 proteases to univalent Fabα antibody fragments with diminished virus neutralizing activity would facilitate the descent of the virus into the lungs to cause serious disease and also enhance its airborne transmission to others. Recent studies of the nasopharyngeal microbiota of patients with SARS-CoV-2 infection have revealed significant increases in the proportions of IgA1 protease-producing bacteria in comparison with healthy subjects. Similar considerations might apply also to other respiratory viral infections including influenza, possibly explaining the original attribution of influenza to Haemophilus influenzae, which produces IgA1 protease.
Collapse
Affiliation(s)
- Michael W. Russell
- Department of
Microbiology and Immunology, Jacobs School of Medicine and Biomedical
Sciences, University at Buffalo,
Buffalo, New York, USA
| | - Mogens Kilian
- Department of
Biomedicine, Aarhus University,
Aarhus, Denmark
| | - Jiri Mestecky
- Department of
Microbiology, Heersink School of Medicine, University of Alabama at
Birmingham, Birmingham,
Alabama, USA
- />Institute of
Microbiology, laboratory of Cellular and Molecular Immunology, Czech
Academy of Sciences,
Prague, Czechia
| |
Collapse
|
3
|
Bielza R, Pérez P, García N, Ballesteros-Sanabria L, Martínez RM, Ghazi A, Hernando C, Rodríguez MV, Thuissard IJ, Andreu-Vázquez C, Bautista JM. Unravelling the role of secretory Immnuoglobulin-A in COVID-19: a multicentre study in nursing homes during the first wave. BMC Geriatr 2024; 24:804. [PMID: 39354348 PMCID: PMC11443839 DOI: 10.1186/s12877-024-05402-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 09/24/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND The function of mucosal secretory IgA (SIgA) seems to be paramount in the immune response against SARS-CoV-2 however, there are few studies addressing this issue specifically in the institutionalized older population. This study aims to determine the levels of secretory IgA against the S1 domain of the SARS-CoV-2 spike (SIgA-S1) in older people living in nursing homes (NH) and to investigate the differences in baseline characteristics, severity of COVID-19, duration of symptoms, 30-day mortality, and reinfection according to the levels of SIgA-S1. METHODS In this multicentre longitudinal study, conducted in two NHs attended in coordination with a hospital-based Geriatric team, 305 residents (87.3 years, 74.4% female) were included. A massive collection of nasopharyngeal samples was carried out after the first wave of COVID-19 in May 2020 and an ELISA analysis of SIgA-S1 was performed on frozen samples in May 2023. Values of SIgA-S1 ≥ 57.6 U/mL ("cut-off point") were considered "induced". Resident medical records were reviewed to assess symptoms, comprehensive geriatric assessment (CGA), reinfection, and overall 30-day mortality. RESULTS At the time of sample collection, 274 residents (89.8%) exhibited "induced" SIgA-S1 levels (≥ 57.6 U/mL), 46 (15.1%) tested positive for PCR SARS-CoV-2, and 170 (57%) had experienced COVID-19 symptoms. "Induced" SIgA-S1 patients were more likely to be symptomatic (60.3% vs. 29%; p < 0.001) and exhibited upper respiratory tract symptoms more frequently (25.1% vs. 6.5%; p = 0.020) compared to "non-induced" patients. Patients with severe disease and duration of symptoms > 10 days had higher levels of SIgA-S1 than those with mild disease (252 vs.192.6 U/mL; p = 0.012) or duration ≤ 10 days (270.5 vs. 208.1 U/mL; p = 0.043), respectively. No significant differences were observed in age, sex, CGA, duration of symptoms, disease severity, overall 30-day-mortality, or reinfection between "induced" and "non-induced" residents. CONCLUSIONS Levels of SIgA-S1 are associated with the duration and type of COVID-19 symptoms, along with the severity of infection. While these findings shed light on the knowledge of SIgA-S1, further interdisciplinary studies are warranted to better understand the immune response to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Rafael Bielza
- Department of Geriatric Medicine, Hospital Universitario Infanta Sofía, Paseo de Europa 37, San Sebastián de los Reyes, 28007, Spain.
- Faculty of Biomedical and Health Sciences, Department of Medicine, European University of Madrid, Madrid, Spain.
| | - Patricia Pérez
- Department of Geriatric Medicine, Hospital Universitario Infanta Sofía, Paseo de Europa 37, San Sebastián de los Reyes, 28007, Spain
- Faculty of Biomedical and Health Sciences, Department of Medicine, European University of Madrid, Madrid, Spain
| | - Nuria García
- Department of Geriatric Medicine, Hospital Universitario Infanta Sofía, Paseo de Europa 37, San Sebastián de los Reyes, 28007, Spain
| | | | - Rosa María Martínez
- Department of Geriatric Medicine, Hospital Universitario Infanta Sofía, Paseo de Europa 37, San Sebastián de los Reyes, 28007, Spain
| | - Azam Ghazi
- Complutense University of Madrid, Madrid, Spain
| | - Clara Hernando
- Department of Geriatric Medicine, Hospital Universitario Infanta Sofía, Paseo de Europa 37, San Sebastián de los Reyes, 28007, Spain
| | - María Victoria Rodríguez
- Department of Geriatric Medicine, Hospital Universitario Infanta Sofía, Paseo de Europa 37, San Sebastián de los Reyes, 28007, Spain
| | - Israel J Thuissard
- Faculty of Biomedical and Health Sciences, Department of Medicine, European University of Madrid, Madrid, Spain
| | - Cristina Andreu-Vázquez
- Faculty of Biomedical and Health Sciences, Department of Medicine, European University of Madrid, Madrid, Spain
| | | |
Collapse
|
4
|
Tang Y, Boribong BP, Swank ZN, Demokritou M, Luban MAF, Fasano A, Du M, Wolf RL, Griffiths J, Shultz J, Borberg E, Chalise S, Gonzalez WI, Walt DR, Yonker LM, Horwitz BH. COVID-19 mRNA vaccines induce robust levels of IgG but limited amounts of IgA within the oronasopharynx of young children. J Infect Dis 2024:jiae450. [PMID: 39253950 DOI: 10.1093/infdis/jiae450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/22/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Understanding antibody responses to SARS-CoV-2 vaccination is crucial for refining COVID-19 immunization strategies. Generation of mucosal immune responses, including mucosal IgA, could be of potential benefit to vaccine efficacy, yet limited evidence exists regarding the production of mucosal antibodies following the administration of current mRNA vaccines to young children. METHODS We measured the levels of antibodies against SARS-CoV-2 from a cohort of children under 5 years of age (N=24) undergoing SARS-CoV-2 mRNA vaccination (serially collected, matched serum and saliva samples) or in a convenience sample of children under 5 years of age presenting to pediatric emergency department (nasal swabs, N=103). Further, we assessed salivary and nasal samples for the ability to induce SARS-CoV-2 spike-mediated neutrophil extracellular traps (NET) formation. RESULTS Longitudinal analysis of post-vaccine responses in saliva revealed the induction of SARS-CoV-2 specific IgG but not IgA. Similarly, SARS-CoV-2 specific IgA was only observed in nasal samples obtained from previously infected children with or without vaccination, but not in vaccinated children without a history of infection. In addition, oronasopharyngeal samples obtained from children with prior infection were able to trigger enhanced spike-mediated NET formation, and IgA played a key role in driving this process. CONCLUSIONS Despite the induction of specific IgG in the oronasal mucosa, current intramuscular vaccines have limited ability to generate mucosal IgA in young children. These results confirm the independence of mucosal IgA responses from systemic humoral responses following mRNA vaccination and suggest potential future vaccination strategies for enhancing mucosal protection in this young age group.
Collapse
Affiliation(s)
- Ying Tang
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Brittany P Boribong
- Harvard Medical School, Boston, MA 02115, USA
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Zoe N Swank
- Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Melina Demokritou
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Maria A F Luban
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Alessio Fasano
- Harvard Medical School, Boston, MA 02115, USA
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Michelle Du
- Division of Emergency Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Rebecca L Wolf
- Division of Emergency Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Joseph Griffiths
- Division of Emergency Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - John Shultz
- Division of Emergency Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Ella Borberg
- Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Sujata Chalise
- Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Wanda I Gonzalez
- Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA 02114, USA
| | - David R Walt
- Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Lael M Yonker
- Harvard Medical School, Boston, MA 02115, USA
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Bruce H Horwitz
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- Division of Emergency Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| |
Collapse
|
5
|
Wellford SA, Moseman EA. Olfactory immunology: the missing piece in airway and CNS defence. Nat Rev Immunol 2024; 24:381-398. [PMID: 38097777 DOI: 10.1038/s41577-023-00972-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2023] [Indexed: 12/23/2023]
Abstract
The olfactory mucosa is a component of the nasal airway that mediates the sense of smell. Recent studies point to an important role for the olfactory mucosa as a barrier to both respiratory pathogens and to neuroinvasive pathogens that hijack the olfactory nerve and invade the CNS. In particular, the COVID-19 pandemic has demonstrated that the olfactory mucosa is an integral part of a heterogeneous nasal mucosal barrier critical to upper airway immunity. However, our insufficient knowledge of olfactory mucosal immunity hinders attempts to protect this tissue from infection and other diseases. This Review summarizes the state of olfactory immunology by highlighting the unique immunologically relevant anatomy of the olfactory mucosa, describing what is known of olfactory immune cells, and considering the impact of common infectious diseases and inflammatory disorders at this site. We will offer our perspective on the future of the field and the many unresolved questions pertaining to olfactory immunity.
Collapse
Affiliation(s)
- Sebastian A Wellford
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA
| | - E Ashley Moseman
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
6
|
Chwa JS, Kim M, Lee Y, Cheng WA, Shin Y, Jumarang J, Bender JM, Pannaraj PS. Detection of SARS-CoV-2-Specific Secretory IgA and Neutralizing Antibodies in the Nasal Secretions of Exposed Seronegative Individuals. Viruses 2024; 16:852. [PMID: 38932145 PMCID: PMC11209246 DOI: 10.3390/v16060852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/24/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
Mucosal immunity may contribute to clearing SARS-CoV-2 infection prior to systemic infection, thereby allowing hosts to remain seronegative. We describe the meaningful detection of SARS-CoV-2-specific nasal mucosal antibodies in a group of exposed-household individuals that evaded systemic infection. Between June 2020 and February 2023, nasopharyngeal swab (NPS) and acute and convalescent blood were collected from individuals exposed to a SARS-CoV-2-confirmed household member. Nasal secretory IgA (SIgA) antibodies targeting the SARS-CoV-2 spike protein were measured using a modified ELISA. Of the 36 exposed individuals without SARS-CoV-2 detected by the RT-PCR of NPS specimens and seronegative for SARS-CoV-2-specific IgG at enrollment and convalescence, 13 (36.1%) had positive SARS-CoV-2-specific SIgA levels detected in the nasal mucosa at enrollment. These individuals had significantly higher nasal SIgA (median 0.52 AU/mL) compared with never-exposed, never-infected controls (0.001 AU/mL) and infected-family participants (0.0002 AU/mL) during the acute visit, respectively (both p < 0.001). The nasal SARS-CoV-2-specific SIgA decreased rapidly over two weeks in the exposed seronegative individuals compared to a rise in SIgA in infected-family members. The nasal SARS-CoV-2-specific SIgA may have a protective role in preventing systemic infection.
Collapse
Affiliation(s)
- Jason S. Chwa
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
- Division of Infectious Diseases, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA;
| | - Minjun Kim
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, San Diego, CA 92093, USA; (M.K.); (Y.L.); (W.A.C.); (J.J.)
| | - Yesun Lee
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, San Diego, CA 92093, USA; (M.K.); (Y.L.); (W.A.C.); (J.J.)
| | - Wesley A. Cheng
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, San Diego, CA 92093, USA; (M.K.); (Y.L.); (W.A.C.); (J.J.)
| | - Yunho Shin
- Division of Infectious Diseases, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA;
| | - Jaycee Jumarang
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, San Diego, CA 92093, USA; (M.K.); (Y.L.); (W.A.C.); (J.J.)
| | - Jeffrey M. Bender
- Department of Pediatrics, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA;
| | - Pia S. Pannaraj
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, San Diego, CA 92093, USA; (M.K.); (Y.L.); (W.A.C.); (J.J.)
- Division of Infectious Diseases, Rady Children’s Hospital, San Diego, CA 92123, USA
| |
Collapse
|
7
|
Li J, Chu LT, Hartanto H, Guo G, Liu L, Wu J, Wu M, Cui C, Wang G, Liu W, Kwong HK, Wu S, Chen TH. Microfluidic particle counter visualizing mucosal antibodies against SARS-CoV-2 in the upper respiratory tract for rapid evaluation of immune protection. LAB ON A CHIP 2024; 24:2658-2668. [PMID: 38660972 DOI: 10.1039/d4lc00118d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Mucosal antibodies in the upper respiratory tract are the earliest and most critical responders to prevent respiratory infections, providing an indication for the rapid evaluation of immune protection. Here, we report a microfluidic particle counter that directly visualizes mucosal antibody levels in nasal mucus. The mucosal anti-SARS-CoV-2 spike receptor binding domain (RBD) antibodies in nasal secretions first react with magnetic microparticles (MMPs) and polystyrene microparticles (PMPs) that are surface-modified to form a "MMPs-anti-spike RBD IgG-PMPs" complex when RBD is present. After magnetic separation and loading into the microfluidic particle counter, the free PMPs, which are reduced with increasing anti-spike RBD IgG antibody levels, are trapped by a microfluidic particle dam and accumulate in the trapping channel. A sensitive mode [limit of detection (LOD): 14.0 ng mL-1; sample-to-answer time: 70 min] and an equipment-free rapid mode (LOD: 37.4 ng mL-1; sample-to-answer time: 20 min) were achieved. Eighty-seven nasal secretion (NS) samples from vaccinees were analyzed using our microfluidic particle counter, and the results closely resemble those of the gold-standard enzyme-linked immunosorbent assay (ELISA). The analysis shows that higher antibody levels were found in convalescent volunteers compared to noninfected volunteers. Together, we demonstrate a rapid kit that directly indicates immune status, which can guide vaccine strategy for individuals and the government.
Collapse
Affiliation(s)
- Jiaheng Li
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, SAR, China.
| | - Lok Ting Chu
- Department of Chemistry and Molecular Biology, School of Basic Medical Sciences, Guang Dong Medical University, Zhanjiang, China
| | - Hogi Hartanto
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, SAR, China.
| | - Guihuan Guo
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, SAR, China.
| | - Lu Liu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, SAR, China.
| | - Jianpeng Wu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, SAR, China.
| | - Minghui Wu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, SAR, China.
| | - Chenyu Cui
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, SAR, China.
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong, SAR, China
| | - Gaobo Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, SAR, China.
| | - Wengang Liu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, SAR, China.
| | - Hoi Kwan Kwong
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, SAR, China.
| | - Siying Wu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, SAR, China.
| | - Ting-Hsuan Chen
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, SAR, China.
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong, SAR, China
| |
Collapse
|
8
|
Tang Y, Boribong BP, Swank ZN, Demokritou M, Luban MA, Fasano A, Du M, Wolf RL, Griffiths J, Shultz J, Borberg E, Chalise S, Gonzalez WI, Walt DR, Yonker LM, Horwitz BH. COVID-19 mRNA vaccines induce robust levels of IgG but limited amounts of IgA within the oronasopharynx of young children. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.15.24305767. [PMID: 38699375 PMCID: PMC11065043 DOI: 10.1101/2024.04.15.24305767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Background Understanding antibody responses to SARS-CoV-2 vaccination is crucial for refining COVID-19 immunization strategies. Generation of mucosal immune responses, including mucosal IgA, could be of potential benefit to vaccine efficacy, yet limited evidence exists regarding the production of mucosal antibodies following the administration of current mRNA vaccines to young children. Methods We measured the levels of antibodies against SARS-CoV-2 from a cohort of children under 5 years of age undergoing SARS-CoV-2 mRNA vaccination (serially collected, matched serum and saliva samples, N=116) or on convenience samples of children under 5 years of age presenting to a pediatric emergency department (nasal swabs, N=103). Further, we assessed salivary and nasal samples for the ability to induce SARS-CoV-2 spike-mediated neutrophil extracellular traps (NET) formation. Results Longitudinal analysis of post-vaccine responses in saliva revealed the induction of SARS-CoV-2 specific IgG but not IgA. Similarly, SARS-CoV-2 specific IgA was only observed in nasal samples obtained from previously infected children with or without vaccination, but not in vaccinated children without a history of infection. In addition, oronasopharyngeal samples obtained from children with prior infection were able to trigger enhanced spike-mediated NET formation, and IgA played a key role in driving this process. Conclusions Despite the induction of specific IgG in the oronasal mucosa, current intramuscular vaccines have limited ability to generate mucosal IgA in young children. These results confirm the independence of mucosal IgA responses from systemic humoral responses following mRNA vaccination and suggest potential future vaccination strategies for enhancing mucosal protection in this young age group.
Collapse
Affiliation(s)
- Ying Tang
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Brittany P. Boribong
- Harvard Medical School, Boston, MA 02115, USA
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Zoe N. Swank
- Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Melina Demokritou
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Maria A.F. Luban
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Alessio Fasano
- Harvard Medical School, Boston, MA 02115, USA
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Michelle Du
- Division of Emergency Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Rebecca L. Wolf
- Division of Emergency Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Joseph Griffiths
- Division of Emergency Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
| | - John Shultz
- Division of Emergency Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Ella Borberg
- Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Sujata Chalise
- Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Wanda I. Gonzalez
- Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA 02114, USA
| | - David R. Walt
- Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Lael M. Yonker
- Harvard Medical School, Boston, MA 02115, USA
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Bruce H. Horwitz
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- Division of Emergency Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
9
|
Göritzer K, Groppelli E, Grünwald-Gruber C, Figl R, Ni F, Hu H, Li Y, Liu Y, Hu Q, Puligedda RD, Jung JW, Strasser R, Dessain S, Ma JKC. Recombinant neutralizing secretory IgA antibodies for preventing mucosal acquisition and transmission of SARS-CoV-2. Mol Ther 2024; 32:689-703. [PMID: 38268188 PMCID: PMC10928148 DOI: 10.1016/j.ymthe.2024.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/16/2023] [Accepted: 01/18/2024] [Indexed: 01/26/2024] Open
Abstract
Passive delivery of antibodies to mucosal sites may be a valuable adjunct to COVID-19 vaccination to prevent infection, treat viral carriage, or block transmission. Neutralizing monoclonal IgG antibodies are already approved for systemic delivery, and several clinical trials have been reported for delivery to mucosal sites where SARS-CoV-2 resides and replicates in early infection. However, secretory IgA may be preferred because the polymeric complex is adapted for the harsh, unstable external mucosal environment. Here, we investigated the feasibility of producing neutralizing monoclonal IgA antibodies against SARS-CoV-2. We engineered two class-switched mAbs that express well as monomeric and secretory IgA (SIgA) variants with high antigen-binding affinities and increased stability in mucosal secretions compared to their IgG counterparts. SIgAs had stronger virus neutralization activities than IgG mAbs and were protective against SARS-CoV-2 infection in an in vivo murine model. Furthermore, SIgA1 can be aerosolized for topical delivery using a mesh nebulizer. Our findings provide a persuasive case for developing recombinant SIgAs for mucosal application as a new tool in the fight against COVID-19.
Collapse
Affiliation(s)
- Kathrin Göritzer
- Hotung Molecular Immunology Unit, St. George's University of London, London SW17 0RE, UK.
| | - Elisabetta Groppelli
- Institute for Infection and Immunity, St. George's University of London, London SW17 0RE, UK
| | - Clemens Grünwald-Gruber
- Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Rudolf Figl
- Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Fengfeng Ni
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Huimin Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yuncheng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yalan Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Qinxue Hu
- Institute for Infection and Immunity, St. George's University of London, London SW17 0RE, UK; State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | | | - Jae-Wan Jung
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Scott Dessain
- Lankenau Institute for Medical Research, Wynnewood, PA 19096, USA
| | - Julian K-C Ma
- Hotung Molecular Immunology Unit, St. George's University of London, London SW17 0RE, UK.
| |
Collapse
|
10
|
Le Bert N, Samandari T. Silent battles: immune responses in asymptomatic SARS-CoV-2 infection. Cell Mol Immunol 2024; 21:159-170. [PMID: 38221577 PMCID: PMC10805869 DOI: 10.1038/s41423-024-01127-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/16/2024] Open
Abstract
SARS-CoV-2 infections manifest with a broad spectrum of presentations, ranging from asymptomatic infections to severe pneumonia and fatal outcomes. This review centers on asymptomatic infections, a widely reported phenomenon that has substantially contributed to the rapid spread of the pandemic. In such asymptomatic infections, we focus on the role of innate, humoral, and cellular immunity. Notably, asymptomatic infections are characterized by an early and robust innate immune response, particularly a swift type 1 IFN reaction, alongside a rapid and broad induction of SARS-CoV-2-specific T cells. Often, antibody levels tend to be lower or undetectable after asymptomatic infections, suggesting that the rapid control of viral replication by innate and cellular responses might impede the full triggering of humoral immunity. Even if antibody levels are present in the early convalescent phase, they wane rapidly below serological detection limits, particularly following asymptomatic infection. Consequently, prevalence studies reliant solely on serological assays likely underestimate the extent of community exposure to the virus.
Collapse
Affiliation(s)
- Nina Le Bert
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.
| | - Taraz Samandari
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
11
|
Wellford SA, Moseman EA. Olfactory immune response to SARS-CoV-2. Cell Mol Immunol 2024; 21:134-143. [PMID: 38143247 PMCID: PMC10806031 DOI: 10.1038/s41423-023-01119-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/04/2023] [Indexed: 12/26/2023] Open
Abstract
Numerous pathogens can infect the olfactory tract, yet the pandemic caused by SARS-CoV-2 has strongly emphasized the importance of the olfactory mucosa as an immune barrier. Situated in the nasal passages, the olfactory mucosa is directly exposed to the environment to sense airborne odorants; however, this also means it can serve as a direct route of entry from the outside world into the brain. As a result, olfactotropic infections can have serious consequences, including dysfunction of the olfactory system, CNS invasion, dissemination to the lower respiratory tract, and transmission between individuals. Recent research has shown that a distinctive immune response is needed to protect this neuronal and mucosal tissue. A better understanding of innate, adaptive, and structural immune barriers in the olfactory mucosa is needed to develop effective therapeutics and vaccines against olfactotropic microbes such as SARS-CoV-2. Here, we summarize the ramifications of SARS-CoV-2 infection of the olfactory mucosa, review the subsequent immune response, and discuss important areas of future research for olfactory immunity to infectious disease.
Collapse
Affiliation(s)
- Sebastian A Wellford
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA
| | - E Ashley Moseman
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
12
|
Lapuente D, Winkler TH, Tenbusch M. B-cell and antibody responses to SARS-CoV-2: infection, vaccination, and hybrid immunity. Cell Mol Immunol 2024; 21:144-158. [PMID: 37945737 PMCID: PMC10805925 DOI: 10.1038/s41423-023-01095-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019 prompted scientific, medical, and biotech communities to investigate infection- and vaccine-induced immune responses in the context of this pathogen. B-cell and antibody responses are at the center of these investigations, as neutralizing antibodies (nAbs) are an important correlate of protection (COP) from infection and the primary target of SARS-CoV-2 vaccine modalities. In addition to absolute levels, nAb longevity, neutralization breadth, immunoglobulin isotype and subtype composition, and presence at mucosal sites have become important topics for scientists and health policy makers. The recent pandemic was and still is a unique setting in which to study de novo and memory B-cell (MBC) and antibody responses in the dynamic interplay of infection- and vaccine-induced immunity. It also provided an opportunity to explore new vaccine platforms, such as mRNA or adenoviral vector vaccines, in unprecedented cohort sizes. Combined with the technological advances of recent years, this situation has provided detailed mechanistic insights into the development of B-cell and antibody responses but also revealed some unexpected findings. In this review, we summarize the key findings of the last 2.5 years regarding infection- and vaccine-induced B-cell immunity, which we believe are of significant value not only in the context of SARS-CoV-2 but also for future vaccination approaches in endemic and pandemic settings.
Collapse
Affiliation(s)
- Dennis Lapuente
- Institut für klinische und molekulare Virologie, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossgarten 4, 91054, Erlangen, Germany
| | - Thomas H Winkler
- Department of Biology, Division of Genetics, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
- Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossplatz 1, 91054, Erlangen, Germany.
| | - Matthias Tenbusch
- Institut für klinische und molekulare Virologie, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossgarten 4, 91054, Erlangen, Germany
- Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossplatz 1, 91054, Erlangen, Germany
| |
Collapse
|
13
|
Röltgen K, Boyd SD. Antibody and B Cell Responses to SARS-CoV-2 Infection and Vaccination: The End of the Beginning. ANNUAL REVIEW OF PATHOLOGY 2024; 19:69-97. [PMID: 37738512 DOI: 10.1146/annurev-pathmechdis-031521-042754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
As the COVID-19 pandemic has evolved during the past years, interactions between human immune systems, rapidly mutating and selected SARS-CoV-2 viral variants, and effective vaccines have complicated the landscape of individual immunological histories. Here, we review some key findings for antibody and B cell-mediated immunity, including responses to the highly mutated omicron variants; immunological imprinting and other impacts of successive viral antigenic variant exposures on antibody and B cell memory; responses in secondary lymphoid and mucosal tissues and non-neutralizing antibody-mediated immunity; responses in populations vulnerable to severe disease such as those with cancer, immunodeficiencies, and other comorbidities, as well as populations showing apparent resistance to severe disease such as many African populations; and evidence of antibody involvement in postacute sequelae of infection or long COVID. Despite the initial phase of the pandemic ending, human populations will continue to face challenges presented by this unpredictable virus.
Collapse
Affiliation(s)
- Katharina Röltgen
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Scott D Boyd
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA;
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
14
|
Sechan F, Loens K, Goossens H, Ieven M, van der Hoek L. Endemic Human Coronavirus-Specific Nasal Immunoglobulin A and Serum Immunoglobulin G Dynamics in Lower Respiratory Tract Infections. Vaccines (Basel) 2024; 12:90. [PMID: 38250903 PMCID: PMC10820673 DOI: 10.3390/vaccines12010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024] Open
Abstract
Endemic human coronaviruses (HCoV) NL63, 229E, OC43, and HKU1 cause respiratory infection. Following infection, a virus-specific serum antibody rise is usually observed, coinciding with recovery. In some cases, an infection is not accompanied by an immunoglobulin G (IgG) antibody rise in serum in the first month after HCoV infection, even though the infection has cleared in that month and the patient has recovered. We investigated the possible role of nasal immunoglobulin A (IgA). We measured spike (S) and nucleocapsid (N)-specific nasal IgA during and after an HCoV lower respiratory tract infection (LRTI) and compared the IgA responses between subjects with and without a significant IgG rise in serum (IgG responders (n = 31) and IgG non-responders (n = 14)). We found that most IgG responders also exhibited significant nasal IgA rise in the first month after the infection, whereas such an IgA rise was lacking in most IgG non-responders. Interestingly, the serum IgG non-responders presented with a significantly higher nasal IgA when they entered this study than during the acute phase of the LRTI. Our data suggest that nasal IgA could be part of a fast acute response to endemic HCoV infection and may play a role in clearing the infection.
Collapse
Affiliation(s)
- Ferdyansyah Sechan
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
- Amsterdam Institute for Infection and Immunity, 1105 AZ Amsterdam, The Netherlands
| | - Katherine Loens
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, 2610 Antwerp, Belgium; (K.L.); (H.G.); (M.I.)
| | - Herman Goossens
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, 2610 Antwerp, Belgium; (K.L.); (H.G.); (M.I.)
| | - Margareta Ieven
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, 2610 Antwerp, Belgium; (K.L.); (H.G.); (M.I.)
| | - Lia van der Hoek
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
- Amsterdam Institute for Infection and Immunity, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
15
|
Fröberg J, Koomen VJCH, van der Gaast-de Jongh CE, Philipsen R, GeurtsvanKessel CH, de Vries RD, Baas MC, van der Molen RG, de Jonge MI, Hilbrands LB, Huynen MA, Diavatopoulos DA. Primary Exposure to SARS-CoV-2 via Infection or Vaccination Determines Mucosal Antibody-Dependent ACE2 Binding Inhibition. J Infect Dis 2024; 229:137-146. [PMID: 37675756 PMCID: PMC10786246 DOI: 10.1093/infdis/jiad385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND Mucosal antibodies play a critical role in preventing SARS-CoV-2 infections or reinfections by blocking the interaction of the receptor-binding domain (RBD) with the angiotensin-converting enzyme 2 (ACE2) receptor on the cell surface. In this study, we investigated the difference between the mucosal antibody response after primary infection and vaccination. METHODS We assessed longitudinal changes in the quantity and capacity of nasal antibodies to neutralize the interaction of RBD with the ACE2 receptor using the spike protein and RBD from ancestral SARS-CoV-2 (Wuhan-Hu-1), as well as the RBD from the Delta and Omicron variants. RESULTS Significantly higher mucosal IgA concentrations were detected postinfection vs postvaccination, while vaccination induced higher IgG concentrations. However, ACE2-inhibiting activity did not differ between the cohorts. Regarding whether IgA or IgG drove ACE2 inhibition, infection-induced binding inhibition was driven by both isotypes, while postvaccination binding inhibition was mainly driven by IgG. CONCLUSIONS Our study provides new insights into the relationship between antibody isotypes and neutralization by using a sensitive and high-throughput ACE2 binding inhibition assay. Key differences are highlighted between vaccination and infection at the mucosal level, showing that despite differences in the response quantity, postinfection and postvaccination ACE2 binding inhibition capacity did not differ.
Collapse
Affiliation(s)
- Janeri Fröberg
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Nijmegen
- Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen
| | - Vera J C H Koomen
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Nijmegen
- Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen
- Department of Nephrology, Radboud University Medical Center, Nijmegen
| | | | - Ria Philipsen
- Radboud Technology Center Clinical Studies, Radboud University Medical Center, Nijmegen
| | | | - Rory D de Vries
- Department of Viroscience, Erasmus Medical Center, Rotterdam
| | - Marije C Baas
- Department of Nephrology, Radboud University Medical Center, Nijmegen
| | - Renate G van der Molen
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Nijmegen
| | - Marien I de Jonge
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Nijmegen
- Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen
| | - Luuk B Hilbrands
- Department of Nephrology, Radboud University Medical Center, Nijmegen
| | - Martijn A Huynen
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dimitri A Diavatopoulos
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Nijmegen
- Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen
| |
Collapse
|
16
|
Sharma S, Thiriard A, Olislagers V, Lechien JR, Jurion MH, Delforge ML, Marchant A, Saussez S. Mucosal antibody response and SARS-CoV-2 shedding in patients with COVID-19 related olfactory dysfunction. J Med Virol 2024; 96:e29398. [PMID: 38235905 DOI: 10.1002/jmv.29398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/06/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024]
Abstract
Olfactory dysfunction (OD) was one of the most common symptom of infection with the Wuhan strain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and could persist for several months after symptom onset. The pathogenesis of prolonged OD remains poorly understood but probably involves sustained viral replication associated with limited mucosal immune response to the virus. This prospective study was conducted to investigate the potential relationship between nasal SARS-CoV-2 viral load and antibody levels in patients with loss of smell. One hundred and five patients were recruited 2 weeks after presenting with confirmed coronavirus disease 2019 associated OD. Based on the identification sniffing test performed at enrollment, 52 patients were still anosmic or hyposmic and 53 were normosmic. SARS-CoV-2 was detectable in nasal wash of about 50% of anosmic and normosmic patients. Higher viral load was detected in anosmic patients with lower levels of SARS-CoV-2 specific nasal immunoglobulins (Ig) IgG and IgA. This association was not observed in normosmic patients. No relationship between nasal viral load and antibodies to endemic coronaviruses was observed. SARS-CoV-2 replication in the nasal cavity may be promoted by defective mucosal antibody responses in patients with OD. Boosting mucosal immunity may limit nasal SARS-CoV-2 replication and thereby help in the control of persistent OD.
Collapse
Affiliation(s)
- Shilpee Sharma
- European Plotkin Institute for Vaccinology, ULB Centre for Research in Immunology (U-CRI), Université libre de Bruxelles, Brussels, Belgium
| | - Anaïs Thiriard
- European Plotkin Institute for Vaccinology, ULB Centre for Research in Immunology (U-CRI), Université libre de Bruxelles, Brussels, Belgium
| | - Véronique Olislagers
- European Plotkin Institute for Vaccinology, ULB Centre for Research in Immunology (U-CRI), Université libre de Bruxelles, Brussels, Belgium
| | - Jerome R Lechien
- COVID-19 Task Force of the Young Otolaryngologists, The International Federations of Oto-rhino-laryngological Societies (YO-IFOS), Paris, France
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine, UMONS Research Institute for Health Sciences and Technology, University of Mons (UMons), Mons, Belgium
- Department of Otorhinolaryngology and Head and Neck Surgery, CHU de Bruxelles, CHU Saint-Pierre, School of Medicine, Université libre de Bruxelles, Brussels, Belgium
- Department of Otorhinolaryngology and Head and Neck Surgery, EpiCURA Hospital, Baudour, Belgium
| | - Marie-Hélène Jurion
- National Reference Center for Congenital Infections, CUB-Hôpital Erasme, ULB, Brussels, Belgium
| | - Marie-Luce Delforge
- National Reference Center for Congenital Infections, CUB-Hôpital Erasme, ULB, Brussels, Belgium
| | - Arnaud Marchant
- European Plotkin Institute for Vaccinology, ULB Centre for Research in Immunology (U-CRI), Université libre de Bruxelles, Brussels, Belgium
| | - Sven Saussez
- COVID-19 Task Force of the Young Otolaryngologists, The International Federations of Oto-rhino-laryngological Societies (YO-IFOS), Paris, France
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine, UMONS Research Institute for Health Sciences and Technology, University of Mons (UMons), Mons, Belgium
- Department of Otorhinolaryngology and Head and Neck Surgery, CHU de Bruxelles, CHU Saint-Pierre, School of Medicine, Université libre de Bruxelles, Brussels, Belgium
- Department of Otorhinolaryngology and Head and Neck Surgery, EpiCURA Hospital, Baudour, Belgium
| |
Collapse
|
17
|
Patra A, Bala A, Khan MR, Mukherjee AK. A Correlation Study to Comprehend the SAR-CoV-2 Viral Load, Antiviral Antibody Titer, and Severity of COVID-19 Symptoms Post-infection Amongst the Vaccinated Population in Kamrup District of As sam, Northeast India. Endocr Metab Immune Disord Drug Targets 2024; 24:1414-1421. [PMID: 38231052 DOI: 10.2174/0118715303281124231213110004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND As per the recommendation of the United States Food and Drug Administration, more research is needed to determine the antibody titer against COVID-19 vaccination. OBJECTIVE The study aimed to understand the relationship between the antibody titer to the demographics, infection severity, and cycle threshold (CT) values of confirmed COVID-19 patients. METHODS Initially, we obtained consent from 185 populations and included sixty RT-PCRpositive COVID-19 patients from Kamrup District in the Northeast State of Assam, India. The vaccination status was recorded and tested for the level of serum immunoglobulin (IgG). The CT values, gender, and clinical symptoms-based scoring (CSBS) correlated with their IgG value. RESULTS Around 48% of participants gained an antibody titer more than the threshold value and showed CT values between 18-25. Moreover, the maximum distributed score above the average was found between the CT values 18-25. CONCLUSION The IgG titer value differs significantly amongst the vaccinated population, which may depend upon their genetic and demographic variability.
Collapse
Affiliation(s)
- Aparup Patra
- Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati-781035, Assam, India
| | - Asis Bala
- Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati-781035, Assam, India
| | - Mojibur R Khan
- Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati-781035, Assam, India
| | - Ashis K Mukherjee
- Institute of Advanced Studies in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati-781035, Assam, India
| |
Collapse
|
18
|
Wang S, Guirakhoo F, Periasamy S, Ryan V, Wiggins J, Subramani C, Thibodeaux B, Sahni J, Hellerstein M, Kuzmina NA, Bukreyev A, Dodart JC, Rumyantsev A. RBD-Protein/Peptide Vaccine UB-612 Elicits Mucosal and Fc-Mediated Antibody Responses against SARS-CoV-2 in Cynomolgus Macaques. Vaccines (Basel) 2023; 12:40. [PMID: 38250853 PMCID: PMC10818657 DOI: 10.3390/vaccines12010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Antibodies provide critical protective immunity against COVID-19, and the Fc-mediated effector functions and mucosal antibodies also contribute to the protection. To expand the characterization of humoral immunity stimulated by subunit protein-peptide COVID-19 vaccine UB-612, preclinical studies in non-human primates were undertaken to investigate mucosal secretion and the effector functionality of vaccine-induced antibodies in antibody-dependent monocyte phagocytosis (ADMP) and antibody-dependent NK cell activation (ADNKA) assays. In cynomolgus macaques, UB-612 induced potent serum-neutralizing, RBD-specific IgG binding, ACE2 binding-inhibition antibodies, and antibodies with Fc-mediated effector functions in ADMP and ADNKA assays. Additionally, immunized animals developed mucosal antibodies in bronchoalveolar lavage fluids (BAL). The level of mucosal or serum ADMP and ADNKA antibodies was found to be UB-612 dose-dependent. Our results highlight that the novel subunit UB-612 vaccine is a potent B-cell immunogen inducing polyfunctional antibody responses contributing to anti-viral immunity and vaccine efficacy.
Collapse
Affiliation(s)
- Shixia Wang
- Vaxxinity, Inc., Merritt Island, FL 32953, USA; (F.G.); (V.R.); (J.W.); (B.T.); (J.S.); (M.H.); (J.-C.D.)
| | - Farshad Guirakhoo
- Vaxxinity, Inc., Merritt Island, FL 32953, USA; (F.G.); (V.R.); (J.W.); (B.T.); (J.S.); (M.H.); (J.-C.D.)
| | - Sivakumar Periasamy
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77550, USA; (S.P.); (C.S.); (N.A.K.); (A.B.)
- Galveston National Laboratory, Galveston, TX 77550, USA
| | - Valorie Ryan
- Vaxxinity, Inc., Merritt Island, FL 32953, USA; (F.G.); (V.R.); (J.W.); (B.T.); (J.S.); (M.H.); (J.-C.D.)
| | - Jonathan Wiggins
- Vaxxinity, Inc., Merritt Island, FL 32953, USA; (F.G.); (V.R.); (J.W.); (B.T.); (J.S.); (M.H.); (J.-C.D.)
| | - Chandru Subramani
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77550, USA; (S.P.); (C.S.); (N.A.K.); (A.B.)
- Galveston National Laboratory, Galveston, TX 77550, USA
| | - Brett Thibodeaux
- Vaxxinity, Inc., Merritt Island, FL 32953, USA; (F.G.); (V.R.); (J.W.); (B.T.); (J.S.); (M.H.); (J.-C.D.)
| | - Jaya Sahni
- Vaxxinity, Inc., Merritt Island, FL 32953, USA; (F.G.); (V.R.); (J.W.); (B.T.); (J.S.); (M.H.); (J.-C.D.)
| | - Michael Hellerstein
- Vaxxinity, Inc., Merritt Island, FL 32953, USA; (F.G.); (V.R.); (J.W.); (B.T.); (J.S.); (M.H.); (J.-C.D.)
| | - Natalia A. Kuzmina
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77550, USA; (S.P.); (C.S.); (N.A.K.); (A.B.)
- Galveston National Laboratory, Galveston, TX 77550, USA
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77550, USA; (S.P.); (C.S.); (N.A.K.); (A.B.)
- Galveston National Laboratory, Galveston, TX 77550, USA
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Jean-Cosme Dodart
- Vaxxinity, Inc., Merritt Island, FL 32953, USA; (F.G.); (V.R.); (J.W.); (B.T.); (J.S.); (M.H.); (J.-C.D.)
| | - Alexander Rumyantsev
- Vaxxinity, Inc., Merritt Island, FL 32953, USA; (F.G.); (V.R.); (J.W.); (B.T.); (J.S.); (M.H.); (J.-C.D.)
| |
Collapse
|
19
|
Puhach O, Bellon M, Adea K, Bekliz M, Hosszu-Fellous K, Sattonnet P, Hulo N, Kaiser L, Eckerle I, Meyer B. SARS-CoV-2 convalescence and hybrid immunity elicits mucosal immune responses. EBioMedicine 2023; 98:104893. [PMID: 38035462 PMCID: PMC10755109 DOI: 10.1016/j.ebiom.2023.104893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Mucosal antibodies play a key role in the protection against SARS-CoV-2 infection in the upper respiratory tract, and potentially in limiting virus replication and therefore onward transmission. While systemic immunity to SARS-CoV-2 is well understood, we have a limited understanding about the antibodies present on the nasal mucosal surfaces. METHODS In this study, we evaluated SARS-CoV-2 mucosal antibodies following previous infection, vaccination, or a combination of both. Paired nasal fluid and serum samples were collected from 143 individuals, which include convalescent, vaccinated, or breakthrough infections. FINDINGS We detected a high correlation between IgG responses in serum and nasal fluids, which were higher in both compartments in vaccinated compared to convalescent participants. Contrary, nasal and systemic SARS-CoV-2 IgA responses were weakly correlated, indicating a compartmentalization between the local and systemic IgA responses. SARS-CoV-2 secretory component IgA (s-IgA) antibodies, present exclusively on mucosal surfaces, were detected in the nasal fluid only in a minority of vaccinated subjects and were significantly higher in previously infected individuals. Depletion of IgA antibodies in nasal fluids resulted in a tremendous reduction of neutralization activity against SARS-CoV-2, indicating that IgA is the crucial contributor to neutralization in the nasal mucosa. Neutralization against SARS-CoV-2 was higher in the mucosa of subjects with previous SARS-CoV-2 infections compared to vaccinated participants. INTERPRETATION In summary, we demonstrate that currently available vaccines elicit strong systemic antibody responses, but SARS-CoV-2 infection generates higher titers of binding and neutralizing mucosal antibodies. Our results support the importance to develop SARS-CoV-2 vaccines that elicit mucosal antibodies. FUNDING The work was funded by the COVID-19 National Research Program 78 (grant number 198412) of the Swiss National Science Foundation.
Collapse
Affiliation(s)
- Olha Puhach
- Faculty of Medicine, Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Mathilde Bellon
- Faculty of Medicine, Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Kenneth Adea
- Faculty of Medicine, Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Meriem Bekliz
- Faculty of Medicine, Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Krisztina Hosszu-Fellous
- Geneva Centre for Emerging Viral Diseases, Geneva University Hospitals, Geneva, Switzerland; Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Pascale Sattonnet
- Faculty of Medicine, Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Nicolas Hulo
- Service for Biomathematical and Biostatistical Analyses, Institute of Genetics and Genomics, University of Geneva, Geneva, Switzerland
| | - Laurent Kaiser
- Geneva Centre for Emerging Viral Diseases, Geneva University Hospitals, Geneva, Switzerland; Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Isabella Eckerle
- Faculty of Medicine, Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland; Geneva Centre for Emerging Viral Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Benjamin Meyer
- Department of Pathology and Immunology, Centre of Vaccinology, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
20
|
Taks EJ, Moorlag SJ, Föhse K, Simonetti E, van der Gaast-de Jongh CE, van Werkhoven CH, Bonten MJ, Oever JT, de Jonge MI, van de Wijgert JH, Netea MG. The impact of Bacillus Calmette-Guérin vaccination on antibody response after COVID-19 vaccination. iScience 2023; 26:108062. [PMID: 37860692 PMCID: PMC10583058 DOI: 10.1016/j.isci.2023.108062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/10/2023] [Accepted: 09/23/2023] [Indexed: 10/21/2023] Open
Abstract
Earlier studies showed that BCG vaccination improves antibody responses of subsequent vaccinations. Similarly, in older volunteers we found an increased IgG receptor-binding domain (RBD) concentration after SARS-CoV-2 infection if they were recently vaccinated with BCG. This study aims to assess the effect of BCG on the serum antibody concentrations induced by COVID-19 vaccination in a population of adults older than 60 years. Serum was collected from 1,555 participants of the BCG-CORONA-ELDERLY trial a year after BCG or placebo, and we analyzed the anti-SARS-CoV-2 antibody concentrations using a fluorescent-microsphere-based multiplex immunoassay. Individuals who received the full primary COVID-19 vaccination series before serum collection and did not test positive for SARS-CoV-2 between inclusion and serum collection were included in analyses (n = 945). We found that BCG vaccination before first COVID-19 vaccine (median 347 days [IQR 329-359]) did not significantly impact the IgG RBD concentration after COVID-19 vaccination in an older European population.
Collapse
Affiliation(s)
- Esther J.M. Taks
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Simone J.C.F.M. Moorlag
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Konstantin Föhse
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Elles Simonetti
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Christa E. van der Gaast-de Jongh
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Cornelis H. van Werkhoven
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marc J.M. Bonten
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jaap ten Oever
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marien I. de Jonge
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Mihai G. Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
- Department for Immunology and Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Germany
| |
Collapse
|
21
|
Abdul-Kareem HH, Al-Maqtoofi MY, Burghal AA. Impact of COVID-19 vaccination on saliva immune barriers: IgA, lysozyme, and lactoferrin. Arch Virol 2023; 168:293. [PMID: 37973637 DOI: 10.1007/s00705-023-05914-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/28/2023] [Indexed: 11/19/2023]
Abstract
Understanding the role of salivary constituents, such as lactoferrin, lysozyme, and secretory immunoglobulin A (sIgA), in immune protection and defense mechanisms against microbial invasion and colonization of the airways is important in light of the ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. The salivary immune barrier in individuals affected by COVID-19 may contribute to disease prognosis. Thus, the aim of the present review is to evaluate the effect of COVID-19 vaccines on the immunological composition of saliva. IgA antibodies generated by vaccination can neutralize the virus at mucosal surfaces, whereas antimicrobial peptides, such as lysozyme and lactoferrin, have broad-spectrum antimicrobial activity. Collectively, these components contribute to the protective immune response of the oral cavity and may help minimize viral transmission as well as the severity of COVID-19. Measuring the levels of these components in the saliva of COVID-19-vaccinated individuals can help in evaluating the vaccine's ability to induce mucosal immunity, and it might also provide insights into whether saliva can be used in diagnostics or surveillance for monitoring immune responses following vaccination. This also has implications for viral transmission.
Collapse
Affiliation(s)
| | - Marwan Y Al-Maqtoofi
- Biology Department, College of Science University of Basrah, Basrah, 61001, Iraq.
| | - Ahmed A Burghal
- Biology Department, College of Science University of Basrah, Basrah, 61001, Iraq
| |
Collapse
|
22
|
Li W, Wang T, Rajendrakumar AM, Acharya G, Miao Z, Varghese BP, Yu H, Dhakal B, LeRoith T, Karunakaran A, Tuo W, Zhu X. An FcRn-targeted mucosal vaccine against SARS-CoV-2 infection and transmission. Nat Commun 2023; 14:7114. [PMID: 37932271 PMCID: PMC10628175 DOI: 10.1038/s41467-023-42796-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/21/2023] [Indexed: 11/08/2023] Open
Abstract
SARS-CoV-2 is primarily transmitted through droplets and airborne aerosols, and in order to prevent infection and reduce viral spread vaccines should elicit protective immunity in the airways. The neonatal Fc receptor (FcRn) transfers IgG across epithelial barriers and can enhance mucosal delivery of antigens. Here we explore FcRn-mediated respiratory delivery of SARS-CoV-2 spike (S). A monomeric IgG Fc was fused to a stabilized spike; the resulting S-Fc bound to S-specific antibodies and FcRn. Intranasal immunization of mice with S-Fc and CpG significantly induced antibody responses compared to the vaccination with S alone or PBS. Furthermore, we intranasally immunized mice or hamsters with S-Fc. A significant reduction of virus replication in nasal turbinate, lung, and brain was observed following nasal challenges with SARS-CoV-2 and its variants. Intranasal immunization also significantly reduced viral airborne transmission in hamsters. Nasal IgA, neutralizing antibodies, lung-resident memory T cells, and bone-marrow S-specific plasma cells mediated protection. Hence, FcRn delivers an S-Fc antigen effectively into the airway and induces protection against SARS-CoV-2 infection and transmission.
Collapse
Affiliation(s)
- Weizhong Li
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, 20742, USA
| | - Tao Wang
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, 20742, USA
| | - Arunraj M Rajendrakumar
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, 20742, USA
- Animal Parasitic Diseases Laboratory, ARS, United States Department of Agriculture, Beltsville, MD, 20705, USA
| | - Gyanada Acharya
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, 20742, USA
| | - Zizhen Miao
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, 20742, USA
| | - Berin P Varghese
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, 20742, USA
| | - Hailiang Yu
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, 20742, USA
| | - Bibek Dhakal
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, 20742, USA
| | - Tanya LeRoith
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech University, Blacksburg, VA, USA
| | - Athira Karunakaran
- Animal Parasitic Diseases Laboratory, ARS, United States Department of Agriculture, Beltsville, MD, 20705, USA
| | - Wenbin Tuo
- Animal Parasitic Diseases Laboratory, ARS, United States Department of Agriculture, Beltsville, MD, 20705, USA
| | - Xiaoping Zhu
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
23
|
Ramasamy R. COVID-19 Vaccines for Optimizing Immunity in the Upper Respiratory Tract. Viruses 2023; 15:2203. [PMID: 38005881 PMCID: PMC10674974 DOI: 10.3390/v15112203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Rapid development and deployment of vaccines greatly reduced mortality and morbidity during the COVID-19 pandemic. The most widely used COVID-19 vaccines approved by national regulatory authorities require intramuscular administration. SARS-CoV-2 initially infects the upper respiratory tract, where the infection can be eliminated with little or no symptoms by an effective immune response. Failure to eliminate SARS-CoV-2 in the upper respiratory tract results in lower respiratory tract infections that can lead to severe disease and death. Presently used intramuscularly administered COVID-19 vaccines are effective in reducing severe disease and mortality, but are not entirely able to prevent asymptomatic and mild infections as well as person-to-person transmission of the virus. Individual and population differences also influence susceptibility to infection and the propensity to develop severe disease. This article provides a perspective on the nature and the mode of delivery of COVID-19 vaccines that can optimize protective immunity in the upper respiratory tract to reduce infections and virus transmission as well as severe disease.
Collapse
Affiliation(s)
- Ranjan Ramasamy
- ID-FISH Technology Inc., 556 Gibraltar Drive, Milpitas, CA 95035, USA
| |
Collapse
|
24
|
Wu D, Cong J, Wei J, Hu J, Sun W, Ran W, Liao C, Zheng H, Ye L. A Naïve Phage Display Library-Derived Nanobody Neutralizes SARS-CoV-2 and Three Variants of Concern. Int J Nanomedicine 2023; 18:5781-5795. [PMID: 37869063 PMCID: PMC10588750 DOI: 10.2147/ijn.s427990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/07/2023] [Indexed: 10/24/2023] Open
Abstract
Background The emergence of the coronavirus disease 2019 (COVID-19) pandemic and the new severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants of concern (VOCs) requires the continuous development of safe, effective, and affordable prevention and therapeutics. Nanobodies have demonstrated antiviral activity against a variety of viruses, providing a new candidate for the prevention and treatment of SARS-CoV-2 and its variants. Methods SARS-CoV-2 glycoprotein spike 1 subunit (S1) was selected as the target antigen for nanobody screening of a naïve phage display library. We obtained a nanobody, named Nb-H6, and then determined its affinity, inhibition, and stability by ELISA, Competitive ELISA, and Biolayer Interferometry (BLI). Infection assays of authentic and pseudotyped SARS-CoV-2 were performed to evaluate the neutralization of Nb-H6. The structure and mechanism of action were investigated by AlphaFold, docking, and residue mutation assays. Results We isolated and characterized a nanobody, Nb-H6, which exhibits a broad affinity for S1 and the receptor binding domain (RBD) of SARS-CoV-2, or Alpha (B.1.1.7), Delta (B.1.617.2), Lambda (C.37), and Omicron (BA.2 and BA.5), and blocks receptor angiotensin-converting enzyme 2 (ACE2) binding. Moreover, Nb-H6 can retain its binding capability after pH or thermal treatment and effectively neutralize both pseudotyped and authentic SARS-CoV-2, as well as VOC Alpha (B.1.1.7), Delta (B.1.617.2), and Omicron (BA.2 and BA.5) pseudoviruses. We also confirmed that Nb-H6 binds two distinct amino acid residues of the RBD, preventing SARS-CoV-2 from interacting with the host receptor. Conclusion Our study highlights a novel nanobody, Nb-H6, that may be useful therapeutically in SARS-CoV-2 and VOC outbreaks and pandemics. These findings also provide a molecular foundation for further studies into how nanobodies neutralize SARS-CoV-2 and variants and imply potential therapeutic targets for the treatment of COVID-19.
Collapse
Affiliation(s)
- Dandan Wu
- Department of Immunology, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, People’s Republic of China
| | - Junxiao Cong
- Department of Immunology, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, People’s Republic of China
| | - Jiali Wei
- Department of Immunology, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, People’s Republic of China
| | - Jing Hu
- Department of Immunology, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, People’s Republic of China
| | - Wenhao Sun
- Department of Immunology, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, People’s Republic of China
| | - Wei Ran
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Chenghui Liao
- Department of Immunology, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, People’s Republic of China
| | - Housheng Zheng
- Department of Immunology, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, People’s Republic of China
| | - Liang Ye
- Department of Immunology, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, People’s Republic of China
| |
Collapse
|
25
|
Yeung J, Wang T, Shi PY. Improvement of mucosal immunity by a live-attenuated SARS-CoV-2 nasal vaccine. Curr Opin Virol 2023; 62:101347. [PMID: 37604085 DOI: 10.1016/j.coviro.2023.101347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/18/2023] [Indexed: 08/23/2023]
Abstract
The effectiveness of early COVID-19 vaccines in reducing the severity of the disease has led to a focus on developing next-generation vaccines that can prevent infection and transmission of the virus. One promising approach involves the induction of mucosal immunity through nasal administration and a variety of mucosal vaccine candidates using different platforms are currently in development. Live-attenuated viruses, less pathogenic versions of SARS-CoV-2, have promising features as a mucosal vaccine platform and have the potential to induce hybrid immunity in individuals who have already received mRNA vaccines. This review discusses the potential benefits and considerations for the use of live-attenuated SARS-CoV-2 intranasal vaccines and highlights the authors' work in developing such a vaccine platform.
Collapse
Affiliation(s)
- Jason Yeung
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Tian Wang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA; Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA; Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, USA; Sealy Institute for Drug Discovery, University of Texas Medical Branch, Galveston, TX, USA; Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, USA; Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
26
|
Föhse K, Geckin B, Zoodsma M, Kilic G, Liu Z, Röring RJ, Overheul GJ, van de Maat J, Bulut O, Hoogerwerf JJ, Ten Oever J, Simonetti E, Schaal H, Adams O, Müller L, Ostermann PN, van de Veerdonk FL, Joosten LAB, Haagmans BL, van Crevel R, van Rij RP, GeurtsvanKessel C, de Jonge MI, Li Y, Domínguez-Andrés J, Netea MG. The impact of BNT162b2 mRNA vaccine on adaptive and innate immune responses. Clin Immunol 2023; 255:109762. [PMID: 37673225 DOI: 10.1016/j.clim.2023.109762] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/04/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
The mRNA-based BNT162b2 protects against severe disease and mortality caused by SARS-CoV-2 via induction of specific antibody and T-cell responses. Much less is known about its broad effects on immune responses against other pathogens. Here, we investigated the adaptive immune responses induced by BNT162b2 vaccination against various SARS-CoV-2 variants and its effects on the responsiveness of immune cells upon stimulation with heterologous stimuli. BNT162b2 vaccination induced effective humoral and cellular immunity against SARS-CoV-2 that started to wane after six months. We also observed long-term transcriptional changes in immune cells after vaccination. Additionally, vaccination with BNT162b2 modulated innate immune responses as measured by inflammatory cytokine production after stimulation - higher IL-1/IL-6 release and decreased IFN-α production. Altogether, these data expand our knowledge regarding the overall immunological effects of this new class of vaccines and underline the need for additional studies to elucidate their effects on both innate and adaptive immune responses.
Collapse
Affiliation(s)
- Konstantin Föhse
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Büsra Geckin
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Martijn Zoodsma
- Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), A Joint Venture Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany; TWINCORE, A Joint Venture Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Gizem Kilic
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Zhaoli Liu
- Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), A Joint Venture Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany; TWINCORE, A Joint Venture Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Rutger J Röring
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Gijs J Overheul
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Josephine van de Maat
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ozlem Bulut
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jacobien J Hoogerwerf
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jaap Ten Oever
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Elles Simonetti
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
| | - Heiner Schaal
- Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Ortwin Adams
- Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Lisa Müller
- Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Philipp Niklas Ostermann
- Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Frank L van de Veerdonk
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Bart L Haagmans
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Reinout van Crevel
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ronald P van Rij
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Marien I de Jonge
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
| | - Yang Li
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), A Joint Venture Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany; TWINCORE, A Joint Venture Between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Jorge Domínguez-Andrés
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
27
|
Kostinov M, Svitich O, Chuchalin A, Abramova N, Osiptsov V, Khromova E, Pakhomov D, Tatevosov V, Vlasenko A, Gainitdinova V, Mashilov K, Kryukova N, Baranova I, Kostinov A. Changes in nasal, pharyngeal and salivary secretory IgA levels in patients with COVID-19 and the possibility of correction of their secretion using combined intranasal and oral administration of a pharmaceutical containing antigens of opportunistic microorganisms. Drugs Context 2023; 12:2022-10-4. [PMID: 37342460 PMCID: PMC10278444 DOI: 10.7573/dic.2022-10-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 05/08/2023] [Indexed: 06/23/2023] Open
Abstract
Background Although extensive research has been conducted on the role of local immunity in patients with SARS-CoV-2, little is known about the production and concentrations of secretory IgA (SIgA) in different mucosal compartments. This article aims to assess the secretion of SIgA in the nasal and pharyngeal compartments and saliva of patients with COVID-19 and to investigate the possibility and efficiency of correction of their secretion using combined intranasal and oral administration of a pharmaceutical containing antigens of opportunistic microorganisms. Methods This study included 78 inpatients, aged between 18 and 60 years, who had confirmed COVID-19 with moderate lung involvement. The control group (n=45) received basic therapy, and the treatment group (n=33) was additionally administered the bacteria-based pharmaceutical Immunovac VP4 from day 1 to day 10 of hospitalization. SIgA levels were measured by ELISA at baseline and on days 14 and 30. Results No systemic or local reactions associated with Immunovac VP4 were reported. We observed a statistically significant reduction in the duration of fever and hospitalization in patients who received Immunovac VP4 compared with those from the control group (p=0.03 and p=0.05, respectively). Changes over time in SIgA levels in nasal swabs were found to be significantly different in the two treatment groups (F=7.9, p[78.0]<0.001). On day 14 of observation, patients in the control group showed a statistically significant reduction in SIgA levels from baseline (p=0.02), whereas patients in the Immunovac VP4 group had stable SIgA levels (p=0.07). On day 30 after the start of treatment, there was a statistically significant increase in SIgA levels in the Immunovac VP4 group compared with baseline (from 77.7 (40.5-98.7) μg/L to 113.4 (39.8-156.7) μg/L; p=0.05) and the levels measured on day 14 (from 60.2 (23.3-102.9) μg/L to 113.4 (39.8-156.7) μg/L; p=0.03). The control group showed a statistically significant decrease in levels of nasal SIgA (to 37.3) on day 30 (p=0.007 for comparison with baseline values and p=0.04 for comparison with levels measured on day 14). Changes over time in SIgA levels measured in pharyngeal swabs were also different between the two treatment groups, and this difference reached statistical significance (F=6.5, p[73.0]=0.003). In the control group, this parameter did not change throughout the study (p=0.17 for a comparison between the levels measured on day 14 and the baseline values, and p=0.12 for a comparison between the levels measured on day 30 and the baseline values). In the Immunovac VP4 group, there was a statistically significant increase from baseline in SIgA levels on study day 30: from 1.5 (0.2-16.5) μg/L to 29.8 (3.6-106.8) μg/L (p=0.02). Changes over time in salivary SIgA did not show a significant difference between study groups (F=0.3, p[66.3]=0.75). Conclusion As part of combination therapy, the bacteria-based immunostimulant agent Immunovac VP4 increases SIgA levels in the nasal and pharyngeal compartments and induces clinical improvement. Induced mucosal immunity is central to the prevention of respiratory infections, particularly in patients with post-COVID-19 syndrome.
Collapse
Affiliation(s)
- Mikhail Kostinov
- Laboratory of Preventive Vaccination and Immunotherapy of Allergic Diseases, I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow, Russian Federation
- Department of Epidemiology and Modern Technologies of Vaccination, I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Oksana Svitich
- I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow, Russian Federation
| | - Alexander Chuchalin
- Department of Hospital Therapy of the Faculty of Pediatrics, Pirogov Russian National Research Medical University (Pirogov Medical University), Moscow, Russian Federation
- Research Institute of Pulmonology, Moscow, Russian Federation
| | - Natalya Abramova
- Laboratory of Molecular Immunology, I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow, Russian Federation
| | - Valery Osiptsov
- The Main Military Clinical Hospital of the National Guard Troops of the Russian Federation, Moscow, Russian Federation
| | - Ekaterina Khromova
- Laboratory of Preventive Vaccination and Immunotherapy of Allergic Diseases, I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow, Russian Federation
| | - Dmitry Pakhomov
- Laboratory of Preventive Vaccination and Immunotherapy of Allergic Diseases, I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow, Russian Federation
| | - Vitaly Tatevosov
- The Main Military Clinical Hospital of the National Guard Troops of the Russian Federation, Moscow, Russian Federation
| | - Anna Vlasenko
- Medical Cybernetics and Informatics Department, Novokuznetsk State Institute of Advanced Training of Physicians – Branch of the “Russian Medical Academy of Continuous Professional Education”, Novokuznetsk, Russian Federation
| | - Vilia Gainitdinova
- Pulmonology Department of the I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Kirill Mashilov
- Laboratory of Preventive Vaccination and Immunotherapy of Allergic Diseases, I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow, Russian Federation
| | - Nadezhda Kryukova
- Department of Hospital Therapy of the Faculty of Pediatrics, Pirogov Russian National Research Medical University (Pirogov Medical University), Moscow, Russian Federation
| | - Irina Baranova
- Department of Hospital Therapy of the Faculty of Pediatrics, Pirogov Russian National Research Medical University (Pirogov Medical University), Moscow, Russian Federation
| | - Anton Kostinov
- Allergodiagnostics Laboratory, I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow, Russian Federation
| |
Collapse
|
28
|
Dulfer EA, Geckin B, Taks EJ, GeurtsvanKessel CH, Dijkstra H, van Emst L, van der Gaast – de Jongh CE, van Mourik D, Koopmans PC, Domínguez-Andrés J, van Crevel R, van de Maat JS, de Jonge MI, Netea MG. Timing and sequence of vaccination against COVID-19 and influenza (TACTIC): a single-blind, placebo-controlled randomized clinical trial. THE LANCET REGIONAL HEALTH. EUROPE 2023; 29:100628. [PMID: 37261212 PMCID: PMC10091277 DOI: 10.1016/j.lanepe.2023.100628] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 06/02/2023]
Abstract
Background Novel mRNA-based vaccines have been used to protect against SARS-CoV-2, especially in vulnerable populations who also receive an annual influenza vaccination. The TACTIC study investigated potential immune interference between the mRNA COVID-19 booster vaccine and the quadrivalent influenza vaccine, and determined if concurrent administration would have effects on safety or immunogenicity. Methods TACTIC was a single-blind, placebo-controlled randomized clinical trial conducted at the Radboud University Medical Centre, the Netherlands. Individuals ≥60 years, fully vaccinated against COVID-19 were eligible for participation and randomized into one of four study groups: 1) 0.5 ml influenza vaccination Vaxigrip Tetra followed by 0.3 ml BNT162b2 COVID-19 booster vaccination 21 days later, (2) COVID-19 booster vaccination followed by influenza vaccination, (3) influenza vaccination concurrent with the COVID-19 booster vaccination, and (4) COVID-19 booster vaccination only (reference group). Primary outcome was the geometric mean concentration (GMC) of IgG against the spike (S)-protein of the SARS-CoV-2 virus, 21 days after booster vaccination. We performed a non-inferiority analysis of concurrent administration compared to booster vaccines alone with a predefined non-inferiority margin of -0.3 on the log10-scale. Findings 154 individuals participated from October, 4, 2021, until November, 5, 2021. Anti-S IgG GMCs for the co-administration and reference group were 1684 BAU/ml and 2435 BAU/ml, respectively. Concurrent vaccination did not meet the criteria for non-inferiority (estimate -0.1791, 95% CI -0.3680 to -0.009831) and antibodies showed significantly lower neutralization capacity compared to the reference group. Reported side-effects were mild and did not differ between study groups. Interpretation Concurrent administration of both vaccines is safe, but the quantitative and functional antibody responses were marginally lower compared to booster vaccination alone. Lower protection against COVID-19 with concurrent administration of COVID-19 and influenza vaccination cannot be excluded, although additional larger studies would be required to confirm this. Trial registration number EudraCT: 2021-002186-17. Funding The study was supported by the ZonMw COVID-19 Programme.
Collapse
Affiliation(s)
- Elisabeth A. Dulfer
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Büsra Geckin
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Esther J.M. Taks
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Helga Dijkstra
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Liesbeth van Emst
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Christa E. van der Gaast – de Jongh
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
- Laboratory of Medical Immunology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Djenolan van Mourik
- Laboratory of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Petra C. Koopmans
- Department of Biostatistics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jorge Domínguez-Andrés
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Reinout van Crevel
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Josephine S. van de Maat
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marien I. de Jonge
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
- Laboratory of Medical Immunology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mihai G. Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
- Department for Immunology and Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Germany
| |
Collapse
|
29
|
Joffrin L, Cooreman T, Verheyen E, Vercammen F, Mariën J, Leirs H, Gryseels S. SARS-CoV-2 Surveillance between 2020 and 2021 of All Mammalian Species in Two Flemish Zoos (Antwerp Zoo and Planckendael Zoo). Vet Sci 2023; 10:382. [PMID: 37368768 DOI: 10.3390/vetsci10060382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
The COVID-19 pandemic has led to millions of human infections and deaths worldwide. Several other mammal species are also susceptible to SARS-CoV-2, and multiple instances of transmission from humans to pets, farmed mink, wildlife and zoo animals have been recorded. We conducted a systematic surveillance of SARS-CoV-2 in all mammal species in two zoos in Belgium between September and December 2020 and July 2021, in four sessions, and a targeted surveillance of selected mammal enclosures following SARS-CoV-2 infection in hippopotamuses in December 2021. A total of 1523 faecal samples from 103 mammal species were tested for SARS-CoV-2 via real-time PCR. None of the samples tested positive for SARS-CoV-2. Additional surrogate virus neutralisation tests conducted on 50 routinely collected serum samples from 26 mammal species were all negative. This study is the first to our knowledge to conduct active SARS-CoV-2 surveillance for several months in all mammal species of a zoo. We conclude that at the time of our investigation, none of the screened animals were excreting SARS-CoV-2.
Collapse
Affiliation(s)
- Léa Joffrin
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, 2610 Antwerp, Belgium
| | - Tine Cooreman
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, 2610 Antwerp, Belgium
| | - Erik Verheyen
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, 2610 Antwerp, Belgium
- OD Taxonomy and Phylogeny, Royal Belgian Institute of Natural Sciences, 1000 Brussels, Belgium
| | - Francis Vercammen
- Centre for Research and Conservation, Antwerp Zoo Society, 2018 Antwerp, Belgium
| | - Joachim Mariën
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, 2610 Antwerp, Belgium
| | - Herwig Leirs
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, 2610 Antwerp, Belgium
| | - Sophie Gryseels
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, 2610 Antwerp, Belgium
- OD Taxonomy and Phylogeny, Royal Belgian Institute of Natural Sciences, 1000 Brussels, Belgium
| |
Collapse
|
30
|
Regenhardt E, Kirsten H, Weiss M, Lübbert C, Stehr SN, Remane Y, Pietsch C, Hönemann M, von Braun A. SARS-CoV-2 Vaccine Breakthrough Infections of Omicron and Delta Variants in Healthcare Workers. Vaccines (Basel) 2023; 11:vaccines11050958. [PMID: 37243062 DOI: 10.3390/vaccines11050958] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Understanding SARS-CoV-2 breakthrough infections in vaccinated healthcare workers is of key importance in mitigating the effects of the COVID-19 pandemic in healthcare facilities. An observational prospective cohort study was conducted in vaccinated employees with acute SARS-CoV-2 infection between October 2021 and February 2022. Serological and molecular testing was performed to determine SARS-CoV-2 viral load, lineage, antibody levels, and neutralizing antibody titers. A total of 571 (9.7%) employees experienced SARS-CoV-2 breakthrough infections during the enrolment period, of which 81 were included. The majority (n = 79, 97.5%) were symptomatic and most (n = 75, 92.6%) showed Ct values < 30 in RT-PCR assays. Twenty-four (30%) remained PCR-positive for > 15 days. Neutralizing antibody titers were strongest for the wildtype, intermediate for Delta, and lowest for Omicron variants. Omicron infections occurred at higher anti-RBD-IgG serum levels (p = 0.00001) and showed a trend for higher viral loads (p = 0.14, median Ct difference 4.3, 95% CI [-2.5-10.5]). For both variants, viral loads were significantly higher in participants with lower anti-RBD-IgG serum levels (p = 0.02). In conclusion, while the clinical course of infection with both the Omicron and Delta variants was predominantly mild to moderate in our study population, waning immune response over time and prolonged viral shedding were observed.
Collapse
Affiliation(s)
- Elisa Regenhardt
- Division of Infectious Diseases and Tropical Medicine, Leipzig University Medical Center, 04103 Leipzig, Germany
| | - Holger Kirsten
- Institute for Medical Informatics, Statistics, and Epidemiology, University of Leipzig, 04107 Leipzig, Germany
| | - Melanie Weiss
- Central Institution for Occupational Medicine and Occupational Safety, Leipzig University Medical Center, 04103 Leipzig, Germany
| | - Christoph Lübbert
- Division of Infectious Diseases and Tropical Medicine, Leipzig University Medical Center, 04103 Leipzig, Germany
- Interdisciplinary Center for Infectious Diseases (ZINF), Leipzig University Medical Center, 04103 Leipzig, Germany
| | - Sebastian N Stehr
- Department of Anaesthesiology and Critical Care Medicine, Leipzig University Medical Center, 04103 Leipzig, Germany
| | - Yvonne Remane
- Central Pharmacy, Leipzig University Medical Center, 04103 Leipzig, Germany
| | - Corinna Pietsch
- Interdisciplinary Center for Infectious Diseases (ZINF), Leipzig University Medical Center, 04103 Leipzig, Germany
- Institute of Medical Microbiology and Virology, University of Leipzig, 04103 Leipzig, Germany
| | - Mario Hönemann
- Interdisciplinary Center for Infectious Diseases (ZINF), Leipzig University Medical Center, 04103 Leipzig, Germany
- Institute of Medical Microbiology and Virology, University of Leipzig, 04103 Leipzig, Germany
| | - Amrei von Braun
- Division of Infectious Diseases and Tropical Medicine, Leipzig University Medical Center, 04103 Leipzig, Germany
- Interdisciplinary Center for Infectious Diseases (ZINF), Leipzig University Medical Center, 04103 Leipzig, Germany
| |
Collapse
|
31
|
Diks AM, Teodosio C, de Mooij B, Groenland RJ, Naber BAE, de Laat IF, Vloemans SA, Rohde S, de Jonge MI, Lorenz L, Horsten D, van Dongen JJM, Berkowska MA, Holstege H. Carriers of the p.P522R variant in PLCγ2 have a slightly more responsive immune system. Mol Neurodegener 2023; 18:25. [PMID: 37081539 PMCID: PMC10116473 DOI: 10.1186/s13024-023-00604-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/14/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND The rs72824905 single-nucleotide polymorphism in the PLCG2 gene, encoding the p.P522R residue change in Phospholipase C gamma 2 (PLCγ2), associates with protection against several dementia subtypes and with increased likelihood of longevity. Cell lines and animal models indicated that p.P522R is a functional hypermorph. We aimed to confirm this in human circulating peripheral immune cells. METHODS We compared effects of p.P522R on immune system function between carriers and non-carriers (aged 59-103y), using in-depth immunophenotyping, functional B-cell and myeloid cell assays, and in vivo SARS-CoV-2 vaccination. RESULTS In line with expectations, p.P522R impacts immune cell function only slightly, but it does so across a wide array of immune cell types. Upon B-cell stimulation, we observed increased PLCγ2 phosphorylation and calcium release, suggesting increased B-cell sensitivity upon antigen recognition. Further, p.P522R-carriers had higher numbers of CD20++CD21-CD24+ naive B cells and IgG1+ memory B cells. In myeloid cells, normalized ROS production was higher upon PLCγ2-dependent stimulation. On classical monocytes, CD33 levels were elevated. Furthermore, carriers expressed lower levels of allergy-related FcεRI on several immune cell subsets. Nevertheless, carriers and non-carriers had similar serological responses to SARS-CoV-2 vaccination. CONCLUSION The immune system from p.P522R-carriers is slightly more responsive to stimulation than in non-carriers.
Collapse
Affiliation(s)
- Annieck M Diks
- Department of Immunology, Leiden University Medical Center, Albinusdreef 2, Leiden, ZA, 2333, the Netherlands
- Department of Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Cristina Teodosio
- Department of Immunology, Leiden University Medical Center, Albinusdreef 2, Leiden, ZA, 2333, the Netherlands
- Translational and Clinical Research Program, Cancer Research Center (IBMCC; University of Salamanca - CSIC), Salamanca, Spain
- Department of Medicine, University of Salamanca and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Bas de Mooij
- Department of Immunology, Leiden University Medical Center, Albinusdreef 2, Leiden, ZA, 2333, the Netherlands
| | - Rick J Groenland
- Department of Immunology, Leiden University Medical Center, Albinusdreef 2, Leiden, ZA, 2333, the Netherlands
| | - Brigitta A E Naber
- Department of Immunology, Leiden University Medical Center, Albinusdreef 2, Leiden, ZA, 2333, the Netherlands
| | - Inge F de Laat
- Department of Immunology, Leiden University Medical Center, Albinusdreef 2, Leiden, ZA, 2333, the Netherlands
| | - Sandra A Vloemans
- Department of Immunology, Leiden University Medical Center, Albinusdreef 2, Leiden, ZA, 2333, the Netherlands
| | - Susan Rohde
- Department of Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Marien I de Jonge
- Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Linda Lorenz
- Department of Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Debbie Horsten
- Department of Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Jacques J M van Dongen
- Department of Immunology, Leiden University Medical Center, Albinusdreef 2, Leiden, ZA, 2333, the Netherlands.
- Translational and Clinical Research Program, Cancer Research Center (IBMCC; University of Salamanca - CSIC), Salamanca, Spain.
- Department of Medicine, University of Salamanca and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.
| | - Magdalena A Berkowska
- Department of Immunology, Leiden University Medical Center, Albinusdreef 2, Leiden, ZA, 2333, the Netherlands
| | - Henne Holstege
- Department of Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands.
| |
Collapse
|
32
|
Horvath D, Temperton N, Mayora-Neto M, Da Costa K, Cantoni D, Horlacher R, Günther A, Brosig A, Morath J, Jakobs B, Groettrup M, Hoschuetzky H, Rohayem J, Ter Meulen J. Novel intranasal vaccine targeting SARS-CoV-2 receptor binding domain to mucosal microfold cells and adjuvanted with TLR3 agonist Riboxxim™ elicits strong antibody and T-cell responses in mice. Sci Rep 2023; 13:4648. [PMID: 36944687 PMCID: PMC10029786 DOI: 10.1038/s41598-023-31198-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/08/2023] [Indexed: 03/23/2023] Open
Abstract
SARS-CoV-2 continues to circulate in the human population necessitating regular booster immunization for its long-term control. Ideally, vaccines should ideally not only protect against symptomatic disease, but also prevent transmission via asymptomatic shedding and cover existing and future variants of the virus. This may ultimately only be possible through induction of potent and long-lasting immune responses in the nasopharyngeal tract, the initial entry site of SARS-CoV-2. To this end, we have designed a vaccine based on recombinantly expressed receptor binding domain (RBD) of SARS-CoV-2, fused to the C-terminus of C. perfringens enterotoxin, which is known to target Claudin-4, a matrix molecule highly expressed on mucosal microfold (M) cells of the nasal and bronchial-associated lymphoid tissues. To further enhance immune responses, the vaccine was adjuvanted with a novel toll-like receptor 3/RIG-I agonist (Riboxxim™), consisting of synthetic short double stranded RNA. Intranasal prime-boost immunization of mice induced robust mucosal and systemic anti-SARS-CoV-2 neutralizing antibody responses against SARS-CoV-2 strains Wuhan-Hu-1, and several variants (B.1.351/beta, B.1.1.7/alpha, B.1.617.2/delta), as well as systemic T-cell responses. A combination vaccine with M-cell targeted recombinant HA1 from an H1N1 G4 influenza strain also induced mucosal and systemic antibodies against influenza. Taken together, the data show that development of an intranasal SARS-CoV-2 vaccine based on recombinant RBD adjuvanted with a TLR3 agonist is feasible, also as a combination vaccine against influenza.
Collapse
Affiliation(s)
- Dennis Horvath
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent, Canterbury, UK
| | - Martin Mayora-Neto
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent, Canterbury, UK
| | - Kelly Da Costa
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent, Canterbury, UK
| | - Diego Cantoni
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent, Canterbury, UK
| | | | | | | | | | | | - Marcus Groettrup
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | | | - Jacques Rohayem
- Riboxx Pharmaceuticals, Radebeul, Dresden, Germany and Institute of Virology, Dresden University of Technology, Dresden, Germany
| | - Jan Ter Meulen
- Institute of Virology, Philipps University Marburg, Marburg, Germany.
| |
Collapse
|
33
|
Thomas AC, Oliver E, Baum HE, Gupta K, Shelley KL, Long AE, Jones HE, Smith J, Hitchings B, di Bartolo N, Vasileiou K, Rabi F, Alamir H, Eghleilib M, Francis O, Oliver J, Morales-Aza B, Obst U, Shattock D, Barr R, Collingwood L, Duale K, Grace N, Livera GG, Bishop L, Downing H, Rodrigues F, Timpson N, Relton CL, Toye A, Woolfson DN, Berger I, Goenka A, Davidson AD, Gillespie KM, Williams AJK, Bailey M, Brooks-Pollock E, Finn A, Halliday A. Evaluation and deployment of isotype-specific salivary antibody assays for detecting previous SARS-CoV-2 infection in children and adults. COMMUNICATIONS MEDICINE 2023; 3:37. [PMID: 36922542 PMCID: PMC10016188 DOI: 10.1038/s43856-023-00264-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 02/17/2023] [Indexed: 03/17/2023] Open
Abstract
BACKGROUND Saliva is easily obtainable non-invasively and potentially suitable for detecting both current and previous SARS-CoV-2 infection, but there is limited evidence on the utility of salivary antibody testing for community surveillance. METHODS We established 6 ELISAs detecting IgA and IgG antibodies to whole SARS-CoV-2 spike protein, to its receptor binding domain region and to nucleocapsid protein in saliva. We evaluated diagnostic performance, and using paired saliva and serum samples, correlated mucosal and systemic antibody responses. The best-performing assays were field-tested in 20 household outbreaks. RESULTS We demonstrate in test accuracy (N = 320), spike IgG (ROC AUC: 95.0%, 92.8-97.3%) and spike IgA (ROC AUC: 89.9%, 86.5-93.2%) assays to discriminate best between pre-pandemic and post COVID-19 saliva samples. Specificity was 100% in younger age groups (0-19 years) for spike IgA and IgG. However, sensitivity was low for the best-performing assay (spike IgG: 50.6%, 39.8-61.4%). Using machine learning, diagnostic performance was improved when a combination of tests was used. As expected, salivary IgA was poorly correlated with serum, indicating an oral mucosal response whereas salivary IgG responses were predictive of those in serum. When deployed to household outbreaks, antibody responses were heterogeneous but remained a reliable indicator of recent infection. Intriguingly, unvaccinated children without confirmed infection showed evidence of exposure almost exclusively through specific IgA responses. CONCLUSIONS Through robust standardisation, evaluation and field-testing, this work provides a platform for further studies investigating SARS-CoV-2 transmission and mucosal immunity with the potential for expanding salivo-surveillance to other respiratory infections in hard-to-reach settings.
Collapse
Affiliation(s)
- Amy C Thomas
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
- Bristol Vaccine Centre, School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK.
| | - Elizabeth Oliver
- Bristol Vaccine Centre, School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Holly E Baum
- Bristol Vaccine Centre, School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Kapil Gupta
- School of Biochemistry, University of Bristol, Bristol, UK
- BrisSynBio, University of Bristol, Bristol, UK
- Imophoron Ltd, Science Creates, Old Market, Midland Road, Bristol, UK
| | - Kathryn L Shelley
- School of Biochemistry, University of Bristol, Bristol, UK
- BrisSynBio, University of Bristol, Bristol, UK
- School of Chemistry, University of Bristol, Bristol, UK
| | - Anna E Long
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Hayley E Jones
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Joyce Smith
- Bristol Vaccine Centre, School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Benjamin Hitchings
- Bristol Vaccine Centre, School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Natalie di Bartolo
- School of Biochemistry, University of Bristol, Bristol, UK
- NIHR Blood and Transplant Research Unit in Red Cell Products, University of Bristol, Bristol, UK
| | - Kate Vasileiou
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Fruzsina Rabi
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Hanin Alamir
- Bristol Vaccine Centre, School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Malak Eghleilib
- Bristol Vaccine Centre, School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Ore Francis
- Bristol Veterinary School, University of Bristol, Bristol, UK
| | - Jennifer Oliver
- Bristol Vaccine Centre, Population Health Sciences, University of Bristol, Bristol, UK
| | - Begonia Morales-Aza
- Bristol Vaccine Centre, School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Ulrike Obst
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Debbie Shattock
- Bristol Bioresource Laboratories, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Rachael Barr
- Bristol Vaccine Centre, School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
- Bristol Royal Hospital for Children, University Hospitals Bristol and Weston NHS Foundation Trust, Upper Maudlin Street, Bristol, BS2 8BJ, UK
| | - Lucy Collingwood
- Bristol Vaccine Centre, Population Health Sciences, University of Bristol, Bristol, UK
| | - Kaltun Duale
- Bristol Vaccine Centre, School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Niall Grace
- Bristol Vaccine Centre, Population Health Sciences, University of Bristol, Bristol, UK
| | | | - Lindsay Bishop
- Bristol Vaccine Centre, Population Health Sciences, University of Bristol, Bristol, UK
| | - Harriet Downing
- NIHR Bristol Biomedical Research Centre, University of Bristol, Bristol, UK
| | - Fernanda Rodrigues
- Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Faculdade de Medicina, Universidade de Coimbra, Coimbra, Portugal
| | - Nicholas Timpson
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, Bristol, UK
| | - Caroline L Relton
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, Bristol, UK
| | - Ashley Toye
- School of Biochemistry, University of Bristol, Bristol, UK
- NIHR Blood and Transplant Research Unit in Red Cell Products, University of Bristol, Bristol, UK
| | - Derek N Woolfson
- School of Biochemistry, University of Bristol, Bristol, UK
- BrisSynBio, University of Bristol, Bristol, UK
- School of Chemistry, University of Bristol, Bristol, UK
| | - Imre Berger
- Max Planck Bristol Centre for Minimal Biology, University of Bristol, Bristol, UK
| | - Anu Goenka
- Bristol Vaccine Centre, School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
- Paediatric Immunology & Infectious Diseases, Bristol Royal Hospital for Children, Bristol, UK
| | - Andrew D Davidson
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Kathleen M Gillespie
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Alistair J K Williams
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Mick Bailey
- Bristol Veterinary School, University of Bristol, Bristol, UK
| | - Ellen Brooks-Pollock
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Adam Finn
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Bristol Vaccine Centre, School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
- Paediatric Immunology & Infectious Diseases, Bristol Royal Hospital for Children, Bristol, UK
| | - Alice Halliday
- Bristol Vaccine Centre, School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| |
Collapse
|
34
|
Brandmeier JC, Jurga N, Grzyb T, Hlaváček A, Obořilová R, Skládal P, Farka Z, Gorris HH. Digital and Analog Detection of SARS-CoV-2 Nucleocapsid Protein via an Upconversion-Linked Immunosorbent Assay. Anal Chem 2023; 95:4753-4759. [PMID: 36916131 PMCID: PMC10018451 DOI: 10.1021/acs.analchem.2c05670] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
The COVID-19 crisis requires fast and highly sensitive tests for the early stage detection of the SARS-CoV-2 virus. For detecting the nucleocapsid protein (N protein), the most abundant viral antigen, we have employed upconversion nanoparticles that emit short-wavelength light under near-infrared excitation (976 nm). The anti-Stokes emission avoids autofluorescence and light scattering and thus enables measurements without optical background interference. The sandwich upconversion-linked immunosorbent assay (ULISA) can be operated both in a conventional analog mode and in a digital mode based on counting individual immune complexes. We have investigated how different antibody combinations affect the detection of the wildtype N protein and the detection of SARS-CoV-2 (alpha variant) in lysed culture fluid via the N protein. The ULISA yielded a limit of detection (LOD) of 1.3 pg/mL (27 fM) for N protein detection independent of the analog or digital readout, which is approximately 3 orders of magnitude more sensitive than conventional enzyme-linked immunosorbent assays or commercial lateral flow assays for home testing. In the case of SARS-CoV-2, the digital ULISA additionally improved the LOD by a factor of 10 compared to the analog readout.
Collapse
Affiliation(s)
- Julian C Brandmeier
- Department of Biochemistry, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic.,Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053 Regensburg, Germany
| | - Natalia Jurga
- Department of Biochemistry, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic.,Department of Rare Earths, Faculty of Chemistry, Adam Mickiewicz University, Poznań, 61614 Poznań, Poland
| | - Tomasz Grzyb
- Department of Rare Earths, Faculty of Chemistry, Adam Mickiewicz University, Poznań, 61614 Poznań, Poland
| | - Antonín Hlaváček
- Institute of Analytical Chemistry of the Czech Academy of Sciences, 602 00 Brno, Czech Republic
| | - Radka Obořilová
- Department of Biochemistry, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Petr Skládal
- Department of Biochemistry, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic.,CEITEC - Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Zdeněk Farka
- Department of Biochemistry, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic.,CEITEC - Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Hans H Gorris
- Department of Biochemistry, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| |
Collapse
|
35
|
Moore SC, Kronsteiner B, Longet S, Adele S, Deeks AS, Liu C, Dejnirattisai W, Reyes LS, Meardon N, Faustini S, Al-Taei S, Tipton T, Hering LM, Angyal A, Brown R, Nicols AR, Dobson SL, Supasa P, Tuekprakhon A, Cross A, Tyerman JK, Hornsby H, Grouneva I, Plowright M, Zhang P, Newman TAH, Nell JM, Abraham P, Ali M, Malone T, Neale I, Phillips E, Wilson JD, Murray SM, Zewdie M, Shields A, Horner EC, Booth LH, Stafford L, Bibi S, Wootton DG, Mentzer AJ, Conlon CP, Jeffery K, Matthews PC, Pollard AJ, Brown A, Rowland-Jones SL, Mongkolsapaya J, Payne RP, Dold C, Lambe T, Thaventhiran JED, Screaton G, Barnes E, Hopkins S, Hall V, Duncan CJA, Richter A, Carroll M, de Silva TI, Klenerman P, Dunachie S, Turtle L. Evolution of long-term vaccine-induced and hybrid immunity in healthcare workers after different COVID-19 vaccine regimens. MED 2023; 4:191-215.e9. [PMID: 36863347 PMCID: PMC9933851 DOI: 10.1016/j.medj.2023.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023]
Abstract
BACKGROUND Both infection and vaccination, alone or in combination, generate antibody and T cell responses against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the maintenance of such responses-and hence protection from disease-requires careful characterization. In a large prospective study of UK healthcare workers (HCWs) (Protective Immunity from T Cells in Healthcare Workers [PITCH], within the larger SARS-CoV-2 Immunity and Reinfection Evaluation [SIREN] study), we previously observed that prior infection strongly affected subsequent cellular and humoral immunity induced after long and short dosing intervals of BNT162b2 (Pfizer/BioNTech) vaccination. METHODS Here, we report longer follow-up of 684 HCWs in this cohort over 6-9 months following two doses of BNT162b2 or AZD1222 (Oxford/AstraZeneca) vaccination and up to 6 months following a subsequent mRNA booster vaccination. FINDINGS We make three observations: first, the dynamics of humoral and cellular responses differ; binding and neutralizing antibodies declined, whereas T and memory B cell responses were maintained after the second vaccine dose. Second, vaccine boosting restored immunoglobulin (Ig) G levels; broadened neutralizing activity against variants of concern, including Omicron BA.1, BA.2, and BA.5; and boosted T cell responses above the 6-month level after dose 2. Third, prior infection maintained its impact driving larger and broader T cell responses compared with never-infected people, a feature maintained until 6 months after the third dose. CONCLUSIONS Broadly cross-reactive T cell responses are well maintained over time-especially in those with combined vaccine and infection-induced immunity ("hybrid" immunity)-and may contribute to continued protection against severe disease. FUNDING Department for Health and Social Care, Medical Research Council.
Collapse
Affiliation(s)
- Shona C Moore
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Barbara Kronsteiner
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Oxford Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Stephanie Longet
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sandra Adele
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Oxford Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Alexandra S Deeks
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Chang Liu
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Wanwisa Dejnirattisai
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Division of Emerging Infectious Disease, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Laura Silva Reyes
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Naomi Meardon
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Sian Faustini
- Institute for Immunology and Immunotherapy, College of Medical and Dental Science, University of Birmingham, Birmingham, UK
| | - Saly Al-Taei
- Institute for Immunology and Immunotherapy, College of Medical and Dental Science, University of Birmingham, Birmingham, UK
| | - Tom Tipton
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Luisa M Hering
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Adrienn Angyal
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Rebecca Brown
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Alexander R Nicols
- Translational and Clinical Research Institute, Immunity and Inflammation Theme, Newcastle University, Newcastle, UK
| | - Susan L Dobson
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Piyada Supasa
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Aekkachai Tuekprakhon
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Andrew Cross
- Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Jessica K Tyerman
- Translational and Clinical Research Institute, Immunity and Inflammation Theme, Newcastle University, Newcastle, UK
| | - Hailey Hornsby
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Irina Grouneva
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Megan Plowright
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK; Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Peijun Zhang
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Thomas A H Newman
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK; Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Jeremy M Nell
- Department of Infection and Tropical Medicine, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Priyanka Abraham
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Oxford Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Mohammad Ali
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Oxford Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Tom Malone
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Isabel Neale
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Oxford Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Eloise Phillips
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Joseph D Wilson
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Oxford University Medical School, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Sam M Murray
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Martha Zewdie
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Adrian Shields
- Institute for Immunology and Immunotherapy, College of Medical and Dental Science, University of Birmingham, Birmingham, UK; University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Emily C Horner
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Lucy H Booth
- MRC Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Lizzie Stafford
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sagida Bibi
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Daniel G Wootton
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK; Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK; Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Alexander J Mentzer
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Christopher P Conlon
- Oxford Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Katie Jeffery
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Philippa C Matthews
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; The Francis Crick Institute, London, UK; Division of Infection and Immunity, University College London, London, UK; Department of Infectious Diseases, University College London Hospital NHS Foundation Trust, London, UK
| | - Andrew J Pollard
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Anthony Brown
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Sarah L Rowland-Jones
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK; Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Juthathip Mongkolsapaya
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Rebecca P Payne
- Translational and Clinical Research Institute, Immunity and Inflammation Theme, Newcastle University, Newcastle, UK
| | - Christina Dold
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Teresa Lambe
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | | | - Gavin Screaton
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Eleanor Barnes
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, Oxford, UK; NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK; Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Susan Hopkins
- UK Health Security Agency, London, UK; Faculty of Medicine, Department of Infectious Disease, Imperial College London, London, UK; NIHR Health Protection Research Unit in Healthcare Associated Infection and Antimicrobial Resistance, University of Oxford, Oxford, UK
| | - Victoria Hall
- UK Health Security Agency, London, UK; NIHR Health Protection Research Unit in Healthcare Associated Infection and Antimicrobial Resistance, University of Oxford, Oxford, UK
| | - Christopher J A Duncan
- Translational and Clinical Research Institute, Immunity and Inflammation Theme, Newcastle University, Newcastle, UK; Department of Infection and Tropical Medicine, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Alex Richter
- Institute for Immunology and Immunotherapy, College of Medical and Dental Science, University of Birmingham, Birmingham, UK; University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Miles Carroll
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Thushan I de Silva
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK; Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, Oxford, UK; NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK; Translational Gastroenterology Unit, University of Oxford, Oxford, UK.
| | - Susanna Dunachie
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Oxford Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
| | - Lance Turtle
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK; Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK.
| |
Collapse
|
36
|
Felbinger N, Trudil D, Loomis L, Ascione R, Siragusa G, Haba S, Rastogi S, Mucci A, Claycomb M, Snowberger S, Luke B, Francesconi S, Tsang S. Epitope mapping of SARS-CoV-2 spike protein differentiates the antibody binding activity in vaccinated and infected individuals. FRONTIERS IN VIROLOGY 2023. [DOI: 10.3389/fviro.2023.988109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Previous studies have attempted to characterize the antibody response of individuals to the SARS-CoV-2 virus on a linear peptide level by utilizing peptide microarrays. These studies have helped to identify epitopes that have potential to be used for diagnostic tests to identify infected individuals. The immunological responses of individuals who have received the two most popular vaccines available in the US, the Moderna mRNA-1273 or the Pfizer BNT162b2 mRNA vaccines, have not been characterized. We aimed to identify linear peptides of the SARS-CoV-2 spike protein that elicited high IgG or IgA binding activity and to compare the immunoreactivity of infected individuals to those who received both doses of either vaccine by utilizing peptide microarrays. Our results revealed peptide epitopes of significant IgG binding among recently infected individuals. Some of these peptides are located near variable regions of the receptor binding domains as well as the conserved region in the c-terminal of the spike protein implicated in the high infectivity of SARS-CoV-2. Vaccinated individuals lacked a response to these distinct markers despite the overall antibody binding activity being similar.
Collapse
|
37
|
Aksyuk AA, Bansal H, Wilkins D, Stanley AM, Sproule S, Maaske J, Sanikommui S, Hartman WR, Sobieszczyk ME, Falsey AR, Kelly EJ. AZD1222-induced nasal antibody responses are shaped by prior SARS-CoV-2 infection and correlate with virologic outcomes in breakthrough infection. Cell Rep Med 2023; 4:100882. [PMID: 36610390 PMCID: PMC9750884 DOI: 10.1016/j.xcrm.2022.100882] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
The nasal mucosa is an important initial site of host defense against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. However, intramuscularly administered vaccines typically do not achieve high antibody titers in the nasal mucosa. We measure anti-SARS-CoV-2 spike immunoglobulin G (IgG) and IgA in nasal epithelial lining fluid (NELF) following intramuscular vaccination of 3,058 participants from the immunogenicity substudy of a phase 3, double-blind, placebo-controlled study of AZD1222 vaccination (ClinicalTrials.gov: NCT04516746). IgG is detected in NELF collected 14 days following the first AZD1222 vaccination. IgG levels increase with a second vaccination and exceed pre-existing levels in baseline-SARS-CoV-2-seropositive participants. Nasal IgG responses are durable and display strong correlations with serum IgG, suggesting serum-to-NELF transudation. AZD1222 induces short-lived increases to pre-existing nasal IgA levels in baseline-seropositive vaccinees. Vaccinees display a robust recall IgG response upon breakthrough infection, with overall magnitudes unaffected by time between vaccination and illness. Mucosal responses correlate with reduced viral loads and shorter durations of viral shedding in saliva.
Collapse
Affiliation(s)
- Anastasia A Aksyuk
- Translational Medicine, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Himanshu Bansal
- Biometrics, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Deidre Wilkins
- Translational Medicine, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Ann Marie Stanley
- Translational Medicine, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Stephanie Sproule
- Biometrics, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Jill Maaske
- Clinical Development, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Satya Sanikommui
- Biometrics, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - William R Hartman
- Department of Anesthesiology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53726, USA
| | - Magdalena E Sobieszczyk
- Division of Infectious Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, New York Presbyterian/Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ann R Falsey
- University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; Rochester Regional Health, Rochester, NY 14621, USA.
| | - Elizabeth J Kelly
- Translational Medicine, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA.
| |
Collapse
|
38
|
Maaske J, Sproule S, Falsey AR, Sobieszczyk ME, Luetkemeyer AF, Paulsen GC, Riddler SA, Robb ML, Rolle CP, Sha BE, Tong T, Ahani B, Aksyuk AA, Bansal H, Egan T, Jepson B, Padilla M, Patel N, Shoemaker K, Stanley AM, Swanson PA, Wilkins D, Villafana T, Green JA, Kelly EJ. Robust humoral and cellular recall responses to AZD1222 attenuate breakthrough SARS-CoV-2 infection compared to unvaccinated. Front Immunol 2023; 13:1062067. [PMID: 36713413 PMCID: PMC9881590 DOI: 10.3389/fimmu.2022.1062067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/06/2022] [Indexed: 01/15/2023] Open
Abstract
Background Breakthrough severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in coronavirus disease 2019 (COVID-19) vaccinees typically produces milder disease than infection in unvaccinated individuals. Methods To explore disease attenuation, we examined COVID-19 symptom burden and immuno-virologic responses to symptomatic SARS-CoV-2 infection in participants (AZD1222: n=177/17,617; placebo: n=203/8,528) from a 2:1 randomized, placebo-controlled, phase 3 study of two-dose primary series AZD1222 (ChAdOx1 nCoV-19) vaccination (NCT04516746). Results We observed that AZD1222 vaccinees had an overall lower incidence and shorter duration of COVID-19 symptoms compared with placebo recipients, as well as lower SARS-CoV-2 viral loads and a shorter median duration of viral shedding in saliva. Vaccinees demonstrated a robust antibody recall response versus placebo recipients with low-to-moderate inverse correlations with virologic endpoints. Vaccinees also demonstrated an enriched polyfunctional spike-specific Th-1-biased CD4+ and CD8+ T-cell response that was associated with strong inverse correlations with virologic endpoints. Conclusion Robust immune responses following AZD1222 vaccination attenuate COVID-19 disease severity and restrict SARS-CoV-2 transmission potential by reducing viral loads and the duration of viral shedding in saliva. Collectively, these analyses underscore the essential role of vaccination in mitigating the COVID-19 pandemic.
Collapse
Affiliation(s)
- Jill Maaske
- Clinical Development, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Stephanie Sproule
- Biometrics, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Ann R. Falsey
- University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
- Rochester Regional Health, Rochester, NY, United States
| | - Magdalena E. Sobieszczyk
- Division of Infectious Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, New York-Presbyterian Columbia University Irving Medical Center, New York, NY, United States
| | - Anne F. Luetkemeyer
- Zuckerberg San Francisco General, University of California, San Francisco, San Francisco, CA, United States
| | - Grant C. Paulsen
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Pediatric Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Sharon A. Riddler
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Merlin L. Robb
- Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | | | - Beverly E. Sha
- Division of Infectious Diseases, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Tina Tong
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Bahar Ahani
- Bioinformatics, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Anastasia A. Aksyuk
- Translational Medicine, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Himanshu Bansal
- Biometrics, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Timothy Egan
- Biometrics, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Brett Jepson
- Biometrics, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Marcelino Padilla
- Translational Medicine, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Nirmeshkumar Patel
- Biometrics, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Kathryn Shoemaker
- Biometrics, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Ann Marie Stanley
- Translational Medicine, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Phillip A. Swanson
- Translational Medicine, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Deidre Wilkins
- Translational Medicine, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Tonya Villafana
- Clinical Development, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Justin A. Green
- Clinical Development, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Elizabeth J. Kelly
- Translational Medicine, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| |
Collapse
|
39
|
Liew F, Talwar S, Cross A, Willett BJ, Scott S, Logan N, Siggins MK, Swieboda D, Sidhu JK, Efstathiou C, Moore SC, Davis C, Mohamed N, Nunag J, King C, Thompson AAR, Rowland-Jones SL, Docherty AB, Chalmers JD, Ho LP, Horsley A, Raman B, Poinasamy K, Marks M, Kon OM, Howard L, Wootton DG, Dunachie S, Quint JK, Evans RA, Wain LV, Fontanella S, de Silva TI, Ho A, Harrison E, Baillie JK, Semple MG, Brightling C, Thwaites RS, Turtle L, Openshaw PJM. SARS-CoV-2-specific nasal IgA wanes 9 months after hospitalisation with COVID-19 and is not induced by subsequent vaccination. EBioMedicine 2023; 87:104402. [PMID: 36543718 PMCID: PMC9762734 DOI: 10.1016/j.ebiom.2022.104402] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Most studies of immunity to SARS-CoV-2 focus on circulating antibody, giving limited insights into mucosal defences that prevent viral replication and onward transmission. We studied nasal and plasma antibody responses one year after hospitalisation for COVID-19, including a period when SARS-CoV-2 vaccination was introduced. METHODS In this follow up study, plasma and nasosorption samples were prospectively collected from 446 adults hospitalised for COVID-19 between February 2020 and March 2021 via the ISARIC4C and PHOSP-COVID consortia. IgA and IgG responses to NP and S of ancestral SARS-CoV-2, Delta and Omicron (BA.1) variants were measured by electrochemiluminescence and compared with plasma neutralisation data. FINDINGS Strong and consistent nasal anti-NP and anti-S IgA responses were demonstrated, which remained elevated for nine months (p < 0.0001). Nasal and plasma anti-S IgG remained elevated for at least 12 months (p < 0.0001) with plasma neutralising titres that were raised against all variants compared to controls (p < 0.0001). Of 323 with complete data, 307 were vaccinated between 6 and 12 months; coinciding with rises in nasal and plasma IgA and IgG anti-S titres for all SARS-CoV-2 variants, although the change in nasal IgA was minimal (1.46-fold change after 10 months, p = 0.011) and the median remained below the positive threshold determined by pre-pandemic controls. Samples 12 months after admission showed no association between nasal IgA and plasma IgG anti-S responses (R = 0.05, p = 0.18), indicating that nasal IgA responses are distinct from those in plasma and minimally boosted by vaccination. INTERPRETATION The decline in nasal IgA responses 9 months after infection and minimal impact of subsequent vaccination may explain the lack of long-lasting nasal defence against reinfection and the limited effects of vaccination on transmission. These findings highlight the need to develop vaccines that enhance nasal immunity. FUNDING This study has been supported by ISARIC4C and PHOSP-COVID consortia. ISARIC4C is supported by grants from the National Institute for Health and Care Research and the Medical Research Council. Liverpool Experimental Cancer Medicine Centre provided infrastructure support for this research. The PHOSP-COVD study is jointly funded by UK Research and Innovation and National Institute of Health and Care Research. The funders were not involved in the study design, interpretation of data or the writing of this manuscript.
Collapse
Affiliation(s)
- Felicity Liew
- National Heart and Lung Institute, Imperial College London, UK.
| | - Shubha Talwar
- National Heart and Lung Institute, Imperial College London, UK
| | - Andy Cross
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, UK
| | - Brian J Willett
- MRC-University of Glasgow Centre for Virus Research, Immunity and Inflammation, University of Glasgow, UK
| | - Sam Scott
- MRC-University of Glasgow Centre for Virus Research, Immunity and Inflammation, University of Glasgow, UK
| | - Nicola Logan
- MRC-University of Glasgow Centre for Virus Research, Immunity and Inflammation, University of Glasgow, UK
| | | | - Dawid Swieboda
- National Heart and Lung Institute, Imperial College London, UK
| | - Jasmin K Sidhu
- National Heart and Lung Institute, Imperial College London, UK
| | | | - Shona C Moore
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, UK
| | - Chris Davis
- MRC-University of Glasgow Centre for Virus Research, Immunity and Inflammation, University of Glasgow, UK
| | - Noura Mohamed
- Cardiovascular Research Team, Imperial College Healthcare NHS Trust, London, UK
| | - Jose Nunag
- Cardiovascular Research Team, Imperial College Healthcare NHS Trust, London, UK
| | - Clara King
- Cardiovascular Research Team, Imperial College Healthcare NHS Trust, London, UK
| | - A A Roger Thompson
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Sarah L Rowland-Jones
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Annemarie B Docherty
- Centre for Medical Informatics, The Usher Institute, University of Edinburgh, Edinburgh, UK
| | - James D Chalmers
- University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Ling-Pei Ho
- MRC Human Immunology Unit, University of Oxford, Oxford, UK
| | - Alexander Horsley
- Division of Infection, Immunity & Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Betty Raman
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | | | - Michael Marks
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| | - Onn Min Kon
- National Heart and Lung Institute, Imperial College London, UK
| | - Luke Howard
- National Heart and Lung Institute, Imperial College London, UK
| | - Daniel G Wootton
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, UK
| | - Susanna Dunachie
- Oxford Centre for Global Health Research, University of Oxford, Oxford, UK
| | | | - Rachael A Evans
- Institute for Lung Health, Leicester NIHR Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Louise V Wain
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Sara Fontanella
- National Heart and Lung Institute, Imperial College London, UK
| | - Thushan I de Silva
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Antonia Ho
- MRC-University of Glasgow Centre for Virus Research, Immunity and Inflammation, University of Glasgow, UK
| | - Ewen Harrison
- Centre for Medical Informatics, The Usher Institute, University of Edinburgh, Edinburgh, UK
| | - J Kenneth Baillie
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Malcolm G Semple
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, UK; The Pandemic Institute, University of Liverpool, UK
| | - Christopher Brightling
- Institute for Lung Health, Leicester NIHR Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Ryan S Thwaites
- National Heart and Lung Institute, Imperial College London, UK.
| | - Lance Turtle
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, UK; The Pandemic Institute, University of Liverpool, UK.
| | | |
Collapse
|
40
|
Vos WAJW, Groenendijk AL, Blaauw MJT, van Eekeren LE, Navas A, Cleophas MCP, Vadaq N, Matzaraki V, dos Santos JC, Meeder EMG, Fröberg J, Weijers G, Zhang Y, Fu J, ter Horst R, Bock C, Knoll R, Aschenbrenner AC, Schultze J, Vanderkerckhove L, Hwandih T, Wonderlich ER, Vemula SV, van der Kolk M, de Vet SCP, Blok WL, Brinkman K, Rokx C, Schellekens AFA, de Mast Q, Joosten LAB, Berrevoets MAH, Stalenhoef JE, Verbon A, van Lunzen J, Netea MG, van der Ven AJAM. The 2000HIV study: Design, multi-omics methods and participant characteristics. Front Immunol 2022; 13:982746. [PMID: 36605197 PMCID: PMC9809279 DOI: 10.3389/fimmu.2022.982746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/25/2022] [Indexed: 01/07/2023] Open
Abstract
Background Even during long-term combination antiretroviral therapy (cART), people living with HIV (PLHIV) have a dysregulated immune system, characterized by persistent immune activation, accelerated immune ageing and increased risk of non-AIDS comorbidities. A multi-omics approach is applied to a large cohort of PLHIV to understand pathways underlying these dysregulations in order to identify new biomarkers and novel genetically validated therapeutic drugs targets. Methods The 2000HIV study is a prospective longitudinal cohort study of PLHIV on cART. In addition, untreated HIV spontaneous controllers were recruited. In-depth multi-omics characterization will be performed, including genomics, epigenomics, transcriptomics, proteomics, metabolomics and metagenomics, functional immunological assays and extensive immunophenotyping. Furthermore, the latent viral reservoir will be assessed through cell associated HIV-1 RNA and DNA, and full-length individual proviral sequencing on a subset. Clinical measurements include an ECG, carotid intima-media thickness and plaque measurement, hepatic steatosis and fibrosis measurement as well as psychological symptoms and recreational drug questionnaires. Additionally, considering the developing pandemic, COVID-19 history and vaccination was recorded. Participants return for a two-year follow-up visit. The 2000HIV study consists of a discovery and validation cohort collected at separate sites to immediately validate any finding in an independent cohort. Results Overall, 1895 PLHIV from four sites were included for analysis, 1559 in the discovery and 336 in the validation cohort. The study population was representative of a Western European HIV population, including 288 (15.2%) cis-women, 463 (24.4%) non-whites, and 1360 (71.8%) MSM (Men who have Sex with Men). Extreme phenotypes included 114 spontaneous controllers, 81 rapid progressors and 162 immunological non-responders. According to the Framingham score 321 (16.9%) had a cardiovascular risk of >20% in the next 10 years. COVID-19 infection was documented in 234 (12.3%) participants and 474 (25.0%) individuals had received a COVID-19 vaccine. Conclusion The 2000HIV study established a cohort of 1895 PLHIV that employs multi-omics to discover new biological pathways and biomarkers to unravel non-AIDS comorbidities, extreme phenotypes and the latent viral reservoir that impact the health of PLHIV. The ultimate goal is to contribute to a more personalized approach to the best standard of care and a potential cure for PLHIV.
Collapse
Affiliation(s)
- Wilhelm A. J. W. Vos
- Department of Internal Medicine and Infectious Diseases, Radboudumc, Radboud University, Nijmegen, Netherlands,Department of Internal Medicine and Infectious Diseases, OLVG, Amsterdam, Netherlands,*Correspondence: Wilhelm A. J. W. Vos,
| | - Albert L. Groenendijk
- Department of Internal Medicine and Infectious Diseases, Radboudumc, Radboud University, Nijmegen, Netherlands,Department of Internal Medicine and Department of Medical Microbiology and Infectious diseases, Erasmus Medical Center (MC), Erasmus University, Rotterdam, Netherlands
| | - Marc J. T. Blaauw
- Department of Internal Medicine and Infectious Diseases, Radboudumc, Radboud University, Nijmegen, Netherlands,Department of Internal Medicine and Infectious Diseases, Elizabeth-Tweesteden Ziekenhuis, Tilburg, Netherlands
| | - Louise E. van Eekeren
- Department of Internal Medicine and Infectious Diseases, Radboudumc, Radboud University, Nijmegen, Netherlands
| | - Adriana Navas
- Department of Internal Medicine and Infectious Diseases, Radboudumc, Radboud University, Nijmegen, Netherlands
| | - Maartje C. P. Cleophas
- Department of Internal Medicine and Infectious Diseases, Radboudumc, Radboud University, Nijmegen, Netherlands
| | - Nadira Vadaq
- Department of Internal Medicine and Infectious Diseases, Radboudumc, Radboud University, Nijmegen, Netherlands
| | - Vasiliki Matzaraki
- Department of Internal Medicine and Infectious Diseases, Radboudumc, Radboud University, Nijmegen, Netherlands
| | - Jéssica C. dos Santos
- Department of Internal Medicine and Infectious Diseases, Radboudumc, Radboud University, Nijmegen, Netherlands
| | - Elise M. G. Meeder
- Department of Psychiatry, Radboudumc, Radboud University, Nijmegen, Netherlands,Donders Institute for Brain, Radboud University, Cognition and Behavior, Nijmegen, Netherlands,Nijmegen Institute for Scientist-Practitioners in Addiction (NISPA), Radboud University, Nijmegen, Netherlands
| | - Janeri Fröberg
- Department of Internal Medicine and Infectious Diseases, Radboudumc, Radboud University, Nijmegen, Netherlands
| | - Gert Weijers
- Medical UltraSound Imaging Center (MUSIC) Department of Medical Imaging, Radboudumc, Radboud University, Nijmegen, Netherlands
| | - Yue Zhang
- Universitair Medisch Centrum Groningen, University of Groningen, Groningen, Netherlands
| | - Jingyuan Fu
- Universitair Medisch Centrum Groningen, University of Groningen, Groningen, Netherlands
| | - Rob ter Horst
- Center for Molecular Medicine (CeMM) Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Christoph Bock
- Center for Molecular Medicine (CeMM) Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria,Medical University of Vienna, Center for Medical Statistics, Informatics and Intelligent Systems (CeMSIIS), Institute of Artificial Intelligence, Vienna, Austria
| | - Rainer Knoll
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) eingetragener Verein (e.V.), Bonn, Germany,Genomics & Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Anna C. Aschenbrenner
- Department of Internal Medicine and Infectious Diseases, Radboudumc, Radboud University, Nijmegen, Netherlands,Platform for Single Cell Genomics and Epigenomics (PRECISE), DZNE and University of Bonn, Bonn, Germany
| | - Joachim Schultze
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) eingetragener Verein (e.V.), Bonn, Germany,Genomics & Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany,Platform for Single Cell Genomics and Epigenomics (PRECISE), DZNE and University of Bonn, Bonn, Germany
| | - Linos Vanderkerckhove
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Talent Hwandih
- Medical Science Department, Sysmex Europe Societas Europaea (SE), Norderstedt, Germany
| | | | - Sai V. Vemula
- Clinical Development, ViiV Healthcare, Durham, NC, United States
| | - Mike van der Kolk
- Translational Medical Research, ViiV Healthcare, Brentford, United Kingdom
| | - Sterre C. P. de Vet
- Department of Internal Medicine and Infectious Diseases, OLVG, Amsterdam, Netherlands
| | - Willem L. Blok
- Department of Internal Medicine and Infectious Diseases, OLVG, Amsterdam, Netherlands
| | - Kees Brinkman
- Department of Internal Medicine and Infectious Diseases, OLVG, Amsterdam, Netherlands
| | - Casper Rokx
- Department of Internal Medicine and Department of Medical Microbiology and Infectious diseases, Erasmus Medical Center (MC), Erasmus University, Rotterdam, Netherlands
| | - Arnt F. A. Schellekens
- Department of Psychiatry, Radboudumc, Radboud University, Nijmegen, Netherlands,Donders Institute for Brain, Radboud University, Cognition and Behavior, Nijmegen, Netherlands,Nijmegen Institute for Scientist-Practitioners in Addiction (NISPA), Radboud University, Nijmegen, Netherlands
| | - Quirijn de Mast
- Department of Internal Medicine and Infectious Diseases, Radboudumc, Radboud University, Nijmegen, Netherlands
| | - Leo A. B. Joosten
- Department of Internal Medicine and Infectious Diseases, Radboudumc, Radboud University, Nijmegen, Netherlands,Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Marvin A. H. Berrevoets
- Department of Internal Medicine and Infectious Diseases, Elizabeth-Tweesteden Ziekenhuis, Tilburg, Netherlands
| | - Janneke E. Stalenhoef
- Department of Internal Medicine and Infectious Diseases, OLVG, Amsterdam, Netherlands
| | - Annelies Verbon
- Department of Internal Medicine and Department of Medical Microbiology and Infectious diseases, Erasmus Medical Center (MC), Erasmus University, Rotterdam, Netherlands
| | - Jan van Lunzen
- Translational Medical Research, ViiV Healthcare, Brentford, United Kingdom
| | - Mihai G. Netea
- Department of Internal Medicine and Infectious Diseases, Radboudumc, Radboud University, Nijmegen, Netherlands,Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Andre J. A. M. van der Ven
- Department of Internal Medicine and Infectious Diseases, Radboudumc, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
41
|
Li W, Wang T, Rajendrakumar AM, Acharya G, Miao Z, Varghese BP, Yu H, Dhakal B, LeRoith T, Tuo W, Zhu X. An FcRn-targeted mucosal vaccine against SARS-CoV-2 infection and transmission. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.11.23.517678. [PMID: 36451890 PMCID: PMC9709799 DOI: 10.1101/2022.11.23.517678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
SARS-CoV-2 and its variants cause COVID-19, which is primarily transmitted through droplets and airborne aerosols. To prevent viral infection and reduce viral spread, vaccine strategies must elicit protective immunity in the airways. FcRn transfers IgG across epithelial barriers; we explore FcRn-mediated respiratory delivery of SARS-CoV-2 spike (S). A monomeric IgG Fc was fused to a stabilized S protein; the resulting S-Fc bound to S-specific antibodies (Ab) and FcRn. A significant increase in Ab responses was observed following the intranasal immunization of mice with S-Fc formulated in CpG as compared to the immunization with S alone or PBS. Furthermore, we intranasally immunize adult or aged mice and hamsters with S-Fc. A significant reduction of virus replication in nasal turbinate, lung, and brain was observed following nasal challenges with SARS-CoV-2, including Delta and Omicron variants. Intranasal immunization also significantly reduced viral transmission between immunized and naive hamsters. Protection was mediated by nasal IgA, serum-neutralizing Abs, tissue-resident memory T cells, and bone marrow S-specific plasma cells. Hence FcRn delivers an S-Fc antigen effectively into the airway and induces protection against SARS-CoV-2 infection and transmission. Based on these findings, FcRn-targeted non-invasive respiratory immunizations are superior strategies for preventing highly contagious respiratory viruses from spreading.
Collapse
Affiliation(s)
- Weizhong Li
- Division of Immunology, VA-MD College of Veterinary Medicine, *Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742
| | - Tao Wang
- Division of Immunology, VA-MD College of Veterinary Medicine, *Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742
| | - Arunraj M. Rajendrakumar
- Division of Immunology, VA-MD College of Veterinary Medicine, *Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742
- Animal Parasitic Diseases Laboratory, ARS, United States Department of Agriculture, Beltsville, MD 20705
| | - Gyanada Acharya
- Division of Immunology, VA-MD College of Veterinary Medicine, *Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742
| | - Zizhen Miao
- Division of Immunology, VA-MD College of Veterinary Medicine, *Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742
| | - Berin P. Varghese
- Division of Immunology, VA-MD College of Veterinary Medicine, *Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742
| | - Hailiang Yu
- Division of Immunology, VA-MD College of Veterinary Medicine, *Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742
| | - Bibek Dhakal
- Division of Immunology, VA-MD College of Veterinary Medicine, *Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742
| | - Tanya LeRoith
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech University, Blacksburg, VA, USA
| | - Wenbin Tuo
- Animal Parasitic Diseases Laboratory, ARS, United States Department of Agriculture, Beltsville, MD 20705
| | - Xiaoping Zhu
- Division of Immunology, VA-MD College of Veterinary Medicine, *Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742
| |
Collapse
|
42
|
Wellford SA, Moseman AP, Dao K, Wright KE, Chen A, Plevin JE, Liao TC, Mehta N, Moseman EA. Mucosal plasma cells are required to protect the upper airway and brain from infection. Immunity 2022; 55:2118-2134.e6. [PMID: 36137543 PMCID: PMC9649878 DOI: 10.1016/j.immuni.2022.08.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/25/2022] [Accepted: 08/24/2022] [Indexed: 12/14/2022]
Abstract
While blood antibodies mediate protective immunity in most organs, whether they protect nasal surfaces in the upper airway is unclear. Using multiple viral infection models in mice, we found that blood-borne antibodies could not defend the olfactory epithelium. Despite high serum antibody titers, pathogens infected nasal turbinates, and neurotropic microbes invaded the brain. Using passive antibody transfers and parabiosis, we identified a restrictive blood-endothelial barrier that excluded circulating antibodies from the olfactory mucosa. Plasma cell depletions demonstrated that plasma cells must reside within olfactory tissue to achieve sterilizing immunity. Antibody blockade and genetically deficient models revealed that this local immunity required CD4+ T cells and CXCR3. Many vaccine adjuvants failed to generate olfactory plasma cells, but mucosal immunizations established humoral protection of the olfactory surface. Our identification of a blood-olfactory barrier and the requirement for tissue-derived antibody has implications for vaccinology, respiratory and CNS pathogen transmission, and B cell fate decisions.
Collapse
Affiliation(s)
| | - Annie Park Moseman
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Kianna Dao
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Katherine E Wright
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Allison Chen
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Jona E Plevin
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Tzu-Chieh Liao
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Naren Mehta
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - E Ashley Moseman
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
43
|
Yaugel-Novoa M, Bourlet T, Paul S. Role of the humoral immune response during COVID-19: guilty or not guilty? Mucosal Immunol 2022; 15:1170-1180. [PMID: 36195658 PMCID: PMC9530436 DOI: 10.1038/s41385-022-00569-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/07/2022] [Accepted: 09/19/2022] [Indexed: 02/04/2023]
Abstract
Systemic and mucosal humoral immune responses are crucial to fight respiratory viral infections in the current pandemic of COVID-19 caused by the SARS-CoV-2 virus. During SARS-CoV-2 infection, the dynamics of systemic and mucosal antibody infections are affected by patient characteristics, such as age, sex, disease severity, or prior immunity to other human coronaviruses. Patients suffering from severe disease develop higher levels of anti-SARS-CoV-2 antibodies in serum and mucosal tissues than those with mild disease, and these antibodies are detectable for up to a year after symptom onset. In hospitalized patients, the aberrant glycosylation of anti-SARS-CoV-2 antibodies enhances inflammation-associated antibody Fc-dependent effector functions, thereby contributing to COVID-19 pathophysiology. Current vaccines elicit robust humoral immune responses, principally in the blood. However, they are less effective against new viral variants, such as Delta and Omicron. This review provides an overview of current knowledge about the humoral immune response to SARS-CoV-2, with a particular focus on the protective and pathological role of humoral immunity in COVID-19 severity. We also discuss the humoral immune response elicited by COVID-19 vaccination and protection against emerging viral variants.
Collapse
Affiliation(s)
- Melyssa Yaugel-Novoa
- CIRI—Centre International de Recherche en Infectiologie, Team GIMAP (Saint-Etienne), Inserm, U1111, CNRS, UMR5308, ENS Lyon, UJM, Université Claude Bernard Lyon 1, Lyon, France
| | - Thomas Bourlet
- CIRI—Centre International de Recherche en Infectiologie, Team GIMAP (Saint-Etienne), Inserm, U1111, CNRS, UMR5308, ENS Lyon, UJM, Université Claude Bernard Lyon 1, Lyon, France
| | - Stéphane Paul
- CIRI—Centre International de Recherche en Infectiologie, Team GIMAP (Saint-Etienne), Inserm, U1111, CNRS, UMR5308, ENS Lyon, UJM, Université Claude Bernard Lyon 1, Lyon, France,CIC Inserm 1408 Vaccinology, Saint-Etienne, France
| |
Collapse
|
44
|
Keuning MW, Grobben M, Bijlsma MW, Anker B, Berman-de Jong EP, Cohen S, Felderhof M, de Groen AE, de Groof F, Rijpert M, van Eijk HWM, Tejjani K, van Rijswijk J, Steenhuis M, Rispens T, Plötz FB, van Gils MJ, Pajkrt D. Differences in systemic and mucosal SARS-CoV-2 antibody prevalence in a prospective cohort of Dutch children. Front Immunol 2022; 13:976382. [PMID: 36159841 PMCID: PMC9500453 DOI: 10.3389/fimmu.2022.976382] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Background As SARS-CoV-2 will likely continue to circulate, low-impact methods become more relevant to monitor antibody-mediated immunity. Saliva sampling could provide a non-invasive method with reduced impact on children. Studies reporting on the differences between systemic and mucosal humoral immunity to SARS-CoV-2 are inconsistent in adults and scarce in children. These differences may be further unraveled by exploring associations to demographic and clinical variables. Methods To evaluate the use of saliva antibody assays, we performed a cross-sectional cohort study by collecting serum and saliva of 223 children attending medical services in the Netherlands (irrespective of SARS-CoV-2 exposure, symptoms or vaccination) from May to October 2021. With a Luminex and a Wantai assay, we measured prevalence of SARS-CoV-2 spike (S), receptor binding domain (RBD) and nucleocapsid-specific IgG and IgA in serum and saliva and explored associations with demographic variables. Findings The S-specific IgG prevalence was higher in serum 39% (95% CI 32 - 45%) than in saliva 30% (95% CI 24 - 36%) (P ≤ 0.003). Twenty-seven percent (55/205) of children were S-specific IgG positive in serum and saliva, 12% (25/205) were only positive in serum and 3% (6/205) only in saliva. Vaccinated children showed a higher concordance between serum and saliva than infected children. Odds for saliva S-specific IgG positivity were higher in girls compared to boys (aOR 2.63, P = 0.012). Moreover, immunocompromised children showed lower odds for S- and RBD-specific IgG in both serum and saliva compared to healthy children (aOR 0.23 - 0.25, P ≤ 0.050). Conclusions We showed that saliva-based antibody assays can be useful for identifying SARS-CoV-2 humoral immunity in a non-invasive manner, and that IgG prevalence may be affected by sex and immunocompromisation. Differences between infection and vaccination, between sexes and between immunocompromised and healthy children should be further investigated and considered when choosing systemic or mucosal antibody measurement.
Collapse
Affiliation(s)
- Maya W. Keuning
- Department of Pediatric Infectious Diseases, Rheumatology & Immunology, Amsterdam University Medical Centers (UMC), location University of Amsterdam, Amsterdam, Netherlands
| | - Marloes Grobben
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam University Medical Centers (UMC) location University of Amsterdam, Amsterdam, Netherlands
- Infectious diseases, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Merijn W. Bijlsma
- Department of Pediatrics, Emma Children’s Hospital Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Beau Anker
- Department of Pediatrics, Emma Children’s Hospital Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Eveline P. Berman-de Jong
- Department of Pediatrics, Emma Children’s Hospital Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Sophie Cohen
- Department of Pediatrics, Emma Children’s Hospital Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam, Netherlands
| | | | - Anne-Elise de Groen
- Department of Pediatric Infectious Diseases, Rheumatology & Immunology, Amsterdam University Medical Centers (UMC), location University of Amsterdam, Amsterdam, Netherlands
| | - Femke de Groof
- Department of Pediatrics, Noordwest Ziekenhuisgroep, Alkmaar, Netherlands
| | - Maarten Rijpert
- Department of Pediatrics, Zaans Medical Center, Zaandam, Netherlands
| | - Hetty W. M. van Eijk
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam University Medical Centers (UMC) location University of Amsterdam, Amsterdam, Netherlands
| | - Khadija Tejjani
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam University Medical Centers (UMC) location University of Amsterdam, Amsterdam, Netherlands
- Infectious diseases, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Jacqueline van Rijswijk
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam University Medical Centers (UMC) location University of Amsterdam, Amsterdam, Netherlands
- Infectious diseases, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Maurice Steenhuis
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands
- Landsteiner Laboratory, Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Theo Rispens
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands
- Landsteiner Laboratory, Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Frans B. Plötz
- Department of Pediatrics, Emma Children’s Hospital Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam, Netherlands
- Department of Pediatrics, Tergooi Medical Center, Blaricum, Netherlands
| | - Marit J. van Gils
- Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Amsterdam University Medical Centers (UMC) location University of Amsterdam, Amsterdam, Netherlands
- Infectious diseases, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Dasja Pajkrt
- Department of Pediatric Infectious Diseases, Rheumatology & Immunology, Amsterdam University Medical Centers (UMC), location University of Amsterdam, Amsterdam, Netherlands
- Infectious diseases, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| |
Collapse
|
45
|
Zlei M, Sidorov IA, Joosten SA, Heemskerk MHM, Myeni SK, Pothast CR, de Brouwer CS, Boomaars-van der Zanden AL, van Meijgaarden KE, Morales ST, Wessels E, Janse JJ, Goeman JJ, Cobbaert CM, Kroes ACM, Cannegieter SC, Roestenberg M, Visser LG, Kikkert M, Feltkamp MCW, Arbous SM, Staal FJT, Ottenhoff THM, van Dongen JJM, Roukens AHE, de Vries JJC. Immune Determinants of Viral Clearance in Hospitalised COVID-19 Patients: Reduced Circulating Naïve CD4+ T Cell Counts Correspond with Delayed Viral Clearance. Cells 2022; 11:2743. [PMID: 36078151 PMCID: PMC9455062 DOI: 10.3390/cells11172743] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Virus-specific cellular and humoral responses are major determinants for protection from critical illness after SARS-CoV-2 infection. However, the magnitude of the contribution of each of the components to viral clearance remains unclear. Here, we studied the timing of viral clearance in relation to 122 immune parameters in 102 hospitalised patients with moderate and severe COVID-19 in a longitudinal design. Delayed viral clearance was associated with more severe disease and was associated with higher levels of SARS-CoV-2-specific (neutralising) antibodies over time, increased numbers of neutrophils, monocytes, basophils, and a range of pro-inflammatory cyto-/chemokines illustrating ongoing, partially Th2 dominating, immune activation. In contrast, early viral clearance and less critical illness correlated with the peak of neutralising antibodies, higher levels of CD4 T cells, and in particular naïve CD4+ T cells, suggesting their role in early control of SARS-CoV-2 possibly by proving appropriate B cell help. Higher counts of naïve CD4+ T cells also correlated with lower levels of MIF, IL-9, and TNF-beta, suggesting an indirect role in averting prolonged virus-induced tissue damage. Collectively, our data show that naïve CD4+ T cell play a critical role in rapid viral T cell control, obviating aberrant antibody and cytokine profiles and disease deterioration. These data may help in guiding risk stratification for severe COVID-19.
Collapse
Affiliation(s)
- Mihaela Zlei
- Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Igor A. Sidorov
- Clinical Microbiological Laboratory, Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Simone A. Joosten
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Mirjam H. M. Heemskerk
- Department of Hematology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Sebenzile K. Myeni
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Cilia R. Pothast
- Department of Hematology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Caroline S. de Brouwer
- Clinical Microbiological Laboratory, Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - A. Linda Boomaars-van der Zanden
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Krista E. van Meijgaarden
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Shessy T. Morales
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Els Wessels
- Clinical Microbiological Laboratory, Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Jacqueline J. Janse
- Department of Parasitology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Jelle J. Goeman
- Medical Statistics Section, Department of Biomedical Data Sciences, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Christa M. Cobbaert
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Aloys C. M. Kroes
- Clinical Microbiological Laboratory, Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Suzanne C. Cannegieter
- Department of Clinical Epidemiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Meta Roestenberg
- Department of Parasitology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Leonardus G. Visser
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Marjolein Kikkert
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Mariet C. W. Feltkamp
- Clinical Microbiological Laboratory, Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Sesmu M. Arbous
- Department of Clinical Epidemiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Department of Intensive Care, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Frank J. T. Staal
- Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Tom H. M. Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | | | - Anna H. E. Roukens
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Jutte J. C. de Vries
- Clinical Microbiological Laboratory, Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | | | | |
Collapse
|
46
|
Russell MW, Mestecky J. Mucosal immunity: The missing link in comprehending SARS-CoV-2 infection and transmission. Front Immunol 2022; 13:957107. [PMID: 36059541 PMCID: PMC9428579 DOI: 10.3389/fimmu.2022.957107] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/27/2022] [Indexed: 12/21/2022] Open
Abstract
SARS-CoV-2 is primarily an airborne infection of the upper respiratory tract, which on reaching the lungs causes the severe acute respiratory disease, COVID-19. Its first contact with the immune system, likely through the nasal passages and Waldeyer's ring of tonsils and adenoids, induces mucosal immune responses revealed by the production of secretory IgA (SIgA) antibodies in saliva, nasal fluid, tears, and other secretions within 4 days of infection. Evidence is accumulating that these responses might limit the virus to the upper respiratory tract resulting in asymptomatic infection or only mild disease. The injectable systemic vaccines that have been successfully developed to prevent serious disease and its consequences do not induce antibodies in mucosal secretions of naïve subjects, but they may recall SIgA antibody responses in secretions of previously infected subjects, thereby helping to explain enhanced resistance to repeated (breakthrough) infection. While many intranasally administered COVID vaccines have been found to induce potentially protective immune responses in experimental animals such as mice, few have demonstrated similar success in humans. Intranasal vaccines should have advantage over injectable vaccines in inducing SIgA antibodies in upper respiratory and oral secretions that would not only prevent initial acquisition of the virus, but also suppress community spread via aerosols and droplets generated from these secretions.
Collapse
Affiliation(s)
- Michael W. Russell
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Jiri Mestecky
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
47
|
Abstract
The SARS-CoV-2 pandemic has demonstrated the importance of studying antiviral immunity within sites of infection to gain insights into mechanisms for immune protection and disease pathology. As SARS-CoV-2 is tropic to the respiratory tract, many studies of airway washes, lymph node aspirates, and postmortem lung tissue have revealed site-specific immune dynamics that are associated with the protection or immunopathology but are not readily observed in circulation. This review summarizes the growing body of work identifying immune processes in tissues and their interplay with immune responses in circulation during acute SARS-CoV-2 infection, severe disease, and memory persistence. Establishment of tissue resident immunity also may have implications for vaccination and the durability of immune memory and protection.
Collapse
Affiliation(s)
- Ksenia Rybkina
- Department of Microbiology and ImmunologyColumbia University Vagelos College of Physicians and SurgeonsNew YorkNew YorkUSA
| | - Julia Davis‐Porada
- Department of Microbiology and ImmunologyColumbia University Vagelos College of Physicians and SurgeonsNew YorkNew YorkUSA
| | - Donna L. Farber
- Department of Microbiology and ImmunologyColumbia University Vagelos College of Physicians and SurgeonsNew YorkNew YorkUSA
- Department of SurgeryColumbia University Irving Medical CenterNew YorkNew YorkUSA
| |
Collapse
|
48
|
Qi H, Liu B, Wang X, Zhang L. The humoral response and antibodies against SARS-CoV-2 infection. Nat Immunol 2022; 23:1008-1020. [PMID: 35761083 DOI: 10.1038/s41590-022-01248-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/22/2022] [Indexed: 12/14/2022]
Abstract
Two and a half years into the COVID-19 pandemic, we have gained many insights into the human antibody response to the causative SARS-CoV-2 virus. In this Review, we summarize key observations of humoral immune responses in people with COVID-19, discuss key features of infection- and vaccine-induced neutralizing antibodies, and consider vaccine designs for inducing antibodies that are broadly protective against different variants of the SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Hai Qi
- Tsinghua-Peking Center for Life Sciences, Beijing, China. .,Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing, China. .,Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China. .,NexVac Research Center, Tsinghua University, Beijing, China. .,Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, China. .,Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China.
| | - Bo Liu
- Tsinghua-Peking Center for Life Sciences, Beijing, China.,Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing, China.,Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Xinquan Wang
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China
| | - Linqi Zhang
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China. .,NexVac Research Center, Tsinghua University, Beijing, China. .,Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China. .,Comprehensive AIDS Research Center, Center for Global Health and Infectious Diseases, Tsinghua University, Beijing, China.
| |
Collapse
|
49
|
Southworth T, Jackson N, Singh D. Airway immune responses to COVID-19 vaccination in COPD patients and healthy subjects. Eur Respir J 2022; 60:13993003.00497-2022. [PMID: 35728975 PMCID: PMC9403393 DOI: 10.1183/13993003.00497-2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/06/2022] [Indexed: 11/26/2022]
Abstract
COPD patients have a higher risk of developing severe illness and mortality following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection [1]. Vaccination protects against coronavirus disease 2019 (COVID-19) through the development of systemic and airway immune responses. Patients with COPD display altered humoral immunity, with reduced antibody responses compared to healthy controls [2, 3]. We studied SARS-CoV-2 vaccine-specific immune responses in COPD patients versus healthy controls, using systemic, nasal and sputum samples. Airway and blood immune responses to COVID-19 vaccination were examined in COPD patients and healthy subjects. Anti-spike IgG, but not IgA, levels were higher in airways post-vaccination, with similar responses in COPD patients and healthy subjects. https://bit.ly/3zt6D6v
Collapse
Affiliation(s)
- Thomas Southworth
- University of Manchester, Division of Infection, Immunity and Respiratory Medicine, Manchester University NHS Foundation Trust, Manchester, UK .,Medicines Evaluation Unit, Manchester, UK
| | | | - Dave Singh
- University of Manchester, Division of Infection, Immunity and Respiratory Medicine, Manchester University NHS Foundation Trust, Manchester, UK.,Medicines Evaluation Unit, Manchester, UK
| |
Collapse
|
50
|
MARTINUZZI E, BENZAQUEN J, GUERIN O, LEROY S, SIMON T, ILIE M, HOFMAN V, ALLEGRA M, TANGA V, MICHEL E, BOUTROS J, MANIEL C, SICARD A, GLAICHENHAUS N, CZERKINSKY C, BLANCOU P, HOFMAN P, MARQUETTE CH. A Single Dose of BNT162b2 Messenger RNA Vaccine Induces Airway Immunity in Severe Acute Respiratory Syndrome Coronavirus 2 Naive and Recovered Coronavirus Disease 2019 Subjects. Clin Infect Dis 2022; 75:2053-2059. [PMID: 35579991 PMCID: PMC9129216 DOI: 10.1093/cid/ciac378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/15/2022] [Accepted: 05/11/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Mucosal antibodies can prevent virus entry and replication in mucosal epithelial cells and therefore virus shedding. Parenteral booster injection of a vaccine against a mucosal pathogen promotes stronger mucosal immune responses following prior mucosal infection compared with injections of a parenteral vaccine in a mucosally naive subject. We investigated whether this was also the case for the BNT162b2 coronavirus disease 2019 (COVID-19) messenger RNA vaccine. METHODS Twenty recovered COVID-19 subjects (RCSs) and 23 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-naive subjects were vaccinated with, respectively, 1 and 2 doses of the BNT162b2 COVID-19 vaccine. Nasal epithelial lining fluid (NELF) and plasma were collected before and after vaccination and assessed for immunoglobulin G (IgG) and IgA antibody levels to Spike and for their ability to neutralize binding of Spike to angiotensin-converting enzyme-2 receptor. Blood was analyzed 1 week after vaccination for the number of Spike-specific antibody-secreting cells (ASCs) with a mucosal tropism. RESULTS All RCSs had both nasal and blood SARS-CoV-2-specific antibodies at least 90 days after initial diagnosis. In RCSs, a single dose of vaccine amplified preexisting Spike-specific IgG and IgA antibody responses in both NELF and blood against both vaccine homologous and variant strains, including Delta. These responses were associated with Spike-specific IgG and IgA ASCs with a mucosal tropism in blood. Nasal IgA and IgG antibody responses were lower in magnitude in SARS-CoV-2-naive subjects after 2 vaccine doses compared with RCSs after 1 dose. CONCLUSIONS Mucosal immune response to the SARS-CoV-2 Spike protein is higher in RCSs after a single vaccine dose compared with SARS-CoV-2-naive subjects after 2 doses.
Collapse
Affiliation(s)
- Emanuela MARTINUZZI
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Jonathan BENZAQUEN
- Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, Department of Pulmonary Medicine and Thoracic Oncology, FHU OncoAge, Nice, France,Université Côte d'Azur, CNRS, INSERM, Institute of Research on Cancer and Aging, Nice, France
| | - Olivier GUERIN
- Université Côte d’Azur, Centre Hospitalier Universitaire de Nice, Pôle Réhabilitation Autonomie Vieillissement, Nice, France
| | - Sylvie LEROY
- Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, Department of Pulmonary Medicine and Thoracic Oncology, FHU OncoAge, Nice, France
| | - Thomas SIMON
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Marius ILIE
- Université Côte d'Azur, CNRS, INSERM, Institute of Research on Cancer and Aging, Nice, France,Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, Laboratory of Clinical and Experimental Pathology, Biobank (BB-0033-00025), FHU OncoAge, Centre Nice, France
| | - Véronique HOFMAN
- Université Côte d'Azur, CNRS, INSERM, Institute of Research on Cancer and Aging, Nice, France,Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, Laboratory of Clinical and Experimental Pathology, Biobank (BB-0033-00025), FHU OncoAge, Centre Nice, France
| | - Maryline ALLEGRA
- Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, Laboratory of Clinical and Experimental Pathology, Biobank (BB-0033-00025), FHU OncoAge, Centre Nice, France
| | - Virginie TANGA
- Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, Laboratory of Clinical and Experimental Pathology, Biobank (BB-0033-00025), FHU OncoAge, Centre Nice, France
| | - Emeline MICHEL
- Université Côte d’Azur, Centre Hospitalier Universitaire de Nice, Pôle Réhabilitation Autonomie Vieillissement, Nice, France
| | - Jacques BOUTROS
- Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, Department of Pulmonary Medicine and Thoracic Oncology, FHU OncoAge, Nice, France
| | - Charlotte MANIEL
- Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, Department of Pulmonary Medicine and Thoracic Oncology, FHU OncoAge, Nice, France
| | - Antoine SICARD
- University Côte d’Azur, Clinical Research Unit Côte d’Azur, Nice, France
| | - Nicolas GLAICHENHAUS
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France,University Côte d’Azur, Clinical Research Unit Côte d’Azur, Nice, France
| | - Cecil CZERKINSKY
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France,Alternate corresponding author in the event that the corresponding author is unavailable: Cecil Czerkinsky, Md, PhD, Nice, France ()
| | - Philippe BLANCOU
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Paul HOFMAN
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France,Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, Laboratory of Clinical and Experimental Pathology, Biobank (BB-0033-00025), FHU OncoAge, Centre Nice, France
| | - Charles H. MARQUETTE
- Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, Department of Pulmonary Medicine and Thoracic Oncology, FHU OncoAge, Nice, France,Université Côte d'Azur, CNRS, INSERM, Institute of Research on Cancer and Aging, Nice, France,Corresponding author: Charles H Marquette, Md, PhD, Nice, France ()
| |
Collapse
|