1
|
Zuo X, Sun M, Bai H, Zhang S, Luan J, Yu Q, Fu Z, Zhao Q, Sun M, Zhao X, Feng X. The effects of 17β-trenbolone and bisphenol A on sexual behavior and social dominance via the hypothalamic-pituitary-gonadal axis in male mice. J Environ Sci (China) 2025; 151:54-67. [PMID: 39481959 DOI: 10.1016/j.jes.2024.02.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 11/03/2024]
Abstract
17β-Trenbolone (17-TB) is well documented as an environmental endocrine disruptor in aquatic biological studies, but its effects on mammals remain poorly understood. Furthermore, 17-TB acts as a hormone with properties similar to testosterone, and the consequences of juvenile exposure on adult social behavior remain uncertain. Bisphenol A (BPA) acts as an estrogen-like hormone, compared to 17-TB. Three-week-old male Balb/c mice were exposed orally to 17-TB (100 µg/(kg·day)) and BPA (4 mg/(kg·day)) for 28 days. Assessments of social interactions and a three-chamber test showed that 17-TB increased virility in male mice, intensified both male and female sexual behavior, and attracted and accepted female mice. It also increased social dominance through tube tests in male mice and markedly activated the c-Fos+ immune response in the medial prefrontal cortex (mPFC) and basal amygdala (BLA). ELISA data showed that 17-TB and BPA exposure significantly affected serum gonadotropin-releasing hormone (GnRH), growth hormone (GH), estradiol (E2), and luteinizing hormone (LH) levels, as well as testicular lesions and androgen receptor (ARβ) and estrogen receptor (ERα) synthesis. Testicular transcriptomic analysis further confirmed that could disrupt steroid synthesis and linoleic acid-related biometabolic processes. These findings suggest the influence of 17-TB and BPA exposure on sexual behavior and fertility in male mice, possibly through modulation of the hypothalamic-pituitary-gonadal axis. This study provides insights relevant to human reproductive health and neuro-social behavioral research, and the potential risk of environmental disturbances should not be overlooked.
Collapse
Affiliation(s)
- Xiang Zuo
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Minghe Sun
- Institute of Robotics & Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin 300071, China
| | - Huijuan Bai
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Shuhui Zhang
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Jialu Luan
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Qian Yu
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Zhenhua Fu
- Institute of Robotics & Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin 300071, China
| | - Qili Zhao
- Institute of Robotics & Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin 300071, China
| | - Mingzhu Sun
- Institute of Robotics & Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin 300071, China
| | - Xin Zhao
- Institute of Robotics & Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin 300071, China.
| | - Xizeng Feng
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China.
| |
Collapse
|
2
|
Del Río JP, Tsompanidis A, Gaspar PA, Maturana-Hurtado A, Rojas-Costa GM, Dagnino-Subiabre A, Olea A, Maliqueo M, Echiburú B, de Guevara AL, Montiel JF, Baron-Cohen S, Crisosto N. Women with polycystic ovary syndrome (PCOS): Likelihood of cooccurring neuropsychiatric conditions and the dual hit hypothesis. Front Neuroendocrinol 2025; 77:101188. [PMID: 40120958 DOI: 10.1016/j.yfrne.2025.101188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 03/13/2025] [Accepted: 03/15/2025] [Indexed: 03/25/2025]
Abstract
Polycystic Ovary Syndrome (PCOS) is the most common endocrine-metabolic disorder in women of reproductive age. Hyperandrogenism has been proposed as its main pathophysiological feature. PCOS is associated with co-occurring conditions, including psychiatric disorders such as anxiety, depression, and neurodevelopmental conditions such as autism. Exposure to hyperandrogenism during prenatal life and adolescence may explain this association. PCOS women exhibit hyperandrogenism during pregnancy, and up to 70% of their daughters will present a similar phenotype from puberty onwards. The 'dual hit hypothesis' proposes that stressors during prenatal life and adolescence can synergistically lead to co-occurring conditions in adulthood. PCOS has been recently proposed as an independent likelihood factor for the development of neuropsychiatric conditions. However, the specific mechanisms require further research to develop effective interventions. This review discusses how hyperandrogenism can affect neurodevelopment during two key periods of brain development, which may explain the long-term impact of PCOS on mental health.
Collapse
Affiliation(s)
- Juan Pablo Del Río
- Department of Child and Adolescent Psychiatry and Mental Health, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; Millennium Nucleus to Improve the Mental Health of Adolescents and Youths, Imhay. Santiago, Chile
| | - Alexandros Tsompanidis
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH, UK
| | - Pablo A Gaspar
- Millennium Nucleus to Improve the Mental Health of Adolescents and Youths, Imhay. Santiago, Chile; Psychiatry and Mental Health Department, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Alejandro Maturana-Hurtado
- Department of Child and Adolescent Psychiatry and Mental Health, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Gonzalo M Rojas-Costa
- School of Medicine, Finis Terrae University, 750115, Santiago, Chile; Biomedical Imaging Unit and Artificial Intelligence FISABIO-CIPF, Foundation for the Promotion of Health and Biomedical Research of the Valencia Region, Valencia, Spain
| | - Alexies Dagnino-Subiabre
- Laboratory of Stress Neurobiology, CIESAL, Faculty of Sciences, Institute of Physiology, Universidad de Valparaíso, Valparaíso 2360102, Chile; Millennium Institute for Depression and Personality Research (MIDAP), Santiago, Chile
| | - Arabia Olea
- Laboratory of Stress Neurobiology, CIESAL, Faculty of Sciences, Institute of Physiology, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Manuel Maliqueo
- Laboratory of Endocrinology and Metabolism, Department of Medicine West Division, Universidad de Chile, Santiago 8350499, Chile
| | - Bárbara Echiburú
- Laboratory of Endocrinology and Metabolism, Department of Medicine West Division, Universidad de Chile, Santiago 8350499, Chile
| | - Amanda Ladrón de Guevara
- Laboratory of Endocrinology and Metabolism, Department of Medicine West Division, Universidad de Chile, Santiago 8350499, Chile
| | - Juan F Montiel
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad Diego Portales, Santiago 8370191, Chile
| | - Simon Baron-Cohen
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, CB2 8AH, UK
| | - Nicolás Crisosto
- Laboratory of Endocrinology and Metabolism, Department of Medicine West Division, Universidad de Chile, Santiago 8350499, Chile; Endocrinology Unit, Department of Medicine, Clínica Alemana de Santiago, Faculty of Medicine, Universidad del Desarrollo, Santiago 7610658, Chile.
| |
Collapse
|
3
|
Wang Y, Tong X, Xiao Y, Wang Y, Hu W, Lu W, Chen Y, Li J, Gao W, Gao H, Tian Y, Dai S, Feng Y. Regulating Integrin β1 to Restore Gonadotropin-Releasing Hormone-Tanycyte Unit Function in Polycystic Ovary Syndrome-Related Hypothalamic Dysregulation. RESEARCH (WASHINGTON, D.C.) 2025; 8:0619. [PMID: 39975575 PMCID: PMC11836200 DOI: 10.34133/research.0619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 02/21/2025]
Abstract
Excessive gonadotropin-releasing hormone (GnRH) is considered to be an initiating factor in the etiology of polycystic ovary syndrome (PCOS). GnRH neuronal axons terminate at the hypothalamic arcuate nucleus and median eminence, where tanycytes, specialized glial cells, have been proposed to modulate GnRH secretion through plasticity. However, the precise role of the "GnRH-tanycyte unit" during the pathological state of PCOS has not been thoroughly explored. In this study, we demonstrated the architecture and distribution of GnRH neurons and tanycytes. In PCOS-like mice, retracted tanycyte processes and dysregulated GnRH-tanycyte unit may create an environment conducive to the excessive secretion of GnRH and subsequent reproductive endocrine dysfunction. Mechanistically, excessive androgens impair hypothalamic neuroglial homeostasis by acting through the androgen receptor (AR) and its downstream target integrin β1 (Itgb1), thereby suppressing the FAK/TGF-βR1/Smad2 signaling pathway. Both selective deletion of AR and overexpression of Itgb1 in tanycytes counteracted the detrimental effects of androgens, alleviating endocrine dysfunction. Collectively, this study highlights the alterations in the GnRH-tanycyte unit mediated by androgen/AR/Itgb1 signaling and provides a novel perspective for developing therapies for hypothalamic hormone secretion disorders by maintaining solid neuroglial structures in the brain.
Collapse
Affiliation(s)
- Yu Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science,
Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Shanghai Institute of Acupuncture and Moxibustion, Shanghai 200433, China
| | - Xiaoyu Tong
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science,
Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Shanghai Institute of Acupuncture and Moxibustion, Shanghai 200433, China
| | - Yan Xiao
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science,
Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Shanghai Institute of Acupuncture and Moxibustion, Shanghai 200433, China
| | - Yicong Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science,
Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Shanghai Institute of Acupuncture and Moxibustion, Shanghai 200433, China
| | - Wei Hu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science,
Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Shanghai Institute of Acupuncture and Moxibustion, Shanghai 200433, China
| | - Wenhan Lu
- Department of Ophthalmology & Visual Science, Eye & ENT Hospital, Shanghai Medical College,
Fudan University, Shanghai, China
| | - Yuning Chen
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science,
Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Shanghai Institute of Acupuncture and Moxibustion, Shanghai 200433, China
| | - Jiajia Li
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science,
Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Shanghai Institute of Acupuncture and Moxibustion, Shanghai 200433, China
| | - Wenhao Gao
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science,
Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Shanghai Institute of Acupuncture and Moxibustion, Shanghai 200433, China
| | - Hongru Gao
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science,
Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Shanghai Institute of Acupuncture and Moxibustion, Shanghai 200433, China
| | - Yicheng Tian
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science,
Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Shanghai Institute of Acupuncture and Moxibustion, Shanghai 200433, China
| | - Sizhe Dai
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science,
Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Shanghai Institute of Acupuncture and Moxibustion, Shanghai 200433, China
| | - Yi Feng
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science,
Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Shanghai Institute of Acupuncture and Moxibustion, Shanghai 200433, China
| |
Collapse
|
4
|
Dony L, Krontira AC, Kaspar L, Ahmad R, Demirel IS, Grochowicz M, Schäfer T, Begum F, Sportelli V, Raimundo C, Koedel M, Labeur M, Cappello S, Theis FJ, Cruceanu C, Binder EB. Chronic exposure to glucocorticoids amplifies inhibitory neuron cell fate during human neurodevelopment in organoids. SCIENCE ADVANCES 2025; 11:eadn8631. [PMID: 39951527 PMCID: PMC11827642 DOI: 10.1126/sciadv.adn8631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 01/15/2025] [Indexed: 02/16/2025]
Abstract
Disruptions in the tightly regulated process of human brain development have been linked to increased risk for brain and mental illnesses. While the genetic contribution to these diseases is well established, important environmental factors have been less studied at molecular and cellular levels. Here, we used single-cell and cell type-specific techniques to investigate the effect of glucocorticoid (GC) exposure, a mediator of antenatal environmental risk, on gene regulation and lineage specification in unguided human neural organoids. We characterized the transcriptional response to chronic GC exposure during neural differentiation and studied the underlying gene regulatory networks by integrating single-cell transcriptomics with chromatin accessibility data. We found lasting cell type-specific changes that included autism risk genes and several transcription factors associated with neurodevelopment. Chronic GC exposure influenced lineage specification primarily by priming the inhibitory neuron lineage through transcription factors like PBX3. We provide evidence for convergence of genetic and environmental risk factors through a common mechanism of altering lineage specification.
Collapse
Affiliation(s)
- Leander Dony
- Department Genes and Environment, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804 Munich, Germany
- Institute of Computational Biology, Computational Health Center, Helmholtz Munich, 85764 Neuherberg, Germany
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
- German Center for Mental Health (DZPG), partner site Munich, Munich, Germany
| | - Anthi C. Krontira
- Department Genes and Environment, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Lea Kaspar
- Department Genes and Environment, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804 Munich, Germany
| | - Ruhel Ahmad
- Department Genes and Environment, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Ilknur Safak Demirel
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | - Tim Schäfer
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Fatema Begum
- Department Genes and Environment, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Vincenza Sportelli
- Department Genes and Environment, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- German Center for Mental Health (DZPG), partner site Munich, Munich, Germany
| | - Catarina Raimundo
- Department Genes and Environment, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Maik Koedel
- Department Genes and Environment, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Marta Labeur
- Department Genes and Environment, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Silvia Cappello
- German Center for Mental Health (DZPG), partner site Munich, Munich, Germany
- Physiological Genomics, Biomedical Center (BMC), LMU Munich Faculty of Medicine, 82152 Planegg-Martinsried, Germany
- Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Fabian J. Theis
- Institute of Computational Biology, Computational Health Center, Helmholtz Munich, 85764 Neuherberg, Germany
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
- German Center for Mental Health (DZPG), partner site Munich, Munich, Germany
- TUM School of Computation, Information and Technology, Technical University of Munich, 85748 Garching bei München, Germany
| | - Cristiana Cruceanu
- Department Genes and Environment, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Elisabeth B. Binder
- Department Genes and Environment, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- German Center for Mental Health (DZPG), partner site Munich, Munich, Germany
- Max Planck Institute of Psychiatry, 80804 Munich, Germany
| |
Collapse
|
5
|
Zhang C, Liang D, Ercan-Sencicek AG, Bulut AS, Cortes J, Cheng IQ, Henegariu O, Nishimura S, Wang X, Peksen AB, Takeo Y, Caglar C, Lam TT, Koroglu MN, Narayanan A, Lopez-Giraldez F, Miyagishima DF, Mishra-Gorur K, Barak T, Yasuno K, Erson-Omay EZ, Yalcinkaya C, Wang G, Mane S, Kaymakcalan H, Guzel A, Caglayan AO, Tuysuz B, Sestan N, Gunel M, Louvi A, Bilguvar K. Dysregulation of mTOR signalling is a converging mechanism in lissencephaly. Nature 2025; 638:172-181. [PMID: 39743596 PMCID: PMC11798849 DOI: 10.1038/s41586-024-08341-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/05/2024] [Indexed: 01/04/2025]
Abstract
Cerebral cortex development in humans is a highly complex and orchestrated process that is under tight genetic regulation. Rare mutations that alter gene expression or function can disrupt the structure of the cerebral cortex, resulting in a range of neurological conditions1. Lissencephaly ('smooth brain') spectrum disorders comprise a group of rare, genetically heterogeneous congenital brain malformations commonly associated with epilepsy and intellectual disability2. However, the molecular mechanisms underlying disease pathogenesis remain unknown. Here we establish hypoactivity of the mTOR pathway as a clinically relevant molecular mechanism in lissencephaly spectrum disorders. We characterized two types of cerebral organoid derived from individuals with genetically distinct lissencephalies with a recessive mutation in p53-induced death domain protein 1 (PIDD1) or a heterozygous chromosome 17p13.3 microdeletion leading to Miller-Dieker lissencephaly syndrome (MDLS). PIDD1-mutant organoids and MDLS organoids recapitulated the thickened cortex typical of human lissencephaly and demonstrated dysregulation of protein translation, metabolism and the mTOR pathway. A brain-selective activator of mTOR complex 1 prevented and reversed cellular and molecular defects in the lissencephaly organoids. Our findings show that a converging molecular mechanism contributes to two genetically distinct lissencephaly spectrum disorders.
Collapse
Affiliation(s)
- Ce Zhang
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
- MD-PhD Program, Yale School of Medicine, New Haven, CT, USA
| | - Dan Liang
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Bexorg, Inc., New Haven, CT, USA
| | - A Gulhan Ercan-Sencicek
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT, USA
| | - Aybike S Bulut
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Genome Sciences, Health Sciences Institute, Acibadem University, Istanbul, Turkey
| | - Joelly Cortes
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Iris Q Cheng
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | | | - Sayoko Nishimura
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Xinyuan Wang
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - A Buket Peksen
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Yutaka Takeo
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Caner Caglar
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul, Turkey
| | - TuKiet T Lam
- Keck MS and Proteomics Resource, Yale School of Medicine, New Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Merve Nur Koroglu
- Department of Biostatistics and Bioinformatics, Health Sciences Institute, Acibadem University, Istanbul, Turkey
| | - Anand Narayanan
- Yale Center for Genome Analysis, Yale University, New Haven, CT, USA
| | | | - Danielle F Miyagishima
- MD-PhD Program, Yale School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Ketu Mishra-Gorur
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Tanyeri Barak
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT, USA
| | - Katsuhito Yasuno
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT, USA
| | - E Zeynep Erson-Omay
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Informatics and Data Science, Yale School of Medicine, New Haven, CT, USA
| | - Cengiz Yalcinkaya
- Department of Neurology, Cerrahpasa Medical School, Istanbul University Cerrahpasa, Istanbul, Turkey
| | - Guilin Wang
- Yale Center for Genome Analysis, Yale University, New Haven, CT, USA
- Keck Microarray Shared Resource, Yale School of Medicine, New Haven, CT, USA
| | - Shrikant Mane
- Yale Center for Genome Analysis, Yale University, New Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Hande Kaymakcalan
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Translational Medicine, Health Sciences Institute, Acibadem University, Istanbul, Turkey
| | - Aslan Guzel
- Department of Neurosurgery, Faculty of Medicine, Bahcesehir University, Istanbul, Turkey
- Department of Neurosurgery, Medical Point Hospital, Gaziantep, Turkey
| | - A Okay Caglayan
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT, USA
- Department of Medical Genetics, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
- Department of Molecular Medicine, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Beyhan Tuysuz
- Department of Pediatric Genetics, Cerrahpasa Medical School, Istanbul University Cerrahpasa, Istanbul, Turkey
| | - Nenad Sestan
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Murat Gunel
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA.
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA.
- Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT, USA.
- Yale Center for Genome Analysis, Yale University, New Haven, CT, USA.
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT, USA.
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA.
| | - Angeliki Louvi
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA.
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA.
- Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT, USA.
| | - Kaya Bilguvar
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA.
- Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT, USA.
- Department of Genome Sciences, Health Sciences Institute, Acibadem University, Istanbul, Turkey.
- Department of Biostatistics and Bioinformatics, Health Sciences Institute, Acibadem University, Istanbul, Turkey.
- Yale Center for Genome Analysis, Yale University, New Haven, CT, USA.
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.
- Department of Translational Medicine, Health Sciences Institute, Acibadem University, Istanbul, Turkey.
- Department of Medical Genetics, School of Medicine, Acibadem University, Istanbul, Turkey.
- Rare Diseases and Orphan Drugs Application and Research Center-ACURARE, Acibadem University, Istanbul, Turkey.
| |
Collapse
|
6
|
Wehbe F, Adams L, Babadoudou J, Yuen S, Kim YS, Tanaka Y. Inferring disease progression stages in single-cell transcriptomics using a weakly supervised deep learning approach. Genome Res 2025; 35:135-146. [PMID: 39622637 PMCID: PMC11789631 DOI: 10.1101/gr.278812.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 11/26/2024] [Indexed: 01/11/2025]
Abstract
Application of single-cell/nucleus genomic sequencing to patient-derived tissues offers potential solutions to delineate disease mechanisms in humans. However, individual cells in patient-derived tissues are in different pathological stages, and hence, such cellular variability impedes subsequent differential gene expression analyses. To overcome such a heterogeneity issue, we present a novel deep learning approach, scIDST, that infers disease progression levels of individual cells with weak supervision framework. The disease progression-inferred cells display significant differential expression of disease-relevant genes, which cannot be detected by comparative analysis between patients and healthy donors. In addition, we demonstrate that pretrained models by scIDST are applicable to multiple independent data resources and are advantageous to infer cells related to certain disease risks and comorbidities. Taken together, scIDST offers a new strategy of single-cell sequencing analysis to identify bona fide disease-associated molecular features.
Collapse
Affiliation(s)
- Fabien Wehbe
- Maisonneuve-Rosemont Hospital Research Center (CRHMR), Department of Medicine, University of Montreal, Quebec H1T 2M4, Canada
| | - Levi Adams
- RWJMS Institute for Neurological Therapeutics, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
- Department of Biology, Bates College, Lewiston, Maine 04240, USA
| | - Jordan Babadoudou
- Maisonneuve-Rosemont Hospital Research Center (CRHMR), Department of Medicine, University of Montreal, Quebec H1T 2M4, Canada
| | - Samantha Yuen
- Maisonneuve-Rosemont Hospital Research Center (CRHMR), Department of Medicine, University of Montreal, Quebec H1T 2M4, Canada
| | - Yoon-Seong Kim
- RWJMS Institute for Neurological Therapeutics, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | - Yoshiaki Tanaka
- Maisonneuve-Rosemont Hospital Research Center (CRHMR), Department of Medicine, University of Montreal, Quebec H1T 2M4, Canada;
| |
Collapse
|
7
|
Veser C, Carlier A, Dubois V, Mihăilă SM, Swapnasrita S. Embracing sex-specific differences in engineered kidney models for enhanced biological understanding of kidney function. Biol Sex Differ 2024; 15:99. [PMID: 39623463 PMCID: PMC11613810 DOI: 10.1186/s13293-024-00662-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 10/16/2024] [Indexed: 12/06/2024] Open
Abstract
In vitro models serve as indispensable tools for advancing our understanding of biological processes, elucidating disease mechanisms, and establishing screening platforms for drug discovery. Kidneys play an instrumental role in the transport and elimination of drugs and toxins. Nevertheless, despite the well-documented inter-individual variability in kidney function and the multifaceted nature of renal diseases-spanning from their origin, trigger and which segment of the kidney is affected-to presentation, progression and prognosis, few studies take into consideration the variable of sex. Notably, the inherent disparities between female and male biology warrants a more comprehensive representation within in vitro models of the kidney. The omission of sex as a fundamental biological variable carries the substantial risk of overlooking sex-specific mechanisms implicated in health and disease, along with potential differences in drug responsiveness and toxicity profiles between sexes. This review emphasizes the importance of incorporating cellular, biological and functional sex-specific features of renal activity in health and disease in in vitro models. For that, we thoroughly document renal sex-specific features and propose a strategic experimental framework to integrate sex-based differences into human kidney in vitro models by outlining critical design criteria to elucidate sex-based features at cellular and tissue levels. The goal is to enhance the accuracy of models to unravel renal mechanisms, and improve our understanding of their impact on drug efficacy and safety profiles, paving the way for a more comprehensive understanding of patient-specific treatment modalities.
Collapse
Affiliation(s)
- Charlotte Veser
- Utrecht Institute for Pharmaceutical Sciences, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Aurélie Carlier
- MERLN Institute for Technology-Inspired Regenerative Medicine, Universiteitssingel 40, 6229 ER, Maastricht, The Netherlands
| | - Vanessa Dubois
- Basic and Translational Endocrinology (BaTE), Department of Basic and Applied Medical Sciences, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Silvia M Mihăilă
- Utrecht Institute for Pharmaceutical Sciences, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.
| | - Sangita Swapnasrita
- MERLN Institute for Technology-Inspired Regenerative Medicine, Universiteitssingel 40, 6229 ER, Maastricht, The Netherlands.
| |
Collapse
|
8
|
Xu Q, Jin L, Wang L, Tang Y, Wu H, Chen Q, Sun L. The role of gonadal hormones in regulating opioid antinociception. Ann Med 2024; 56:2329259. [PMID: 38738380 PMCID: PMC11095291 DOI: 10.1080/07853890.2024.2329259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/06/2024] [Indexed: 05/14/2024] Open
Abstract
Opioids are the most prescribed drugs for the alleviation of pain. Both clinical and preclinical studies have reported strong evidence for sex-related divergence regarding opioid analgesia. There is an increasing amount of evidence indicating that gonadal hormones regulate the analgesic efficacy of opioids. This review presents an overview of the importance of gonadal steroids in modulating opioid analgesic responsiveness and focuses on elaborating what is currently known regarding the underlyingmechanism. We sought to identify the link between gonadal hormones and the effect of oipiod antinociception.
Collapse
Affiliation(s)
- Qi Xu
- Department of Anesthesiology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Lin Jin
- Department of Anesthesiology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - LuYang Wang
- Department of Anesthesiology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - YingYing Tang
- Department of Anesthesiology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Hui Wu
- Department of Anesthesiology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Qing Chen
- Department of Anesthesiology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - LiHong Sun
- Department of Anesthesiology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
9
|
Kahveci B, Polatli E, Bastanlar Y, Guven S. OrganoLabeler: A Quick and Accurate Annotation Tool for Organoid Images. ACS OMEGA 2024; 9:46117-46128. [PMID: 39583683 PMCID: PMC11579745 DOI: 10.1021/acsomega.4c06450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/21/2024] [Accepted: 10/22/2024] [Indexed: 11/26/2024]
Abstract
Organoids are self-assembled 3D cellular structures that resemble organs structurally and functionally, providing in vitro platforms for molecular and therapeutic studies. Generation of organoids from human cells often requires long and costly procedures with arguably low efficiency. Prediction and selection of cellular aggregates that result in healthy and functional organoids can be achieved by using artificial intelligence-based tools. Transforming images of 3D cellular constructs into digitally processable data sets for training deep learning models requires labeling of morphological boundaries, which often is performed manually. Here, we report an application named OrganoLabeler, which can create large image-based data sets in a consistent, reliable, fast, and user-friendly manner. OrganoLabeler can create segmented versions of images with combinations of contrast adjusting, K-means clustering, CLAHE, binary, and Otsu thresholding methods. We created embryoid body and brain organoid data sets, of which segmented images were manually created by human researchers and compared with OrganoLabeler. Validation is performed by training U-Net models, which are deep learning models specialized in image segmentation. U-Net models, which are trained with images segmented by OrganoLabeler, achieved similar or better segmentation accuracies than the ones trained with manually labeled reference images. OrganoLabeler can replace manual labeling, providing faster and more accurate results for organoid research free of charge.
Collapse
Affiliation(s)
- Burak Kahveci
- Izmir International
Biomedicine and Genome Institute, Dokuz Eylul University, Izmir 35340, Türkiye
- Izmir Biomedicine
and Genome Center, Izmir 35340, Türkiye
| | - Elifsu Polatli
- Izmir International
Biomedicine and Genome Institute, Dokuz Eylul University, Izmir 35340, Türkiye
- Izmir Biomedicine
and Genome Center, Izmir 35340, Türkiye
| | - Yalin Bastanlar
- Department
of Computer Engineering, Izmir Institute
of Technology, Izmir 35430, Türkiye
| | - Sinan Guven
- Izmir International
Biomedicine and Genome Institute, Dokuz Eylul University, Izmir 35340, Türkiye
- Izmir Biomedicine
and Genome Center, Izmir 35340, Türkiye
- Faculty
of
Medicine, Medical Biology and Genetics Department, Dokuz Eylul University, Izmir 35340, Türkiye
| |
Collapse
|
10
|
Li M, Yuan Y, Hou Z, Hao S, Jin L, Wang B. Human brain organoid: trends, evolution, and remaining challenges. Neural Regen Res 2024; 19:2387-2399. [PMID: 38526275 PMCID: PMC11090441 DOI: 10.4103/1673-5374.390972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/26/2023] [Accepted: 10/28/2023] [Indexed: 03/26/2024] Open
Abstract
Advanced brain organoids provide promising platforms for deciphering the cellular and molecular processes of human neural development and diseases. Although various studies and reviews have described developments and advancements in brain organoids, few studies have comprehensively summarized and analyzed the global trends in this area of neuroscience. To identify and further facilitate the development of cerebral organoids, we utilized bibliometrics and visualization methods to analyze the global trends and evolution of brain organoids in the last 10 years. First, annual publications, countries/regions, organizations, journals, authors, co-citations, and keywords relating to brain organoids were identified. The hotspots in this field were also systematically identified. Subsequently, current applications for brain organoids in neuroscience, including human neural development, neural disorders, infectious diseases, regenerative medicine, drug discovery, and toxicity assessment studies, are comprehensively discussed. Towards that end, several considerations regarding the current challenges in brain organoid research and future strategies to advance neuroscience will be presented to further promote their application in neurological research.
Collapse
Affiliation(s)
- Minghui Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yuhan Yuan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Zongkun Hou
- School of Biology and Engineering/School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Liang Jin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
11
|
He Z, Dony L, Fleck JS, Szałata A, Li KX, Slišković I, Lin HC, Santel M, Atamian A, Quadrato G, Sun J, Pașca SP, Camp JG, Theis FJ, Treutlein B. An integrated transcriptomic cell atlas of human neural organoids. Nature 2024; 635:690-698. [PMID: 39567792 PMCID: PMC11578878 DOI: 10.1038/s41586-024-08172-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 10/08/2024] [Indexed: 11/22/2024]
Abstract
Human neural organoids, generated from pluripotent stem cells in vitro, are useful tools to study human brain development, evolution and disease. However, it is unclear which parts of the human brain are covered by existing protocols, and it has been difficult to quantitatively assess organoid variation and fidelity. Here we integrate 36 single-cell transcriptomic datasets spanning 26 protocols into one integrated human neural organoid cell atlas totalling more than 1.7 million cells1-26. Mapping to developing human brain references27-30 shows primary cell types and states that have been generated in vitro, and estimates transcriptomic similarity between primary and organoid counterparts across protocols. We provide a programmatic interface to browse the atlas and query new datasets, and showcase the power of the atlas to annotate organoid cell types and evaluate new organoid protocols. Finally, we show that the atlas can be used as a diverse control cohort to annotate and compare organoid models of neural disease, identifying genes and pathways that may underlie pathological mechanisms with the neural models. The human neural organoid cell atlas will be useful to assess organoid fidelity, characterize perturbed and diseased states and facilitate protocol development.
Collapse
Affiliation(s)
- Zhisong He
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.
| | - Leander Dony
- Institute of Computational Biology, Computational Health Center, Helmholtz Munich, Neuherberg, Germany
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Jonas Simon Fleck
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Artur Szałata
- Institute of Computational Biology, Computational Health Center, Helmholtz Munich, Neuherberg, Germany
- School of Computation, Information, and Technology, Technical University of Munich, Munich, Germany
| | - Katelyn X Li
- Institute of Computational Biology, Computational Health Center, Helmholtz Munich, Neuherberg, Germany
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
| | - Irena Slišković
- Institute of Computational Biology, Computational Health Center, Helmholtz Munich, Neuherberg, Germany
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - Hsiu-Chuan Lin
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Malgorzata Santel
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Alexander Atamian
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Giorgia Quadrato
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jieran Sun
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Sergiu P Pașca
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Stanford Brain Organogenesis Program, Wu Tsai Neurosciences Institute and Bio-X, Stanford, CA, USA
| | - J Gray Camp
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland.
- Biozentrum, University of Basel, Basel, Switzerland.
| | - Fabian J Theis
- Institute of Computational Biology, Computational Health Center, Helmholtz Munich, Neuherberg, Germany.
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany.
- School of Computation, Information, and Technology, Technical University of Munich, Munich, Germany.
| | - Barbara Treutlein
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.
| |
Collapse
|
12
|
He S, Zhang X, Zhu H. Human-specific protein-coding and lncRNA genes cast sex-biased genes in the brain and their relationships with brain diseases. Biol Sex Differ 2024; 15:86. [PMID: 39472939 PMCID: PMC11520681 DOI: 10.1186/s13293-024-00659-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/07/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Gene expression shows sex bias in the brain as it does in other organs. Since female and male humans exhibit noticeable differences in emotions, logical thinking, movement, spatial orientation, and even the incidence of neurological disorders, sex biases in the brain are especially interesting, but how they are determined, whether they are conserved or lineage specific, and what the consequences of the biases are, remain poorly explored and understood. METHODS Based on RNA-seq datasets from 16 and 14 brain regions in humans and macaques across developmental periods and from patients with brain diseases, we used linear mixed models (LMMs) to differentiate variations in gene expression caused by factors of interest and confounding factors and identify four types of sex-biased genes. Effect size and confidence in each effect were measured upon the local false sign rate (LFSR). We utilized the biomaRt R package to acquire orthologous genes in humans and macaques from the BioMart Ensembl website. Transcriptional regulation of sex-biased genes by sex hormones and lncRNAs were analyzed using the CellOracle, GENIE3, and Longtarget programs. Sex-biased genes' functions were revealed by gene set enrichment analysis using multiple methods. RESULTS Lineage-specific sex-biased genes greatly determine the distinct sex biases in human and macaque brains. In humans, those encoding proteins contribute directly to immune-related functions, and those encoding lncRNAs intensively regulate the expression of other sex-biased genes, especially genes with immune-related functions. The identified sex-specific differentially expressed genes (ssDEGs) upon gene expression in disease and normal samples also indicate that protein-coding ssDEGs are conserved in humans and macaques but that lncRNA ssDEGs are not conserved. The results answer the above questions, reveal an intrinsic relationship between sex biases in the brain and sex-biased susceptibility to brain diseases, and will help researchers investigate human- and sex-specific ncRNA targets for brain diseases. CONCLUSIONS Human-specific genes greatly cast sex-biased genes in the brain and their relationships with brain diseases, with protein-coding genes contributing to immune response related functions and lncRNA genes critically regulating sex-biased genes. The high proportions of lineage-specific lncRNAs in mammalian genomes indicate that sex biases may have evolved rapidly in not only the brain but also other organs.
Collapse
Affiliation(s)
- Sha He
- Bioinformatics Section, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xuecong Zhang
- Bioinformatics Section, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Shenzhen Clinical Research Center for Tuberculosis, National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, Guangdong, China
| | - Hao Zhu
- Bioinformatics Section, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, 510515, China.
- Guangdong Provincial Key Lab of Single Cell Technology and Application, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
13
|
Cao J, Chen H, Zhang Y, Kang Y, Zhou S, Liao Z, Gao L, Yin J, Jing Y. Androgen deprivation exacerbates AD pathology by promoting the loss of microglia in an age-dependent manner. Life Sci 2024; 355:122973. [PMID: 39142510 DOI: 10.1016/j.lfs.2024.122973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/25/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
AIMS Microglial cells are integral to the pathogenesis of Alzheimer's disease (AD). The observed sex disparity in AD prevalence, with a notable predominance in women, implies a potential influence of sex hormones, such as androgens, on disease mechanisms. Despite this, the specific effects of androgens on microglia remain unclear. This study is designed to delineate the interplay between androgens and the survival and inflammatory profile of microglial cells, as well as to explore their contribution to the progression of AD. METHODS AND KEY FINDINGS To create a chronic androgen deficiency model, 3-month-old wild-type (WT) mice and APP/PS1 mice underwent bilateral orchiectomy (ORX), with age-matched sham-operated controls. Cognitive and memory were evaluated at 5 and 12 months, paralleled by assessments of amyloid-beta (Aβ) and microglial morphology in hippocampal and cortical areas. The ORX treatment in mice resulted in diminished microglial populations and morphological alterations, alongside an increase in Aβ plaques and a concomitant decline in cognitive performance that exacerbated over time. In vitro, dihydrotestosterone (DHT) was found to stimulate microglial proliferation and ameliorate Aβ1-42-induced apoptosis. SIGNIFICANCE These findings suggested that androgens may exert a protective role, maintaining the normal proliferation and functionality of microglial cells. This preservation could potentially slow the progression of AD. As a result, our study provided a conceptual framework for the development of novel therapeutic strategies for AD.
Collapse
Affiliation(s)
- Jiaxin Cao
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Haichao Chen
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Yishu Zhang
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Yiting Kang
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Siwei Zhou
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Zirui Liao
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Liping Gao
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Jie Yin
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Yuhong Jing
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China; Key Laboratory of Preclinical Study for New Drugs of Gansu province, Lanzhou University, Lanzhou, Gansu, People's Republic of China.
| |
Collapse
|
14
|
Pavlinek A, Adhya D, Tsompanidis A, Warrier V, Vernon AC, Lancaster M, Mill J, Srivastava DP, Baron-Cohen S. Using Organoids to Model Sex Differences in the Human Brain. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100343. [PMID: 39092139 PMCID: PMC11292257 DOI: 10.1016/j.bpsgos.2024.100343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 08/04/2024] Open
Abstract
Sex differences are widespread during neurodevelopment and play a role in neuropsychiatric conditions such as autism, which is more prevalent in males than females. In humans, males have been shown to have larger brain volumes than females with development of the hippocampus and amygdala showing prominent sex differences. Mechanistically, sex steroids and sex chromosomes drive these differences in brain development, which seem to peak during prenatal and pubertal stages. Animal models have played a crucial role in understanding sex differences, but the study of human sex differences requires an experimental model that can recapitulate complex genetic traits. To fill this gap, human induced pluripotent stem cell-derived brain organoids are now being used to study how complex genetic traits influence prenatal brain development. For example, brain organoids from individuals with autism and individuals with X chromosome-linked Rett syndrome and fragile X syndrome have revealed prenatal differences in cell proliferation, a measure of brain volume differences, and excitatory-inhibitory imbalances. Brain organoids have also revealed increased neurogenesis of excitatory neurons due to androgens. However, despite growing interest in using brain organoids, several key challenges remain that affect its validity as a model system. In this review, we discuss how sex steroids and the sex chromosomes each contribute to sex differences in brain development. Then, we examine the role of X chromosome inactivation as a factor that drives sex differences. Finally, we discuss the combined challenges of modeling X chromosome inactivation and limitations of brain organoids that need to be taken into consideration when studying sex differences.
Collapse
Affiliation(s)
- Adam Pavlinek
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, United Kingdom
| | - Dwaipayan Adhya
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Alex Tsompanidis
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Varun Warrier
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Anthony C. Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, United Kingdom
| | | | - Jonathan Mill
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Deepak P. Srivastava
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, United Kingdom
| | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
15
|
Wan L, Kral AJ, Voss D, Schäfer B, Sudheendran K, Danielsen M, Caruthers MH, Krainer AR. Screening Splice-Switching Antisense Oligonucleotides in Pancreas-Cancer Organoids. Nucleic Acid Ther 2024; 34:188-198. [PMID: 38716830 PMCID: PMC11387002 DOI: 10.1089/nat.2023.0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/15/2024] [Indexed: 05/21/2024] Open
Abstract
Aberrant alternative splicing is emerging as a cancer hallmark and a potential therapeutic target. It is the result of dysregulated or mutated splicing factors, or genetic alterations in splicing-regulatory cis-elements. Targeting individual altered splicing events associated with cancer-cell dependencies is a potential therapeutic strategy, but several technical limitations need to be addressed. Patient-derived organoids are a promising platform to recapitulate key aspects of disease states, and to facilitate drug development for precision medicine. Here, we report an efficient antisense-oligonucleotide (ASO) lipofection method to systematically evaluate and screen individual splicing events as therapeutic targets in pancreatic ductal adenocarcinoma organoids. This optimized delivery method allows fast and efficient screening of ASOs, e.g., those that reverse oncogenic alternative splicing. In combination with advances in chemical modifications of oligonucleotides and ASO-delivery strategies, this method has the potential to accelerate the discovery of antitumor ASO drugs that target pathological alternative splicing.
Collapse
Affiliation(s)
- Ledong Wan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
- Stony Brook University, Stony Brook, New York, USA
| | - Alexander J. Kral
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
- Stony Brook University, Stony Brook, New York, USA
| | - Dillon Voss
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
- Stony Brook University, Stony Brook, New York, USA
| | - Balázs Schäfer
- Department of Biochemistry, University of Colorado, Boulder, Colorado, USA
| | | | - Mathias Danielsen
- Department of Biochemistry, University of Colorado, Boulder, Colorado, USA
| | | | | |
Collapse
|
16
|
Li K, Gu L, Cai H, Lu HC, Mackie K, Guo F. Human brain organoids for understanding substance use disorders. Drug Metab Pharmacokinet 2024; 58:101031. [PMID: 39146603 DOI: 10.1016/j.dmpk.2024.101031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/17/2024]
Abstract
Substance use disorders (SUDs) are complex mental health conditions involving a problematic pattern of substance use. Challenges remain in understanding their neural mechanisms, which are likely to lead to improved SUD treatments. Human brain organoids, brain-like 3D in vitro cultures derived from human stem cells, show unique potential in recapitulating the response of a developing human brain to substances. Here, we review the recent progress in understanding SUDs using human brain organoid models focusing on neurodevelopmental perspectives. We first summarize the background of SUDs in humans. Moreover, we introduce the development of various human brain organoid models and then discuss current progress and findings underlying the abuse of substances like nicotine, alcohol, and other addictive drugs using organoid models. Furthermore, we review efforts to develop organ chips and microphysiological systems to engineer better human brain organoids for advancing SUD studies. Lastly, we conclude by elaborating on the current challenges and future directions of SUD studies using human brain organoids.
Collapse
Affiliation(s)
- Kangle Li
- Department of Intelligent Systems Engineering, Indiana University Bloomington, IN, 47405, United States
| | - Longjun Gu
- Department of Intelligent Systems Engineering, Indiana University Bloomington, IN, 47405, United States
| | - Hongwei Cai
- Department of Intelligent Systems Engineering, Indiana University Bloomington, IN, 47405, United States
| | - Hui-Chen Lu
- Gill Center for Biomolecular Science, Department of Psychological and Brain Sciences, Indiana University Bloomington, IN, 47405, United States
| | - Ken Mackie
- Gill Center for Biomolecular Science, Department of Psychological and Brain Sciences, Indiana University Bloomington, IN, 47405, United States
| | - Feng Guo
- Department of Intelligent Systems Engineering, Indiana University Bloomington, IN, 47405, United States.
| |
Collapse
|
17
|
Montani C, Balasco L, Pagani M, Alvino FG, Barsotti N, de Guzman AE, Galbusera A, de Felice A, Nickl-Jockschat TK, Migliarini S, Casarosa S, Lau P, Mattioni L, Pasqualetti M, Provenzano G, Bozzi Y, Lombardo MV, Gozzi A. Sex-biasing influence of autism-associated Ube3a gene overdosage at connectomic, behavioral, and transcriptomic levels. SCIENCE ADVANCES 2024; 10:eadg1421. [PMID: 38996019 PMCID: PMC11244557 DOI: 10.1126/sciadv.adg1421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/07/2024] [Indexed: 07/14/2024]
Abstract
Genomic mechanisms enhancing risk in males may contribute to sex bias in autism. The ubiquitin protein ligase E3A gene (Ube3a) affects cellular homeostasis via control of protein turnover and by acting as transcriptional coactivator with steroid hormone receptors. Overdosage of Ube3a via duplication or triplication of chromosomal region 15q11-13 causes 1 to 2% of autistic cases. Here, we test the hypothesis that increased dosage of Ube3a may influence autism-relevant phenotypes in a sex-biased manner. We show that mice with extra copies of Ube3a exhibit sex-biasing effects on brain connectomics and autism-relevant behaviors. These effects are associated with transcriptional dysregulation of autism-associated genes, as well as genes differentially expressed in 15q duplication and in autistic people. Increased Ube3a dosage also affects expression of genes on the X chromosome, genes influenced by sex steroid hormone, and genes sex-differentially regulated by transcription factors. These results suggest that Ube3a overdosage can contribute to sex bias in neurodevelopmental conditions via influence on sex-differential mechanisms.
Collapse
Affiliation(s)
- Caterina Montani
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, CNCS@UNITN, Rovereto, Italy
| | - Luigi Balasco
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Marco Pagani
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, CNCS@UNITN, Rovereto, Italy
- Autism Center, Child Mind Institute, New York, NY, USA
- IMT School for Advanced Studies, Lucca, Italy
| | - Filomena Grazia Alvino
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, CNCS@UNITN, Rovereto, Italy
| | - Noemi Barsotti
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, Pisa, Italy
| | - A. Elizabeth de Guzman
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, CNCS@UNITN, Rovereto, Italy
| | - Alberto Galbusera
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, CNCS@UNITN, Rovereto, Italy
| | - Alessia de Felice
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, CNCS@UNITN, Rovereto, Italy
| | - Thomas K. Nickl-Jockschat
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg, Germany
- German Center for Mental Health (DZPG), partner site Halle-Jena-Magdeburg, Germany
- Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Halle-Jena-Magdeburg, Germany
| | - Sara Migliarini
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, Pisa, Italy
| | - Simona Casarosa
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
- Centre for Medical Sciences (CISMed), University of Trento, Trento, Italy
| | - Pierre Lau
- Istituto Italiano di Tecnologia, Center for Human Technologies, Genova, Italy
| | - Lorenzo Mattioni
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Massimo Pasqualetti
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, Pisa, Italy
| | - Giovanni Provenzano
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Yuri Bozzi
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Italy
- CNR Neuroscience Institute, Pisa, Italy
| | - Michael V. Lombardo
- Laboratory for Autism and Neurodevelopmental Disorders, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, CNCS@UNITN, Rovereto, Italy
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, CNCS@UNITN, Rovereto, Italy
| |
Collapse
|
18
|
Xiang T, Shi C, Guo Y, Zhang J, Min W, Sun J, Liu J, Yan X, Liu Y, Yao L, Mao Y, Yang X, Shi J, Yan B, Qu G, Jiang G. Effect-directed analysis of androgenic compounds from sewage sludges in China. WATER RESEARCH 2024; 256:121652. [PMID: 38657313 DOI: 10.1016/j.watres.2024.121652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
The safety of municipal sewage sludge has raised great concerns because of the accumulation of large-scale endocrine disrupting chemicals in the sludge during wastewater treatment. The presence of contaminants in sludge can cause secondary pollution owing to inappropriate disposal mechanisms, posing potential risks to the environment and human health. Effect-directed analysis (EDA), involving an androgen receptor (AR) reporter gene bioassay, fractionation, and suspect and nontarget chemical analysis, were applied to identify causal AR agonists in sludge; 20 of the 30 sludge extracts exhibited significant androgenic activity. Among these, the extracts from Yinchuan, Kunming, and Shijiazhuang, which held the most polluted AR agonistic activities were prepared for extensive EDA, with the dihydrotestosterone (DHT)-equivalency of 2.5 - 4.5 ng DHT/g of sludge. Seven androgens, namely boldione, androstenedione, testosterone, megestrol, progesterone, and testosterone isocaproate, were identified in these strongest sludges together, along with testosterone cypionate, first reported in sludge media. These identified androgens together accounted for 55 %, 87 %, and 52 % of the effects on the sludge from Yinchuan, Shijiazhuang, and Kunming, respectively. This study elucidates the causative androgenic compounds in sewage sludge and provides a valuable reference for monitoring and managing androgens in wastewater treatment.
Collapse
Affiliation(s)
- Tongtong Xiang
- College of Sciences, Northeastern University, Shenyang 110004, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chunzhen Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China.
| | - Yunhe Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Jie Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Weicui Min
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Jiazheng Sun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Jifu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Xiliang Yan
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yanna Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Linlin Yao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuxiang Mao
- School of Resources & Environment, Henan Polytechnic University, Jiaozuo 454000, China
| | - Xiaoxi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Bing Yan
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Guibin Jiang
- College of Sciences, Northeastern University, Shenyang 110004, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| |
Collapse
|
19
|
Nurminen R, Afyounian E, Paunu N, Katainen R, Isomäki M, Nurminen A, Scaravilli M, Tolppanen J, Fey V, Kivinen A, Helén P, Välimäki N, Kesseli J, Aaltonen LA, Haapasalo H, Nykter M, Rautajoki KJ. Previously reported CCDC26 risk variant and novel germline variants in GALNT13, AR, and MYO10 associated with familial glioma in Finland. Sci Rep 2024; 14:11562. [PMID: 38773237 PMCID: PMC11109329 DOI: 10.1038/s41598-024-62296-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/15/2024] [Indexed: 05/23/2024] Open
Abstract
Predisposing factors underlying familial aggregation of non-syndromic gliomas are still to be uncovered. Whole-exome sequencing was performed in four Finnish families with brain tumors to identify rare predisposing variants. A total of 417 detected exome variants and 102 previously reported glioma-related variants were further genotyped in 19 Finnish families with brain tumors using targeted sequencing. Rare damaging variants in GALNT13, MYO10 and AR were identified. Two families carried either c.553C>T (R185C) or c.1214T>A (L405Q) on GALNT13. Variant c.553C>T is located on the substrate-binding site of GALNT13. AR c.2180G>T (R727L), which is located on a ligand-binding domain of AR, was detected in two families, one of which also carried a GALNT13 variant. MYO10 c.4448A>G (N1483S) was detected in two families and c.1511C>T (A504V) variant was detected in one family. Both variants are located on functional domains related to MYO10 activity in filopodia formation. In addition, affected cases in six families carried a known glioma risk variant rs55705857 in CCDC26 and low-risk glioma variants. These novel findings indicate polygenic inheritance of familial glioma in Finland and increase our understanding of the genetic contribution to familial glioma susceptibility.
Collapse
Affiliation(s)
- Riikka Nurminen
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland
- Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Ebrahim Afyounian
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland
- Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Niina Paunu
- Department of Oncology, Tampere University Hospital, Tampere, Finland
| | - Riku Katainen
- Applied Tumor Genomics Research Program, Department of Medical and Clinical Genetics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mari Isomäki
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland
- Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Anssi Nurminen
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland
- Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Mauro Scaravilli
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland
- Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Jenni Tolppanen
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland
- Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Vidal Fey
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland
- Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Anni Kivinen
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland
- Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Pauli Helén
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland
- Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Niko Välimäki
- Applied Tumor Genomics Research Program, Department of Medical and Clinical Genetics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Juha Kesseli
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland
- Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Lauri A Aaltonen
- Applied Tumor Genomics Research Program, Department of Medical and Clinical Genetics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Hannu Haapasalo
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland
- Tays Cancer Center, Tampere University Hospital, Tampere, Finland
- Fimlab Laboratories ltd., Tampere University Hospital, Tampere, Finland
| | - Matti Nykter
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland.
- Tays Cancer Center, Tampere University Hospital, Tampere, Finland.
- Foundation for the Finnish Cancer Institute, Tukholmankatu 8, Helsinki, Finland.
| | - Kirsi J Rautajoki
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland.
- Tays Cancer Center, Tampere University Hospital, Tampere, Finland.
- Tampere Institute for Advanced Study, Tampere University, Tampere, Finland.
| |
Collapse
|
20
|
Maharjan S, Ma C, Singh B, Kang H, Orive G, Yao J, Shrike Zhang Y. Advanced 3D imaging and organoid bioprinting for biomedical research and therapeutic applications. Adv Drug Deliv Rev 2024; 208:115237. [PMID: 38447931 PMCID: PMC11031334 DOI: 10.1016/j.addr.2024.115237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/15/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
Organoid cultures offer a valuable platform for studying organ-level biology, allowing for a closer mimicry of human physiology compared to traditional two-dimensional cell culture systems or non-primate animal models. While many organoid cultures use cell aggregates or decellularized extracellular matrices as scaffolds, they often lack precise biochemical and biophysical microenvironments. In contrast, three-dimensional (3D) bioprinting allows precise placement of organoids or spheroids, providing enhanced spatial control and facilitating the direct fusion for the formation of large-scale functional tissues in vitro. In addition, 3D bioprinting enables fine tuning of biochemical and biophysical cues to support organoid development and maturation. With advances in the organoid technology and its potential applications across diverse research fields such as cell biology, developmental biology, disease pathology, precision medicine, drug toxicology, and tissue engineering, organoid imaging has become a crucial aspect of physiological and pathological studies. This review highlights the recent advancements in imaging technologies that have significantly contributed to organoid research. Additionally, we discuss various bioprinting techniques, emphasizing their applications in organoid bioprinting. Integrating 3D imaging tools into a bioprinting platform allows real-time visualization while facilitating quality control, optimization, and comprehensive bioprinting assessment. Similarly, combining imaging technologies with organoid bioprinting can provide valuable insights into tissue formation, maturation, functions, and therapeutic responses. This approach not only improves the reproducibility of physiologically relevant tissues but also enhances understanding of complex biological processes. Thus, careful selection of bioprinting modalities, coupled with appropriate imaging techniques, holds the potential to create a versatile platform capable of addressing existing challenges and harnessing opportunities in these rapidly evolving fields.
Collapse
Affiliation(s)
- Sushila Maharjan
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Chenshuo Ma
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Bibhor Singh
- Winthrop L. Chenery Upper Elementary School, Belmont, MA 02478, USA
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea; College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, 01007, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore
| | - Junjie Yao
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
| |
Collapse
|
21
|
Krontira AC, Cruceanu C, Dony L, Kyrousi C, Link MH, Rek N, Pöhlchen D, Raimundo C, Penner-Goeke S, Schowe A, Czamara D, Lahti-Pulkkinen M, Sammallahti S, Wolford E, Heinonen K, Roeh S, Sportelli V, Wölfel B, Ködel M, Sauer S, Rex-Haffner M, Räikkönen K, Labeur M, Cappello S, Binder EB. Human cortical neurogenesis is altered via glucocorticoid-mediated regulation of ZBTB16 expression. Neuron 2024; 112:1426-1443.e11. [PMID: 38442714 DOI: 10.1016/j.neuron.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/15/2023] [Accepted: 02/06/2024] [Indexed: 03/07/2024]
Abstract
Glucocorticoids are important for proper organ maturation, and their levels are tightly regulated during development. Here, we use human cerebral organoids and mice to study the cell-type-specific effects of glucocorticoids on neurogenesis. We show that glucocorticoids increase a specific type of basal progenitors (co-expressing PAX6 and EOMES) that has been shown to contribute to cortical expansion in gyrified species. This effect is mediated via the transcription factor ZBTB16 and leads to increased production of neurons. A phenome-wide Mendelian randomization analysis of an enhancer variant that moderates glucocorticoid-induced ZBTB16 levels reveals causal relationships with higher educational attainment and altered brain structure. The relationship with postnatal cognition is also supported by data from a prospective pregnancy cohort study. This work provides a cellular and molecular pathway for the effects of glucocorticoids on human neurogenesis that relates to lasting postnatal phenotypes.
Collapse
Affiliation(s)
- Anthi C Krontira
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich 80804, Germany; International Max Planck Research School for Translational Psychiatry, Munich 80804, Germany.
| | - Cristiana Cruceanu
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich 80804, Germany; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm 17177, Sweden
| | - Leander Dony
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich 80804, Germany; International Max Planck Research School for Translational Psychiatry, Munich 80804, Germany; Department for Computational Health, Helmholtz Munich, Neuherberg 85764, Germany; TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising 85354, Germany
| | - Christina Kyrousi
- Developmental Neurobiology, Max Planck Institute of Psychiatry, Munich 80804, Germany; First Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, Athens 15784, Greece; University Mental Health, Neurosciences and Precision Medicine Research Institute "Costas Stefanis", Athens 15601, Greece
| | - Marie-Helen Link
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Nils Rek
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich 80804, Germany; International Max Planck Research School for Translational Psychiatry, Munich 80804, Germany
| | - Dorothee Pöhlchen
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich 80804, Germany; International Max Planck Research School for Translational Psychiatry, Munich 80804, Germany
| | - Catarina Raimundo
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Signe Penner-Goeke
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Alicia Schowe
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich 80804, Germany; Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University, Munich 82152, Germany
| | - Darina Czamara
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Marius Lahti-Pulkkinen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland; Finnish Institute for Health and Welfare, Helsinki 00271, Finland; Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Sara Sammallahti
- Department of Obstetrics and Gynecology, Helsinki University Hospital and University of Helsinki, Helsinki 00014, Finland
| | - Elina Wolford
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| | - Kati Heinonen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland; Psychology/Welfare, Faculty of Social Sciences, University of Tampere, Tampere 33014, Finland; Lawrence S. Bloomberg Faculty of Nursing, University of Toronto, Toronto, ON M5T 1P8, Canada
| | - Simone Roeh
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Vincenza Sportelli
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Barbara Wölfel
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Maik Ködel
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Susann Sauer
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Monika Rex-Haffner
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Katri Räikkönen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| | - Marta Labeur
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Silvia Cappello
- Developmental Neurobiology, Max Planck Institute of Psychiatry, Munich 80804, Germany; Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-University (LMU), Munich 82152, Germany
| | - Elisabeth B Binder
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich 80804, Germany.
| |
Collapse
|
22
|
Zhao HH, Haddad G. Brain organoid protocols and limitations. Front Cell Neurosci 2024; 18:1351734. [PMID: 38572070 PMCID: PMC10987830 DOI: 10.3389/fncel.2024.1351734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/19/2024] [Indexed: 04/05/2024] Open
Abstract
Stem cell-derived organoid technology is a powerful tool that revolutionizes the field of biomedical research and extends the scope of our understanding of human biology and diseases. Brain organoids especially open an opportunity for human brain research and modeling many human neurological diseases, which have lagged due to the inaccessibility of human brain samples and lack of similarity with other animal models. Brain organoids can be generated through various protocols and mimic whole brain or region-specific. To provide an overview of brain organoid technology, we summarize currently available protocols and list several factors to consider before choosing protocols. We also outline the limitations of current protocols and challenges that need to be solved in future investigation of brain development and pathobiology.
Collapse
Affiliation(s)
- Helen H. Zhao
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
| | - Gabriel Haddad
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States
- The Rady Children's Hospital, San Diego, CA, United States
| |
Collapse
|
23
|
Guma E, Beauchamp A, Liu S, Levitis E, Ellegood J, Pham L, Mars RB, Raznahan A, Lerch JP. Comparative neuroimaging of sex differences in human and mouse brain anatomy. eLife 2024; 13:RP92200. [PMID: 38488854 PMCID: PMC10942785 DOI: 10.7554/elife.92200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024] Open
Abstract
In vivo neuroimaging studies have established several reproducible volumetric sex differences in the human brain, but the causes of such differences are hard to parse. While mouse models are useful for understanding the cellular and mechanistic bases of sex-specific brain development, there have been no attempts to formally compare human and mouse neuroanatomical sex differences to ascertain how well they translate. Addressing this question would shed critical light on the use of the mouse as a translational model for sex differences in the human brain and provide insights into the degree to which sex differences in brain volume are conserved across mammals. Here, we use structural magnetic resonance imaging to conduct the first comparative neuroimaging study of sex-specific neuroanatomy of the human and mouse brain. In line with previous findings, we observe that in humans, males have significantly larger and more variable total brain volume; these sex differences are not mirrored in mice. After controlling for total brain volume, we observe modest cross-species congruence in the volumetric effect size of sex across 60 homologous regions (r=0.30). This cross-species congruence is greater in the cortex (r=0.33) than non-cortex (r=0.16). By incorporating regional measures of gene expression in both species, we reveal that cortical regions with greater cross-species congruence in volumetric sex differences also show greater cross-species congruence in the expression profile of 2835 homologous genes. This phenomenon differentiates primary sensory regions with high congruence of sex effects and gene expression from limbic cortices where congruence in both these features was weaker between species. These findings help identify aspects of sex-biased brain anatomy present in mice that are retained, lost, or inverted in humans. More broadly, our work provides an empirical basis for targeting mechanistic studies of sex-specific brain development in mice to brain regions that best echo sex-specific brain development in humans.
Collapse
Affiliation(s)
- Elisa Guma
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental HealthBethesdaUnited States
| | - Antoine Beauchamp
- Mouse Imaging CentreTorontoCanada
- The Hospital for Sick ChildrenTorontoCanada
- Department of Medical Biophysics, University of TorontoTorontoCanada
| | - Siyuan Liu
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental HealthBethesdaUnited States
| | - Elizabeth Levitis
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental HealthBethesdaUnited States
| | - Jacob Ellegood
- Mouse Imaging CentreTorontoCanada
- The Hospital for Sick ChildrenTorontoCanada
| | - Linh Pham
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental HealthBethesdaUnited States
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical 15 Neurosciences, University of OxfordOxfordUnited Kingdom
| | - Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical 15 Neurosciences, University of OxfordOxfordUnited Kingdom
- Donders Institute for Brain, Cognition and Behaviour, Radboud University NijmegenNijmegenNetherlands
| | - Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental HealthBethesdaUnited States
| | - Jason P Lerch
- Mouse Imaging CentreTorontoCanada
- The Hospital for Sick ChildrenTorontoCanada
- Department of Medical Biophysics, University of TorontoTorontoCanada
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical 15 Neurosciences, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
24
|
Procyshyn TL, Tsompanidis A, Baron-Cohen S. Embracing evolutionary theories of autism: Implications for psychiatry. Acta Psychiatr Scand 2024; 149:85-87. [PMID: 38221858 DOI: 10.1111/acps.13653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/16/2024]
Affiliation(s)
- Tanya L Procyshyn
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Alex Tsompanidis
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| |
Collapse
|
25
|
Liu T, Wu H, Wei J. The Construction and Validation of a Novel Ferroptosis-Related Gene Signature in Parkinson's Disease. Int J Mol Sci 2023; 24:17203. [PMID: 38139032 PMCID: PMC10742934 DOI: 10.3390/ijms242417203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
As a newly discovered regulated cell death mode, ferroptosis is associated with the development of Parkinson's disease (PD) and has attracted much attention. Nonetheless, the relationship between ferroptosis and PD pathogenesis remains unclear. The GSE8397 dataset includes GPL96 and GPL97 platforms. The differential genes were analyzed by immune infiltration and Gene Set Enrichment Analysis (GSEA) (p < 0.05), and differential multiple |logFC| > 1 and weighted gene coexpression network analysis (WGCNA) were used to screen differential expression genes (DEGs). The intersection with 368 ferroptosis-related genes (FRGs) was conducted for gene ontology/Kyoto encyclopedia of gene and genome (GO/KEGG) enrichment analysis, gene expression analysis, correlation analysis, single-cell sequencing analysis, and prognosis analysis (area under the curve, AUC) and to predict relevant miRNAs and construct network diagrams using Cytoscape. The intersection genes of differentially expressed ferroptosis-related genes (DEFRGs) and mitochondrial dysfunction genes were validated in the substantia nigra of MPTP-induced PD mice models by Western blotting and immunohistochemistry, and the protein-binding pocket was predicted using the DoGSiteScorer database. According to the results, the estimated scores were positively correlated with the stromal scores or immune scores in the GPL96 and GPL97 platforms. In the GPL96 platform, the GSEA showed that differential genes were mainly involved in the GnRH signaling pathway, B cell receptor signaling pathway, inositol phosphate metabolism, etc. In the GPL97 platform, the GSEA showed that differential genes were mainly involved in the ubiquitin-mediated proteolysis, axon guidance, Wnt signaling pathway, MAPK signaling pathway, etc. We obtained 26 DEFRGs, including 12 up-regulated genes and 14 down-regulated genes, with good correlation. The area under the prognostic analysis curve (AUC > 0.700) showed a good prognostic ability. We found that they were enriched in different neuronal cells, oligodendrocytes, astrocytes, oligodendrocyte precursor cells, and microglial cells, and their expression scores were positively correlated, and selected genes with an AUC curve ≥0.9 were used to predict miRNA, including miR-214/761/3619-5p, miR-203, miR-204/204b/211, miR-128/128ab, miR-199ab-5p, etc. For the differentially expressed ferroptosis-mitochondrial dysfunction-related genes (DEF-MDRGs) (AR, ISCU, SNCA, and PDK4), in the substantia nigra of mice, compared with the Saline group, the expression of AR and ISCU was decreased (p < 0.05), and the expression of α-Syn and PDK4 was increased (p < 0.05) in the MPTP group. Therapeutic drugs that target SNCA include ABBV-0805, Prasinezumab, Cinpanemab, and Gardenin A. The results of this study suggest that cellular DEF-MDRGs might play an important role in PD. AR, ISCU, SNCA, and PDK4 have the potential to be specific biomarkers for the early diagnosis of PD.
Collapse
Affiliation(s)
| | | | - Jianshe Wei
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China; (T.L.)
| |
Collapse
|
26
|
Newell AJ, Patisaul HB. Developmental organophosphate flame retardant exposure disrupts adult hippocampal neurogenesis in Wistar rats. Neurotoxicology 2023; 99:104-114. [PMID: 37783313 PMCID: PMC10842265 DOI: 10.1016/j.neuro.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/04/2023]
Abstract
Organophosphate flame retardant (OPFR) contamination is ubiquitous and bio-monitoring studies have shown that human exposure is widespread and may be unavoidable. OPFRs bear structural similarities to known neurotoxicants such as organophosphate insecticides and have been shown to have both endocrine disrupting and developmental neurotoxic effects. The perinatal period in rodents represents a critical period in the organization of the developing nervous system and insults during this time can impart profound changes on the trajectory of neural development and function, lasting into adulthood. Adult hippocampal neurogenesis (AHN) facilitates dentate gyrus function and broader hippocampal circuit activity in adults; however, the neurogenic potential of this process in adulthood is vulnerable to disruption by exogenous factors during early life. We sought to assess the impact of OPFRs on AHN in offspring of dams exposed during gestation and lactation. Results indicate that developmental OPFR exposure has significant, sex specific impacts on multiple markers of AHN in the dentate gyrus of rats. In males, OPFR exposure significantly reduced the number of neural progenitors the number of new/immature neurons and reduced dentate gyrus volume. In females, exposure increased the number of neural progenitors, decreased the number of new/immature neurons, but had no significant effect on dentate gyrus volume. These results further elucidate the developmental neurotoxic properties of OPFRs, emphasize the long-term impact of early life OPFR exposure on neural processes, and highlight the importance of including sex as a biological variable in neurotoxicology research.
Collapse
Affiliation(s)
- Andrew J Newell
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA.
| | - Heather B Patisaul
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
27
|
Martins‐Costa C, Pham VA, Sidhaye J, Novatchkova M, Wiegers A, Peer A, Möseneder P, Corsini NS, Knoblich JA. Morphogenesis and development of human telencephalic organoids in the absence and presence of exogenous extracellular matrix. EMBO J 2023; 42:e113213. [PMID: 37842725 PMCID: PMC10646563 DOI: 10.15252/embj.2022113213] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023] Open
Abstract
The establishment and maintenance of apical-basal polarity is a fundamental step in brain development, instructing the organization of neural progenitor cells (NPCs) and the developing cerebral cortex. Particularly, basally located extracellular matrix (ECM) is crucial for this process. In vitro, epithelial polarization can be achieved via endogenous ECM production, or exogenous ECM supplementation. While neuroepithelial development is recapitulated in neural organoids, the effects of different ECM sources in tissue morphogenesis remain underexplored. Here, we show that exposure to a solubilized basement membrane matrix substrate, Matrigel, at early neuroepithelial stages causes rapid tissue polarization and rearrangement of neuroepithelial architecture. In cultures exposed to pure ECM components or unexposed to any exogenous ECM, polarity acquisition is slower and driven by endogenous ECM production. After the onset of neurogenesis, tissue architecture and neuronal differentiation are largely independent of the initial ECM source, but Matrigel exposure has long-lasting effects on tissue patterning. These results advance the knowledge on mechanisms of exogenously and endogenously guided morphogenesis, demonstrating the self-sustainability of neuroepithelial cultures by endogenous processes.
Collapse
Affiliation(s)
- Catarina Martins‐Costa
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenterViennaAustria
- Vienna BioCenter PhD ProgramDoctoral School of the University of Vienna and Medical University of ViennaViennaAustria
| | - Vincent A Pham
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenterViennaAustria
| | - Jaydeep Sidhaye
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenterViennaAustria
| | - Maria Novatchkova
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenterViennaAustria
| | - Andrea Wiegers
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenterViennaAustria
| | - Angela Peer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenterViennaAustria
| | - Paul Möseneder
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenterViennaAustria
| | - Nina S Corsini
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenterViennaAustria
| | - Jürgen A Knoblich
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenterViennaAustria
- Department of NeurologyMedical University of ViennaViennaAustria
| |
Collapse
|
28
|
Rodríguez-Montes L, Ovchinnikova S, Yuan X, Studer T, Sarropoulos I, Anders S, Kaessmann H, Cardoso-Moreira M. Sex-biased gene expression across mammalian organ development and evolution. Science 2023; 382:eadf1046. [PMID: 37917687 PMCID: PMC7615307 DOI: 10.1126/science.adf1046] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 09/18/2023] [Indexed: 11/04/2023]
Abstract
Sexually dimorphic traits are common among mammals and are specified during development through the deployment of sex-specific genetic programs. Because little is known about these programs, we investigated them using a resource of gene expression profiles in males and females throughout the development of five organs in five mammals (human, mouse, rat, rabbit, and opossum) and a bird (chicken). We found that sex-biased gene expression varied considerably across organs and species and was often cell-type specific. Sex differences increased abruptly around sexual maturity instead of increasing gradually during organ development. Finally, sex-biased gene expression evolved rapidly at the gene level, with differences between organs in the evolutionary mechanisms used, but more slowly at the cellular level, with the same cell types being sexually dimorphic across species.
Collapse
Affiliation(s)
- Leticia Rodríguez-Montes
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany
| | | | - Xuefei Yuan
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany
| | - Tania Studer
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany
| | - Ioannis Sarropoulos
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany
| | - Simon Anders
- BioQuant, Heidelberg University, D-69120 Heidelberg, Germany
| | - Henrik Kaessmann
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany
| | | |
Collapse
|
29
|
Boerma T, Ter Haar S, Ganga R, Wijnen F, Blom E, Wierenga CJ. What risk factors for Developmental Language Disorder can tell us about the neurobiological mechanisms of language development. Neurosci Biobehav Rev 2023; 154:105398. [PMID: 37741516 DOI: 10.1016/j.neubiorev.2023.105398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/03/2023] [Accepted: 09/17/2023] [Indexed: 09/25/2023]
Abstract
Language is a complex multidimensional cognitive system that is connected to many neurocognitive capacities. The development of language is therefore strongly intertwined with the development of these capacities and their neurobiological substrates. Consequently, language problems, for example those of children with Developmental Language Disorder (DLD), are explained by a variety of etiological pathways and each of these pathways will be associated with specific risk factors. In this review, we attempt to link previously described factors that may interfere with language development to putative underlying neurobiological mechanisms of language development, hoping to uncover openings for future therapeutical approaches or interventions that can help children to optimally develop their language skills.
Collapse
Affiliation(s)
- Tessel Boerma
- Institute for Language Sciences, Department of Languages, Literature and Communication, Utrecht University, Utrecht, the Netherlands
| | - Sita Ter Haar
- Institute for Language Sciences, Department of Languages, Literature and Communication, Utrecht University, Utrecht, the Netherlands; Cognitive Neurobiology and Helmholtz Institute, Department of Psychology, Utrecht University/Translational Neuroscience, University Medical Center Utrecht, the Netherlands
| | - Rachida Ganga
- Institute for Language Sciences, Department of Languages, Literature and Communication, Utrecht University, Utrecht, the Netherlands
| | - Frank Wijnen
- Institute for Language Sciences, Department of Languages, Literature and Communication, Utrecht University, Utrecht, the Netherlands
| | - Elma Blom
- Department of Development and Education of youth in Diverse Societies (DEEDS), Utrecht University, Utrecht, the Netherlands; Department of Language and Culture, The Arctic University of Norway UiT, Tromsø, Norway.
| | - Corette J Wierenga
- Biology Department, Faculty of Science, Utrecht University, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.
| |
Collapse
|
30
|
Quintero JC, Díaz NF, Rodríguez-Dorantes M, Camacho-Arroyo I. Cancer Stem Cells and Androgen Receptor Signaling: Partners in Disease Progression. Int J Mol Sci 2023; 24:15085. [PMID: 37894767 PMCID: PMC10606328 DOI: 10.3390/ijms242015085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Cancer stem cells exhibit self-renewal, tumorigenesis, and a high differentiation potential. These cells have been detected in every type of cancer, and different signaling pathways can regulate their maintenance and proliferation. Androgen receptor signaling plays a relevant role in the pathophysiology of prostate cancer, promoting cell growth and differentiation processes. However, in the case of prostate cancer stem cells, the androgen receptor negatively regulates their maintenance and self-renewal. On the other hand, there is evidence that androgen receptor activity positively regulates the generation of cancer stem cells in other types of neoplasia, such as breast cancer or glioblastoma. Thus, the androgen receptor role in cancer stem cells depends on the cellular context. We aimed to analyze androgen receptor signaling in the maintenance and self-renewal of different types of cancer stem cells and its action on the expression of transcription factors and surface markers associated with stemness.
Collapse
Affiliation(s)
- Juan Carlos Quintero
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 11000, Mexico;
| | - Néstor Fabián Díaz
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Mexico City 11000, Mexico;
| | | | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 11000, Mexico;
| |
Collapse
|
31
|
Guma E, Beauchamp A, Liu S, Levitis E, Ellegood J, Pham L, Mars RB, Raznahan A, Lerch JP. Comparative neuroimaging of sex differences in human and mouse brain anatomy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.23.554334. [PMID: 37662398 PMCID: PMC10473765 DOI: 10.1101/2023.08.23.554334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
In vivo neuroimaging studies have established several reproducible volumetric sex differences in the human brain, but the causes of such differences are hard to parse. While mouse models are useful for understanding the cellular and mechanistic bases of sex-biased brain development in mammals, there have been no attempts to formally compare mouse and human sex differences across the whole brain to ascertain how well they translate. Addressing this question would shed critical light on use of the mouse as a translational model for sex differences in the human brain and provide insights into the degree to which sex differences in brain volume are conserved across mammals. Here, we use cross-species structural magnetic resonance imaging to carry out the first comparative neuroimaging study of sex-biased neuroanatomical organization of the human and mouse brain. In line with previous findings, we observe that in humans, males have significantly larger and more variable total brain volume; these sex differences are not mirrored in mice. After controlling for total brain volume, we observe modest cross-species congruence in the volumetric effect size of sex across 60 homologous brain regions (r=0.30; e.g.: M>F amygdala, hippocampus, bed nucleus of the stria terminalis, and hypothalamus and F>M anterior cingulate, somatosensory, and primary auditory cortices). This cross-species congruence is greater in the cortex (r=0.33) than non-cortex (r=0.16). By incorporating regional measures of gene expression in both species, we reveal that cortical regions with greater cross-species congruence in volumetric sex differences also show greater cross-species congruence in the expression profile of 2835 homologous genes. This phenomenon differentiates primary sensory regions with high congruence of sex effects and gene expression from limbic cortices where congruence in both these features was weaker between species. These findings help identify aspects of sex-biased brain anatomy present in mice that are retained, lost, or inverted in humans. More broadly, our work provides an empirical basis for targeting mechanistic studies of sex-biased brain development in mice to brain regions that best echo sex-biased brain development in humans.
Collapse
Affiliation(s)
- Elisa Guma
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Antoine Beauchamp
- Mouse Imaging Centre, Toronto, Ontario, Canada
- The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Siyuan Liu
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Elizabeth Levitis
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Jacob Ellegood
- Mouse Imaging Centre, Toronto, Ontario, Canada
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Linh Pham
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD, USA
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Jason P Lerch
- Mouse Imaging Centre, Toronto, Ontario, Canada
- The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
32
|
Park SHE, Kulkarni A, Konopka G. FOXP1 orchestrates neurogenesis in human cortical basal radial glial cells. PLoS Biol 2023; 21:e3001852. [PMID: 37540706 PMCID: PMC10431666 DOI: 10.1371/journal.pbio.3001852] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 08/16/2023] [Accepted: 06/21/2023] [Indexed: 08/06/2023] Open
Abstract
During cortical development, human basal radial glial cells (bRGCs) are highly capable of sustained self-renewal and neurogenesis. Selective pressures on this cell type may have contributed to the evolution of the human neocortex, leading to an increase in cortical size. bRGCs have enriched expression for Forkhead Box P1 (FOXP1), a transcription factor implicated in neurodevelopmental disorders (NDDs) such as autism spectrum disorder. However, the cell type-specific roles of FOXP1 in bRGCs during cortical development remain unexplored. Here, we examine the requirement for FOXP1 gene expression regulation underlying the production of bRGCs using human brain organoids. We examine a developmental time point when FOXP1 expression is highest in the cortical progenitors, and the bRGCs, in particular, begin to actively produce neurons. With the loss of FOXP1, we show a reduction in the number of bRGCs, as well as reduced proliferation and differentiation of the remaining bRGCs, all of which lead to reduced numbers of excitatory cortical neurons over time. Using single-nuclei RNA sequencing and cell trajectory analysis, we uncover a role for FOXP1 in directing cortical progenitor proliferation and differentiation by regulating key signaling pathways related to neurogenesis and NDDs. Together, these results demonstrate that FOXP1 regulates human-specific features in early cortical development.
Collapse
Affiliation(s)
- Seon Hye E. Park
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, Texas, United States of America
- Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Ashwinikumar Kulkarni
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, Texas, United States of America
- Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Genevieve Konopka
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, Texas, United States of America
- Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
33
|
Tsompanidis A, Blanken L, Broere-Brown ZA, van Rijn BB, Baron-Cohen S, Tiemeier H. Sex differences in placenta-derived markers and later autistic traits in children. Transl Psychiatry 2023; 13:256. [PMID: 37443170 DOI: 10.1038/s41398-023-02552-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Autism is more prevalent in males and males on average score higher on measures of autistic traits. Placental function is affected significantly by the sex of the fetus. It is unclear if sex differences in placental function are associated with sex differences in the occurrence of autistic traits postnatally. To assess this, concentrations of angiogenesis-related markers, placental growth factor (PlGF) and soluble fms-like tyrosine kinase (sFlt-1) were assessed in maternal plasma of expectant women in the late 1st (mean= 13.5 [SD = 2.0] weeks gestation) and 2nd trimesters (mean=20.6 [SD = 1.2] weeks gestation), as part of the Generation R Study, Rotterdam, the Netherlands. Subsequent assessment of autistic traits in the offspring at age 6 was performed with the 18-item version of the Social Responsiveness Scale (SRS). Associations of placental protein concentrations with autistic traits were tested in sex-stratified and cohort-wide regression models. Cases with pregnancy complications or a later autism diagnosis (n = 64) were also assessed for differences in placenta-derived markers. sFlt-1 levels were significantly lower in males in both trimesters but showed no association with autistic traits. PlGF was significantly lower in male pregnancies in the 1st trimester, and significantly higher in the 2nd trimester, compared to female pregnancies. Higher PlGF levels in the 2nd trimester and the rate of PlGF increase were both associated with the occurrence of higher autistic traits (PlGF-2nd: n = 3469,b = 0.24 [SE = 0.11], p = 0.03) in both unadjusted and adjusted linear regression models that controlled for age, sex, placental weight and maternal characteristics. Mediation analyses showed that higher autistic traits in males compared to females were partly explained by higher PlGF or a faster rate of PlGF increase in the second trimester (PlGF-2nd: n = 3469, ACME: b = 0.005, [SE = 0.002], p = 0.004). In conclusion, higher PlGF levels in the 2nd trimester and a higher rate of PlGF increase are associated with both being male, and with a higher number of autistic traits in the general population.
Collapse
Affiliation(s)
- A Tsompanidis
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK.
| | - L Blanken
- The Generation R Study Group, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
| | - Z A Broere-Brown
- The Generation R Study Group, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
- Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
| | - B B van Rijn
- The Generation R Study Group, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
- Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
| | - S Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - H Tiemeier
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Harvard University, Boston, USA
| |
Collapse
|
34
|
Cerneckis J, Shi Y. Modeling brain macrophage biology and neurodegenerative diseases using human iPSC-derived neuroimmune organoids. Front Cell Neurosci 2023; 17:1198715. [PMID: 37342768 PMCID: PMC10277621 DOI: 10.3389/fncel.2023.1198715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023] Open
Affiliation(s)
- Jonas Cerneckis
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, United States
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Yanhong Shi
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, United States
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, United States
| |
Collapse
|
35
|
Covey DF, Evers AS, Izumi Y, Maguire JL, Mennerick SJ, Zorumski CF. Neurosteroid enantiomers as potentially novel neurotherapeutics. Neurosci Biobehav Rev 2023; 149:105191. [PMID: 37085023 PMCID: PMC10750765 DOI: 10.1016/j.neubiorev.2023.105191] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/23/2023]
Abstract
Endogenous neurosteroids and synthetic neuroactive steroids (NAS) are important targets for therapeutic development in neuropsychiatric disorders. These steroids modulate major signaling systems in the brain and intracellular processes including inflammation, cellular stress and autophagy. In this review, we describe studies performed using unnatural enantiomers of key neurosteroids, which are physiochemically identical to their natural counterparts except for rotation of polarized light. These studies led to insights in how NAS interact with receptors, ion channels and intracellular sites of action. Certain effects of NAS show high enantioselectivity, consistent with actions in chiral environments and likely direct interactions with signaling proteins. Other effects show no enantioselectivity and even reverse enantioselectivity. The spectrum of effects of NAS enantiomers raises the possibility that these agents, once considered only as tools for preclinical studies, have therapeutic potential that complements and in some cases may exceed their natural counterparts. Here we review studies of NAS enantiomers from the perspective of their potential development as novel neurotherapeutics.
Collapse
Affiliation(s)
- Douglas F Covey
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA; Anesthesiology Washington University School of Medicine, St. Louis, MO, USA; The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Alex S Evers
- Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA; Anesthesiology Washington University School of Medicine, St. Louis, MO, USA; The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Yukitoshi Izumi
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Jamie L Maguire
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Steven J Mennerick
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Charles F Zorumski
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
36
|
Zhu H, Wang G, Nguyen-Ngoc KV, Kim D, Miller M, Goss G, Kovsky J, Harrington AR, Saunders DC, Hopkirk AL, Melton R, Powers AC, Preissl S, Spagnoli FM, Gaulton KJ, Sander M. Understanding cell fate acquisition in stem-cell-derived pancreatic islets using single-cell multiome-inferred regulomes. Dev Cell 2023; 58:727-743.e11. [PMID: 37040771 PMCID: PMC10175223 DOI: 10.1016/j.devcel.2023.03.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 01/06/2023] [Accepted: 03/14/2023] [Indexed: 04/13/2023]
Abstract
Pancreatic islet cells derived from human pluripotent stem cells hold great promise for modeling and treating diabetes. Differences between stem-cell-derived and primary islets remain, but molecular insights to inform improvements are limited. Here, we acquire single-cell transcriptomes and accessible chromatin profiles during in vitro islet differentiation and pancreas from childhood and adult donors for comparison. We delineate major cell types, define their regulomes, and describe spatiotemporal gene regulatory relationships between transcription factors. CDX2 emerged as a regulator of enterochromaffin-like cells, which we show resemble a transient, previously unrecognized, serotonin-producing pre-β cell population in fetal pancreas, arguing against a proposed non-pancreatic origin. Furthermore, we observe insufficient activation of signal-dependent transcriptional programs during in vitro β cell maturation and identify sex hormones as drivers of β cell proliferation in childhood. Altogether, our analysis provides a comprehensive understanding of cell fate acquisition in stem-cell-derived islets and a framework for manipulating cell identities and maturity.
Collapse
Affiliation(s)
- Han Zhu
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093-0653, USA; Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA, USA
| | - Gaowei Wang
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093-0653, USA; Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA, USA
| | - Kim-Vy Nguyen-Ngoc
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093-0653, USA; Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA, USA
| | - Dongsu Kim
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093-0653, USA; Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA, USA
| | - Michael Miller
- Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Georgina Goss
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London SE1 9RT, UK
| | - Jenna Kovsky
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093-0653, USA; Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA, USA
| | - Austin R Harrington
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093-0653, USA; Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA, USA
| | - Diane C Saunders
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232-0475, USA
| | - Alexander L Hopkirk
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232-0475, USA
| | - Rebecca Melton
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093-0653, USA; Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA, USA
| | - Alvin C Powers
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232-0475, USA; Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232-0615, USA; VA Tennessee Valley Healthcare System, Nashville, TN 37212-2637, USA
| | - Sebastian Preissl
- Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Francesca M Spagnoli
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London SE1 9RT, UK
| | - Kyle J Gaulton
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093-0653, USA; Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Maike Sander
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093-0653, USA; Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
37
|
Jiang M, Jang SE, Zeng L. The Effects of Extrinsic and Intrinsic Factors on Neurogenesis. Cells 2023; 12:cells12091285. [PMID: 37174685 PMCID: PMC10177620 DOI: 10.3390/cells12091285] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
In the mammalian brain, neurogenesis is maintained throughout adulthood primarily in two typical niches, the subgranular zone (SGZ) of the dentate gyrus and the subventricular zone (SVZ) of the lateral ventricles and in other nonclassic neurogenic areas (e.g., the amygdala and striatum). During prenatal and early postnatal development, neural stem cells (NSCs) differentiate into neurons and migrate to appropriate areas such as the olfactory bulb where they integrate into existing neural networks; these phenomena constitute the multistep process of neurogenesis. Alterations in any of these processes impair neurogenesis and may even lead to brain dysfunction, including cognitive impairment and neurodegeneration. Here, we first summarize the main properties of mammalian neurogenic niches to describe the cellular and molecular mechanisms of neurogenesis. Accumulating evidence indicates that neurogenesis plays an integral role in neuronal plasticity in the brain and cognition in the postnatal period. Given that neurogenesis can be highly modulated by a number of extrinsic and intrinsic factors, we discuss the impact of extrinsic (e.g., alcohol) and intrinsic (e.g., hormones) modulators on neurogenesis. Additionally, we provide an overview of the contribution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection to persistent neurological sequelae such as neurodegeneration, neurogenic defects and accelerated neuronal cell death. Together, our review provides a link between extrinsic/intrinsic factors and neurogenesis and explains the possible mechanisms of abnormal neurogenesis underlying neurological disorders.
Collapse
Affiliation(s)
- Mei Jiang
- Department of Human Anatomy, Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Dongguan Campus, Guangdong Medical University, Dongguan 523808, China
| | - Se Eun Jang
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore 308433, Singapore
| | - Li Zeng
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore 308433, Singapore
- Neuroscience and Behavioral Disorders Program, DUKE-NUS Graduate Medical School, Singapore 169857, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technology University, Novena Campus, 11 Mandalay Road, Singapore 308232, Singapore
| |
Collapse
|
38
|
Wan L, Kral AJ, Voss D, Krainer AR. Preclinical Screening of Splice-Switching Antisense Oligonucleotides in PDAC Organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.31.535161. [PMID: 37066201 PMCID: PMC10103938 DOI: 10.1101/2023.03.31.535161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Aberrant alternative splicing is emerging as a cancer hallmark and a potential therapeutic target. It is the result of dysregulated splicing factors or genetic alterations in splicing-regulatory cis -elements. Targeting individual altered splicing events associated with cancer-cell dependencies is a potential therapeutic strategy, but several technical limitations need to be addressed. Patient-derived organoids (PDOs) are a promising platform to recapitulate key aspects of disease states and to facilitate drug development for precision medicine. Here, we report an efficient antisense-oligonucleotide (ASO) transfection method to systematically evaluate and screen individual splicing events as therapeutic targets in pancreatic ductal adenocarcinoma (PDAC) organoids. This optimized delivery method allows fast and efficient screening of ASOs that reverse oncogenic alternative splicing. In combination with advancements in chemical modifications and ASO-delivery strategies, this method has the potential to accelerate the discovery of anti-tumor ASO drugs that target pathological alternative splicing.
Collapse
|
39
|
Wang L, Owusu-Hammond C, Sievert D, Gleeson JG. Stem Cell-Based Organoid Models of Neurodevelopmental Disorders. Biol Psychiatry 2023; 93:622-631. [PMID: 36759260 PMCID: PMC10022535 DOI: 10.1016/j.biopsych.2023.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023]
Abstract
The past decade has seen an explosion in the identification of genetic causes of neurodevelopmental disorders, including Mendelian, de novo, and somatic factors. These discoveries provide opportunities to understand cellular and molecular mechanisms as well as potential gene-gene and gene-environment interactions to support novel therapies. Stem cell-based models, particularly human brain organoids, can capture disease-associated alleles in the context of the human genome, engineered to mirror disease-relevant aspects of cellular complexity and developmental timing. These models have brought key insights into neurodevelopmental disorders as diverse as microcephaly, autism, and focal epilepsy. However, intrinsic organoid-to-organoid variability, low levels of certain brain-resident cell types, and long culture times required to reach maturity can impede progress. Several recent advances incorporate specific morphogen gradients, mixtures of diverse brain cell types, and organoid engraftment into animal models. Together with nonhuman primate organoid comparisons, mechanisms of human neurodevelopmental disorders are emerging.
Collapse
Affiliation(s)
- Lu Wang
- From the Department of Neuroscience, Rady Children's Institute for Genomic Medicine, University of California, San Diego, San Diego, California
| | - Charlotte Owusu-Hammond
- From the Department of Neuroscience, Rady Children's Institute for Genomic Medicine, University of California, San Diego, San Diego, California
| | - David Sievert
- From the Department of Neuroscience, Rady Children's Institute for Genomic Medicine, University of California, San Diego, San Diego, California
| | - Joseph G Gleeson
- From the Department of Neuroscience, Rady Children's Institute for Genomic Medicine, University of California, San Diego, San Diego, California.
| |
Collapse
|
40
|
Tynianskaia L, Eşiyok N, Huttner WB, Heide M. Targeted Microinjection and Electroporation of Primate Cerebral Organoids for Genetic Modification. J Vis Exp 2023:10.3791/65176. [PMID: 37036224 PMCID: PMC7615602 DOI: 10.3791/65176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023] Open
Abstract
The cerebral cortex is the outermost brain structure and is responsible for the processing of sensory input and motor output; it is seen as the seat of higher-order cognitive abilities in mammals, in particular, primates. Studying gene functions in primate brains is challenging due to technical and ethical reasons, but the establishment of the brain organoid technology has enabled the study of brain development in traditional primate models (e.g., rhesus macaque and common marmoset), as well as in previously experimentally inaccessible primate species (e.g., great apes), in an ethically justifiable and less technically demanding system. Moreover, human brain organoids allow the advanced investigation of neurodevelopmental and neurological disorders. As brain organoids recapitulate many processes of brain development, they also represent a powerful tool to identify differences in, and to functionally compare, the genetic determinants underlying the brain development of various species in an evolutionary context. A great advantage of using organoids is the possibility to introduce genetic modifications, which permits the testing of gene functions. However, the introduction of such modifications is laborious and expensive. This paper describes a fast and cost-efficient approach to genetically modify cell populations within the ventricle-like structures of primate cerebral organoids, a subtype of brain organoids. This method combines a modified protocol for the reliable generation of cerebral organoids from human-, chimpanzee-, rhesus macaque-, and common marmoset-derived induced pluripotent stem cells (iPSCs) with a microinjection and electroporation approach. This provides an effective tool for the study of neurodevelopmental and evolutionary processes that can also be applied for disease modeling.
Collapse
Affiliation(s)
| | - Nesil Eşiyok
- German Primate Center, Leibniz Institute for Primate Research
| | | | - Michael Heide
- German Primate Center, Leibniz Institute for Primate Research; Max Planck Institute of Molecular Cell Biology and Genetics;
| |
Collapse
|
41
|
Bassil K, Krontira AC, Leroy T, Escoto AIH, Snijders C, Pernia CD, Pasterkamp RJ, de Nijs L, van den Hove D, Kenis G, Boks MP, Vadodaria K, Daskalakis NP, Binder EB, Rutten BPF. In vitro modeling of the neurobiological effects of glucocorticoids: A review. Neurobiol Stress 2023; 23:100530. [PMID: 36891528 PMCID: PMC9986648 DOI: 10.1016/j.ynstr.2023.100530] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
Hypothalamic-pituitary adrenal (HPA)axis dysregulation has long been implicated in stress-related disorders such as major depression and post-traumatic stress disorder. Glucocorticoids (GCs) are released from the adrenal glands as a result of HPA-axis activation. The release of GCs is implicated with several neurobiological changes that are associated with negative consequences of chronic stress and the onset and course of psychiatric disorders. Investigating the underlying neurobiological effects of GCs may help to better understand the pathophysiology of stress-related psychiatric disorders. GCs impact a plethora of neuronal processes at the genetic, epigenetic, cellular, and molecular levels. Given the scarcity and difficulty in accessing human brain samples, 2D and 3D in vitro neuronal cultures are becoming increasingly useful in studying GC effects. In this review, we provide an overview of in vitro studies investigating the effects of GCs on key neuronal processes such as proliferation and survival of progenitor cells, neurogenesis, synaptic plasticity, neuronal activity, inflammation, genetic vulnerability, and epigenetic alterations. Finally, we discuss the challenges in the field and offer suggestions for improving the use of in vitro models to investigate GC effects.
Collapse
Affiliation(s)
- Katherine Bassil
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Anthi C Krontira
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany.,International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Thomas Leroy
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Alana I H Escoto
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Clara Snijders
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Cameron D Pernia
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, University Medical Center (UMC) Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - Laurence de Nijs
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Daniel van den Hove
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Gunter Kenis
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Marco P Boks
- Psychiatry, UMC Utrecht Brain Center, Utrecht, the Netherlands
| | - Krishna Vadodaria
- Salk Institute for Biological Studies, La Jolla, San Diego, United States
| | | | - Elisabeth B Binder
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany.,International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Bart P F Rutten
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
42
|
Use of Brain-Derived Stem/Progenitor Cells and Derived Extracellular Vesicles to Repair Damaged Neural Tissues: Lessons Learned from Connective Tissue Repair Regarding Variables Limiting Progress and Approaches to Overcome Limitations. Int J Mol Sci 2023; 24:ijms24043370. [PMID: 36834779 PMCID: PMC9958575 DOI: 10.3390/ijms24043370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/27/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Pluripotent neural stem or progenitor cells (NSC/NPC) have been reported in the brains of adult preclinical models for decades, as have mesenchymal stem/stromal cells (MSC) been reported in a variety of tissues from adults. Based on their in vitro capabilities, these cell types have been used extensively in attempts to repair/regenerate brain and connective tissues, respectively. In addition, MSC have also been used in attempts to repair compromised brain centres. However, success in treating chronic neural degenerative conditions such as Alzheimer's disease, Parkinson's disease, and others with NSC/NPC has been limited, as have the use of MSC in the treatment of chronic osteoarthritis, a condition affecting millions of individuals. However, connective tissues are likely less complex than neural tissues regarding cell organization and regulatory integration, but some insights have been gleaned from the studies regarding connective tissue healing with MSC that may inform studies attempting to initiate repair and regeneration of neural tissues compromised acutely or chronically by trauma or disease. This review will discuss the similarities and differences in the applications of NSC/NPC and MSC, where some lessons have been learned, and potential approaches that could be used going forward to enhance progress in the application of cellular therapy to facilitate repair and regeneration of complex structures in the brain. In particular, variables that may need to be controlled to enhance success are discussed, as are different approaches such as the use of extracellular vesicles from stem/progenitor cells that could be used to stimulate endogenous cells to repair the tissues rather than consider cell replacement as the primary option. Caveats to all these efforts relate to whether cellular repair initiatives will have long-term success if the initiators for neural diseases are not controlled, and whether such cellular initiatives will have long-term success in a subset of patients if the neural diseases are heterogeneous and have multiple etiologies.
Collapse
|
43
|
Floris DL, Peng H, Warrier V, Lombardo MV, Pretzsch CM, Moreau C, Tsompanidis A, Gong W, Mennes M, Llera A, van Rooij D, Oldehinkel M, Forde NJ, Charman T, Tillmann J, Banaschewski T, Moessnang C, Durston S, Holt RJ, Ecker C, Dell'Acqua F, Loth E, Bourgeron T, Murphy DGM, Marquand AF, Lai MC, Buitelaar JK, Baron-Cohen S, Beckmann CF. The Link Between Autism and Sex-Related Neuroanatomy, and Associated Cognition and Gene Expression. Am J Psychiatry 2023; 180:50-64. [PMID: 36415971 DOI: 10.1176/appi.ajp.20220194] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE The male preponderance in prevalence of autism is among the most pronounced sex ratios across neurodevelopmental conditions. The authors sought to elucidate the relationship between autism and typical sex-differential neuroanatomy, cognition, and related gene expression. METHODS Using a novel deep learning framework trained to predict biological sex based on T1-weighted structural brain images, the authors compared sex prediction model performance across neurotypical and autistic males and females. Multiple large-scale data sets comprising T1-weighted MRI data were employed at four stages of the analysis pipeline: 1) pretraining, with the UK Biobank sample (>10,000 individuals); 2) transfer learning and validation, with the ABIDE data sets (1,412 individuals, 5-56 years of age); 3) test and discovery, with the EU-AIMS/AIMS-2-TRIALS LEAP data set (681 individuals, 6-30 years of age); and 4) specificity, with the NeuroIMAGE and ADHD200 data sets (887 individuals, 7-26 years of age). RESULTS Across both ABIDE and LEAP, features positively predictive of neurotypical males were on average significantly more predictive of autistic males (ABIDE: Cohen's d=0.48; LEAP: Cohen's d=1.34). Features positively predictive of neurotypical females were on average significantly less predictive of autistic females (ABIDE: Cohen's d=1.25; LEAP: Cohen's d=1.29). These differences in sex prediction accuracy in autism were not observed in individuals with ADHD. In autistic females, the male-shifted neurophenotype was further associated with poorer social sensitivity and emotional face processing while also associated with gene expression patterns of midgestational cell types. CONCLUSIONS The results demonstrate an increased resemblance in both autistic male and female individuals' neuroanatomy with male-characteristic patterns associated with typically sex-differential social cognitive features and related gene expression patterns. The findings hold promise for future research aimed at refining the quest for biological mechanisms underpinning the etiology of autism.
Collapse
Affiliation(s)
- Dorothea L Floris
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich (Floris); Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, and Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands (Floris, Mennes, Llera, van Rooij, Oldehinkel, Forde, Marquand, Buitelaar, Beckmann); Wellcome Centre for Integrative Neuroimaging (Peng, Gong, Beckmann), and Visual Geometry Group (Peng), University of Oxford, Oxford, U.K.; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, U.K. (Warrier, Tsompanidis, Holt, Lai, Baron-Cohen); Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy (Lombardo); Department of Forensic and Neurodevelopmental Sciences (Pretzsch, Ecker, Dell'Acqua, Loth, Murphy), Department of Psychology (Charman), Sackler Institute for Translational Neurodevelopment (Dell'Acqua, Loth, Murphy), and Department of Neuroimaging (Marquand), Institute of Psychiatry, Psychology, and Neuroscience, King's College London; Institut Pasteur, Human Genetics and Cognitive Functions Unity, IUF, Université Paris Cité, Paris (Moreau, Bourgeron); Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (Tillmann); Department of Child and Adolescent Psychiatry (Banaschewski) and Department of Psychiatry and Psychotherapy (Moessnang), Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Applied Psychology, SRH University, Heidelberg, Germany (Moessnang); Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands (Durston); Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, Frankfurt am Main, Germany (Ecker); Margaret and Wallace McCain Centre for Child, Youth, and Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto (Lai); Department of Psychiatry and Autism Research Unit, Hospital for Sick Children, Toronto (Lai); Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto (Lai); Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei (Lai); Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands (Buitelaar)
| | - Han Peng
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich (Floris); Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, and Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands (Floris, Mennes, Llera, van Rooij, Oldehinkel, Forde, Marquand, Buitelaar, Beckmann); Wellcome Centre for Integrative Neuroimaging (Peng, Gong, Beckmann), and Visual Geometry Group (Peng), University of Oxford, Oxford, U.K.; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, U.K. (Warrier, Tsompanidis, Holt, Lai, Baron-Cohen); Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy (Lombardo); Department of Forensic and Neurodevelopmental Sciences (Pretzsch, Ecker, Dell'Acqua, Loth, Murphy), Department of Psychology (Charman), Sackler Institute for Translational Neurodevelopment (Dell'Acqua, Loth, Murphy), and Department of Neuroimaging (Marquand), Institute of Psychiatry, Psychology, and Neuroscience, King's College London; Institut Pasteur, Human Genetics and Cognitive Functions Unity, IUF, Université Paris Cité, Paris (Moreau, Bourgeron); Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (Tillmann); Department of Child and Adolescent Psychiatry (Banaschewski) and Department of Psychiatry and Psychotherapy (Moessnang), Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Applied Psychology, SRH University, Heidelberg, Germany (Moessnang); Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands (Durston); Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, Frankfurt am Main, Germany (Ecker); Margaret and Wallace McCain Centre for Child, Youth, and Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto (Lai); Department of Psychiatry and Autism Research Unit, Hospital for Sick Children, Toronto (Lai); Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto (Lai); Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei (Lai); Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands (Buitelaar)
| | - Varun Warrier
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich (Floris); Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, and Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands (Floris, Mennes, Llera, van Rooij, Oldehinkel, Forde, Marquand, Buitelaar, Beckmann); Wellcome Centre for Integrative Neuroimaging (Peng, Gong, Beckmann), and Visual Geometry Group (Peng), University of Oxford, Oxford, U.K.; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, U.K. (Warrier, Tsompanidis, Holt, Lai, Baron-Cohen); Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy (Lombardo); Department of Forensic and Neurodevelopmental Sciences (Pretzsch, Ecker, Dell'Acqua, Loth, Murphy), Department of Psychology (Charman), Sackler Institute for Translational Neurodevelopment (Dell'Acqua, Loth, Murphy), and Department of Neuroimaging (Marquand), Institute of Psychiatry, Psychology, and Neuroscience, King's College London; Institut Pasteur, Human Genetics and Cognitive Functions Unity, IUF, Université Paris Cité, Paris (Moreau, Bourgeron); Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (Tillmann); Department of Child and Adolescent Psychiatry (Banaschewski) and Department of Psychiatry and Psychotherapy (Moessnang), Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Applied Psychology, SRH University, Heidelberg, Germany (Moessnang); Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands (Durston); Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, Frankfurt am Main, Germany (Ecker); Margaret and Wallace McCain Centre for Child, Youth, and Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto (Lai); Department of Psychiatry and Autism Research Unit, Hospital for Sick Children, Toronto (Lai); Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto (Lai); Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei (Lai); Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands (Buitelaar)
| | - Michael V Lombardo
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich (Floris); Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, and Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands (Floris, Mennes, Llera, van Rooij, Oldehinkel, Forde, Marquand, Buitelaar, Beckmann); Wellcome Centre for Integrative Neuroimaging (Peng, Gong, Beckmann), and Visual Geometry Group (Peng), University of Oxford, Oxford, U.K.; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, U.K. (Warrier, Tsompanidis, Holt, Lai, Baron-Cohen); Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy (Lombardo); Department of Forensic and Neurodevelopmental Sciences (Pretzsch, Ecker, Dell'Acqua, Loth, Murphy), Department of Psychology (Charman), Sackler Institute for Translational Neurodevelopment (Dell'Acqua, Loth, Murphy), and Department of Neuroimaging (Marquand), Institute of Psychiatry, Psychology, and Neuroscience, King's College London; Institut Pasteur, Human Genetics and Cognitive Functions Unity, IUF, Université Paris Cité, Paris (Moreau, Bourgeron); Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (Tillmann); Department of Child and Adolescent Psychiatry (Banaschewski) and Department of Psychiatry and Psychotherapy (Moessnang), Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Applied Psychology, SRH University, Heidelberg, Germany (Moessnang); Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands (Durston); Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, Frankfurt am Main, Germany (Ecker); Margaret and Wallace McCain Centre for Child, Youth, and Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto (Lai); Department of Psychiatry and Autism Research Unit, Hospital for Sick Children, Toronto (Lai); Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto (Lai); Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei (Lai); Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands (Buitelaar)
| | - Charlotte M Pretzsch
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich (Floris); Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, and Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands (Floris, Mennes, Llera, van Rooij, Oldehinkel, Forde, Marquand, Buitelaar, Beckmann); Wellcome Centre for Integrative Neuroimaging (Peng, Gong, Beckmann), and Visual Geometry Group (Peng), University of Oxford, Oxford, U.K.; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, U.K. (Warrier, Tsompanidis, Holt, Lai, Baron-Cohen); Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy (Lombardo); Department of Forensic and Neurodevelopmental Sciences (Pretzsch, Ecker, Dell'Acqua, Loth, Murphy), Department of Psychology (Charman), Sackler Institute for Translational Neurodevelopment (Dell'Acqua, Loth, Murphy), and Department of Neuroimaging (Marquand), Institute of Psychiatry, Psychology, and Neuroscience, King's College London; Institut Pasteur, Human Genetics and Cognitive Functions Unity, IUF, Université Paris Cité, Paris (Moreau, Bourgeron); Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (Tillmann); Department of Child and Adolescent Psychiatry (Banaschewski) and Department of Psychiatry and Psychotherapy (Moessnang), Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Applied Psychology, SRH University, Heidelberg, Germany (Moessnang); Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands (Durston); Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, Frankfurt am Main, Germany (Ecker); Margaret and Wallace McCain Centre for Child, Youth, and Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto (Lai); Department of Psychiatry and Autism Research Unit, Hospital for Sick Children, Toronto (Lai); Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto (Lai); Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei (Lai); Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands (Buitelaar)
| | - Clara Moreau
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich (Floris); Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, and Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands (Floris, Mennes, Llera, van Rooij, Oldehinkel, Forde, Marquand, Buitelaar, Beckmann); Wellcome Centre for Integrative Neuroimaging (Peng, Gong, Beckmann), and Visual Geometry Group (Peng), University of Oxford, Oxford, U.K.; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, U.K. (Warrier, Tsompanidis, Holt, Lai, Baron-Cohen); Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy (Lombardo); Department of Forensic and Neurodevelopmental Sciences (Pretzsch, Ecker, Dell'Acqua, Loth, Murphy), Department of Psychology (Charman), Sackler Institute for Translational Neurodevelopment (Dell'Acqua, Loth, Murphy), and Department of Neuroimaging (Marquand), Institute of Psychiatry, Psychology, and Neuroscience, King's College London; Institut Pasteur, Human Genetics and Cognitive Functions Unity, IUF, Université Paris Cité, Paris (Moreau, Bourgeron); Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (Tillmann); Department of Child and Adolescent Psychiatry (Banaschewski) and Department of Psychiatry and Psychotherapy (Moessnang), Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Applied Psychology, SRH University, Heidelberg, Germany (Moessnang); Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands (Durston); Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, Frankfurt am Main, Germany (Ecker); Margaret and Wallace McCain Centre for Child, Youth, and Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto (Lai); Department of Psychiatry and Autism Research Unit, Hospital for Sick Children, Toronto (Lai); Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto (Lai); Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei (Lai); Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands (Buitelaar)
| | - Alex Tsompanidis
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich (Floris); Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, and Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands (Floris, Mennes, Llera, van Rooij, Oldehinkel, Forde, Marquand, Buitelaar, Beckmann); Wellcome Centre for Integrative Neuroimaging (Peng, Gong, Beckmann), and Visual Geometry Group (Peng), University of Oxford, Oxford, U.K.; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, U.K. (Warrier, Tsompanidis, Holt, Lai, Baron-Cohen); Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy (Lombardo); Department of Forensic and Neurodevelopmental Sciences (Pretzsch, Ecker, Dell'Acqua, Loth, Murphy), Department of Psychology (Charman), Sackler Institute for Translational Neurodevelopment (Dell'Acqua, Loth, Murphy), and Department of Neuroimaging (Marquand), Institute of Psychiatry, Psychology, and Neuroscience, King's College London; Institut Pasteur, Human Genetics and Cognitive Functions Unity, IUF, Université Paris Cité, Paris (Moreau, Bourgeron); Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (Tillmann); Department of Child and Adolescent Psychiatry (Banaschewski) and Department of Psychiatry and Psychotherapy (Moessnang), Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Applied Psychology, SRH University, Heidelberg, Germany (Moessnang); Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands (Durston); Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, Frankfurt am Main, Germany (Ecker); Margaret and Wallace McCain Centre for Child, Youth, and Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto (Lai); Department of Psychiatry and Autism Research Unit, Hospital for Sick Children, Toronto (Lai); Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto (Lai); Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei (Lai); Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands (Buitelaar)
| | - Weikang Gong
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich (Floris); Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, and Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands (Floris, Mennes, Llera, van Rooij, Oldehinkel, Forde, Marquand, Buitelaar, Beckmann); Wellcome Centre for Integrative Neuroimaging (Peng, Gong, Beckmann), and Visual Geometry Group (Peng), University of Oxford, Oxford, U.K.; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, U.K. (Warrier, Tsompanidis, Holt, Lai, Baron-Cohen); Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy (Lombardo); Department of Forensic and Neurodevelopmental Sciences (Pretzsch, Ecker, Dell'Acqua, Loth, Murphy), Department of Psychology (Charman), Sackler Institute for Translational Neurodevelopment (Dell'Acqua, Loth, Murphy), and Department of Neuroimaging (Marquand), Institute of Psychiatry, Psychology, and Neuroscience, King's College London; Institut Pasteur, Human Genetics and Cognitive Functions Unity, IUF, Université Paris Cité, Paris (Moreau, Bourgeron); Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (Tillmann); Department of Child and Adolescent Psychiatry (Banaschewski) and Department of Psychiatry and Psychotherapy (Moessnang), Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Applied Psychology, SRH University, Heidelberg, Germany (Moessnang); Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands (Durston); Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, Frankfurt am Main, Germany (Ecker); Margaret and Wallace McCain Centre for Child, Youth, and Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto (Lai); Department of Psychiatry and Autism Research Unit, Hospital for Sick Children, Toronto (Lai); Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto (Lai); Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei (Lai); Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands (Buitelaar)
| | - Maarten Mennes
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich (Floris); Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, and Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands (Floris, Mennes, Llera, van Rooij, Oldehinkel, Forde, Marquand, Buitelaar, Beckmann); Wellcome Centre for Integrative Neuroimaging (Peng, Gong, Beckmann), and Visual Geometry Group (Peng), University of Oxford, Oxford, U.K.; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, U.K. (Warrier, Tsompanidis, Holt, Lai, Baron-Cohen); Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy (Lombardo); Department of Forensic and Neurodevelopmental Sciences (Pretzsch, Ecker, Dell'Acqua, Loth, Murphy), Department of Psychology (Charman), Sackler Institute for Translational Neurodevelopment (Dell'Acqua, Loth, Murphy), and Department of Neuroimaging (Marquand), Institute of Psychiatry, Psychology, and Neuroscience, King's College London; Institut Pasteur, Human Genetics and Cognitive Functions Unity, IUF, Université Paris Cité, Paris (Moreau, Bourgeron); Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (Tillmann); Department of Child and Adolescent Psychiatry (Banaschewski) and Department of Psychiatry and Psychotherapy (Moessnang), Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Applied Psychology, SRH University, Heidelberg, Germany (Moessnang); Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands (Durston); Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, Frankfurt am Main, Germany (Ecker); Margaret and Wallace McCain Centre for Child, Youth, and Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto (Lai); Department of Psychiatry and Autism Research Unit, Hospital for Sick Children, Toronto (Lai); Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto (Lai); Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei (Lai); Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands (Buitelaar)
| | - Alberto Llera
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich (Floris); Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, and Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands (Floris, Mennes, Llera, van Rooij, Oldehinkel, Forde, Marquand, Buitelaar, Beckmann); Wellcome Centre for Integrative Neuroimaging (Peng, Gong, Beckmann), and Visual Geometry Group (Peng), University of Oxford, Oxford, U.K.; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, U.K. (Warrier, Tsompanidis, Holt, Lai, Baron-Cohen); Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy (Lombardo); Department of Forensic and Neurodevelopmental Sciences (Pretzsch, Ecker, Dell'Acqua, Loth, Murphy), Department of Psychology (Charman), Sackler Institute for Translational Neurodevelopment (Dell'Acqua, Loth, Murphy), and Department of Neuroimaging (Marquand), Institute of Psychiatry, Psychology, and Neuroscience, King's College London; Institut Pasteur, Human Genetics and Cognitive Functions Unity, IUF, Université Paris Cité, Paris (Moreau, Bourgeron); Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (Tillmann); Department of Child and Adolescent Psychiatry (Banaschewski) and Department of Psychiatry and Psychotherapy (Moessnang), Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Applied Psychology, SRH University, Heidelberg, Germany (Moessnang); Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands (Durston); Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, Frankfurt am Main, Germany (Ecker); Margaret and Wallace McCain Centre for Child, Youth, and Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto (Lai); Department of Psychiatry and Autism Research Unit, Hospital for Sick Children, Toronto (Lai); Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto (Lai); Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei (Lai); Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands (Buitelaar)
| | - Daan van Rooij
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich (Floris); Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, and Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands (Floris, Mennes, Llera, van Rooij, Oldehinkel, Forde, Marquand, Buitelaar, Beckmann); Wellcome Centre for Integrative Neuroimaging (Peng, Gong, Beckmann), and Visual Geometry Group (Peng), University of Oxford, Oxford, U.K.; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, U.K. (Warrier, Tsompanidis, Holt, Lai, Baron-Cohen); Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy (Lombardo); Department of Forensic and Neurodevelopmental Sciences (Pretzsch, Ecker, Dell'Acqua, Loth, Murphy), Department of Psychology (Charman), Sackler Institute for Translational Neurodevelopment (Dell'Acqua, Loth, Murphy), and Department of Neuroimaging (Marquand), Institute of Psychiatry, Psychology, and Neuroscience, King's College London; Institut Pasteur, Human Genetics and Cognitive Functions Unity, IUF, Université Paris Cité, Paris (Moreau, Bourgeron); Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (Tillmann); Department of Child and Adolescent Psychiatry (Banaschewski) and Department of Psychiatry and Psychotherapy (Moessnang), Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Applied Psychology, SRH University, Heidelberg, Germany (Moessnang); Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands (Durston); Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, Frankfurt am Main, Germany (Ecker); Margaret and Wallace McCain Centre for Child, Youth, and Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto (Lai); Department of Psychiatry and Autism Research Unit, Hospital for Sick Children, Toronto (Lai); Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto (Lai); Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei (Lai); Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands (Buitelaar)
| | - Marianne Oldehinkel
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich (Floris); Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, and Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands (Floris, Mennes, Llera, van Rooij, Oldehinkel, Forde, Marquand, Buitelaar, Beckmann); Wellcome Centre for Integrative Neuroimaging (Peng, Gong, Beckmann), and Visual Geometry Group (Peng), University of Oxford, Oxford, U.K.; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, U.K. (Warrier, Tsompanidis, Holt, Lai, Baron-Cohen); Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy (Lombardo); Department of Forensic and Neurodevelopmental Sciences (Pretzsch, Ecker, Dell'Acqua, Loth, Murphy), Department of Psychology (Charman), Sackler Institute for Translational Neurodevelopment (Dell'Acqua, Loth, Murphy), and Department of Neuroimaging (Marquand), Institute of Psychiatry, Psychology, and Neuroscience, King's College London; Institut Pasteur, Human Genetics and Cognitive Functions Unity, IUF, Université Paris Cité, Paris (Moreau, Bourgeron); Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (Tillmann); Department of Child and Adolescent Psychiatry (Banaschewski) and Department of Psychiatry and Psychotherapy (Moessnang), Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Applied Psychology, SRH University, Heidelberg, Germany (Moessnang); Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands (Durston); Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, Frankfurt am Main, Germany (Ecker); Margaret and Wallace McCain Centre for Child, Youth, and Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto (Lai); Department of Psychiatry and Autism Research Unit, Hospital for Sick Children, Toronto (Lai); Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto (Lai); Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei (Lai); Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands (Buitelaar)
| | - Natalie J Forde
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich (Floris); Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, and Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands (Floris, Mennes, Llera, van Rooij, Oldehinkel, Forde, Marquand, Buitelaar, Beckmann); Wellcome Centre for Integrative Neuroimaging (Peng, Gong, Beckmann), and Visual Geometry Group (Peng), University of Oxford, Oxford, U.K.; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, U.K. (Warrier, Tsompanidis, Holt, Lai, Baron-Cohen); Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy (Lombardo); Department of Forensic and Neurodevelopmental Sciences (Pretzsch, Ecker, Dell'Acqua, Loth, Murphy), Department of Psychology (Charman), Sackler Institute for Translational Neurodevelopment (Dell'Acqua, Loth, Murphy), and Department of Neuroimaging (Marquand), Institute of Psychiatry, Psychology, and Neuroscience, King's College London; Institut Pasteur, Human Genetics and Cognitive Functions Unity, IUF, Université Paris Cité, Paris (Moreau, Bourgeron); Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (Tillmann); Department of Child and Adolescent Psychiatry (Banaschewski) and Department of Psychiatry and Psychotherapy (Moessnang), Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Applied Psychology, SRH University, Heidelberg, Germany (Moessnang); Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands (Durston); Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, Frankfurt am Main, Germany (Ecker); Margaret and Wallace McCain Centre for Child, Youth, and Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto (Lai); Department of Psychiatry and Autism Research Unit, Hospital for Sick Children, Toronto (Lai); Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto (Lai); Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei (Lai); Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands (Buitelaar)
| | - Tony Charman
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich (Floris); Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, and Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands (Floris, Mennes, Llera, van Rooij, Oldehinkel, Forde, Marquand, Buitelaar, Beckmann); Wellcome Centre for Integrative Neuroimaging (Peng, Gong, Beckmann), and Visual Geometry Group (Peng), University of Oxford, Oxford, U.K.; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, U.K. (Warrier, Tsompanidis, Holt, Lai, Baron-Cohen); Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy (Lombardo); Department of Forensic and Neurodevelopmental Sciences (Pretzsch, Ecker, Dell'Acqua, Loth, Murphy), Department of Psychology (Charman), Sackler Institute for Translational Neurodevelopment (Dell'Acqua, Loth, Murphy), and Department of Neuroimaging (Marquand), Institute of Psychiatry, Psychology, and Neuroscience, King's College London; Institut Pasteur, Human Genetics and Cognitive Functions Unity, IUF, Université Paris Cité, Paris (Moreau, Bourgeron); Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (Tillmann); Department of Child and Adolescent Psychiatry (Banaschewski) and Department of Psychiatry and Psychotherapy (Moessnang), Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Applied Psychology, SRH University, Heidelberg, Germany (Moessnang); Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands (Durston); Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, Frankfurt am Main, Germany (Ecker); Margaret and Wallace McCain Centre for Child, Youth, and Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto (Lai); Department of Psychiatry and Autism Research Unit, Hospital for Sick Children, Toronto (Lai); Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto (Lai); Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei (Lai); Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands (Buitelaar)
| | - Julian Tillmann
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich (Floris); Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, and Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands (Floris, Mennes, Llera, van Rooij, Oldehinkel, Forde, Marquand, Buitelaar, Beckmann); Wellcome Centre for Integrative Neuroimaging (Peng, Gong, Beckmann), and Visual Geometry Group (Peng), University of Oxford, Oxford, U.K.; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, U.K. (Warrier, Tsompanidis, Holt, Lai, Baron-Cohen); Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy (Lombardo); Department of Forensic and Neurodevelopmental Sciences (Pretzsch, Ecker, Dell'Acqua, Loth, Murphy), Department of Psychology (Charman), Sackler Institute for Translational Neurodevelopment (Dell'Acqua, Loth, Murphy), and Department of Neuroimaging (Marquand), Institute of Psychiatry, Psychology, and Neuroscience, King's College London; Institut Pasteur, Human Genetics and Cognitive Functions Unity, IUF, Université Paris Cité, Paris (Moreau, Bourgeron); Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (Tillmann); Department of Child and Adolescent Psychiatry (Banaschewski) and Department of Psychiatry and Psychotherapy (Moessnang), Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Applied Psychology, SRH University, Heidelberg, Germany (Moessnang); Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands (Durston); Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, Frankfurt am Main, Germany (Ecker); Margaret and Wallace McCain Centre for Child, Youth, and Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto (Lai); Department of Psychiatry and Autism Research Unit, Hospital for Sick Children, Toronto (Lai); Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto (Lai); Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei (Lai); Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands (Buitelaar)
| | - Tobias Banaschewski
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich (Floris); Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, and Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands (Floris, Mennes, Llera, van Rooij, Oldehinkel, Forde, Marquand, Buitelaar, Beckmann); Wellcome Centre for Integrative Neuroimaging (Peng, Gong, Beckmann), and Visual Geometry Group (Peng), University of Oxford, Oxford, U.K.; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, U.K. (Warrier, Tsompanidis, Holt, Lai, Baron-Cohen); Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy (Lombardo); Department of Forensic and Neurodevelopmental Sciences (Pretzsch, Ecker, Dell'Acqua, Loth, Murphy), Department of Psychology (Charman), Sackler Institute for Translational Neurodevelopment (Dell'Acqua, Loth, Murphy), and Department of Neuroimaging (Marquand), Institute of Psychiatry, Psychology, and Neuroscience, King's College London; Institut Pasteur, Human Genetics and Cognitive Functions Unity, IUF, Université Paris Cité, Paris (Moreau, Bourgeron); Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (Tillmann); Department of Child and Adolescent Psychiatry (Banaschewski) and Department of Psychiatry and Psychotherapy (Moessnang), Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Applied Psychology, SRH University, Heidelberg, Germany (Moessnang); Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands (Durston); Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, Frankfurt am Main, Germany (Ecker); Margaret and Wallace McCain Centre for Child, Youth, and Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto (Lai); Department of Psychiatry and Autism Research Unit, Hospital for Sick Children, Toronto (Lai); Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto (Lai); Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei (Lai); Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands (Buitelaar)
| | - Carolin Moessnang
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich (Floris); Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, and Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands (Floris, Mennes, Llera, van Rooij, Oldehinkel, Forde, Marquand, Buitelaar, Beckmann); Wellcome Centre for Integrative Neuroimaging (Peng, Gong, Beckmann), and Visual Geometry Group (Peng), University of Oxford, Oxford, U.K.; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, U.K. (Warrier, Tsompanidis, Holt, Lai, Baron-Cohen); Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy (Lombardo); Department of Forensic and Neurodevelopmental Sciences (Pretzsch, Ecker, Dell'Acqua, Loth, Murphy), Department of Psychology (Charman), Sackler Institute for Translational Neurodevelopment (Dell'Acqua, Loth, Murphy), and Department of Neuroimaging (Marquand), Institute of Psychiatry, Psychology, and Neuroscience, King's College London; Institut Pasteur, Human Genetics and Cognitive Functions Unity, IUF, Université Paris Cité, Paris (Moreau, Bourgeron); Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (Tillmann); Department of Child and Adolescent Psychiatry (Banaschewski) and Department of Psychiatry and Psychotherapy (Moessnang), Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Applied Psychology, SRH University, Heidelberg, Germany (Moessnang); Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands (Durston); Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, Frankfurt am Main, Germany (Ecker); Margaret and Wallace McCain Centre for Child, Youth, and Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto (Lai); Department of Psychiatry and Autism Research Unit, Hospital for Sick Children, Toronto (Lai); Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto (Lai); Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei (Lai); Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands (Buitelaar)
| | - Sarah Durston
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich (Floris); Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, and Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands (Floris, Mennes, Llera, van Rooij, Oldehinkel, Forde, Marquand, Buitelaar, Beckmann); Wellcome Centre for Integrative Neuroimaging (Peng, Gong, Beckmann), and Visual Geometry Group (Peng), University of Oxford, Oxford, U.K.; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, U.K. (Warrier, Tsompanidis, Holt, Lai, Baron-Cohen); Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy (Lombardo); Department of Forensic and Neurodevelopmental Sciences (Pretzsch, Ecker, Dell'Acqua, Loth, Murphy), Department of Psychology (Charman), Sackler Institute for Translational Neurodevelopment (Dell'Acqua, Loth, Murphy), and Department of Neuroimaging (Marquand), Institute of Psychiatry, Psychology, and Neuroscience, King's College London; Institut Pasteur, Human Genetics and Cognitive Functions Unity, IUF, Université Paris Cité, Paris (Moreau, Bourgeron); Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (Tillmann); Department of Child and Adolescent Psychiatry (Banaschewski) and Department of Psychiatry and Psychotherapy (Moessnang), Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Applied Psychology, SRH University, Heidelberg, Germany (Moessnang); Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands (Durston); Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, Frankfurt am Main, Germany (Ecker); Margaret and Wallace McCain Centre for Child, Youth, and Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto (Lai); Department of Psychiatry and Autism Research Unit, Hospital for Sick Children, Toronto (Lai); Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto (Lai); Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei (Lai); Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands (Buitelaar)
| | - Rosemary J Holt
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich (Floris); Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, and Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands (Floris, Mennes, Llera, van Rooij, Oldehinkel, Forde, Marquand, Buitelaar, Beckmann); Wellcome Centre for Integrative Neuroimaging (Peng, Gong, Beckmann), and Visual Geometry Group (Peng), University of Oxford, Oxford, U.K.; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, U.K. (Warrier, Tsompanidis, Holt, Lai, Baron-Cohen); Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy (Lombardo); Department of Forensic and Neurodevelopmental Sciences (Pretzsch, Ecker, Dell'Acqua, Loth, Murphy), Department of Psychology (Charman), Sackler Institute for Translational Neurodevelopment (Dell'Acqua, Loth, Murphy), and Department of Neuroimaging (Marquand), Institute of Psychiatry, Psychology, and Neuroscience, King's College London; Institut Pasteur, Human Genetics and Cognitive Functions Unity, IUF, Université Paris Cité, Paris (Moreau, Bourgeron); Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (Tillmann); Department of Child and Adolescent Psychiatry (Banaschewski) and Department of Psychiatry and Psychotherapy (Moessnang), Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Applied Psychology, SRH University, Heidelberg, Germany (Moessnang); Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands (Durston); Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, Frankfurt am Main, Germany (Ecker); Margaret and Wallace McCain Centre for Child, Youth, and Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto (Lai); Department of Psychiatry and Autism Research Unit, Hospital for Sick Children, Toronto (Lai); Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto (Lai); Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei (Lai); Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands (Buitelaar)
| | - Christine Ecker
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich (Floris); Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, and Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands (Floris, Mennes, Llera, van Rooij, Oldehinkel, Forde, Marquand, Buitelaar, Beckmann); Wellcome Centre for Integrative Neuroimaging (Peng, Gong, Beckmann), and Visual Geometry Group (Peng), University of Oxford, Oxford, U.K.; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, U.K. (Warrier, Tsompanidis, Holt, Lai, Baron-Cohen); Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy (Lombardo); Department of Forensic and Neurodevelopmental Sciences (Pretzsch, Ecker, Dell'Acqua, Loth, Murphy), Department of Psychology (Charman), Sackler Institute for Translational Neurodevelopment (Dell'Acqua, Loth, Murphy), and Department of Neuroimaging (Marquand), Institute of Psychiatry, Psychology, and Neuroscience, King's College London; Institut Pasteur, Human Genetics and Cognitive Functions Unity, IUF, Université Paris Cité, Paris (Moreau, Bourgeron); Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (Tillmann); Department of Child and Adolescent Psychiatry (Banaschewski) and Department of Psychiatry and Psychotherapy (Moessnang), Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Applied Psychology, SRH University, Heidelberg, Germany (Moessnang); Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands (Durston); Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, Frankfurt am Main, Germany (Ecker); Margaret and Wallace McCain Centre for Child, Youth, and Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto (Lai); Department of Psychiatry and Autism Research Unit, Hospital for Sick Children, Toronto (Lai); Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto (Lai); Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei (Lai); Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands (Buitelaar)
| | - Flavio Dell'Acqua
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich (Floris); Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, and Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands (Floris, Mennes, Llera, van Rooij, Oldehinkel, Forde, Marquand, Buitelaar, Beckmann); Wellcome Centre for Integrative Neuroimaging (Peng, Gong, Beckmann), and Visual Geometry Group (Peng), University of Oxford, Oxford, U.K.; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, U.K. (Warrier, Tsompanidis, Holt, Lai, Baron-Cohen); Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy (Lombardo); Department of Forensic and Neurodevelopmental Sciences (Pretzsch, Ecker, Dell'Acqua, Loth, Murphy), Department of Psychology (Charman), Sackler Institute for Translational Neurodevelopment (Dell'Acqua, Loth, Murphy), and Department of Neuroimaging (Marquand), Institute of Psychiatry, Psychology, and Neuroscience, King's College London; Institut Pasteur, Human Genetics and Cognitive Functions Unity, IUF, Université Paris Cité, Paris (Moreau, Bourgeron); Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (Tillmann); Department of Child and Adolescent Psychiatry (Banaschewski) and Department of Psychiatry and Psychotherapy (Moessnang), Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Applied Psychology, SRH University, Heidelberg, Germany (Moessnang); Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands (Durston); Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, Frankfurt am Main, Germany (Ecker); Margaret and Wallace McCain Centre for Child, Youth, and Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto (Lai); Department of Psychiatry and Autism Research Unit, Hospital for Sick Children, Toronto (Lai); Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto (Lai); Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei (Lai); Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands (Buitelaar)
| | - Eva Loth
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich (Floris); Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, and Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands (Floris, Mennes, Llera, van Rooij, Oldehinkel, Forde, Marquand, Buitelaar, Beckmann); Wellcome Centre for Integrative Neuroimaging (Peng, Gong, Beckmann), and Visual Geometry Group (Peng), University of Oxford, Oxford, U.K.; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, U.K. (Warrier, Tsompanidis, Holt, Lai, Baron-Cohen); Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy (Lombardo); Department of Forensic and Neurodevelopmental Sciences (Pretzsch, Ecker, Dell'Acqua, Loth, Murphy), Department of Psychology (Charman), Sackler Institute for Translational Neurodevelopment (Dell'Acqua, Loth, Murphy), and Department of Neuroimaging (Marquand), Institute of Psychiatry, Psychology, and Neuroscience, King's College London; Institut Pasteur, Human Genetics and Cognitive Functions Unity, IUF, Université Paris Cité, Paris (Moreau, Bourgeron); Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (Tillmann); Department of Child and Adolescent Psychiatry (Banaschewski) and Department of Psychiatry and Psychotherapy (Moessnang), Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Applied Psychology, SRH University, Heidelberg, Germany (Moessnang); Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands (Durston); Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, Frankfurt am Main, Germany (Ecker); Margaret and Wallace McCain Centre for Child, Youth, and Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto (Lai); Department of Psychiatry and Autism Research Unit, Hospital for Sick Children, Toronto (Lai); Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto (Lai); Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei (Lai); Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands (Buitelaar)
| | - Thomas Bourgeron
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich (Floris); Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, and Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands (Floris, Mennes, Llera, van Rooij, Oldehinkel, Forde, Marquand, Buitelaar, Beckmann); Wellcome Centre for Integrative Neuroimaging (Peng, Gong, Beckmann), and Visual Geometry Group (Peng), University of Oxford, Oxford, U.K.; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, U.K. (Warrier, Tsompanidis, Holt, Lai, Baron-Cohen); Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy (Lombardo); Department of Forensic and Neurodevelopmental Sciences (Pretzsch, Ecker, Dell'Acqua, Loth, Murphy), Department of Psychology (Charman), Sackler Institute for Translational Neurodevelopment (Dell'Acqua, Loth, Murphy), and Department of Neuroimaging (Marquand), Institute of Psychiatry, Psychology, and Neuroscience, King's College London; Institut Pasteur, Human Genetics and Cognitive Functions Unity, IUF, Université Paris Cité, Paris (Moreau, Bourgeron); Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (Tillmann); Department of Child and Adolescent Psychiatry (Banaschewski) and Department of Psychiatry and Psychotherapy (Moessnang), Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Applied Psychology, SRH University, Heidelberg, Germany (Moessnang); Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands (Durston); Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, Frankfurt am Main, Germany (Ecker); Margaret and Wallace McCain Centre for Child, Youth, and Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto (Lai); Department of Psychiatry and Autism Research Unit, Hospital for Sick Children, Toronto (Lai); Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto (Lai); Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei (Lai); Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands (Buitelaar)
| | - Declan G M Murphy
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich (Floris); Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, and Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands (Floris, Mennes, Llera, van Rooij, Oldehinkel, Forde, Marquand, Buitelaar, Beckmann); Wellcome Centre for Integrative Neuroimaging (Peng, Gong, Beckmann), and Visual Geometry Group (Peng), University of Oxford, Oxford, U.K.; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, U.K. (Warrier, Tsompanidis, Holt, Lai, Baron-Cohen); Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy (Lombardo); Department of Forensic and Neurodevelopmental Sciences (Pretzsch, Ecker, Dell'Acqua, Loth, Murphy), Department of Psychology (Charman), Sackler Institute for Translational Neurodevelopment (Dell'Acqua, Loth, Murphy), and Department of Neuroimaging (Marquand), Institute of Psychiatry, Psychology, and Neuroscience, King's College London; Institut Pasteur, Human Genetics and Cognitive Functions Unity, IUF, Université Paris Cité, Paris (Moreau, Bourgeron); Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (Tillmann); Department of Child and Adolescent Psychiatry (Banaschewski) and Department of Psychiatry and Psychotherapy (Moessnang), Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Applied Psychology, SRH University, Heidelberg, Germany (Moessnang); Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands (Durston); Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, Frankfurt am Main, Germany (Ecker); Margaret and Wallace McCain Centre for Child, Youth, and Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto (Lai); Department of Psychiatry and Autism Research Unit, Hospital for Sick Children, Toronto (Lai); Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto (Lai); Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei (Lai); Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands (Buitelaar)
| | - Andre F Marquand
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich (Floris); Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, and Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands (Floris, Mennes, Llera, van Rooij, Oldehinkel, Forde, Marquand, Buitelaar, Beckmann); Wellcome Centre for Integrative Neuroimaging (Peng, Gong, Beckmann), and Visual Geometry Group (Peng), University of Oxford, Oxford, U.K.; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, U.K. (Warrier, Tsompanidis, Holt, Lai, Baron-Cohen); Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy (Lombardo); Department of Forensic and Neurodevelopmental Sciences (Pretzsch, Ecker, Dell'Acqua, Loth, Murphy), Department of Psychology (Charman), Sackler Institute for Translational Neurodevelopment (Dell'Acqua, Loth, Murphy), and Department of Neuroimaging (Marquand), Institute of Psychiatry, Psychology, and Neuroscience, King's College London; Institut Pasteur, Human Genetics and Cognitive Functions Unity, IUF, Université Paris Cité, Paris (Moreau, Bourgeron); Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (Tillmann); Department of Child and Adolescent Psychiatry (Banaschewski) and Department of Psychiatry and Psychotherapy (Moessnang), Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Applied Psychology, SRH University, Heidelberg, Germany (Moessnang); Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands (Durston); Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, Frankfurt am Main, Germany (Ecker); Margaret and Wallace McCain Centre for Child, Youth, and Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto (Lai); Department of Psychiatry and Autism Research Unit, Hospital for Sick Children, Toronto (Lai); Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto (Lai); Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei (Lai); Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands (Buitelaar)
| | - Meng-Chuan Lai
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich (Floris); Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, and Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands (Floris, Mennes, Llera, van Rooij, Oldehinkel, Forde, Marquand, Buitelaar, Beckmann); Wellcome Centre for Integrative Neuroimaging (Peng, Gong, Beckmann), and Visual Geometry Group (Peng), University of Oxford, Oxford, U.K.; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, U.K. (Warrier, Tsompanidis, Holt, Lai, Baron-Cohen); Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy (Lombardo); Department of Forensic and Neurodevelopmental Sciences (Pretzsch, Ecker, Dell'Acqua, Loth, Murphy), Department of Psychology (Charman), Sackler Institute for Translational Neurodevelopment (Dell'Acqua, Loth, Murphy), and Department of Neuroimaging (Marquand), Institute of Psychiatry, Psychology, and Neuroscience, King's College London; Institut Pasteur, Human Genetics and Cognitive Functions Unity, IUF, Université Paris Cité, Paris (Moreau, Bourgeron); Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (Tillmann); Department of Child and Adolescent Psychiatry (Banaschewski) and Department of Psychiatry and Psychotherapy (Moessnang), Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Applied Psychology, SRH University, Heidelberg, Germany (Moessnang); Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands (Durston); Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, Frankfurt am Main, Germany (Ecker); Margaret and Wallace McCain Centre for Child, Youth, and Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto (Lai); Department of Psychiatry and Autism Research Unit, Hospital for Sick Children, Toronto (Lai); Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto (Lai); Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei (Lai); Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands (Buitelaar)
| | - Jan K Buitelaar
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich (Floris); Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, and Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands (Floris, Mennes, Llera, van Rooij, Oldehinkel, Forde, Marquand, Buitelaar, Beckmann); Wellcome Centre for Integrative Neuroimaging (Peng, Gong, Beckmann), and Visual Geometry Group (Peng), University of Oxford, Oxford, U.K.; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, U.K. (Warrier, Tsompanidis, Holt, Lai, Baron-Cohen); Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy (Lombardo); Department of Forensic and Neurodevelopmental Sciences (Pretzsch, Ecker, Dell'Acqua, Loth, Murphy), Department of Psychology (Charman), Sackler Institute for Translational Neurodevelopment (Dell'Acqua, Loth, Murphy), and Department of Neuroimaging (Marquand), Institute of Psychiatry, Psychology, and Neuroscience, King's College London; Institut Pasteur, Human Genetics and Cognitive Functions Unity, IUF, Université Paris Cité, Paris (Moreau, Bourgeron); Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (Tillmann); Department of Child and Adolescent Psychiatry (Banaschewski) and Department of Psychiatry and Psychotherapy (Moessnang), Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Applied Psychology, SRH University, Heidelberg, Germany (Moessnang); Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands (Durston); Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, Frankfurt am Main, Germany (Ecker); Margaret and Wallace McCain Centre for Child, Youth, and Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto (Lai); Department of Psychiatry and Autism Research Unit, Hospital for Sick Children, Toronto (Lai); Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto (Lai); Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei (Lai); Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands (Buitelaar)
| | - Simon Baron-Cohen
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich (Floris); Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, and Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands (Floris, Mennes, Llera, van Rooij, Oldehinkel, Forde, Marquand, Buitelaar, Beckmann); Wellcome Centre for Integrative Neuroimaging (Peng, Gong, Beckmann), and Visual Geometry Group (Peng), University of Oxford, Oxford, U.K.; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, U.K. (Warrier, Tsompanidis, Holt, Lai, Baron-Cohen); Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy (Lombardo); Department of Forensic and Neurodevelopmental Sciences (Pretzsch, Ecker, Dell'Acqua, Loth, Murphy), Department of Psychology (Charman), Sackler Institute for Translational Neurodevelopment (Dell'Acqua, Loth, Murphy), and Department of Neuroimaging (Marquand), Institute of Psychiatry, Psychology, and Neuroscience, King's College London; Institut Pasteur, Human Genetics and Cognitive Functions Unity, IUF, Université Paris Cité, Paris (Moreau, Bourgeron); Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (Tillmann); Department of Child and Adolescent Psychiatry (Banaschewski) and Department of Psychiatry and Psychotherapy (Moessnang), Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Applied Psychology, SRH University, Heidelberg, Germany (Moessnang); Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands (Durston); Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, Frankfurt am Main, Germany (Ecker); Margaret and Wallace McCain Centre for Child, Youth, and Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto (Lai); Department of Psychiatry and Autism Research Unit, Hospital for Sick Children, Toronto (Lai); Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto (Lai); Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei (Lai); Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands (Buitelaar)
| | - Christian F Beckmann
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich (Floris); Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, and Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands (Floris, Mennes, Llera, van Rooij, Oldehinkel, Forde, Marquand, Buitelaar, Beckmann); Wellcome Centre for Integrative Neuroimaging (Peng, Gong, Beckmann), and Visual Geometry Group (Peng), University of Oxford, Oxford, U.K.; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, U.K. (Warrier, Tsompanidis, Holt, Lai, Baron-Cohen); Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy (Lombardo); Department of Forensic and Neurodevelopmental Sciences (Pretzsch, Ecker, Dell'Acqua, Loth, Murphy), Department of Psychology (Charman), Sackler Institute for Translational Neurodevelopment (Dell'Acqua, Loth, Murphy), and Department of Neuroimaging (Marquand), Institute of Psychiatry, Psychology, and Neuroscience, King's College London; Institut Pasteur, Human Genetics and Cognitive Functions Unity, IUF, Université Paris Cité, Paris (Moreau, Bourgeron); Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (Tillmann); Department of Child and Adolescent Psychiatry (Banaschewski) and Department of Psychiatry and Psychotherapy (Moessnang), Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Applied Psychology, SRH University, Heidelberg, Germany (Moessnang); Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands (Durston); Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, Frankfurt am Main, Germany (Ecker); Margaret and Wallace McCain Centre for Child, Youth, and Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto (Lai); Department of Psychiatry and Autism Research Unit, Hospital for Sick Children, Toronto (Lai); Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto (Lai); Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei (Lai); Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands (Buitelaar)
| | -
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich (Floris); Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, and Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands (Floris, Mennes, Llera, van Rooij, Oldehinkel, Forde, Marquand, Buitelaar, Beckmann); Wellcome Centre for Integrative Neuroimaging (Peng, Gong, Beckmann), and Visual Geometry Group (Peng), University of Oxford, Oxford, U.K.; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, U.K. (Warrier, Tsompanidis, Holt, Lai, Baron-Cohen); Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy (Lombardo); Department of Forensic and Neurodevelopmental Sciences (Pretzsch, Ecker, Dell'Acqua, Loth, Murphy), Department of Psychology (Charman), Sackler Institute for Translational Neurodevelopment (Dell'Acqua, Loth, Murphy), and Department of Neuroimaging (Marquand), Institute of Psychiatry, Psychology, and Neuroscience, King's College London; Institut Pasteur, Human Genetics and Cognitive Functions Unity, IUF, Université Paris Cité, Paris (Moreau, Bourgeron); Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (Tillmann); Department of Child and Adolescent Psychiatry (Banaschewski) and Department of Psychiatry and Psychotherapy (Moessnang), Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Applied Psychology, SRH University, Heidelberg, Germany (Moessnang); Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands (Durston); Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, Frankfurt am Main, Germany (Ecker); Margaret and Wallace McCain Centre for Child, Youth, and Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto (Lai); Department of Psychiatry and Autism Research Unit, Hospital for Sick Children, Toronto (Lai); Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto (Lai); Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei (Lai); Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands (Buitelaar)
| | -
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich (Floris); Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, and Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands (Floris, Mennes, Llera, van Rooij, Oldehinkel, Forde, Marquand, Buitelaar, Beckmann); Wellcome Centre for Integrative Neuroimaging (Peng, Gong, Beckmann), and Visual Geometry Group (Peng), University of Oxford, Oxford, U.K.; Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, U.K. (Warrier, Tsompanidis, Holt, Lai, Baron-Cohen); Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy (Lombardo); Department of Forensic and Neurodevelopmental Sciences (Pretzsch, Ecker, Dell'Acqua, Loth, Murphy), Department of Psychology (Charman), Sackler Institute for Translational Neurodevelopment (Dell'Acqua, Loth, Murphy), and Department of Neuroimaging (Marquand), Institute of Psychiatry, Psychology, and Neuroscience, King's College London; Institut Pasteur, Human Genetics and Cognitive Functions Unity, IUF, Université Paris Cité, Paris (Moreau, Bourgeron); Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (Tillmann); Department of Child and Adolescent Psychiatry (Banaschewski) and Department of Psychiatry and Psychotherapy (Moessnang), Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Department of Applied Psychology, SRH University, Heidelberg, Germany (Moessnang); Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands (Durston); Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, Frankfurt am Main, Germany (Ecker); Margaret and Wallace McCain Centre for Child, Youth, and Family Mental Health and Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto (Lai); Department of Psychiatry and Autism Research Unit, Hospital for Sick Children, Toronto (Lai); Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto (Lai); Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei (Lai); Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, the Netherlands (Buitelaar)
| |
Collapse
|
44
|
Cable J, Lutolf MP, Fu J, Park SE, Apostolou A, Chen S, Song CJ, Spence JR, Liberali P, Lancaster M, Meier AB, Pek NMQ, Wells JM, Capeling MM, Uzquiano A, Musah S, Huch M, Gouti M, Hombrink P, Quadrato G, Urenda JP. Organoids as tools for fundamental discovery and translation-a Keystone Symposia report. Ann N Y Acad Sci 2022; 1518:196-208. [PMID: 36177906 PMCID: PMC11293861 DOI: 10.1111/nyas.14874] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Complex three-dimensional in vitro organ-like models, or organoids, offer a unique biological tool with distinct advantages over two-dimensional cell culture systems, which can be too simplistic, and animal models, which can be too complex and may fail to recapitulate human physiology and pathology. Significant progress has been made in driving stem cells to differentiate into different organoid types, though several challenges remain. For example, many organoid models suffer from high heterogeneity, and it can be difficult to fully incorporate the complexity of in vivo tissue and organ development to faithfully reproduce human biology. Successfully addressing such limitations would increase the viability of organoids as models for drug development and preclinical testing. On April 3-6, 2022, experts in organoid development and biology convened at the Keystone Symposium "Organoids as Tools for Fundamental Discovery and Translation" to discuss recent advances and insights from this relatively new model system into human development and disease.
Collapse
Affiliation(s)
| | - Matthias P Lutolf
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences (SV) and School of Engineering (STI), Lausanne, Switzerland
- Institute of Chemical Sciences and Engineering, School of Basic Science (SB), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Roche Institute for Translational Bioengineering (ITB), Pharma Research and Early Development (pRED), F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Sunghee Estelle Park
- Department of Bioengineering and NSF Science and Technology Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Athanasia Apostolou
- Emulate Inc, Boston, Massachusetts, USA
- Department of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medical College, New York City, New York, USA
| | - Cheng Jack Song
- Keck Medicine of University of Southern California, Los Angeles, California, USA
| | - Jason R Spence
- Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Prisca Liberali
- Friedrich Miescher Institute for Biomedical Research (FMI) and University of Basel, Basel, Switzerland
| | | | - Anna B Meier
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Nicole Min Qian Pek
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati, Ohio, USA
- Division of Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - James M Wells
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati, Ohio, USA
- Division of Developmental Biology and Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Meghan M Capeling
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, Michigan, USA
| | - Ana Uzquiano
- Department of Stem Cell and Regenerative Biology, Harvard University
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Samira Musah
- Developmental and Stem Cell Biology Program and Division of Nephrology, Department of Medicine and Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, USA
- Center for Biomolecular and Tissue Engineering, Durham, North Carolina, USA
- Department of Biomedical Engineering, Pratt School of Engineering, Durham, North Carolina, USA
- Duke Regeneration Center, Duke University, Durham, North Carolina, USA
| | - Meritxell Huch
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Mina Gouti
- Stem Cell Modelling of Development & Disease Group, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Pleun Hombrink
- University Medical Center Utrecht and HUB Organoids, Utrecht, Netherlands
| | - Giorgia Quadrato
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine and Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, California, USA
| | - Jean-Paul Urenda
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine and Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
45
|
高山 賢. [Recent advances in the sex steroid hormone action involved in the development of dementia and frailty]. Nihon Ronen Igakkai Zasshi 2022; 59:430-445. [PMID: 36476689 DOI: 10.3143/geriatrics.59.430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- 賢一 高山
- 東京都健康長寿医療センター研究所老化機構研究チームシステム加齢医学
| |
Collapse
|
46
|
Sozzi E, Kajtez J, Bruzelius A, Wesseler MF, Nilsson F, Birtele M, Larsen NB, Ottosson DR, Storm P, Parmar M, Fiorenzano A. Silk scaffolding drives self-assembly of functional and mature human brain organoids. Front Cell Dev Biol 2022; 10:1023279. [PMID: 36313550 PMCID: PMC9614032 DOI: 10.3389/fcell.2022.1023279] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/28/2022] [Indexed: 11/13/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) are intrinsically able to self-organize into cerebral organoids that mimic features of developing human brain tissue. These three-dimensional structures provide a unique opportunity to generate cytoarchitecture and cell-cell interactions reminiscent of human brain complexity in a dish. However, current in vitro brain organoid methodologies often result in intra-organoid variability, limiting their use in recapitulating later developmental stages as well as in disease modeling and drug discovery. In addition, cell stress and hypoxia resulting from long-term culture lead to incomplete maturation and cell death within the inner core. Here, we used a recombinant silk microfiber network as a scaffold to drive hPSCs to self-arrange into engineered cerebral organoids. Silk scaffolding promoted neuroectoderm formation and reduced heterogeneity of cellular organization within individual organoids. Bulk and single cell transcriptomics confirmed that silk cerebral organoids display more homogeneous and functionally mature neuronal properties than organoids grown in the absence of silk scaffold. Furthermore, oxygen sensing analysis showed that silk scaffolds create more favorable growth and differentiation conditions by facilitating the delivery of oxygen and nutrients. The silk scaffolding strategy appears to reduce intra-organoid variability and enhances self-organization into functionally mature human brain organoids.
Collapse
Affiliation(s)
- Edoardo Sozzi
- Department of Experimental Medical Science, Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Janko Kajtez
- Department of Experimental Medical Science, Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Andreas Bruzelius
- Department of Experimental Medical Science, Regenerative Neurophysiology, Wallenberg Neuroscience Center, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Milan Finn Wesseler
- Department of Health Technology (DTU Health Tech), Technical University of Denmark, Kongens Lyngby, Denmark
| | - Fredrik Nilsson
- Department of Experimental Medical Science, Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Marcella Birtele
- Department of Experimental Medical Science, Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Niels B. Larsen
- Department of Health Technology (DTU Health Tech), Technical University of Denmark, Kongens Lyngby, Denmark
| | - Daniella Rylander Ottosson
- Department of Experimental Medical Science, Regenerative Neurophysiology, Wallenberg Neuroscience Center, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Petter Storm
- Department of Experimental Medical Science, Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Malin Parmar
- Department of Experimental Medical Science, Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Alessandro Fiorenzano
- Department of Experimental Medical Science, Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, Lund Stem Cell Center, Lund University, Lund, Sweden
- *Correspondence: Alessandro Fiorenzano,
| |
Collapse
|
47
|
Pallier PN, Ferrara M, Romagnolo F, Ferretti MT, Soreq H, Cerase A. Chromosomal and environmental contributions to sex differences in the vulnerability to neurological and neuropsychiatric disorders: Implications for therapeutic interventions. Prog Neurobiol 2022; 219:102353. [PMID: 36100191 DOI: 10.1016/j.pneurobio.2022.102353] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/22/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
Abstract
Neurological and neuropsychiatric disorders affect men and women differently. Multiple sclerosis, Alzheimer's disease, anxiety disorders, depression, meningiomas and late-onset schizophrenia affect women more frequently than men. By contrast, Parkinson's disease, autism spectrum condition, attention-deficit hyperactivity disorder, Tourette's syndrome, amyotrophic lateral sclerosis and early-onset schizophrenia are more prevalent in men. Women have been historically under-recruited or excluded from clinical trials, and most basic research uses male rodent cells or animals as disease models, rarely studying both sexes and factoring sex as a potential source of variation, resulting in a poor understanding of the underlying biological reasons for sex and gender differences in the development of such diseases. Putative pathophysiological contributors include hormones and epigenetics regulators but additional biological and non-biological influences may be at play. We review here the evidence for the underpinning role of the sex chromosome complement, X chromosome inactivation, and environmental and epigenetic regulators in sex differences in the vulnerability to brain disease. We conclude that there is a pressing need for a better understanding of the genetic, epigenetic and environmental mechanisms sustaining sex differences in such diseases, which is critical for developing a precision medicine approach based on sex-tailored prevention and treatment.
Collapse
Affiliation(s)
- Patrick N Pallier
- Blizard Institute, Centre for Neuroscience, Surgery and Trauma, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK.
| | - Maria Ferrara
- Institute of Psychiatry, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy; Department of Psychiatry, Yale University, School of Medicine, New Haven, CT, United States; Women's Brain Project (WBP), Switzerland
| | - Francesca Romagnolo
- Institute of Psychiatry, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | | | - Hermona Soreq
- The Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem, 9190401, Israel
| | - Andrea Cerase
- EMBL-Rome, Via Ramarini 32, 00015 Monterotondo, RM, Italy; Blizard Institute, Centre for Genomics and Child Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; Department of Biology, University of Pisa, SS12 Abetone e Brennero 4, 56127 Pisa, Italy.
| |
Collapse
|
48
|
Abstract
Androgens are essential sex steroid hormones for both sexes. Testosterone (T) is the predominant androgen in males, while in adult females, T concentrations are about 15-fold lower and androgen precursors are converted to estrogens. T is produced primarily in testicular Leydig cells in men, while in women precursors are biosynthesised in the adrenal cortex and ovaries and converted into T in the periphery. The biosynthesis of T occurs via a series of enzymatic reactions in steroidogenic organs. Notably, the more potent androgen, dihydrotestosterone, may be synthesized from T in the classic pathway, however, alternate metabolic pathways also exist. The classic action of androgens on target organs is mediated through the androgen receptor, which regulates nuclear receptor gene transcription. However, the androgen-androgen receptor complex may also interact directly with membrane proteins or signaling molecules to exert more rapid effects. This review summarizes the current knowledge of androgen biosynthesis, mechanisms of action and endocrine effects in human biology, and relates these effects to respective human congenital and acquired disorders.
Collapse
Affiliation(s)
- Rawda Naamneh Elzenaty
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Bern University Hospital, University of Bern, Switzerland; Department of Biomedical Research, University of Bern, Switzerland; Graduate School of Cellular and Biomedical Sciences, University of Bern, Switzerland.
| | - Therina du Toit
- Department of Biomedical Research, University of Bern, Switzerland.
| | - Christa E Flück
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Bern University Hospital, University of Bern, Switzerland; Department of Biomedical Research, University of Bern, Switzerland.
| |
Collapse
|
49
|
Goldfarb CN, Karri K, Pyatkov M, Waxman DJ. Interplay Between GH-regulated, Sex-biased Liver Transcriptome and Hepatic Zonation Revealed by Single-Nucleus RNA Sequencing. Endocrinology 2022; 163:6580481. [PMID: 35512247 PMCID: PMC9154260 DOI: 10.1210/endocr/bqac059] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Indexed: 11/19/2022]
Abstract
The zonation of liver metabolic processes is well-characterized; however, little is known about the cell type-specificity and zonation of sexually dimorphic gene expression or its growth hormone (GH)-dependent transcriptional regulators. We address these issues using single-nucleus RNA-sequencing of 32 000 nuclei representing 9 major liver cell types. Nuclei were extracted from livers from adult male and female mice; from males infused with GH continuously, mimicking the female plasma GH pattern; and from mice exposed to TCPOBOP, a xenobiotic agonist ligand of the nuclear receptor CAR that perturbs sex-biased gene expression. Analysis of these rich transcriptomic datasets revealed the following: 1) expression of sex-biased genes and their GH-dependent transcriptional regulators is primarily restricted to hepatocytes and is not a feature of liver nonparenchymal cells; 2) many sex-biased transcripts show sex-dependent zonation within the liver lobule; 3) gene expression is substantially feminized both in periportal and pericentral hepatocytes when male mice are infused with GH continuously; 4) sequencing nuclei increases the sensitivity for detecting thousands of nuclear-enriched long-noncoding RNAs (lncRNAs) and enables determination of their liver cell type-specificity, sex-bias and hepatocyte zonation profiles; 5) the periportal to pericentral hepatocyte cell ratio is significantly higher in male than female liver; and 6) TCPOBOP exposure disrupts both sex-specific gene expression and hepatocyte zonation within the liver lobule. These findings highlight the complex interconnections between hepatic sexual dimorphism and zonation at the single-cell level and reveal how endogenous hormones and foreign chemical exposure can alter these interactions across the liver lobule with large effects both on protein-coding genes and lncRNAs.
Collapse
Affiliation(s)
- Christine N Goldfarb
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
- Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
| | - Kritika Karri
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
- Bioinformatics Program Boston University, Boston, Massachusetts 02215, USA
| | - Maxim Pyatkov
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
| | - David J Waxman
- Correspondence: David J. Waxman, PhD, Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA.
| |
Collapse
|
50
|
Samuel RM, Majd H, Richter MN, Fattahi F. Androgens increase excitement in brain organoid research. Cell Stem Cell 2022; 29:495-497. [PMID: 35395183 DOI: 10.1016/j.stem.2022.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Despite the surrounding controversy, quantitative sex-based differences exist in the human brain. In a recent issue of Nature, Kelava et al. shed light on the mechanisms underlying increased brain volume and neuron density in males, while highlighting the importance of human PSC-derived organoids for studying human development.
Collapse
Affiliation(s)
- Ryan M Samuel
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Homa Majd
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mikayla N Richter
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Faranak Fattahi
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA 94110, USA.
| |
Collapse
|