1
|
Ru Q, Li Y, Zhang X, Chen L, Wu Y, Min J, Wang F. Iron homeostasis and ferroptosis in muscle diseases and disorders: mechanisms and therapeutic prospects. Bone Res 2025; 13:27. [PMID: 40000618 PMCID: PMC11861620 DOI: 10.1038/s41413-024-00398-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/23/2024] [Accepted: 12/16/2024] [Indexed: 02/27/2025] Open
Abstract
The muscular system plays a critical role in the human body by governing skeletal movement, cardiovascular function, and the activities of digestive organs. Additionally, muscle tissues serve an endocrine function by secreting myogenic cytokines, thereby regulating metabolism throughout the entire body. Maintaining muscle function requires iron homeostasis. Recent studies suggest that disruptions in iron metabolism and ferroptosis, a form of iron-dependent cell death, are essential contributors to the progression of a wide range of muscle diseases and disorders, including sarcopenia, cardiomyopathy, and amyotrophic lateral sclerosis. Thus, a comprehensive overview of the mechanisms regulating iron metabolism and ferroptosis in these conditions is crucial for identifying potential therapeutic targets and developing new strategies for disease treatment and/or prevention. This review aims to summarize recent advances in understanding the molecular mechanisms underlying ferroptosis in the context of muscle injury, as well as associated muscle diseases and disorders. Moreover, we discuss potential targets within the ferroptosis pathway and possible strategies for managing muscle disorders. Finally, we shed new light on current limitations and future prospects for therapeutic interventions targeting ferroptosis.
Collapse
Affiliation(s)
- Qin Ru
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xi Zhang
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Lin Chen
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yuxiang Wu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China.
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
2
|
Khan A, Liu Y, Gad M, Kenny TC, Birsoy K. Solute carriers: The gatekeepers of metabolism. Cell 2025; 188:869-884. [PMID: 39983672 PMCID: PMC11875512 DOI: 10.1016/j.cell.2025.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/23/2024] [Accepted: 01/07/2025] [Indexed: 02/23/2025]
Abstract
Solute carrier (SLC) proteins play critical roles in maintaining cellular and organismal homeostasis by transporting small molecules and ions. Despite a growing body of research over the past decade, physiological substrates and functions of many SLCs remain elusive. This perspective outlines key challenges in studying SLC biology and proposes an evidence-based framework for defining SLC substrates. To accelerate the deorphanization process, we explore systematic technologies, including human genetics, biochemistry, and computational and structural approaches. Finally, we suggest directions to better understand SLC functions beyond substrate identification in physiology and disease.
Collapse
Affiliation(s)
- Artem Khan
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Yuyang Liu
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Mark Gad
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA; Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Timothy C Kenny
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Kıvanç Birsoy
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
3
|
Kennedy L, Sandhu JK, Harper ME, Cuperlovic-Culf M. A hybrid machine learning framework for functional annotation of mitochondrial glutathione transport and metabolism proteins in cancers. BMC Bioinformatics 2025; 26:48. [PMID: 39934670 DOI: 10.1186/s12859-025-06051-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 01/15/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Alterations of metabolism, including changes in mitochondrial metabolism as well as glutathione (GSH) metabolism are a well appreciated hallmark of many cancers. Mitochondrial GSH (mGSH) transport is a poorly characterized aspect of GSH metabolism, which we investigate in the context of cancer. Existing functional annotation approaches from machine (ML) or deep learning (DL) models based only on protein sequences, were unable to annotate functions in biological contexts. RESULTS We develop a flexible ML framework for functional annotation from diverse feature data. This hybrid ML framework leverages cancer cell line multi-omics data and other biological knowledge data as features, to uncover potential genes involved in mGSH metabolism and membrane transport in cancers. This framework achieves strong performance across functional annotation tasks and several cell line and primary tumor cancer samples. For our application, classification models predict the known mGSH transporter SLC25A39 but not SLC25A40 as being highly probably related to mGSH metabolism in cancers. SLC25A10, SLC25A50, and orphan SLC25A24, SLC25A43 are predicted to be associated with mGSH metabolism in multiple biological contexts and structural analysis of these proteins reveal similarities in potential substrate binding regions to the binding residues of SLC25A39. CONCLUSION These findings have implications for a better understanding of cancer cell metabolism and novel therapeutic targets with respect to GSH metabolism through potential novel functional annotations of genes. The hybrid ML framework proposed here can be applied to other biological function classifications or multi-omics datasets to generate hypotheses in various biological contexts. Code and a tutorial for generating models and predictions in this framework are available at: https://github.com/lkenn012/mGSH_cancerClassifiers .
Collapse
Affiliation(s)
- Luke Kennedy
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Jagdeep K Sandhu
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Human Health Therapeutics Research Centre, National Research Council Canada, 1200 Montreal Road, Bldg M54, Ottawa, ON, K1A 0R6, Canada
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| | - Miroslava Cuperlovic-Culf
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
- Digital Technologies Research Centre, National Research Council Canada, 1200 Montreal Road, Bldg M50, Ottawa, ON, K1A 0R6, Canada.
| |
Collapse
|
4
|
Shiiba I, Ito N, Oshio H, Ishikawa Y, Nagao T, Shimura H, Oh KW, Takasaki E, Yamaguchi F, Konagaya R, Kadowaki H, Nishitoh H, Tanzawa T, Nagashima S, Sugiura A, Fujikawa Y, Umezawa K, Tamura Y, Il Lee B, Hirabayashi Y, Okazaki Y, Sawa T, Inatome R, Yanagi S. ER-mitochondria contacts mediate lipid radical transfer via RMDN3/PTPIP51 phosphorylation to reduce mitochondrial oxidative stress. Nat Commun 2025; 16:1508. [PMID: 39929810 PMCID: PMC11811300 DOI: 10.1038/s41467-025-56666-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 01/24/2025] [Indexed: 02/13/2025] Open
Abstract
The proximal domains of mitochondria and the endoplasmic reticulum (ER) are linked by tethering factors on each membrane, allowing the efficient transport of substances, including lipids and calcium, between them. However, little is known about the regulation and function of mitochondria-ER contacts (MERCs) dynamics under mitochondrial damage. In this study, we apply NanoBiT technology to develop the MERBiT system, which enables the measurement of reversible MERCs formation in living cells. Analysis using this system suggests that induction of mitochondrial ROS increases MERCs formation via RMDN3 (also known as PTPIP51)-VAPB tethering driven by RMDN3 phosphorylation. Disruption of this tethering caused lipid radical accumulation in mitochondria, leading to cell death. The lipid radical transfer activity of the TPR domain in RMDN3, as revealed by an in vitro liposome assay, suggests that RMDN3 transfers lipid radicals from mitochondria to the ER. Our findings suggest a potential role for MERCs in cell survival strategy by facilitating the removal of mitochondrial lipid radicals under mitochondrial damage.
Collapse
Grants
- 23H02691,20H04911,20H03454 MEXT | Japan Society for the Promotion of Science (JSPS)
- 22K15399, 22H05574, 24H01327 MEXT | Japan Society for the Promotion of Science (JSPS)
- 23K14185, 22K20637 MEXT | Japan Society for the Promotion of Science (JSPS)
- 22H05532 MEXT | Japan Society for the Promotion of Science (JSPS)
- 21H0207, 21H05267, 23K17979 MEXT | Japan Society for the Promotion of Science (JSPS)
- 21K06844 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP17gm5010002, JP18gm5010002, JP19gm5010002, JP20gm5010002 Japan Agency for Medical Research and Development (AMED)
- JP19dm0207082 Japan Agency for Medical Research and Development (AMED)
- 23gm1610011h0001 Japan Agency for Medical Research and Development (AMED)
Collapse
Affiliation(s)
- Isshin Shiiba
- Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, Toshima, Tokyo, 171-8588, Japan.
| | - Naoki Ito
- Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, Toshima, Tokyo, 171-8588, Japan
| | - Hijiri Oshio
- Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, Toshima, Tokyo, 171-8588, Japan
| | - Yuto Ishikawa
- Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, Toshima, Tokyo, 171-8588, Japan
| | - Takahiro Nagao
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Hiroki Shimura
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Kyu-Wan Oh
- Research Institute, National Cancer Center, Goyang-si, Gyeonggi-do, Korea
| | - Eiki Takasaki
- Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, Toshima, Tokyo, 171-8588, Japan
| | - Fuya Yamaguchi
- Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, Toshima, Tokyo, 171-8588, Japan
| | - Ryoan Konagaya
- Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, Toshima, Tokyo, 171-8588, Japan
| | - Hisae Kadowaki
- Laboratory of Biochemistry and Molecular Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Hideki Nishitoh
- Laboratory of Biochemistry and Molecular Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Takehito Tanzawa
- Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Shun Nagashima
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Ayumu Sugiura
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Juntendo University, Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Yuuta Fujikawa
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Keitaro Umezawa
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Yasushi Tamura
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata, Yamagata, 990-8560, Japan
| | - Byung Il Lee
- Research Institute, National Cancer Center, Goyang-si, Gyeonggi-do, Korea
| | - Yusuke Hirabayashi
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Yasushi Okazaki
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Juntendo University, Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Tomohiro Sawa
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Ryoko Inatome
- Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, Toshima, Tokyo, 171-8588, Japan
| | - Shigeru Yanagi
- Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, Toshima, Tokyo, 171-8588, Japan.
| |
Collapse
|
5
|
Bischoff ME, Shamsaei B, Yang J, Secic D, Vemuri B, Reisz JA, D’Alessandro A, Bartolacci C, Adamczak R, Schmidt L, Wang J, Martines A, Venkat J, Tcheuyap VT, Biesiada J, Behrmann CA, Vest KE, Brugarolas J, Scaglioni PP, Plas DR, Patra KC, Gulati S, Landero Figueroa JA, Meller J, Cunningham JT, Czyzyk-Krzeska MF. Copper Drives Remodeling of Metabolic State and Progression of Clear Cell Renal Cell Carcinoma. Cancer Discov 2025; 15:401-426. [PMID: 39476412 PMCID: PMC11803400 DOI: 10.1158/2159-8290.cd-24-0187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 09/23/2024] [Accepted: 10/30/2024] [Indexed: 11/02/2024]
Abstract
SIGNIFICANCE The work establishes a requirement for glucose-dependent coordination between energy production and redox homeostasis, which is fundamental for the survival of cancer cells that accumulate Cu and contributes to tumor growth.
Collapse
Affiliation(s)
- Megan E. Bischoff
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Behrouz Shamsaei
- Department of Biostatistics, Health Informatics and Data Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Juechen Yang
- Department of Biostatistics, Health Informatics and Data Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Dina Secic
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Bhargav Vemuri
- Department of Biostatistics, Health Informatics and Data Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Julie A. Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado
| | - Caterina Bartolacci
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Rafal Adamczak
- Institute of Engineering and Technology, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Torun, Poland
| | - Lucas Schmidt
- Trace Elements Group, Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jiang Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Amelia Martines
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Jahnavi Venkat
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Vanina Toffessi Tcheuyap
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jacek Biesiada
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Catherine A. Behrmann
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Katherine E. Vest
- Department of Molecular and Cellular Biosciences, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - James Brugarolas
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Pier Paolo Scaglioni
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - David R. Plas
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Krushna C. Patra
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Shuchi Gulati
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Division of Oncology and Hematology, Department of Internal Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, California
| | - Julio A. Landero Figueroa
- Trace Elements Group, Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jarek Meller
- Department of Biostatistics, Health Informatics and Data Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Institute of Engineering and Technology, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Torun, Poland
- Department of Computer Science, University of Cincinnati College of Engineering and Applied Sciences, Cincinnati, Ohio
| | - John T. Cunningham
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Maria F. Czyzyk-Krzeska
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Department of Veterans Affairs, Veteran Affairs Medical Center, Cincinnati, Ohio
- Department of Pharmacology and System Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
6
|
Wang W, Chen J, Zhan L, Zou H, Wang L, Guo M, Gao H, Xu J, Wu W. Iron and ferroptosis in kidney disease: molecular and metabolic mechanisms. Front Immunol 2025; 16:1531577. [PMID: 39975561 PMCID: PMC11835690 DOI: 10.3389/fimmu.2025.1531577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/20/2025] [Indexed: 02/21/2025] Open
Abstract
Maintaining iron homeostasis is necessary for kidney functioning. There is more and more research indicating that kidney disease is often caused by iron imbalance. Over the past decade, ferroptosis' role in mediating the development and progression of renal disorders, such as acute kidney injury (renal ischemia-reperfusion injury, drug-induced acute kidney injury, severe acute pancreatitis induced acute kidney injury and sepsis-associated acute kidney injury), chronic kidney disease (diabetic nephropathy, renal fibrosis, autosomal dominant polycystic kidney disease) and renal cell carcinoma, has come into focus. Thus, knowing kidney iron metabolism and ferroptosis regulation may enhance disease therapy. In this review, we discuss the metabolic and molecular mechanisms of iron signaling and ferroptosis in kidney disease. We also explore the possible targets of ferroptosis in the therapy of renal illness, as well as their existing limitations and future strategies.
Collapse
Affiliation(s)
- Wenjie Wang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jingdi Chen
- Department of orthopedics, The Airborne Military Hospital, Wuhan, Hubei, China
| | - Liying Zhan
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Handong Zou
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lu Wang
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Mengmeng Guo
- The First Clinical College of Wuhan University, Wuhan, Hubei, China
| | - Hang Gao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jing Xu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wei Wu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
7
|
González-Alfonso WL, Petrosyan P, Del Razo LM, Sánchez-Peña LC, Tapia-Rodríguez M, Hernández-Muñoz R, Gonsebatt ME. Chronic Exposure to Arsenic and Fluoride Starting at Gestation Alters Liver Mitochondrial Protein Expression and Induces Early Onset of Liver Fibrosis in Male Mouse Offspring. Biol Trace Elem Res 2025; 203:930-943. [PMID: 38676876 PMCID: PMC11750905 DOI: 10.1007/s12011-024-04198-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
The presence of arsenic (As) and fluoride (F-) in drinking water is of concern due to the enormous number of individuals exposed to this condition worldwide. Studies in cultured cells and animal models have shown that As- or F-induced hepatotoxicity is primarily associated with redox disturbance and altered mitochondrial homeostasis. To explore the hepatotoxic effects of chronic combined exposure to As and F- in drinking water, pregnant CD-1 mice were exposed to 2 mg/L As (sodium arsenite) and/or 25 mg/L F- (sodium fluoride). The male offspring continued the exposure treatment up to 30 (P30) or 90 (P90) postnatal days. GSH levels, cysteine synthesis enzyme activities, and cysteine transporter levels were investigated in liver homogenates, as well as the expression of biomarkers of ferroptosis and mitochondrial biogenesis-related proteins. Serum transaminase levels and Hematoxylin-Eosin and Masson trichrome-stained liver tissue slices were examined. Combined exposure at P30 significantly reduced GSH levels and the mitochondrial transcription factor A (TFAM) expression while increasing lipid peroxidation, free Fe 2+, p53 expression, and serum ALT activity. At P90, the upregulation of cysteine uptake and synthesis was associated with a recovery of GSH levels. Nevertheless, the downregulation of TFAM continued and was now associated with a downstream inhibition of the expression of MT-CO2 and reduced levels of mtDNA and fibrotic liver damage. Our experimental approach using human-relevant doses gives evidence of the increased risk for early liver damage associated with elevated levels of As and F- in the diet during intrauterine and postnatal period.
Collapse
Affiliation(s)
- Wendy L González-Alfonso
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 04510, México
| | - Pavel Petrosyan
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 04510, México
| | - Luz M Del Razo
- Departamento de Toxicología, Centro de Investigación y Estudios Avanzados, 07360, Mexico City, Mexico
| | - Luz C Sánchez-Peña
- Departamento de Toxicología, Centro de Investigación y Estudios Avanzados, 07360, Mexico City, Mexico
| | - Miguel Tapia-Rodríguez
- Unidad de Microscopia, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Rolando Hernández-Muñoz
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, 04510, México
| | - María E Gonsebatt
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 04510, México.
| |
Collapse
|
8
|
Guo L. Mitochondrial permeability transition mediated by MTCH2 and F-ATP synthase contributes to ferroptosis defense. FEBS Lett 2025; 599:352-366. [PMID: 39227319 DOI: 10.1002/1873-3468.15008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/16/2024] [Accepted: 07/12/2024] [Indexed: 09/05/2024]
Abstract
The opening of the mitochondrial permeability transition pore (PTP), a Ca2+-dependent pore located in the inner mitochondrial membrane, triggers mitochondrial outer membrane permeabilization (MOMP) and induces organelle rupture. However, the underlying mechanism of PTP-induced MOMP remains unclear. Mitochondrial carrier homolog 2 (MTCH2) mediates MOMP process by facilitating the recruitment of tBID to mitochondria. Here, we show that MTCH2 binds to cyclophilin D (CyPD) and promotes the dimerization of F-ATP synthase via interaction with subunit j. The interplay between MTCH2 and subunit j coordinates MOMP and PTP to mediate the occurrence of mitochondrial permeability transition. Knockdown of CyPD, MTCH2 and subunit j markedly sensitizes cells to RSL3-induced ferroptosis, which is prevented by MitoTEMPO, suggesting that mitochondrial permeability transition mediates ferroptosis defense.
Collapse
Affiliation(s)
- Lishu Guo
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
9
|
Song B, Wu M, Qin L, Liang W, Wang X. Smart Design of Targeted Drug Delivery System for Precise Drug Delivery and Visual Treatment of Brain Gliomas. Adv Healthc Mater 2025; 14:e2402967. [PMID: 39707642 DOI: 10.1002/adhm.202402967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/04/2024] [Indexed: 12/23/2024]
Abstract
In the treatment of glioma, which is one of the malignant tumors, although chemotherapy is used as the most common treatment method, it often suffers from low bioavailability. Therefore, improving the precision and efficiency of drugs is crucial in treating gliomas and a great challenge. Here, an advanced drug delivery system is reported for gliomas (CZQD@HA@DOX), which aggregates multiple features such as the susceptible imaging tracer property due to the use of CZQD and the targeting of HA to the receptor cluster 44 (CD44) of glioma cells, which provides the system with the functions of targeted enrichment and precise drug delivery at the tumor site. The pH-responsive drug delivery system has not only an excellent encapsulation rate but also a high drug loading capacity, and the doxorubicin loaded on it can be released centrally at the tumor microenvironment site and causes an increase of reactive oxygen species in the mitochondria and trigger oxidative stress, which leads to high expression of Bax apoptotic proteins, ultimately activating the mitochondrial pathway-mediated apoptotic process in glioma cells. Overall, this drug delivery system has great potential for application in precision targeted therapy and visual tracer imaging of gliomas.
Collapse
Affiliation(s)
- Baoqin Song
- School of Pharmaceutical Sciences and Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery System, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare and Uncommon Diseases of Shandong Province, Jinan, Shandong, 250117, China
| | - Mengru Wu
- School of Pharmaceutical Sciences and Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery System, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare and Uncommon Diseases of Shandong Province, Jinan, Shandong, 250117, China
| | - Lijing Qin
- School of Pharmaceutical Sciences and Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery System, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare and Uncommon Diseases of Shandong Province, Jinan, Shandong, 250117, China
| | - Wanjun Liang
- School of Pharmaceutical Sciences and Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery System, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare and Uncommon Diseases of Shandong Province, Jinan, Shandong, 250117, China
| | - Xiu Wang
- School of Pharmaceutical Sciences and Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery System, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare and Uncommon Diseases of Shandong Province, Jinan, Shandong, 250117, China
| |
Collapse
|
10
|
Müller S, Cañeque T, Solier S, Rodriguez R. Copper and iron orchestrate cell-state transitions in cancer and immunity. Trends Cell Biol 2025; 35:105-114. [PMID: 39079798 DOI: 10.1016/j.tcb.2024.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 02/09/2025]
Abstract
Whereas genetic mutations can alter cell properties, nongenetic mechanisms can drive rapid and reversible adaptations to changes in their physical environment, a phenomenon termed 'cell-state transition'. Metals, in particular copper and iron, have been shown to be rate-limiting catalysts of cell-state transitions controlling key chemical reactions in mitochondria and the cell nucleus, which govern metabolic and epigenetic changes underlying the acquisition of distinct cell phenotypes. Acquisition of a distinct cell identity, independently of genetic alterations, is an underlying phenomenon of various biological processes, including development, inflammation, erythropoiesis, aging, and cancer. Here, mechanisms that have been uncovered related to the role of these metals in the regulation of cell plasticity are described, illustrating how copper and iron can be exploited for therapeutic intervention.
Collapse
Affiliation(s)
- Sebastian Müller
- Institut Curie, CNRS, INSERM, PSL Research University, Equipe labellisée Ligue Contre Le Cancer, Paris, France
| | - Tatiana Cañeque
- Institut Curie, CNRS, INSERM, PSL Research University, Equipe labellisée Ligue Contre Le Cancer, Paris, France
| | - Stéphanie Solier
- Institut Curie, CNRS, INSERM, PSL Research University, Equipe labellisée Ligue Contre Le Cancer, Paris, France; Department of Genetics, Institut Curie, Paris, France; Paris Saclay University, UVSQ, Montigny-le-Bretonneux, France
| | - Raphaël Rodriguez
- Institut Curie, CNRS, INSERM, PSL Research University, Equipe labellisée Ligue Contre Le Cancer, Paris, France.
| |
Collapse
|
11
|
Pena IA, Shi JS, Chang SM, Yang J, Block S, Adelmann CH, Keys HR, Ge P, Bathla S, Witham IH, Sienski G, Nairn AC, Sabatini DM, Lewis CA, Kory N, Vander Heiden MG, Heiman M. SLC25A38 is required for mitochondrial pyridoxal 5'-phosphate (PLP) accumulation. Nat Commun 2025; 16:978. [PMID: 39856062 PMCID: PMC11760969 DOI: 10.1038/s41467-025-56130-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 01/08/2025] [Indexed: 01/30/2025] Open
Abstract
Many essential proteins require pyridoxal 5'-phosphate, the active form of vitamin B6, as a cofactor for their activity. These include enzymes important for amino acid metabolism, one-carbon metabolism, polyamine synthesis, erythropoiesis, and neurotransmitter metabolism. A third of all mammalian pyridoxal 5'-phosphate-dependent enzymes are localized in the mitochondria; however, the molecular machinery involved in the regulation of mitochondrial pyridoxal 5'-phosphate levels in mammals remains unknown. In this study, we used a genome-wide CRISPR interference screen in erythroleukemia cells and organellar metabolomics to identify the mitochondrial inner membrane protein SLC25A38 as a regulator of mitochondrial pyridoxal 5'-phosphate. Loss of SLC25A38 causes depletion of mitochondrial, but not cellular, pyridoxal 5'-phosphate, and impairs cellular proliferation under both physiological and low vitamin B6 conditions. Metabolic changes associated with SLC25A38 loss suggest impaired mitochondrial pyridoxal 5'-phosphate-dependent enzymatic reactions, including serine to glycine conversion catalyzed by serine hydroxymethyltransferase-2 as well as ornithine aminotransferase. The proliferation defect of SLC25A38-null K562 cells in physiological and low vitamin B6 media can be explained by the loss of serine hydroxymethyltransferase-2-dependent production of one-carbon units and downstream de novo nucleotide synthesis. Our work points to a role for SLC25A38 in mitochondrial pyridoxal 5'-phosphate accumulation and provides insights into the pathology of congenital sideroblastic anemia.
Collapse
Affiliation(s)
- Izabella A Pena
- The Picower Institute for Learning and Memory, MIT, Cambridge, MA, USA.
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA.
- Children's Hospital of Eastern Ontario (CHEO) Research Institute, Ottawa, ON, Canada.
| | - Jeffrey S Shi
- The Picower Institute for Learning and Memory, MIT, Cambridge, MA, USA
- Department of Biology, MIT, Cambridge, MA, USA
| | - Sarah M Chang
- Department of Biology, MIT, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Harvard-MIT MD/PhD Program, Boston, MA, USA
| | - Jason Yang
- Department of Biology, MIT, Cambridge, MA, USA
| | - Samuel Block
- Department of Biology, MIT, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
| | - Charles H Adelmann
- Department of Biology, MIT, Cambridge, MA, USA
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Dermatology, Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Heather R Keys
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Preston Ge
- The Picower Institute for Learning and Memory, MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Harvard-MIT MD/PhD Program, Boston, MA, USA
| | - Shveta Bathla
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Isabella H Witham
- The Picower Institute for Learning and Memory, MIT, Cambridge, MA, USA
- Department of Biological Engineering, MIT, Cambridge, MA, USA
| | | | - Angus C Nairn
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - David M Sabatini
- Institute of Organic Chemistry and Biochemistry, IOCB, Prague, Czechia
| | - Caroline A Lewis
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- UMass Chan Medical School, Program in Molecular Medicine, Worcester, MA, USA
| | - Nora Kory
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Matthew G Vander Heiden
- Department of Biology, MIT, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Myriam Heiman
- The Picower Institute for Learning and Memory, MIT, Cambridge, MA, USA.
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA.
| |
Collapse
|
12
|
Du NY, Li Y, Zheng H, Liu YK, Liu LS, Xie J, Kang S. Incorporating genotype information in a precise prediction model for platinum sensitivity in epithelial ovarian cancer. Front Oncol 2025; 14:1461772. [PMID: 39839768 PMCID: PMC11746020 DOI: 10.3389/fonc.2024.1461772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/13/2024] [Indexed: 01/23/2025] Open
Abstract
Objective Develop a predicting model that can help stratify patients with epithelial ovarian cancer (EOC) before platinum-based chemotherapy. Methods 148 patients with pathologically confirmed EOC and with a minimum 5-year follow-up were retrospectively enrolled. Patients were classified into platinum-sensitive and platinum-resistant groups according to treatment responses. The correlation between clinical factors and drug sensitivity was evaluated using statistical tests. Approximately 700,000 single-nucleotide polymorphism (SNP) sites were assessed for association with drug sensitivity via the Genome-wide Association Study (GWAS). LASSO regression and manual selection were employed to reduce the number of variables. A predicting model based on optimized variables was constructed. The predictive ability of the model was assessed using the Kaplan-Meier curve. Results No statistically significant association was found between clinical factors and drug sensitivity. Sixteen SNPs were preserved after the optimization. A predicting model for drug sensitivity was constructed based on those sixteen SNPs. Coefficients of the synergistic effect for each SNP were determined, and an algorithm of the Drug Sensitivity Index (DSI) was built. The DSI score can successfully distinguish the drug-sensitive or drug-resistant patients with sensitivity, specificity, positive predictive value, and accuracy of 94.7%, 83.3%, 90.8%, and 90.5%, respectively. In both the training set and validating samples, the Kaplan-Meier curve showed that the median PFS and mean OS were significantly differentiated between the predicted sensitive and resistant patients (p-value<0.001). Conclusions A mathematical model incorporating genotype information could help predict the drug sensitivity of platinum-based chemotherapy before the treatment in EOC patients. A personal chemotherapy could be achieved based on the model.
Collapse
Affiliation(s)
- Nai-Yi Du
- Department of Gynecology, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yan Li
- Department of Molecular Biology, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Hui Zheng
- Department of Translation Medicine, Shijiazhuang Ninghong Biotechnology Co., Ltd., Shijiazhuang, Hebei, China
| | - Ya-Kun Liu
- Department of Gynecology, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lu-Sha Liu
- Department of Gynecology, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jianbang Xie
- Department of Translation Medicine, Shijiazhuang Ninghong Biotechnology Co., Ltd., Shijiazhuang, Hebei, China
| | - Shan Kang
- Department of Gynecology, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
13
|
Yvan-Charvet L, Barouillet T, Borowczyk C. Haematometabolism rewiring in atherosclerotic cardiovascular disease. Nat Rev Cardiol 2025:10.1038/s41569-024-01108-9. [PMID: 39743562 DOI: 10.1038/s41569-024-01108-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/14/2024] [Indexed: 01/04/2025]
Abstract
Atherosclerotic cardiovascular diseases are the most frequent cause of death worldwide. The clinical complications of atherosclerosis are closely linked to the haematopoietic and immune systems, which maintain homeostatic functions and vital processes in the body. The nodes linking metabolism and inflammation are receiving increasing attention because they are inextricably linked to inflammatory manifestations of non-communicable diseases, including atherosclerosis. Although metabolism and inflammation are essential to survival and involve all tissues, we still know little about how these processes influence each other. In an effort to understand these mechanisms, in this Review we explore whether and how potent cardiovascular risk factors and metabolic modifiers of atherosclerosis influence the molecular and cellular machinery of 'haematometabolism' (metabolic-dependent haematopoietic stem cell skewing) and 'efferotabolism' (metabolic-dependent efferocyte reprogramming). These changes might ultimately propagate a quantitative and qualitative drift of the macrophage supply chain and affect the clinical manifestations of atherosclerosis. Refining our understanding of the different metabolic requirements of these processes could open the possibility of developing therapeutics targeting haematometabolism that, in conjunction with improved dietary habits, help rebalance and promote efficient haematopoiesis and efferocytosis and decrease the risk of atherosclerosis complications.
Collapse
Affiliation(s)
- Laurent Yvan-Charvet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Nice, France.
- Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France.
- Fédération Hospitalo-Universitaire (FHU) Oncoage, IHU ResprERA Respiratory Health, Environment and Ageing (RespirERA), Nice, France.
| | - Thibault Barouillet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Nice, France
- Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France
- Fédération Hospitalo-Universitaire (FHU) Oncoage, IHU ResprERA Respiratory Health, Environment and Ageing (RespirERA), Nice, France
| | - Coraline Borowczyk
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Nice, France.
- Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France.
- Fédération Hospitalo-Universitaire (FHU) Oncoage, IHU ResprERA Respiratory Health, Environment and Ageing (RespirERA), Nice, France.
| |
Collapse
|
14
|
Venditti P, Napolitano G. Mitochondrial Management of ROS in Physiological and Pathological Conditions. Antioxidants (Basel) 2025; 14:43. [PMID: 39857377 PMCID: PMC11761860 DOI: 10.3390/antiox14010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
Mitochondria are found, with rare exceptions [...].
Collapse
Affiliation(s)
- Paola Venditti
- Department of Biology, University of Naples Federico II, Monte Sant’Angelo Via Cinthia, 80126 Naples, Italy
| | - Gaetana Napolitano
- Department of Sciences and Technology, University of Naples Parthenope, Via Acton 38, 80133 Naples, Italy
| |
Collapse
|
15
|
Ahmed A, Iaconisi GN, Di Molfetta D, Coppola V, Caponio A, Singh A, Bibi A, Capobianco L, Palmieri L, Dolce V, Fiermonte G. The Role of Mitochondrial Solute Carriers SLC25 in Cancer Metabolic Reprogramming: Current Insights and Future Perspectives. Int J Mol Sci 2024; 26:92. [PMID: 39795950 PMCID: PMC11719790 DOI: 10.3390/ijms26010092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/23/2024] [Accepted: 12/23/2024] [Indexed: 01/30/2025] Open
Abstract
Cancer cells undergo remarkable metabolic changes to meet their high energetic and biosynthetic demands. The Warburg effect is the most well-characterized metabolic alteration, driving cancer cells to catabolize glucose through aerobic glycolysis to promote proliferation. Another prominent metabolic hallmark of cancer cells is their increased reliance on glutamine to replenish tricarboxylic acid (TCA) cycle intermediates essential for ATP production, aspartate and fatty acid synthesis, and maintaining redox homeostasis. In this context, mitochondria, which are primarily used to maintain energy homeostasis and support balanced biosynthesis in normal cells, become central organelles for fulfilling the heightened biosynthetic and energetic demands of proliferating cancer cells. Mitochondrial coordination and metabolite exchange with other cellular compartments are crucial. The human SLC25 mitochondrial carrier family, comprising 53 members, plays a pivotal role in transporting TCA intermediates, amino acids, vitamins, nucleotides, and cofactors across the inner mitochondrial membrane, thereby facilitating this cross-talk. Numerous studies have demonstrated that mitochondrial carriers are altered in cancer cells, actively contributing to tumorigenesis. This review comprehensively discusses the role of SLC25 carriers in cancer pathogenesis and metabolic reprogramming based on current experimental evidence. It also highlights the research gaps that need to be addressed in future studies. Understanding the involvement of these carriers in tumorigenesis may provide valuable novel targets for drug development.
Collapse
Affiliation(s)
- Amer Ahmed
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy
| | - Giorgia Natalia Iaconisi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Daria Di Molfetta
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy
| | - Vincenzo Coppola
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Antonello Caponio
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy
| | - Ansu Singh
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy
| | - Aasia Bibi
- Department of Translational Biomedicine and Neuroscience, University of Bari, 70125 Bari, Italy
| | - Loredana Capobianco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Luigi Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy
| | - Vincenza Dolce
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Giuseppe Fiermonte
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy
| |
Collapse
|
16
|
Gao H, Gu T, Gao X, Song Z, Liu J, Song Y, Zhang G, Sun Y. African swine fever virus enhances viral replication by increasing intracellular reduced glutathione levels, which suppresses stress granule formation. Vet Res 2024; 55:172. [PMID: 39707514 DOI: 10.1186/s13567-024-01433-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/27/2024] [Indexed: 12/23/2024] Open
Abstract
African swine fever virus (ASFV) is a DNA virus that has significantly impacted the global swine industry. Currently, there are no effective therapies or vaccines against ASFV. Stress granules (SGs), known for their antiviral properties, are not induced during ASFV infection, even though reactive oxygen species (ROS) are generated. The mechanism by which ASFV regulates SGs formation remains unclear. This study demonstrates that ASFV antagonises SGs formation and increases intracellular levels of reduced glutathione (GSH) levels. The use of the GSH inhibitor BSO and the activator NAC confirmed that the ASFV-induced increase in GSH helps to suppress SGs formation and influences viral replication. Additionally, this study revealed that ASFV enhances GSH by upregulating the antioxidant transcription factor NRF2, as well as factors involved in GSH synthesis and regeneration, such as GCLC, and those related to the ferroptosis pathway, such as SLC7A11. Furthermore, the study uncovered that ASFV manipulates intracellular GSH levels by activating the mitochondrial protein AIFM1. This regulatory mechanism helps the virus inhibit the formation of intracellular SGs, thereby creating an optimal environment for viral replication. These findings provide new insights into the molecular strategies employed by ASFV.
Collapse
Affiliation(s)
- Han Gao
- African Swine Fever Regional Laboratory of China (Guangzhou), South China Agricultural University, Guangzhou, 510642, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China
- School of Animal Science and Technology, Foshan University, Foshan, 528225, China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Animal Science and Technology, Foshan University, Foshan, 528225, China
| | - Taoming Gu
- African Swine Fever Regional Laboratory of China (Guangzhou), South China Agricultural University, Guangzhou, 510642, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China
| | - Xiaopeng Gao
- African Swine Fever Regional Laboratory of China (Guangzhou), South China Agricultural University, Guangzhou, 510642, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China
| | - Zebu Song
- African Swine Fever Regional Laboratory of China (Guangzhou), South China Agricultural University, Guangzhou, 510642, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China
| | - Jing Liu
- African Swine Fever Regional Laboratory of China (Guangzhou), South China Agricultural University, Guangzhou, 510642, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China
| | - Yi Song
- African Swine Fever Regional Laboratory of China (Guangzhou), South China Agricultural University, Guangzhou, 510642, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China
| | - Guihong Zhang
- African Swine Fever Regional Laboratory of China (Guangzhou), South China Agricultural University, Guangzhou, 510642, China.
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China.
| | - Yankuo Sun
- African Swine Fever Regional Laboratory of China (Guangzhou), South China Agricultural University, Guangzhou, 510642, China.
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China.
| |
Collapse
|
17
|
Liu J, Tang H, Chen F, Li C, Xie Y, Kang R, Tang D. NFE2L2 and SLC25A39 drive cuproptosis resistance through GSH metabolism. Sci Rep 2024; 14:29579. [PMID: 39609608 PMCID: PMC11605005 DOI: 10.1038/s41598-024-81317-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 11/26/2024] [Indexed: 11/30/2024] Open
Abstract
Cuproptosis is a recently discovered form of regulated cell death triggered by mitochondrial copper accumulation and proteotoxic stress. Here, we provide the first evidence that glutathione (GSH), a major non-protein thiol in cells, acts as a cuproptosis inhibitor in pancreatic ductal adenocarcinoma (PDAC) cells. Mechanistically, GSH inhibits cuproptosis by chelating copper, contrasting its role in blocking ferroptosis by inhibiting lipid peroxidation. The classical cuproptosis inducer, ES-Cu (elesclomol plus copper), increases the protein stability of the transcription factor NFE2L2 (also known as NRF2), leading to the upregulation of gene expression of glutamate-cysteine ligase modifier subunit (GCLM) and glutamate-cysteine ligase catalytic subunit (GCLC). GCLM and GCLC are rate-limiting enzymes in GSH synthesis, and increased GSH is transported into mitochondria via the solute carrier family 25 member 39 (SLC25A39) transporter. Consequently, genetic inhibition of the NFE2L2-GSH-SLC25A39 pathway enhances cuproptosis-mediated tumor suppression in cell culture and in mouse tumor models. These findings not only reveal distinct mechanisms of GSH in inhibiting cuproptosis and ferroptosis, but also suggest a potential combination strategy to suppress PDAC tumor growth.
Collapse
Affiliation(s)
- Jiao Liu
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, Guangdong, China.
| | - Hu Tang
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, Guangdong, China
| | - Fangquan Chen
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, Guangdong, China
| | - Changfeng Li
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Yangchun Xie
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
18
|
Wang Y, Wang Y, Liu M, Jia R, Zhang Y, Sun G, Zhang Z, Liu M, Jiang Y. Micro-/nano-plastics as vectors of heavy metals and stress response of ciliates using transcriptomic and metabolomic analyses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124667. [PMID: 39103036 DOI: 10.1016/j.envpol.2024.124667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
The escalating presence of microplastics and heavy metals in marine environments significantly jeopardizes ecological stability and human health. Despite this, research on the combined effects of microplastics/nanoplastics (MPs/NPs) and heavy metals on marine organisms remains limited. This study evaluated the impact of two sizes of polystyrene beads (approximately 2 μm and 200 nm) combined with cadmium (Cd) on the ciliate species Euplotes vannus. Results demonstrated that co-exposure of MPs/NPs and Cd markedly elevated reactive oxygen species (ROS) levels in ciliates while impairing antioxidant enzyme activities, thus enhancing oxidative damage and significantly reducing carbon biomass in ciliates. Transcriptomic profiling indicated that co-exposure of MPs/NPs and Cd potentially caused severe DNA damage and protein oxidation, as evidenced by numerous differentially expressed genes (DEGs) associated with mismatch repair, DNA replication, and proteasome function. Integrated transcriptomic and metabolomic analysis revealed that DEGs and differentially accumulated metabolites (DAMs) were significantly enriched in the TCA cycle, glycolysis, tryptophan metabolism, and glutathione metabolism. This suggests that co-exposure of MPs/NPs and Cd may reduce ciliate abundance and carbon biomass by inhibiting energy metabolism and antioxidant pathways. Additionally, compared to MPs, the co-exposure of NPs and Cd exhibited more severe negative effects due to the larger specific surface area of NPs, which can carry more Cd. These findings provide novel insights into the toxic effects of MPs/NPs and heavy metals on protozoan ciliates, offering foundational data for assessing the ecological risks of heavy metals exacerbated by MPs/NPs.
Collapse
Affiliation(s)
- Yunlong Wang
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Yaxin Wang
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Minhao Liu
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Ruiqi Jia
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Yan Zhang
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Gaojingwen Sun
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Zhaoji Zhang
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Mingjian Liu
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Yong Jiang
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Evolution & Marine Biodiversity of Ministry of Education, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
19
|
Tian L, Liu Q, Guo H, Zang H, Li Y. Fighting ischemia-reperfusion injury: Focusing on mitochondria-derived ferroptosis. Mitochondrion 2024; 79:101974. [PMID: 39461581 DOI: 10.1016/j.mito.2024.101974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/12/2024] [Accepted: 10/12/2024] [Indexed: 10/29/2024]
Abstract
Ischemia-reperfusion injury (IRI) is a major cause of mortality and morbidity. Current treatments for IRI have limited efficacy and novel therapeutic strategies are needed. Mitochondrial dysfunction not only initiates IRI but also plays a significant role in ferroptosis pathogenesis. Recent studies have highlighted that targeting mitochondrial pathways is a promising therapeutic approach for ferroptosis-induced IRI. The association between ferroptosis and IRI has been reviewed many times, but our review provides the first comprehensive overview with a focus on recent mitochondrial research. First, we present the role of mitochondria in ferroptosis. Then, we summarize the evidence on mitochondrial manipulation of ferroptosis in IRI and review recent therapeutic strategies aimed at targeting mitochondria-related ferroptosis to mitigate IRI. We hope our review will provide new ideas for the treatment of IRI and accelerate the transition from bench to bedside.
Collapse
Affiliation(s)
- Lei Tian
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Qian Liu
- Department of Anesthesiology, Zigong First People's Hospital, Zigong Academy of Medical Sciences, Zigong, China
| | - Hong Guo
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Honggang Zang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Yulan Li
- Department of Anesthesiology, The First Hospital of Lanzhou University, Lanzhou, China.
| |
Collapse
|
20
|
Lin HP, Petersen JD, Gilsrud AJ, Madruga A, D'Silva TM, Huang X, Shammas MK, Randolph NP, Johnson KR, Li Y, Jones DR, Pacold ME, Narendra DP. DELE1 maintains muscle proteostasis to promote growth and survival in mitochondrial myopathy. EMBO J 2024; 43:5548-5585. [PMID: 39379554 PMCID: PMC11574132 DOI: 10.1038/s44318-024-00242-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/11/2024] [Accepted: 08/22/2024] [Indexed: 10/10/2024] Open
Abstract
Mitochondrial dysfunction causes devastating disorders, including mitochondrial myopathy, but how muscle senses and adapts to mitochondrial dysfunction is not well understood. Here, we used diverse mouse models of mitochondrial myopathy to show that the signal for mitochondrial dysfunction originates within mitochondria. The mitochondrial proteins OMA1 and DELE1 sensed disruption of the inner mitochondrial membrane and, in response, activated the mitochondrial integrated stress response (mt-ISR) to increase the building blocks for protein synthesis. In the absence of the mt-ISR, protein synthesis in muscle was dysregulated causing protein misfolding, and mice with early-onset mitochondrial myopathy failed to grow and survive. The mt-ISR was similar following disruptions in mtDNA maintenance (Tfam knockout) and mitochondrial protein misfolding (CHCHD10 G58R and S59L knockin) but heterogenous among mitochondria-rich tissues, with broad gene expression changes observed in heart and skeletal muscle and limited changes observed in liver and brown adipose tissue. Taken together, our findings identify that the DELE1 mt-ISR mediates a similar response to diverse forms of mitochondrial stress and is critical for maintaining growth and survival in early-onset mitochondrial myopathy.
Collapse
Affiliation(s)
- Hsin-Pin Lin
- Mitochondrial Biology and Neurodegeneration Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jennifer D Petersen
- Mitochondrial Biology and Neurodegeneration Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alexandra J Gilsrud
- Mitochondrial Biology and Neurodegeneration Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Angelo Madruga
- Mitochondrial Biology and Neurodegeneration Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Theresa M D'Silva
- Mitochondrial Biology and Neurodegeneration Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xiaoping Huang
- Mitochondrial Biology and Neurodegeneration Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mario K Shammas
- Mitochondrial Biology and Neurodegeneration Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nicholas P Randolph
- Mitochondrial Biology and Neurodegeneration Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kory R Johnson
- Bioinformatics Core, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yan Li
- Proteomics Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Drew R Jones
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, USA
| | - Michael E Pacold
- Department of Radiation Oncology, NYU Langone Health, New York, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, USA
| | - Derek P Narendra
- Mitochondrial Biology and Neurodegeneration Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
21
|
Han L, Meng L, Liu J, Xie Y, Kang R, Klionsky DJ, Tang D, Jia Y, Dai E. Macroautophagy/autophagy promotes resistance to KRAS G12D-targeted therapy through glutathione synthesis. Cancer Lett 2024; 604:217258. [PMID: 39276914 DOI: 10.1016/j.canlet.2024.217258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
KRASG12D mutation-driven pancreatic ductal adenocarcinoma (PDAC) represents a major challenge in medicine due to late diagnosis and treatment resistance. Here, we report that macroautophagy (hereafter autophagy), a cellular degradation and recycling process, contributes to acquired resistance against novel KRASG12D-targeted therapy. The KRASG12D protein inhibitor MRTX1133 induces autophagy in KRASG12D-mutated PDAC cells by blocking MTOR activity, and increased autophagic flux prevents apoptosis. Mechanistically, autophagy facilitates the generation of glutamic acid, cysteine, and glycine for glutathione synthesis. Increased glutathione levels reduce reactive oxygen species production, which impedes CYCS translocation from mitochondria to the cytosol, ultimately preventing the formation of the APAF1 apoptosome. Consequently, genetic interventions (utilizing ATG5 or BECN1 knockout) or pharmacological inhibition of autophagy (with chloroquine, bafilomycin A1, or spautin-1) enhance the anticancer activity of MRTX1133 in vitro and in various animal models (subcutaneous, patient-derived xenograft, and orthotopic). Moreover, the release of histones by apoptotic cells triggers an adaptive immune response when combining an autophagy inhibitor with MRTX1133 in immunocompetent mice. These findings establish a new strategy to overcome KRASG12D-targeted therapy resistance by inhibiting autophagy-dependent glutathione synthesis.
Collapse
Affiliation(s)
- Leng Han
- 2nd Ward of Oncology and Hematology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China
| | - Lingjun Meng
- 2nd Ward of Oncology and Hematology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China
| | - Jiao Liu
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Yangchun Xie
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Rui Kang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Daolin Tang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Yuanyuan Jia
- 2nd Ward of Oncology and Hematology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China.
| | - Enyong Dai
- 2nd Ward of Oncology and Hematology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China.
| |
Collapse
|
22
|
Spagnoletta A, Miniero DV, Gambacorta N, Oppedisano F, De Grassi A, Nicolotti O, Pierri CL, De Palma A. Modulatory Effect of Nicotinamide Adenine Dinucleotide Phosphate (NADPH) on the 2-Oxoglutarate Mitochondrial Carrier. Molecules 2024; 29:5154. [PMID: 39519794 PMCID: PMC11547764 DOI: 10.3390/molecules29215154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/26/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
The 2-oxoglutarate carrier (OGC), pivotal in cellular metabolism, facilitates the exchange of key metabolites between mitochondria and cytosol. This study explores the influence of NADPH on OGC transport activity using proteoliposomes. Experimental data revealed the ability of NADPH to modulate the OGC activity, with a significant increase of 60% at 0.010 mM. Kinetic analysis showed increased Vmax and a reduction in Km for 2-oxoglutarate, suggesting a direct regulatory role. Molecular docking pointed to a specific interaction between NADPH and cytosolic loops of OGC, involving key residues such as K206 and K122. This modulation was unique in mammalian OGC, as no similar effect was observed in a plant OGC structurally/functionally related mitochondrial carrier. These findings propose OGC as a responsive sensor for the mitochondrial redox state, coordinating with the malate/aspartate and isocitrate/oxoglutarate shuttles to maintain redox balance. The results underscore the potential role of OGC in redox homeostasis and its broader implications in cellular metabolism and oxidative stress responses.
Collapse
Affiliation(s)
- Anna Spagnoletta
- Laboratory “Regenerative Circular Bioeconomy”, ENEA-Trisaia Research Centre, 75026 Rotondella, Italy
| | - Daniela Valeria Miniero
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; (A.D.G.); (A.D.P.)
- Department of Medicine & Surgery, LUM University Giuseppe Degennaro Torre Rossi, Piano 5 S.S. 100 Km. 18, 70010 Casamassima, Italy
| | - Nicola Gambacorta
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, 70125 Bari, Italy; (N.G.); (O.N.)
| | - Francesca Oppedisano
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy;
| | - Anna De Grassi
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; (A.D.G.); (A.D.P.)
| | - Orazio Nicolotti
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, 70125 Bari, Italy; (N.G.); (O.N.)
| | - Ciro Leonardo Pierri
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, 70125 Bari, Italy; (N.G.); (O.N.)
| | - Annalisa De Palma
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; (A.D.G.); (A.D.P.)
| |
Collapse
|
23
|
Sanchez-Villalobos M, Campos Baños E, Martínez-Balsalobre E, Navarro-Ramirez V, Videla MAB, Pinilla M, Guillén-Navarro E, Salido-Fierrez E, Pérez-Oliva AB. Whole Blood Transcriptome Analysis in Congenital Anemia Patients. Int J Mol Sci 2024; 25:11706. [PMID: 39519257 PMCID: PMC11546763 DOI: 10.3390/ijms252111706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Congenital anemias include a broad range of disorders marked by inherent abnormalities in red blood cells. These abnormalities include enzymatic, membrane, and congenital defects in erythropoiesis, as well as hemoglobinopathies such as sickle cell disease and thalassemia. These conditions range in presentation from asymptomatic cases to those requiring frequent blood transfusions, exhibiting phenotypic heterogeneity and different degrees of severity. Despite understanding their different etiologies, all of them have a common pathophysiological origin with congenital defects of erythropoiesis. We can find different types, from congenital sideroblastic anemia (CSA), which is a bone marrow failure anemia, to hemoglobinopathies as sickle cell disease and thalassemia, with a higher prevalence and clinical impact. Recent efforts have focused on understanding erythropoiesis dysfunction in these anemias but, so far, deep gene sequencing analysis comparing all of them has not been performed. Our study used Quant 3' mRNA-Sequencing to compare transcriptomic profiles of four sickle cell disease patients, ten thalassemia patients, and one rare case of SLC25A38 CSA. Our results showed clear differentiated gene map expressions in all of them with respect to healthy controls. Our study reveals that genes related to metabolic processes, membrane genes, and erythropoiesis are upregulated with respect to healthy controls in all pathologies studied except in the SLC25A38 CSA patient, who shows a unique gene expression pattern compared to the rest of the congenital anemias studied. Our analysis is the first that compares gene expression patterns across different congenital anemias to provide a broad spectrum of genes that could have clinical relevance in these pathologies.
Collapse
Affiliation(s)
- Maria Sanchez-Villalobos
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120 Murcia, Spain (E.C.B.); (M.A.B.V.)
- Hematology Service, Virgen de la Arrixaca University Hospital, 30120 Murcia, Spain
| | - Eulalia Campos Baños
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120 Murcia, Spain (E.C.B.); (M.A.B.V.)
| | - Elena Martínez-Balsalobre
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120 Murcia, Spain (E.C.B.); (M.A.B.V.)
| | - Veronica Navarro-Ramirez
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120 Murcia, Spain (E.C.B.); (M.A.B.V.)
| | | | - Miriam Pinilla
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120 Murcia, Spain (E.C.B.); (M.A.B.V.)
| | - Encarna Guillén-Navarro
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120 Murcia, Spain (E.C.B.); (M.A.B.V.)
- Medical Genetics Section and Pediatrics Service, Virgen de la Arrixaca University Hospital, University of Murcia, 30120 Murcia, Spain
- CIBERER-ISCIII, 28029 Madrid, Spain
| | - Eduardo Salido-Fierrez
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120 Murcia, Spain (E.C.B.); (M.A.B.V.)
- Hematology Service, Virgen de la Arrixaca University Hospital, 30120 Murcia, Spain
| | - Ana Belén Pérez-Oliva
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120 Murcia, Spain (E.C.B.); (M.A.B.V.)
| |
Collapse
|
24
|
Ghoochani A, Heiby JC, Rawat ES, Medoh UN, Di Fraia D, Dong W, Gastou M, Nyame K, Laqtom NN, Gomez-Ospina N, Ori A, Abu-Remaileh M. Cell-Type Resolved Protein Atlas of Brain Lysosomes Identifies SLC45A1-Associated Disease as a Lysosomal Disorder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618295. [PMID: 39464040 PMCID: PMC11507716 DOI: 10.1101/2024.10.14.618295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Mutations in lysosomal genes cause neurodegeneration and neurological lysosomal storage disorders (LSDs). Despite their essential role in brain homeostasis, the cell-type-specific composition and function of lysosomes remain poorly understood. Here, we report a quantitative protein atlas of the lysosome from mouse neurons, astrocytes, oligodendrocytes, and microglia. We identify dozens of novel lysosomal proteins and reveal the diversity of the lysosomal composition across brain cell types. Notably, we discovered SLC45A1, mutations in which cause a monogenic neurological disease, as a neuron-specific lysosomal protein. Loss of SLC45A1 causes lysosomal dysfunction in vitro and in vivo. Mechanistically, SLC45A1 plays a dual role in lysosomal sugar transport and stabilization of V1 subunits of the V-ATPase. SLC45A1 deficiency depletes the V1 subunits, elevates lysosomal pH, and disrupts iron homeostasis causing mitochondrial dysfunction. Altogether, our work redefines SLC45A1-associated disease as a LSD and establishes a comprehensive map to study lysosome biology at cell-type resolution in the brain and its implications for neurodegeneration.
Collapse
Affiliation(s)
- Ali Ghoochani
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA 94305, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network; Chevy Chase, MD, 20815, USA
- These authors contributed equally
| | - Julia C. Heiby
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA 94305, USA
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI) e.V., Jena, Germany
- These authors contributed equally
| | - Eshaan S. Rawat
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA 94305, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network; Chevy Chase, MD, 20815, USA
| | - Uche N. Medoh
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA 94305, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network; Chevy Chase, MD, 20815, USA
- Current affiliation: Arc Institute, Palo Alto, CA 94304, USA
| | - Domenico Di Fraia
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI) e.V., Jena, Germany
- Current affiliation: Department of Biology, University of Rochester, Rochester, NY, USA
| | - Wentao Dong
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA 94305, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network; Chevy Chase, MD, 20815, USA
| | - Marc Gastou
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Kwamina Nyame
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA 94305, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network; Chevy Chase, MD, 20815, USA
| | - Nouf N. Laqtom
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA 94305, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network; Chevy Chase, MD, 20815, USA
| | - Natalia Gomez-Ospina
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Alessandro Ori
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI) e.V., Jena, Germany
- Co-senior authors
| | - Monther Abu-Remaileh
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA 94305, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network; Chevy Chase, MD, 20815, USA
- The Phil & Penny Knight Initiative for Brain Resilience at the Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
- Co-senior authors
- Lead author
| |
Collapse
|
25
|
Chen MT, Zhou JJ, Han RT, Ma QW, Wu ZJ, Fu P, Ma AJ, Feng N. Melatonin derivative 6a protects Caenorhabditis elegans from formaldehyde neurotoxicity via ADH5. Free Radic Biol Med 2024; 223:357-368. [PMID: 39127141 DOI: 10.1016/j.freeradbiomed.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Formaldehyde (FA) is a carcinogen that is not only widespread in the environment, but is also produced endogenously by metabolic processes. In organisms, FA is converted to formic acid in a glutathione (GSH)-dependent manner by alcohol dehydrogenase 5 (ADH5). The abnormal accumulation of FA in the body can cause a variety of diseases, especially cognitive impairment leading to Alzheimer's disease (AD). In this study, melatonin derivative 6a (MD6a) markedly improved the survival and chemotactic performance of wild-type Caenorhabditis elegans exposed to high concentrations of FA. MD6a lowered FA levels in the nematodes by enhancing the release of covalently-bound GSH from S-hydroxymethyl-GSH in an adh-5-dependent manner. In addition, MD6a protected against mitochondrial dysfunction and cognitive impairment in beta-amyloid protein (Aβ) transgenic nematodes by lowering endogenous FA levels and reducing Aβ aggregation in an adh-5-dependent manner. Our findings suggest that MD6a detoxifies FA via ADH5 and protects against Aβ toxicity by reducing endogenous FA levels in the C. elegans AD models. Thus, ADH5 might be a potential therapeutic target for FA toxicity and AD.
Collapse
Affiliation(s)
- Meng-Ting Chen
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529000, China
| | - Jun-Jie Zhou
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529000, China
| | - Rui-Ting Han
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529000, China
| | - Qing-Wei Ma
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529000, China
| | - Zi-Jie Wu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529000, China
| | - Peng Fu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Ai-Jun Ma
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529000, China
| | - Na Feng
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529000, China.
| |
Collapse
|
26
|
Biezeman H, Nubiè M, Oburoglu L. Hematopoietic cells emerging from hemogenic endothelium exhibit lineage-specific oxidative stress responses. J Biol Chem 2024; 300:107815. [PMID: 39326495 PMCID: PMC11532904 DOI: 10.1016/j.jbc.2024.107815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/21/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024] Open
Abstract
During human embryogenesis, distinct waves of hematopoiesis give rise to various blood cell types, originating from hemogenic endothelial (HE) cells. As HE cells reside in hypoxic conditions in the embryo, we investigated the role of hypoxia in human endothelial to hematopoietic transition and subsequent hematopoiesis. Using single-cell RNA sequencing, we describe hypoxia-related transcriptional changes in different HE-derived blood lineages, which reveal that erythroid cells are particularly susceptible to oxidative stress, due to decreased NRF2 activity in hypoxia. In contrast, nonerythroid CD45+ cells exhibit increased proliferative rates in hypoxic conditions and enhanced resilience to oxidative stress. We find that even in normoxia, erythroid cells present a clear predisposition to oxidative stress, with low glutathione levels and high lipid peroxidation, in contrast to CD45+ cells. Intriguingly, reactive oxygen species are produced at different sites in GPA+ and CD45+ cells, revealing differences in oxidative phosphorylation and the use of canonical versus noncanonical tricarboxylic acid cycle in these lineages. Our findings elucidate how hypoxia and oxidative stress distinctly affect HE-derived hematopoietic lineages, uncovering critical transcriptional and metabolic pathways that influence blood cell development.
Collapse
Affiliation(s)
- Harmke Biezeman
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Martina Nubiè
- Division of Gene and Cell Therapy, Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Leal Oburoglu
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden; Division of Gene and Cell Therapy, Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
27
|
Zhang W, Ou Z, Tang T, Yang T, Li Y, Wu H, Li L, Liu M, Niu L, Zhu J. Up-regulated SLC25A39 promotes cell growth and metastasis via regulating ROS production in colorectal cancer. J Cancer 2024; 15:5841-5854. [PMID: 39308681 PMCID: PMC11414614 DOI: 10.7150/jca.98844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/30/2024] [Indexed: 09/25/2024] Open
Abstract
Background: The mitochondrial transporter SLC25A39 has been implicated in the import of mitochondrial glutathione (mGSH) from the cytoplasm, crucial for mitigating oxidative stress and preserving mitochondrial function. Despite the well-established involvement of mitochondria in cancer, the functional impact of SLC25A39 on CRC progression remains elusive. Methods: The mRNA and protein expressions were detected by PCR, immunohistochemistry, and Western blot, respectively. Cell activity, cell proliferation, colony formation, and apoptosis were measured by CCK8 assay, EdU incorporation assay, plated colony formation assay, and flow cytometry, respectively. Cell migration was detected by wound healing and transwell chamber assay. The tumor microenvironment (TME), immune checkpoint molecules, and drug sensitivity of CRC patients were investigated using R language, GraphPad Prism 8 and online databases. Results: Here, we report a significant upregulation of SLC25A39 expression in CRC. Functional assays revealed that overexpression of SLC25A39 promoted CRC cell proliferation and migration while inhibiting apoptosis. Conversely, SLC25A39 knockdown suppressed cell growth and migration while enhancing apoptosis in vitro. Additionally, reduced SLC25A39 expression attenuated tumor growth in xenograft models. Mechanistically, elevated SLC25A39 levels correlated with reduced reactive oxygen species (ROS) accumulation in CRC. Furthermore, bioinformatic analyses unveiled the high SLC25A39 levels was associated with decreased expression of immune checkpoints and reduced responsiveness to immunotherapy. Single-cell transcriptomic profiling identified diverse cellular expression patterns of SLC25A39 and related immune regulators. Lastly, drug sensitivity analysis indicated potential therapeutic avenues targeting SLC25A39 in CRC. Conclusion Our findings underscore the pivotal role of SLC25A39 in CRC progression and suggest its candidacy as a therapeutic target in CRC management.
Collapse
Affiliation(s)
- Wentao Zhang
- Department of Medical Cellular Biology and Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhigao Ou
- Department of Medical Cellular Biology and Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ting Tang
- Department of Medical Cellular Biology and Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Tian Yang
- Department of Medical Cellular Biology and Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yubo Li
- Department of Medical Cellular Biology and Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Hao Wu
- Department of Medical Cellular Biology and Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Li Li
- Department of Medical Cellular Biology and Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ming Liu
- Department of Medical Cellular Biology and Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Li Niu
- Department of Pathophysiology, School of Basic Medical Science, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jianjun Zhu
- Department of Medical Cellular Biology and Genetics, School of Basic Medical Science, Shanxi Medical University, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
28
|
Sun LL, He HY, Li W, Jin WL, Wei YJ. The solute carrier transporters (SLCs) family in nutrient metabolism and ferroptosis. Biomark Res 2024; 12:94. [PMID: 39218897 PMCID: PMC11367818 DOI: 10.1186/s40364-024-00645-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Ferroptosis is a novel form of programmed cell death caused by damage to lipid membranes due to the accumulation of lipid peroxides in response to various stimuli, such as high levels of iron, oxidative stress, metabolic disturbance, etc. Sugar, lipid, amino acid, and iron metabolism are crucial in regulating ferroptosis. The solute carrier transporters (SLCs) family, known as the "metabolic gating" of cells, is responsible for transporting intracellular nutrients and metabolites. Recent studies have highlighted the significant role of SLCs family members in ferroptosis by controlling the transport of various nutrients. Here, we summarized the function and mechanism of SLCs in ferroptosis regulated by ion, metabolic control of nutrients, and multiple signaling pathways, with a focus on SLC-related transporters that primarily transport five significant components: glucose, amino acid, lipid, trace metal ion, and other ion. Furthermore, the potential clinical applications of targeting SLCs with ferroptosis inducers for various diseases, including tumors, are discussed. Overall, this paper delves into the novel roles of the SLCs family in ferroptosis, aiming to enhance our understanding of the regulatory mechanisms of ferroptosis and identify new therapeutic targets for clinical applications.
Collapse
Affiliation(s)
- Li-Li Sun
- School of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Hai-Yan He
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P. R. China
| | - Wei Li
- Division of Hematology and Oncology, Department of Pediatrics, Penn State Cancer Institute, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, P. R. China.
| | - Yi-Ju Wei
- School of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| |
Collapse
|
29
|
Lupica-Tondo GL, Arner EN, Mogilenko DA, Voss K. Immunometabolism of ferroptosis in the tumor microenvironment. Front Oncol 2024; 14:1441338. [PMID: 39188677 PMCID: PMC11345167 DOI: 10.3389/fonc.2024.1441338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/24/2024] [Indexed: 08/28/2024] Open
Abstract
Ferroptosis is an iron-dependent form of cell death that results from excess lipid peroxidation in cellular membranes. Within the last decade, physiological and pathological roles for ferroptosis have been uncovered in autoimmune diseases, inflammatory conditions, infection, and cancer biology. Excitingly, cancer cell metabolism may be targeted to induce death by ferroptosis in cancers that are resistant to other forms of cell death. Ferroptosis sensitivity is regulated by oxidative stress, lipid metabolism, and iron metabolism, which are all influenced by the tumor microenvironment (TME). Whereas some cancer cell types have been shown to adapt to these stressors, it is not clear how immune cells regulate their sensitivities to ferroptosis. In this review, we discuss the mechanisms of ferroptosis sensitivity in different immune cell subsets, how ferroptosis influences which immune cells infiltrate the TME, and how these interactions can determine epithelial-to-mesenchymal transition (EMT) and metastasis. While much focus has been placed on inducing ferroptosis in cancer cells, these are important considerations for how ferroptosis-modulating strategies impact anti-tumor immunity. From this perspective, we also discuss some promising immunotherapies in the field of ferroptosis and the challenges associated with targeting ferroptosis in specific immune cell populations.
Collapse
Affiliation(s)
- Gian Luca Lupica-Tondo
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Emily N. Arner
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Denis A. Mogilenko
- Department of Medicine, Department of Pathology, Microbiology and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Kelsey Voss
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pharmacology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
30
|
Khan A, Unlu G, Lin P, Liu Y, Kilic E, Kenny TC, Birsoy K, Gamazon ER. Metabolic gene function discovery platform GeneMAP identifies SLC25A48 as necessary for mitochondrial choline import. Nat Genet 2024; 56:1614-1623. [PMID: 38977856 DOI: 10.1038/s41588-024-01827-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 06/10/2024] [Indexed: 07/10/2024]
Abstract
Organisms maintain metabolic homeostasis through the combined functions of small-molecule transporters and enzymes. While many metabolic components have been well established, a substantial number remains without identified physiological substrates. To bridge this gap, we have leveraged large-scale plasma metabolome genome-wide association studies (GWAS) to develop a multiomic Gene-Metabolite Association Prediction (GeneMAP) discovery platform. GeneMAP can generate accurate predictions and even pinpoint genes that are distant from the variants implicated by GWAS. In particular, our analysis identified solute carrier family 25 member 48 (SLC25A48) as a genetic determinant of plasma choline levels. Mechanistically, SLC25A48 loss strongly impairs mitochondrial choline import and synthesis of its downstream metabolite betaine. Integrative rare variant and polygenic score analyses in UK Biobank provide strong evidence that the SLC25A48 causal effects on human disease may in part be mediated by the effects of choline. Altogether, our study provides a discovery platform for metabolic gene function and proposes SLC25A48 as a mitochondrial choline transporter.
Collapse
Affiliation(s)
- Artem Khan
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Gokhan Unlu
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Phillip Lin
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yuyang Liu
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Ece Kilic
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Timothy C Kenny
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Kıvanç Birsoy
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA.
| | - Eric R Gamazon
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
31
|
Lin H, Wang L, Jiang X, Wang J. Glutathione dynamics in subcellular compartments and implications for drug development. Curr Opin Chem Biol 2024; 81:102505. [PMID: 39053236 PMCID: PMC11722958 DOI: 10.1016/j.cbpa.2024.102505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/30/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
Glutathione (GSH) is a pivotal tripeptide antioxidant essential for maintaining cellular redox homeostasis and regulating diverse cellular processes. Subcellular compartmentalization of GSH underscores its multifaceted roles across various organelles including the cytosol, mitochondria, endoplasmic reticulum, and nucleus, each exhibiting distinct regulatory mechanisms. Perturbations in GSH dynamics contribute to pathophysiological conditions, emphasizing the clinical significance of understanding its intricate regulation. This review consolidates current knowledge on subcellular GSH dynamics, highlighting its implications in drug development, particularly in covalent drug design and antitumor strategies targeting intracellular GSH levels. Challenges and future directions in deciphering subcellular GSH dynamics are discussed, advocating for innovative methodologies to advance our comprehension and facilitate the development of precise therapeutic interventions based on GSH modulation.
Collapse
Affiliation(s)
- Hanfeng Lin
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA; Center for NextGen Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lingfei Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiqian Jiang
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Jin Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA; Center for NextGen Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
32
|
Schomakers BV, Jillings SL, van Weeghel M, Vaz FM, Salomons GS, Janssens GE, Houtkooper RH. Ophthalmic acid is a glutathione regulating tripeptide. FEBS J 2024; 291:3317-3330. [PMID: 38245827 DOI: 10.1111/febs.17061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/30/2023] [Accepted: 01/10/2024] [Indexed: 01/22/2024]
Abstract
Since its discovery in 1958 in the lens of cows, ophthalmic acid (OPH) has stood in the shadow of its anti-oxidant analog: glutathione (GSH). Lacking the thiol group that gives GSH many of its important properties, ophthalmic acid's function has remained elusive, and it has been widely presumed to be an accidental product of the same enzymes. In this review, we compile evidence demonstrating that OPH is a ubiquitous metabolite found in bacteria, plants, fungi, and animals, produced through several layers of metabolic regulation. We discuss the limitations of the oft-repeated suggestions that aberrations in OPH levels should solely indicate GSH deficiency or oxidative stress. Finally, we discuss the available literature and suggest OPH's role in metabolism as a GSH-regulating tripeptide; controlling both cellular and organelle influx and efflux of GSH, as well as modulating GSH-dependent reactions and signaling. Ultimately, we hope that this review reinvigorates and directs more research into this versatile metabolite.
Collapse
Affiliation(s)
- Bauke V Schomakers
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, University of Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology, and Metabolism, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC Location University of Amsterdam, The Netherlands
| | - Sonia L Jillings
- Green Biotechnology, Inholland University of Applied Sciences, Amsterdam, The Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, University of Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology, and Metabolism, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC Location University of Amsterdam, The Netherlands
| | - Frédéric M Vaz
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, University of Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology, and Metabolism, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC Location University of Amsterdam, The Netherlands
| | - Gajja S Salomons
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, University of Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology, and Metabolism, The Netherlands
| | - Georges E Janssens
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, University of Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology, and Metabolism, The Netherlands
- Amsterdam Cardiovascular Sciences, The Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, University of Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology, and Metabolism, The Netherlands
- Amsterdam Cardiovascular Sciences, The Netherlands
| |
Collapse
|
33
|
Wang Y, Liu X, Li K, Wang X, Zhang X, Qian D, Meng X, Yu L, Yan X, He Z. Self-Sulfhydrated, Nitro-Fixed Albumin Nanoparticles as a Potent Therapeutic Agent for the Treatment of Acute Liver Injury. ACS NANO 2024. [PMID: 39041805 DOI: 10.1021/acsnano.4c07297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Exogenous polysulfhydryls (R-SH) supplementation and nitric oxide (NO) gas molecules delivery provide essential antioxidant buffering pool components and anti-inflammatory species in cellular defense against injury, respectively. Herein, the intermolecular disulfide bonds in bovine serum albumin (BSA) molecules were reductively cleaved under native and mild conditions to expose multiple sulfhydryl groups (BSA-SH), then sulfhydryl-nitrosylated (R-SNO), and nanoprecipitated to form injectable self-sulfhydrated, nitro-fixed albumin nanoparticles (BSA-SNO NPs), allowing albumin to act as a NO donor reservoir and multiple sulfhydryl group transporter while also preventing unfavorable oxidation and self-cross-linking of polysulfhydryl groups. In two mouse models of ischemia/reperfusion-induced and endotoxin-induced acute liver injury (ALI), a single low dosage of BSA-SNO NPs (S-nitrosothiols: 4 μmol·kg-1) effectively attenuated oxidative stress and systemic inflammation cascades in the upstream pathophysiology of disease progression, thus rescuing dying hepatocytes, regulating host defense, repairing microcirculation, and restoring liver function. By mechanistically upregulating the antioxidative signaling pathway (Nrf-2/HO-1/NOQ1) and inhibiting the inflammatory cytokine storm (NF-κB/p-IκBα/TNF-α/IL-β), BSA-SNO NPs blocked the initiation of the mitochondrial apoptotic signaling pathway (Cyto C/Bcl-2 family/caspase-3) and downregulated the cell pyroptosis pathway (NLRP3/ASC/IL-1β), resulting in an increased survival rate from 26.7 to 73.3%. This self-sulfhydrated, nitro-fixed functionalized BSA nanoformulation proposes a potential drug-free treatment strategy for ALI.
Collapse
Affiliation(s)
- Yanan Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266100/572024, China
- Sanya Oceanographic Institution, Sanya 572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266003, China
| | - Xiaohu Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266100/572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266003, China
| | - Keyang Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266100/572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266003, China
| | - Xinyuan Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266100/572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266003, China
| | - Xue Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266100/572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266003, China
| | - Deyao Qian
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266100/572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266003, China
| | - Xinlei Meng
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266100/572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266003, China
| | - Liangmin Yu
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266100/572024, China
- Sanya Oceanographic Institution, Sanya 572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266003, China
| | - Xuefeng Yan
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266100/572024, China
- Sanya Oceanographic Institution, Sanya 572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266003, China
| | - Zhiyu He
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266100/572024, China
- Sanya Oceanographic Institution, Sanya 572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
34
|
Yang H, Zhou J, Zhou J. Interactive effects of ammonium sulfate and lead on alfalfa in rare earth tailings: Physiological responses and toxicity thresholds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174439. [PMID: 38971260 DOI: 10.1016/j.scitotenv.2024.174439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/26/2024] [Accepted: 06/30/2024] [Indexed: 07/08/2024]
Abstract
Ion-adsorption rare earth ore contains significant levels of leaching agents and heavy metals, leading to substantial co-contamination. This presents significant challenges for ecological rehabilitation, yet there is limited understanding of the toxicity thresholds associated with the co-contamination of ammonium sulfate (AS) and lead (Pb) on pioneer plants. Here, we investigated the toxicity thresholds of various aspects of alfalfa, including growth, ultrastructural changes, metabolism, antioxidant system response, and Pb accumulation. The results indicated that the co-contamination of AS-Pb decreased the dry weight of shoot and root by 26 %-77 % and 18 %-92 %, respectively, leading to irregular root cell morphology and nucleus disintegration. The high concentration and combined exposures to AS and Pb induced oxidative stress on alfalfa, which stimulated the defense of the antioxidative system and resulted in an increase in proline levels and a decrease in soluble sugars. Structural equation modeling analysis and integrated biomarker response elucidated that the soluble sugars, proline, and POD were the key physiological indicators of alfalfa under stresses and indicated that co-exposure induced more severe oxidative stress in alfalfa. The toxicity thresholds under single exposure were 496 (EC5), 566 (EC10), 719 (EC25), 940 (EC50) mg kg-1 for AS and 505 (EC5), 539 (EC10), 605 (EC25), 678 (EC50) mg kg-1 for Pb. This study showed that AS-Pb pollution notably influenced plant growth performance and had negative impacts on the growth processes, metabolite levels, and the antioxidant system in plants. Our findings contribute to a theoretical foundation and research necessity for evaluating ecological risks in mining areas and assessing the suitability of ecological restoration strategies.
Collapse
Affiliation(s)
- Huixian Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
35
|
Tan S, Dengler AS, Darawsheh RZ, Kory N. The iAAA-mitochondrial protease YME1L1 regulates the degradation of the short-lived mitochondrial transporter SLC25A38. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.12.593764. [PMID: 38979268 PMCID: PMC11230184 DOI: 10.1101/2024.05.12.593764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Mitochondrial transporters facilitate the exchange of diverse metabolic intermediates across the inner mitochondrial membrane, ensuring an adequate supply of substrates and cofactors to support redox and biosynthetic reactions within the mitochondrial matrix. However, the regulatory mechanisms governing the abundance of these transporters, crucial for maintaining metabolic compartmentalization and mitochondrial functions, remain poorly defined. Through analysis of protein half-life data and mRNA-protein correlations, we identified SLC25A38, a mitochondrial glycine transporter, as a short- lived protein with a half-life of 4 hours under steady-state conditions. Pharmacological inhibition and genetic depletion of various cellular proteolytic systems revealed that SLC25A38 is rapidly degraded by the iAAA-mitochondrial protease YME1L1. Depolarization of the mitochondrial membrane potential induced by the mitochondrial uncoupler carbonyl cyanide m-chlorophenylhydrozone prevented the degradation of SLC25A38. This dual regulation of SLC25A38 abundance by YME1L1 and mitochondrial membrane potential suggests a link between SLC25A38 turnover, the integrity of the inner mitochondrial membrane, and electron transport chain function. These findings open avenues for investigating whether mitochondrial glycine import coordinates with mitochondrial bioenergetics.
Collapse
|
36
|
Ban Y, Zhou F, Wang H, Zhang F, Xia M, Wan Y, Yang S, Liu R, Wang X, Wang G. Dual-Stimuli Regulation of DNAzyme Cleavage Reaction by Coordination-Driven Nanoprobes for Cancer Cell Imaging. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30766-30775. [PMID: 38833714 DOI: 10.1021/acsami.4c04033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Endowing current artificial chemical reactions (ACRs) with high specificity and intricate activation capabilities is crucial for expanding their applications in accurate bioimaging within living cells. However, most of the reported ACR-based evaluations relied on either single biomarker stimuli or dual activators without obvious biological relevance, still limiting their accuracy and fidelity. Herein, taking the metal-ion-dependent DNAzyme cleavage reaction as a model ACR, two regulators, glutathione (GSH) and telomerase (TE) activated DNAzyme cleavage reactions, were exploited for precise discrimination of cancerous cells from normal cells. DNA probe was self-assembled into the ZIF-90 nanoparticle framework to construct coordination-driven nanoprobes. This approach enhances the stability and specificity of tumor imaging by utilizing biomarkers associated with rapid tumor proliferation and those commonly overexpressed in tumors. In conclusion, the research not only paves the way for new perspectives in cell biology and pathology studies but also lays a solid foundation for the advancement of biomedical imaging and disease diagnostic technologies.
Collapse
Affiliation(s)
- Yinbo Ban
- College of Chemistry and Materials Science, Center for Nano Science and Technology, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Anhui Province Key Laboratory of Chem-Biosensing, and Anhui Province Key Laboratory of Functional Molecular Solids, Anhui Normal University, Wuhu 241000, China
| | - Fu Zhou
- College of Chemistry and Materials Science, Center for Nano Science and Technology, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Anhui Province Key Laboratory of Chem-Biosensing, and Anhui Province Key Laboratory of Functional Molecular Solids, Anhui Normal University, Wuhu 241000, China
| | - Hao Wang
- College of Chemistry and Materials Science, Center for Nano Science and Technology, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Anhui Province Key Laboratory of Chem-Biosensing, and Anhui Province Key Laboratory of Functional Molecular Solids, Anhui Normal University, Wuhu 241000, China
| | - Fuqiang Zhang
- College of Chemistry and Materials Science, Center for Nano Science and Technology, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Anhui Province Key Laboratory of Chem-Biosensing, and Anhui Province Key Laboratory of Functional Molecular Solids, Anhui Normal University, Wuhu 241000, China
| | - Mengmeng Xia
- College of Chemistry and Materials Science, Center for Nano Science and Technology, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Anhui Province Key Laboratory of Chem-Biosensing, and Anhui Province Key Laboratory of Functional Molecular Solids, Anhui Normal University, Wuhu 241000, China
| | - Yifei Wan
- College of Chemistry and Materials Science, Center for Nano Science and Technology, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Anhui Province Key Laboratory of Chem-Biosensing, and Anhui Province Key Laboratory of Functional Molecular Solids, Anhui Normal University, Wuhu 241000, China
| | - Suwan Yang
- College of Chemistry and Materials Science, Center for Nano Science and Technology, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Anhui Province Key Laboratory of Chem-Biosensing, and Anhui Province Key Laboratory of Functional Molecular Solids, Anhui Normal University, Wuhu 241000, China
| | - Rong Liu
- College of Chemistry and Materials Science, Center for Nano Science and Technology, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Anhui Province Key Laboratory of Chem-Biosensing, and Anhui Province Key Laboratory of Functional Molecular Solids, Anhui Normal University, Wuhu 241000, China
| | - Xiayan Wang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology, Beijing 100124, P. R. China
| | - Guangfeng Wang
- College of Chemistry and Materials Science, Center for Nano Science and Technology, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Anhui Province Key Laboratory of Chem-Biosensing, and Anhui Province Key Laboratory of Functional Molecular Solids, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
37
|
Torres-Velarde JM, Allen KN, Salvador-Pascual A, Leija RG, Luong D, Moreno-Santillán DD, Ensminger DC, Vázquez-Medina JP. Peroxiredoxin 6 suppresses ferroptosis in lung endothelial cells. Free Radic Biol Med 2024; 218:82-93. [PMID: 38579937 PMCID: PMC11177496 DOI: 10.1016/j.freeradbiomed.2024.04.208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/26/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Peroxiredoxin 6 (Prdx6) repairs peroxidized membranes by reducing oxidized phospholipids, and by replacing oxidized sn-2 fatty acyl groups through hydrolysis/reacylation by its phospholipase A2 (aiPLA2) and lysophosphatidylcholine acyltransferase activities. Prdx6 is highly expressed in the lung, and intact lungs and cells null for Prdx6 or with single-point mutations that inactivate either Prdx6-peroxidase or aiPLA2 activity alone exhibit decreased viability, increased lipid peroxidation, and incomplete repair when exposed to paraquat, hyperoxia, or organic peroxides. Ferroptosis is form of cell death driven by the accumulation of phospholipid hydroperoxides. We studied the role of Prdx6 as a ferroptosis suppressor in the lung. We first compared the expression Prdx6 and glutathione peroxidase 4 (GPx4) and visualized Prdx6 and GPx4 within the lung. Lung Prdx6 mRNA levels were five times higher than GPx4 levels. Both Prdx6 and GPx4 localized to epithelial and endothelial cells. Prdx6 knockout or knockdown sensitized lung endothelial cells to erastin-induced ferroptosis. Cells with genetic inactivation of either aiPLA2 or Prdx6-peroxidase were more sensitive to ferroptosis than WT cells, but less sensitive than KO cells. We then conducted RNA-seq analyses in Prdx6-depleted cells to further explore how the loss of Prdx6 sensitizes lung endothelial cells to ferroptosis. Prdx6 KD upregulated transcriptional signatures associated with selenoamino acid metabolism and mitochondrial function. Accordingly, Prdx6 deficiency blunted mitochondrial function and increased GPx4 abundance whereas GPx4 KD had the opposite effect on Prdx6. Moreover, we detected Prdx6 and GPx4 interactions in intact cells, suggesting that both enzymes cooperate to suppress lipid peroxidation. Notably, Prdx6-depleted cells remained sensitive to erastin-induced ferroptosis despite the compensatory increase in GPx4. These results show that Prdx6 suppresses ferroptosis in lung endothelial cells and that both aiPLA2 and Prdx6-peroxidase contribute to this effect. These results also show that Prdx6 supports mitochondrial function and modulates several coordinated cytoprotective pathways in the pulmonary endothelium.
Collapse
Affiliation(s)
| | - Kaitlin N Allen
- Department of Integrative Biology, University of California, Berkeley, USA
| | | | - Roberto G Leija
- Department of Integrative Biology, University of California, Berkeley, USA
| | - Diamond Luong
- Department of Integrative Biology, University of California, Berkeley, USA
| | | | - David C Ensminger
- Department of Integrative Biology, University of California, Berkeley, USA
| | | |
Collapse
|
38
|
Goicoechea L, Torres S, Fàbrega L, Barrios M, Núñez S, Casas J, Fabrias G, García-Ruiz C, Fernández-Checa JC. S-Adenosyl-l-methionine restores brain mitochondrial membrane fluidity and GSH content improving Niemann-Pick type C disease. Redox Biol 2024; 72:103150. [PMID: 38599016 PMCID: PMC11022094 DOI: 10.1016/j.redox.2024.103150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/15/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
Niemann-Pick type C (NPC) disease is a lysosomal storage disorder characterized by impaired motor coordination due to neurological defects and cerebellar dysfunction caused by the accumulation of cholesterol in endolysosomes. Besides the increase in lysosomal cholesterol, mitochondria are also enriched in cholesterol, which leads to decreased membrane fluidity, impaired mitochondrial function and loss of GSH, and has been shown to contribute to the progression of NPC disease. S-Adenosyl-l-methionine (SAM) regulates membrane physical properties through the generation of phosphatidylcholine (PC) from phosphatidylethanolamine (PE) methylation and functions as a GSH precursor by providing cysteine in the transsulfuration pathway. However, the role of SAM in NPC disease has not been investigated. Here we report that Npc1-/- mice exhibit decreased brain SAM levels but unchanged S-adenosyl-l-homocysteine content and lower expression of Mat2a. Brain mitochondria from Npc1-/- mice display decreased mitochondrial GSH levels and liquid chromatography-high resolution mass spectrometry analysis reveal a lower PC/PE ratio in mitochondria, contributing to increased mitochondrial membrane order. In vivo treatment of Npc1-/- mice with SAM restores SAM levels in mitochondria, resulting in increased PC/PE ratio, mitochondrial membrane fluidity and subsequent replenishment of mitochondrial GSH levels. In vivo SAM treatment improves the decline of locomotor activity, increases Purkinje cell survival in the cerebellum and extends the average and maximal life spam of Npc1-/- mice. These findings identify SAM as a potential therapeutic approach for the treatment of NPC disease.
Collapse
Affiliation(s)
- Leire Goicoechea
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBEREHD), Barcelona, Spain
| | - Sandra Torres
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBEREHD), Barcelona, Spain
| | - Laura Fàbrega
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBEREHD), Barcelona, Spain
| | - Mónica Barrios
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBEREHD), Barcelona, Spain
| | - Susana Núñez
- Centro de Investigación Biomédica en Red (CIBEREHD), Barcelona, Spain
| | - Josefina Casas
- Research Unit on BioActive Molecules (RUBAM), Departament de Química Orgànica Biològica, Institut D'Investigacions Químiques I Ambientals de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Gemma Fabrias
- Research Unit on BioActive Molecules (RUBAM), Departament de Química Orgànica Biològica, Institut D'Investigacions Químiques I Ambientals de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Carmen García-Ruiz
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBEREHD), Barcelona, Spain; Research Center for ALPD, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| | - José C Fernández-Checa
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain; Liver Unit, Hospital Clinic I Provincial de Barcelona, Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBEREHD), Barcelona, Spain; Research Center for ALPD, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
39
|
Yapici FI, Bebber CM, von Karstedt S. A guide to ferroptosis in cancer. Mol Oncol 2024; 18:1378-1396. [PMID: 38590214 PMCID: PMC11161738 DOI: 10.1002/1878-0261.13649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/20/2024] [Accepted: 03/26/2024] [Indexed: 04/10/2024] Open
Abstract
Ferroptosis is a newly identified iron-dependent type of regulated cell death that can also be regarded as death caused by the specific collapse of the lipid antioxidant defence machinery. Ferroptosis has gained increasing attention as a potential therapeutic strategy for therapy-resistant cancer types. However, many ferroptosis-inducing small molecules do not reach the pharmacokinetic requirements for their effective clinical use yet. Nevertheless, their clinical optimization is under development. In this review, we summarize the current understanding of molecular pathways regulating ferroptosis, how cells protect themselves from the induction of ferroptotic cell death, and how a better understanding of cancer cell metabolism can represent vulnerabilities for ferroptosis-based therapies. Lastly, we discuss the context-dependent effect of ferroptosis on various cell types within the tumor microenvironment and address controversies on how tissue ferroptosis might impact systemic cancer immunity in a paracrine manner.
Collapse
Affiliation(s)
- Fatma Isil Yapici
- Department of Translational Genomics, Faculty of Medicine and University Hospital CologneUniversity of CologneGermany
- CECAD Cluster of ExcellenceUniversity of CologneGermany
| | - Christina M. Bebber
- Department of Translational Genomics, Faculty of Medicine and University Hospital CologneUniversity of CologneGermany
- CECAD Cluster of ExcellenceUniversity of CologneGermany
| | - Silvia von Karstedt
- Department of Translational Genomics, Faculty of Medicine and University Hospital CologneUniversity of CologneGermany
- CECAD Cluster of ExcellenceUniversity of CologneGermany
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital CologneUniversity of CologneGermany
| |
Collapse
|
40
|
Xue J, Ye C. The role of lipoylation in mitochondrial adaptation to methionine restriction. Bioessays 2024; 46:e2300218. [PMID: 38616332 DOI: 10.1002/bies.202300218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/12/2024] [Accepted: 04/02/2024] [Indexed: 04/16/2024]
Abstract
Dietary methionine restriction (MR) is associated with a spectrum of health-promoting benefits. Being conducive to prevention of chronic diseases and extension of life span, MR can activate integrated responses at metabolic, transcriptional, and physiological levels. However, how the mitochondria of MR influence metabolic phenotypes remains elusive. Here, we provide a summary of cellular functions of methionine metabolism and an overview of the current understanding of effector mechanisms of MR, with a focus on the aspect of mitochondria-mediated responses. We propose that mitochondria can sense and respond to MR through a modulatory role of lipoylation, a mitochondrial protein modification sensitized by MR.
Collapse
Affiliation(s)
- Jingyuan Xue
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Cunqi Ye
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Sanya, China
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, China
| |
Collapse
|
41
|
Dancis A, Pandey AK, Pain D. Mitochondria function in cytoplasmic FeS protein biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119733. [PMID: 38641180 DOI: 10.1016/j.bbamcr.2024.119733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/18/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024]
Abstract
Iron‑sulfur (FeS) clusters are cofactors of numerous proteins involved in essential cellular functions including respiration, protein translation, DNA synthesis and repair, ribosome maturation, anti-viral responses, and isopropylmalate isomerase activity. Novel FeS proteins are still being discovered due to the widespread use of cryogenic electron microscopy (cryo-EM) and elegant genetic screens targeted at protein discovery. A complex sequence of biochemical reactions mediated by a conserved machinery controls biosynthesis of FeS clusters. In eukaryotes, a remarkable epistasis has been observed: the mitochondrial machinery, termed ISC (Iron-Sulfur Cluster), lies upstream of the cytoplasmic machinery, termed CIA (Cytoplasmic Iron‑sulfur protein Assembly). The basis for this arrangement is the production of a hitherto uncharacterized intermediate, termed X-S or (Fe-S)int, produced in mitochondria by the ISC machinery, exported by the mitochondrial ABC transporter Atm1 (ABCB7 in humans), and then utilized by the CIA machinery for the cytoplasmic/nuclear FeS cluster assembly. Genetic and biochemical findings supporting this sequence of events are herein presented. New structural views of the Atm1 transport phases are reviewed. The key compartmental roles of glutathione in cellular FeS cluster biogenesis are highlighted. Finally, data are presented showing that every one of the ten core components of the mitochondrial ISC machinery and Atm1, when mutated or depleted, displays similar phenotypes: mitochondrial and cytoplasmic FeS clusters are both rendered deficient, consistent with the epistasis noted above.
Collapse
Affiliation(s)
- Andrew Dancis
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA.
| | - Ashutosh K Pandey
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Debkumar Pain
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| |
Collapse
|
42
|
Suomalainen A, Nunnari J. Mitochondria at the crossroads of health and disease. Cell 2024; 187:2601-2627. [PMID: 38788685 DOI: 10.1016/j.cell.2024.04.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024]
Abstract
Mitochondria reside at the crossroads of catabolic and anabolic metabolism-the essence of life. How their structure and function are dynamically tuned in response to tissue-specific needs for energy, growth repair, and renewal is being increasingly understood. Mitochondria respond to intrinsic and extrinsic stresses and can alter cell and organismal function by inducing metabolic signaling within cells and to distal cells and tissues. Here, we review how the centrality of mitochondrial functions manifests in health and a broad spectrum of diseases and aging.
Collapse
Affiliation(s)
- Anu Suomalainen
- University of Helsinki, Stem Cells and Metabolism Program, Faculty of Medicine, Helsinki, Finland; HiLife, University of Helsinki, Helsinki, Finland; HUS Diagnostics, Helsinki University Hospital, Helsinki, Finland.
| | - Jodi Nunnari
- Altos Labs, Bay Area Institute, Redwood Shores, CA, USA.
| |
Collapse
|
43
|
Braymer JJ, Stehling O, Stümpfig M, Rösser R, Spantgar F, Blinn CM, Mühlenhoff U, Pierik AJ, Lill R. Requirements for the biogenesis of [2Fe-2S] proteins in the human and yeast cytosol. Proc Natl Acad Sci U S A 2024; 121:e2400740121. [PMID: 38743629 PMCID: PMC11126956 DOI: 10.1073/pnas.2400740121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/16/2024] [Indexed: 05/16/2024] Open
Abstract
The biogenesis of iron-sulfur (Fe/S) proteins entails the synthesis and trafficking of Fe/S clusters, followed by their insertion into target apoproteins. In eukaryotes, the multiple steps of biogenesis are accomplished by complex protein machineries in both mitochondria and cytosol. The underlying biochemical pathways have been elucidated over the past decades, yet the mechanisms of cytosolic [2Fe-2S] protein assembly have remained ill-defined. Similarly, the precise site of glutathione (GSH) requirement in cytosolic and nuclear Fe/S protein biogenesis is unclear, as is the molecular role of the GSH-dependent cytosolic monothiol glutaredoxins (cGrxs). Here, we investigated these questions in human and yeast cells by various in vivo approaches. [2Fe-2S] cluster assembly of cytosolic target apoproteins required the mitochondrial ISC machinery, the mitochondrial transporter Atm1/ABCB7 and GSH, yet occurred independently of both the CIA system and cGrxs. This mechanism was strikingly different from the ISC-, Atm1/ABCB7-, GSH-, and CIA-dependent assembly of cytosolic-nuclear [4Fe-4S] proteins. One notable exception to this cytosolic [2Fe-2S] protein maturation pathway defined here was yeast Apd1 which used the CIA system via binding to the CIA targeting complex through its C-terminal tryptophan. cGrxs, although attributed as [2Fe-2S] cluster chaperones or trafficking proteins, were not essential in vivo for delivering [2Fe-2S] clusters to either CIA components or target apoproteins. Finally, the most critical GSH requirement was assigned to Atm1-dependent export, i.e. a step before GSH-dependent cGrxs function. Our findings extend the general model of eukaryotic Fe/S protein biogenesis by adding the molecular requirements for cytosolic [2Fe-2S] protein maturation.
Collapse
Affiliation(s)
- Joseph J. Braymer
- Institut für Zytobiologie und Zytopathologie, Fachbereich Medizin, Philipps-Universität Marburg, Marburg35032, Germany
- Zentrum für Synthetische Mikrobiologie Synmikro, Philipps-Universität Marburg, Marburg35032, Germany
| | - Oliver Stehling
- Institut für Zytobiologie und Zytopathologie, Fachbereich Medizin, Philipps-Universität Marburg, Marburg35032, Germany
- Zentrum für Synthetische Mikrobiologie Synmikro, Philipps-Universität Marburg, Marburg35032, Germany
| | - Martin Stümpfig
- Institut für Zytobiologie und Zytopathologie, Fachbereich Medizin, Philipps-Universität Marburg, Marburg35032, Germany
- Zentrum für Synthetische Mikrobiologie Synmikro, Philipps-Universität Marburg, Marburg35032, Germany
| | - Ralf Rösser
- Institut für Zytobiologie und Zytopathologie, Fachbereich Medizin, Philipps-Universität Marburg, Marburg35032, Germany
- Zentrum für Synthetische Mikrobiologie Synmikro, Philipps-Universität Marburg, Marburg35032, Germany
| | - Farah Spantgar
- Institut für Zytobiologie und Zytopathologie, Fachbereich Medizin, Philipps-Universität Marburg, Marburg35032, Germany
- Zentrum für Synthetische Mikrobiologie Synmikro, Philipps-Universität Marburg, Marburg35032, Germany
| | - Catharina M. Blinn
- Department of Chemistry, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Kaiserslautern67663, Germany
| | - Ulrich Mühlenhoff
- Institut für Zytobiologie und Zytopathologie, Fachbereich Medizin, Philipps-Universität Marburg, Marburg35032, Germany
- Zentrum für Synthetische Mikrobiologie Synmikro, Philipps-Universität Marburg, Marburg35032, Germany
| | - Antonio J. Pierik
- Department of Chemistry, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Kaiserslautern67663, Germany
| | - Roland Lill
- Institut für Zytobiologie und Zytopathologie, Fachbereich Medizin, Philipps-Universität Marburg, Marburg35032, Germany
- Zentrum für Synthetische Mikrobiologie Synmikro, Philipps-Universität Marburg, Marburg35032, Germany
| |
Collapse
|
44
|
Liu J, Zuo S. Control of mitochondrial glutathione homeostasis by SLC25A39. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1093-1095. [PMID: 38766696 PMCID: PMC11322872 DOI: 10.3724/abbs.2024072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/25/2024] [Indexed: 05/22/2024] Open
Affiliation(s)
- Jiao Liu
- Department of BiopharmaceuticsThe Province and Ministry Co-sponsored Collaborative Innovation Center for Medical EpigeneticsTianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Department of PharmacologyTianjin Key Laboratory of Inflammatory BiologySchool of Basic Medical SciencesTianjin Medical UniversityTianjin300070China
| | - Shengkai Zuo
- Department of BiopharmaceuticsThe Province and Ministry Co-sponsored Collaborative Innovation Center for Medical EpigeneticsTianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
| |
Collapse
|
45
|
Ward NP, Yoon SJ, Flynn T, Sherwood AM, Olley MA, Madej J, DeNicola GM. Mitochondrial respiratory function is preserved under cysteine starvation via glutathione catabolism in NSCLC. Nat Commun 2024; 15:4244. [PMID: 38762605 PMCID: PMC11102494 DOI: 10.1038/s41467-024-48695-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 05/03/2024] [Indexed: 05/20/2024] Open
Abstract
Cysteine metabolism occurs across cellular compartments to support diverse biological functions and prevent the induction of ferroptosis. Though the disruption of cytosolic cysteine metabolism is implicated in this form of cell death, it is unknown whether the substantial cysteine metabolism resident within the mitochondria is similarly pertinent to ferroptosis. Here, we show that despite the rapid depletion of intracellular cysteine upon loss of extracellular cystine, cysteine-dependent synthesis of Fe-S clusters persists in the mitochondria of lung cancer cells. This promotes a retention of respiratory function and a maintenance of the mitochondrial redox state. Under these limiting conditions, we find that glutathione catabolism by CHAC1 supports the mitochondrial cysteine pool to sustain the function of the Fe-S proteins critical to oxidative metabolism. We find that disrupting Fe-S cluster synthesis under cysteine restriction protects against the induction of ferroptosis, suggesting that the preservation of mitochondrial function is antagonistic to survival under starved conditions. Overall, our findings implicate mitochondrial cysteine metabolism in the induction of ferroptosis and reveal a mechanism of mitochondrial resilience in response to nutrient stress.
Collapse
Affiliation(s)
- Nathan P Ward
- Department of Metabolism & Physiology, Moffitt Cancer Center, Tampa, FL, USA.
| | - Sang Jun Yoon
- Department of Metabolism & Physiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Tyce Flynn
- Department of Metabolism & Physiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Amanda M Sherwood
- Department of Metabolism & Physiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Maddison A Olley
- Department of Metabolism & Physiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Juliana Madej
- Department of Metabolism & Physiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Gina M DeNicola
- Department of Metabolism & Physiology, Moffitt Cancer Center, Tampa, FL, USA.
| |
Collapse
|
46
|
Pereira A, Baron L, Bucci R, Plays M, Bonasegale G, Picard-Bernes A, Bibrowski M, Morris N, Marynberg S, Sindikubwabo F, Cañeque T, Müller S, Colombeau L, Solier S, Bono Y, Gaillet C, Johannes L, Puisieux A, Rodriguez R. PSL Chemical Biology Symposia: Recent Progress in Ferroptosis. Chembiochem 2024; 25:e202400211. [PMID: 38530090 DOI: 10.1002/cbic.202400211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Indexed: 03/27/2024]
Abstract
This symposium is the 5th PSL (Paris Sciences & Lettres) Chemical Biology meeting (2015, 2016, 2019, 2023, 2024) held at Institut Curie. This initiative originally started at Institut de Chimie des Substances Naturelles (ICSN) in Gif-sur-Yvette, with a strong focus on chemistry. It was then continued at the Institut Curie (2015) covering a larger scope, before becoming the official PSL Chemical Biology meeting. This latest edition hosted around 150 participants and was focused on the burgeoning field of ferroptosis, its mechanism and implications in health and disease. While not initially planned, it was felt that the next large Ferroptosis venue (CSHA, China) would not happen before late 2024. A discussion involving Conrad, Birsoy, Ubellacker, Brabletz and Rodriguez next to lake Como in Italy sponsored by the DKFZ, prompted us to fill in this gap and to organize a Ferroptosis meeting in Paris beforehand.
Collapse
Affiliation(s)
- Arthur Pereira
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Leeroy Baron
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Romain Bucci
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Marina Plays
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Giulia Bonasegale
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Armel Picard-Bernes
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Manuel Bibrowski
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Nolwenn Morris
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Sacha Marynberg
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Fabien Sindikubwabo
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Tatiana Cañeque
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Sebastian Müller
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Ludovic Colombeau
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Stéphanie Solier
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Yannick Bono
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Christine Gaillet
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Ludger Johannes
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Alain Puisieux
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| | - Raphaël Rodriguez
- Institut Curie, Department of Cellular and Chemical Biology, UMR 3666 CNRS, U1143 INSERM, PSL Université Paris, 75005, Paris, France
| |
Collapse
|
47
|
Zhen Z, Ren J, Zhu J. The redox requirement and regulation during cell proliferation. Trends Endocrinol Metab 2024; 35:385-399. [PMID: 38262821 DOI: 10.1016/j.tem.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/25/2024]
Abstract
The intracellular metabolic network comprises a variety of reduction-oxidation (redox) reactions that occur in a temporally and spatially distinct manner. In order to coordinate these redox processes, mammalian cells utilize a collection of electron-carrying molecules common to many redox reactions, including NAD, NADP, coenzyme Q (CoQ), and glutathione (GSH). This review considers the metabolic basis of redox regulation in the context of cell proliferation by analyzing how cells acquire and utilize electron carriers to maintain directional carbon flux, sustain reductive biosynthesis, and support antioxidant defense. Elucidating the redox requirement during cell proliferation can advance the understanding of human diseases such as cancer, and reveal effective therapeutic opportunities in the clinic.
Collapse
Affiliation(s)
- Zhuoran Zhen
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Jiankun Ren
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Jiajun Zhu
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China; Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
48
|
Long X, Liu M, Nan Y, Chen Q, Xiao Z, Xiang Y, Ying X, Sun J, Huang Q, Ai K. Revitalizing Ancient Mitochondria with Nano-Strategies: Mitochondria-Remedying Nanodrugs Concentrate on Disease Control. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308239. [PMID: 38224339 DOI: 10.1002/adma.202308239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/04/2024] [Indexed: 01/16/2024]
Abstract
Mitochondria, widely known as the energy factories of eukaryotic cells, have a myriad of vital functions across diverse cellular processes. Dysfunctions within mitochondria serve as catalysts for various diseases, prompting widespread cellular demise. Mounting research on remedying damaged mitochondria indicates that mitochondria constitute a valuable target for therapeutic intervention against diseases. But the less clinical practice and lower recovery rate imply the limitation of traditional drugs, which need a further breakthrough. Nanotechnology has approached favorable regiospecific biodistribution and high efficacy by capitalizing on excellent nanomaterials and targeting drug delivery. Mitochondria-remedying nanodrugs have achieved ideal therapeutic effects. This review elucidates the significance of mitochondria in various cells and organs, while also compiling mortality data for related diseases. Correspondingly, nanodrug-mediate therapeutic strategies and applicable mitochondria-remedying nanodrugs in disease are detailed, with a full understanding of the roles of mitochondria dysfunction and the advantages of nanodrugs. In addition, the future challenges and directions are widely discussed. In conclusion, this review provides comprehensive insights into the design and development of mitochondria-remedying nanodrugs, aiming to help scientists who desire to extend their research fields and engage in this interdisciplinary subject.
Collapse
Affiliation(s)
- Xingyu Long
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, P. R. China
| | - Min Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Yayun Nan
- Geriatric Medical Center, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, 750002, P. R. China
| | - Qiaohui Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, P. R. China
| | - Zuoxiu Xiao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, P. R. China
| | - Yuting Xiang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, P. R. China
| | - Xiaohong Ying
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, P. R. China
| | - Jian Sun
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830017, P. R. China
| | - Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, P. R. China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, 410078, P. R. China
| |
Collapse
|
49
|
Yamashita SI, Sugiura Y, Matsuoka Y, Maeda R, Inoue K, Furukawa K, Fukuda T, Chan DC, Kanki T. Mitophagy mediated by BNIP3 and NIX protects against ferroptosis by downregulating mitochondrial reactive oxygen species. Cell Death Differ 2024; 31:651-661. [PMID: 38519771 PMCID: PMC11094013 DOI: 10.1038/s41418-024-01280-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 03/12/2024] [Accepted: 03/12/2024] [Indexed: 03/25/2024] Open
Abstract
Mitophagy plays an important role in the maintenance of mitochondrial homeostasis and can be categorized into two types: ubiquitin-mediated and receptor-mediated pathways. During receptor-mediated mitophagy, mitophagy receptors facilitate mitophagy by tethering the isolation membrane to mitochondria. Although at least five outer mitochondrial membrane proteins have been identified as mitophagy receptors, their individual contribution and interrelationship remain unclear. Here, we show that HeLa cells lacking BNIP3 and NIX, two of the five receptors, exhibit a complete loss of mitophagy in various conditions. Conversely, cells deficient in the other three receptors show normal mitophagy. Using BNIP3/NIX double knockout (DKO) cells as a model, we reveal that mitophagy deficiency elevates mitochondrial reactive oxygen species (mtROS), which leads to activation of the Nrf2 antioxidant pathway. Notably, BNIP3/NIX DKO cells are highly sensitive to ferroptosis when Nrf2-driven antioxidant enzymes are compromised. Moreover, the sensitivity of BNIP3/NIX DKO cells is fully rescued upon the introduction of wild-type BNIP3 and NIX, but not the mutant forms incapable of facilitating mitophagy. Consequently, our results demonstrate that BNIP3 and NIX-mediated mitophagy plays a role in regulating mtROS levels and protects cells from ferroptosis.
Collapse
Affiliation(s)
- Shun-Ichi Yamashita
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 950-8510, Japan.
| | - Yuki Sugiura
- Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan
| | - Yuta Matsuoka
- Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan
| | - Rae Maeda
- Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan
| | - Keiichi Inoue
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 950-8510, Japan
| | - Kentaro Furukawa
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 950-8510, Japan
| | - Tomoyuki Fukuda
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 950-8510, Japan
| | - David C Chan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Tomotake Kanki
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 950-8510, Japan.
| |
Collapse
|
50
|
Chidley C, Darnell AM, Gaudio BL, Lien EC, Barbeau AM, Vander Heiden MG, Sorger PK. A CRISPRi/a screening platform to study cellular nutrient transport in diverse microenvironments. Nat Cell Biol 2024; 26:825-838. [PMID: 38605144 PMCID: PMC11098743 DOI: 10.1038/s41556-024-01402-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 03/07/2024] [Indexed: 04/13/2024]
Abstract
Blocking the import of nutrients essential for cancer cell proliferation represents a therapeutic opportunity, but it is unclear which transporters to target. Here we report a CRISPR interference/activation screening platform to systematically interrogate the contribution of nutrient transporters to support cancer cell proliferation in environments ranging from standard culture media to tumours. We applied this platform to identify the transporters of amino acids in leukaemia cells and found that amino acid transport involves high bidirectional flux dependent on the microenvironment composition. While investigating the role of transporters in cystine starved cells, we uncovered a role for serotonin uptake in preventing ferroptosis. Finally, we identified transporters essential for cell proliferation in subcutaneous tumours and found that levels of glucose and amino acids can restrain proliferation in that environment. This study establishes a framework for systematically identifying critical cellular nutrient transporters, characterizing their function and exploring how the tumour microenvironment impacts cancer metabolism.
Collapse
Affiliation(s)
- Christopher Chidley
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA.
| | - Alicia M Darnell
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Benjamin L Gaudio
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Evan C Lien
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anna M Barbeau
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA.
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|