1
|
Boccia M, Kessler D, Seibt W, Grabe V, Rodríguez López CE, Grzech D, Heinicke S, O'Connor SE, Sonawane PD. A scaffold protein manages the biosynthesis of steroidal defense metabolites in plants. Science 2024:eado3409. [PMID: 39418343 DOI: 10.1126/science.ado3409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/03/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024]
Abstract
Solanaceae plants produce two major classes of valuable sterol derived natural products-steroidal glycoalkaloids and steroidal saponins-from a common cholesterol precursor. Attempts to heterologously produce these molecules have consistently failed, although the genes responsible for each biosynthetic step have been identified. Here we identify a cellulose synthase like protein, an unexpected biosynthetic component that interacts with the early pathway enzymes, enabling steroidal scaffolds production in plants. Moreover, knockout of this gene in black nightshade, Solanum nigrum resulted in plants lacking both steroidal alkaloids and saponins. Unexpectedly, these knockout plants also revealed that steroidal saponins deter serious agricultural insect pests. This discovery provides the missing link to engineer these high value steroidal molecules, and also pinpoints the ecological role for the steroidal saponins.
Collapse
Affiliation(s)
- Marianna Boccia
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Danny Kessler
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Wibke Seibt
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Veit Grabe
- Microscopy Imaging Service, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Carlos E Rodríguez López
- Escuela de Ingenieria y Ciencias, Tecnologico de Monterrey, 648490 Monterrey, Nuevo Leon, Mexico
- Integrative Biology Unit, The Institute for Obesity Research, Tecnologico de Monterrey, 64849 Monterrey, Nuevo Leon, Mexico
| | - Dagny Grzech
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Sarah Heinicke
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Sarah E O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Prashant D Sonawane
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| |
Collapse
|
2
|
Grzech D, Smit SJ, Alam RM, Boccia M, Nakamura Y, Hong B, Barbole R, Heinicke S, Kunert M, Seibt W, Grabe V, Caputi L, Lichman BR, O'Connor SE, Aharoni A, Sonawane PD. Incorporation of nitrogen in antinutritional Solanum alkaloid biosynthesis. Nat Chem Biol 2024:10.1038/s41589-024-01735-w. [PMID: 39271954 DOI: 10.1038/s41589-024-01735-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 08/19/2024] [Indexed: 09/15/2024]
Abstract
Steroidal glycoalkaloids (SGAs) are specialized metabolites produced by hundreds of Solanum species including food crops, such as tomato, potato and eggplant. Unlike true alkaloids, nitrogen is introduced at a late stage of SGA biosynthesis through an unknown transamination reaction. Here, we reveal the mechanism by which GLYCOALKALOID METABOLISM12 (GAME12) directs the biosynthesis of nitrogen-containing steroidal alkaloid aglycone in Solanum. We report that GAME12, a neofunctionalized γ-aminobutyric acid (GABA) transaminase, undergoes changes in both active site specificity and subcellular localization to switch from its renown and generic activity in core metabolism to function in a specialized metabolic pathway. Moreover, overexpression of GAME12 alone in engineered S. nigrum leaves is sufficient for de novo production of nitrogen-containing SGAs. Our results highlight how hijacking a core metabolism GABA shunt enzyme is crucial in numerous Solanum species for incorporating a nitrogen to a steroidal-specialized metabolite backbone and form defensive alkaloids.
Collapse
Affiliation(s)
- Dagny Grzech
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Samuel J Smit
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, UK
| | - Ryan M Alam
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Marianna Boccia
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Yoko Nakamura
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Benke Hong
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Ranjit Barbole
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Sarah Heinicke
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Maritta Kunert
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Wibke Seibt
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Veit Grabe
- Microscopic Imaging Service Group, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Lorenzo Caputi
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Benjamin R Lichman
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, UK
| | - Sarah E O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany.
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.
| | - Prashant D Sonawane
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany.
| |
Collapse
|
3
|
Srivastava G, Vyas P, Kumar A, Singh A, Bhargav P, Dinday S, Ghosh S. Unraveling the role of cytochrome P450 enzymes in oleanane triterpenoid biosynthesis in arjuna tree. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 39072959 DOI: 10.1111/tpj.16942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/11/2024] [Accepted: 07/13/2024] [Indexed: 07/30/2024]
Abstract
Triterpenoids (C30-isoprenoids) represent a major group of natural products with various physiological functions in plants. Triterpenoids and their derivatives have medicinal uses owing to diverse bioactivities. Arjuna (Terminalia arjuna) tree bark accumulates highly oxygenated β-amyrin-derived oleanane triterpenoids (e.g., arjunic acid, arjungenin, and arjunolic acid) with cardioprotective roles. However, biosynthetic routes and enzymes remain poorly understood. We mined the arjuna transcriptome and conducted cytochrome P450 monooxygenase (P450) assays using Saccharomyces cerevisiae and Nicotiana benthamiana to identify six P450s and two P450 reductases for oxidative modifications of oleanane triterpenoids. P450 assays using oleananes revealed a greater substrate promiscuity of C-2α and C-23 hydroxylases/oxidases than C-28 oxidases. CYP716A233 and CYP716A432 catalyzed β-amyrin/erythrodiol C-28 oxidation to produce oleanolic acid. C-2α hydroxylases (CYP716C88 and CYP716C89) converted oleanolic acid and hederagenin to maslinic acid and arjunolic acid. CYP716C89 also hydroxylated erythrodiol and oleanolic aldehyde. However, CYP714E107a and CYP714E107b catalyzed oleanolic acid/maslinic acid/arjunic acid, C-23 hydroxylation to form hederagenin, arjunolic acid and arjungenin, and hederagenin C-23 oxidation to produce gypsogenic acid, but at a lower rate than oleanolic acid C-23 hydroxylation. Overall, P450 substrate selectivity suggested that C-28 oxidation is the first P450-catalyzed oxidative modification in the arjuna triterpenoid pathway. However, the pathway might branch thereafter through C-2α/C-23 hydroxylation of oleanolic acid. Taken together, these results provided new insights into substrate range of P450s and unraveled biosynthetic routes of triterpenoids in arjuna. Moreover, complete elucidation and reconstruction of arjunolic acid pathway in S. cerevisiae and N. benthamiana suggested the utility of arjuna P450s in heterologous production of cardioprotective compounds.
Collapse
Affiliation(s)
- Gaurav Srivastava
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Poonam Vyas
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Aashish Kumar
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Anamika Singh
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Pravesh Bhargav
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Sandeep Dinday
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Sumit Ghosh
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
4
|
Jo S, El-Demerdash A, Owen C, Srivastava V, Wu D, Kikuchi S, Reed J, Hodgson H, Harkess A, Shu S, Plott C, Jenkins J, Williams M, Boston LB, Lacchini E, Qu T, Goossens A, Grimwood J, Schmutz J, Leebens-Mack J, Osbourn A. Unlocking saponin biosynthesis in soapwort. Nat Chem Biol 2024:10.1038/s41589-024-01681-7. [PMID: 39043959 DOI: 10.1038/s41589-024-01681-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 06/18/2024] [Indexed: 07/25/2024]
Abstract
Soapwort (Saponaria officinalis) is a flowering plant from the Caryophyllaceae family with a long history of human use as a traditional source of soap. Its detergent properties are because of the production of polar compounds (saponins), of which the oleanane-based triterpenoid saponins, saponariosides A and B, are the major components. Soapwort saponins have anticancer properties and are also of interest as endosomal escape enhancers for targeted tumor therapies. Intriguingly, these saponins share common structural features with the vaccine adjuvant QS-21 and, thus, represent a potential alternative supply of saponin adjuvant precursors. Here, we sequence the S. officinalis genome and, through genome mining and combinatorial expression, identify 14 enzymes that complete the biosynthetic pathway to saponarioside B. These enzymes include a noncanonical cytosolic GH1 (glycoside hydrolase family 1) transglycosidase required for the addition of D-quinovose. Our results open avenues for accessing and engineering natural and new-to-nature pharmaceuticals, drug delivery agents and potential immunostimulants.
Collapse
Affiliation(s)
- Seohyun Jo
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Amr El-Demerdash
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, UK
- Department of Chemistry, Faculty of Sciences, Mansoura University, Mansoura, Egypt
| | - Charlotte Owen
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Vikas Srivastava
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, UK
- Department of Botany, School of Life Sciences, Central University of Jammu, Jammu, India
| | - Dewei Wu
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Shingo Kikuchi
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, UK
| | - James Reed
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Hannah Hodgson
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Alex Harkess
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Shengqiang Shu
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Chris Plott
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Jerry Jenkins
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | | | | | - Elia Lacchini
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Centre for Plant Systems Biology, Ghent, Belgium
| | - Tongtong Qu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Centre for Plant Systems Biology, Ghent, Belgium
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Centre for Plant Systems Biology, Ghent, Belgium
| | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jim Leebens-Mack
- Department of Plant Biology, Miller Plant Sciences, University of Georgia, Athens, GA, USA
| | - Anne Osbourn
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, UK.
| |
Collapse
|
5
|
Crowe S, Liu Y, Zhao X, Scheller HV, Keasling JD. Advances in Engineering Nucleotide Sugar Metabolism for Natural Product Glycosylation in Saccharomyces cerevisiae. ACS Synth Biol 2024; 13:1589-1599. [PMID: 38820348 PMCID: PMC11197093 DOI: 10.1021/acssynbio.3c00737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 06/02/2024]
Abstract
Glycosylation is a ubiquitous modification present across all of biology, affecting many things such as physicochemical properties, cellular recognition, subcellular localization, and immunogenicity. Nucleotide sugars are important precursors needed to study glycosylation and produce glycosylated products. Saccharomyces cerevisiae is a potentially powerful platform for producing glycosylated biomolecules, but it lacks nucleotide sugar diversity. Nucleotide sugar metabolism is complex, and understanding how to engineer it will be necessary to both access and study heterologous glycosylations found across biology. This review overviews the potential challenges with engineering nucleotide sugar metabolism in yeast from the salvage pathways that convert free sugars to their associated UDP-sugars to de novo synthesis where nucleotide sugars are interconverted through a complex metabolic network with governing feedback mechanisms. Finally, recent examples of engineering complex glycosylation of small molecules in S. cerevisiae are explored and assessed.
Collapse
Affiliation(s)
- Samantha
A. Crowe
- Department
of Chemical & Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- California
Institute of Quantitative Biosciences (QB3), University of California, Berkeley, California 94720, United States
- Joint
BioEnergy Institute, Emeryville, California 94608, United States
| | - Yuzhong Liu
- California
Institute of Quantitative Biosciences (QB3), University of California, Berkeley, California 94720, United States
- Joint
BioEnergy Institute, Emeryville, California 94608, United States
| | - Xixi Zhao
- California
Institute of Quantitative Biosciences (QB3), University of California, Berkeley, California 94720, United States
- Joint
BioEnergy Institute, Emeryville, California 94608, United States
| | - Henrik V. Scheller
- Joint
BioEnergy Institute, Emeryville, California 94608, United States
- Environmental
Genomics and Systems Biology Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Plant and Microbial Biology, University
of California, Berkeley, California 94720, United States
| | - Jay D. Keasling
- Department
of Chemical & Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- California
Institute of Quantitative Biosciences (QB3), University of California, Berkeley, California 94720, United States
- Joint
BioEnergy Institute, Emeryville, California 94608, United States
- Department
of Bioengineering, University of California, Berkeley, California 94720, United States
- Division
of Biological Systems and Engineering, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
- Center
for Biosustainability, Technical University
of Denmark, 2800 Kongens Lyngby, Denmark
- Center
for Synthetic Biochemistry, Shenzhen Institute
of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
6
|
Crowe SA, Zhao X, Gan F, Chen X, Hudson GA, Astolfi MCT, Scheller HV, Liu Y, Keasling JD. Engineered Saccharomyces cerevisiae as a Biosynthetic Platform of Nucleotide Sugars. ACS Synth Biol 2024; 13:1215-1224. [PMID: 38467016 DOI: 10.1021/acssynbio.3c00666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Glycosylation of biomolecules can greatly alter their physicochemical properties, cellular recognition, subcellular localization, and immunogenicity. Glycosylation reactions rely on the stepwise addition of sugars using nucleotide diphosphate (NDP)-sugars. Making these substrates readily available will greatly accelerate the characterization of new glycosylation reactions, elucidation of their underlying regulation mechanisms, and production of glycosylated molecules. In this work, we engineered Saccharomyces cerevisiae to heterologously express nucleotide sugar synthases to access a wide variety of uridine diphosphate (UDP)-sugars from simple starting materials (i.e., glucose and galactose). Specifically, activated glucose, uridine diphosphate d-glucose (UDP-d-Glc), can be converted to UDP-d-glucuronic acid (UDP-d-GlcA), UDP-d-xylose (UDP-d-Xyl), UDP-d-apiose (UDP-d-Api), UDP-d-fucose (UDP-d-Fuc), UDP-l-rhamnose (UDP-l-Rha), UDP-l-arabinopyranose (UDP-l-Arap), and UDP-l-arabinofuranose (UDP-l-Araf) using the corresponding nucleotide sugar synthases of plant and microbial origins. We also expressed genes encoding the salvage pathway to directly activate free sugars to achieve the biosynthesis of UDP-l-Arap and UDP-l-Araf. We observed strong inhibition of UDP-d-Glc 6-dehydrogenase (UGD) by the downstream product UDP-d-Xyl, which we circumvented using an induction system (Tet-On) to delay the production of UDP-d-Xyl to maintain the upstream UDP-sugar pool. Finally, we performed a time-course study using strains containing the biosynthetic pathways to produce five non-native UDP-sugars to elucidate their time-dependent interconversion and the role of UDP-d-Xyl in regulating UDP-sugar metabolism. These engineered yeast strains are a robust platform to (i) functionally characterize sugar synthases in vivo, (ii) biosynthesize a diverse selection of UDP-sugars, (iii) examine the regulation of intracellular UDP-sugar interconversions, and (iv) produce glycosylated secondary metabolites and proteins.
Collapse
Affiliation(s)
- Samantha A Crowe
- Department of Chemical & Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, California 94720, United States
- Joint BioEnergy Institute, Emeryville, California 94608, United States
| | - Xixi Zhao
- California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, California 94720, United States
- Joint BioEnergy Institute, Emeryville, California 94608, United States
| | - Fei Gan
- California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, California 94720, United States
- Joint BioEnergy Institute, Emeryville, California 94608, United States
| | - Xiaoyue Chen
- Joint BioEnergy Institute, Emeryville, California 94608, United States
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, United States
| | - Graham A Hudson
- California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, California 94720, United States
- Joint BioEnergy Institute, Emeryville, California 94608, United States
| | - Maria C T Astolfi
- Joint BioEnergy Institute, Emeryville, California 94608, United States
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Henrik V Scheller
- Joint BioEnergy Institute, Emeryville, California 94608, United States
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, United States
| | - Yuzhong Liu
- California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, California 94720, United States
- Joint BioEnergy Institute, Emeryville, California 94608, United States
| | - Jay D Keasling
- Department of Chemical & Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, California 94720, United States
- Joint BioEnergy Institute, Emeryville, California 94608, United States
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
- Center for Synthetic Biochemistry, Shenzhen Institutes for Advanced Technologies, Shenzhen 518071, China
| |
Collapse
|
7
|
Liu J, Yin X, Kou C, Thimmappa R, Hua X, Xue Z. Classification, biosynthesis, and biological functions of triterpene esters in plants. PLANT COMMUNICATIONS 2024; 5:100845. [PMID: 38356259 PMCID: PMC11009366 DOI: 10.1016/j.xplc.2024.100845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/12/2024] [Accepted: 02/10/2024] [Indexed: 02/16/2024]
Abstract
Triterpene esters comprise a class of secondary metabolites that are synthesized by decorating triterpene skeletons with a series of oxidation, glycosylation, and acylation modifications. Many triterpene esters with important bioactivities have been isolated and identified, including those with applications in the pesticide, pharmaceutical, and cosmetic industries. They also play essential roles in plant defense against pests, diseases, physical damage (as part of the cuticle), and regulation of root microorganisms. However, there has been no recent summary of the biosynthetic pathways and biological functions of plant triterpene esters. Here, we classify triterpene esters into five categories based on their skeletons and find that C-3 oxidation may have a significant effect on triterpenoid acylation. Fatty acid and aromatic moieties are common ligands present in triterpene esters. We further analyze triterpene ester synthesis-related acyltransferases (TEsACTs) in the triterpene biosynthetic pathway. Using an evolutionary classification of BAHD acyltransferases (BAHD-ATs) and serine carboxypeptidase-like acyltransferases (SCPL-ATs) in Arabidopsis thaliana and Oryza sativa, we classify 18 TEsACTs with identified functions from 11 species. All the triterpene-skeleton-related TEsACTs belong to BAHD-AT clades IIIa and I, and the only identified TEsACT from the SCPL-AT family belongs to the CP-I subfamily. This comprehensive review of the biosynthetic pathways and bioactivities of triterpene esters provides a foundation for further study of their bioactivities and applications in industry, agricultural production, and human health.
Collapse
Affiliation(s)
- Jia Liu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China; Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin 150040, China
| | - Xue Yin
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China; Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin 150040, China
| | - Chengxi Kou
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China; Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin 150040, China
| | - Ramesha Thimmappa
- Amity Institute of Genome Engineering, Amity University, Noida, UP India 201313, India
| | - Xin Hua
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China; Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin 150040, China
| | - Zheyong Xue
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China; Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin 150040, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing 100700, P.R. China.
| |
Collapse
|
8
|
Li L, Liu M, Bi H, Liu T. High-level production of Rhodiola rosea characteristic component rosavin from D-glucose and L-arabinose in engineered Escherichia coli. Metab Eng 2024; 82:274-285. [PMID: 38428730 DOI: 10.1016/j.ymben.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/04/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
Rosavin is the characteristic component of Rhodiola rosea L., an important medicinal plant used widely in the world that has been reported to possess multiple biological activities. However, the endangered status of wild Rhodiola has limited the supply of rosavin. In this work, we successfully engineered an Escherichia coli strain to efficiently produce rosavin as an alternative production method. Firstly, cinnamate: CoA ligase from Hypericum calycinum, cinnamoyl-CoA reductase from Lolium perenne, and uridine diphosphate (UDP)-glycosyltransferase (UGT) from Bacillus subtilis (Bs-YjiC) were selected to improve the titer of rosin in E. coli. Subsequently, four UGTs from the UGT91R subfamily were identified to catalyze the formation of rosavin from rosin, with SlUGT91R1 from Solanum lycopersicum showing the highest activity level. Secondly, production of rosavin was achieved for the first time in E. coli by incorporating the SlUGT91R1 and UDP-arabinose pathway, including UDP-glucose dehydrogenase, UDP-xylose synthase, and UDP-xylose 4-epimerase, into the rosin-producing stain, and the titer reached 430.5 ± 91.4 mg/L. Thirdly, a two-step pathway derived from L-arabinose, composed of L-arabinokinase and UDP-sugar pyrophosphorylase, was developed in E. coli to further optimize the supply of the precursor UDP-arabinose. Furthermore, 1203.7 ± 32.1 mg/L of rosavin was produced from D-glucose and L-arabinose using shake-flask fermentation. Finally, the production of rosavin reached 7539.1 ± 228.7 mg/L by fed-batch fermentation in a 5-L bioreactor. Thus, the microbe-based production of rosavin shows great potential for commercialization. This work provides an effective strategy for the biosynthesis of other valuable natural products with arabinose-containing units from D-glucose and L-arabinose.
Collapse
Affiliation(s)
- Lijun Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, China; Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Moshi Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, China; Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; University of Chinese Academy of Sciences, Beijing, China
| | - Huiping Bi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, China; Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
| | - Tao Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, China; Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
| |
Collapse
|
9
|
Natalio F, Maria R. Microbial Biomineralization of Alkaline Earth Metal Carbonates on 3D-Printed Surfaces. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6327-6336. [PMID: 38205804 PMCID: PMC10859896 DOI: 10.1021/acsami.3c13665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/29/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024]
Abstract
The biomineralizing bacterium Sporosarcina pasteurii has attracted considerable interest in the area of geotechnical engineering due to its ability to induce extracellular mineralization. The presented study investigated S. pasteurii's potential to induce the mineralization of alkali-earth metal carbonate coatings on different polymeric 3D-printed flat surfaces fabricated by different additive manufacturing methods. The use of calcium, barium, strontium, or magnesium ions as the source resulted in the formation of vaterite (CaCO3), witherite (BaCO3), strontianite (SrCO3), and nesquehonite MgCO3·3H2O, respectively. These mineral coatings generally exhibit a compact, yet variable, thickness and are composed of agglomerated microparticles similar to those formed in solution. However, the mechanism behind this clustering remains unclear. The thermal properties of these biologically induced mineral coatings differ from their inorganic counterpart, highlighting the unique characteristics imparted by the biomineralization process. This work seeks to capitalize on the bacterium S. pasteurii's ability to form an alkali-earth metal carbonate coating to expand beyond its traditional use in geoengineering applications. It lays the ground for a novel integration of biologically induced mineralization of single or multilayered and multifunctional coating materials, for example, aerospace applications.
Collapse
Affiliation(s)
- Filipe Natalio
- Department
of Plant and Environmental Sciences, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Raquel Maria
- Ilse
Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| |
Collapse
|
10
|
Pancaldi F, Schranz ME, van Loo EN, Trindade LM. Highly differentiated genomic properties underpin the different cell walls of Poaceae and eudicots. PLANT PHYSIOLOGY 2023; 194:274-295. [PMID: 37141316 PMCID: PMC10762515 DOI: 10.1093/plphys/kiad267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 05/06/2023]
Abstract
Plant cell walls of Poaceae and eudicots differ substantially, both in the content and composition of their components. However, the genomic and genetic basis underlying these differences is not fully resolved. In this research, we analyzed multiple genomic properties of 150 cell wall gene families across 169 angiosperm genomes. The properties analyzed include gene presence/absence, copy number, synteny, occurrence of tandem gene clusters, and phylogenetic gene diversity. Results revealed a profound genomic differentiation of cell wall genes between Poaceae and eudicots, often associated with the cell wall diversity between these plant groups. For example, overall patterns of gene copy number variation and synteny were clearly divergent between Poaceae and eudicot species. Moreover, differential Poaceae-eudicot copy number and genomic contexts were observed for all the genes within the BEL1-like HOMEODOMAIN 6 regulatory pathway, which respectively induces and represses secondary cell wall synthesis in Poaceae and eudicots. Similarly, divergent synteny, copy number, and phylogenetic gene diversification were observed for the major biosynthetic genes of xyloglucans, mannans, and xylans, potentially contributing to the differences in content and types of hemicellulosic polysaccharides differences in Poaceae and eudicot cell walls. Additionally, the Poaceae-specific tandem clusters and/or higher copy number of PHENYLALANINE AMMONIA-LYASE, CAFFEIC ACID O-METHYLTRANSFERASE, or PEROXIDASE genes may underly the higher content and larger variety of phenylpropanoid compounds observed in Poaceae cell walls. All these patterns are discussed in detail in this study, along with their evolutionary and biological relevance for cell wall (genomic) diversification between Poaceae and eudicots.
Collapse
Affiliation(s)
- Francesco Pancaldi
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Michael Eric Schranz
- Biosystematics group, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Eibertus N van Loo
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Luisa M Trindade
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| |
Collapse
|
11
|
Chen X, Hudson GA, Mineo C, Amer B, Baidoo EEK, Crowe SA, Liu Y, Keasling JD, Scheller HV. Deciphering triterpenoid saponin biosynthesis by leveraging transcriptome response to methyl jasmonate elicitation in Saponaria vaccaria. Nat Commun 2023; 14:7101. [PMID: 37925486 PMCID: PMC10625584 DOI: 10.1038/s41467-023-42877-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 10/24/2023] [Indexed: 11/06/2023] Open
Abstract
Methyl jasmonate (MeJA) is a known elicitor of plant specialized metabolism, including triterpenoid saponins. Saponaria vaccaria is an annual herb used in traditional Chinese medicine, containing large quantities of oleanane-type triterpenoid saponins with anticancer properties and structural similarities to the vaccine adjuvant QS-21. Leveraging the MeJA-elicited saponin biosynthesis, we identify multiple enzymes catalyzing the oxidation and glycosylation of triterpenoids in S. vaccaria. This exploration is aided by Pacbio full-length transcriptome sequencing and gene expression analysis. A cellulose synthase-like enzyme can not only glucuronidate triterpenoid aglycones but also alter the product profile of a cytochrome P450 monooxygenase via preference for the aldehyde intermediate. Furthermore, the discovery of a UDP-glucose 4,6-dehydratase and a UDP-4-keto-6-deoxy-glucose reductase reveals the biosynthetic pathway for the rare nucleotide sugar UDP-D-fucose, a likely sugar donor for fucosylation of plant natural products. Our work enables the production and optimization of high-value saponins in microorganisms and plants through synthetic biology approaches.
Collapse
Affiliation(s)
- Xiaoyue Chen
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Graham A Hudson
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA
- California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, CA, 94720, USA
| | - Charlotte Mineo
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA
| | - Bashar Amer
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Edward E K Baidoo
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Samantha A Crowe
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA
- California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, CA, 94720, USA
- Department of Chemical & Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
| | - Yuzhong Liu
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA
- California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, CA, 94720, USA
| | - Jay D Keasling
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA
- California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, CA, 94720, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Department of Chemical & Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
- Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
- Center for Synthetic Biochemistry, Shenzhen Institutes for Advanced Technologies, Shenzhen, China
| | - Henrik V Scheller
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA.
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA.
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA.
| |
Collapse
|
12
|
Yuan J, Ma L, Wang Y, Xu X, Zhang R, Wang C, Meng W, Tian Z, Zhou Y, Wang G. A recently evolved BAHD acetyltransferase, responsible for bitter soyasaponin A production, is indispensable for soybean seed germination. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:2490-2504. [PMID: 37548097 DOI: 10.1111/jipb.13553] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/04/2023] [Indexed: 08/08/2023]
Abstract
Soyasaponins are major small molecules that accumulate in soybean (Glycine max) seeds. Among them, type-A soyasaponins, fully acetylated at the terminal sugar of their C22 sugar chain, are responsible for the bitter taste of soybean-derived foods. However, the molecular basis for the acetylation of type-A soyasaponins remains unclear. Here, we identify and characterize GmSSAcT1, encoding a BADH-type soyasaponin acetyltransferase that catalyzes three or four consecutive acetylations on type-A soyasaponins in vitro and in planta. Phylogenetic analysis and biochemical assays suggest that GmSSAcT1 likely evolved from acyltransferases present in leguminous plants involved in isoflavonoid acylation. Loss-of-function mutants of GmSSAcT1 exhibited impaired seed germination, which attribute to the excessive accumulation of null-acetylated type-A soyasaponins. We conclude that GmSSAcT1 not only functions as a detoxification gene for high accumulation of type-A soyasaponins in soybean seeds but is also a promising target for breeding new soybean varieties with lower bitter soyasaponin content.
Collapse
Affiliation(s)
- Jia Yuan
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, the Chinese Academy of Sciences, Beijing, 100101, China
| | - Liya Ma
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, the Chinese Academy of Sciences, Beijing, 100101, China
| | - Yan Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, the Chinese Academy of Sciences, Beijing, 100101, China
| | - Xindan Xu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, the Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Rui Zhang
- State Key Laboratory of Molecular Developmental Biology, the Chinese Academy of Sciences, Beijing, 100190, China
| | - Chengyuan Wang
- The Center for Microbes, Development and Health, Institute of Pasteur of Shanghai, the Chinese Academy of Sciences, Shanghai, 200031, China
| | - Wenxiang Meng
- State Key Laboratory of Molecular Developmental Biology, the Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhixi Tian
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, the Chinese Academy of Sciences, Beijing, 100101, China
| | - Yihua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, the Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Guodong Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, the Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China
| |
Collapse
|
13
|
Dinday S, Ghosh S. Recent advances in triterpenoid pathway elucidation and engineering. Biotechnol Adv 2023; 68:108214. [PMID: 37478981 DOI: 10.1016/j.biotechadv.2023.108214] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023]
Abstract
Triterpenoids are among the most assorted class of specialized metabolites found in all the taxa of living organisms. Triterpenoids are the leading active ingredients sourced from plant species and are utilized in pharmaceutical and cosmetic industries. The triterpenoid precursor 2,3-oxidosqualene, which is biosynthesized via the mevalonate (MVA) pathway is structurally diversified by the oxidosqualene cyclases (OSCs) and other scaffold-decorating enzymes such as cytochrome P450 monooxygenases (P450s), UDP-glycosyltransferases (UGTs) and acyltransferases (ATs). A majority of the bioactive triterpenoids are harvested from the native hosts using the traditional methods of extraction and occasionally semi-synthesized. These methods of supply are time-consuming and do not often align with sustainability goals. Recent advancements in metabolic engineering and synthetic biology have shown prospects for the green routes of triterpenoid pathway reconstruction in heterologous hosts such as Escherichia coli, Saccharomyces cerevisiae and Nicotiana benthamiana, which appear to be quite promising and might lead to the development of alternative source of triterpenoids. The present review describes the biotechnological strategies used to elucidate complex biosynthetic pathways and to understand their regulation and also discusses how the advances in triterpenoid pathway engineering might aid in the scale-up of triterpenoid production in engineered hosts.
Collapse
Affiliation(s)
- Sandeep Dinday
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana 141004, Punjab, India
| | - Sumit Ghosh
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
14
|
Sun W, Yin Q, Wan H, Gao R, Xiong C, Xie C, Meng X, Mi Y, Wang X, Wang C, Chen W, Xie Z, Xue Z, Yao H, Sun P, Xie X, Hu Z, Nelson DR, Xu Z, Sun X, Chen S. Characterization of the horse chestnut genome reveals the evolution of aescin and aesculin biosynthesis. Nat Commun 2023; 14:6470. [PMID: 37833361 PMCID: PMC10576086 DOI: 10.1038/s41467-023-42253-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
Horse chestnut (Aesculus chinensis) is an important medicinal tree that contains various bioactive compounds, such as aescin, barrigenol-type triterpenoid saponins (BAT), and aesculin, a glycosylated coumarin. Herein, we report a 470.02 Mb genome assembly and characterize an Aesculus-specific whole-genome duplication event, which leads to the formation and duplication of two triterpenoid biosynthesis-related gene clusters (BGCs). We also show that AcOCS6, AcCYP716A278, AcCYP716A275, and AcCSL1 genes within these two BGCs along with a seed-specific expressed AcBAHD6 are responsible for the formation of aescin. Furthermore, we identify seven Aesculus-originated coumarin glycoside biosynthetic genes and achieve the de novo synthesis of aesculin in E. coli. Collinearity analysis shows that the collinear BGC segments can be traced back to early-diverging angiosperms, and the essential gene-encoding enzymes necessary for BAT biosynthesis are recruited before the splitting of Aesculus, Acer, and Xanthoceras. These findings provide insight on the evolution of gene clusters associated with medicinal tree metabolites.
Collapse
Affiliation(s)
- Wei Sun
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Qinggang Yin
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Huihua Wan
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Ranran Gao
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Chao Xiong
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
- School of Life Science and Technology, Wuhan Polytechnic University, 430023, Wuhan, China
| | - Chong Xie
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Xiangxiao Meng
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Yaolei Mi
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Xiaotong Wang
- College of Life Science, Northeast Forestry University, 150040, Harbin, China
| | - Caixia Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Weiqiang Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Ziyan Xie
- College of Life Science, Northeast Forestry University, 150040, Harbin, China
| | - Zheyong Xue
- College of Life Science, Northeast Forestry University, 150040, Harbin, China
| | - Hui Yao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 100193, Beijing, China
| | - Peng Sun
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Xuehua Xie
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Zhigang Hu
- College of Pharmacy, Hubei University of Chinese Medicine, 430065, Wuhan, China
| | - David R Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Zhichao Xu
- College of Life Science, Northeast Forestry University, 150040, Harbin, China.
| | - Xinxiao Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, China.
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China.
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China.
| |
Collapse
|
15
|
Wang L, Jiang Z, Zhang J, Chen K, Zhang M, Wang Z, Wang B, Ye M, Qiao X. Characterization and structure-based protein engineering of a regiospecific saponin acetyltransferase from Astragalus membranaceus. Nat Commun 2023; 14:5969. [PMID: 37749089 PMCID: PMC10519980 DOI: 10.1038/s41467-023-41599-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/12/2023] [Indexed: 09/27/2023] Open
Abstract
Acetylation contributes to the bioactivity of numerous medicinally important natural products. However, little is known about the acetylation on sugar moieties. Here we report a saponin acetyltransferase from Astragalus membranaceus. AmAT7-3 is discovered through a stepwise gene mining approach and characterized as the xylose C3'/C4'-O-acetyltransferse of astragaloside IV (1). To elucidate its catalytic mechanism, complex crystal structures of AmAT7-3/1 and AmAT7-3A310G/1 are obtained, which reveal a large active pocket decided by a specific sequence AADAG. Combining with QM/MM computation, the regiospecificity of AmAT7-3 is determined by sugar positioning modulated by surrounding amino acids including #A310 and #L290. Furthermore, a small mutant library is built using semi-rational design, where variants A310G and A310W are found to catalyze specific C3'-O and C4'-O acetylation, respectively. AmAT7-3 and its variants are also employed to acetylate other bioactive saponins. This work expands the understanding of saponin acetyltransferases, and provide efficient catalytic tools for saponin acetylation.
Collapse
Affiliation(s)
- Linlin Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Zhihui Jiang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Jiahe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Kuan Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Meng Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Zilong Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China.
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China.
- Peking University-Yunnan Baiyao International Medical Research Center, 38 Xueyuan Road, Beijing, 100191, China.
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China.
- Peking University-Yunnan Baiyao International Medical Research Center, 38 Xueyuan Road, Beijing, 100191, China.
| |
Collapse
|
16
|
Sun Q, Guo F, Ren S, Zhang L, Liu X, Li C, Feng X. Construction of a UDP-Arabinose Regeneration System for Efficient Arabinosylation of Pentacyclic Triterpenoids. ACS Synth Biol 2023; 12:2463-2474. [PMID: 37473419 DOI: 10.1021/acssynbio.3c00351] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Glycosylation is an important method of modifying natural products and is usually catalyzed by uridine 5'-diphosphate (UDP)-glycosyltransferase. UDP-β-l-arabinose (UDP-Ara) confers specific functions to natural products such as pentacyclic triterpenoids. However, UDP-arabinosyltransferase with high regioselectivity toward pentacyclic triterpenoids has rarely been reported. In addition, UDP-Ara is mainly biosynthesized from UDP-α-d-glucose (UDP-Glc) through several reaction steps, resulting in the high cost of UDP-Ara. Herein, UGT99D1 was systematically characterized for specifically transferring one moiety of arabinose to the C-3 position of typical pentacyclic triterpenoids. Subsequently, 15 enzymes from plants, mammals, and microorganisms were characterized, and a four-enzyme cascade comprising sucrose synthase, UDP-Glc dehydrogenase, UDP-α-d-glucuronic acid decarboxylase, and UDP-Glc 4-epimerase was constructed to transform sucrose into UDP-Ara with UDP recycling. This system was demonstrated to efficiently produce the arabinosylated derivative (Ara-BA) of typical pentacyclic triterpenoid betulinic acid (BA). Finally, the in vitro cytotoxicity tests indicated that Ara-BA showed much higher anticancer activities than BA. The established arabinosylation platform shows the potential to enhance the pharmacological activity of natural products.
Collapse
Affiliation(s)
- Qiuyan Sun
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Fang Guo
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Shichao Ren
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Liang Zhang
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xinhe Liu
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xudong Feng
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
17
|
Reed J, Orme A, El-Demerdash A, Owen C, Martin LBB, Misra RC, Kikuchi S, Rejzek M, Martin AC, Harkess A, Leebens-Mack J, Louveau T, Stephenson MJ, Osbourn A. Elucidation of the pathway for biosynthesis of saponin adjuvants from the soapbark tree. Science 2023; 379:1252-1264. [PMID: 36952412 DOI: 10.1126/science.adf3727] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/02/2023] [Indexed: 03/25/2023]
Abstract
The Chilean soapbark tree (Quillaja saponaria) produces soap-like molecules called QS saponins that are important vaccine adjuvants. These highly valuable compounds are sourced by extraction from the bark, and their biosynthetic pathway is unknown. Here, we sequenced the Q. saponaria genome. Through genome mining and combinatorial expression in tobacco, we identified 16 pathway enzymes that together enable the production of advanced QS pathway intermediates that represent a bridgehead for adjuvant bioengineering. We further identified the enzymes needed to make QS-7, a saponin with excellent therapeutic properties and low toxicity that is present in low abundance in Q. saponaria bark extract. Our results enable the production of Q. saponaria vaccine adjuvants in tobacco and open the way for new routes to access and engineer natural and new-to-nature immunostimulants.
Collapse
Affiliation(s)
- James Reed
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Anastasia Orme
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | | | - Charlotte Owen
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | | | - Rajesh C Misra
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Shingo Kikuchi
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Martin Rejzek
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | | | - Alex Harkess
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL 36849, USA
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Jim Leebens-Mack
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Thomas Louveau
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | | | - Anne Osbourn
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
18
|
Chuang L, Liu S, Franke J. Post-Cyclization Skeletal Rearrangements in Plant Triterpenoid Biosynthesis by a Pair of Branchpoint Isomerases. J Am Chem Soc 2023; 145:5083-5091. [PMID: 36821810 PMCID: PMC9999417 DOI: 10.1021/jacs.2c10838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Triterpenoids possess potent biological activities, but their polycyclic skeletons are challenging to synthesize. The skeletal diversity of triterpenoids in plants is generated by oxidosqualene cyclases based on epoxide-triggered cationic rearrangement cascades. Normally, triterpenoid skeletons then remain unaltered during subsequent tailoring steps. In contrast, the highly modified triterpenoids found in Sapindales plants imply the existence of post-cyclization skeletal rearrangement enzymes that have not yet been found. We report here a biosynthetic pathway in Sapindales plants for the modification of already cyclized tirucallane triterpenoids, controlling the pathway bifurcation between different plant triterpenoid classes. Using a combination of bioinformatics, heterologous expression in plants and chemical analyses, we identified a cytochrome P450 monooxygenase and two isomerases which harness the epoxidation-rearrangement biosynthetic logic of triterpene cyclizations for modifying the tirucallane scaffold. The two isomerases share the same epoxide substrate made by the cytochrome P450 monooxygenase CYP88A154, but generate two different rearrangement products, one containing a cyclopropane ring. Our findings reveal a process for skeletal rearrangements of triterpenoids in nature that expands their scaffold diversity after the initial cyclization. In addition, the enzymes described here are crucial for the biotechnological production of limonoid, quassinoid, apoprotolimonoid, and glabretane triterpenoids.
Collapse
Affiliation(s)
- Ling Chuang
- Centre of Biomolecular Drug Research, Leibniz University Hannover, Schneiderberg 38, 30167 Hannover, Germany
| | - Shenyu Liu
- Centre of Biomolecular Drug Research, Leibniz University Hannover, Schneiderberg 38, 30167 Hannover, Germany
| | - Jakob Franke
- Centre of Biomolecular Drug Research, Leibniz University Hannover, Schneiderberg 38, 30167 Hannover, Germany.,Institute of Botany, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| |
Collapse
|
19
|
Gossart N, Berhin A, Sergeant K, Alam I, André C, Hausman JF, Boutry M, Hachez C. Engineering Nicotiana tabacum trichomes for triterpenic acid production. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 328:111573. [PMID: 36563941 DOI: 10.1016/j.plantsci.2022.111573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
In this work, we aimed at implementing the biosynthesis of triterpenic acids in Nicotiana tabacum glandular trichomes. Although endogenous genes coding for enzymes involved in such biosynthetic pathway are found in the Nicotiana tabacum genome, implementing such pathway specifically in glandular trichomes required to boost endogenous enzymatic activities. Five transgenes coding for a farnesyl-diphosphate synthase, a squalene synthase, a squalene epoxidase, a beta-amyrin synthase and a beta-amyrin 28-monooxygenase were introduced in N.tabacum, their expression being driven by pMALD1, a trichome-specific transcriptional promoter. This study aimed at testing whether sinking isoprenoid precursors localized in plastids, by exploiting potential cross-talks allowing the exchange of terpenoid pools from the chloroplast to the cytosol, could be a way to improve overall yield. By analyzing metabolites extracted from entire leaves, a low amount of ursolic acid was detected in plants expressing the five transgenes. Our study shows that the terpene biosynthetic pathway could be, in part, redirected in N.tabacum glandular trichomes with no deleterious phenotype at the whole plant level (chlorosis, dwarfism,…). In light of our results, possible ways to improve the final yield are discussed.
Collapse
Affiliation(s)
- Nicola Gossart
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Alice Berhin
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Kjell Sergeant
- Environmental Research and Innovation, Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg
| | - Iftekhar Alam
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium; Plant Biotechnology Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka 1349, Bangladesh
| | - Christelle André
- Environmental Research and Innovation, Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg; The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag 92169, Auckland, New Zealand
| | - Jean-François Hausman
- Environmental Research and Innovation, Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg
| | - Marc Boutry
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Charles Hachez
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium.
| |
Collapse
|
20
|
Voiniciuc C. It's time to go glyco in cell wall bioengineering. CURRENT OPINION IN PLANT BIOLOGY 2023; 71:102313. [PMID: 36411187 DOI: 10.1016/j.pbi.2022.102313] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Tailoring the structure of cellulose, hemicellulose or pectin in plant cell walls can modulate growth, disease resistance, biomass yield and other important agronomic traits. Recent advances in the biosynthesis of microfibrils and matrix polysaccharides force us to re-examine old assumptions about the assembly and functions of cell wall components. The engineering of living or hybrid materials in microorganisms could be adapted to plant biopolymers or to inspire the development of new plant-based composites. High-throughput cellular factories and synthetic biology toolkits could unveil the biological roles and biotechnological potential of the large, unexplored space of carbohydrate-active enzymes. Increasing automation and enhanced carbohydrate detection methods are unlocking new routes to design plant glycans for a sustainable bioeconomy.
Collapse
Affiliation(s)
- Cătălin Voiniciuc
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
21
|
Rieseberg TP, Dadras A, Fürst-Jansen JMR, Dhabalia Ashok A, Darienko T, de Vries S, Irisarri I, de Vries J. Crossroads in the evolution of plant specialized metabolism. Semin Cell Dev Biol 2023; 134:37-58. [PMID: 35292191 DOI: 10.1016/j.semcdb.2022.03.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/17/2022] [Accepted: 03/04/2022] [Indexed: 12/25/2022]
Abstract
The monophyletic group of embryophytes (land plants) stands out among photosynthetic eukaryotes: they are the sole constituents of the macroscopic flora on land. In their entirety, embryophytes account for the majority of the biomass on land and constitute an astounding biodiversity. What allowed for the massive radiation of this particular lineage? One of the defining features of all land plants is the production of an array of specialized metabolites. The compounds that the specialized metabolic pathways of embryophytes produce have diverse functions, ranging from superabundant structural polymers and compounds that ward off abiotic and biotic challenges, to signaling molecules whose abundance is measured at the nanomolar scale. These specialized metabolites govern the growth, development, and physiology of land plants-including their response to the environment. Hence, specialized metabolites define the biology of land plants as we know it. And they were likely a foundation for their success. It is thus intriguing to find that the closest algal relatives of land plants, freshwater organisms from the grade of streptophyte algae, possess homologs for key enzymes of specialized metabolic pathways known from land plants. Indeed, some studies suggest that signature metabolites emerging from these pathways can be found in streptophyte algae. Here we synthesize the current understanding of which routes of the specialized metabolism of embryophytes can be traced to a time before plants had conquered land.
Collapse
Affiliation(s)
- Tim P Rieseberg
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Armin Dadras
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Janine M R Fürst-Jansen
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Amra Dhabalia Ashok
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Tatyana Darienko
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Sophie de Vries
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany
| | - Iker Irisarri
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany; University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, 37077 Goettingen, Germany
| | - Jan de Vries
- University of Goettingen, Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077 Goettingen, Germany; University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr. 1, 37077 Goettingen, Germany; University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Department of Applied Bioinformatics, Goldschmidtsr. 1, 37077 Goettingen, Germany.
| |
Collapse
|
22
|
Multienzyme Synthesis of Glycyrrhetic Acid 3-O-mono-β-d-glucuronide by Coupling UGT73F15 to UDP-Glucuronic Acid Regeneration Module. Catalysts 2023. [DOI: 10.3390/catal13010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Glycyrrhetic acid 3-O-mono-β-d-glucuronide (GAMG), a rare and innovative compound in licorice, exhibits high-potency sweetness and improved physiological activities. However, low amounts of GAMG from plants cannot meet the demands of growing markets. In this study, an efficient one-pot multienzyme cascade reaction for GAMG biosynthesis was constructed using a coupled catalysis of glycosyltransferase and uridine 5′-diphosphate (UDP) glucuronic acid (GlcA) regeneration system. The Glycyrrhiza uralensis glycosyltransferase UGT73F15 was expressed in Escherichia coli BL21 (DE3). The optimal reaction conditions of UGT73F15 were found to be pH 7.5 and 35 °C. The catalytic efficiency (kcat/Km) for glycyrrhetic acid (GA) was 2.14 min−1 mM−1 when using UDP-GlcA as sugar donor. To regenerate costly UDP-GlcA, the one-pot multienzyme cascade reaction including UGT73F15, sucrose synthase, UDP-glucose dehydrogenase, and lactate dehydrogenase was adopted to synthesize GAMG from GA on the basis of the UDP-GlcA regeneration system. By optimizing the cascade reaction conditions, the GAMG production successfully achieved 226.38 mg/L. Our study developed an economical and efficient one-pot multienzyme cascade method for facile synthesis of GAMG and other bioactive glucuronosides.
Collapse
|
23
|
Luo Y, Jiang Y, Chen L, Li C, Wang Y. Applications of protein engineering in the microbial synthesis of plant triterpenoids. Synth Syst Biotechnol 2022; 8:20-32. [PMID: 36381964 PMCID: PMC9634032 DOI: 10.1016/j.synbio.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/26/2022] Open
Abstract
Triterpenoids are a class of natural products widely used in fields related to medicine and health due to their biological activities such as hepatoprotection, anti-inflammation, anti-viral, and anti-tumor. With the advancement in biotechnology, microorganisms have been used as cell factories to produce diverse natural products. Despite the significant progress that has been made in the construction of microbial cell factories for the heterogeneous biosynthesis of triterpenoids, the industrial production of triterpenoids employing microorganisms has been stymied due to the shortage of efficient enzymes as well as the low expression and low catalytic activity of heterologous proteins in microbes. Protein engineering has been demonstrated as an effective way for improving the specificity, catalytic activity, and stability of the enzyme, which can be employed to overcome these challenges. This review summarizes the current progress in the studies of Oxidosqualene cyclases (OSCs), cytochrome P450s (P450s), and UDP-glycosyltransferases (UGTs), the key enzymes in the triterpenoids synthetic pathway. The main obstacles restricting the efficient catalysis of these key enzymes are analyzed, the applications of protein engineering for the three key enzymes in the microbial synthesis of triterpenoids are systematically reviewed, and the challenges and prospects of protein engineering are also discussed.
Collapse
Affiliation(s)
- Yan Luo
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Yaozhu Jiang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Linhao Chen
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China,Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Ying Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China,Corresponding author.
| |
Collapse
|
24
|
Ye L, Yang L, Wang B, Chen G, Jiang L, Hu Z, Shi Z, Liu Y, Chen S. The Chromosome-level genome of Aesculus wilsonii provides new insights into terpenoid biosynthesis and Aesculus evolution. FRONTIERS IN PLANT SCIENCE 2022; 13:1022169. [PMID: 36388583 PMCID: PMC9642078 DOI: 10.3389/fpls.2022.1022169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Aesculus L. (buckeye and horse chestnut) are woody plant species with important horticultural and medicinal values. Aesculus seeds are widely used as biomedicine and cosmetic ingredients due to their saponins. We report a chromosomal-scale genome of Aesculus wilsonii. Sequences amounting to a total of 579.01 Mb were assembled into 20 chromosomes. More than half of the genome (54.46%) were annotated as repetitive sequences, and 46,914 protein-coding genes were predicted. In addition to the widespread gamma event with core eudicots, a unique whole-genome duplication (WGD) event (17.69 Mya) occurred in Aesculus after buckeye differentiated from longan. Due to WGD events and tandem duplications, the related synthetic genes of triterpene saponins unique to Aesculus increased significantly. Combined with transcriptome characterization, the study preliminarily resolved the biosynthetic pathway of triterpenoid saponins like aescin in A. wilsonii genome. Analyses of the resequencing of 104 buckeye accessions revealed clear relationship between the geographic distribution and genetic differentiation of buckeye trees in China. We found that the buckeye species found in southern Shaanxi is A. wilsonii rather than A. chinensis. Population dynamics analysis further suggests that the population size and evolution of existing buckeye species have been influenced by climate fluctuations during the Pleistocene and recent domestication events. The genome of A. wilsonii and population genomics of Aesculus provide a resource for future research on Hippocastanaceae. These findings will contribute to the utilization and diversity protection of Aesculus.
Collapse
Affiliation(s)
- Lichun Ye
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Lulu Yang
- Genomics Project Department, Wuhan Benagen Tech Solutions Company Limited, Wuhan, China
| | - Bo Wang
- Hubei Institute for Drug Control, Wuhan, China
| | - Gang Chen
- Genomics Project Department, Wuhan Benagen Tech Solutions Company Limited, Wuhan, China
| | - Liping Jiang
- Department of Pharmacy, Wuhan Hospital of Traditional and Western Medicine, Wuhan, China
| | - Zhigang Hu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhaohua Shi
- Key Laboratory of Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, China
| | - Yifei Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Shilin Chen
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Institute of herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
25
|
Yu N, Dong M, Yang J, Li R. Age-dependent modulation of oleoresin production in the stem of Sindora glabra. TREE PHYSIOLOGY 2022; 42:2050-2067. [PMID: 35532079 DOI: 10.1093/treephys/tpac052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
Plants produce specialized metabolites in various organs which serve important functions in defense and development. However, the molecular regulatory mechanisms of oleoresin production in stems from broadleaved tree species are not fully understood. To determine whether endogenous developmental cues play a role in the regulation of oleoresin biosynthesis in tree stems, anatomy, multi-omics and molecular experiments were utilized to investigate the change of secretory structures, chemical profiles and gene expression in different ontogenetic stages of Sindora glabra tree, which accumulates copious amount of sesquiterpene-rich oleoresin in stems. The size of secretory canals and the concentration of five sesquiterpenes in Sindora stems exhibited obvious increase with plant age, from 0.5- to 20-year-old plants. Moreover, α-copaene and β-copaene were found to be stem-specific sesquiterpenes. Metabolomic analysis revealed that salicylic acid highly accumulated in mature stems, but the content of triterpenes was greatly decreased. The expression of three repressors AUX/IAA, DELLA and JAZ involved in hormone signaling transduction pathways was significantly downregulated in stems of 10- and 20-year-old plants. Two key genes SgTPS3 and SgTPS5 were identified, whose expression was highly correlated with the accumulation patterns of specific sesquiterpenes and their enzymatic products were consistent with the chemical profiles in the stem. The promoters of three SgTPSs exhibiting high activity were isolated. Furthermore, we demonstrated that SgSPL15 directly interacts with SgTPS3 and SgTPS5 promoters and activates SgTPS5 expression but SgSPL15 inhibits SgTPS3 expression. In addition, SgSPL15 enhanced sesquiterpene levels by upregulating AtTPSs expression in Arabidopsis. These results suggested that sesquiterpene biosynthesis in S. glabra stem was dependent on the regulation of endogenous hormones as well as plant age, and SgSPL15 might act as a buffering factor to regulate sesquiterpene biosynthesis by targeting SgTPS genes.
Collapse
Affiliation(s)
- Niu Yu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Tropical Forestry, Chinese Academy of Forestry, No. 682, Guangshan Yi Road, Longdong, Guangzhou 510520, China
| | - Mingliang Dong
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Tropical Forestry, Chinese Academy of Forestry, No. 682, Guangshan Yi Road, Longdong, Guangzhou 510520, China
| | - Jinchang Yang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Tropical Forestry, Chinese Academy of Forestry, No. 682, Guangshan Yi Road, Longdong, Guangzhou 510520, China
| | - Rongsheng Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Tropical Forestry, Chinese Academy of Forestry, No. 682, Guangshan Yi Road, Longdong, Guangzhou 510520, China
| |
Collapse
|
26
|
Functional characterization and substrate promiscuity analysis of UDP-glucose dehydrogenases from licorice (Glycyrrhiza uralensis). J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Singh KS, van der Hooft JJJ, van Wees SCM, Medema MH. Integrative omics approaches for biosynthetic pathway discovery in plants. Nat Prod Rep 2022; 39:1876-1896. [PMID: 35997060 PMCID: PMC9491492 DOI: 10.1039/d2np00032f] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Indexed: 12/13/2022]
Abstract
Covering: up to 2022With the emergence of large amounts of omics data, computational approaches for the identification of plant natural product biosynthetic pathways and their genetic regulation have become increasingly important. While genomes provide clues regarding functional associations between genes based on gene clustering, metabolome mining provides a foundational technology to chart natural product structural diversity in plants, and transcriptomics has been successfully used to identify new members of their biosynthetic pathways based on coexpression. Thus far, most approaches utilizing transcriptomics and metabolomics have been targeted towards specific pathways and use one type of omics data at a time. Recent technological advances now provide new opportunities for integration of multiple omics types and untargeted pathway discovery. Here, we review advances in plant biosynthetic pathway discovery using genomics, transcriptomics, and metabolomics, as well as recent efforts towards omics integration. We highlight how transcriptomics and metabolomics provide complementary information to link genes to metabolites, by associating temporal and spatial gene expression levels with metabolite abundance levels across samples, and by matching mass-spectral features to enzyme families. Furthermore, we suggest that elucidation of gene regulatory networks using time-series data may prove useful for efforts to unwire the complexities of biosynthetic pathway components based on regulatory interactions and events.
Collapse
Affiliation(s)
- Kumar Saurabh Singh
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands.
- Plant-Microbe Interactions, Institute of Environmental Biology, Utrecht University, The Netherlands.
| | - Justin J J van der Hooft
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands.
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa
| | - Saskia C M van Wees
- Plant-Microbe Interactions, Institute of Environmental Biology, Utrecht University, The Netherlands.
| | - Marnix H Medema
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
28
|
Schenck CA, Busta L. Using interdisciplinary, phylogeny-guided approaches to understand the evolution of plant metabolism. PLANT MOLECULAR BIOLOGY 2022; 109:355-367. [PMID: 34816350 DOI: 10.1007/s11103-021-01220-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
To cope with relentless environmental pressures, plants produce an arsenal of structurally diverse chemicals, often called specialized metabolites. These lineage-specific compounds are derived from the simple building blocks made by ubiquitous core metabolic pathways. Although the structures of many specialized metabolites are known, the underlying metabolic pathways and the evolutionary events that have shaped the plant chemical diversity landscape are only beginning to be understood. However, with the advent of multi-omics data sets and the relative ease of studying pathways in previously intractable non-model species, plant specialized metabolic pathways are now being systematically identified. These large datasets also provide a foundation for comparative, phylogeny-guided studies of plant metabolism. Comparisons of metabolic traits and features like chemical abundances, enzyme activities, or gene sequences from phylogenetically diverse plants provide insights into how metabolic pathways evolved. This review highlights the power of studying evolution through the lens of comparative biochemistry, particularly how placing metabolism into a phylogenetic context can help a researcher identify the metabolic innovations enabling the evolution of structurally diverse plant metabolites.
Collapse
Affiliation(s)
- Craig A Schenck
- Department of Biochemistry, University of Missouri, Columbia, MO, USA.
| | - Lucas Busta
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, USA
| |
Collapse
|
29
|
Yang L, Gu Y, Zhou J, Yuan P, Jiang N, Wu Z, Tan X. Whole-Genome Identification and Analysis of Multiple Gene Families Reveal Candidate Genes for Theasaponin Biosynthesis in Camellia oleifera. Int J Mol Sci 2022; 23:ijms23126393. [PMID: 35742835 PMCID: PMC9223445 DOI: 10.3390/ijms23126393] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/03/2022] [Accepted: 06/05/2022] [Indexed: 01/27/2023] Open
Abstract
Camellia oleifera is an economically important oilseed tree. Seed meals of C. oleifera have a long history of use as biocontrol agents in shrimp farming and as cleaning agents in peoples’ daily lives due to the presence of theasaponins, the triterpene saponins from the genus Camellia. To characterize the biosynthetic pathway of theasaponins in C. oleifera, members of gene families involved in triterpenoid biosynthetic pathways were identified and subjected to phylogenetic analysis with corresponding members in Arabidopsis thaliana, Camellia sinensis, Actinidia chinensis, Panax ginseng, and Medicago truncatula. In total, 143 triterpenoid backbone biosynthetic genes, 1169 CYP450s, and 1019 UGTs were identified in C. oleifera. The expression profiles of triterpenoid backbone biosynthetic genes were analyzed in different tissue and seed developmental stages of C. oleifera. The results suggested that MVA is the main pathway for triterpenoid backbone biosynthesis. Moreover, the candidate genes for theasaponin biosynthesis were identified by WGCNA and qRT-PCR analysis; these included 11 CYP450s, 14 UGTs, and eight transcription factors. Our results provide valuable information for further research investigating the biosynthetic and regulatory network of theasaponins.
Collapse
Affiliation(s)
- Liying Yang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China; (L.Y.); (Y.G.); (Z.W.)
| | - Yiyang Gu
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China; (L.Y.); (Y.G.); (Z.W.)
| | - Junqin Zhou
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China; (L.Y.); (Y.G.); (Z.W.)
- Correspondence: (J.Z.); (X.T.)
| | - Ping Yuan
- Hunan Horticultural Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China;
| | - Nan Jiang
- School of Packing and Material Engineering, Hunan University of Technology, Zhuzhou 412000, China;
| | - Zelong Wu
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China; (L.Y.); (Y.G.); (Z.W.)
| | - Xiaofeng Tan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China; (L.Y.); (Y.G.); (Z.W.)
- Correspondence: (J.Z.); (X.T.)
| |
Collapse
|
30
|
Yu MY, Hua ZY, Liao PR, Zheng H, Jin Y, Peng HS, Cui XM, Huang LQ, Yuan Y. Increasing Expression of PnGAP and PnEXPA4 Provides Insights Into the Enlargement of Panax notoginseng Root Size From Qing Dynasty to Cultivation Era. FRONTIERS IN PLANT SCIENCE 2022; 13:878796. [PMID: 35668802 PMCID: PMC9164015 DOI: 10.3389/fpls.2022.878796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/07/2022] [Indexed: 06/15/2023]
Abstract
Root size is a key trait in plant cultivation and can be influenced by the cultivation environment. However, physical evidence of root size change in a secular context is scarce due to the difficulty in preserving ancient root samples, and how they were modified during the domestication and cultivation stays unclear. About 100 ancient root samples of Panax notoginseng, preserved as tribute in the Palace Museum (A.D. 1636 to 1912, Qing dynasty), provided an opportunity to investigate the root size changes during the last 100 years of cultivation. The dry weight of ancient root samples (~120 tou samples, tou represents number of roots per 500 g dry weight) is 0.22-fold of the modern samples with the biggest size (20 tou samples). Transcriptome analysis revealed that PnGAP and PnEXPA4 were highly expressed in 20 tou samples, compared with the 120 tou samples, which might contribute to the thicker cell wall and a higher content of lignin, cellulose, and callose in 20 tou samples. A relatively lower content of dencichine and higher content of ginsenoside Rb1 in 20 tou samples are also consistent with higher expression of ginsenoside biosynthesis-related genes. PnPHL8 was filtrated through transcriptome analysis, which could specifically bind the promoters of PnGAP, PnCYP716A47, and PnGGPPS3, respectively. The results in this study represent the first physical evidence of root size changes in P. notoginseng in the last 100 years of cultivation and contribute to a comprehensive understanding of how the cultivation environment affected root size, chemical composition, and clinical application.
Collapse
Affiliation(s)
- Mu-Yao Yu
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhong-Yi Hua
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Pei-Ran Liao
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Han Zheng
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yan Jin
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hua-Sheng Peng
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiu-Ming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Lu-Qi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuan Yuan
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
31
|
Rössner C, Lotz D, Becker A. VIGS Goes Viral: How VIGS Transforms Our Understanding of Plant Science. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:703-728. [PMID: 35138878 DOI: 10.1146/annurev-arplant-102820-020542] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Virus-induced gene silencing (VIGS) has developed into an indispensable approach to gene function analysis in a wide array of species, many of which are not amenable to stable genetic transformation. VIGS utilizes the posttranscriptional gene silencing (PTGS) machinery of plants to restrain viral infections systemically and is used to downregulate the plant's endogenous genes. Here, we review the molecular mechanisms of DNA- and RNA-virus-based VIGS, its inherent connection to PTGS, and what is known about the systemic spread of silencing. Recently, VIGS-based technologies have been expanded to enable not only gene silencing but also overexpression [virus-induced overexpression (VOX)], genome editing [virus-induced genome editing (VIGE)], and host-induced gene silencing (HIGS). These techniques expand the genetic toolbox for nonmodel organisms even more. Further, we illustrate the versatility of VIGS and the methods derived from it in elucidating molecular mechanisms, using tomato fruit ripening and programmed cell death as examples. Finally, we discuss challenges of and future perspectives on the use of VIGS to advance gene function analysis in nonmodel plants in the postgenomic era.
Collapse
Affiliation(s)
- Clemens Rössner
- Institute of Botany, Justus-Liebig University Gießen, Gießen, Germany;
| | - Dominik Lotz
- Institute of Botany, Justus-Liebig University Gießen, Gießen, Germany;
| | - Annette Becker
- Institute of Botany, Justus-Liebig University Gießen, Gießen, Germany;
| |
Collapse
|
32
|
Sonawane PD, Jozwiak A, Barbole R, Panda S, Abebie B, Kazachkova Y, Gharat SA, Ramot O, Unger T, Wizler G, Meir S, Rogachev I, Doron-Faigenboim A, Petreikov M, Schaffer A, Giri AP, Scherf T, Aharoni A. 2-oxoglutarate-dependent dioxygenases drive expansion of steroidal alkaloid structural diversity in the genus Solanum. THE NEW PHYTOLOGIST 2022; 234:1394-1410. [PMID: 35238413 DOI: 10.1111/nph.18064] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/01/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Solanum steroidal glycoalkaloids (SGAs) are renowned defence metabolites exhibiting spectacular structural diversity. Genes and enzymes generating the SGA precursor pathway, SGA scaffold and glycosylated forms have been largely identified. Yet, the majority of downstream metabolic steps creating the vast repertoire of SGAs remain untapped. Here, we discovered that members of the 2-OXOGLUTARATE-DEPENDENT DIOXYGENASE (2-ODD) family play a prominent role in SGA metabolism, carrying out three distinct backbone-modifying oxidative steps in addition to the three formerly reported pathway reactions. The GLYCOALKALOID METABOLISM34 (GAME34) enzyme catalyses the conversion of core SGAs to habrochaitosides in wild tomato S. habrochaites. Cultivated tomato plants overexpressing GAME34 ectopically accumulate habrochaitosides. These habrochaitoside enriched plants extracts potently inhibit Puccinia spp. spore germination, a significant Solanaceae crops fungal pathogen. Another 2-ODD enzyme, GAME33, acts as a desaturase (via hydroxylation and E/F ring rearrangement) forming unique, yet unreported SGAs. Conversion of bitter α-tomatine to ripe fruit, nonbitter SGAs (e.g. esculeoside A) requires two hydroxylations; while the known GAME31 2-ODD enzyme catalyses hydroxytomatine formation, we find that GAME40 catalyses the penultimate step in the pathway and generates acetoxy-hydroxytomatine towards esculeosides accumulation. Our results highlight the significant contribution of 2-ODD enzymes to the remarkable structural diversity found in plant steroidal specialized metabolism.
Collapse
Affiliation(s)
- Prashant D Sonawane
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
- Department of Natural Products, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Adam Jozwiak
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ranjit Barbole
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sayantan Panda
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
- Gilat Research Center, Agricultural Research Organization (ARO), Rural delivery Negev, 85280, Israel
| | - Bekele Abebie
- Department of Plant Pathology and Weed Research, ARO-Volcani Center, Bet Dagan, 50250, Israel
| | - Yana Kazachkova
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Sachin A Gharat
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ofir Ramot
- Metabolic Insights Ltd, Ness Ziona, 7414001, Israel
| | - Tamar Unger
- Israel Structural Proteomics Centre, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Guy Wizler
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Sagit Meir
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ilana Rogachev
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Adi Doron-Faigenboim
- Institute of Plant Sciences, ARO-Volcani Center, Rishon LeZiyyon, 7505101, Israel
| | - Marina Petreikov
- Institute of Plant Sciences, ARO-Volcani Center, Rishon LeZiyyon, 7505101, Israel
| | - Arthur Schaffer
- Institute of Plant Sciences, ARO-Volcani Center, Rishon LeZiyyon, 7505101, Israel
| | - Ashok P Giri
- Department of Natural Products, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, 411008, India
| | - Tali Scherf
- NMR unit, Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| |
Collapse
|
33
|
Wang ZL, Zhou JJ, Han BY, Hasan A, Zhang YQ, Zhang JH, Wang HD, Li B, Qiao X, Ye M. GuRhaGT, a highly specific saponin 2''- O-rhamnosyltransferase from Glycyrrhiza uralensis. Chem Commun (Camb) 2022; 58:5277-5280. [PMID: 35393997 DOI: 10.1039/d1cc07021e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly regio- and donor-specific 2''-O-rhamnosyltransferase GuRhaGT was characterised from the medicinal plant Glycyrrhiza uralensis. GuRhaGT could efficiently catalyse rhamnosylation at 2''-OH of the C-3 glycosyl moiety of triterpenoid saponins.
Collapse
Affiliation(s)
- Zi-Long Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| | - Jia-Jing Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| | - Bo-Yun Han
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| | - Aobulikasimu Hasan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| | - Ya-Qun Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| | - Jia-He Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| | - Hai-Dong Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| | - Bin Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China. .,Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Peking University, 38 Xueyuan Road, Beijing 100191, China.,Peking University-Yunnan Baiyao International Medical Research Center, 38 Xueyuan Road, Beijing 100191, China
| |
Collapse
|
34
|
Wang Y, Zhang H, Ri HC, An Z, Wang X, Zhou JN, Zheng D, Wu H, Wang P, Yang J, Liu DK, Zhang D, Tsai WC, Xue Z, Xu Z, Zhang P, Liu ZJ, Shen H, Li Y. Deletion and tandem duplications of biosynthetic genes drive the diversity of triterpenoids in Aralia elata. Nat Commun 2022; 13:2224. [PMID: 35468919 PMCID: PMC9038795 DOI: 10.1038/s41467-022-29908-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
Araliaceae species produce various classes of triterpene and triterpenoid saponins, such as the oleanane-type triterpenoids in Aralia species and dammarane-type saponins in Panax, valued for their medicinal properties. The lack of genome sequences of Panax relatives has hindered mechanistic insight into the divergence of triterpene saponins in Araliaceae. Here, we report a chromosome-level genome of Aralia elata with a total length of 1.05 Gb. The loss of 12 exons in the dammarenediol synthase (DDS)-encoding gene in A. elata after divergence from Panax might have caused the lack of dammarane-type saponin production, and a complementation assay shows that overexpression of the PgDDS gene from Panax ginseng in callus of A. elata recovers the accumulation of dammarane-type saponins. Tandem duplication events of triterpene biosynthetic genes are common in the A. elata genome, especially for AeCYP72As, AeCSLMs, and AeUGT73s, which function as tailoring enzymes of oleanane-type saponins and aralosides. More than 13 aralosides are de novo synthesized in Saccharomyces cerevisiae by overexpression of these genes in combination. This study sheds light on the diversity of saponins biosynthetic pathway in Araliaceae and will facilitate heterologous bioproduction of aralosides.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - He Zhang
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
| | - Hyok Chol Ri
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
- Biochemistry Institute, University of Science, Pyongyang, 999093, Democratic People's Republic of Korea
| | - Zeyu An
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Xin Wang
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Jia-Nan Zhou
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Dongran Zheng
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Hao Wu
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Pengchao Wang
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Jianfei Yang
- School of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Ding-Kun Liu
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Diyang Zhang
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wen-Chieh Tsai
- Orchid Research and Development Center, National Cheng Kung University, Tainan, 701, Taiwan, China
- Department of Life Sciences, National Cheng Kung University, Tainan, 701, Taiwan, China
| | - Zheyong Xue
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Zhichao Xu
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Peng Zhang
- School of Forestry, Northeast Forestry University, Harbin, 150040, China.
| | - Zhong-Jian Liu
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Hailong Shen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China.
- School of Forestry, Northeast Forestry University, Harbin, 150040, China.
| | - Yuhua Li
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China.
| |
Collapse
|
35
|
Liu S, Zhong Z, Sun Z, Tian J, Sulaiman K, Shawky E, Fu H, Zhu W. De novo Transcriptome Analysis Revealed the Putative Pathway Genes Involved in Biosynthesis of Moracins in Morus alba L. ACS OMEGA 2022; 7:11343-11352. [PMID: 35415355 PMCID: PMC8992258 DOI: 10.1021/acsomega.2c00409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Moracins, a kind of 2-phenyl-benzofuran compound from Moraceae, serve as phytoalexins with antimicrobial, anti-inflammatory, antitumor, and antidiabetes activities and respond to biotic and abiotic stresses, while their biosynthetic pathway and regulatory mechanism remain unclear. Here, we report a de novo transcriptome sequencing for different tissues of seedlings, as well as leaves under different stresses, in M. alba L. A total of 88 282 unigenes were assembled with an average length of 937 bp, and 82.2% of them were annotated. On the basis of the differential expression analysis and enzymatic activity assays in vitro, moracins were traced to the phenylpropanoid pathway, and a putative biosynthetic pathway of moracins was proposed. Unigenes coding key enzymes in the pathway were identified and their expression levels were verified by real-time quantitative reverse transcription PCR (qRT-PCR). Particularly, a p-coumaroyl CoA 2'-hydroxylase was presumed to be involved in the biosynthesis of stilbenes and deoxychalcones in mulberry. Additionally, the transcription factors that might participate in the regulation of moracin biosynthesis were obtained by coexpression analysis. These results shed light on the putative biosynthetic pathway of moracins, providing a basis for further investigation in functional characterization and transcriptional regulation of moracin biosynthesis in mulberry.
Collapse
Affiliation(s)
- Shengzhi Liu
- College
of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Zhuoheng Zhong
- College
of Life Sciences and Medicine, Zhejiang
Sci-Tech University, Hangzhou 310018, China
| | - Zijian Sun
- College
of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Jingkui Tian
- The
Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang
Cancer Hospital), Institute of Basic Medicine
and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310002, China
| | - Kaisa Sulaiman
- The
Xinjiang Uygur Autonomous Region National Institute of Traditional
Chinese Medicine, Urumchi, Xinjiang 830092, China
| | - Eman Shawky
- Department
of Pharmacognosy, Faculty of Pharmacy, Alexandria
University, Alexandria 21521, Egypt
| | - Hongwei Fu
- College
of Life Sciences and Medicine, Zhejiang
Sci-Tech University, Hangzhou 310018, China
| | - Wei Zhu
- The
Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang
Cancer Hospital), Institute of Basic Medicine
and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310002, China
| |
Collapse
|
36
|
Zhang H, Hua X, Zheng D, Wu H, Li C, Rao P, Wen M, Choi YE, Xue Z, Wang Y, Li Y. De Novo Biosynthesis of Oleanane-Type Ginsenosides in Saccharomyces cerevisiae Using Two Types of Glycosyltransferases from Panax ginseng. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2231-2240. [PMID: 35148079 DOI: 10.1021/acs.jafc.1c07526] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Oleanane-type ginsenosides are highly biologically active substances in Panax ginseng, a popular Chinese dietary plant. Lack of key enzymes for glycosylation reactions has hindered de novo synthesis of these bioactive molecules. We mined candidate glycosyltransferases (GTs) of the ginseng database by combining key metabolites and transcriptome coexpression analyses and verified their function using in vitro enzymatic assays. The PgCSyGT1, a cellulose synthase-like GT rather than a UDP-dependent glucuronosyltransferase (UGT), was verified as the key enzyme for transferring a glucuronosyl moiety to the free C3-OH of oleanolic acid to synthesize calenduloside E. Two UGTs (PgUGT18 and PgUGT8) were first identified as, respectively, catalyzing the glycosylation reaction of the second sugar moiety of C3 and the C28 in the oleanane-type ginsenoside biosynthetic pathway. Then, we integrated these GTs in combinations into Saccharomyces cerevisiae genome and realized de novo biosynthesis of oleanane-type ginsenosides with a yield of 1.41 μg/L ginsenoside Ro in shake flasks. This report provides a basis for effective biosynthesis of diverse oleanane-type ginsenosides in microbial cell factories.
Collapse
Affiliation(s)
- He Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Xin Hua
- College of Life Science, Northeast Forestry University, Harbin 150040, China
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin 150040, China
| | - Dongran Zheng
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Hao Wu
- College of Life Science, Northeast Forestry University, Harbin 150040, China
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin 150040, China
| | - Chuanwang Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Pan Rao
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Mengliang Wen
- Yunnan Enov Bioengineering Co., Ltd, 2nd Floor, Building B2, 16 PuFa Road, Export Processing Zone, Economic Development Zone, Kunming, Yunnan 650217, China
| | - Yong-Eui Choi
- Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chunchon 200-701, Republic of Korea
| | - Zheyong Xue
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yu Wang
- College of Life Science, Northeast Forestry University, Harbin 150040, China
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin 150040, China
| | - Yuhua Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
37
|
Lopez-Nieves S, El-Azaz J, Men Y, Holland CK, Feng T, Brockington SF, Jez JM, Maeda HA. Two independently evolved natural mutations additively deregulate TyrA enzymes and boost tyrosine production in planta. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:844-855. [PMID: 34807484 DOI: 10.1111/tpj.15597] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/29/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
l-Tyrosine is an essential amino acid for protein synthesis and is also used in plants to synthesize diverse natural products. Plants primarily synthesize tyrosine via TyrA arogenate dehydrogenase (TyrAa or ADH), which are typically strongly feedback inhibited by tyrosine. However, two plant lineages, Fabaceae (legumes) and Caryophyllales, have TyrA enzymes that exhibit relaxed sensitivity to tyrosine inhibition and are associated with elevated production of tyrosine-derived compounds, such as betalain pigments uniquely produced in core Caryophyllales. Although we previously showed that a single D222N substitution is primarily responsible for the deregulation of legume TyrAs, it is unknown when and how the deregulated Caryophyllales TyrA emerged. Here, through phylogeny-guided TyrA structure-function analysis, we found that functionally deregulated TyrAs evolved early in the core Caryophyllales before the origin of betalains, where the E208D amino acid substitution in the active site, which is at a different and opposite location from D222N found in legume TyrAs, played a key role in the TyrA functionalization. Unlike legumes, however, additional substitutions on non-active site residues further contributed to the deregulation of TyrAs in Caryophyllales. The introduction of a mutation analogous to E208D partially deregulated tyrosine-sensitive TyrAs, such as Arabidopsis TyrA2 (AtTyrA2). Moreover, the combined introduction of D222N and E208D additively deregulated AtTyrA2, for which the expression in Nicotiana benthamiana led to highly elevated accumulation of tyrosine in planta. The present study demonstrates that phylogeny-guided characterization of key residues underlying primary metabolic innovations can provide powerful tools to boost the production of essential plant natural products.
Collapse
Affiliation(s)
- Samuel Lopez-Nieves
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Jorge El-Azaz
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Yusen Men
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Cynthia K Holland
- Department of Biology, Williams College, Williamstown, MA, 01267, USA
| | - Tao Feng
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | | | - Joseph M Jez
- Department of Biology, Washington University in St Louis, St Louis, MO, 63130, USA
| | - Hiroshi A Maeda
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
38
|
Huang Y, Jiang D, Ren G, Yin Y, Sun Y, Liu T, Liu C. De Novo Production of Glycyrrhetic Acid 3-O-mono- β-D-glucuronide in Saccharomyces cerevisiae. Front Bioeng Biotechnol 2021; 9:709120. [PMID: 34888299 PMCID: PMC8650490 DOI: 10.3389/fbioe.2021.709120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 11/04/2021] [Indexed: 12/21/2022] Open
Abstract
Glycyrrhetic acid 3-O-mono-β-D-glucuronide (GAMG) is a rare compound in licorice and its short supply limits the wide applications in the pharmaceutical, cosmetic, and food industries. In this study, de novo biosynthesis of GAMG was achieved in engineered Saccharomyces cerevisiae strains based on the CRISPR/Cas9 genome editing technology. The introduction of GAMG biosynthetic pathway resulted in the construction of a GAMG-producing yeast strain for the first time. Through optimizing the biosynthetic pathway, improving the folding and catalysis microenvironment for cytochrome P450 enzymes (CYPs), enhancing the supply of UDP-glucuronic acid (UDP-GlcA), preventing product degradation, and optimizing the fermentation conditions, the production of GAMG was increased from 0.02 μg/L to 92.00 μg/L in shake flasks (4,200-fold), and the conversion rate of glycyrrhetic acid (GA) to GAMG was higher than 56%. The engineered yeast strains provide an alternative approach for the production of glycosylated triterpenoids.
Collapse
Affiliation(s)
- Ying Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Dan Jiang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Guangxi Ren
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Yin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yifan Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Tengfei Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Chunsheng Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
39
|
Kumar A, Srivastava P, Srivastava G, Sandeep, Kumar N, Chanotiya CS, Ghosh S. BAHD acetyltransferase contributes to wound-induced biosynthesis of oleo-gum resin triterpenes in Boswellia. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1403-1419. [PMID: 34165841 DOI: 10.1111/tpj.15388] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/13/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Triterpenes (30-carbon isoprene compounds) represent a large and highly diverse class of natural products that play various physiological functions in plants. The triterpene biosynthetic enzymes, particularly those catalyzing the late-stage regio-selective modifications are not well characterized. The bark of select Boswellia trees, e.g., B. serrata exudes specialized oleo-gum resin in response to wounding, which is enriched with boswellic acids (BAs), a unique class of C3α-epimeric pentacyclic triterpenes with medicinal properties. The bark possesses a network of resin secretory structures comprised of vertical and horizontal resin canals, and amount of BAs in bark increases considerably in response to wounding. To investigate BA biosynthetic enzymes, we conducted tissue-specific transcriptome profiling and identified a wound-responsive BAHD acetyltransferase (BsAT1) of B. serrata catalyzing the late-stage C3α-O-acetylation reactions in the BA biosynthetic pathway. BsAT1 catalyzed C3α-O-acetylation of αBA, βBA, and 11-keto-βBA in vitro and in planta assays to produce all the major C3α-O-acetyl-BAs (3-acetyl-αBA, 3-acetyl-βBA, and 3-acetyl-11-keto-βBA) found in B. serrata bark and oleo-gum resin. BsAT1 showed strict specificity for BA scaffold, whereas it did not acetylate the more common C3β-epimeric pentacyclic triterpenes. The analysis of steady-state kinetics using various BAs revealed distinct substrate affinity and catalytic efficiency. BsAT1 transcript expression coincides with increased levels of C3α-O-acetyl-BAs in bark in response to wounding, suggesting a role of BsAT1 in wound-induced biosynthesis of C3α-O-acetyl-BAs. Overall, the results provide new insights into the biosynthesis of principal chemical constituents of Boswellia oleo-gum resin.
Collapse
Affiliation(s)
- Aashish Kumar
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Payal Srivastava
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Gaurav Srivastava
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Sandeep
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Narendra Kumar
- Plant Breeding and Genetic Resource Conservation Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Chandan S Chanotiya
- Phytochemistry Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Sumit Ghosh
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
40
|
Sugiyama A. Flavonoids and saponins in plant rhizospheres: roles, dynamics, and the potential for agriculture. Biosci Biotechnol Biochem 2021; 85:1919-1931. [PMID: 34113972 DOI: 10.1093/bbb/zbab106] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 06/04/2021] [Indexed: 01/13/2023]
Abstract
Plants are in constant interaction with a myriad of soil microorganisms in the rhizosphere, an area of soil in close contact with plant roots. Recent research has highlighted the importance of plant-specialized metabolites (PSMs) in shaping and modulating the rhizosphere microbiota; however, the molecular mechanisms underlying the establishment and function of the microbiota mostly remain unaddressed. Flavonoids and saponins are a group of PSMs whose biosynthetic pathways have largely been revealed. Although these PSMs are abundantly secreted into the rhizosphere and exert various functions, the secretion mechanisms have not been clarified. This review summarizes the roles of flavonoids and saponins in the rhizosphere with a special focus on interactions between plants and the rhizosphere microbiota. Furthermore, this review introduces recent advancements in the dynamics of these metabolites in the rhizosphere and indicates potential applications of PSMs for crop production and discusses perspectives in this emerging research field.
Collapse
Affiliation(s)
- Akifumi Sugiyama
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Japan
| |
Collapse
|
41
|
Garagounis C, Delkis N, Papadopoulou KK. Unraveling the roles of plant specialized metabolites: using synthetic biology to design molecular biosensors. THE NEW PHYTOLOGIST 2021; 231:1338-1352. [PMID: 33997999 DOI: 10.1111/nph.17470] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/16/2021] [Indexed: 05/25/2023]
Abstract
Plants are a rich source of specialized metabolites with a broad range of bioactivities and many applications in human daily life. Over the past decades significant progress has been made in identifying many such metabolites in different plant species and in elucidating their biosynthetic pathways. However, the biological roles of plant specialized metabolites remain elusive and proposed functions lack an identified underlying molecular mechanism. Understanding the roles of specialized metabolites frequently is hampered by their dynamic production and their specific spatiotemporal accumulation within plant tissues and organs throughout a plant's life cycle. In this review, we propose the employment of strategies from the field of Synthetic Biology to construct and optimize genetically encoded biosensors that can detect individual specialized metabolites in a standardized and high-throughput manner. This will help determine the precise localization of specialized metabolites at the tissue and single-cell levels. Such information will be useful in developing complete system-level models of specialized plant metabolism, which ultimately will demonstrate how the biosynthesis of specialized metabolites is integrated with the core processes of plant growth and development.
Collapse
Affiliation(s)
- Constantine Garagounis
- Department of Biochemistry and Biotechnology, Plant and Environmental Biotechnology Laboratory, University of Thessaly, Larissa, 41500, Greece
| | - Nikolaos Delkis
- Department of Biochemistry and Biotechnology, Plant and Environmental Biotechnology Laboratory, University of Thessaly, Larissa, 41500, Greece
| | - Kalliope K Papadopoulou
- Department of Biochemistry and Biotechnology, Plant and Environmental Biotechnology Laboratory, University of Thessaly, Larissa, 41500, Greece
| |
Collapse
|
42
|
Polturak G, Osbourn A. The emerging role of biosynthetic gene clusters in plant defense and plant interactions. PLoS Pathog 2021; 17:e1009698. [PMID: 34214143 PMCID: PMC8253395 DOI: 10.1371/journal.ppat.1009698] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Guy Polturak
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich, United Kingdom
| | - Anne Osbourn
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich, United Kingdom
| |
Collapse
|
43
|
Kawasaki A, Chikugo A, Tamura K, Seki H, Muranaka T. Characterization of UDP-glucose dehydrogenase isoforms in the medicinal legume Glycyrrhiza uralensis. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2021; 38:205-218. [PMID: 34393599 PMCID: PMC8329271 DOI: 10.5511/plantbiotechnology.21.0222a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 02/22/2021] [Indexed: 06/13/2023]
Abstract
Uridine 5'-diphosphate (UDP)-glucose dehydrogenase (UGD) produces UDP-glucuronic acid from UDP-glucose as a precursor of plant cell wall polysaccharides. UDP-glucuronic acid is also a sugar donor for the glycosylation of various plant specialized metabolites. Nevertheless, the roles of UGDs in plant specialized metabolism remain poorly understood. Glycyrrhiza species (licorice), which are medicinal legumes, biosynthesize triterpenoid saponins, soyasaponins and glycyrrhizin, commonly glucuronosylated at the C-3 position of the triterpenoid scaffold. Often, several different UGD isoforms are present in plants. To gain insight into potential functional differences among UGD isoforms in triterpenoid saponin biosynthesis in relation to cell wall component biosynthesis, we identified and characterized Glycyrrhiza uralensis UGDs (GuUGDs), which were discovered to comprise five isoforms, four of which (GuUGD1-4) showed UGD activity in vitro. GuUGD1-4 had different biochemical properties, including their affinity for UDP-glucose, catalytic constant, and sensitivity to feedback inhibitors. GuUGD2 had the highest catalytic constant and highest gene expression level among the GuUGDs, suggesting that it is the major isoform contributing to the transition from UDP-glucose to UDP-glucuronic acid in planta. To evaluate the contribution of GuUGD isoforms to saponin biosynthesis, we compared the expression patterns of GuUGDs with those of saponin biosynthetic genes in methyl jasmonate (MeJA)-treated cultured stolons. GuUGD1-4 showed delayed responses to MeJA compared to those of saponin biosynthetic genes, suggesting that MeJA-responsive expression of GuUGDs compensates for the decreased UDP-glucuronic acid pool due to consumption during saponin biosynthesis.
Collapse
Affiliation(s)
- Ayumi Kawasaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Ayaka Chikugo
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Keita Tamura
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Hikaru Seki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Toshiya Muranaka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
44
|
Wang L, Chen K, Zhang M, Ye M, Qiao X. Catalytic function, mechanism, and application of plant acyltransferases. Crit Rev Biotechnol 2021; 42:125-144. [PMID: 34151663 DOI: 10.1080/07388551.2021.1931015] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Acyltransferases (ATs) are important tailoring enzymes that contribute to the diversity of natural products. They catalyze the transfer of acyl groups to the skeleton, which improves the lipid solubility, stability, and pharmacological activity of natural compounds. In recent years, a number of ATs have been isolated from plants. In this review, we have summarized 141 biochemically characterized ATs during the period July 1997 to October 2020, including their function, heterologous expression systems, and catalytic mechanisms. Their catalytic performance and application potential has been further discussed.
Collapse
Affiliation(s)
- Linlin Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Kuan Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Meng Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| |
Collapse
|
45
|
Robert M, Waldhauer J, Stritt F, Yang B, Pauly M, Voiniciuc C. Modular biosynthesis of plant hemicellulose and its impact on yeast cells. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:140. [PMID: 34147122 PMCID: PMC8214268 DOI: 10.1186/s13068-021-01985-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/04/2021] [Indexed: 05/25/2023]
Abstract
BACKGROUND The carbohydrate polymers that encapsulate plants cells have benefited humans for centuries and have valuable biotechnological uses. In the past 5 years, exciting possibilities have emerged in the engineering of polysaccharide-based biomaterials. Despite impressive advances on bacterial cellulose-based hydrogels, comparatively little is known about how plant hemicelluloses can be reconstituted and modulated in cells suitable for biotechnological purposes. RESULTS Here, we assembled cellulose synthase-like A (CSLA) enzymes using an optimized Pichia pastoris platform to produce tunable heteromannan (HM) polysaccharides in yeast. By swapping the domains of plant mannan and glucomannan synthases, we engineered chimeric CSLA proteins that made β-1,4-linked mannan in quantities surpassing those of the native enzymes while minimizing the burden on yeast growth. Prolonged expression of a glucomannan synthase from Amorphophallus konjac was toxic to yeast cells: reducing biomass accumulation and ultimately leading to compromised cell viability. However, an engineered glucomannan synthase as well as CSLA pure mannan synthases and a CSLC glucan synthase did not inhibit growth. Interestingly, Pichia cell size could be increased or decreased depending on the composition of the CSLA protein sequence. HM yield and glucose incorporation could be further increased by co-expressing chimeric CSLA proteins with a MANNAN-SYNTHESIS-RELATED (MSR) co-factor from Arabidopsis thaliana. CONCLUSION The results provide novel routes for the engineering of polysaccharide-based biomaterials that are needed for a sustainable bioeconomy. The characterization of chimeric cellulose synthase-like enzymes in yeast offers an exciting avenue to produce plant polysaccharides in a tunable manner. Furthermore, cells modified with non-toxic plant polysaccharides such as β-mannan offer a modular chassis to produce and encapsulate sensitive cargo such as therapeutic proteins.
Collapse
Affiliation(s)
- Madalen Robert
- Independent Junior Research Group - Designer Glycans, Leibniz Institute of Plant Biochemistry, 06120, Halle, Germany
| | - Julian Waldhauer
- Independent Junior Research Group - Designer Glycans, Leibniz Institute of Plant Biochemistry, 06120, Halle, Germany
| | - Fabian Stritt
- Institute for Plant Cell Biology and Biotechnology, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Bo Yang
- Independent Junior Research Group - Designer Glycans, Leibniz Institute of Plant Biochemistry, 06120, Halle, Germany
| | - Markus Pauly
- Institute for Plant Cell Biology and Biotechnology, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Cătălin Voiniciuc
- Independent Junior Research Group - Designer Glycans, Leibniz Institute of Plant Biochemistry, 06120, Halle, Germany.
| |
Collapse
|
46
|
Abstract
Tremendous chemical diversity is the hallmark of plants and is supported by highly complex biochemical machinery. Plant metabolic enzymes originated and were transferred from eukaryotic and prokaryotic ancestors and further diversified by the unprecedented rates of gene duplication and functionalization experienced in land plants. Unlike microbes, which have frequent horizontal gene transfer events and multiple inputs of energy and organic carbon, land plants predominantly rely on organic carbon generated from CO2 and have experienced very few, if any, gene transfers during their recent evolutionary history. As such, plant metabolic networks have evolved in a stepwise manner and on existing networks under various evolutionary constraints. This review aims to take a broader view of plant metabolic evolution and lay a framework to further explore evolutionary mechanisms of the complex metabolic network. Understanding the underlying metabolic and genetic constraints is also an empirical prerequisite for rational engineering and redesigning of plant metabolic pathways.
Collapse
Affiliation(s)
- Hiroshi A Maeda
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA;
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany;
| |
Collapse
|
47
|
Diversity in Chemical Structures and Biological Properties of Plant Alkaloids. Molecules 2021; 26:molecules26113374. [PMID: 34204857 PMCID: PMC8199754 DOI: 10.3390/molecules26113374] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
Phytochemicals belonging to the group of alkaloids are signature specialized metabolites endowed with countless biological activities. Plants are armored with these naturally produced nitrogenous compounds to combat numerous challenging environmental stress conditions. Traditional and modern healthcare systems have harnessed the potential of these organic compounds for the treatment of many ailments. Various chemical entities (functional groups) attached to the central moiety are responsible for their diverse range of biological properties. The development of the characterization of these plant metabolites and the enzymes involved in their biosynthesis is of an utmost priority to deliver enhanced advantages in terms of biological properties and productivity. Further, the incorporation of whole/partial metabolic pathways in the heterologous system and/or the overexpression of biosynthetic steps in homologous systems have both become alternative and lucrative methods over chemical synthesis in recent times. Moreover, in-depth research on alkaloid biosynthetic pathways has revealed numerous chemical modifications that occur during alkaloidal conversions. These chemical reactions involve glycosylation, acylation, reduction, oxidation, and methylation steps, and they are usually responsible for conferring the biological activities possessed by alkaloids. In this review, we aim to discuss the alkaloidal group of plant specialized metabolites and their brief classification covering major categories. We also emphasize the diversity in the basic structures of plant alkaloids arising through enzymatically catalyzed structural modifications in certain plant species, as well as their emerging diverse biological activities. The role of alkaloids in plant defense and their mechanisms of action are also briefly discussed. Moreover, the commercial utilization of plant alkaloids in the marketplace displaying various applications has been enumerated.
Collapse
|
48
|
Fanani MZ, Sawai S, Seki H, Ishimori M, Ohyama K, Fukushima EO, Sudo H, Saito K, Muranaka T. Allylic Hydroxylation Activity Is a Source of Saponin Chemodiversity in the Genus Glycyrrhiza. PLANT & CELL PHYSIOLOGY 2021; 62:262-271. [PMID: 33439252 DOI: 10.1093/pcp/pcaa173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Licorice (Glycyrrhiza) produces glycyrrhizin, a valuable triterpenoid saponin, which exhibits persistent sweetness and broad pharmacological activities. In the genus Glycyrrhiza, three species, Glycyrrhiza uralensis, Glycyrrhiza glabra and Glycyrrhiza inflata, produce glycyrrhizin as their main triterpenoid saponin, which has a ketone group at C-11. Other Glycyrrhiza species produce mainly oleanane-type saponins, which harbor homoannular or heteroannular diene structures that lack the C-11 ketone. Although the glycyrrhizin biosynthetic pathway has been fully elucidated, the pathway involving saponins with diene structures remains unclear. CYP88D6 from G. uralensis is a key enzyme in glycyrrhizin biosynthesis, catalyzing the sequential two-step oxidation of β-amyrin at position C-11 to produce 11-oxo-β-amyrin. In this study, we evaluated the functions of CYP88D6 homologs from the glycyrrhizin-producing species G. glabra and G. inflata and from the non-glycyrrhizin-producing species Glycyrrhiza pallidiflora and Glycyrrhiza macedonica, using yeast engineered to supply β-amyrin as a substrate. Yeast expressing CYP88D6 homologs from glycyrrhizin-producing species produced 11-oxo-β-amyrin. However, yeast expressing CYP88D6 homologs (such as CYP88D15) from the non-glycyrrhizin-producing Glycyrrhiza species accumulated oleana-9(11),12-dien-3β-ol and oleana-11,13(18)-dien-3β-ol; these diene compounds are non-enzymatic or yeast endogenous enzymatic dehydration derivatives of 11α-hydroxy-β-amyrin, a direct reaction product of CYP88D15. These results suggest that the activities of CYP88D6 homologs, particularly their ability to catalyze the second oxidation, could influence glycyrrhizin productivity and diversify the chemical structures of saponins in Glycyrrhiza plants. A synthetic biological approach to engineer CYP88D15 could enable the production of pharmacologically active saponins with diene structures, such as saikosaponins, whose biosynthetic pathways have yet to be fully characterized.
Collapse
Affiliation(s)
- Much Z Fanani
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, 565-0871 Japan
| | - Satoru Sawai
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, 565-0871 Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045 Japan
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675 Japan
- Tokiwa Phytochemical Co., Ltd, Chiba, 285-0801 Japan
| | - Hikaru Seki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, 565-0871 Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045 Japan
| | - Masato Ishimori
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675 Japan
| | - Kiyoshi Ohyama
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045 Japan
- Department of Chemistry and Materials Science, Tokyo Institute of Technology, Tokyo, 152-8551 Japan
| | - Ery O Fukushima
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, 565-0871 Japan
- Translational Plant Research Group, Universidad Regional Amaz�nica IKIAM, Tena, Ecuador
| | - Hiroshi Sudo
- Tokiwa Phytochemical Co., Ltd, Chiba, 285-0801 Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045 Japan
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675 Japan
| | - Toshiya Muranaka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, 565-0871 Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045 Japan
| |
Collapse
|
49
|
Kazachkova Y, Zemach I, Panda S, Bocobza S, Vainer A, Rogachev I, Dong Y, Ben-Dor S, Veres D, Kanstrup C, Lambertz SK, Crocoll C, Hu Y, Shani E, Michaeli S, Nour-Eldin HH, Zamir D, Aharoni A. The GORKY glycoalkaloid transporter is indispensable for preventing tomato bitterness. NATURE PLANTS 2021; 7:468-480. [PMID: 33707737 DOI: 10.1038/s41477-021-00865-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Fruit taste is determined by sugars, acids and in some species, bitter chemicals. Attraction of seed-dispersing organisms in nature and breeding for consumer preferences requires reduced fruit bitterness. A key metabolic shift during ripening prevents tomato fruit bitterness by eliminating α-tomatine, a renowned defence-associated Solanum alkaloid. Here, we combined fine mapping with information from 150 resequenced genomes and genotyping a 650-tomato core collection to identify nine bitter-tasting accessions including the 'high tomatine' Peruvian landraces reported in the literature. These 'bitter' accessions contain a deletion in GORKY, a nitrate/peptide family transporter mediating α-tomatine subcellular localization during fruit ripening. GORKY exports α-tomatine and its derivatives from the vacuole to the cytosol and this facilitates the conversion of the entire α-tomatine pool to non-bitter forms, rendering the fruit palatable. Hence, GORKY activity was a notable innovation in the process of tomato fruit domestication and breeding.
Collapse
Affiliation(s)
- Yana Kazachkova
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Itay Zemach
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot, Israel
| | - Sayantan Panda
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
- Gilat Research Center, Agricultural Research Organization, Rishon Lezion, Israel
| | - Samuel Bocobza
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Andrii Vainer
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ilana Rogachev
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yonghui Dong
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Shifra Ben-Dor
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Dorottya Veres
- Department of Plant and Environmental Sciences, DynaMo Center, University of Copenhagen, Copenhagen, Denmark
| | - Christa Kanstrup
- Department of Plant and Environmental Sciences, DynaMo Center, University of Copenhagen, Copenhagen, Denmark
| | - Sophie Konstanze Lambertz
- Department of Plant and Environmental Sciences, DynaMo Center, University of Copenhagen, Copenhagen, Denmark
| | - Christoph Crocoll
- Department of Plant and Environmental Sciences, DynaMo Center, University of Copenhagen, Copenhagen, Denmark
| | - Yangjie Hu
- Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv, Israel
| | - Eilon Shani
- Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv, Israel
| | - Simon Michaeli
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Hussam Hassan Nour-Eldin
- Department of Plant and Environmental Sciences, DynaMo Center, University of Copenhagen, Copenhagen, Denmark
| | - Dani Zamir
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot, Israel
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
50
|
Yeast Synthetic Biology for the Production of Lycium barbarum Polysaccharides. Molecules 2021; 26:molecules26061641. [PMID: 33804230 PMCID: PMC8000229 DOI: 10.3390/molecules26061641] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/17/2022] Open
Abstract
The fruit of Lycium barbarum L. (goji berry) is used as traditional Chinese medicine, and has the functions of immune regulation, anti-tumor, neuroprotection, anti-diabetes, and anti-fatigue. One of the main bioactive components is L. barbarum polysaccharide (LBP). Nowadays, LBP is widely used in the health market, and it is extracted from the fruit of L. barbarum. The planting of L. barbarum needs large amounts of fields, and it takes one year to harvest the goji berry. The efficiency of natural LBP production is low, and the LBP quality is not the same at different places. Goji berry-derived LBP cannot satisfy the growing market demands. Engineered Saccharomyces cerevisiae has been used for the biosynthesis of some plant natural products. Recovery of LBP biosynthetic pathway in L. barbarum and expression of them in engineered S. cerevisiae might lead to the yeast LBP production. However, information on LBP biosynthetic pathways and the related key enzymes of L. barbarum is still limited. In this review, we summarized current studies about LBP biosynthetic pathway and proposed the strategies to recover key enzymes for LBP biosynthesis. Moreover, the potential application of synthetic biology strategies to produce LBP using engineered S. cerevisiae was discussed.
Collapse
|