1
|
Zhang P, Watari K, Karin M. Innate immune cells link dietary cues to normal and abnormal metabolic regulation. Nat Immunol 2025; 26:29-41. [PMID: 39747429 DOI: 10.1038/s41590-024-02037-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 10/24/2024] [Indexed: 01/04/2025]
Abstract
A slew of common metabolic disorders, including type 2 diabetes, metabolic dysfunction-associated steatotic liver disease and steatohepatitis, are exponentially increasing in our sedentary and overfed society. While macronutrients directly impact metabolism and bioenergetics, new evidence implicates immune cells as critical sensors of nutritional cues and important regulators of metabolic homeostasis. A deeper interrogation of the intricate and multipartite interactions between dietary components, immune cells and metabolically active tissues is needed for a better understanding of metabolic regulation and development of new treatments for common metabolic diseases. Responding to macronutrients and micronutrients, immune cells play pivotal roles in interorgan communication between the microbiota, small intestine, metabolically active cells including hepatocytes and adipocytes, and the brain, which controls feeding behavior and energy expenditure. This Review focuses on the response of myeloid cells and innate lymphocytes to dietary cues, their cross-regulatory interactions and roles in normal and aberrant metabolic control.
Collapse
Affiliation(s)
- Peng Zhang
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Kosuke Watari
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
2
|
Chen Q, Xiang D, Liang Y, Meng H, Zhang X, Lu J. Interleukin-33: Expression, regulation and function in adipose tissues. Int Immunopharmacol 2024; 143:113285. [PMID: 39362016 DOI: 10.1016/j.intimp.2024.113285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024]
Abstract
Interleukin-33 (IL-33) is a pleiotropic cytokine of the IL-1 family that plays a key role in innate and adaptive immune responses and contributes to tissue homeostasis. Its role in adipose tissue function has been extensively studied, as adipose tissue serves as an important mediator of metabolic dysfunction. In adipose tissue, IL-33 is primarily produced by stromal cells. Its production is regulated by factors, such as androgens, aging, sympathetic innervation, and various inflammatory stimuli that affect the proliferation and differentiation of IL-33-producing stromal cells. Many studies have elucidated the mechanisms by which IL-33 interacts with the immune system components, local nerve fibers, and adipocytes to influence energy balance, with important consequences in obesity, cold-induced thermogenesis, and aging-related metabolic dysfunction. Here, we detail our current understanding of the molecular events that regulate the production of IL-33 within adipose tissue and discuss its role in regulating adipose function.
Collapse
Affiliation(s)
- Qianjiang Chen
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Daochun Xiang
- The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Liang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Haiyang Meng
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Xiaofen Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Jingli Lu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
3
|
Phuong-Nguyen K, Mahmood M, Rivera L. Deleterious Effects of Yoyo Dieting and Resistant Starch on Gastrointestinal Morphology. Nutrients 2024; 16:4216. [PMID: 39683609 DOI: 10.3390/nu16234216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Obesity is associated with structural deterioration in the gut. Yoyo dieting, which refers to repeated phases of dieting and non-dieting periods leading to cyclic weight loss and regain, is a common occurrence in individuals with obesity. However, there is limited evidence on how gut structures are affected in yoyo dieting. There is good evidence suggesting that increased intake of resistant starch (RS) may be beneficial in promoting structural improvements in the gut. This investigation aimed to explore the effect of yoyo dieting on gastrointestinal structure and whether RS has beneficial effects in improving obesity-related gastrointestinal damage. METHOD In this study, male and female C57BL/6 mice were assigned to six different diets for 20 weeks: (1) control diet, (2) high fat diet (HF), (3) yoyo diet (alternating HF and control diets every 5 weeks), (4) control diet with RS, (5) HF with RS, and (6) yoyo diet with RS. Distal colon was collected for epithelial barrier integrity measurement. The small and large intestines were collected for histological assessment. RESULTS After 20 weeks, yoyo dieting resulted in increased colonic inflammation and exacerbated mucosal damage in comparison with continuous HF diet feeding. RS supplemented in HF and yoyo diets reduced mucosal damage in comparison to diets without RS. However, RS supplementation in a control diet significantly increased inflammation, crypt length, and goblet cell density. There were no significant differences in epithelial change and epithelial barrier integrity across diet groups. CONCLUSIONS This study suggests that yoyo dieting worsens gut damage, and incorporating high levels of RS may be detrimental in the absence of dietary challenge.
Collapse
Affiliation(s)
- Kate Phuong-Nguyen
- School of Medicine, Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3220, Australia
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
| | - Malik Mahmood
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
| | - Leni Rivera
- School of Medicine, Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3220, Australia
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
| |
Collapse
|
4
|
Schleh MW, Ameka MK, Rodriguez AS, Hasty AH. Deficiency of the Hemoglobin-Haptoglobin Receptor, CD163, Worsens Insulin Sensitivity in Obese Male Mice. Diabetes 2024; 73:1990-2002. [PMID: 39325576 PMCID: PMC11579413 DOI: 10.2337/db24-0405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
Excessive iron accumulation in metabolic organs such as the adipose tissue, liver, and skeletal muscle is associated with increased diabetes risk. Tissue-resident macrophages serve multiple roles, including managing inflammatory tone and regulating parenchymal iron homeostasis, thus protecting against metabolic dysfunction upon iron overload. The scavenger receptor CD163 is uniquely present on tissue-resident macrophages and plays a significant role in iron homeostasis by clearing extracellular hemoglobin-haptoglobin complexes, thereby limiting oxidative damage caused by free hemoglobin in metabolic tissues. We show that the absence of CD163 exacerbates glucose intolerance and insulin resistance in male mice with obesity. Additionally, loss of CD163 reduced the expression of iron regulatory genes (Tfr1, Cisd1, Slc40a1) in adipose tissue macrophages and anti-inflammatory (M2-like) bone marrow-derived macrophages (BMDMs). Furthermore, CD163 deficiency mediated a proinflammatory shift and limited hemoglobin scavenging specifically in M2-like BMDMs. To this end, iron buffering was diminished in inguinal white adipose tissue (iWAT) macrophages in vivo, which culminated in iron spillover into adipocytes and CD45+ CD11B- nonmyeloid immune cells in iWAT. These findings show that CD163 on tissue-resident macrophages is critical for their anti-inflammatory and hemoglobin scavenging roles, and its absence results in impaired systemic insulin action in an obese setting. ARTICLE HIGHLIGHTS
Collapse
MESH Headings
- Animals
- Antigens, Differentiation, Myelomonocytic/metabolism
- Antigens, Differentiation, Myelomonocytic/genetics
- Male
- Antigens, CD/metabolism
- Antigens, CD/genetics
- Insulin Resistance/physiology
- Receptors, Cell Surface/metabolism
- Receptors, Cell Surface/genetics
- Mice
- Obesity/metabolism
- Macrophages/metabolism
- Haptoglobins/metabolism
- Haptoglobins/genetics
- Hemoglobins/metabolism
- Iron/metabolism
- Mice, Inbred C57BL
- Mice, Obese
- Receptors, Transferrin/metabolism
- Receptors, Transferrin/genetics
- Adipose Tissue, White/metabolism
- Mice, Knockout
- Glucose Intolerance/metabolism
- Glucose Intolerance/genetics
- Cation Transport Proteins/metabolism
- Cation Transport Proteins/genetics
Collapse
Affiliation(s)
- Michael W. Schleh
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Magdalene K. Ameka
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Alec S. Rodriguez
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Alyssa H. Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
- VA Tennessee Valley Healthcare System, Nashville, TN
| |
Collapse
|
5
|
Hinte LC, Castellano-Castillo D, Ghosh A, Melrose K, Gasser E, Noé F, Massier L, Dong H, Sun W, Hoffmann A, Wolfrum C, Rydén M, Mejhert N, Blüher M, von Meyenn F. Adipose tissue retains an epigenetic memory of obesity after weight loss. Nature 2024; 636:457-465. [PMID: 39558077 PMCID: PMC11634781 DOI: 10.1038/s41586-024-08165-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 10/07/2024] [Indexed: 11/20/2024]
Abstract
Reducing body weight to improve metabolic health and related comorbidities is a primary goal in treating obesity1,2. However, maintaining weight loss is a considerable challenge, especially as the body seems to retain an obesogenic memory that defends against body weight changes3,4. Overcoming this barrier for long-term treatment success is difficult because the molecular mechanisms underpinning this phenomenon remain largely unknown. Here, by using single-nucleus RNA sequencing, we show that both human and mouse adipose tissues retain cellular transcriptional changes after appreciable weight loss. Furthermore, we find persistent obesity-induced alterations in the epigenome of mouse adipocytes that negatively affect their function and response to metabolic stimuli. Mice carrying this obesogenic memory show accelerated rebound weight gain, and the epigenetic memory can explain future transcriptional deregulation in adipocytes in response to further high-fat diet feeding. In summary, our findings indicate the existence of an obesogenic memory, largely on the basis of stable epigenetic changes, in mouse adipocytes and probably other cell types. These changes seem to prime cells for pathological responses in an obesogenic environment, contributing to the problematic 'yo-yo' effect often seen with dieting. Targeting these changes in the future could improve long-term weight management and health outcomes.
Collapse
Affiliation(s)
- Laura C Hinte
- Laboratory of Nutrition and Metabolic Epigenetics, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Biomedicine Programme, Life Science Zurich Graduate School, Zurich, Switzerland
| | - Daniel Castellano-Castillo
- Laboratory of Nutrition and Metabolic Epigenetics, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Medical Oncology Department, Virgen de la Victoria University Hospital, Málaga Biomedical Research Institute (IBIMA)-CIMES-UMA, Málaga, Spain
| | - Adhideb Ghosh
- Laboratory of Nutrition and Metabolic Epigenetics, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Functional Genomics Center Zurich, ETH Zurich and University Zurich, Zurich, Switzerland
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Kate Melrose
- Laboratory of Nutrition and Metabolic Epigenetics, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Biomedicine Programme, Life Science Zurich Graduate School, Zurich, Switzerland
| | - Emanuel Gasser
- Laboratory of Nutrition and Metabolic Epigenetics, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Falko Noé
- Laboratory of Nutrition and Metabolic Epigenetics, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Functional Genomics Center Zurich, ETH Zurich and University Zurich, Zurich, Switzerland
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Lucas Massier
- Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Zentrum München, University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Hua Dong
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Stem Cell Bio Regenerative Med Institute, Stanford University, Stanford, CA, USA
| | - Wenfei Sun
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Anne Hoffmann
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Zentrum München, University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Christian Wolfrum
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Mikael Rydén
- Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Niklas Mejhert
- Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Zentrum München, University of Leipzig and University Hospital Leipzig, Leipzig, Germany
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Ferdinand von Meyenn
- Laboratory of Nutrition and Metabolic Epigenetics, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
6
|
Frasca D, Romero M, Blomberg BB. Similarities in B Cell Defects between Aging and Obesity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1407-1413. [PMID: 39495900 DOI: 10.4049/jimmunol.2300670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 09/16/2024] [Indexed: 11/06/2024]
Abstract
The aging population is increasing worldwide, and there is also an increase in the aging population living with overweight and obesity, due to changes in lifestyle and in dietary patterns that elderly individuals experience later in life. Both aging and obesity are conditions of accelerated metabolic dysfunction and dysregulated immune responses. In this review, we summarize published findings showing that obesity induces changes in humoral immunity similar to those induced by aging and that the age-associated B cell defects are mainly due to metabolic changes. We discuss the role of the obese adipose tissue in inducing dysfunctional humoral responses and autoimmune Ab secretion.
Collapse
Affiliation(s)
- Daniela Frasca
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL
| | - Maria Romero
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL
| | - Bonnie B Blomberg
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|
7
|
Taranto D, Kloosterman DJ, Akkari L. Macrophages and T cells in metabolic disorder-associated cancers. Nat Rev Cancer 2024; 24:744-767. [PMID: 39354070 DOI: 10.1038/s41568-024-00743-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/16/2024] [Indexed: 10/03/2024]
Abstract
Cancer and metabolic disorders have emerged as major global health challenges, reaching epidemic levels in recent decades. Often viewed as separate issues, metabolic disorders are shown by mounting evidence to heighten cancer risk and incidence. The intricacies underlying this connection are still being unraveled and encompass a complex interplay between metabolites, cancer cells and immune cells within the tumour microenvironment (TME). Here, we outline the interplay between metabolic and immune cell dysfunction in the context of three highly prevalent metabolic disorders, namely obesity; two associated liver diseases, metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH); and type 2 diabetes. We focus primarily on macrophages and T cells, the critical roles of which in dictating inflammatory response and immune surveillance in metabolic disorder-associated cancers are widely reported. Moreover, considering the ever-increasing number of patients prescribed with metabolism disorder-altering drugs and diets in recent years, we discuss how these therapies modulate systemic and local immune phenotypes, consequently impacting cancer malignancy. Collectively, unraveling the determinants of metabolic disorder-associated immune landscape and their role in fuelling cancer malignancy will provide a framework essential to therapeutically address these highly prevalent diseases.
Collapse
Affiliation(s)
- Daniel Taranto
- Division of Tumour Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Daan J Kloosterman
- Division of Tumour Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Leila Akkari
- Division of Tumour Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
8
|
Xu R, Vujić N, Bianco V, Reinisch I, Kratky D, Krstic J, Prokesch A. Lipid-associated macrophages between aggravation and alleviation of metabolic diseases. Trends Endocrinol Metab 2024; 35:981-995. [PMID: 38705759 DOI: 10.1016/j.tem.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 05/07/2024]
Abstract
Lipid-associated macrophages (LAMs) are phagocytic cells with lipid-handling capacity identified in various metabolic derangements. During disease development, they locate to atherosclerotic plaques, adipose tissue (AT) of individuals with obesity, liver lesions in steatosis and steatohepatitis, and the intestinal lamina propria. LAMs can also emerge in the metabolically demanding microenvironment of certain tumors. In this review, we discuss major questions regarding LAM recruitment, differentiation, and self-renewal, and, ultimately, their acute and chronic functional impact on the development of metabolic diseases. Further studies need to clarify whether and under which circumstances LAMs drive disease progression or resolution and how their phenotype can be modulated to ameliorate metabolic disorders.
Collapse
Affiliation(s)
- Ruonan Xu
- Gottfried Schatz Research Center for Cell Signaling, Metabolism, and Aging, Division of Cell Biology, Histology, and Embryology, Medical University of Graz, Graz, Austria
| | - Nemanja Vujić
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Valentina Bianco
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Isabel Reinisch
- Institute of Food Nutrition and Health, Department of Health Sciences and Technology, Eidgenössische Technische Hochschule Zürich (ETH), Schwerzenbach, Switzerland
| | - Dagmar Kratky
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Jelena Krstic
- Gottfried Schatz Research Center for Cell Signaling, Metabolism, and Aging, Division of Cell Biology, Histology, and Embryology, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Andreas Prokesch
- Gottfried Schatz Research Center for Cell Signaling, Metabolism, and Aging, Division of Cell Biology, Histology, and Embryology, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
9
|
Hill KB, Mullen GP, Nagareddy PR, Zimmerman KA, Rudolph MC. Key questions and gaps in understanding adipose tissue macrophages and early-life metabolic programming. Am J Physiol Endocrinol Metab 2024; 327:E478-E497. [PMID: 39171752 PMCID: PMC11482221 DOI: 10.1152/ajpendo.00140.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/08/2024] [Accepted: 08/20/2024] [Indexed: 08/23/2024]
Abstract
The global obesity epidemic, with its associated comorbidities and increased risk of early mortality, underscores the urgent need for enhancing our understanding of the origins of this complex disease. It is increasingly clear that metabolism is programmed early in life and that metabolic programming can have life-long health consequences. As a critical metabolic organ sensitive to early-life stimuli, proper development of adipose tissue (AT) is crucial for life-long energy homeostasis. Early-life nutrients, especially fatty acids (FAs), significantly influence the programming of AT and shape its function and metabolism. Of growing interest are the dynamic responses during pre- and postnatal development to proinflammatory omega-6 (n6) and anti-inflammatory omega-3 (n3) FA exposures in AT. In the US maternal diet, the ratio of "pro-inflammatory" n6- to "anti-inflammatory" n3-FAs has grown dramatically due to the greater prevalence of n6-FAs. Notably, AT macrophages (ATMs) form a significant population within adipose stromal cells, playing not only an instrumental role in AT formation and maintenance but also acting as key mediators of cell-to-cell lipid and cytokine signaling. Despite rapid advances in ATM and immunometabolism fields, research has focused on responses to obesogenic diets and during adulthood. Consequently, there is a significant gap in identifying the mechanisms contributing metabolic health, especially regarding lipid exposures during the establishment of ATM physiology. Our review highlights the current understanding of ATM diversity, their critical role in AT, their potential role in early-life metabolic programming, and the broader implications for metabolism and health.
Collapse
Affiliation(s)
- Kaitlyn B Hill
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Gregory P Mullen
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Prabhakara R Nagareddy
- Department of Internal Medicine, Cardiovascular Section, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Kurt A Zimmerman
- Department of Internal Medicine, Division of Nephrology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Michael C Rudolph
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| |
Collapse
|
10
|
Capoccia D, Leonetti F, Natali A, Tricò D, Perrini S, Sbraccia P, Guglielmi V. Remission of type 2 diabetes: position statement of the Italian society of diabetes (SID). Acta Diabetol 2024; 61:1309-1326. [PMID: 38942960 PMCID: PMC11486812 DOI: 10.1007/s00592-024-02317-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 05/31/2024] [Indexed: 06/30/2024]
Abstract
The primary cause of the pandemic scale of type 2 diabetes (T2D) is the excessive and/or abnormal accumulation of adiposity resulting from a chronic positive energy balance. Any form of weight loss dramatically affects the natural history of T2D, favoring prevention, treatment, and even remission in the case of significant weight loss. However, weight regain, which is often accompanied by the recurrence or worsening of obesity complications such as T2D, is an inevitable biological phenomenon that is an integral part of the pathophysiology of obesity. This can occur not only after weight loss, but also during obesity treatment if it is not effective enough to counteract the physiological responses aimed at restoring adiposity to its pre-weight-loss equilibrium state. Over the past few years, many controlled and randomized studies have suggested a superior efficacy of bariatric surgery compared to conventional therapy in terms of weight loss, glycemic control, and rates of T2D remission. Recently, the therapeutic armamentarium in the field of diabetology has been enriched with new antihyperglycemic drugs with considerable efficacy in reducing body weight, which could play a pathogenetic role in the remission of T2D, not through the classical incretin effect, but by improving adipose tissue functions. All these concepts are discussed in this position statement, which aims to deepen the pathogenetic links between obesity and T2D, shift the paradigm from a "simple" interaction between insulin resistance and insulin deficiency, and evaluate the efficacy of different therapeutic interventions to improve T2D management and induce diabetes remission whenever still possible.
Collapse
Affiliation(s)
- Danila Capoccia
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Frida Leonetti
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy.
| | - Andrea Natali
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Domenico Tricò
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Sebastio Perrini
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy
| | - Paolo Sbraccia
- Department of Systems Medicine, Unit of Internal Medicine - Obesity Center, Policlinico Tor Vergata, University of Rome Tor Vergata, Rome, Italy
| | - Valeria Guglielmi
- Department of Systems Medicine, Unit of Internal Medicine - Obesity Center, Policlinico Tor Vergata, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
11
|
Ruscica M, Macchi C, Mauro C. Unraveling the Link Between Immunity and Obesity in Adolescents. J Nutr 2024; 154:2895-2897. [PMID: 39233142 DOI: 10.1016/j.tjnut.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024] Open
Affiliation(s)
- Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan; Department of Cardio-Thoracic-Vascular Diseases, Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Chiara Macchi
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan
| | - Claudio Mauro
- School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, United Kingdom.
| |
Collapse
|
12
|
Soedono S, Julietta V, Nawaz H, Cho KW. Dynamic Roles and Expanding Diversity of Adipose Tissue Macrophages in Obesity. J Obes Metab Syndr 2024; 33:193-212. [PMID: 39324219 PMCID: PMC11443328 DOI: 10.7570/jomes24030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 09/27/2024] Open
Abstract
Adipose tissue macrophages (ATMs) are key regulators of adipose tissue (AT) inflammation and insulin resistance in obesity, and the traditional M1/M2 characterization of ATMs is inadequate for capturing their diversity in obese conditions. Single-cell transcriptomic profiling has revealed heterogeneity among ATMs that goes beyond the old paradigm and identified new subsets with unique functions. Furthermore, explorations of their developmental origins suggest that multiple differentiation pathways contribute to ATM variety. These advances raise concerns about how to define ATM functions, how they are regulated, and how they orchestrate changes in AT. This review provides an overview of the current understanding of ATMs and their updated categorization in both mice and humans during obesity. Additionally, diverse ATM functions and contributions in the context of obesity are discussed. Finally, potential strategies for targeting ATM functions as therapeutic interventions for obesity-induced metabolic diseases are addressed.
Collapse
Affiliation(s)
- Shindy Soedono
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Korea
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Korea
| | - Vivi Julietta
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Korea
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Korea
| | - Hadia Nawaz
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Korea
| | - Kae Won Cho
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Korea
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Korea
| |
Collapse
|
13
|
Pierro EW, Cottam MA, An H, Lehmann BD, Pietenpol JA, Wellen KE, Makowski L, Rathmell JC, Fingleton B, Hasty AH. Trem2 deficiency attenuates breast cancer tumor growth in lean, but not obese or weight loss, mice and is associated with alterations of clonal T cell populations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.614811. [PMID: 39386686 PMCID: PMC11463595 DOI: 10.1101/2024.09.25.614811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Obesity is an established risk factor for breast cancer development and worsened prognosis; however, the mechanisms for this association - and the potential benefits of weight loss - have not been fully explored. The adipose environment surrounding breast tumors, which is inflamed in obesity, has been implicated in tumor progression. An emerging therapeutic target for cancer is TREM2, a transmembrane receptor of the immunoglobulin superfamily that is expressed on macrophages in adipose tissue and tumors. We utilized genetic loss of function (Trem2 +,+ and Trem2 -/-) models and dietary (lean, obese, and weight loss) intervention approaches to examine impacts on postmenopausal breast cancer. Remarkably, Trem2 deficiency ameliorated tumor growth in lean, but not obese or weight loss mice. Single-cell RNA sequencing, in conjunction with VDJ sequencing of tumor and tumor-adjacent mammary adipose tissue (mATTum-adj) immune cells, revealed that tumors of lean Trem2 -/- mice exhibited a shift in clonal CD8+ T cells from an exhausted to an effector memory state, accompanied with increased clonality of CD4+ Th1 cells, that was not observed in any other diet-genotype group. Notably, identical T cell clonotypes were identified in the tumor and mATTum-adj of the same mouse. Finally, an immune checkpoint study demonstrated that αPD-1 therapy restricted tumor growth in lean and weight loss, but not obese mice. We conclude that weight history is relevant when considering potential efficacy of TREM2 inhibition in postmenopausal breast cancer. This work reveals immunological interactions between tumors and surrounding adipose tissue, highlighting significant differences under obese and weight loss conditions.
Collapse
Affiliation(s)
- Elysa W. Pierro
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Matthew A. Cottam
- Department of Surgery, Division of Surgical Oncology and Endocrine Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - Hanbing An
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN
| | - Brian D. Lehmann
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN
| | - Jennifer A. Pietenpol
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN
- Department of Biochemistry, Vanderbilt University, Nashville, TN
| | - Kathryn E. Wellen
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Liza Makowski
- Department of Medicine, Division of Hematology-Oncology, University of Tennessee Health Science Center, Memphis, TN, 31863, USA
| | - Jeffrey C. Rathmell
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN
| | - Barbara Fingleton
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN
- Department of Pharmacology, Vanderbilt University, Nashville, TN
| | - Alyssa H. Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN
- Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN
- Department of Internal Medicine, Touchstone Diabetes Center, UT Southwestern, Dallas, TX
| |
Collapse
|
14
|
Xu Y, Hillman H, Chang M, Ivanov S, Williams JW. Identification of conserved and tissue-restricted transcriptional profiles for lipid associated macrophages (LAMs). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614807. [PMID: 39386558 PMCID: PMC11463620 DOI: 10.1101/2024.09.24.614807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Macrophages are essential immune cells present in all tissues, and are vital for maintaining tissue homeostasis, immune surveillance, and immune responses. Considerable efforts have identified shared and tissue-specific gene programs for macrophages across organs during homeostasis. This information has dramatically enhanced our understanding of tissue-restricted macrophage programming and function. However, few studies have addressed the overlapping and tissue-specific responses of macrophage subsets following inflammatory responses. One subset of macrophages that has been observed across several studies, lipid-associated macrophages (LAMs), have gained interest due to their unique role in lipid metabolism and potential as a therapeutic target. LAMs have been associated with regulating disease outcomes in metabolically related disorders including atherosclerosis, obesity, and nonalcoholic fatty liver disease (NAFLD). In this study, we utilized single-cell RNA sequencing (scRNAseq) data to profile LAMs across multiple tissues and sterile inflammatory conditions in mice and humans. Integration of data from various disease models revealed that LAMs share a set of conserved transcriptional profiles, including Trem2 and Lpl, but also identified key sets of tissue-specific LAM gene programs. Importantly, the shared LAM markers were highly conserved with human LAM populations that also emerge in chronic inflammatory settings. Overall, this analysis provides a detailed transcriptional landscape of tissue-restricted and shared LAM gene programs and offers insights into their roles in metabolic and chronic inflammatory diseases. These data may help instruct appropriate targets for broad or tissue-restricted therapeutic interventions to modulate LAM populations in disease.
Collapse
Affiliation(s)
- Yingzheng Xu
- Center for Immunology, University of Minnesota, Minneapolis, MN USA
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN USA
| | - Hannah Hillman
- Center for Immunology, University of Minnesota, Minneapolis, MN USA
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN USA
| | - Michael Chang
- Center for Immunology, University of Minnesota, Minneapolis, MN USA
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN USA
| | | | - Jesse W. Williams
- Center for Immunology, University of Minnesota, Minneapolis, MN USA
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN USA
| |
Collapse
|
15
|
Huang J, Li Y, Chen M, Cai Z, Cai Z, Jiang Z. Comparing caloric restriction regimens for effective weight management in adults: a systematic review and network meta-analysis. Int J Behav Nutr Phys Act 2024; 21:108. [PMID: 39327619 PMCID: PMC11425986 DOI: 10.1186/s12966-024-01657-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Randomized controlled trials have confirmed the effectiveness of four prevalent caloric restriction regimens in reducing obesity-related health risks. However, there is no consensus on the optimal regimen for weight management in adults. METHODS We systematically searched PubMed, Embase, Web of Science, and Cochrane CENTRAL up to January 15, 2024, for randomized controlled trials (RCT) involving adults, evaluating the weight-loss effects of alternate day fasting (ADF), short-term fasting (STF), time-restricted eating (TRE), and continuous energy restriction (CER). The primary outcome was body weight, with secondary outcomes including BMI, fat mass, lean mass, waist circumference, fasting glucose, HOMA-IR, and adverse events. Bayesian network meta-analysis was conducted, ranking regimens using the surface under the cumulative ranking curve and the probability of being the best. Study quality was assessed using the Confidence in Network Meta-Analysis tool. RESULTS Data from 47 RCTs (representing 3363 participants) were included. ADF showed the most significant body weight loss (Mean difference (MD): -3.42; 95% Confidence interval (CI): -4.28 to -2.55), followed by TRE (MD: -2.25; 95% CI: -2.92 to -1.59). STF (MD: -1.87; 95% CI: -3.32 to -0.56) and CER (MD: -1.59; 95% CI: -2.42 to -0.79) rank third and fourth, respectively. STF lead to decline in lean mass (MD: -1.26; 95% CI: -2.16, -0.47). TRE showed benefits on fasting glucose (MD: -2.98; 95% CI: -4.7, -1.26). Subgroup analysis revealed all four caloric restriction regimens likely lead to modest weight loss after 1-3 months, with ADF ranked highest, but by 4-6 months, varying degrees of weight regain occur, particularly with CER, while interventions lasting 7-12 months may result in effective weight loss, with TRE potentially ranking first during both the 4-6 months and 7-12 months periods. ADF showing fewer and shorter-lasting physical symptoms. CONCLUSION All four included regiments were effective in reducing body weight, with ADF likely having the most significant impact. Each regimen likely leads to modest weight loss after 1-3 months, followed by weight regain by 4-6 months. However, interventions lasting 7-12 months achieve greater weight loss overall. TRIAL REGISTRATION PROSPERO: CRD42022382478.
Collapse
Affiliation(s)
- Jinming Huang
- Department of Rehabilitation Medicine, Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Li
- Department of Rehabilitation Medicine, Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Maohua Chen
- Department of Plastic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Zhaolun Cai
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhen Cai
- Department of Plastic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| | - Zhiyuan Jiang
- Department of Plastic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| |
Collapse
|
16
|
Rosen ED, Kajimura S. Is it time to rethink the relationship between adipose inflammation and insulin resistance? J Clin Invest 2024; 134:e184663. [PMID: 39225103 PMCID: PMC11364379 DOI: 10.1172/jci184663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Affiliation(s)
- Evan D. Rosen
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Shingo Kajimura
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| |
Collapse
|
17
|
Ganguly S, Rosenthal SB, Ishizuka K, Troutman TD, Rohm TV, Khader N, Aleman-Muench G, Sano Y, Archilei S, Soroosh P, Olefsky JM, Feldstein AE, Kisseleva T, Loomba R, Glass CK, Brenner DA, Dhar D. Lipid-associated macrophages' promotion of fibrosis resolution during MASH regression requires TREM2. Proc Natl Acad Sci U S A 2024; 121:e2405746121. [PMID: 39172787 PMCID: PMC11363294 DOI: 10.1073/pnas.2405746121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/12/2024] [Indexed: 08/24/2024] Open
Abstract
While macrophage heterogeneity during metabolic dysfunction-associated steatohepatitis (MASH) has been described, the fate of these macrophages during MASH regression is poorly understood. Comparing macrophage heterogeneity during MASH progression vs regression, we identified specific macrophage subpopulations that are critical for MASH/fibrosis resolution. We elucidated the restorative pathways and gene signatures that define regression-associated macrophages and establish the importance of TREM2+ macrophages during MASH regression. Liver-resident Kupffer cells are lost during MASH and are replaced by four distinct monocyte-derived macrophage subpopulations. Trem2 is expressed in two macrophage subpopulations: i) monocyte-derived macrophages occupying the Kupffer cell niche (MoKC) and ii) lipid-associated macrophages (LAM). In regression livers, no new transcriptionally distinct macrophage subpopulation emerged. However, the relative macrophage composition changed during regression compared to MASH. While MoKC was the major macrophage subpopulation during MASH, they decreased during regression. LAM was the dominant macrophage subtype during MASH regression and maintained Trem2 expression. Both MoKC and LAM were enriched in disease-resolving pathways. Absence of TREM2 restricted the emergence of LAMs and formation of hepatic crown-like structures. TREM2+ macrophages are functionally important not only for restricting MASH-fibrosis progression but also for effective regression of inflammation and fibrosis. TREM2+ macrophages are superior collagen degraders. Lack of TREM2+ macrophages also prevented elimination of hepatic steatosis and inactivation of HSC during regression, indicating their significance in metabolic coordination with other cell types in the liver. TREM2 imparts this protective effect through multifactorial mechanisms, including improved phagocytosis, lipid handling, and collagen degradation.
Collapse
Affiliation(s)
- Souradipta Ganguly
- Department of Medicine,School of Medicine,University of California, San Diego, CA92093
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA92037
| | - Sara Brin Rosenthal
- Center for Computational Biology and Bioinformatics, Department of Medicine, University of California, San Diego, CA92093
| | - Kei Ishizuka
- Department of Medicine,School of Medicine,University of California, San Diego, CA92093
| | - Ty D. Troutman
- Department of Cellular and Molecular Medicine, University of California, San Diego, CA92093
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH45229
| | - Theresa V. Rohm
- Department of Medicine,School of Medicine,University of California, San Diego, CA92093
| | - Naser Khader
- Department of Medicine,School of Medicine,University of California, San Diego, CA92093
| | - German Aleman-Muench
- Cardiovascular and Metabolism discovery, Immunometabolism, Janssen Research & Development,La Jolla, CA92121
| | - Yasuyo Sano
- Cardiovascular and Metabolism discovery, Immunometabolism, Janssen Research & Development,La Jolla, CA92121
| | - Sebastiano Archilei
- Department of Medicine,School of Medicine,University of California, San Diego, CA92093
| | - Pejman Soroosh
- Cardiovascular and Metabolism discovery, Immunometabolism, Janssen Research & Development,La Jolla, CA92121
| | - Jerrold M. Olefsky
- Department of Medicine,School of Medicine,University of California, San Diego, CA92093
| | - Ariel E. Feldstein
- Department of Pediatrics, School of Medicine, University of California, San Diego, CA92093
| | - Tatiana Kisseleva
- Department of Surgery, School of Medicine, University of California, San Diego, CA92093
| | - Rohit Loomba
- Department of Medicine,School of Medicine,University of California, San Diego, CA92093
| | - Christopher K. Glass
- Department of Cellular and Molecular Medicine, University of California, San Diego, CA92093
| | - David A. Brenner
- Department of Medicine,School of Medicine,University of California, San Diego, CA92093
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA92037
| | - Debanjan Dhar
- Department of Medicine,School of Medicine,University of California, San Diego, CA92093
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA92037
| |
Collapse
|
18
|
Bakinowska E, Krompiewski M, Boboryko D, Kiełbowski K, Pawlik A. The Role of Inflammatory Mediators in the Pathogenesis of Obesity. Nutrients 2024; 16:2822. [PMID: 39275140 PMCID: PMC11396809 DOI: 10.3390/nu16172822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
Obesity is a pandemic of the 21st century, and the prevalence of this metabolic condition has enormously increased over the past few decades. Obesity is associated with a number of comorbidities and complications, such as diabetes and cardiovascular disorders, which can be associated with severe and fatal outcomes. Adipose tissue is an endocrine organ that secretes numerous molecules and proteins that are capable of modifying immune responses. The progression of obesity is associated with adipose tissue dysfunction, which is characterised by enhanced inflammation and apoptosis. Increased fat-tissue mass is associated with the dysregulated secretion of substances by adipocytes, which leads to metabolic alterations. Importantly, the adipose tissue contains immune cells, the profile of which changes with the progression of obesity. For instance, increasing fat mass enhances the presence of the pro-inflammatory variants of macrophages, major sources of tumour necrosis factor α and other inflammatory mediators that promote insulin resistance. The pathogenesis of obesity is complex, and understanding the pathophysiological mechanisms that are involved may provide novel treatment methods that could prevent the development of serious complications. The aim of this review is to discuss current evidence describing the involvement of various inflammatory mediators in the pathogenesis of obesity.
Collapse
Affiliation(s)
- Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Mariusz Krompiewski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Dominika Boboryko
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| |
Collapse
|
19
|
L'homme L, Sermikli BP, Haas JT, Fleury S, Quemener S, Guinot V, Barreby E, Esser N, Caiazzo R, Verkindt H, Legendre B, Raverdy V, Cheval L, Paquot N, Piette J, Legrand-Poels S, Aouadi M, Pattou F, Staels B, Dombrowicz D. Adipose tissue macrophage infiltration and hepatocyte stress increase GDF-15 throughout development of obesity to MASH. Nat Commun 2024; 15:7173. [PMID: 39169003 PMCID: PMC11339436 DOI: 10.1038/s41467-024-51078-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
Plasma growth differentiation factor-15 (GDF-15) levels increase with obesity and metabolic dysfunction-associated steatotic liver disease (MASLD) but the underlying mechanism remains poorly defined. Using male mouse models of obesity and MASLD, and biopsies from carefully-characterized patients regarding obesity, type 2 diabetes (T2D) and MASLD status, we identify adipose tissue (AT) as the key source of GDF-15 at onset of obesity and T2D, followed by liver during the progression towards metabolic dysfunction-associated steatohepatitis (MASH). Obesity and T2D increase GDF15 expression in AT through the accumulation of macrophages, which are the main immune cells expressing GDF15. Inactivation of Gdf15 in macrophages reduces plasma GDF-15 concentrations and exacerbates obesity in mice. During MASH development, Gdf15 expression additionally increases in hepatocytes through stress-induced TFEB and DDIT3 signaling. Together, these results demonstrate a dual contribution of AT and liver to GDF-15 production in metabolic diseases and identify potential therapeutic targets to raise endogenous GDF-15 levels.
Collapse
Affiliation(s)
- Laurent L'homme
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France.
| | - Benan Pelin Sermikli
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Joel T Haas
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Sébastien Fleury
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Sandrine Quemener
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Valentine Guinot
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Emelie Barreby
- Center for Infectious Medicine (CIM), Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Nathalie Esser
- Laboratory of Immunometabolism and Nutrition, GIGA-I3, University of Liège, Liège, Belgium
- Division of Diabetes, Nutrition and Metabolic Disorders, Department of Medicine, CHU Liège, Liège, Belgium
| | - Robert Caiazzo
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1190-EGID (Translational research in Diabetes), Lille, France
| | - Hélène Verkindt
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1190-EGID (Translational research in Diabetes), Lille, France
| | - Benjamin Legendre
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1190-EGID (Translational research in Diabetes), Lille, France
| | - Violeta Raverdy
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1190-EGID (Translational research in Diabetes), Lille, France
| | - Lydie Cheval
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
- CNRS EMR 8228-Unité Métabolisme et Physiologie Rénale, Paris, France
| | - Nicolas Paquot
- Laboratory of Immunometabolism and Nutrition, GIGA-I3, University of Liège, Liège, Belgium
- Division of Diabetes, Nutrition and Metabolic Disorders, Department of Medicine, CHU Liège, Liège, Belgium
| | - Jacques Piette
- Laboratory of Virology and Immunology, GIGA-Signal Transduction, University of Liège, Liège, Belgium
| | - Sylvie Legrand-Poels
- Laboratory of Immunometabolism and Nutrition, GIGA-I3, University of Liège, Liège, Belgium
| | - Myriam Aouadi
- Center for Infectious Medicine (CIM), Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - François Pattou
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1190-EGID (Translational research in Diabetes), Lille, France
| | - Bart Staels
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - David Dombrowicz
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France.
| |
Collapse
|
20
|
Heyward FD, Rosen ED. Evidence of persistent hyperphagia following a dietary weight-loss intervention in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.16.608348. [PMID: 39569138 PMCID: PMC11577249 DOI: 10.1101/2024.08.16.608348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Objective This study sought to determine whether the drive to regain weight following weight loss was truly long-lived in mice. Methods We generated a model of reduced dietary obesity (ReDO) whereby male mice with diet-induced obesity (DIO) mice were calorically restricted until weight matched to control mice, and then after a 24-hour food assessment period were pair-fed relative to control mice. We subsequently generated ReDO mice that, after CR were pair-fed relative to control mice for 0, 8, or 28 days, or chronically. Body weight, food intake, and select metabolic parameters were measured, along with whole hypothalamic Pomc gene expression. Results ReDO mice in both experiments exhibited hyperphagia following CR, while a persistent form of hyperphagia was detected in ReDO_8d and ReDO_28d mice relative to control and chronically pair-fed mice. 4-week initial weight gain was predictive of the degree of weight regain across ReDO_8 and ReDO_28 mice. Conclusions ReDO mice exhibit a long-lived form of hyperphagia and an apparent drive to reclaim an upwardly shifted body weight set point. There was considerable variability with regard to ReDO_8 and ReDO_28 body weight regain which was correlated with the of initial degree of 4-week body-weight gain when first exposed to a high-fat diet. This study showcases the perdurance of weight loss-associated hyperphagia and introduces a prognostic tool for identifying mice that are prone towards weight regain, while setting the stage for future inquiries into the neurobiological basis of persistent hunger following weight loss owed to a dietary intervention in mice.
Collapse
Affiliation(s)
- Frankie D. Heyward
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center
- Harvard Medical School
- Broad Institute of Harvard and MIT
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA
| | - Evan D. Rosen
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center
- Harvard Medical School
- Broad Institute of Harvard and MIT
| |
Collapse
|
21
|
Farooqi IS, Xu Y. Translational potential of mouse models of human metabolic disease. Cell 2024; 187:4129-4143. [PMID: 39067442 DOI: 10.1016/j.cell.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 07/30/2024]
Abstract
Obesity causes significant morbidity and mortality globally. Research in the last three decades has delivered a step-change in our understanding of the fundamental mechanisms that regulate energy homeostasis, building on foundational discoveries in mouse models of metabolic disease. However, not all findings made in rodents have translated to humans, hampering drug discovery in this field. Here, we review how studies in mice and humans have informed our current framework for understanding energy homeostasis, discuss their challenges and limitations, and offer a perspective on how human studies may play an increasingly important role in the discovery of disease mechanisms and identification of therapeutic targets in the future.
Collapse
Affiliation(s)
- I Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Cambridge, UK.
| | - Yong Xu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Department of Molecular and Cellular Biology and Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
22
|
Bolden M, Davis XD, Sherwood ER, Bohannon JK, Caslin HL. Weight loss-induced adipose macrophage memory improves local Staphylococcus aureus clearance in male mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.03.606494. [PMID: 39211192 PMCID: PMC11361095 DOI: 10.1101/2024.08.03.606494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Different stimuli can induce innate immune memory to improve pathogen defense or worsen cardiometabolic disease. However, it is less clear if the same stimuli can induce both the protective and detrimental effects of innate immune memory. We previously showed that weight loss induces innate immune memory in adipose macrophages that correlates with worsened diabetes risk after weight regain. In this study, we investigated the effect of weight loss on macrophage cytokine production and overall survival in a mouse model of infection. Male C57Bl/6J mice were put on high-fat or low-fat diets over 18 weeks to induce weight gain or weight loss. Lean mice served as controls. All mice were then infected IV with 2.5×10^6 CFU Staphylococcus aureus . Tissues were collected from 10 mice/group at day 3 and the remaining animals were followed for survival. Weight gain mice had the highest blood neutrophils and the highest bacterial burden in the kidney. However, there was no significant difference in survival. The weight loss group had the highest plasma TNF-α and a significant reduction in bacterial burden in the adipose tissue that correlated with increased adipose macrophage cytokine production. Thus, weight loss-induced adipose macrophage memory may both improve local S.aureus clearance and worsen diabetes risk upon weight regain. Collectively, these findings support the notion that innate immune memory is an evolutionarily protective mechanism that also contributes to the development of cardiometabolic diseases.
Collapse
|
23
|
Thillainadesan S, Lambert A, Cooke KC, Stöckli J, Yau B, Masson SWC, Howell A, Potter M, Fuller OK, Jiang YL, Kebede MA, Morahan G, James DE, Madsen S, Hocking SL. The metabolic consequences of 'yo-yo' dieting are markedly influenced by genetic diversity. Int J Obes (Lond) 2024; 48:1170-1179. [PMID: 38961153 PMCID: PMC11281900 DOI: 10.1038/s41366-024-01542-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 04/09/2024] [Accepted: 05/10/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Weight loss can improve the metabolic complications of obesity. However, it is unclear whether insulin resistance persists despite weight loss and whether any protective benefits are preserved following weight regain (weight cycling). The impact of genetic background on weight cycling is undocumented. We aimed to investigate the effects of weight loss and weight cycling on metabolic outcomes and sought to clarify the role of genetics in this relationship. METHOD Both C57BL/6 J and genetically heterogeneous Diversity Outbred Australia (DOz) mice were alternately fed high fat Western-style diet (WD) and a chow diet at 8-week intervals. Metabolic measures including body composition, glucose tolerance, pancreatic beta cell activity, liver lipid levels and adipose tissue insulin sensitivity were determined. RESULTS After diet switch from WD (8-week) to chow (8-week), C57BL/6 J mice displayed a rapid normalisation of body weight, adiposity, hyperinsulinemia, liver lipid levels and glucose uptake into adipose tissue comparable to chow-fed controls. In response to the same dietary intervention, genetically diverse DOz mice conversely maintained significantly higher fat mass and insulin levels compared to chow-fed controls and exhibited much more profound interindividual variability than C57BL/6 J mice. Weight cycled (WC) animals were re-exposed to WD (8-week) and compared to age-matched controls fed 8-week WD for the first time (LOb). In C57BL/6 J but not DOz mice, WC animals had significantly higher blood insulin levels than LOb controls. All WC animals exhibited significantly greater beta cell activity than LOb controls despite similar fat mass, glucose tolerance, liver lipid levels and insulin-stimulated glucose uptake in adipose tissue. CONCLUSION Following weight loss, metabolic outcomes return to baseline in C57BL/6 J mice with obesity. However, genetic diversity significantly impacts this response. A period of weight loss does not provide lasting benefits after weight regain, and weight cycling is detrimental and associated with hyperinsulinemia and elevated basal insulin secretion.
Collapse
Affiliation(s)
- Senthil Thillainadesan
- Charles Perkins Centre, University of Sydney, Camperdown, NSW, 2006, Australia
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia
- Department of Endocrinology, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia
| | - Aaron Lambert
- Charles Perkins Centre, University of Sydney, Camperdown, NSW, 2006, Australia
- School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Kristen C Cooke
- Charles Perkins Centre, University of Sydney, Camperdown, NSW, 2006, Australia
- School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Jacqueline Stöckli
- Charles Perkins Centre, University of Sydney, Camperdown, NSW, 2006, Australia
- School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Belinda Yau
- Charles Perkins Centre, University of Sydney, Camperdown, NSW, 2006, Australia
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Stewart W C Masson
- Charles Perkins Centre, University of Sydney, Camperdown, NSW, 2006, Australia
- School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Anna Howell
- Charles Perkins Centre, University of Sydney, Camperdown, NSW, 2006, Australia
- School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Meg Potter
- Charles Perkins Centre, University of Sydney, Camperdown, NSW, 2006, Australia
- School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Oliver K Fuller
- Charles Perkins Centre, University of Sydney, Camperdown, NSW, 2006, Australia
- School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Yi Lin Jiang
- Charles Perkins Centre, University of Sydney, Camperdown, NSW, 2006, Australia
- School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Melkam A Kebede
- Charles Perkins Centre, University of Sydney, Camperdown, NSW, 2006, Australia
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Grant Morahan
- Australian Centre for Advancing Diabetes Innovations, Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
| | - David E James
- Charles Perkins Centre, University of Sydney, Camperdown, NSW, 2006, Australia.
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia.
- School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, 2006, Australia.
| | - Søren Madsen
- Charles Perkins Centre, University of Sydney, Camperdown, NSW, 2006, Australia.
- School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, 2006, Australia.
| | - Samantha L Hocking
- Charles Perkins Centre, University of Sydney, Camperdown, NSW, 2006, Australia.
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia.
- Department of Endocrinology, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia.
| |
Collapse
|
24
|
Liu SY, Wang Q, Zhou H, Tong N, Chang R, Wang FZ, Guo P, Li X, Zhou YB, Li ZZ. Adrenomedullin improved endothelial dysfunction via receptor-Akt pathway in rats with obesity-related hypertension. Hypertens Res 2024; 47:2157-2171. [PMID: 38769138 DOI: 10.1038/s41440-024-01701-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/28/2024] [Accepted: 04/07/2024] [Indexed: 05/22/2024]
Abstract
Obesity-related hypertension (OH) is accompanied by obvious endothelial dysfunction, which contributes to increased peripheral vascular resistance and hypertension. Adrenomedullin (ADM), a multifunctional active peptide, is elevated in obese humans. The OH rats induced by high fat diet (HFD) for 28 weeks and the human umbilical vein endothelial cells (HUVECs)-treated by palmitic acid (PA) were used to investigate the effects of ADM on endothelial dysfunction and the underlying mechanisms. Vascular reactivity was assessed using mesenteric arteriole rings, and the protein expression levels were examined by Western blot analysis. Compared with the control rats, OH rats exhibited hypertension and endothelial dysfunction, along with reduced eNOS protein expression and Akt activation, and increased protein expression of proinflammatory cytokines and ROS levels. Four-week ADM administration improved hypertension and endothelial function, increased eNOS protein expression and Akt activation, and attenuated endothelial inflammation and oxidative stress in OH rats. In vitro experiment, the antagonism of ADM receptors with ADM22-52 and the suppression of Akt signaling with A6730 significantly blocked ADM-caused increase of NO content and activation of eNOS and Akt, and inhibited the anti-inflammatory and anti-oxidant effect of ADM in PA-stimulated HUVECs. These data indicate that endothelial dysfunction in OH rats is partially attributable to the decreased NO level, and the increased inflammation and oxidative stress. ADM improves endothelial function and exerts hypotensive effect depending on the increase of NO, and its anti-inflammatory and anti-oxidant effect via receptor-Akt pathway.
Collapse
Affiliation(s)
- Si-Yu Liu
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Qian Wang
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Hong Zhou
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Ning Tong
- Department of Neurology of Heze Municipal Hospital, Heze, 274000, China
| | - Rui Chang
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Fang-Zheng Wang
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Ping Guo
- Department of Cardiology, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University Nanjing, Nanjing, 210021, Jiangsu, China
| | - Xin Li
- Department of Cardiology, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University Nanjing, Nanjing, 210021, Jiangsu, China
| | - Ye-Bo Zhou
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| | - Zhen-Zhen Li
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
- Department of Cardiology, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University Nanjing, Nanjing, 210021, Jiangsu, China.
| |
Collapse
|
25
|
Liu T, Liu Y, Yan T, Zhang B, Zhou L, Zhu W, Wang G, Kang J, Peng W, Shi L. Intermittent fasting, exercise, and dietary modification induce unique transcriptomic signatures of multiple tissues governing metabolic homeostasis during weight loss and rebound weight gain. J Nutr Biochem 2024; 130:109649. [PMID: 38642842 DOI: 10.1016/j.jnutbio.2024.109649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/03/2024] [Accepted: 04/16/2024] [Indexed: 04/22/2024]
Abstract
Obesity and its related metabolic diseases bring great challenges to public health. In-depth understanding on the efficacy of weight-loss interventions is critical for long-term weight control. Our study demonstrated the comparable efficacy of exercise (EX), intermittent fasting (IF), or the change of daily diet from an unhealthy to a normal chow (DR) for weight reduction, but largely divergently affected metabolic status and transcriptome of subcutaneous fat, scapular brown fat, skeletal muscles and liver in high-fat-high-fructose diet (HFHF) induced obese mice. EX and IF reduced systematic inflammation, improved glucose and lipid metabolism in liver and muscle, and amino acid metabolism and thermogenesis in adipose tissues. EX exhibited broad regulatory effects on TCA cycle, carbon metabolism, thermogenesis, propanoate-, fatty acid and amino acid metabolism across multiple tissues. IF prominently affected genes involved in mitophagy and autophagy in adipose tissues and core genes involved in butanoate metabolism in liver. DR, however, failed to improve metabolic homeostasis and biological dysfunctions in obese mice. Notably, by exploring potential inter-organ communication, we identified an obesity-resistant-like gene profile that were strongly correlated with HFHF induced metabolic derangements and could predict the degree of weight regain induced by the follow-up HFHF diet. Among them, 12 genes (e.g., Gdf15, Tfrc, Cdv3, Map2k4, and Nqo1) were causally associated with human metabolic traits, i.e., BMI, body fat mass, HbA1C, fasting glucose, and cholesterol. Our findings provide critical groundwork for improved understanding of the impacts of weight-loss interventions on host metabolism. The identified genes predicting weight regain may be considered regulatory targets for improving long-term weight control.
Collapse
Affiliation(s)
- Tianqi Liu
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Yuan Liu
- School of Physical Education, Shaanxi Normal University, Xi'an, China
| | - Tao Yan
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Baobao Zhang
- School of Physical Education, Shaanxi Normal University, Xi'an, China
| | - Lanqi Zhou
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Wanyu Zhu
- School of Physical Education, Shaanxi Normal University, Xi'an, China
| | - Guoze Wang
- School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jie Kang
- School of Physical Education, Shaanxi Normal University, Xi'an, China
| | - Wen Peng
- Nutrition and Health Promotion Center, Department of Public Health, Medical College, Qinghai University, Xining, Qinghai, China.
| | - Lin Shi
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China.
| |
Collapse
|
26
|
Sciarretta F, Ninni A, Zaccaria F, Chiurchiù V, Bertola A, Karlinsey K, Jia W, Ceci V, Di Biagio C, Xu Z, Gaudioso F, Tortolici F, Tiberi M, Zhang J, Carotti S, Boudina S, Grumati P, Zhou B, Brestoff JR, Ivanov S, Aquilano K, Lettieri-Barbato D. Lipid-associated macrophages reshape BAT cell identity in obesity. Cell Rep 2024; 43:114447. [PMID: 38963761 PMCID: PMC11693933 DOI: 10.1016/j.celrep.2024.114447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/04/2024] [Accepted: 06/20/2024] [Indexed: 07/06/2024] Open
Abstract
Obesity and type 2 diabetes cause a loss in brown adipose tissue (BAT) activity, but the molecular mechanisms that drive BAT cell remodeling remain largely unexplored. Using a multilayered approach, we comprehensively mapped a reorganization in BAT cells. We uncovered a subset of macrophages as lipid-associated macrophages (LAMs), which were massively increased in genetic and dietary model of BAT expansion. LAMs participate in this scenario by capturing extracellular vesicles carrying damaged lipids and mitochondria released from metabolically stressed brown adipocytes. CD36 scavenger receptor drove LAM phenotype, and CD36-deficient LAMs were able to increase brown fat genes in adipocytes. LAMs released transforming growth factor β1 (TGF-β1), which promoted the loss of brown adipocyte identity through aldehyde dehydrogenase 1 family member A1 (Aldh1a1) induction. These findings unfold cell dynamic changes in BAT during obesity and identify LAMs as key responders to tissue metabolic stress and drivers of loss of brown adipocyte identity.
Collapse
Affiliation(s)
| | - Andrea Ninni
- Department of Biology, University of Rome Tor Vergata, Rome, Italy; PhD Program in Evolutionary Biology and Ecology, Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Fabio Zaccaria
- Department of Biology, University of Rome Tor Vergata, Rome, Italy; PhD Program in Evolutionary Biology and Ecology, Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Valerio Chiurchiù
- Laboratory of Resolution of Neuroinflammation, IRCCS Santa Lucia Foundation, Rome, Italy; Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | | | - Keaton Karlinsey
- Department of Immunology, School of Medicine, University of Connecticut, Farmington, CT, USA
| | - Wentong Jia
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Veronica Ceci
- Department of Biology, University of Rome Tor Vergata, Rome, Italy; PhD Program in Evolutionary Biology and Ecology, Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | | | - Ziyan Xu
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Francesco Gaudioso
- IRCCS Santa Lucia Foundation, Rome, Italy; Department of Biology, University of Rome Tor Vergata, Rome, Italy; PhD Program in Evolutionary Biology and Ecology, Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Flavia Tortolici
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Marta Tiberi
- Laboratory of Resolution of Neuroinflammation, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Jiabi Zhang
- Department of Nutrition & Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Simone Carotti
- Integrated Research Center (PRAAB), Campus Biomedico University of Rome, Rome, Italy
| | - Sihem Boudina
- Department of Nutrition & Integrative Physiology, University of Utah, Salt Lake City, UT, USA; Molecular Medicine Program (U2M2), University of Utah, Salt Lake City, UT, USA
| | - Paolo Grumati
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy; Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
| | - Beiyan Zhou
- Department of Immunology, School of Medicine, University of Connecticut, Farmington, CT, USA; Institute for Systems Genomics, University of Connecticut, Farmington, CT, USA
| | - Jonathan R Brestoff
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | | | - Katia Aquilano
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Daniele Lettieri-Barbato
- Department of Biology, University of Rome Tor Vergata, Rome, Italy; IRCCS Fondazione Bietti, Rome, Italy.
| |
Collapse
|
27
|
Burak MF, Stanley TL, Lawson EA, Campbell SL, Lynch L, Hasty AH, Domingos AI, Dixit VD, Hotamışlıgil GS, Sheedy FJ, Dixon AE, Brinkley TE, Hill JA, Donath MY, Grinspoon SK. Adiposity, immunity, and inflammation: interrelationships in health and disease: a report from 24th Annual Harvard Nutrition Obesity Symposium, June 2023. Am J Clin Nutr 2024; 120:257-268. [PMID: 38705359 PMCID: PMC11347817 DOI: 10.1016/j.ajcnut.2024.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/09/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024] Open
Abstract
The rapidly evolving field of immunometabolism explores how changes in local immune environments may affect key metabolic and cellular processes, including that of adipose tissue. Importantly, these changes may contribute to low-grade systemic inflammation. In turn, chronic low-grade inflammation affecting adipose tissue may exacerbate the outcome of metabolic diseases. Novel advances in our understanding of immunometabolic processes may critically lead to interventions to reduce disease severity and progression. An important example in this regard relates to obesity, which has a multifaceted effect on immunity, activating the proinflammatory pathways such as the inflammasome and disrupting cellular homeostasis. This multifaceted effect of obesity can be investigated through study of downstream conditions using cellular and systemic investigative techniques. To further explore this field, the National Institutes of Health P30 Nutrition Obesity Research Center at Harvard, in partnership with Harvard Medical School, assembled experts to present at its 24th Annual Symposium entitled "Adiposity, Immunity, and Inflammation: Interrelationships in Health and Disease" on 7 June, 2023. This manuscript seeks to synthesize and present key findings from the symposium, highlighting new research and novel disease-specific advances in the field. Better understanding the interaction between metabolism and immunity offers promising preventative and treatment therapies for obesity-related immunometabolic diseases.
Collapse
Affiliation(s)
- Mehmet Furkan Burak
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Department of Molecular Metabolism and Sabri Ülker Center, Harvard T.H. Chan School of Public Health, Boston, MA, United States.
| | - Takara L Stanley
- Metabolism Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States; Division of Pediatric Endocrinology, Massachusetts General Hospital for Children and Harvard Medical School, Boston, MA, United States
| | - Elizabeth A Lawson
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Sophia L Campbell
- Metabolism Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Lydia Lynch
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Alyssa H Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, VA Tennessee Valley Healthcare System, Nashville, TN, United States
| | - Ana I Domingos
- Department of Physiology, Anatomy & Genetics, Oxford University, Oxford, United Kingdom
| | - Vishwa D Dixit
- Department of Pathology, Department of Comparative Medicine, Department of Immunobiology, Yale School of Medicine, and Yale Center for Research on Aging, New Haven, CT, United States
| | - Gökhan S Hotamışlıgil
- Department of Molecular Metabolism and Sabri Ülker Center, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Broad Institute of Harvard and MIT, Cambridge, MA, United States
| | - Frederick J Sheedy
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - Anne E Dixon
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, United States
| | - Tina E Brinkley
- Department of Internal Medicine, Section of Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Joseph A Hill
- Division of Cardiology, Department of Internal Medicine, Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Marc Y Donath
- Department of Biomedicine, University of Basel, Basel, Switzerland; Clinic of Endocrinology, Diabetes & Metabolism, University Hospital Basel, Basel, Switzerland
| | - Steven K Grinspoon
- Metabolism Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
28
|
Wang Q, Hartig SM, Ballantyne CM, Wu H. The multifaceted life of macrophages in white adipose tissue: Immune shift couples with metabolic switch. Immunol Rev 2024; 324:11-24. [PMID: 38683173 PMCID: PMC11262992 DOI: 10.1111/imr.13338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
White adipose tissue (WAT) is a vital endocrine organ that regulates energy balance and metabolic homeostasis. In addition to fat cells, WAT harbors macrophages with distinct phenotypes that play crucial roles in immunity and metabolism. Nutrient demands cause macrophages to accumulate in WAT niches, where they remodel the microenvironment and produce beneficial or detrimental effects on systemic metabolism. Given the abundance of macrophages in WAT, this review summarizes the heterogeneity of WAT macrophages in physiological and pathological conditions, including their alterations in quantity, phenotypes, characteristics, and functions during WAT growth and development, as well as healthy or unhealthy expansion. We will discuss the interactions of macrophages with other cell partners in WAT including adipose stem cells, adipocytes, and T cells in the context of various microenvironment niches in lean or obese condition. Finally, we highlight how adipose tissue macrophages merge immunity and metabolic changes to govern energy balance for the organism.
Collapse
Affiliation(s)
- Qun Wang
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Sean M. Hartig
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA 77030
| | | | - Huaizhu Wu
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA 77030
| |
Collapse
|
29
|
Valentine Y, Nikolajczyk BS. T cells in obesity-associated inflammation: The devil is in the details. Immunol Rev 2024; 324:25-41. [PMID: 38767210 PMCID: PMC11694249 DOI: 10.1111/imr.13354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Obesity presents a significant health challenge, affecting 41% of adults and 19.7% of children in the United States. One of the associated health challenges of obesity is chronic low-grade inflammation. In both mice and humans, T cells in circulation and in the adipose tissue play a pivotal role in obesity-associated inflammation. Changes in the numbers and frequency of specific CD4+ Th subsets and their contribution to inflammation through cytokine production indicate declining metabolic health, that is, insulin resistance and T2D. While some Th subset alterations are consistent between mice and humans with obesity, some changes mainly characterize male mice, whereas female mice often resist obesity and inflammation. However, protection from obesity and inflammation is not observed in human females, who can develop obesity-related T-cell inflammation akin to males. The decline in female sex hormones after menopause is also implicated in promoting obesity and inflammation. Age is a second underappreciated factor for defining and regulating obesity-associated inflammation toward translating basic science findings to the clinic. Weight loss in mice and humans, in parallel with these other factors, does not resolve obesity-associated inflammation. Instead, inflammation persists amid modest changes in CD4+ T cell frequencies, highlighting the need for further research into resolving changes in T-cell function after weight loss. How lingering inflammation after weight loss affecting the common struggle to maintain lower weight is unknown. Semaglutide, a newly popular pharmaceutical used for treating T2D and reversing obesity, holds promise for alleviating obesity-associated health complications, yet its impact on T-cell-mediated inflammation remains unexplored. Further work in this area could significantly contribute to the scientific understanding of the impacts of weight loss and sex/hormones in obesity and obesity-associated metabolic decline.
Collapse
Affiliation(s)
- Yolander Valentine
- Department of Pharmacology and Nutritional Science, University of Kentucky, Lexington, Kentucky, USA
| | - Barbara S. Nikolajczyk
- Department of Pharmacology and Nutritional Science, University of Kentucky, Lexington, Kentucky, USA
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
- Barnstable Brown Diabetes and Obesity Research Center, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
30
|
Wang H, He W, Yang G, Zhu L, Liu X. The Impact of Weight Cycling on Health and Obesity. Metabolites 2024; 14:344. [PMID: 38921478 PMCID: PMC11205792 DOI: 10.3390/metabo14060344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
Obesity is a systemic and chronic inflammation, which seriously endangers people's health. People tend to diet to control weight, and the short-term effect of dieting in losing weight is significant, but the prognosis is limited. With weight loss and recovery occurring frequently, people focus on weight cycling. The effect of weight cycling on a certain tissue of the body also has different conclusions. Therefore, this article systematically reviews the effects of body weight cycling on the body and finds that multiple weight cycling (1) increased fat deposition in central areas, lean mass decreased in weight loss period, and fat mass increased in weight recovery period, which harms body composition and skeletal muscle mass; (2) enhanced the inflammatory response of adipose tissue, macrophages infiltrated into adipose tissue, and increased the production of pro-inflammatory mediators in adipocytes; (3) blood glucose concentration mutation and hyperinsulinemia caused the increase or decrease in pancreatic β-cell population, which makes β-cell fatigue and leads to β-cell failure; (4) resulted in additional burden on the cardiovascular system because of cardiovascular rick escalation. Physical activity combined with calorie restriction can effectively reduce metabolic disease and chronic inflammation, alleviating the adverse effects of weight cycling on the body.
Collapse
Affiliation(s)
- Huan Wang
- Graduate School, Guangzhou Sport University, Guangzhou 510500, China; (H.W.); (W.H.); (G.Y.)
| | - Wenbi He
- Graduate School, Guangzhou Sport University, Guangzhou 510500, China; (H.W.); (W.H.); (G.Y.)
| | - Gaoyuan Yang
- Graduate School, Guangzhou Sport University, Guangzhou 510500, China; (H.W.); (W.H.); (G.Y.)
| | - Lin Zhu
- Graduate School, Guangzhou Sport University, Guangzhou 510500, China; (H.W.); (W.H.); (G.Y.)
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, Guangzhou 510500, China
| | - Xiaoguang Liu
- Graduate School, Guangzhou Sport University, Guangzhou 510500, China; (H.W.); (W.H.); (G.Y.)
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, Guangzhou 510500, China
| |
Collapse
|
31
|
De la Cruz-Color L, Dominguez-Rosales JA, Maldonado-González M, Ruíz-Madrigal B, Sánchez Muñoz MP, Zaragoza-Guerra VA, Espinoza-Padilla VH, Ruelas-Cinco EDC, Ramírez-Meza SM, Torres Baranda JR, González-Gutiérrez MDR, Hernandez Nazara ZH. Evidence That Peripheral Leptin Resistance in Omental Adipose Tissue and Liver Correlates with MASLD in Humans. Int J Mol Sci 2024; 25:6420. [PMID: 38928125 PMCID: PMC11203746 DOI: 10.3390/ijms25126420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Leptin regulates lipid metabolism, maximizing insulin sensitivity; however, peripheral leptin resistance is not fully understood, and its contribution to metabolic dysfunction-associated steatotic liver disease (MASLD) is unclear. This study evaluated the contribution of the leptin axis to MASLD in humans. Forty-three participants, mostly female (86.04%), who underwent cholecystectomy were biopsied. Of the participants, 24 were healthy controls, 8 had MASLD, and 11 had metabolic dysfunction-associated steatohepatitis (MASH). Clinical and biochemical data and the gene expression of leptin, leptin receptor (LEPR), suppressor of cytokine signaling 3 (SOCS3), sterol regulatory element-binding transcription factor 1 (SREBF1), stearoyl-CoA desaturase-1 (SCD1), and patatin-like phospholipase domain-containing protein 2 (PNPLA2), were determined from liver and adipose tissue. Higher serum leptin and LEPR levels in the omental adipose tissue (OAT) and liver with MASH were found. In the liver, LEPR was positively correlated with leptin expression in adipose tissue, and SOCS3 was correlated with SREBF1-SCD1. In OAT, SOCS3 was correlated with insulin resistance and transaminase enzymes (p < 0.05 for all. In conclusion, we evidenced the correlation between the peripheral leptin resistance axis in OAT-liver crosstalk and the complications of MASLD in humans.
Collapse
Affiliation(s)
- Lucia De la Cruz-Color
- Centro de Investigación en Biotecnología Microbiana y Alimentaria, División de Desarrollo Biotecnológico, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán 47820, C.P., Mexico;
- Instituto de Investigación en Enfermedades Crónicas Degenerativas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, C.P., Mexico (V.H.E.-P.)
| | - Jose Alfredo Dominguez-Rosales
- Instituto de Investigación en Enfermedades Crónicas Degenerativas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, C.P., Mexico (V.H.E.-P.)
| | - Montserrat Maldonado-González
- Laboratorio de Investigación en Microbiología, Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, C.P., Mexico; (M.M.-G.); (B.R.-M.); (J.R.T.B.)
| | - Bertha Ruíz-Madrigal
- Laboratorio de Investigación en Microbiología, Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, C.P., Mexico; (M.M.-G.); (B.R.-M.); (J.R.T.B.)
| | - Martha P. Sánchez Muñoz
- Nuevo Hospital Civil de Guadalajara Dr. Juan I. Menchaca, Unidad de Cirugía Bariátrica y Metabólica, Guadalajara 44340, C.P., Mexico;
| | - Vianney Alejandrina Zaragoza-Guerra
- Instituto Tecnológico y de Estudios Superiores de Monterrey, Campus Guadalajara, Escuela de Medicina y Ciencias de la Salud, Zapopan 45201, C.P., Mexico; (V.A.Z.-G.); (M.d.R.G.-G.)
| | - Victor H. Espinoza-Padilla
- Instituto de Investigación en Enfermedades Crónicas Degenerativas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, C.P., Mexico (V.H.E.-P.)
| | | | - Sandra M. Ramírez-Meza
- Coordinación de la Licenciatura en Nutrición, División de Estudios de la Salud Centro Universitario de los Valles, Universidad de Guadalajara, Ameca Km. 45.5, Ameca 46600, C.P., Mexico;
| | - José R. Torres Baranda
- Laboratorio de Investigación en Microbiología, Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, C.P., Mexico; (M.M.-G.); (B.R.-M.); (J.R.T.B.)
| | - María del R. González-Gutiérrez
- Instituto Tecnológico y de Estudios Superiores de Monterrey, Campus Guadalajara, Escuela de Medicina y Ciencias de la Salud, Zapopan 45201, C.P., Mexico; (V.A.Z.-G.); (M.d.R.G.-G.)
| | - Zamira Helena Hernandez Nazara
- Instituto de Investigación en Enfermedades Crónicas Degenerativas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, C.P., Mexico (V.H.E.-P.)
| |
Collapse
|
32
|
Ghosh S, Bouchard C. Considerations on efforts needed to improve our understanding of the genetics of obesity. Int J Obes (Lond) 2024:10.1038/s41366-024-01528-0. [PMID: 38849463 DOI: 10.1038/s41366-024-01528-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 06/09/2024]
Affiliation(s)
- Sujoy Ghosh
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA.
| | - Claude Bouchard
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA.
| |
Collapse
|
33
|
Schleh MW, Ameka M, Rodriguez A, Hasty AH. Deficiency of the hemoglobin-haptoglobin receptor, CD163, worsens insulin sensitivity in obese male mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.31.596887. [PMID: 38895370 PMCID: PMC11185572 DOI: 10.1101/2024.05.31.596887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Excessive iron accumulation in metabolic organs such as the adipose tissue, liver, and skeletal muscle is associated with increased diabetes risk. Tissue-resident macrophages serve multiple roles including managing inflammatory tone and regulating parachymal iron homeostasis; thus protecting against metabolic dysfunction upon iron overload. The scavenger receptor CD163 is uniquely present on tissue-resident macrophages, and plays a significant role in iron homeostasis by clearing extracellular hemoglobin-haptoglobin complexes, thereby limiting oxidative damage caused by free hemoglobin in metabolic tissues. We show that the absence of CD163 exacerbates glucose intolerance and insulin resistance in male mice with obesity. Additionally, loss of CD163 reduced the expression of iron regulatory genes (Tfr1, Cisd1, Slc40a1) in adipose tissue macrophages and anti-inflammatory (M2-like) bone marrow-derived macrophages (BMDMs). Further, CD163 deficiency mediated a pro-inflammatory shift and limited hemoglobin scavenging specifically in M2-like BMDMs. To this end, iron buffering was diminished in inguinal white adipose tissue (iWAT) macrophages in vivo, which culminated in iron spillover into adipocytes and CD45+CD11B- non-myeloid immune cells in iWAT. These findings show that CD163 on tissue-resident macrophages is critical for their anti-inflammatory and hemoglobin scavenging roles, and its absence results in impaired systemic insulin action in an obese setting.
Collapse
Affiliation(s)
- Michael W Schleh
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine; Nashville, TN 37232, USA
| | - Magdalene Ameka
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine; Nashville, TN 37232, USA
| | - Alec Rodriguez
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine; Nashville, TN 37232, USA
| | - Alyssa H Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine; Nashville, TN 37232, USA
- VA Tennessee Valley Healthcare System; Nashville, TN 37212, USA
| |
Collapse
|
34
|
Guo W, Gao Y, Du D, Sanchez JE, Visootsat A, Li Y, Qiu W, Li L. How does the ion concentration affect the functions of kinesin BimC. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.31.596855. [PMID: 38853942 PMCID: PMC11160742 DOI: 10.1101/2024.05.31.596855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
BimC family proteins are bipolar motor proteins belonging to the kinesin superfamily which promote mitosis by crosslinking and sliding apart antiparallel microtubules. Understanding the binding mechanism between the kinesin and the microtubule is crucial for researchers to make advances in the treatment of cancer and other malignancies. Experimental research has shown that the ion concentration affects the function of BimC significantly. But the insights of the ion-dependent function of BimC remain unclear. By combining molecular dynamics (MD) simulations with a series of computational approaches, we studied the electrostatic interactions at the binding interfaces of BimC and the microtubule under different KCl concentrations. We found the electrostatic interaction between BimC and microtubule is stronger at 0 mM KCl compared to 150 mM KCl, which is consistent with experimental conclusions. Furthermore, important salt bridges and residues at the binding interfaces of the complex were identified, which illustrates the details of the BimC-microtubule interactions. Molecular dynamics analyses of salt bridges identified that the important residues on the binding interface of BimC are positively charged, while those residues on the binding interface of the tubulin heterodimer are negatively charged. The finding in this work reveals some important mechanisms of kinesin-microtubule binding, which helps the future drug design for cancer therapy.
Collapse
|
35
|
Chen M, Kang X, Zhang Y, Liu Y. Trained immunity: A link between risk factors and cardiovascular disease. Br J Pharmacol 2024. [PMID: 38824960 DOI: 10.1111/bph.16472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/01/2024] [Accepted: 05/04/2024] [Indexed: 06/04/2024] Open
Abstract
Cardiovascular diseases are significant contributors to human mortality, closely associated with inflammation. With the changing living conditions and the extension of human lifespan, greater attention has been directed towards understanding the impact of early, long-term events on the development of cardiovascular events. Lifestyle factors such as stress, unhealthy diet and physical inactivity can increase the risk of cardiovascular diseases. Interestingly, even if the risk factors are addressed later, their influence may persist. Recently, the concept of trained innate immunity (TRIM), defined as sustained alterations in the function of innate immunocyte that promote a more robust response to downstream stimuli, has been proposed to be involved in cardiovascular diseases. It is hypothesized that TRIM may serve as a mediator bridging the impacts of aforementioned risk factors. This review aims to elucidate the role of TRIM in cardiovascular diseases and highlight its significance in uncovering new mechanisms and therapeutic targets.
Collapse
Affiliation(s)
- Mingqi Chen
- Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Xuya Kang
- Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Yan Zhang
- Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Yahan Liu
- Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| |
Collapse
|
36
|
Lecoutre S, Rebière C, Marcelin G, Clément K. How does bariatric surgery remodel adipose tissue? ANNALES D'ENDOCRINOLOGIE 2024; 85:175-178. [PMID: 38871506 DOI: 10.1016/j.ando.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
This lecture delves into the pivotal role of adipose tissue in obesity and its response to weight loss, particularly via bariatric surgery. Adipose tissue, responsible for storing excess energy, undergoes significant changes during obesity, marked by inflammation and fibrosis. Bariatric surgery, serving as a model, allow the exploration of adipose tissue remodeling post-weight loss, inducing metabolic and fibro-inflammatory shifts. Despite successful weight loss, inflammation and fibrosis persist, as evidenced by changes in immune cells, altered cytokine profiles and the accumulation of extracellular matrix (ECM). Unfortunately, these lingering effects impair the normal adipose tissue function. In this context, adipose progenitors, an heterogenous resident population of mesenchymal stromal cells, display functions important to fibrosis development, capable of differentiating into myofibroblasts and contributing to ECM deposition. Particularly, a distinct subpopulation of adipose progenitors with high CD9 expression (CD9high) is associated with fibrosis and insulin resistance in human obesity. The persistence of fibrosis post-weight loss poses challenges, correlating with metabolic dysfunction despite improved glucose tolerance. A comprehensive understanding of the mechanisms driving adipose tissue remodeling and fibrosis post-weight loss is imperative for the development of effective treatments for obesity. The intricate interplay between adipose tissue, inflammation, and fibrosis underscores the necessity for further in-depth research to elucidate these mechanisms and formulate targeted therapies for obesity-related complications.
Collapse
Affiliation(s)
- Simon Lecoutre
- Research Unit: Nutrition and Obesities; Systemic Approaches, NutriOmics, Inserm, Sorbonne université, Paris, France
| | - Clémentine Rebière
- Research Unit: Nutrition and Obesities; Systemic Approaches, NutriOmics, Inserm, Sorbonne université, Paris, France; Nutrition Department, Pitié-Salpêtrière Hospital, Paris Public Hospitals, Paris, France
| | - Geneviève Marcelin
- Nutrition Department, Pitié-Salpêtrière Hospital, Paris Public Hospitals, Paris, France
| | - Karine Clément
- Research Unit: Nutrition and Obesities; Systemic Approaches, NutriOmics, Inserm, Sorbonne université, Paris, France.
| |
Collapse
|
37
|
Kardan O, Weigard A, Cope L, Martz M, Angstadt M, McCurry KL, Michael C, Hardee J, Hyde LW, Sripada C, Heitzeg MM. Functional brain connectivity predictors of prospective substance use initiation and their environmental correlates. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.29.24308134. [PMID: 38853927 PMCID: PMC11160855 DOI: 10.1101/2024.05.29.24308134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Background Early substance use initiation (SUI) places youth at substantially higher risk for later substance use disorders. Furthermore, adolescence is a critical period for the maturation of brain networks, the pace and magnitude of which are susceptible to environmental influences and may shape risk for SUI. Methods We examined whether patterns of functional brain connectivity during rest (rsFC), measured longitudinally in pre-and-early adolescence, can predict future SUI. In an independent sub-sample, we also tested whether these patterns are associated with key environmental factors, specifically neighborhood pollution and socioeconomic dimensions. We utilized data from the Adolescent Brain Cognitive Development (ABCD) Study®. SUI was defined as first-time use of at least one full dose of alcohol, nicotine, cannabis, or other drugs. We created a control group (N = 228) of participants without SUI who were matched with the SUI group (N = 233) on age, sex, race/ethnicity, and parental income and education. Results Multivariate analysis showed that whole-brain rsFC prior to SUI during 9-10 and 11-12 years of age successfully differentiated the prospective SUI and control groups. This rsFC signature was expressed more at older ages in both groups, suggesting a pattern of accelerated maturation in the SUI group in the years prior to SUI. In an independent sub-sample (N = 2,854) and adjusted for family socioeconomic factors, expression of this rsFC pattern was associated with higher pollution, but not neighborhood disadvantage. Conclusion Brain functional connectivity patterns in early adolescence that are linked to accelerated maturation and environmental exposures can predict future SUI in youth.
Collapse
Affiliation(s)
- Omid Kardan
- University of Michigan, Department of Psychiatry
- University of Michigan, Department of Psychology
| | | | - Lora Cope
- University of Michigan, Department of Psychiatry
| | - Meghan Martz
- University of Michigan, Department of Psychiatry
| | | | | | | | | | - Luke W. Hyde
- University of Michigan, Department of Psychology
- University of Michigan, Survey Research Center at the Institute for Social Research
| | | | | |
Collapse
|
38
|
Piening A, Ebert E, Gottlieb C, Khojandi N, Kuehm LM, Hoft SG, Pyles KD, McCommis KS, DiPaolo RJ, Ferris ST, Alspach E, Teague RM. Obesity-related T cell dysfunction impairs immunosurveillance and increases cancer risk. Nat Commun 2024; 15:2835. [PMID: 38565540 PMCID: PMC10987624 DOI: 10.1038/s41467-024-47359-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 03/28/2024] [Indexed: 04/04/2024] Open
Abstract
Obesity is a well-established risk factor for human cancer, yet the underlying mechanisms remain elusive. Immune dysfunction is commonly associated with obesity but whether compromised immune surveillance contributes to cancer susceptibility in individuals with obesity is unclear. Here we use a mouse model of diet-induced obesity to investigate tumor-infiltrating CD8 + T cell responses in lean, obese, and previously obese hosts that lost weight through either dietary restriction or treatment with semaglutide. While both strategies reduce body mass, only dietary intervention restores T cell function and improves responses to immunotherapy. In mice exposed to a chemical carcinogen, obesity-related immune dysfunction leads to higher incidence of sarcoma development. However, impaired immunoediting in the obese environment enhances tumor immunogenicity, making the malignancies highly sensitive to immunotherapy. These findings offer insight into the complex interplay between obesity, immunity and cancer, and provide explanation for the obesity paradox observed in clinical immunotherapy settings.
Collapse
Affiliation(s)
- Alexander Piening
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Emily Ebert
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Carter Gottlieb
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Niloufar Khojandi
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Lindsey M Kuehm
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Stella G Hoft
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Kelly D Pyles
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Kyle S McCommis
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Richard J DiPaolo
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Stephen T Ferris
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Elise Alspach
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Ryan M Teague
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
39
|
Peng C, Chen J, Wu R, Jiang H, Li J. Unraveling the complex roles of macrophages in obese adipose tissue: an overview. Front Med 2024; 18:205-236. [PMID: 38165533 DOI: 10.1007/s11684-023-1033-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/15/2023] [Indexed: 01/03/2024]
Abstract
Macrophages, a heterogeneous population of innate immune cells, exhibit remarkable plasticity and play pivotal roles in coordinating immune responses and maintaining tissue homeostasis within the context of metabolic diseases. The activation of inflammatory macrophages in obese adipose tissue leads to detrimental effects, inducing insulin resistance through increased inflammation, impaired thermogenesis, and adipose tissue fibrosis. Meanwhile, adipose tissue macrophages also play a beneficial role in maintaining adipose tissue homeostasis by regulating angiogenesis, facilitating the clearance of dead adipocytes, and promoting mitochondrial transfer. Exploring the heterogeneity of macrophages in obese adipose tissue is crucial for unraveling the pathogenesis of obesity and holds significant potential for targeted therapeutic interventions. Recently, the dual effects and some potential regulatory mechanisms of macrophages in adipose tissue have been elucidated using single-cell technology. In this review, we present a comprehensive overview of the intricate activation mechanisms and diverse functions of macrophages in adipose tissue during obesity, as well as explore the potential of drug delivery systems targeting macrophages, aiming to enhance the understanding of current regulatory mechanisms that may be potentially targeted for treating obesity or metabolic diseases.
Collapse
Affiliation(s)
- Chang Peng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Chen
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Rui Wu
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
| | - Haowen Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Jia Li
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China.
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
40
|
Stevenson M, Srivastava A, Nacher M, Hall C, Palaia T, Lee J, Zhao CL, Lau R, Ali MAE, Park CY, Schlamp F, Heffron SP, Fisher EA, Brathwaite C, Ragolia L. The Effect of Diet Composition on the Post-operative Outcomes of Roux-en-Y Gastric Bypass in Mice. Obes Surg 2024; 34:911-927. [PMID: 38191966 DOI: 10.1007/s11695-023-07052-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/30/2023] [Accepted: 12/30/2023] [Indexed: 01/10/2024]
Abstract
PURPOSE Roux-en-Y gastric bypass (RYGB) leads to the improvement of many obesity-associated conditions. The degree to which post-operative macronutrient composition contributes to metabolic improvement after RYGB is understudied. METHODS A mouse model of RYGB was used to examine the effects of diet on the post-operative outcomes of RYGB. Obese mice underwent either Sham or RYGB surgery and were administered either chow or HFD and then monitored for an additional 8 weeks. RESULTS After RYGB, reductions to body weight, fat mass, and lean mass were similar regardless of diet. RYGB and HFD were independently detrimental to bone mineral density and plasma vitamin D levels. Independent of surgery, HFD accelerated hematopoietic stem and progenitor cell proliferation and differentiation and exhibited greater myeloid lineage commitment. Independent of diet, systemic iron deficiency was present after RYGB. In both Sham and RYGB groups, HFD increased energy expenditure. RYGB increased fecal energy loss, and HFD after RYGB increased fecal lipid content. RYGB lowered fasting glucose and liver glycogen levels but HFD had an opposing effect. Indices of insulin sensitivity improved independent of diet. HFD impaired improvements to dyslipidemia, NAFLD, and fibrosis. CONCLUSION Post-operative diet plays a significant role in determining the degree to which RYGB reverses obesity-induced metabolic abnormalities such as hyperglycemia, dyslipidemia, and NAFLD. Diet composition may be targeted in order to assist in the treatment of post-RYGB bone mineral density loss and vitamin D deficiency as well as to reverse myeloid lineage commitment. HFD after RYGB continues to pose a significant multidimensional health risk.
Collapse
Affiliation(s)
- Matthew Stevenson
- Department of Biomedical Research, NYU Grossman Long Island School of Medicine, NYU Langone Hospital-Long Island, Mineola, NY, USA
| | - Ankita Srivastava
- Department of Biomedical Research, NYU Grossman Long Island School of Medicine, NYU Langone Hospital-Long Island, Mineola, NY, USA
| | - Maria Nacher
- Department of Medicine, Division of Cardiology, NYU Langone Health Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA
- The Leon H. Charney Division of Cardiology, Department of Medicine, The Marc and Ruti Bell Program in Vascular Biology and the Cardiovascular Research Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Christopher Hall
- Department of Biomedical Research, NYU Grossman Long Island School of Medicine, NYU Langone Hospital-Long Island, Mineola, NY, USA
| | - Thomas Palaia
- Department of Biomedical Research, NYU Grossman Long Island School of Medicine, NYU Langone Hospital-Long Island, Mineola, NY, USA
| | - Jenny Lee
- Department of Biomedical Research, NYU Grossman Long Island School of Medicine, NYU Langone Hospital-Long Island, Mineola, NY, USA
| | - Chaohui Lisa Zhao
- Department of Pathology, NYU Langone Hospital-Long Island, Mineola, NY, USA
| | - Raymond Lau
- Department of Biomedical Research, NYU Grossman Long Island School of Medicine, NYU Langone Hospital-Long Island, Mineola, NY, USA
- Department of Endocrinology, NYU Langone Hospital-Long Island, Mineola, NY, USA
| | - Mohamed A E Ali
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Christopher Y Park
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Florencia Schlamp
- Department of Medicine, Division of Cardiology, NYU Langone Health Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Sean P Heffron
- Department of Medicine, Division of Cardiology, NYU Langone Health Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA
- The Leon H. Charney Division of Cardiology, Department of Medicine, The Marc and Ruti Bell Program in Vascular Biology and the Cardiovascular Research Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Edward A Fisher
- Department of Medicine, Division of Cardiology, NYU Langone Health Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA
- The Leon H. Charney Division of Cardiology, Department of Medicine, The Marc and Ruti Bell Program in Vascular Biology and the Cardiovascular Research Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Collin Brathwaite
- Department of Biomedical Research, NYU Grossman Long Island School of Medicine, NYU Langone Hospital-Long Island, Mineola, NY, USA
- Department of Surgery, NYU Langone Hospital-Long Island, Mineola, NY, USA
| | - Louis Ragolia
- Department of Biomedical Research, NYU Grossman Long Island School of Medicine, NYU Langone Hospital-Long Island, Mineola, NY, USA.
- Department of Foundations of Medicine, NYU Grossman Long Island School of Medicine, Mineola, NY, USA.
| |
Collapse
|
41
|
Shi Z, Wan Y, Peng M, Zhang J, Gao Z, Wang X, Zhu F. Vitamin E: An assistant for black soldier fly to reduce cadmium accumulation and toxicity. ENVIRONMENT INTERNATIONAL 2024; 185:108547. [PMID: 38458120 DOI: 10.1016/j.envint.2024.108547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
Cadmium (Cd) is a toxic heavy metal associated with osteoporosis, liver, and kidney disease. The black soldier fly (BSF) Hermetia illucens may be exposed to Cd during the transformation of livestock manure. The BSF has a high tolerance to Cd. In the previous work of the laboratory, we found that vitamin E (VE) may play a role in the tolerance of BSF to Cd exposure. The main findings are as follows: The BSF larvae pretreated with exogenous VE had heavier body weight, lower content and toxicity of Cd under similar Cd exposure. Even in high Cd exposure at the concentrations of 300 and 700 mg/kg, the BSF larvae pretreated with exogenous VE at a concentration of 100 mg/kg still reduced the Cd toxicity to 85.33 % and 84.43 %, respectively. The best-fitting models showed that metallothionein (MT) content, oxidative damage (8-hydroxydeoxyguanosine content, malondialdehyde content), antioxidant power (total antioxidant power, peroxidase activity) had a great influence on content and toxicity of Cd bioaccumulated in the larvae. The degree of oxidative damage was reduced in the larvae with exogenous VE pretreatments. This variation can be explained by their changed MT content and increased antioxidant power because of exogenous VE. These results reveal the roles of VE in insects defense against Cd exposure and provide a new option for the prevention and therapy of damage caused by Cd exposure.
Collapse
Affiliation(s)
- Zhihui Shi
- Hubei International Scientific and Technological Cooperation Base of Waste Conversion by Insects, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yujia Wan
- Hubei International Scientific and Technological Cooperation Base of Waste Conversion by Insects, Huazhong Agricultural University, Wuhan 430070, China.
| | - Miao Peng
- Hubei International Scientific and Technological Cooperation Base of Waste Conversion by Insects, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jie Zhang
- Hubei International Scientific and Technological Cooperation Base of Waste Conversion by Insects, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zhenghui Gao
- School of Engineering, Cardiff University, Cardiff CF24 3AA, UK.
| | - Xiaoping Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| | - Fen Zhu
- Hubei International Scientific and Technological Cooperation Base of Waste Conversion by Insects, Huazhong Agricultural University, Wuhan 430070, China; Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
42
|
Reinisch I, Michenthaler H, Sulaj A, Moyschewitz E, Krstic J, Galhuber M, Xu R, Riahi Z, Wang T, Vujic N, Amor M, Zenezini Chiozzi R, Wabitsch M, Kolb D, Georgiadi A, Glawitsch L, Heitzer E, Schulz TJ, Schupp M, Sun W, Dong H, Ghosh A, Hoffmann A, Kratky D, Hinte LC, von Meyenn F, Heck AJR, Blüher M, Herzig S, Wolfrum C, Prokesch A. Adipocyte p53 coordinates the response to intermittent fasting by regulating adipose tissue immune cell landscape. Nat Commun 2024; 15:1391. [PMID: 38360943 PMCID: PMC10869344 DOI: 10.1038/s41467-024-45724-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 02/02/2024] [Indexed: 02/17/2024] Open
Abstract
In obesity, sustained adipose tissue (AT) inflammation constitutes a cellular memory that limits the effectiveness of weight loss interventions. Yet, the impact of fasting regimens on the regulation of AT immune infiltration is still elusive. Here we show that intermittent fasting (IF) exacerbates the lipid-associated macrophage (LAM) inflammatory phenotype of visceral AT in obese mice. Importantly, this increase in LAM abundance is strongly p53 dependent and partly mediated by p53-driven adipocyte apoptosis. Adipocyte-specific deletion of p53 prevents LAM accumulation during IF, increases the catabolic state of adipocytes, and enhances systemic metabolic flexibility and insulin sensitivity. Finally, in cohorts of obese/diabetic patients, we describe a p53 polymorphism that links to efficacy of a fasting-mimicking diet and that the expression of p53 and TREM2 in AT negatively correlates with maintaining weight loss after bariatric surgery. Overall, our results demonstrate that p53 signalling in adipocytes dictates LAM accumulation in AT under IF and modulates fasting effectiveness in mice and humans.
Collapse
Affiliation(s)
- Isabel Reinisch
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
- Institute of Food Nutrition and Health, Department of Health Sciences and Technology, Eidgenössische Technische Hochschule Zürich (ETH), Schwerzenbach, Switzerland
| | - Helene Michenthaler
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Alba Sulaj
- Institute for Diabetes and Cancer, Helmholtz Munich, German Center for Diabetes Research (DZD), Neuherberg, Germany
- Department of Endocrinology, Diabetology, Metabolism and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
| | - Elisabeth Moyschewitz
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Jelena Krstic
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Markus Galhuber
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Ruonan Xu
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Zina Riahi
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Tongtong Wang
- Institute of Food Nutrition and Health, Department of Health Sciences and Technology, Eidgenössische Technische Hochschule Zürich (ETH), Schwerzenbach, Switzerland
| | - Nemanja Vujic
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Melina Amor
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Riccardo Zenezini Chiozzi
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Dagmar Kolb
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
- Core Facility Ultrastructure Analysis, Medical University of Graz, Graz, Austria
| | - Anastasia Georgiadi
- Institute for Diabetes and Cancer, Helmholtz Munich, German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Lisa Glawitsch
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria
| | - Ellen Heitzer
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria
| | - Tim J Schulz
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- University of Potsdam, Institute of Nutritional Science, Nuthetal, Germany
| | - Michael Schupp
- Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Wenfei Sun
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Hua Dong
- Stem Cell Biology and Regenerative Medicine Institute, University of Stanford, Stanford, CA, USA
| | - Adhideb Ghosh
- Institute of Food Nutrition and Health, Department of Health Sciences and Technology, Eidgenössische Technische Hochschule Zürich (ETH), Schwerzenbach, Switzerland
- Functional Genomics Center Zurich, Eidgenössische Technische Hochschule Zürich (ETH), Zurich, Switzerland
| | - Anne Hoffmann
- Helmholtz Institute for Metabolic Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Dagmar Kratky
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Laura C Hinte
- Laboratory of Nutrition and Metabolic Epigenetics, Institute for Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Ferdinand von Meyenn
- Laboratory of Nutrition and Metabolic Epigenetics, Institute for Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Stephan Herzig
- Institute for Diabetes and Cancer, Helmholtz Munich, German Center for Diabetes Research (DZD), Neuherberg, Germany
- Department of Endocrinology, Diabetology, Metabolism and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
| | - Christian Wolfrum
- Institute of Food Nutrition and Health, Department of Health Sciences and Technology, Eidgenössische Technische Hochschule Zürich (ETH), Schwerzenbach, Switzerland
| | - Andreas Prokesch
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
43
|
Bradford BJ, Contreras GA. Adipose Tissue Inflammation: Linking Physiological Stressors to Disease Susceptibility. Annu Rev Anim Biosci 2024; 12:261-281. [PMID: 38064480 DOI: 10.1146/annurev-animal-021122-113212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The study of adipose tissue (AT) is enjoying a renaissance. White, brown, and beige adipocytes are being investigated in adult animals, and the critical roles of small depots like perivascular AT are becoming clear. But the most profound revision of the AT dogma has been its cellular composition and regulation. Single-cell transcriptomic studies revealed that adipocytes comprise well under 50% of the cells in white AT, and a substantial portion of the rest are immune cells. Altering the function of AT resident leukocytes can induce or correct metabolic syndrome and, more surprisingly, alter adaptive immune responses to infection. Although the field is dominated by obesity research, conditions such as rapid lipolysis, infection, and heat stress impact AT immune dynamics as well. Recent findings in rodents lead to critical questions that should be explored in domestic livestock as potential avenues for improved animal resilience to stressors, particularly as animals age.
Collapse
Affiliation(s)
- Barry J Bradford
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, Michigan, USA;
| | - G Andres Contreras
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA;
| |
Collapse
|
44
|
Flores Gomez D, Bekkering S, Ter Horst R, Cossins B, van den Munckhof ICL, Rutten JHW, Joosten LAB, Netea MG, Riksen NP. The effect of leptin on trained innate immunity and on systemic inflammation in subjects with obesity. J Leukoc Biol 2024; 115:374-384. [PMID: 37776323 DOI: 10.1093/jleuko/qiad118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/26/2023] [Accepted: 09/10/2023] [Indexed: 10/02/2023] Open
Abstract
Leptin is associated with cardiometabolic complications of obesity, such as metabolic syndrome and atherosclerosis. In obese men, the presence of metabolic syndrome is associated with higher circulating leptin and interleukin (IL)-6 concentrations and increased monocyte cytokine production capacity. Here, we investigated the effects of leptin on monocyte function and systemic inflammatory markers in obese individuals. We specifically explored whether leptin can induce long-term changes in innate immune function by inducing innate immune memory (also called trained immunity). We exposed human primary monocytes for 24 h to relevant leptin concentrations in vitro and measured cytokine production. In addition, after removing leptin, we incubated monocytes for 5 d in culture medium, and we restimulated them on day 6 to assess cytokine production capacity, phagocytosis, and foam cell formation. Direct stimulation with leptin did not induce cytokine production, but exposure to 50 ng/mL leptin augmented lipopolysaccharide- and R848-induced tumor necrosis factor α (TNF-α) production after 1 wk. In a separate in vivo study in a cohort of 302 obese subjects (body mass index [BMI] >27 kg/m2, 55 to 81 yr), we measured circulating leptin, inflammatory markers, and cytokine production upon ex vivo stimulation of isolated peripheral blood mononuclear cells. Circulating leptin concentrations positively correlated with circulating IL-1β and IL-6, which was more pronounced in men than in women. Four single nucleotide polymorphisms in the leptin gene influenced circulating IL-6 concentrations in men, suggesting a direct effect of leptin on IL-6. In conclusion, in vitro, leptin does not directly stimulate monocytes to produce cytokines, yet induces long-term monocyte hyperresponsiveness, i.e. trained immunity. In obese subjects, leptin is associated with circulating IL-6 in a sex-dependent manner. The underlying mechanisms of the sex-specific effect of leptin on innate immune cells remain to be further investigated.
Collapse
Affiliation(s)
- Daniela Flores Gomez
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands
| | - Siroon Bekkering
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands
| | - Rob Ter Horst
- Center for Molecular Medicine, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | - Benjamin Cossins
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands
| | - Inge C L van den Munckhof
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands
| | - Joost H W Rutten
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands
- Department of Medical Genetics, Iuliu Haţieganu University of Medicine and Pharmacy, Strada Victor Babeș 8, Cluj-Napoca 400347, Romania
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands
- Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany
| | - Niels P Riksen
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands
| |
Collapse
|
45
|
Jacks RD, Lumeng CN. Macrophage and T cell networks in adipose tissue. Nat Rev Endocrinol 2024; 20:50-61. [PMID: 37872302 DOI: 10.1038/s41574-023-00908-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 10/25/2023]
Abstract
The signals and structure of the tissues in which leukocytes reside critically mould leukocyte function and development and have challenged our fundamental understanding of how to define and categorize tissue-resident immune cells. One specialized tissue niche that has a powerful effect on immune cell function is adipose tissue. The field of adipose tissue leukocyte biology has expanded dramatically and has revealed how tissue niches can shape immune cell function and reshape them in a setting of metabolic stress, such as obesity. Most notably, adipose tissue macrophages and T cells are under intense investigation due to their contributions to adipose tissue in the lean and obese states. Both adipose tissue macrophages and T cells have features associated with the metabolic function of adipose tissue that are distinct from features of macrophages and T cells that are classically characterized in other tissues. This Review provides state-of-the-art understanding of adipose tissue macrophages and T cells and discusses how their unique niche can help us to better understand diversity in leukocyte responses.
Collapse
Affiliation(s)
- Ramiah D Jacks
- Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Carey N Lumeng
- Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
46
|
Han SM, Park ES, Park J, Nahmgoong H, Choi YH, Oh J, Yim KM, Lee WT, Lee YK, Jeon YG, Shin KC, Huh JY, Choi SH, Park J, Kim JK, Kim JB. Unique adipose tissue invariant natural killer T cell subpopulations control adipocyte turnover in mice. Nat Commun 2023; 14:8512. [PMID: 38129377 PMCID: PMC10739728 DOI: 10.1038/s41467-023-44181-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Adipose tissue invariant natural killer T (iNKT) cells are a crucial cell type for adipose tissue homeostasis in obese animals. However, heterogeneity of adipose iNKT cells and their function in adipocyte turnover are not thoroughly understood. Here, we investigate transcriptional heterogeneity in adipose iNKT cells and their hierarchy using single-cell RNA sequencing in lean and obese mice. We report that distinct subpopulations of adipose iNKT cells modulate adipose tissue homeostasis through adipocyte death and birth. We identify KLRG1+ iNKT cells as a unique iNKT cell subpopulation in adipose tissue. Adoptive transfer experiments showed that KLRG1+ iNKT cells are selectively generated within adipose tissue microenvironment and differentiate into a CX3CR1+ cytotoxic subpopulation in obese mice. In addition, CX3CR1+ iNKT cells specifically kill enlarged and inflamed adipocytes and recruit macrophages through CCL5. Furthermore, adipose iNKT17 cells have the potential to secrete AREG, and AREG is involved in stimulating adipose stem cell proliferation. Collectively, our data suggest that each adipose iNKT cell subpopulation plays key roles in the control of adipocyte turnover via interaction with adipocytes, adipose stem cells, and macrophages in adipose tissue.
Collapse
Affiliation(s)
- Sang Mun Han
- National Leading Researcher Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Eun Seo Park
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Jeu Park
- National Leading Researcher Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hahn Nahmgoong
- National Leading Researcher Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yoon Ha Choi
- Department of Life Sciences, POSTECH, Pohang, 37673, Republic of Korea
| | - Jiyoung Oh
- Department of Biological Sciences, College of Information and Biotechnology, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Kyung Min Yim
- National Leading Researcher Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Won Taek Lee
- National Leading Researcher Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yun Kyung Lee
- Internal Medicine, Seoul National University College of Medicine & Seoul National University Bundang Hospital, Seoul, 03080, Republic of Korea
| | - Yong Geun Jeon
- National Leading Researcher Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyung Cheul Shin
- National Leading Researcher Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jin Young Huh
- Department of Life Science, Sogang University, Seoul, 04107, Republic of Korea
| | - Sung Hee Choi
- Internal Medicine, Seoul National University College of Medicine & Seoul National University Bundang Hospital, Seoul, 03080, Republic of Korea
| | - Jiyoung Park
- Department of Biological Sciences, College of Information and Biotechnology, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Jong Kyoung Kim
- Department of Life Sciences, POSTECH, Pohang, 37673, Republic of Korea.
| | - Jae Bum Kim
- National Leading Researcher Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
47
|
Kuziel G, Moore BN, Haugstad GP, Xiong Y, Williams AE, Arendt LM. Alterations in the mammary gland and tumor microenvironment of formerly obese mice. BMC Cancer 2023; 23:1183. [PMID: 38041006 PMCID: PMC10693119 DOI: 10.1186/s12885-023-11688-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Obesity is a risk factor for breast cancer, and women with obesity that develop breast cancer have a worsened prognosis. Within the mammary gland, obesity causes chronic, macrophage-driven inflammation and adipose tissue fibrosis. Weight loss is a recommended intervention to resolve obesity, but the impact of weight loss on the mammary gland microenvironment and in tumors has not been well identified. METHODS To examine the effects of weight loss following obesity, mice were fed a high-fat diet for 16 weeks to induce obesity, then switched to a low-fat diet for 6 weeks. We examined changes in immune cells, including fibrocytes, which are myeloid lineage cells that have attributes of both macrophages and myofibroblasts, and collagen deposition within the mammary glands of non-tumor-bearing mice and within the tumors of mice that were transplanted with estrogen receptor alpha positive TC2 tumor cells. RESULTS In formerly obese mice, we observed reduced numbers of crown-like structures and fibrocytes in mammary glands, while collagen deposition was not resolved with weight loss. Following transplant of TC2 tumor cells into the mammary glands of lean, obese, and formerly obese mice, diminished collagen deposition and cancer-associated fibroblasts were observed in tumors from formerly obese mice compared to obese mice. Within tumors of obese mice, increased myeloid-derived suppressor cells and diminished CD8+ T cells were identified, while the microenvironment of tumors of formerly obese mice were more similar to tumors from lean mice. When TC2 tumor cells were mixed with CD11b+CD34+ myeloid progenitor cells, which are the cells of origin for fibrocytes, and transplanted into mammary glands of lean and obese mice, collagen deposition within the tumors of both lean and obese was significantly greater than when tumor cells were mixed with CD11b+CD34- monocytes or total CD45+ immune cells. CONCLUSIONS Overall, these studies demonstrate that weight loss resolved some of the microenvironmental conditions within the mammary gland that may contribute to tumor progression. Additionally, fibrocytes may contribute to early collagen deposition in mammary tumors of obese mice leading to the growth of desmoplastic tumors.
Collapse
Affiliation(s)
- Genevra Kuziel
- Cancer Biology Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Brittney N Moore
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Grace P Haugstad
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Yue Xiong
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Abbey E Williams
- Comparative Biomedical Sciences Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Lisa M Arendt
- Cancer Biology Program, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Comparative Biomedical Sciences Program, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- School of Veterinary Medicine, 2015 Linden Drive Rm 4354A, Madison, WI, 53706, USA.
| |
Collapse
|
48
|
Hildreth AD, Padilla ET, Gupta M, Wong YY, Sun R, Legala AR, O'Sullivan TE. Adipose cDC1s contribute to obesity-associated inflammation through STING-dependent IL-12 production. Nat Metab 2023; 5:2237-2252. [PMID: 37996702 DOI: 10.1038/s42255-023-00934-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 10/18/2023] [Indexed: 11/25/2023]
Abstract
Obesity is associated with chronic low-grade white adipose tissue (WAT) inflammation that can contribute to the development of insulin resistance in mammals. Previous studies have identified interleukin (IL)-12 as a critical upstream regulator of WAT inflammation and metabolic dysfunction during obesity. However, the cell types and mechanisms that initiate WAT IL-12 production remain unclear. Here we show that conventional type 1 dendritic cells (cDC1s) are the cellular source of WAT IL-12 during obesity through analysis of mouse and human WAT single-cell transcriptomic datasets, IL-12 reporter mice and IL-12p70 protein levels by enzyme-linked immunosorbent assay. We demonstrate that cDC1s contribute to obesity-associated inflammation by increasing group 1 innate lymphocyte interferon-γ production and inflammatory macrophage accumulation. Inducible depletion of cDC1s increased WAT insulin sensitivity and systemic glucose tolerance during diet-induced obesity. Mechanistically, endocytosis of apoptotic bodies containing self-DNA by WAT cDC1s drives stimulator of interferon genes (STING)-dependent IL-12 production. Together, these results suggest that WAT cDC1s act as critical regulators of adipose tissue inflammation and metabolic dysfunction during obesity.
Collapse
Affiliation(s)
- Andrew D Hildreth
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Eddie T Padilla
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Meha Gupta
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Yung Yu Wong
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ryan Sun
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Akshara R Legala
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Timothy E O'Sullivan
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
49
|
Swaby A, Atallah A, Varol O, Cristea A, Quail DF. Lifestyle and host determinants of antitumor immunity and cancer health disparities. Trends Cancer 2023; 9:1019-1040. [PMID: 37718223 DOI: 10.1016/j.trecan.2023.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 09/19/2023]
Abstract
Lifestyle factors exert profound effects on host physiology and immunology. Disparities in cancer outcomes persist as a complex and multifaceted challenge, necessitating a comprehensive understanding of the interplay between host environment and antitumor immune responses. Determinants of health - such as obesity, diet, exercise, stress, or sleep disruption - have the potential for modification, yet some exert long-lasting effects and may challenge the notion of complete reversibility. Herein we review intersectional considerations of lifestyle immunity and the impact on tumor immunology and disparities in cancer outcomes, with a focus on obesity.
Collapse
Affiliation(s)
- Anikka Swaby
- Goodman Cancer Research Institute, Montreal, QC, Canada; Department of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Aline Atallah
- Goodman Cancer Research Institute, Montreal, QC, Canada; Department of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Ozgun Varol
- Goodman Cancer Research Institute, Montreal, QC, Canada; Department of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Alyssa Cristea
- Goodman Cancer Research Institute, Montreal, QC, Canada; Department of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Daniela F Quail
- Goodman Cancer Research Institute, Montreal, QC, Canada; Department of Experimental Medicine, McGill University, Montreal, QC, Canada; Department of Physiology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
50
|
Gliniak CM, Pedersen L, Scherer PE. Adipose tissue fibrosis: the unwanted houseguest invited by obesity. J Endocrinol 2023; 259:e230180. [PMID: 37855264 PMCID: PMC11648981 DOI: 10.1530/joe-23-0180] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/27/2023] [Indexed: 09/28/2023]
Abstract
The prevalence of obesity is increasing exponentially across the globe. The lack of effective treatment options for long-term weight loss has magnified the enormity of this problem. Studies continue to demonstrate that adipose tissue holds a biological memory, one of the most important determinant of long-term weight maintenance. This phenomenon is consistent with the metabolically dynamic role of adipose tissue: it adapts and expands to store for excess energy and serves as an endocrine organ capable of synthesizing a number of biologically active molecules that regulate metabolic homeostasis. An important component of the plasticity of adipose tissue is the extracellular matrix, essential for structural support, mechanical stability, cell signaling and function. Chronic obesity upends a delicate balance of extracellular matrix synthesis and degradation, and the ECM accumulates in such a way that prevents the plasticity and function of the diverse cell types in adipose tissue. A series of maladaptive responses among the cells in adipose tissue leads to inflammation and fibrosis, major mechanisms that explain the link between obesity and insulin resistance, risk of type 2 diabetes, cardiovascular disease, and nonalcoholic fatty liver disease. Adipose tissue fibrosis persists after weight loss and further enhances adipose tissue dysfunction if weight is regained. Here, we highlight the current knowledge of the cellular events governing adipose tissue ECM remodeling during the development of obesity. Our goal is to delineate the relationship more clearly between adipose tissue ECM and metabolic disease, an important step toward better defining the pathophysiology of dysfunctional adipose tissue.
Collapse
Affiliation(s)
- Christy M Gliniak
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Line Pedersen
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Philipp E Scherer
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|