1
|
Zhao SL, Liu D, Ding LQ, Liu GK, Yao T, Wu LL, Li G, Cao SJ, Qiu F, Kang N. Schisandra chinensis lignans improve insulin resistance by targeting TLR4 and activating IRS-1/PI3K/AKT and NF-κB signaling pathways. Int Immunopharmacol 2024; 142:113069. [PMID: 39241520 DOI: 10.1016/j.intimp.2024.113069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/14/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
Schisandra chinensis, a traditional Chinese medicine, has been widely applied in China to treat diabetes and its complications. The aim of this study was to discover the active compounds and explain related molecular mechanism contributing to the anti-diabetic effect of Schisandra chinensis. Herein, the therapeutic effects of Schisandra chinensis extracts on type 2 diabetes mellitus (T2DM) were firstly confirmed in vivo. Subsequently, various lignans were isolated from Schisandra chinensis and tested for hypoglycemic activity in palmitic acid-induced insulin-resistant HepG2 (IR-HepG2) cells. Among these lignans, R-biar-(7S,8R)-6,7,8,9-tetrahydro-1,2,3,12,13,14-hexamethoxy-7,8-dimethyl-7-dibenzo [a, c] cyclooctenol (compound 2) and Gomisin A (compound 4) were identified significantly increased the glucose consumption in IR-HepG2 cells. Meanwhile, compounds 2 and 4 activated the insulin receptor substrate-1 (IRS-1)/phosphoinositide 3-kinase (PI3K)/Ak strain transforming (AKT) pathway, which regulates glucose transporter 2 (GLUT2) and glucose-6-phosphatase (G6Pase), essential for gluconeogenesis and glucose uptake. These compounds also inhibited the nuclear factor-κB (NF-κB) signaling pathway, reducing interleukin-6 (IL-6) levels. Importantly, the hypoglycemic effects of compounds 2 and 4 were diminished after Toll-like receptor 4 (TLR4) knockdown. Cellular thermal shift assays confirmed increased TLR4 protein stability upon treatment with these compounds, indicating direct binding to TLR4. Furthermore, TLR4 knockdown reversed the effects of compounds 2 and 4 on the NF-κB and IRS-1/PI3K/AKT pathways. Taken together, compounds 2 and 4 alleviate IR by targeting TLR4, thereby modulating the NF-κB and IRS-1/PI3K/AKT pathways. These findings suggest that compounds 2 and 4 could be developed as therapeutic agents for T2DM.
Collapse
Key Words
- Gomisin A
- IRS-1/PI3K/AKT pathway
- Insulin resistance (IR)
- NF-κB pathway
- R-biar-(7S,8R)-6,7,8,9-tetrahydro-1,2,3,12,13,14-hexamethoxy-7,8- dimethyl-7-dibenzo[a,c]cyclooctenol
- Toll like receptor 4 (TLR4)
Collapse
Affiliation(s)
- Shao-Li Zhao
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Da Liu
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Li-Qin Ding
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Guan-Ke Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tie Yao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lin-Lin Wu
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Gen Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shi-Jie Cao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Feng Qiu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Ning Kang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
2
|
Jiang Y, Feng X, Qiao X, Li Y, Li X, Yang J, Han L. Plant-inspired visible-light-driven bioenergetic hydrogels for chronic wound healing. Bioact Mater 2024; 41:523-536. [PMID: 39210966 PMCID: PMC11359762 DOI: 10.1016/j.bioactmat.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/25/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Chronic bioenergetic imbalances and inflammation caused by hyperglycemia are obstacles that delay diabetic wound healing. However, it is difficult to directly deliver energy and metabolites to regulate intracellular energy metabolism using biomaterials. Herein, we propose a light-driven bioenergetic and oxygen-releasing hydrogel (PTKM@HG) that integrates the thylakoid membrane-encapsulated polyphenol nanoparticles (PTKM NPs) to regulate the energy metabolism and inflammatory response in diabetic wounds. Upon red light irradiation, the PTKM NPs exhibited oxygen generation and H2O2 deletion capacity through a photosynthetic effect to restore hypoxia-induced mitochondrial dysfunction. Meanwhile, the PTKM NPs could produce exogenous ATP and NADPH to enhance mitochondrial function and facilitate cellular anabolism by regulating the leucine-activated mTOR signaling pathway. Furthermore, the PTKM NPs inherited antioxidative and anti-inflammatory ability from polyphenol. Finally, the red light irradiated PTKM@HG hydrogel augmented the survival and migration of cells keratinocytes, and then accelerated angiogenesis and re-epithelialization of diabetic wounds. In short, this study provides possibilities for effectively treating diseases by delivering key metabolites and energy based on such a light-driven bioenergetic hydrogel.
Collapse
Affiliation(s)
- Yuping Jiang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Xiaomin Feng
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Xin Qiao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Yufeng Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Xiaozhuang Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Jinguang Yang
- Key Laboratory of Tobacco Pest Monitoring & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Lu Han
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| |
Collapse
|
3
|
Schulze MB, Stefan N. Metabolically healthy obesity: from epidemiology and mechanisms to clinical implications. Nat Rev Endocrinol 2024; 20:633-646. [PMID: 38937638 DOI: 10.1038/s41574-024-01008-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/31/2024] [Indexed: 06/29/2024]
Abstract
The concept of metabolic health, particularly in obesity, has attracted a lot of attention in the scientific community, and is being increasingly used to determine the risk of cardiovascular diseases and diabetes mellitus-related complications. This Review assesses the current understanding of metabolically healthy obesity (MHO). First, we present the historical evolution of the concept. Second, we discuss the evidence for and against its existence, the usage of different definitions of MHO over the years and the efforts made to provide novel definitions of MHO. Third, we highlight epidemiological data with regard to cardiovascular risk in MHO, which is estimated to be moderately elevated using widely used definitions of MHO when compared with individuals with metabolically healthy normal weight, but potentially not elevated using a novel definition of MHO. Fourth, we discuss novel findings about the physiological mechanisms involved in MHO and how such knowledge helps to identify and characterize both people with MHO and those with metabolically unhealthy normal weight. Finally, we address how the concept of MHO can be used for risk stratification and treatment in clinical practice.
Collapse
Affiliation(s)
- Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.
- German Center for Diabetes Research, Neuherberg, Germany.
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.
| | - Norbert Stefan
- German Center for Diabetes Research, Neuherberg, Germany
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen, Germany
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Centre Munich, Tübingen, Germany
| |
Collapse
|
4
|
Zeinhom A, Fadallah SA, Mahmoud M. Human mesenchymal stem/stromal cell based-therapy in diabetes mellitus: experimental and clinical perspectives. Stem Cell Res Ther 2024; 15:384. [PMID: 39468609 PMCID: PMC11520428 DOI: 10.1186/s13287-024-03974-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/04/2024] [Indexed: 10/30/2024] Open
Abstract
Diabetes mellitus (DM), a chronic metabolic disease, poses a significant global health challenge, with current treatments often fail to prevent the long-term disease complications. Mesenchymal stem/stromal cells (MSCs) are, adult progenitors, able to repair injured tissues, exhibiting regenerative effects and immunoregulatory and anti-inflammatory responses, so they have been emerged as a promising therapeutic approach in many immune-related and inflammatory diseases. This review summarizes the therapeutic mechanisms and outcomes of MSCs, derived from different human tissue sources (hMSCs), in the context of DM type 1 and type 2. Animal model studies and clinical trials indicate that hMSCs can facilitate pleiotropic actions in the diabetic milieu for improved metabolic indices. In addition to modulating abnormally active immune system, hMSCs can ameliorate peripheral insulin resistance, halt beta-cell destruction, preserve residual beta-cell mass, promote beta-cell regeneration and insulin production, support islet grafts, and correct lipid metabolism. Moreover, hMSC-free derivatives, importantly extracellular vesicles, have shown potent experimental anti-diabetic efficacy. Moreover, the review discusses the diverse priming strategies that are introduced to enhance the preclinical anti-diabetic actions of hMSCs. Such strategies are recommended to restore the characteristics and functions of MSCs isolated from patients with DM for autologous implications. Finally, limitations and merits for the wide spread clinical applications of MSCs in DM such as the challenge of autologous versus allogeneic MSCs, the optimal MSC tissue source and administration route, the necessity of larger clinical trials for longer evaluation duration to assess safety concerns, are briefly presented.
Collapse
Affiliation(s)
- Alaa Zeinhom
- Biotechnology Department, Faculty of Science, Cairo University, Cairo Governorate, 12316, Egypt
| | - Sahar A Fadallah
- Biotechnology Department, Faculty of Science, Cairo University, Cairo Governorate, 12316, Egypt
| | - Marwa Mahmoud
- Human Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre (NRC), Cairo, 12622, Egypt.
- Stem Cell Research Unit, Medical Research Centre of Excellence, NRC, Cairo, Egypt.
| |
Collapse
|
5
|
Wang Y, Yan F, Chen Q, Liu F, Xu B, Liu Y, Huo G, Xu J, Li B, Wang S. High-fat diet promotes type 2 diabetes mellitus by disrupting gut microbial rhythms and short-chain fatty acid synthesis. Food Funct 2024; 15:10838-10852. [PMID: 39405046 DOI: 10.1039/d4fo02957g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Diabetes ranks among the top 10 causes of death globally, with over 90% of individuals diagnosed with diabetes having type 2 diabetes mellitus (T2DM). It is acknowledged that a high-fat diet (HFD) poses a serious risk for T2DM. The imbalance of intestinal flora, mediated by HFD, can potentially exacerbate the onset and progression of T2DM. However, the impact of HFD on pathological indicators and the intestinal microbiome in the development of T2DM has not been systematically investigated. Therefore, a HFD mouse model and a T2DM mouse model were established, respectively, in this study. The role of HFD as a driving factor in the development of T2DM was assessed using various measures, including basic pathological indicators of T2DM, lipid metabolism, liver oxidative stress, intestinal permeability, levels of inflammatory factors, gut microbiota, and short-chain fatty acids (SCFAs). The findings indicated that HFD could influence the aforementioned measures to align with T2DM changes, but the contribution of HFD varied across different pathological metrics of T2DM. The impact of HFD on low-density lipoprotein cholesterol, glutathione peroxidase, malondialdehyde, and tumor necrosis factor-α did not show a statistically significant difference from those observed in T2DM during its development. In addition, regarding gut microbes, HFD primarily influenced the alterations in bacteria capable of synthesizing SCFAs. The notable decrease in SCFA content in both serum and cecal matter further underscored the effect of HFD on SCFA-synthesising bacteria in mice. Hence, this research provided a systematic assessment of HFD's propelling role in T2DM's progression. It was inferred that gut microbes, particularly those capable of synthesizing SCFAs, could serve as potential targets for the future prevention and treatment of T2DM instigated by HFD.
Collapse
Affiliation(s)
- Yangrui Wang
- Food College, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Fenfen Yan
- Food College, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
- School of Food and Biology Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu, 221018, China
| | - Qingxue Chen
- Food College, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Fei Liu
- Food College, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Baofeng Xu
- Food College, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Yuanyuan Liu
- Food College, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Guicheng Huo
- Food College, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Jinsheng Xu
- Shanghai Binhan International Trade Co., Ltd, Shanghai, 200000, China
| | - Bailiang Li
- Food College, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Song Wang
- Food College, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
- Shandong Yuwang Ecological Food Industry Co., Ltd, Dezhou, Shandong, 251200, China
| |
Collapse
|
6
|
Rasheed S, Rehman AU, Tasleem Z, Azeem M, Rasool MF, Mehreen A, Al-Tamimi SK. Tests employed in the psychometric validation of the Insulin Treatment Appraisal Scale (ITAS) in T2DM patients; a systematic review of the literature. J Patient Rep Outcomes 2024; 8:124. [PMID: 39453515 PMCID: PMC11511799 DOI: 10.1186/s41687-024-00792-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/19/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Psychological Insulin Resistance (PIR) and negative perceptions regarding insulin treatment are noteworthy challenges in T2DM management, which hinder the timely initiation of insulin treatment. To get past these obstacles a reliable tool is required to evaluate patients' perspectives on insulin administration. Our study aims to conduct a comprehensive systematic review to evaluate the validity and reliability of different validation tests used in the psychometric validation of the ITAS in T2DM patients. METHODS A literature search was carried out, using PubMed, Google Scholar, EMBASE, Cochrane Library and Science Direct. Only those studies assessing content validity, construct validity, concurrent validity, discriminant validity, internal consistency reliability (Cronbach' α), and items-total correlation were retrieved. RESULTS A total of 14 studies illustrated the validity and reliability of ITAS in T2DM patients. Content validity results of S-CVI was 0.97, and I-CVI was 0.8-1.00. Construct validity with factor loading was greater than the threshold value of 0.3. The concurrent validity of ITAS vs. PAID, WHO-5, and SPI was 0.35 (P < 0.05), -0.14 (P < 0.05), and 0.80 (P < 0.001) respectively. The mean difference between insulin and non-insulin group was significant (P < 0.001) showing reliable discriminant validity. Reported results of Cronbach's α for the main scale (0.79-0.89), subscale-1 (0.72-0.9), and subscale-2 (0.61-0.89) showed "good to excellent" internal consistency reliability of ITAS. Item-total correlation results for the main scale, subscale-1, and subscale-2 were (0.40-0.82), (0.31-0.74) and (0.34-0.58) respectively. Test-retest reliability of ITAS was 0.571-0.87. CONCLUSIONS Study findings confirm the robustness of various validation tests utilized in the psychometric validation of ITAS in T2DM patients. ITAS is a well-validated and reliable tool for determining the perspectives, PIR, and changes in patients' perception over time and it can be used to overcome hurdles in the timely initiation of insulin treatment in T2DM patients.
Collapse
Affiliation(s)
- Saba Rasheed
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Anees Ur Rehman
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Zermina Tasleem
- Department of Political Science, Bahauddin Zakariya University, Multan, Pakistan
| | - Marryam Azeem
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Fawad Rasool
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Arifa Mehreen
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | | |
Collapse
|
7
|
Xu W, Zhang D, Ma Y, Gaspar RC, Kahn M, Nasiri A, Murray S, Samuel VT, Shulman GI. Ceramide synthesis inhibitors prevent lipid-induced insulin resistance through the DAG-PKCε-insulin receptor T1150 phosphorylation pathway. Cell Rep 2024; 43:114746. [PMID: 39302831 DOI: 10.1016/j.celrep.2024.114746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/22/2024] [Accepted: 08/28/2024] [Indexed: 09/22/2024] Open
Abstract
Inhibition of the ceramide synthetic pathway with myriocin or an antisense oligonucleotide (ASO) targeting dihydroceramide desaturase (DES1) both improved hepatic insulin sensitivity in rats fed either a saturated or unsaturated fat diet and was associated with reductions in both hepatic ceramide and plasma membrane (PM)-sn-1,2-diacylglycerol (DAG) content. The insulin sensitizing effects of myriocin and Des1 ASO were abrogated by acute treatment with an ASO against DGAT2, which increased hepatic PM-sn-1,2-DAG but not hepatic C16 ceramide content. Increased PM-sn-1,2-DAG content was associated with protein kinase C (PKC)ε activation, increased insulin receptor (INSR)T1150 phosphorylation leading to reduced insulin-stimulated INSRY1152/AktS473 phosphorylation, and impaired insulin-mediated suppression of endogenous glucose production. These results demonstrate that inhibition of de novo ceramide synthesis by either myriocin treatment or DES1 knockdown protects against lipid-induced hepatic insulin resistance through a C16 ceramide-independent mechanism and that they mediate their effects to protect from lipid-induced hepatic insulin resistance via the PM-sn-1,2-DAG-PKCε-INSRT1150 phosphorylation pathway.
Collapse
Affiliation(s)
- Weiwei Xu
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Department of Endocrinology, The First Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Dongyan Zhang
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Yumin Ma
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Department of Endocrinology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Rafael C Gaspar
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Mario Kahn
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Ali Nasiri
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Sue Murray
- Ionis Pharmaceuticals, Carlsbad, CA 92010, USA
| | - Varman T Samuel
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; VA Connecticut Healthcare System, West Haven, CT 06516, USA.
| | - Gerald I Shulman
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
8
|
Li H, Lin L, Huang X, Lu Y, Su X. 2-Hydroxylation is a chemical switch linking fatty acids to glucose-stimulated insulin secretion. J Biol Chem 2024:107912. [PMID: 39442620 DOI: 10.1016/j.jbc.2024.107912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/07/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
Glucose-stimulated insulin secretion (GSIS) in pancreatic β-cells is metabolically regulated and progressively diminished during the development of type 2 diabetes (T2D). This dynamic process is tightly coupled with fatty acid metabolism, but the underlying mechanisms remain poorly understood. Fatty acid 2-hydroxylase (FA2H) catalyzes the conversion of fatty acids to chiral specific (R)-2-hydroxy fatty acids ((R)-2-OHFAs), which influences cell metabolism. However, little is known about its potential coupling with GSIS in pancreatic β cells. Here, we showed that Fa2h knockout decreases plasma membrane localization and protein level of glucose transporter 2 (GLUT2), which is essential for GSIS, thereby controlling blood glucose homeostasis. Conversely, FA2H overexpression increases GLUT2 on the plasma membrane and enhances GSIS. Mechanistically, FA2H suppresses the internalization and trafficking of GLUT2 to the lysosomes for degradation. Overexpression of wild-type FA2H, but not its mutant with impaired hydroxylase activity in the pancreatic β-cells, improves glucose tolerance by promoting insulin secretion. Levels of 2-OHFAs and Fa2h gene expression are lower in high-fat diet-induced obese mouse islets with impaired GSIS. Moreover, lower gene expression of FA2H is observed in a set of human T2D islets when the insulin secretion index is significantly suppressed, indicating the potential involvement of FA2H in regulating mouse and human GSIS. Collectively, our results identified an FA chemical switch to maintain the proper response of GSIS in pancreatic β cells and provided a new perspective on the β-cell failure that triggers T2D.
Collapse
Affiliation(s)
- Hong Li
- Department of Biochemistry and Molecular Biology, Suzhou, 215123, China
| | - Lin Lin
- Department of Biochemistry and Molecular Biology, Suzhou, 215123, China
| | - Xiaoheng Huang
- Department of Biochemistry and Molecular Biology, Suzhou, 215123, China
| | - Yang Lu
- Department of Biochemistry and Molecular Biology, Suzhou, 215123, China
| | - Xiong Su
- Department of Biochemistry and Molecular Biology, Suzhou, 215123, China; MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou, 215123, China; Suzhou Key Laboratory of Systems Biomedicine, Suzhou Medical College of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
9
|
Myers CG, Viswambharan H, Haywood NJ, Bridge K, Turvey S, Armstrong T, Lunn L, Meakin PJ, Porter KE, Clavane EM, Beech DJ, Cubbon RM, Wheatcroft SB, McPhillie MJ, Issad T, Fishwick CW, Kearney MT, Simmons KJ. Small molecule modulation of insulin receptor-insulin like growth factor-1 receptor heterodimers in human endothelial cells. Mol Cell Endocrinol 2024; 594:112387. [PMID: 39419341 DOI: 10.1016/j.mce.2024.112387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/26/2024] [Accepted: 10/12/2024] [Indexed: 10/19/2024]
Abstract
OBJECTIVES The insulin receptor (IR) and insulin like growth factor-1 receptor (IGF-1R) are heterodimers consisting of two extracellular α-subunits and two transmembrane β -subunits. Insulin αβ and insulin like growth factor-1 αβ hemi-receptors can heterodimerize to form hybrids composed of one IR αβ and one IGF-1R αβ. The function of hybrids in the endothelium is unclear. We sought insight by developing a small molecule capable of reducing hybrid formation in endothelial cells. METHODS We performed a high-throughput small molecule screening, based on a homology model of the apo hybrid structure. Endothelial cells were studied using western blotting and qPCR to determine the effects of small molecules that reduced hybrid formation. RESULTS Our studies unveil a first-in-class quinoline-containing heterocyclic small molecule that reduces hybrids by >50% in human umbilical vein endothelial cells (HUVECs) with no effects on IR or IGF-1R. This small molecule reduced expression of the negative regulatory p85α subunit of phosphatidylinositol 3-kinase, increased basal phosphorylation of the downstream target Akt and enhanced insulin/insulin-like growth factor-1 and shear stress-induced serine phosphorylation of Akt. In primary saphenous vein endothelial cells (SVEC) from patients with type 2 diabetes mellitus undergoing coronary artery bypass (CABG) surgery, hybrid receptor expression was greater than in patients without type 2 diabetes mellitus. The small molecule significantly reduced hybrid expression in SVEC from patients with type 2 diabetes mellitus. CONCLUSIONS We identified a small molecule that decreases the formation of IR: IGF-1R hybrid receptors in human endothelial cells, without significant impact on the overall expression of IR or IGF-1R. In HUVECs, reduction of IR: IGF-1R hybrid receptors leads to an increase in insulin-induced serine phosphorylation of the critical downstream signalling kinase, Akt. The underpinning mechanism appears, at least in part to involve the attenuation of the inhibitory effect of IR: IGF-1R hybrid receptors on PI3-kinase signalling.
Collapse
Affiliation(s)
- Chloe G Myers
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Hema Viswambharan
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Natalie J Haywood
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Katherine Bridge
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Samuel Turvey
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Tom Armstrong
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Lydia Lunn
- Department of Chemistry University of Leeds, Leeds, United Kingdom
| | - Paul J Meakin
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Karen E Porter
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Eva M Clavane
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - David J Beech
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom; National Institute for Health and Care Research Leeds Biomedical Research Centre, Leeds, United Kingdom
| | - Richard M Cubbon
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom; National Institute for Health and Care Research Leeds Biomedical Research Centre, Leeds, United Kingdom
| | - Stephen B Wheatcroft
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | | | - Tarik Issad
- Université Paris Cité, CNRS, INSERM, Institut Cochin, F-75014, Paris, France
| | | | - Mark T Kearney
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom; National Institute for Health and Care Research Leeds Biomedical Research Centre, Leeds, United Kingdom.
| | - Katie J Simmons
- School of Biomedical Sciences, Faculty of Biological Sciences & Astbury Centre, University of Leeds, United Kingdom
| |
Collapse
|
10
|
García-Martínez P, Gisbert-Ferrándiz L, Álvarez Á, Esplugues JV, Blas-García A. Bictegravir alters glucose tolerance in vivo and causes hepatic mitochondrial dysfunction. Antiviral Res 2024; 231:106020. [PMID: 39413881 DOI: 10.1016/j.antiviral.2024.106020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/04/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024]
Abstract
Growing evidence associates antiretroviral therapies containing integrase strand transfer inhibitors or tenofovir alafenamide (TAF) with increased weight gain and metabolic diseases, but the underlying mechanisms remain unclear. This study evaluated the impact of lamivudine, dolutegravir (DTG), bictegravir (BIC), tenofovir disoproxil fumarate, and TAF on metabolic alterations, and explored glucose homeostasis and mitochondrial stress as potential mechanisms. These pathways were analyzed both in vivo (C57BL/6J mice treated with the abovementioned drugs or vehicle for 16 weeks) and in vitro (in Hep3B cells). Mice treated with BIC exhibited higher glucose levels and a slower decrease during a glucose tolerance test. Functional enrichment analyses of livers from antiretroviral-treated mice revealed that only BIC altered the cellular response to insulin and induced a gluconeogenic-favoring profile, with Fgf21 playing a significant role. In vitro, BIC significantly reduced hepatocyte glucose uptake in a concentration-dependent manner, both under basal conditions and post-insulin stimulation, while the other drugs produced no significant changes. Hep3B cells treated with clinically relevant concentrations of BIC exhibited significant alterations in the mRNA expression of enzymes related to glucose metabolism. Both DTG and BIC reduced mitochondrial dehydrogenase activity, but only BIC increased reactive oxygen species, mitochondrial membrane potential, and cellular granularity, thereby indicating mitochondrial stress. BIC promoted mitochondrial dysfunction, modified carbohydrate metabolism and glucose consumption in hepatocytes, and altered glucose tolerance and gluconeogenesis regulation in mice. These findings suggest that BIC contributes to insulin resistance and diabetes in people living with HIV, warranting clinical studies to clarify its association with carbohydrate metabolism disorders.
Collapse
Affiliation(s)
- Patricia García-Martínez
- Departamento de Farmacología, Universitat de València, Valencia, Spain; Fundación para El Fomento de La Investigación Sanitaria y Biomédica en La Comunidad Valenciana (FISABIO)-Hospital Universitario Doctor Peset, Valencia, Spain.
| | - Laura Gisbert-Ferrándiz
- Departamento de Farmacología, Universitat de València, Valencia, Spain; Fundación para El Fomento de La Investigación Sanitaria y Biomédica en La Comunidad Valenciana (FISABIO)-Hospital Universitario Doctor Peset, Valencia, Spain.
| | - Ángeles Álvarez
- Departamento de Farmacología, Universitat de València, Valencia, Spain; Fundación para El Fomento de La Investigación Sanitaria y Biomédica en La Comunidad Valenciana (FISABIO)-Hospital Universitario Doctor Peset, Valencia, Spain; Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), Spain.
| | - Juan V Esplugues
- Departamento de Farmacología, Universitat de València, Valencia, Spain; Fundación para El Fomento de La Investigación Sanitaria y Biomédica en La Comunidad Valenciana (FISABIO)-Hospital Universitario Doctor Peset, Valencia, Spain; Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), Spain.
| | - Ana Blas-García
- Fundación para El Fomento de La Investigación Sanitaria y Biomédica en La Comunidad Valenciana (FISABIO)-Hospital Universitario Doctor Peset, Valencia, Spain; Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), Spain; Departamento de Fisiología, Universitat de València, Valencia, Spain.
| |
Collapse
|
11
|
Zaharia OP, Strassburger K, Knebel B, Binsch C, Kupriyanova Y, Möser C, Bódis K, Prystupa K, Yurchenko I, Mendez Cardenas DM, Schön M, Herder C, Al-Hasani H, Schrauwen-Hinderling V, Jandeleit-Dahm K, Wagner R, Roden M. Role of patatin-like phospholipase domain-containing 3 gene for decreasing kidney function in recently diagnosed diabetes mellitus. Diabetes Metab Syndr 2024; 18:103137. [PMID: 39427597 DOI: 10.1016/j.dsx.2024.103137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/12/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024]
Abstract
AIMS We examined the association of the G allele in the single-nucleotide polymorphism (SNP) rs738409 in the third exon of patatin-like phospholipase domain-containing 3 gene (PNPLA3) gene, with chronic kidney disease in diabetes endotypes. METHODS Participants with recent-onset diabetes (n = 707) from the prospective German Diabetes Study (GDS) underwent cluster assignment, detailed phenotyping, genotyping and magnetic resonance spectroscopy to quantify hepatocellular lipid content (HCL). RESULTS Severe insulin-resistant diabetes (SIRD) had the lowest glomerular filtration rates (eGFR) and highest HCL compared to severe insulin-deficient, moderate obesity-related, moderate age-related and severe autoimmune diabetes endotypes (all p < 0.05). HCL was negatively associated with eGFR (r = -0.287, p < 0.01) across all groups. Stratification by G-allele carrier status did not reveal any association between HCL and eGFR among the endotypes. However, the proportion of G-allele carriers increased from 44 % for eGFR >60 ml/min to 52 % for eGFR <60 ml/min (p < 0.05). CONCLUSIONS The PNPLA3 polymorphism may contribute to declining kidney function independently of liver lipids.
Collapse
Affiliation(s)
- Oana Patricia Zaharia
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, München, Neuherberg, Germany
| | - Klaus Strassburger
- German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, München, Neuherberg, Germany; Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Birgit Knebel
- German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, München, Neuherberg, Germany; Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Christian Binsch
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, München, Neuherberg, Germany
| | - Yuliya Kupriyanova
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, München, Neuherberg, Germany
| | - Clara Möser
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, München, Neuherberg, Germany
| | - Kálmán Bódis
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, München, Neuherberg, Germany
| | - Katsiaryna Prystupa
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, München, Neuherberg, Germany
| | - Iryna Yurchenko
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, München, Neuherberg, Germany
| | - Dania Marel Mendez Cardenas
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, München, Neuherberg, Germany
| | - Martin Schön
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, München, Neuherberg, Germany
| | - Christian Herder
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, München, Neuherberg, Germany
| | - Hadi Al-Hasani
- German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, München, Neuherberg, Germany; Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Vera Schrauwen-Hinderling
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, München, Neuherberg, Germany; Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Karin Jandeleit-Dahm
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, München, Neuherberg, Germany; Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Robert Wagner
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, München, Neuherberg, Germany
| | - Michael Roden
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, München, Neuherberg, Germany.
| |
Collapse
|
12
|
Carper D, Lac M, Coue M, Labour A, Märtens A, Banda JAA, Mazeyrie L, Mechta M, Ingerslev LR, Elhadad M, Petit JV, Maslo C, Monbrun L, Del Carmine P, Sainte-Marie Y, Bourlier V, Laurens C, Mithieux G, Joanisse DR, Coudray C, Feillet-Coudray C, Montastier E, Viguerie N, Tavernier G, Waldenberger M, Peters A, Wang-Sattler R, Adamski J, Suhre K, Gieger C, Kastenmüller G, Illig T, Lichtinghagen R, Seissler J, Mounier R, Hiller K, Jordan J, Barrès R, Kuhn M, Pesta D, Moro C. Loss of atrial natriuretic peptide signaling causes insulin resistance, mitochondrial dysfunction, and low endurance capacity. SCIENCE ADVANCES 2024; 10:eadl4374. [PMID: 39383215 PMCID: PMC11463261 DOI: 10.1126/sciadv.adl4374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 09/06/2024] [Indexed: 10/11/2024]
Abstract
Type 2 diabetes (T2D) and obesity are strongly associated with low natriuretic peptide (NP) plasma levels and a down-regulation of NP guanylyl cyclase receptor-A (GCA) in skeletal muscle and adipose tissue. However, no study has so far provided evidence for a causal link between atrial NP (ANP)/GCA deficiency and T2D pathogenesis. Here, we show that both systemic and skeletal muscle ANP/GCA deficiencies in mice promote metabolic disturbances and prediabetes. Skeletal muscle insulin resistance is further associated with altered mitochondrial function and impaired endurance running capacity. ANP/GCA-deficient mice exhibit increased proton leak and reduced content of mitochondrial oxidative phosphorylation proteins. We further show that GCA is related to several metabolic traits in T2D and positively correlates with markers of oxidative capacity in human skeletal muscle. Together, these results indicate that ANP/GCA signaling controls muscle mitochondrial integrity and oxidative capacity in vivo and plays a causal role in the development of prediabetes.
Collapse
Affiliation(s)
- Deborah Carper
- Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University, UMR1297, Team MetaDiab, Toulouse, France
| | - Marlène Lac
- Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University, UMR1297, Team MetaDiab, Toulouse, France
| | - Marine Coue
- Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University, UMR1297, Team MetaDiab, Toulouse, France
| | - Axel Labour
- Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University, UMR1297, Team MetaDiab, Toulouse, France
| | - Andre Märtens
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig and Physikalisch-Technische Bundesanstalt, Brunswick, Germany
| | - Jorge Alberto Ayala Banda
- Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University, UMR1297, Team MetaDiab, Toulouse, France
| | - Laurène Mazeyrie
- Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University, UMR1297, Team MetaDiab, Toulouse, France
| | - Mie Mechta
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars Roed Ingerslev
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mohamed Elhadad
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | | | - Claire Maslo
- Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University, UMR1297, Team MetaDiab, Toulouse, France
| | - Laurent Monbrun
- Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University, UMR1297, Team MetaDiab, Toulouse, France
| | - Peggy Del Carmine
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR, 5261 Lyon, France
| | - Yannis Sainte-Marie
- Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University, UMR1297, Team MetaDiab, Toulouse, France
| | - Virginie Bourlier
- Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University, UMR1297, Team MetaDiab, Toulouse, France
| | - Claire Laurens
- Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University, UMR1297, Team MetaDiab, Toulouse, France
| | | | - Denis R. Joanisse
- Department of Kinesiology, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - Charles Coudray
- Dynamique Musculaire Et Métabolisme, INRAE, UMR866, Université Montpellier, Montpellier, France
| | | | - Emilie Montastier
- Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University, UMR1297, Team MetaDiab, Toulouse, France
| | - Nathalie Viguerie
- Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University, UMR1297, Team MetaDiab, Toulouse, France
| | - Geneviève Tavernier
- Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University, UMR1297, Team MetaDiab, Toulouse, France
| | - Melanie Waldenberger
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Rui Wang-Sattler
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Jerzy Adamski
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Karsten Suhre
- Bioinformatics Core, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Christian Gieger
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Gabi Kastenmüller
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Thomas Illig
- Hannover Unified Biobank, Hannover Medical School, Hanover, Germany
| | - Ralf Lichtinghagen
- Department of Clinical Chemistry, Hannover Medical School, Hannover, Germany
| | - Jochen Seissler
- Diabetes Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU, München, Germany
| | - Remy Mounier
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR, 5261 Lyon, France
| | - Karsten Hiller
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig and Physikalisch-Technische Bundesanstalt, Brunswick, Germany
| | - Jens Jordan
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
- Medical Faculty, University of Cologne, Cologne, Germany
| | - Romain Barrès
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michaela Kuhn
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| | - Dominik Pesta
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
- Medical Faculty, University of Cologne, Cologne, Germany
- Center for Endocrinology, Diabetes, and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Cedric Moro
- Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University, UMR1297, Team MetaDiab, Toulouse, France
| |
Collapse
|
13
|
Li H, Lin L, Zhao M. Simultaneous recycling of flavonone and polymethoxyflavonoids from Chenpi processing residue based on their complementary action on glycolipid lowering activity: Innovative combination use of yeast and aqueous two-phase system. Food Chem 2024; 463:141561. [PMID: 39393112 DOI: 10.1016/j.foodchem.2024.141561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/25/2024] [Accepted: 10/05/2024] [Indexed: 10/13/2024]
Abstract
This study aimed at recycling flavonoids with glycolipid lowering activity from Chenpi processing residue produced by essential oil extraction. The crude Chenpi flavonoids obtained by ethanol reflux mainly contained flavonone (hesperidin) and polymethoxyflavonoids (nobiletin, tangeretin, sinensetin, and isosinensetin), which complementally exerted strong glycolipid lowering activity as revealed by digestive enzyme inhibitory activity, molecular docking and network pharmacology. The reducing sugar and water-soluble impurities were efficiently removed by yeast fermentation and aqueous two-phase system (ATPS) extraction, respectively. The optimal combination use of yeast (2 % w/v, CN36) and ATPS formed by 22 % (w/w) (NH4)2SO4 and 25 % (w/w) ethanol improved flavonoid purity to 60.25 %, enriched flavonone and polymethoxyflavonoids by 6.69-fold, and enhanced digestive enzyme inhibitory activity, which was superior to the use of individual yeast or ATPS, unoptimized combination, macroporous resin (XAD-16), and ethyl acetate. This study was the first to develop a recyclable biophysical method for simultaneous enrichment of flavonone and polymethoxyflavonoids.
Collapse
Affiliation(s)
- Hanliang Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Food Green Processing and Nutrition Regulation Technology, Research Center, Guangzhou 510641, China
| | - Lianzhu Lin
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Food Green Processing and Nutrition Regulation Technology, Research Center, Guangzhou 510641, China.
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Food Green Processing and Nutrition Regulation Technology, Research Center, Guangzhou 510641, China
| |
Collapse
|
14
|
Golmohammadi M, Attari VE, Salimi Y, Nachvak SM, Samadi M. The effect of MIND diet on sleep status, anxiety, depression, and cardiometabolic indices in obese diabetic women with insomnia: study protocol for a randomized controlled clinical trial {1}. Trials 2024; 25:660. [PMID: 39370509 PMCID: PMC11457347 DOI: 10.1186/s13063-024-08486-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 09/19/2024] [Indexed: 10/08/2024] Open
Abstract
BACKGROUND The Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) diet is a plant-based and anti-inflammatory diet that has the ability to protect and manage cardiovascular and nervous system diseases. Regarding that insomnia and cardiovascular problems are x`common in type 2 diabetes mellitus (T2DM), the present study will assess the effectiveness of the MIND dietary pattern on sleep quality, cardiometabolic indicators, and other psychological indicators. METHODS Forty-four overweight/obese T2DM women with insomnia, aged 30-65 years, will voluntarily participate in this randomized controlled trial and will be randomized to receive either a MIND low-calorie diet (MLCD) or a low-calorie diet (LCD) over a 3-month period. Before and after the study, sleep quality, some biochemical and cardiometabolic indices, cortisol, brain-derived neurotrophic factor (BDNF), high-sensitivity C-reactive protein (hs-CRP), and oxidative stress indicators will be assessed. DISCUSSION The use of dietary interventions in the management of T2DM complications is practical and safe. This research seeks to investigate the capacity of the MIND diet in the management of insomnia and cardiovascular problems of DM. It is expected that the results of this research will provide new perspectives on using an ideal dietary regimen to treat these health conditions. TRIAL REGISTRATION IRCT20181111041611N8. Registered on August 7, 2023. https://www.irct.ir/trial/71772.
Collapse
Affiliation(s)
- Mona Golmohammadi
- Student Research Committee, Department of Nutritional Sciences, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Vahideh Ebrahimzadeh Attari
- Department of Biochemistry and Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yahya Salimi
- Social Development & Health Promotion Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Mostafa Nachvak
- Department of Nutritional Sciences, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Mehnoosh Samadi
- Department of Nutritional Sciences, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
15
|
Yuan M, Wang Y, Wan Y, Li S, Tang J, Liang X, Zeng B, Li M, Wei X, Li X, Guo L, Guo Y. Novel sodium tauroursodeoxycholate-based multifunctional liposomal delivery system for encapsulation of oleanolic acid and combination therapy of type 2 diabetes mellitus. Int J Pharm 2024; 666:124803. [PMID: 39368671 DOI: 10.1016/j.ijpharm.2024.124803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/27/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
Liposomes have demonstrated great potential for drug delivery and diabetes treatment. However, hydrolysis by enzymes and emulsification by endogenous bile salts make liposomes unstable in the gastrointestinal tract. In this study, sodium tauroursodeoxycholate (TUDCNa)-based multifunctional bilosomes were designed to address the deficiencies of conventional liposomes. In the designed bilosomes, cholesterol was replaced by TUDCNa, which served as both a membrane stabilizer and an antidiabetic drug. Oleanolic acid (OA) was encapsulated in both conventional liposomes (OA-Ch-Lip) and bilosomes (OA-Tu-Bil) to compare their properties. Firstly, OA-Tu-Bil exhibited similar encapsulation efficiency and drug loading compared to OA-Ch-Lip, but with a smaller particle size. Secondly, OA-Tu-Bil showed better stability than OA-Ch-Lip. Thirdly, bilosomes exhibited prolonged intestinal retention time and improved permeability and oral bioavailability. Fourthly, in type 2 diabetes mellitus (T2DM) mice model, TUDCNa synergized with OA to exhibit the strongest therapeutic effect. In conclusion, TUDCNa have demonstrated the ability to substitute cholesterol in conventional liposomes, it provided a new approach for oral delivery of hypoglycemic drugs, and offered an innovative strategy for combination therapy.
Collapse
Affiliation(s)
- Minghao Yuan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Yulu Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Yan Wan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Sihui Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Jiamei Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Xue Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Bin Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Meifeng Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Xiaohang Wei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Xiaohong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Li Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China.
| | - Yiping Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China.
| |
Collapse
|
16
|
Sio YC, Chen CY, Huang YM, Lee WJ, Hur KY, Kasama K, Cheng AKS, Lee MH, Simon KHW, Soong TC, Lee KT, Lomanto D, Lakdawala M, Su YH, Wang W, Chen HH. Mid- and long-term renal outcomes after metabolic surgery in a multi-center, multi-ethnic Asian cohort with T2DM. Clin Kidney J 2024; 17:sfae260. [PMID: 39398352 PMCID: PMC11467693 DOI: 10.1093/ckj/sfae260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Indexed: 10/15/2024] Open
Abstract
Background Metabolic surgery is recognized for its effectiveness in weight loss and improving outcomes for individuals with type 2 diabetes mellitus (T2DM). However, its impact on renal function, especially in multi-ethnic Asian populations, remains underexplored. This study investigates mid- and long-term renal outcomes following metabolic surgery in Asian patients with T2DM. Methods This retrospective cohort study utilized data from the Asian Diabetes Surgery Study (ADSS), involving T2DM patients aged 20-79 who underwent metabolic surgery from 2008 to 2015. The primary outcome was the change in estimated glomerular filtration rate (eGFR) at 1, 3, and 5 years post-surgery, with adjustments for confounders. Secondary outcomes included changes in chronic kidney disease (CKD) stages and the relationship between weight loss and eGFR changes. Data were analyzed using univariate and multivariable regression analyses, along with the McNemar test. Results The study included 1513 patients with a mean age of 42.7 years. The results revealed that a significant improvement in eGFR was observed at 1-year post-surgery (112.4 ± 32.0 ml/min/1.73 m², P < .001), with a shift toward less severe CKD stages. However, this improvement was not sustained at 3 and 5 years. No significant correlation was found between weight loss and eGFR changes at 1-year follow-up. Conclusion Metabolic surgery significantly improves renal function at 1 year postoperatively in Asian individuals with T2DM, highlighting its potential benefits beyond glycemic control and weight loss. The long-term effects on renal function require further investigation.
Collapse
Affiliation(s)
- Yueh-Chu Sio
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ching-Yi Chen
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Min Huang
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Gastrointestinal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Wei-Jei Lee
- Medical Weight Loss Center, China Medical University Hsinchu Hospital, Hsincu, Taiwan
| | - Kyoung Yul Hur
- Department of Surgery, SoonChunHyang University Seoul Hospital, Seoul, Korea
| | - Kazunori Kasama
- Weight Loss and Metabolic Surgery Center, Yotsuya Medical Cube, Tokyo, Japan
| | | | - Ming-Hsien Lee
- Metabolic and Bariatric Center, Taichung Tzu Chi Hospital, Taichung, Taiwan
| | - Kin-Hung Wong Simon
- Department of Surgery, Prince of Wales Hospital, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Tien-Chou Soong
- Department of Weight Loss and Health Management Center, E-DA Dachang Hospital, Kaohsiung, Taiwan
| | - Kuo-Ting Lee
- Department of Surgery, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Davide Lomanto
- Division of General Surgery (Upper Gastrointestinal Surgery), Department of Surgery, University Surgical Cluster, National University Hospital, Singapore, Singapore
| | - Muffazal Lakdawala
- Institute of Minimally Invasive Surgical Sciences and Research, Saifee Hospital, Mumbai, India
| | - Yen-Hao Su
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Weu Wang
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Gastrointestinal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsi-Hsien Chen
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
17
|
Gao K, Sun B, Zhou G, Cao Z, Xiang L, Yu J, Wang R, Yao Y, Lin F, Li Z, Ren F, Lv Y, Lu Q. Blood-based biomemristor for hyperglycemia and hyperlipidemia monitoring. Mater Today Bio 2024; 28:101169. [PMID: 39183770 PMCID: PMC11342282 DOI: 10.1016/j.mtbio.2024.101169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/27/2024] Open
Abstract
Thanks to its structural characteristics and signal patterns similar to those of human brain synapses, memristors are widely believed to be applicable for neuromorphic computing. However, to our knowledge, memristors have not been effectively applied in the biomedical field, especially in disease diagnosis and health monitoring. In this work, a blood-based biomemristor was prepared for in vitro detection of hyperglycemia and hyperlipidemia. It was found that the device exhibits excellent resistance switching (RS) behavior at lower voltage biases. Through mechanism analysis, it has been confirmed that the RS behavior is driven by Ohmic conduction and ion rearrangement. Furthermore, the hyperglycemia and hyperlipidemia detection devices were constructed for the first time based on memristor logic circuits, and circuit simulations were conducted. These results confirm the feasibility of blood-based biomemristors in detecting hyperglycemia and hyperlipidemia, providing new prospects for the important application of memristors in the biomedical field.
Collapse
Affiliation(s)
- Kaikai Gao
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- Micro-and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Bai Sun
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- Micro-and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Guangdong Zhou
- College of Artificial Intelligence, Brain-inspired Computing & Intelligent Control of Chongqing Key Lab, Southwest University, Chongqing, 400715, China
| | - Zelin Cao
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- Micro-and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Linbiao Xiang
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Jiawei Yu
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Ruixin Wang
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yingmin Yao
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Fulai Lin
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Zhuoqun Li
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Fenggang Ren
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yi Lv
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Qiang Lu
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| |
Collapse
|
18
|
Lin C, Chen Y, Ge Y, Niu H, Zhang X, Jiang F, Wu C. A Bibliometric and Knowledge-Map Analysis of Macrophage Polarization in Insulin Resistance From 1999 to 2023. Immun Inflamm Dis 2024; 12:e70048. [PMID: 39465505 PMCID: PMC11513609 DOI: 10.1002/iid3.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/14/2024] [Accepted: 10/08/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Despite numerous studies confirming the association between insulin resistance (IR) and macrophage polarization, there is a lack of bibliometric analysis in this area. Therefore, our objective is to conduct a comprehensive analysis of published literature and identify potential future research trends using bibliometrics. METHOD Publications on the topic of macrophage polarization in IR were gathered from the Web of Science Core Collection database (WoSCC) spanning the years 1999-2023. Bibliometric analysis and visualization were conducted using VOSviewers, CiteSpace, the R package "bibliometrix" and Tableau Public. RESULT A total of 3435 articles published between 1999 and 2023 were included in the analysis. These articles originated from 75 countries, with the United States and China leading in contributions. The top five research institutions are the University of California, San Diego, Harvard University, the University of Michigan, Shanghai Jiao Tong University, and Huazhong University of Science and Technology. In this research domain, Diabetes is the most frequently published journal, and the Journal of Clinical Investigation is the most co-cited. Among the 19,398 authors contributing to these publications, Lumeng CN. not only authored the most papers but also received the highest number of co-citations. "Insulin resistance" emerges as a primary keyword in the analysis of emerging research hotspots. CONCLUSION For the first time, bibliometric methods have been employed to conduct a comprehensive summary of papers relevant to macrophage polarization in IR. This study aims to identify the current research direction and future research hotspots, offering valuable guidance and insights for scholars in the field.
Collapse
Affiliation(s)
- Chuning Lin
- Department of Rehabilitation MedicineThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu ProvinceChina
| | - Yuan Chen
- Department of Rehabilitation MedicineThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu ProvinceChina
| | - Yao Ge
- Department of Rehabilitation MedicineThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu ProvinceChina
| | - Huimin Niu
- Department of Rehabilitation MedicineThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu ProvinceChina
| | - Xinyi Zhang
- Department of Rehabilitation MedicineThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu ProvinceChina
| | - Feng Jiang
- Department of NeonatologyObstetrics and Gynecology Hospital of Fudan UniversityShanghaiJiangsu ProvinceChina
| | - Chuyan Wu
- Department of Rehabilitation MedicineThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu ProvinceChina
| |
Collapse
|
19
|
Okamoto N, Hoshikawa T, Honma Y, Chibaatar E, Ikenouchi A, Harada M, Yoshimura R. Effect modification of tumor necrosis factor-α on the kynurenine and serotonin pathways in major depressive disorder on type 2 diabetes mellitus. Eur Arch Psychiatry Clin Neurosci 2024; 274:1697-1707. [PMID: 37991535 PMCID: PMC11422469 DOI: 10.1007/s00406-023-01713-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/29/2023] [Indexed: 11/23/2023]
Abstract
Major depressive disorder (MDD) is strongly associated with type 2 diabetes mellitus (T2DM). The kynurenine and serotonin pathways, as well as chronic low-grade inflammation, are being considered potential links between them. MDD associated with T2DM is less responsive to treatment than that without T2DM; however, the underlying mechanism remains unknown. We aimed to investigate the effects of inflammatory cytokines on the kynurenine and serotonin pathways in patients with comorbid MDD and T2DM and those with only MDD. We recruited 13 patients with comorbid MDD and T2DM and 27 patients with only MDD. We measured interleukin-6 and tumor necrosis factor-α (TNF-α) levels as inflammatory cytokines and metabolites of the kynurenine pathway and examined the relationship between the two. TNF-α levels were significantly higher in patients with comorbid MDD and T2DM than in those with only MDD in univariate (p = 0.044) and multivariate (adjusted p = 0.036) analyses. TNF-α showed a statistically significant effect modification (interaction) with quinolinic acid/tryptophan and serotonin in patients from both groups (β = 1.029, adjusted p < 0.001; β = - 1.444, adjusted p = 0.047, respectively). Limitations attributed to the study design and number of samples may be present. All patients were Japanese with mild to moderate MDD; therefore, the generalizability of our findings may be limited. MDD with T2DM has more inflammatory depression components and activations of the kynurenine pathway by inflammatory cytokines than MDD without T2DM. Hence, administering antidepressants and anti-inflammatory drugs in combination may be more effective in patients with comorbid MDD and T2DM.
Collapse
Affiliation(s)
- Naomichi Okamoto
- Department of Psychiatry, University of Occupational and Environmental Health, 807-8555, Kitakyushu, Fukuoka, 8078555, Japan.
| | - Takashi Hoshikawa
- Department of Psychiatry, University of Occupational and Environmental Health, 807-8555, Kitakyushu, Fukuoka, 8078555, Japan
| | - Yuichi Honma
- Third Department of Internal Medicine, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Enkhmurun Chibaatar
- Department of Psychiatry, University of Occupational and Environmental Health, 807-8555, Kitakyushu, Fukuoka, 8078555, Japan
| | - Atsuko Ikenouchi
- Department of Psychiatry, University of Occupational and Environmental Health, 807-8555, Kitakyushu, Fukuoka, 8078555, Japan
- Medical Center for Dementia, University Hospital, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Masaru Harada
- Third Department of Internal Medicine, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Reiji Yoshimura
- Department of Psychiatry, University of Occupational and Environmental Health, 807-8555, Kitakyushu, Fukuoka, 8078555, Japan
| |
Collapse
|
20
|
Kuo BL, Muste JC, Russell MW, Wu AK, Valentim CCS, Singh RP. Evidence for the Hepato-Retinal Axis: A Systematic Review. Ophthalmic Surg Lasers Imaging Retina 2024; 55:587-596. [PMID: 39037358 DOI: 10.3928/23258160-20240524-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
BACKGROUND AND OBJECTIVE Liver health has been reported to be associated with retinal pathology in various ways. These include deposition of retino-toxins, neovascular drive, and disruption of the blood-retina barrier. Extrahepatic synthesis of implicated molecules and hemodynamic changes in liver dysfunction are also considered. The objective was to review the current evidence for and against a hepato-retinal axis that may guide further areas of preclinical and clinical investigation. METHODS This was a systematic review. PubMed and Cochrane were queried for English language studies examining the connection between hepatic dysfunction and retinal pathology. RESULTS Fourteen studies were included and examined out of 604 candidate publications. The studies selected include preclinical studies as well as clinical case series and studies. CONCLUSIONS Several liver pathologies may be linked to retinal pathology as mediated by hepatically synthesized molecules. The hepato-retinal axis may be present and further, targeted studies of the axis are warranted. [Ophthalmic Surg Lasers Imaging Retina 2024;55:587-596.].
Collapse
|
21
|
Schaefer E, Lang A, Kupriyanova Y, Bódis KB, Weber KS, Buyken AE, Barbaresko J, Kössler T, Kahl S, Zaharia OP, Szendroedi J, Herder C, Schrauwen-Hinderling VB, Wagner R, Kuss O, Roden M, Schlesinger S. Adherence to the Dietary Approaches to Stop Hypertension (DASH) diet is associated with lower visceral and hepatic lipid content in recent-onset type 1 diabetes and type 2 diabetes. Diabetes Obes Metab 2024; 26:4281-4292. [PMID: 39010284 DOI: 10.1111/dom.15772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 07/17/2024]
Abstract
AIM To investigate the associations of the Dietary Approaches to Stop Hypertension (DASH) score with subcutaneous (SAT) and visceral (VAT) adipose tissue volume and hepatic lipid content (HLC) in people with diabetes and to examine whether changes in the DASH diet were associated with changes in these outcomes. METHODS In total, 335 participants with recent-onset type 1 diabetes (T1D) and type 2 diabetes (T2D) from the German Diabetes Study were included in the cross-sectional analysis, and 111 participants in the analysis of changes during the 5-year follow-up. Associations between the DASH score and VAT, SAT and HLC and their changes were investigated using multivariable linear regression models by diabetes type. The proportion mediated by changes in potential mediators was determined using mediation analysis. RESULTS A higher baseline DASH score was associated with lower HLC, especially in people with T2D (per 5 points: -1.5% [-2.7%; -0.3%]). Over 5 years, a 5-point increase in the DASH score was associated with decreased VAT in people with T2D (-514 [-800; -228] cm3). Similar, but imprecise, associations were observed for VAT changes in people with T1D (-403 [-861; 55] cm3) and for HLC in people with T2D (-1.3% [-2.8%; 0.3%]). Body mass index and waist circumference changes explained 8%-48% of the associations between DASH and VAT changes in both groups. In people with T2D, adipose tissue insulin resistance index (Adipo-IR) changes explained 47% of the association between DASH and HLC changes. CONCLUSIONS A shift to a DASH-like diet was associated with favourable VAT and HLC changes, which were partly explained by changes in anthropometric measures and Adipo-IR.
Collapse
Affiliation(s)
- Edyta Schaefer
- Institute for Biometrics and Epidemiology, German Diabetes Centre, Leibniz Centre for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Centre for Diabetes Research (DZD), Partner Düsseldorf, Neuherberg, Germany
| | - Alexander Lang
- Institute for Biometrics and Epidemiology, German Diabetes Centre, Leibniz Centre for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Yuliya Kupriyanova
- German Centre for Diabetes Research (DZD), Partner Düsseldorf, Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Centre, Leibniz Centre for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Kálmán B Bódis
- German Centre for Diabetes Research (DZD), Partner Düsseldorf, Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Centre, Leibniz Centre for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- Division of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Katharina S Weber
- German Centre for Diabetes Research (DZD), Partner Düsseldorf, Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Centre, Leibniz Centre for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- Institute of Epidemiology, Kiel University, Kiel, Germany
| | - Anette E Buyken
- Department of Sports and Health, Institute of Nutrition, Consumption and Health, Paderborn University, Paderborn, Germany
| | - Janett Barbaresko
- Institute for Biometrics and Epidemiology, German Diabetes Centre, Leibniz Centre for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Theresa Kössler
- German Centre for Diabetes Research (DZD), Partner Düsseldorf, Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Centre, Leibniz Centre for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- Division of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sabine Kahl
- Institute for Clinical Diabetology, German Diabetes Centre, Leibniz Centre for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| | - Oana-Patricia Zaharia
- German Centre for Diabetes Research (DZD), Partner Düsseldorf, Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Centre, Leibniz Centre for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- Division of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Julia Szendroedi
- German Centre for Diabetes Research (DZD), Partner Düsseldorf, Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Centre, Leibniz Centre for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- Division of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, Heidelberg, Germany
| | - Christian Herder
- German Centre for Diabetes Research (DZD), Partner Düsseldorf, Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Centre, Leibniz Centre for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- Division of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Vera B Schrauwen-Hinderling
- German Centre for Diabetes Research (DZD), Partner Düsseldorf, Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Centre, Leibniz Centre for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Robert Wagner
- German Centre for Diabetes Research (DZD), Partner Düsseldorf, Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Centre, Leibniz Centre for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- Division of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Oliver Kuss
- Institute for Biometrics and Epidemiology, German Diabetes Centre, Leibniz Centre for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Centre for Diabetes Research (DZD), Partner Düsseldorf, Neuherberg, Germany
- Centre for Health and Society, Faculty of Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Roden
- German Centre for Diabetes Research (DZD), Partner Düsseldorf, Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Centre, Leibniz Centre for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- Division of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sabrina Schlesinger
- Institute for Biometrics and Epidemiology, German Diabetes Centre, Leibniz Centre for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Centre for Diabetes Research (DZD), Partner Düsseldorf, Neuherberg, Germany
| |
Collapse
|
22
|
Klemm RW, Carvalho P. Lipid Droplets Big and Small: Basic Mechanisms That Make Them All. Annu Rev Cell Dev Biol 2024; 40:143-168. [PMID: 39356808 DOI: 10.1146/annurev-cellbio-012624-031419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Lipid droplets (LDs) are dynamic storage organelles with central roles in lipid and energy metabolism. They consist of a core of neutral lipids, such as triacylglycerol, which is surrounded by a monolayer of phospholipids and specialized surface proteins. The surface composition determines many of the LD properties, such as size, subcellular distribution, and interaction with partner organelles. Considering the diverse energetic and metabolic demands of various cell types, it is not surprising that LDs are highly heterogeneous within and between cell types. Despite their diversity, all LDs share a common biogenesis mechanism. However, adipocytes have evolved specific adaptations of these basic mechanisms, enabling the regulation of lipid and energy metabolism at both the cellular and organismal levels. Here, we discuss recent advances in the understanding of both the general mechanisms of LD biogenesis and the adipocyte-specific adaptations controlling these fascinating organelles.
Collapse
Affiliation(s)
- Robin W Klemm
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom;
| | - Pedro Carvalho
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom;
| |
Collapse
|
23
|
Bozbay N, Medinaeva A, Akyürek F, Orgul G. The role of first-trimester systemic immune-inflammation index for the prediction of gestational diabetes mellitus. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2024; 70:e20240532. [PMID: 39356958 PMCID: PMC11444230 DOI: 10.1590/1806-9282.20240532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 10/04/2024]
Abstract
OBJECTIVE The aim of this study was to investigate the role of systemic immune-inflammation index, neutrophil-lymphocyte ratio, lymphocyte-monocyte ratio, and platelet-lymphocyte ratios calculated in the first trimester as inflammatory markers in predicting gestational diabetes mellitus diagnosis. METHODS This study was conducted retrospectively at a tertiary center between January 2020 and June 2023. A total of 111 pregnant women with gestational diabetes and 378 pregnant women in the control group were included in the study. Systemic immune-inflammation index, neutrophil-lymphocyte ratio, lymphocyte-monocyte ratio, and platelet-lymphocyte ratios values were compared between the gestational diabetes mellitus group patients and the healthy group. Receiver operating characteristic analysis curve was used for predicting gestational diabetes mellitus using systemic immune-inflammation index and lymphocyte-monocyte ratio. RESULTS In pregnant women in the first trimester, systemic immune-inflammation index and lymphocyte-monocyte ratio values based on routine complete blood count parameters were found to be statistically significantly higher in gestational diabetes mellitus patients compared to healthy patients, while neutrophil-lymphocyte ratio and platelet-lymphocyte ratios values were found to be similar (p=0.033, p=0.005, p=0.211, and p=0.989). For predicting gestational diabetes mellitus, a cut-off value of 655.75 for systemic immune-inflammation index resulted in 80.2% sensitivity and 34.4% specificity, and a cut-off value of 3.62 for lymphocyte-monocyte ratio resulted in 56.8% sensitivity and 63.2% specificity, indicating good discriminatory ability. CONCLUSION We believe that systemic immune-inflammation index and lymphocyte-monocyte ratio values measured in the first-trimester complete blood count parameters are effective in predicting gestational diabetes mellitus but are not effective in determining insulin requirement.
Collapse
Affiliation(s)
- Nizamettin Bozbay
- Selcuk University, Faculty of Medicine, Department of Perinatology – Konya, Turkey
| | - Anara Medinaeva
- Selcuk University, Faculty of Medicine, Department of Obstetrics and Gynecology – Konya, Turkey
| | - Fikret Akyürek
- Selcuk University, Faculty of Medicine, Department of Biochemistry – Konya, Turkey
| | - Gokcen Orgul
- Selcuk University, Faculty of Medicine, Department of Perinatology – Konya, Turkey
| |
Collapse
|
24
|
Odimegwu CL, Uwaezuoke SN, Chikani UN, Mbanefo NR, Adiele KD, Nwolisa CE, Eneh CI, Ndiokwelu CO, Okpala SC, Ogbuka FN, Odo KE, Ohuche IO, Obiora-Izuka CE. Targeting the Epigenetic Marks in Type 2 Diabetes Mellitus: Will Epigenetic Therapy Be a Valuable Adjunct to Pharmacotherapy? Diabetes Metab Syndr Obes 2024; 17:3557-3576. [PMID: 39323929 PMCID: PMC11423826 DOI: 10.2147/dmso.s479077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/03/2024] [Indexed: 09/27/2024] Open
Abstract
Although genetic, environmental, and lifestyle factors largely contribute to type 2 diabetes mellitus (T2DM) risk, the role of epigenetics in its pathogenesis is now well established. The epigenetic mechanisms in T2DM mainly consist of DNA methylation, histone modifications and regulation by noncoding RNAs (ncRNAs). For instance, DNA methylation at CpG islands in the promoter regions of specific genes encoding insulin signaling and glucose metabolism suppresses these genes. Modulating the enzyme mediators of these epigenetic marks aims to restore standard gene expression patterns and improve glycemic control. In targeting these epigenetic marks, using epigenetic drugs such as DNA methyltransferase (DNAMT), histone deacetylase (HDAC) and histone acetyltransferase (HAT) inhibitors has led to variable success in humans and experimental murine models. Specifically, the United States' Food and Drug Administration (US FDA) has approved DNAMT inhibitors like 5-azacytidine and 5-aza-2'-deoxycytidine for use in diabetic retinopathy: a T2DM microvascular complication. These DNAMT inhibitors block the genes for methylation of mitochondrial superoxide dismutase 2 (SOD2) and matrix metallopeptidase 9 (MMP-9): the epigenetic marks in diabetic retinopathy. Traditional pharmacotherapy with metformin also have epigenetic effects in T2DM and positively alter disease outcomes when combined with epigenetic drugs like DNAMT and HDAC inhibitors, raising the prospect of using epigenetic therapy as a valuable adjunct to pharmacotherapy. However, introducing small interfering RNAs (siRNAs) in cells to silence specific target genes remains in the exploratory phase. Future research should focus on regulating gene expression in T2DM using long noncoding RNA (lncRNA) molecules, another type of ncRNA. This review discusses the epigenetics of T2DM and that of its macro- and microvascular complications, and the potential benefits of combining epigenetic therapy with pharmacotherapy for optimal results.
Collapse
Affiliation(s)
- Chioma Laura Odimegwu
- Department of Pediatrics, the University of Nigeria Teaching Hospital (UNTH), Ituku-Ozalla Enugu, Nigeria
| | - Samuel Nkachukwu Uwaezuoke
- Department of Pediatrics, the University of Nigeria Teaching Hospital (UNTH), Ituku-Ozalla Enugu, Nigeria
| | - Ugo N Chikani
- Department of Pediatrics, the University of Nigeria Teaching Hospital (UNTH), Ituku-Ozalla Enugu, Nigeria
| | - Ngozi Rita Mbanefo
- Department of Pediatrics, the University of Nigeria Teaching Hospital (UNTH), Ituku-Ozalla Enugu, Nigeria
| | - Ken Daberechi Adiele
- Department of Pediatrics, the University of Nigeria Teaching Hospital (UNTH), Ituku-Ozalla Enugu, Nigeria
| | | | - Chizoma Ihuarula Eneh
- Department of Pediatrics, Enugu State University Teaching Hospital (ESUTH), Enugu, Nigeria
| | - Chibuzo Obiora Ndiokwelu
- Department of Pediatrics, the University of Nigeria Teaching Hospital (UNTH), Ituku-Ozalla Enugu, Nigeria
| | - Somkenechi C Okpala
- Department of Pediatrics, the University of Nigeria Teaching Hospital (UNTH), Ituku-Ozalla Enugu, Nigeria
| | - Francis N Ogbuka
- Department of Pediatrics, Enugu State University Teaching Hospital (ESUTH), Enugu, Nigeria
| | - Kenneth E Odo
- Department of Pediatrics, the University of Nigeria Teaching Hospital (UNTH), Ituku-Ozalla Enugu, Nigeria
| | | | | |
Collapse
|
25
|
Li L, Zou Y, Shen C, Chen N, Tong M, Liu R, Wang J, Ning G. Hepatic Dyrk1b impairs systemic glucose homeostasis by modulating Wbp2 expression in a kinase activity-dependent manner. Heliyon 2024; 10:e36726. [PMID: 39296215 PMCID: PMC11407929 DOI: 10.1016/j.heliyon.2024.e36726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/05/2024] [Accepted: 08/21/2024] [Indexed: 09/21/2024] Open
Abstract
Patients with gain-of-function mutations of Dyrk1b have higher fasting blood glucose (FBG) levels. However, the role of Dyrk1b in glucose metabolism is not fully elucidated. Herein, we found that hepatic Dyrk1b overexpression in mice impaired systemic glucose tolerance and hepatic insulin signaling. Dyrk1b overexpression in vitro attenuated insulin signaling in a kinase activity-dependent manner, and its kinase activity was required for its effect on systemic glucose homeostasis and hepatic insulin signaling in vivo. Dyrk1b ablation improved systemic glucose tolerance and hepatic insulin signaling in mice. Quantitative proteomic analyses showed that Dyrk1b downregulated WW domain-binding protein 2 (Wbp2) protein abundance. Mechanistically, Dyrk1b enhanced Wbp2 ubiquitylation and proteasomal degradation. Restoration of hepatic Wbp2 partially rescued the impaired glucose homeostasis in Dyrk1b overexpression mice. In addition, Dyrk1b inhibition with AZ191 moderately improved systemic glucose homeostasis. Our study uncovers that hepatic Dyrk1b impairs systemic glucose homeostasis via its modulation of Wbp2 expression in a kinase activity-dependent manner.
Collapse
Affiliation(s)
- Lianju Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, 200025, China
| | - Yaoyu Zou
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics & Gynecology Hospital, Fudan University, Shanghai, 200025, China
| | - Chongrong Shen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, 200025, China
| | - Na Chen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, 200025, China
| | - Muye Tong
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, 200025, China
| | - Ruixin Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, 200025, China
| | - Jiqiu Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, 200025, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, 200025, China
| |
Collapse
|
26
|
Macášek J, Staňková B, Žák A, Růžičková M, Brůha R, Kutová S, Vecka M, Zeman M. Associations of plasma phospholipid cis-vaccenic acid with insulin resistance markers in non-diabetic men with hyperlipidemia. Nutr Diabetes 2024; 14:73. [PMID: 39261487 PMCID: PMC11390737 DOI: 10.1038/s41387-024-00332-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/22/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND The role of fatty acids (FA) in the pathogenesis of insulin resistance and hyperlipidemia is a subject of intensive research. Several recent works have suggested cis-vaccenic acid (cVA) in plasma lipid compartments, especially in plasma phospholipids (PL) or erythrocyte membranes, could be associated with markers of insulin sensitivity and cardiovascular health. Nevertheless, not all the results of research work testify to these beneficial effects of cVA. Therefore, we decided to investigate the relations of proportion of cVA in plasma PL to markers of insulin resistance in hyperlipidemic men. SUBJECTS In 231 men (median age 50) with newly diagnosed hyperlipidemia, we analyzed basic clinical parameters together with FA composition of plasma PL and stratified them according to the content of cVA into upper quartile (Q4) and lower quartile (Q1) groups. We examined also small control group of 50 healthy men. RESULTS The individuals in Q4 differed from Q1 by lower plasma insulin (p < 0.05), HOMA-IR values (p < 0.01), and apolipoprotein B concentrations (p < 0.001), but by the higher total level of nonesterified FA (p < 0.01). Both groups had similar age, anthropometrical, and other lipid parameters. In plasma PL, the Q4 group had lower content of the sum of n-6 polyunsaturated FA, due to decrease of γ-linolenic and dihomo-γ-linolenic acids, whereas the content of monounsaturated FA (mainly oleic and palmitoleic) was in Q4 higher. CONCLUSIONS Our results support hypothesis that plasma PL cVA could be associated with insulin sensitivity in men with hyperlipidemia.
Collapse
Grants
- Charles University Research Program, Cooperatio-Gastroenterology Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
- Charles University Research Program, Cooperatio-Gastroenterology Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
- Charles University Research Program, Cooperatio-Gastroenterology Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
- Charles University Research Program, Cooperatio-Gastroenterology Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
- MH CZ DRO-VFN64165 Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
- MH CZ DRO-VFN64165 Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
- MH CZ DRO-VFN64165 Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
- NU23-01-00288 Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
- MH CZ DRO-VFN64165 Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
Collapse
Affiliation(s)
- Jaroslav Macášek
- Fourth Department of Internal Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 128 08, Prague, Czech Republic
| | - Barbora Staňková
- Fourth Department of Internal Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 128 08, Prague, Czech Republic
- Institute of Clinical Chemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Na Bojišti 3, 121 08, Prague, Czech Republic
| | - Aleš Žák
- Fourth Department of Internal Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 128 08, Prague, Czech Republic
| | - Markéta Růžičková
- Fourth Department of Internal Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 128 08, Prague, Czech Republic
| | - Radan Brůha
- Fourth Department of Internal Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 128 08, Prague, Czech Republic
| | - Simona Kutová
- Fourth Department of Internal Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 128 08, Prague, Czech Republic
| | - Marek Vecka
- Fourth Department of Internal Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 128 08, Prague, Czech Republic.
- Institute of Clinical Chemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Na Bojišti 3, 121 08, Prague, Czech Republic.
| | - Miroslav Zeman
- Fourth Department of Internal Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 128 08, Prague, Czech Republic
| |
Collapse
|
27
|
Ma S, Morris MC, Hubal MJ, Ross LM, Huffman KM, Vann CG, Moore N, Hauser ER, Bareja A, Jiang R, Kummerfeld E, Barberio MD, Houmard JA, Bennett WB, Johnson JL, Timmons JA, Broderick G, Kraus VB, Aliferis CF, Kraus WE. Sex-Specific Skeletal Muscle Gene Expression Responses to Exercise Reveal Novel Direct Mediators of Insulin Sensitivity Change. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.07.24313236. [PMID: 39281755 PMCID: PMC11398589 DOI: 10.1101/2024.09.07.24313236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
BACKGROUND Understanding the causal pathways, systems, and mechanisms through which exercise impacts human health is complex. This study explores molecular signaling related to whole-body insulin sensitivity (Si) by examining changes in skeletal muscle gene expression. The analysis considers differences by biological sex, exercise amount, and exercise intensity to identify potential molecular targets for developing pharmacologic agents that replicate the health benefits of exercise. METHODS The study involved 53 participants from the STRRIDE I and II trials who completed eight months of aerobic training. Skeletal muscle gene expression was measured using Affymetrix and Illumina technologies, while pre- and post-training Si was assessed via an intravenous glucose tolerance test. A novel gene discovery protocol, integrating three literature-derived and data-driven modeling strategies, was employed to identify causal pathways and direct causal factors based on differentially expressed transcripts associated with exercise intensity and amount. RESULTS In women, the transcription factor targets identified were primarily influenced by exercise amount and were generally inhibitory. In contrast, in men, these targets were driven by exercise intensity and were generally activating. Transcription factors such as ATF1, CEBPA, BACH2, and STAT1 were commonly activating in both sexes. Specific transcriptional targets related to exercise-induced Si improvements included TACR3 and TMC7 for intensity-driven effects, and GRIN3B and EIF3B for amount-driven effects. Two key signaling pathways mediating aerobic exercise-induced Si improvements were identified: one centered on estrogen signaling and the other on phorbol ester (PKC) signaling, both converging on the epidermal growth factor receptor (EGFR) and other relevant targets. CONCLUSIONS The signaling pathways mediating Si improvements from aerobic exercise differed by sex and were further distinguished by exercise intensity and amount. Transcriptional adaptations in skeletal muscle related to Si improvements appear to be causally linked to estrogen and PKC signaling, with EGFR and other identified targets emerging as potential skeletal muscle-specific drug targets to mimic the beneficial effects of exercise on Si.
Collapse
Affiliation(s)
- S Ma
- Institute for Health Informatics (IHI), Academic Health Center, University of Minnesota, Minneapolis, MN 55455
| | - M C Morris
- Center for Clinical Systems Biology, Rochester General Hospital, Rochester, NY 14621
| | - M J Hubal
- Department of Kinesiology, Indiana University - Indianapolis, Indianapolis IN 46202
| | - L M Ross
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701
| | - K M Huffman
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701
| | - C G Vann
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701
| | - N Moore
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701
| | - E R Hauser
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701
- Department of Head and Neck Surgery & Communication Sciences, Duke University School of Medicine, Durham, NC 27701
| | - A Bareja
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701
| | - R Jiang
- Department of Head and Neck Surgery & Communication Sciences, Duke University School of Medicine, Durham, NC 27701
| | - E Kummerfeld
- Institute for Health Informatics (IHI), Academic Health Center, University of Minnesota, Minneapolis, MN 55455
| | - M D Barberio
- Department of Exercise and Nutrition Sciences, George Washington University, Washington DC 20052
| | - J A Houmard
- Department of Kinesiology, ECU, Greenville, NC 27858
| | - W B Bennett
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701
| | - J L Johnson
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701
| | - J A Timmons
- School of Medicine and Dentistry, Queen Mary University of London, UK
| | - G Broderick
- Center for Clinical Systems Biology, Rochester General Hospital, Rochester, NY 14621
| | - V B Kraus
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701
| | - C F Aliferis
- Institute for Health Informatics (IHI), Academic Health Center, University of Minnesota, Minneapolis, MN 55455
| | - W E Kraus
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701
| |
Collapse
|
28
|
Fang P, She Y, Yu M, Yan J, Yu X, Zhao J, Jin Y, Min W, Shang W, Zhang Z. Novel hypothalamic pathways for metabolic effects of spexin. Pharmacol Res 2024; 208:107399. [PMID: 39245191 DOI: 10.1016/j.phrs.2024.107399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/22/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
One of the main underlying etiologies of type 2 diabetes (T2DM) is insulin resistance, which is most frequently caused by obesity. Notably, the deregulation of adipokine secretion from visceral adiposity has been identified as a crucial characteristic of type 2 diabetes and obesity. Spexin is an adipokine that is released by many different tissues, including white adipocytes and the glandular stomach, and is negatively connected with the state of energy storage. This peptide acts through GALR2/3 receptors to control a wide range of metabolic processes, including inflammation, browning, lipolysis, energy expenditure, and eating behavior. Specifically, spexin can enter the hypothalamus and regulate the hypothalamic melanocortin system, which in turn balances energy expenditure and food intake. This review examines recent advances and the underlying mechanisms of spexin in obesity and T2DM. In particular, we address a range of topics from basic research to clinical findings, such as an analysis of the possible function of spexin in the hypothalamic melanocortin response, which involves reducing energy intake and increasing energy expenditure while also enhancing insulin sensitivity and glucose tolerance. Gaining more insight into the mechanisms that underlie the spexin system's control over energy metabolism and homeostasis may facilitate the development of innovative treatment approaches that focus on combating obesity and diabetes.
Collapse
Affiliation(s)
- Penghua Fang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yuqing She
- Department of Endocrinology, Nanjing Pukou People's Hospital, Nanjing 211899, China
| | - Mei Yu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jing Yan
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xizhong Yu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Juan Zhao
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu Jin
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wen Min
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Wenbin Shang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Zhenwen Zhang
- Department of Endocrinology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China.
| |
Collapse
|
29
|
Zhang M, Du G, Xie L, Xu Y, Chen W. Circular RNA HMGCS1 sponges MIR4521 to aggravate type 2 diabetes-induced vascular endothelial dysfunction. eLife 2024; 13:RP97267. [PMID: 39235443 PMCID: PMC11377038 DOI: 10.7554/elife.97267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
Noncoding RNA plays a pivotal role as novel regulators of endothelial cell function. Type 2 diabetes, acknowledged as a primary contributor to cardiovascular diseases, plays a vital role in vascular endothelial cell dysfunction due to induced abnormalities of glucolipid metabolism and oxidative stress. In this study, aberrant expression levels of circHMGCS1 and MIR4521 were observed in diabetes-induced human umbilical vein endothelial cell dysfunction. Persistent inhibition of MIR4521 accelerated development and exacerbated vascular endothelial dysfunction in diabetic mice. Mechanistically, circHMGCS1 upregulated arginase 1 by sponging MIR4521, leading to decrease in vascular nitric oxide secretion and inhibition of endothelial nitric oxide synthase activity, and an increase in the expression of adhesion molecules and generation of cellular reactive oxygen species, reduced vasodilation and accelerated the impairment of vascular endothelial function. Collectively, these findings illuminate the physiological role and interacting mechanisms of circHMGCS1 and MIR4521 in diabetes-induced cardiovascular diseases, suggesting that modulating the expression of circHMGCS1 and MIR4521 could serve as a potential strategy to prevent diabetes-associated cardiovascular diseases. Furthermore, our findings provide a novel technical avenue for unraveling ncRNAs regulatory roles of ncRNAs in diabetes and its associated complications.
Collapse
MESH Headings
- Animals
- Humans
- Male
- Mice
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/metabolism
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Human Umbilical Vein Endothelial Cells/metabolism
- Mice, Inbred C57BL
- MicroRNAs/metabolism
- MicroRNAs/genetics
- RNA, Circular/genetics
- RNA, Circular/metabolism
- Hydroxymethylglutaryl-CoA Synthase/genetics
Collapse
Affiliation(s)
- Ming Zhang
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Guangyi Du
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Lianghua Xie
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yang Xu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Wei Chen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Ningbo Innovation Center, Zhejiang University, Ningbo, China
| |
Collapse
|
30
|
Abdalsada HK, Abdulsaheb YS, Zolghadri S, Al-Hakeim HK, Stanek A. The Potential Diagnostic Utility of SMAD4 and ACCS in the Context of Inflammation in Type 2 Diabetes Mellitus Patients. Biomedicines 2024; 12:2015. [PMID: 39335530 PMCID: PMC11428511 DOI: 10.3390/biomedicines12092015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/24/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
The search for new parameters for the prediction of type 2 diabetes mellitus (T2DM) or its harmful consequences remains an important field of study. Depending on the low-grade inflammatory nature of diabetes, we investigated three proteins in T2DM patients: 1-aminocyclopropane-1-carboxylate synthase (ACCS), granulocyte-colony-stimulating factor (G-CSF), and Sma Mothers Against Decapentaplegic homolog-4 (SMAD4). In brief, sixty T2DM and thirty healthy controls had their serum levels of ACCS, G-CSF, SMAD4, and insulin tested using the ELISA method. The insulin resistance (IR) parameter (HOMA2IR), beta-cell function percentage (HOMA2%B), and insulin sensitivity (HOMA2%S) were all determined by the Homeostasis Model Assessment-2 (HOMA2) calculator. The predictability of these protein levels was investigated by neural network (NN) analysis and was associated with measures of IR. Based on the results, ACCS, G-CSF, and SMAD4 increased significantly in the T2DM group compared with the controls. Their levels depend on IR status and inflammation. The multivariate GLM indicated the independence of the levels of these proteins on the covariates or drugs taken. The receiver operating characteristic area under the curve (AUC) for the prediction of T2DM using NN analysis is 0.902, with a sensitivity of 71.4% and a specificity of 93.8%. The network predicts T2DM well with predicted pseudoprobabilities over 0.5. The model's predictive capability (normalized importance) revealed that ACCS is the best model (100%) for the prediction of T2DM, followed by G-CSF (75.5%) and SMAD4 (69.6%). It can be concluded that ACCS, G-CSF, and SMAD4 are important proteins in T2DM prediction, and their increase is associated with the presence of inflammation.
Collapse
Affiliation(s)
- Habiba Khdair Abdalsada
- Department of Clinical Laboratory Sciences, College of Pharmacy, Al-Muthanna University, Al-Muthanna 66001, Iraq;
| | - Yusra Sebri Abdulsaheb
- Clinical Pharmacy Department, College of Pharmacy, Missan University, Missan 62001, Iraq;
| | - Samaneh Zolghadri
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom 7414785318, Iran;
| | | | - Agata Stanek
- Department and Clinic of Internal Medicine, Angiology and Physical Medicine, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Batorego 15 St, 41-902 Bytom, Poland
| |
Collapse
|
31
|
Xu Y, Wang Z, Li S, Su J, Gao L, Ou J, Lin Z, Luo OJ, Xiao C, Chen G. An in-depth understanding of the role and mechanisms of T cells in immune organ aging and age-related diseases. SCIENCE CHINA. LIFE SCIENCES 2024:10.1007/s11427-024-2695-x. [PMID: 39231902 DOI: 10.1007/s11427-024-2695-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/28/2024] [Indexed: 09/06/2024]
Abstract
T cells play a critical and irreplaceable role in maintaining overall health. However, their functions undergo alterations as individuals age. It is of utmost importance to comprehend the specific characteristics of T-cell aging, as this knowledge is crucial for gaining deeper insights into the pathogenesis of aging-related diseases and developing effective therapeutic strategies. In this review, we have thoroughly examined the existing studies on the characteristics of immune organ aging. Furthermore, we elucidated the changes and potential mechanisms that occur in T cells during the aging process. Additionally, we have discussed the latest research advancements pertaining to T-cell aging-related diseases. These findings provide a fresh perspective for the study of T cells in the context of aging.
Collapse
Affiliation(s)
- Yudai Xu
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Zijian Wang
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Shumin Li
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jun Su
- First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Lijuan Gao
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Junwen Ou
- Anti Aging Medical Center, Clifford Hospital, Guangzhou, 511495, China
| | - Zhanyi Lin
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Chanchan Xiao
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China.
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Jinan University, Dongguan, 523000, China.
- Zhuhai Institute of Jinan University, Jinan University, Zhuhai, 519070, China.
| | - Guobing Chen
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China.
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Jinan University, Dongguan, 523000, China.
- Zhuhai Institute of Jinan University, Jinan University, Zhuhai, 519070, China.
| |
Collapse
|
32
|
Mustafa S, Norman K, Kenealy T, Paul R, Murphy R, Lawrenson R, Chepulis L. Management of type 2 diabetes in New Zealand: a scoping review of interventions with measurable clinical outcomes. Public Health 2024; 234:1-15. [PMID: 38908052 DOI: 10.1016/j.puhe.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/28/2024] [Accepted: 05/15/2024] [Indexed: 06/24/2024]
Abstract
OBJECTIVE This review aimed to assess the effectiveness of interventions for type 2 diabetes (T2D) management in New Zealand on clinical outcomes, and explore the factors impacting their feasibility and acceptability. STUDY DESIGN Scoping review. METHODS Three databases (PubMed, Web of Science and Scopus) were searched between January 2000 and July 2023. Reference lists of included studies were hand searched to identify additional articles. RESULTS The search yielded 550 publications, of which 11 were included in the final review. Most interventions (n = 10) focussed on education and seven were delivered by health professionals. Supporting factors for interventions included clinical/peer support (n = 8) and whānau (family) involvement (n = 6). Hindering factors included non-adherence (n = 4) and high drop-out (n = 4). Most studies reported modest improvement in HbA1c and weight at six months, but minimal change in HbA1c, weight, lipids, renal profile, and blood pressure by two years. CONCLUSION Future interventions should involve culturally appropriate approaches to improve engagement and acceptability while addressing lifestyle and medication adherence for T2D management. T2D interventions not widely disseminated via academic channels need to be further identified.
Collapse
Affiliation(s)
- S Mustafa
- Medical Research Centre, Te Huataki Waiora School of Health, University of Waikato, Hamilton, New Zealand.
| | - K Norman
- School of Primary and Allied Health Care, Monash University, Melbourne, Australia
| | - T Kenealy
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - R Paul
- Medical Research Centre, Te Huataki Waiora School of Health, University of Waikato, Hamilton, New Zealand; Te Whatu Ora Health New Zealand, Hamilton, New Zealand
| | - R Murphy
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - R Lawrenson
- Medical Research Centre, Te Huataki Waiora School of Health, University of Waikato, Hamilton, New Zealand; Te Whatu Ora Health New Zealand, Hamilton, New Zealand
| | - L Chepulis
- Medical Research Centre, Te Huataki Waiora School of Health, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
33
|
Yang S, Zhao X, Zhang Y, Tang Q, Li Y, Du Y, Yu P. Tirzepatide shows neuroprotective effects via regulating brain glucose metabolism in APP/PS1 mice. Peptides 2024; 179:171271. [PMID: 39002758 DOI: 10.1016/j.peptides.2024.171271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/22/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
Tirzepatide (LY3298176), a GLP-1 and GIP receptor agonist, is fatty-acid-modified and 39-amino acid linear peptide, which ameliorates learning and memory impairment in diabetic rats. However, the specific molecular mechanism remains unknown. In the present study, we investigated the role of tirzepatide in the neuroprotective effects in Alzheimer's disease (AD) model mice. Tirzepatide was administrated intraperitoneal (i.p.) APP/PS1 mice for 8 weeks with at 10 nmol/kg once-weekly, it significantly decreased the levels of GLP-1R, and GFAP protein expression and amyloid plaques in the cortex, it also lowered neuronal apoptosis induced by amyloid-β (Aβ), but did not affect the anxiety and cognitive function in APP/PS1 mice. Moreover, tirzepatide reduced the blood glucose levels and increased the mRNA expression of GLP-1R, SACF1, ATF4, Glu2A, and Glu2B in the hypothalamus of APP/PS1 mice. Tirzepatide increased the mRNA expression of glucose transporter 1, hexokinase, glucose-6-phosphate dehydrogenase, and phosphofructokinase in the cortex. Lastly, tirzepatide improved the energetic metabolism by regulated reactive oxygen species production and mitochondrial membrane potential caused by Aβ, thereby decreasing mitochondrial function and ATP levels in astrocytes through GLP-1R. These results provide valuable insights into the mechanism of brain glucose metabolism and mitochondrial function of tirzepatide, presenting potential strategies for AD treatment.
Collapse
Affiliation(s)
- Shaobin Yang
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu 730070, China.
| | - Xiaoqian Zhao
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Yimeng Zhang
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Qi Tang
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Yanhong Li
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Yaqin Du
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Peng Yu
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu 730070, China
| |
Collapse
|
34
|
Kovac L, Gancheva S, Jähnert M, Sehgal R, Mastrototaro L, Schlensak M, Granderath FA, Rittig K, Roden M, Schürmann A, Kahl S, Ouni M. Different effects of bariatric surgery on epigenetic plasticity in skeletal muscle of individuals with and without type 2 diabetes. DIABETES & METABOLISM 2024; 50:101561. [PMID: 38977261 DOI: 10.1016/j.diabet.2024.101561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 07/10/2024]
Abstract
AIM Bariatric surgery is highly effective for the treatment of obesity in individuals without (OB1) and in those with type 2 diabetes (T2D2). However, whether bariatric surgery triggers similar or distinct molecular changes in OB and T2D remains unknown. Given that individuals with type 2 diabetes often exhibit more severe metabolic deterioration, we hypothesized that bariatric surgery induces distinct molecular adaptations in skeletal muscle, the major site of glucose uptake, of OB and T2D after surgery-induced weight loss. METHODS All participants (OB, n = 13; T2D, n = 13) underwent detailed anthropometry before and one year after the surgery. Skeletal muscle biopsies were isolated at both time points and subjected to transcriptome and methylome analyses using a comprehensive bioinformatic pipeline. RESULTS Before surgery, T2D had higher fasting glucose and insulin levels but lower whole-body insulin sensitivity, only glycemia remained higher in T2D than in OB after surgery. Surgery-mediated weight loss affected different subsets of genes with 2,013 differentially expressed in OB and 959 in T2D. In OB differentially expressed genes were involved in insulin, PPAR signaling and oxidative phosphorylation pathways, whereas ribosome and splicesome in T2D. LASSO regression analysis revealed distinct candidate genes correlated with improvement of phenotypic traits in OB and T2D. Compared to OB, DNA methylation was less affected in T2D in response to bariatric surgery. This may be due to increased global hydroxymethylation accompanied by decreased expression of one of the type 2 diabetes risk gene, TET2, encoding a demethylation enzyme in T2D. CONCLUSION OB and T2D exhibit differential skeletal muscle transcriptome responses to bariatric surgery, presumably resulting from perturbed epigenetic flexibility.
Collapse
Affiliation(s)
- Leona Kovac
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrueck, Arthur-Scheunert-Allee 114-116, Nuthetal, Germany; Research Group Molecular and Clinical Life Science of Metabolic Diseases, Faculty of Health Sciences Brandenburg, University of Potsdam, Brandenburg, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Sofiya Gancheva
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany
| | - Markus Jähnert
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrueck, Arthur-Scheunert-Allee 114-116, Nuthetal, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Ratika Sehgal
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrueck, Arthur-Scheunert-Allee 114-116, Nuthetal, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Lucia Mastrototaro
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany
| | | | | | - Kilian Rittig
- Institute of Nutritional Science, University of Potsdam, Brandenburg, Germany
| | - Michael Roden
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrueck, Arthur-Scheunert-Allee 114-116, Nuthetal, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany; Institute of Nutritional Science, University of Potsdam, Brandenburg, Germany.
| | - Sabine Kahl
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany
| | - Meriem Ouni
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbrueck, Arthur-Scheunert-Allee 114-116, Nuthetal, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| |
Collapse
|
35
|
Kahl S, Straßburger K, Pacini G, Trinks N, Pafili K, Mastrototaro L, Dewidar B, Sarabhai T, Trenkamp S, Esposito I, Schlensak M, Granderath FA, Roden M. Dysglycemia and liver lipid content determine the relationship of insulin resistance with hepatic OXPHOS capacity in obesity. J Hepatol 2024:S0168-8278(24)02490-5. [PMID: 39218222 DOI: 10.1016/j.jhep.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND & AIMS Hepatic mitochondrial respiration is higher in steatosis, but lower in overt type 2 diabetes. We hypothesized that hepatic OXPHOS capacity increases with a greater degree of insulin resistance in obesity, independent of other metabolic diseases. METHODS We analysed 65 humans without diabetes (BMI 50±7 kg/m2, HbA1c 5.5±0.4%) undergoing bariatric surgery. MASLD stages were assessed by histology, whole-body insulin sensitivity (PREDIcted-M index) by oral glucose tolerance tests, and maximal ADP-stimulated mitochondrial OXPHOS capacity by high-resolution respirometry of liver samples. RESULTS Prediabetes was present in 30 participants, and MASLD in 46 participants. Thereof, 25 had metabolic dysfunction-associated steatohepatitis (MASH), and seven had F2-F3 fibrosis. While simple regression did not detect an association of insulin sensitivity with hepatic OXPHOS capacity, interaction analyses revealed that the regression coefficient of OXPHOS capacity depended on fasting plasma glucose (FPG) and liver lipid content. Interestingly, the respective slopes were negative for FPG ≤100 mg/dl, but positive for FPG >100 mg/dl. Liver lipid content displayed similar behavior, with a threshold value of 24%. Post-challenge glycemia affected the association between insulin sensitivity and OXPHOS capacity normalized for citrate synthase activity. Presence of prediabetes affected hepatic insulin signaling, mitochondrial dynamics and fibrosis prevalence, while the presence of MASLD related to higher biomarkers of hepatic inflammation, cell damage and lipid peroxidation in people with normal glucose tolerance. CONCLUSIONS Rising liver lipid contents and plasma glucose concentrations, even in the non-diabetic range, are associated with a progressive decline of hepatic mitochondrial adaptation in people with obesity and insulin resistance. CLINTRIALS. GOV IDENTIFIER NCT01477957.
Collapse
Affiliation(s)
- Sabine Kahl
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Klaus Straßburger
- German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, Germany; Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany
| | | | - Nina Trinks
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, Germany
| | - Kalliopi Pafili
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Lucia Mastrototaro
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, Germany
| | - Bedair Dewidar
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, Germany
| | - Theresia Sarabhai
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Sandra Trenkamp
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, Germany
| | - Irene Esposito
- Institute of Pathology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Matthias Schlensak
- Adipositas- und Refluxzentrum, Krankenhaus Neuwerk, Mönchengladbach, Germany
| | - Frank A Granderath
- Adipositas- und Refluxzentrum, Krankenhaus Neuwerk, Mönchengladbach, Germany
| | - Michael Roden
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany; German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, Germany.
| |
Collapse
|
36
|
Sjöholm Å. Glucokinase activators and imeglimin: new weaponry in the armamentarium against type 2 diabetes. BMJ Open Diabetes Res Care 2024; 12:e004291. [PMID: 39214626 PMCID: PMC11367400 DOI: 10.1136/bmjdrc-2024-004291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024] Open
Abstract
The prevalence of type 2 diabetes (T2D) is increasing relentlessly all over the world, in parallel with a similar increase in obesity, and is striking ever younger patients. Only a minority of patients with T2D attain glycemic targets, indicating a clear need for novel antidiabetic drugs that not only control glycemia but also halt or slow the progressive loss of β-cells. Two entirely novel classes of antidiabetic agents-glucokinase activators and imeglimin-have recently been approved and will be the subject of this review.Allosteric activators of glucokinase, an enzyme stimulating insulin secretion in β-cells and suppressing hepatic glucose production, are oral low-molecular-weight drugs. One of these, dorzagliatin, is approved in China for use in adult patients with T2D, either as monotherapy or as an add-on to metformin. It remains to be seen whether the drug will produce sustained antidiabetic effects over many years and whether the side effects that led to the discontinuation of early drug candidates will limit the usefulness of dorzagliatin.Imeglimin-which shares structural similarities with metformin-targets mitochondrial dysfunction and was approved in Japan against T2D. In preclinical studies, the drug has also shown promising β-cell protective and preservative effects that may translate into disease-modifying effects.Hopefully, these two newcomers will contribute to filling the great medical need for new treatment modalities, preferably with disease-modifying potential. It remains to be seen where they will fit in contemporary treatment algorithms, which combinations of drugs are effective and which should be avoided. Time will tell to what extent these new antidiabetic agents will add value to the current treatment options against T2D in terms of sustained antidiabetic effect, acceptable safety, utility in combination therapy, and impact on hard end-points such as cardiovascular disease.
Collapse
Affiliation(s)
- Åke Sjöholm
- University of Gävle, Gavle, Sweden
- Department of Internal Medicine, Region Gävleborg, Gavle, Sweden
| |
Collapse
|
37
|
Shahabi N, Hosseini Z, Aghamolaei T, Ghanbarnejad A, Behzad A. Psychometrics properties of type 2 diabetes treatment adherence questionnaire (DTAQ): a study based on Pender's health promotion model. BMC Endocr Disord 2024; 24:157. [PMID: 39187831 PMCID: PMC11346256 DOI: 10.1186/s12902-024-01684-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 08/09/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND Management of type 2 diabetes (T2D) as a chronic disease requires treatment adherence such as controlling the blood glucose level and adopting a healthy lifestyle. The present study aimed to develop and psychometrically evaluate a questionnaire based on the Pender's Health Promotion Model (HPM) to measure treatment adherence and the associated factors among T2D patients. METHODS The present study was conducted in qualitative and the quantitative phases between March 2022 and March 2023. The participants were T2D patients visiting Shahid Mohammadi hospital Diabetes Clinic in Bandar Abbas in the south of Iran. The first draft of items was extracted from the qualitative phase. The present study used interviews with T2D patients, item construction, validity and reliability evaluation of the instrument, and the relevant statistical analyses. It emphasized the significance of content, face, and construct validity, along with reliability testing using Cronbach's alpha and test-retest method. Data were analyzed using SPSS software, V16 and AMOS, V23. RESULTS A 97-item questionnaire was developed through the qualitative phase and, after content validity, it was reduced to 86 items. Five items were removed in face validation, and after the test-retest method, 79 items were retained. The confirmatory factors analysis confirmed a 65-item model with appropriate fitness of data. Cronbach's alpha coefficient showed an acceptable reliability of the diabetes treatment adherence questionnaire (α = 0.92). CONCLUSION The questionnaire developed based on the HPM model provides a standard and comprehensive measurement of the degree of adherence to treatment and the associated factors among Iranian T2D patients. This is especially valuable in the Iranian healthcare context, where effective management of chronic diseases such as diabetes is of a top priority. Questionnaires can help identify barriers and facilitators of treatment adherence to inform systematic and goal-oriented interventions. The proposed questionnaire had good psychometric properties, and can be used as a valid and practical instrument to measure the factors related to treatment adherence behaviors.
Collapse
Affiliation(s)
- Nahid Shahabi
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Social Determinants in Health Promotion Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Zahra Hosseini
- Social Determinants in Health Promotion Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Teamur Aghamolaei
- Cardiovascular Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Amin Ghanbarnejad
- Social Determinants in Health Promotion Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Ahmad Behzad
- Social Determinants in Health Promotion Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
38
|
Attia MS, Ayman F, Attia MS, Yahya G, Zahra MH, Khalil MMI, Diab AAA. Mitigating diabetes-related complications: Empowering metformin with cholecalciferol and taurine supplementation in type 2 diabetic rats. World J Diabetes 2024; 15:1778-1792. [PMID: 39192867 PMCID: PMC11346095 DOI: 10.4239/wjd.v15.i8.1778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/30/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Type 2 diabetes is one of the most prevalent chronic diseases worldwide, significantly impacting patients' quality of life. Current treatment options like metformin (MET) effectively counteract hyperglycemia but fail to alleviate diabetes-associated complications such as retinopathy, neuropathy, nephropathy, hepatopathy, and cardiovascular diseases. AIM To propose the supplementation of cholecalciferol (CHO) and taurine (TAU) to enhance MET efficacy in controlling diabetes while minimizing the risk of associated complications. METHODS The study involved sixty rats, including ten non-diabetic control rats and fifty experimental rats with type 2 diabetes induced by streptozotocin. The experimental rats were further subdivided into positive control and treatment subgroups. The four treatment groups were randomly allocated to a single MET treatment or MET combined with supplements either CHO, TAU, or both. RESULTS Diabetic rats exhibited elevated levels of glucose, insulin, Homeostasis Model Assessment of Insulin Resistance (HOMA-IR), glycated hemoglobin%, lipid markers, aspartate aminotransferase, and malondialdehyde, along with reduced levels of antioxidant enzymes (catalase and superoxide dismutase). The administration of CHO and TAU supplements alongside MET in diabetic rats led to a noticeable recovery of islet mass. The antioxidative, anti-inflammatory, and anti-apoptotic properties of the proposed combination therapy significantly ameliorated the aforementioned abnormalities. CONCLUSION The supplementation of CHO and TAU with MET showed the potential to significantly improve metabolic parameters and protect against diabetic complications through its antioxidative, anti-inflammatory, and anti-apoptotic effects.
Collapse
Affiliation(s)
- Mai S Attia
- Department of Zoology, Faculty of Science, Zagazig 44519, Egypt
| | - Fadwa Ayman
- Department of Zoology, Faculty of Science, Zagazig 44519, Egypt
| | - Mohamed S Attia
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig 44519, Egypt
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Mansour H Zahra
- Department of Zoology, Faculty of Science, Zagazig 44519, Egypt
| | | | | |
Collapse
|
39
|
Huttasch M, Roden M, Kahl S. Obesity and MASLD: Is weight loss the (only) key to treat metabolic liver disease? Metabolism 2024; 157:155937. [PMID: 38782182 DOI: 10.1016/j.metabol.2024.155937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 04/25/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) closely associates with obesity and type 2 diabetes. Lifestyle intervention and bariatric surgery aiming at substantial weight loss are cornerstones of MASLD treatment by improving histological outcomes and reducing risks of comorbidities. Originally developed as antihyperglycemic drugs, incretin (co-)agonists and SGLT2 inhibitors also reduce steatosis and cardiorenovascular events. Certain incretin agonists effectively improve histological features of MASLD, but not fibrosis. Of note, beneficial effects on MASLD may not necessarily require weight loss. Despite moderate weight gain, one PPARγ agonist improved adipose tissue and MASLD with certain benefit on fibrosis in post-hoc analyses. Likewise, the first THRβ-agonist was recently provisionally approved because of significant improvements of MASLD and fibrosis. We here discuss liver-related and metabolic effects induced by different MASLD treatments and their association with weight loss. Therefore, we compare results from clinical trials on drugs acting via weight loss (incretin (co)agonists, SGLT2 inhibitors) with those exerting no weight loss (pioglitazone; resmetirom). Furthermore, other drugs in development directly targeting hepatic lipid metabolism (lipogenesis inhibitors, FGF21 analogs) are addressed. Although THRβ-agonism may effectively improve hepatic outcomes, MASLD treatment concepts should consider all cardiometabolic risk factors for effective reduction of morbidity and mortality in the affected people.
Collapse
Affiliation(s)
- Maximilian Huttasch
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany.
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Sabine Kahl
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany.
| |
Collapse
|
40
|
Mei Z, Wang F, Bhosle A, Dong D, Mehta R, Ghazi A, Zhang Y, Liu Y, Rinott E, Ma S, Rimm EB, Daviglus M, Willett WC, Knight R, Hu FB, Qi Q, Chan AT, Burk RD, Stampfer MJ, Shai I, Kaplan RC, Huttenhower C, Wang DD. Strain-specific gut microbial signatures in type 2 diabetes identified in a cross-cohort analysis of 8,117 metagenomes. Nat Med 2024; 30:2265-2276. [PMID: 38918632 DOI: 10.1038/s41591-024-03067-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/14/2024] [Indexed: 06/27/2024]
Abstract
The association of gut microbial features with type 2 diabetes (T2D) has been inconsistent due in part to the complexity of this disease and variation in study design. Even in cases in which individual microbial species have been associated with T2D, mechanisms have been unable to be attributed to these associations based on specific microbial strains. We conducted a comprehensive study of the T2D microbiome, analyzing 8,117 shotgun metagenomes from 10 cohorts of individuals with T2D, prediabetes, and normoglycemic status in the United States, Europe, Israel and China. Dysbiosis in 19 phylogenetically diverse species was associated with T2D (false discovery rate < 0.10), for example, enriched Clostridium bolteae and depleted Butyrivibrio crossotus. These microorganisms also contributed to community-level functional changes potentially underlying T2D pathogenesis, for example, perturbations in glucose metabolism. Our study identifies within-species phylogenetic diversity for strains of 27 species that explain inter-individual differences in T2D risk, such as Eubacterium rectale. In some cases, these were explained by strain-specific gene carriage, including loci involved in various mechanisms of horizontal gene transfer and novel biological processes underlying metabolic risk, for example, quorum sensing. In summary, our study provides robust cross-cohort microbial signatures in a strain-resolved manner and offers new mechanistic insights into T2D.
Collapse
Affiliation(s)
- Zhendong Mei
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Fenglei Wang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Amrisha Bhosle
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Danyue Dong
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Raaj Mehta
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Andrew Ghazi
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yancong Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yuxi Liu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ehud Rinott
- Department of Medicine, Hebrew University and Hadassah Medical Center, Jerusalem, Israel
| | - Siyuan Ma
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric B Rimm
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Martha Daviglus
- Institute for Minority Health Research, University of Illinois Chicago, Chicago, IL, USA
| | - Walter C Willett
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Rob Knight
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
| | - Frank B Hu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Qibin Qi
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Andrew T Chan
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Robert D Burk
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Obstetrics, Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Meir J Stampfer
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Iris Shai
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Faculty of Health Sciences, The Health and Nutrition Innovative International Research Center, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Curtis Huttenhower
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Harvard Chan Microbiome in Public Health Center, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Dong D Wang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
41
|
Gao H, Rocha KCE, Jin Z, Kumar D, Zhang D, Wang K, Das M, Farrell A, Truong T, Tekin Y, Jung HS, Kempf J, Webster NJ, Ying W. Restoring SRSF3 in Kupffer cells attenuates obesity-related insulin resistance. Hepatology 2024; 80:363-375. [PMID: 38456794 PMCID: PMC11254564 DOI: 10.1097/hep.0000000000000836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/05/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND AND AIMS In obesity, depletion of KCs expressing CRIg (complement receptor of the Ig superfamily) leads to microbial DNA accumulation, which subsequently triggers tissue inflammation and insulin resistance. However, the mechanism underlying obesity-mediated changes in KC complement immune functions is largely unknown. APPROACH AND RESULTS Using KC-specific deactivated Cas9 transgenic mice treated with guide RNA, we assessed the effects of restoring CRIg or the serine/arginine-rich splicing factor 3 (SRSF3) abundance on KC functions and metabolic phenotypes in obese mice. The impacts of weight loss on KC responses were evaluated in a diet switch mouse model. The role of SRSF3 in regulating KC functions was also evaluated using KC-specific SRSF3 knockout mice. Here, we report that overexpression of CRIg in KCs of obese mice protects against bacterial DNA accumulation in metabolic tissues. Mechanistically, SRSF3 regulates CRIg expression, which is essential for maintaining the CRIg+ KC population. During obesity, SRSF3 expression decreases, but it is restored with weight loss through a diet switch, normalizing CRIg+ KCs. KC SRSF3 is also repressed in obese human livers. Lack of SRSF3 in KCs in lean and obese mice decreases their CRIg+ population, impairing metabolic parameters. During the diet switch, the benefits of weight loss are compromised due to SRSF3 deficiency. Conversely, SRSF3 overexpression in obese mice preserves CRIg+ KCs and improves metabolic responses. CONCLUSIONS Restoring SRSF3 abundance in KCs offers a strategy against obesity-associated tissue inflammation and insulin resistance by preventing bacterial DNA accumulation.
Collapse
Affiliation(s)
- Hong Gao
- Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California, 92093
- These authors contributed equally
| | - Karina Cunha e Rocha
- Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California, 92093
- These authors contributed equally
| | - Zhongmou Jin
- Division of Biological Sciences, University of California, San Diego, California, 92093
| | - Deepak Kumar
- Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California, 92093
- VA San Diego Healthcare System, San Diego, California, 92093
| | - Dinghong Zhang
- Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California, 92093
| | - Ke Wang
- Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California, 92093
| | - Manasi Das
- Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California, 92093
- VA San Diego Healthcare System, San Diego, California, 92093
| | - Andrea Farrell
- Division of Biological Sciences, University of California, San Diego, California, 92093
| | - Tyler Truong
- Division of Biological Sciences, University of California, San Diego, California, 92093
| | - Yasemin Tekin
- Division of Biological Sciences, University of California, San Diego, California, 92093
| | - Hyun Suh Jung
- Division of Biological Sciences, University of California, San Diego, California, 92093
| | - Julia Kempf
- Division of Biological Sciences, University of California, San Diego, California, 92093
| | - Nicholas J.G. Webster
- Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California, 92093
- VA San Diego Healthcare System, San Diego, California, 92093
- Moores Cancer Center, University of California, La Jolla, San Diego, California, 92093
| | - Wei Ying
- Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California, 92093
| |
Collapse
|
42
|
Turvey S, Muench SP, Issad T, Fishwick CWG, Kearney MT, Simmons KJ. Using site-directed mutagenesis to further the understanding of insulin receptor-insulin like growth factor-1 receptor heterodimer structure. Growth Horm IGF Res 2024; 77:101607. [PMID: 39033666 DOI: 10.1016/j.ghir.2024.101607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/26/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Type 2 diabetes is characterised by the disruption of insulin and insulin-like growth factor (IGF) signalling. The key hubs of these signalling cascades - the Insulin receptor (IR) and Insulin-like growth factor 1 receptor (IGF1R) - are known to form functional IR-IGF1R hybrid receptors which are insulin resistant. However, the mechanisms underpinning IR-IGF1R hybrid formation are not fully understood, hindering the ability to modulate this for future therapies targeting this receptor. To pinpoint suitable sites for intervention, computational hotspot prediction was utilised to identify promising epitopes for targeting with point mutagenesis. Specific IGF1R point mutations F450A, R391A and D555A show reduced affinity of the hybrid receptor in a BRET based donor-saturation assay, confirming hybrid formation could be modulated at this interface. These data provide the basis for rational design of more effective hybrid receptor modulators, supporting the prospect of identifying a small molecule that specifically interacts with this target.
Collapse
Affiliation(s)
- Samuel Turvey
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Stephen P Muench
- School of Biomedical Sciences, Faculty of Biological Sciences & Astbury Centre, University of Leeds, UK
| | - Tarik Issad
- Université Paris Cité, CNRS, INSERM, Institut Cochin, F-75014 Paris, France
| | | | - Mark T Kearney
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Katie J Simmons
- School of Biomedical Sciences, Faculty of Biological Sciences & Astbury Centre, University of Leeds, UK.
| |
Collapse
|
43
|
Ouyang S, Xiang S, Wang X, Yang X, Liu X, Zhang M, Zhou Y, Xiao Y, Zhou L, Fan G, Yang J. The downregulation of SCGN induced by lipotoxicity promotes NLRP3-mediated β-cell pyroptosis. Cell Death Discov 2024; 10:340. [PMID: 39068218 PMCID: PMC11283536 DOI: 10.1038/s41420-024-02107-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024] Open
Abstract
Lipotoxicity is a well-established phenomenon that could exacerbate damage to islet β-cells and play a significant role in the development of type 2 diabetes, the underlying mechanisms of which, however, remain unclear. In lipotoxic conditions, secretagogin (SCGN), an EF-hand calcium-binding protein abundantly expressed in islets, is found to undergo downregulation. In light of this, we aim to explore the role of SCGN in lipotoxicity-induced β-cell injury. Our findings show that exposure to ox-LDL in vitro or long-term high-fat diets (HFD) in vivo decreases SCGN expression and induces pyroptosis in β-cells. Moreover, restoring SCGN partially reverses the pyroptotic cell death under ox-LDL or HFD treatments. We have observed that the downregulation of SCGN facilitates the translocation of ChREBP from the cytosol to the nucleus, thereby promoting TXNIP transcription. The upregulation of TXNIP activates the NLRP3/Caspase-1 pathway, leading to pyroptotic cell death. In summary, our study demonstrates that lipotoxicity leads to the downregulation of SCGN expression in islet β-cells, resulting in ChREBP accumulation in the nucleus and subsequent activation of the NLRP3/Caspase-1 pyroptotic pathway. Thus, administering SCGN could be a potential therapeutic strategy to alleviate β-cell damage induced by lipotoxicity in type 2 diabetes.
Collapse
Affiliation(s)
- Shuhui Ouyang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Sunmin Xiang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- Department of Hospital Infection Control, Xingsha District of Hunan Provincial People's Hospital (Changsha County People's Hospital), Changsha, 410100, Hunan, China
| | - Xin Wang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xin Yang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xuan Liu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Meilin Zhang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yiting Zhou
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yang Xiao
- The School of Humanities and Social Sciences, The Chinese University of Hong Kong, Shenzhen, China
| | - Lingzhi Zhou
- Department of pediatrics, Huazhong University of Science and Technology Union Shenzhen Hospital (Shenzhen Nanshan people's hospital), Shenzhen, 518052, Guangdong, China
| | - Gang Fan
- Department of Urology, Huazhong University of Science and Technology Union Shenzhen Hospital (Shenzhen Nanshan people's hospital), Shenzhen, 518052, Guangdong, China.
| | - Jing Yang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
- Department of Metabolism and Endocrinology, Huazhong University of Science and Technology Union Shenzhen Hospital (Shenzhen Nanshan people's hospital), Shenzhen, 518052, Guangdong, China.
| |
Collapse
|
44
|
Miao X, Alidadipour A, Saed V, Sayyadi F, Jadidi Y, Davoudi M, Amraee F, Jadidi N, Afrisham R. Hepatokines: unveiling the molecular and cellular mechanisms connecting hepatic tissue to insulin resistance and inflammation. Acta Diabetol 2024:10.1007/s00592-024-02335-9. [PMID: 39031190 DOI: 10.1007/s00592-024-02335-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/06/2024] [Indexed: 07/22/2024]
Abstract
Insulin resistance arising from Non-Alcoholic Fatty Liver Disease (NAFLD) stands as a prevalent global ailment, a manifestation within societies stemming from individuals' suboptimal dietary habits and lifestyles. This form of insulin resistance emerges as a pivotal factor in the development of type 2 diabetes mellitus (T2DM). Emerging evidence underscores the significant role of hepatokines, as hepatic-secreted hormone-like entities, in the genesis of insulin resistance and eventual onset of type 2 diabetes. Hepatokines exert influence over extrahepatic metabolism regulation. Their principal functions encompass impacting adipocytes, pancreatic cells, muscles, and the brain, thereby playing a crucial role in shaping body metabolism through signaling to target tissues. This review explores the most important hepatokines, each with distinct influences. Our review shows that Fetuin-A promotes lipid-induced insulin resistance by acting as an endogenous ligand for Toll-like receptor 4 (TLR-4). FGF21 reduces inflammation in diabetes by blocking the nuclear translocation of nuclear factor-κB (NF-κB) in adipocytes and adipose tissue, while also improving glucose metabolism. ANGPTL6 enhances AMPK and insulin signaling in muscle, and suppresses gluconeogenesis. Follistatin can influence insulin resistance and inflammation by interacting with members of the TGF-β family. Adropin show a positive correlation with phosphoenolpyruvate carboxykinase 1 (PCK1), a key regulator of gluconeogenesis. This article delves into hepatokines' impact on NAFLD, inflammation, and T2DM, with a specific focus on insulin resistance. The aim is to comprehend the influence of these recently identified hormones on disease development and their underlying physiological and pathological mechanisms.
Collapse
Affiliation(s)
- Xiaolei Miao
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
| | - Arian Alidadipour
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Vian Saed
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Firooze Sayyadi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Yasaman Jadidi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Davoudi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Amraee
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Nastaran Jadidi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Afrisham
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
45
|
Wang C, An T, Lu C, Liu T, Shan X, Zhu Z, Gao Y. Tangzhiping Decoction Improves Glucose and Lipid Metabolism and Exerts Protective Effects Against White Adipose Tissue Dysfunction in Prediabetic Mice. Drug Des Devel Ther 2024; 18:2951-2969. [PMID: 39050798 PMCID: PMC11268521 DOI: 10.2147/dddt.s462603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024] Open
Abstract
Background Prediabetes, characterized by a series of metabolic abnormalities, increases the risk of diabetes and cardiovascular diseases. Tangzhiping (TZP), a clinically validated traditional Chinese medicine formula, is used to treat impaired glucose tolerance. However, the underlying mechanism of TZP in intervening prediabetes is not fully elucidated. Purpose The current study aimed to evaluate the protective effect of TZP against prediabetes mice and explore its potential mechanism. Methods After establishing a prediabetic animal model through 12 weeks of high-fat diet (HFD) feeding, mice were subjected to TZP for 8 weeks. Various parameters related to body weight, glucose and lipid metabolism, and insulin sensitivity were measured. Histopathological examinations observed adipose cell size and liver lipid deposition. The Sable Promethion system assessed energy metabolism activity. Transcriptomic analysis of Epididymal white adipose tissue (EWAT) identified enriched pathways and genes. The key genes in the enriched pathways were identified through RT-PCR. Results Our data revealed that the administration of TZP reduced body weight and fat mass in a prediabetes mouse model. TZP normalized the glucose and insulin levels, improved insulin resistance, and decreased plasma TC and FFA. The alleviation of adipose tissue hypertrophy and lipid deposition by TZP was demonstrated through pathological examination. Indirect calorimetry measurements indicated a potential increase in VO2 and EE levels with TZP. The results of EWAT transcription showed that TZP reversed pathways and genes related to inflammation and catabolic metabolism. RT-PCR demonstrated that the mRNA expression of inflammation and lipolysis, including Tlr2, Ccr5, Ccl9, Itgb2, Lipe, Pnpla2, Cdo1, Ces1d, Echs1, and Acad11, were changed by TZP treatment. Conclusion TZP effectively alleviates obesity, impaired glucose and lipid metabolism, and insulin resistance. The effect of TZP might be associated with the regulation of gene expression in dysfunctional adipose tissue.
Collapse
Affiliation(s)
- Cuiting Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing, People’s Republic of China
| | - Tian An
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing, People’s Republic of China
| | - Cong Lu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing, People’s Republic of China
| | - Tiantian Liu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing, People’s Republic of China
| | - Xiaomeng Shan
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing, People’s Republic of China
| | - Zhiyao Zhu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing, People’s Republic of China
| | - Yanbin Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing, People’s Republic of China
| |
Collapse
|
46
|
Adolph TE, Meyer M, Jukic A, Tilg H. Heavy arch: from inflammatory bowel diseases to metabolic disorders. Gut 2024; 73:1376-1387. [PMID: 38777571 PMCID: PMC11287632 DOI: 10.1136/gutjnl-2024-331914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Metabolic disorders and inflammatory bowel diseases (IBD) have captured the globe during Westernisation of lifestyle and related dietary habits over the last decades. Both disease entities are characterised by complex and heterogeneous clinical spectra linked to distinct symptoms and organ systems which, on a first glimpse, do not have many commonalities in clinical practice. However, experimental studies indicate a common backbone of inflammatory mechanisms in metabolic diseases and gut inflammation, and emerging clinical evidence suggests an intricate interplay between metabolic disorders and IBD. OBJECTIVE We depict parallels of IBD and metabolic diseases, easily overlooked in clinical routine. DESIGN We provide an overview of the recent literature and discuss implications of metabolic morbidity in patients with IBD for researchers, clinicians and healthcare providers. CONCLUSION The Western lifestyle and diet and related gut microbial perturbation serve as a fuel for metabolic inflammation in and beyond the gut. Metabolic disorders and the metabolic syndrome increasingly affect patients with IBD, with an expected negative impact for both disease entities and risk for complications. This concept implies that tackling the obesity pandemic exerts beneficial effects beyond metabolic health.
Collapse
Affiliation(s)
- Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Moritz Meyer
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Almina Jukic
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
47
|
Xu H, Luo Y, Li Q, Zhu H. Acupuncture influences multiple diseases by regulating gut microbiota. Front Cell Infect Microbiol 2024; 14:1371543. [PMID: 39040602 PMCID: PMC11260648 DOI: 10.3389/fcimb.2024.1371543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/13/2024] [Indexed: 07/24/2024] Open
Abstract
Acupuncture, an important green and side effect-free therapy in traditional Chinese medicine, is widely use both domestically and internationally. Acupuncture can interact with the gut microbiota and influence various diseases, including metabolic diseases, gastrointestinal diseases, mental disorders, nervous system diseases, and other diseases. This review presents a thorough analysis of these interactions and their impacts and examines the alterations in the gut microbiota and the potential clinical outcomes following acupuncture intervention to establish a basis for the future utilization of acupuncture in clinical treatments.
Collapse
Affiliation(s)
- Huimin Xu
- Department of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yingzhe Luo
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qiaoqi Li
- Department of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hong Zhu
- Department of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
48
|
Debnath DJ, Ray J, Jah SM, Marimuthu Y. Smoking and the Risk of Type 2 Diabetes: A Cross-sectional Analytical Study. Indian J Community Med 2024; 49:588-592. [PMID: 39291121 PMCID: PMC11404421 DOI: 10.4103/ijcm.ijcm_1009_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/08/2024] [Indexed: 09/19/2024] Open
Abstract
Background India is undergoing epidemiological transitions with the increase in noncommunicable disease (NCD) burden. Targeting the modifiable risk factors through lifestyle changes in the early years of life remains the most effective strategy for decreasing the prevalence of type 2 diabetes mellitus (T2DM). To determine the association between cigarette smoking and T2DM. Materials and Methods An analytical cross-sectional study was conducted among the patients attending the outpatient department of a tertiary care teaching hospital in Kolkata, West Bengal, India. Patients aged more than 35 years were enrolled, and details regarding sociodemography, clinical status, and NCD risk factors were collected using pretested semistructured questionnaires after obtaining IEC approval. Data collected were entered in MS Excel and analyzed using SPSS software. Simple logistic regression and multivariable logistic regression analysis were used to calculate the crude and adjusted odds ratio with 95% confidence interval. Results Out of 434 participants, 37.3% had diabetes mellitus, 51.6% were males, and 28.6% had alcohol consumption. Univariate logistic regression analysis revealed age, BMI, systolic BP, diastolic BP, and cigarette smoking were significantly associated with increased risk of T2DM. Multivariable logistic regression analysis revealed cigarette smoking, systolic BP, age, and female gender were significant risk factors for T2DM. Conclusions Our study reported cigarette smoking and systolic BP are modifiable risk factors associated with T2DM. Early identification of smoking through screening and appropriate control of hypertension in T2DM patients will decrease the morbidities and mortalities in T2DM cases.
Collapse
Affiliation(s)
- Dhrubajyoti J Debnath
- Department of Community and Family Medicine, AIIMS, Mangalagiri, Andhra Pradesh, India
| | - Jayanti Ray
- Department of General Medicine, College of Medicine and Sagore Dutta Hospital, Kolkata, West Bengal, India
| | - Syed Mustafa Jah
- Department of General Medicine, Medical College and Hospital, Kolkata, West Bengal, India
| | - Yamini Marimuthu
- Department of Community and Family Medicine, AIIMS, Mangalagiri, Andhra Pradesh, India
| |
Collapse
|
49
|
Serikbaeva A, Li Y, Ma S, Yi D, Kazlauskas A. Resilience to diabetic retinopathy. Prog Retin Eye Res 2024; 101:101271. [PMID: 38740254 PMCID: PMC11262066 DOI: 10.1016/j.preteyeres.2024.101271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Chronic elevation of blood glucose at first causes relatively minor changes to the neural and vascular components of the retina. As the duration of hyperglycemia persists, the nature and extent of damage increases and becomes readily detectable. While this second, overt manifestation of diabetic retinopathy (DR) has been studied extensively, what prevents maximal damage from the very start of hyperglycemia remains largely unexplored. Recent studies indicate that diabetes (DM) engages mitochondria-based defense during the retinopathy-resistant phase, and thereby enables the retina to remain healthy in the face of hyperglycemia. Such resilience is transient, and its deterioration results in progressive accumulation of retinal damage. The concepts that co-emerge with these discoveries set the stage for novel intellectual and therapeutic opportunities within the DR field. Identification of biomarkers and mediators of protection from DM-mediated damage will enable development of resilience-based therapies that will indefinitely delay the onset of DR.
Collapse
Affiliation(s)
- Anara Serikbaeva
- Department of Physiology and Biophysics, University of Illinois at Chicago, 1905 W Taylor St, Chicago, IL 60612, USA
| | - Yanliang Li
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1905 W Taylor St, Chicago, IL 60612, USA
| | - Simon Ma
- Department of Bioengineering, University of Illinois at Chicago, 1905 W Taylor St, Chicago, IL 60612, USA
| | - Darvin Yi
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1905 W Taylor St, Chicago, IL 60612, USA; Department of Bioengineering, University of Illinois at Chicago, 1905 W Taylor St, Chicago, IL 60612, USA
| | - Andrius Kazlauskas
- Department of Physiology and Biophysics, University of Illinois at Chicago, 1905 W Taylor St, Chicago, IL 60612, USA; Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1905 W Taylor St, Chicago, IL 60612, USA.
| |
Collapse
|
50
|
Ren L, Xuan L, Li A, Yang Y, Zhang W, Zhang J, Zhang Y, An Z. Gamma-aminobutyric acid supplementation improves olanzapine-induced insulin resistance by inhibiting macrophage infiltration in mice subcutaneous adipose tissue. Diabetes Obes Metab 2024; 26:2695-2705. [PMID: 38660748 DOI: 10.1111/dom.15585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/08/2024] [Accepted: 03/19/2024] [Indexed: 04/26/2024]
Abstract
AIMS To investigate whether gamma-aminobutyric acid (GABA) supplementation improves insulin resistance during olanzapine treatment in mice and to explore the underlying mechanisms. MATERIALS AND METHODS Insulin resistance and body weight gain were induced in mice by 10 weeks of olanzapine treatment. Simultaneously, the mice were administered GABA after 4 weeks of olanzapine administration. RESULTS We found that mice treated with olanzapine had lower GABA levels in serum and subcutaneous white adipose tissue (sWAT). GABA supplementation restored GABA levels and improved olanzapine-induced lipid metabolism disorders and insulin resistance. Chronic inflammation in adipose tissue is one of the main contributors to insulin resistance. We found that GABA supplementation inhibited olanzapine-induced adipose tissue macrophage infiltration and M1-like polarization, especially in sWAT. In vitro studies showed that stromal vascular cells, rather than adipocytes, were sensitive to GABA. Furthermore, the results suggested that GABA improves olanzapine-induced insulin resistance at least in part through a GABAB receptor-dependent pathway. CONCLUSIONS These findings suggest that targeting GABA may be a potential therapeutic approach for olanzapine-induced metabolic disorders.
Collapse
Affiliation(s)
- Lulu Ren
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Lingling Xuan
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Anning Li
- Beijing Anding Hospital, Capital Medical University, Beijing, China
- National Medical Center for Mental Disorders, Beijing, China
| | - Yaqi Yang
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Wen Zhang
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jie Zhang
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yi Zhang
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zhuoling An
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|