1
|
Wang LH, Shih MY, Lin YF, Kuo PH, Feng YCA. Polygenic dissection of treatment-resistant depression with proxy phenotypes in the UK Biobank. J Affect Disord 2025; 381:350-359. [PMID: 40187433 DOI: 10.1016/j.jad.2025.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Treatment-resistant depression (TRD) affects one-third of major depressive disorder (MDD) patients. Previous pharmacogenetic studies suggest genetic variation may influence medication response but findings are heterogeneous. We conducted a comprehensive genetic investigation using proxy TRD phenotypes (TRDp) that mirror the treatment options of MDD from UK Biobank primary care records. METHODS Among 15,125 White British MDD patients, we identified TRDp with medication changes (switching or receiving multiple antidepressants [AD]); augmentation therapy (antipsychotics; mood stabilizers; valproate; lithium); or electroconvulsive therapy (ECT). Hospitalized TRDp patients (HOSP-TRDp) were also identified. We conducted genome-wide association analysis, estimated SNP-heritability (hg2), and assessed the genetic burden for nine psychiatric diseases using polygenic risk scores (PRS). RESULTS TRDp patients were more often female, unemployed, less educated, and had higher BMI, with hospitalization rates twice as high as non-TRDp. While no credible risk variants emerged, heritability analysis showed significant genetic influence on TRDp (liability hg2 21-24 %), particularly for HOSP-TRDp (28-31 %). TRDp classified by AD changes and augmentation carried an elevated yet varied polygenic burden for MDD, ADHD, BD, and SCZ. Higher BD PRS increased the likelihood of receiving ECT, lithium, and valproate by 1.27-1.80 fold. Patients in the top 10 % PRS relative to the average had a 12-36 % and 24-51 % higher risk of TRDp and HOSP-TRDp, respectively. CONCLUSIONS Our findings support a significant polygenic basis for TRD, highlighting genetic and phenotypic distinctions from non-TRD. We demonstrate that different TRDp endpoints are enriched with various spectra of psychiatric genetic liability, offering insights into pharmacogenomics and TRD's complex genetic architecture.
Collapse
Affiliation(s)
- Ling-Hua Wang
- Institute of Health Data Analytics and Statistics, College of Public Health, National Taiwan University, Taiwan
| | - Mu-Yi Shih
- Institute of Health Data Analytics and Statistics, College of Public Health, National Taiwan University, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taiwan
| | - Yen-Feng Lin
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan; Department of Public Health & Medical Humanities, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Hsiu Kuo
- Department of Public Health, College of Public Health, National Taiwan University, Taiwan; Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Chen A Feng
- Institute of Health Data Analytics and Statistics, College of Public Health, National Taiwan University, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taiwan; Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
2
|
Askelund AD, Hegemann L, Allegrini AG, Corfield EC, Ask H, Davies NM, Andreassen OA, Havdahl A, Hannigan LJ. The Genetic Architecture of Differentiating Behavioral and Emotional Problems in Early Life. Biol Psychiatry 2025; 97:1163-1174. [PMID: 39793691 DOI: 10.1016/j.biopsych.2024.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 11/29/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025]
Abstract
BACKGROUND Early in life, behavioral and cognitive traits associated with risk for developing a psychiatric condition are broad and undifferentiated. As children develop, these traits differentiate into characteristic clusters of symptoms and behaviors that ultimately form the basis of diagnostic categories. Understanding this differentiation process-in the context of genetic risk for psychiatric conditions, which is highly generalized-can improve early detection and intervention. METHODS We modeled the differentiation of behavioral and emotional problems from age 1.5 to 5 years (behavioral problems - emotional problems = differentiation score) in a preregistered study of ∼79,000 children from the population-based Norwegian Mother, Father, and Child Cohort Study. We used genomic structural equation modeling to identify genetic signal in differentiation and total problems, investigating their links with 11 psychiatric and neurodevelopmental conditions. We examined associations of polygenic scores (PGS) with both outcomes and assessed the relative contributions of direct and indirect genetic effects in ∼33,000 family trios. RESULTS Differentiation was primarily genetically correlated with psychiatric conditions via a neurodevelopmental factor. Total problems were primarily associated with the neurodevelopmental factor and p-factor. PGS analyses revealed an association between liability to attention-deficit/hyperactivity disorder and differentiation (β = 0.11; 95% CI, 0.10 to 0.12) and a weaker association with total problems (β = 0.06; 95% CI, 0.04 to 0.07). Trio-PGS analyses showed predominantly direct genetic effects on both outcomes. CONCLUSIONS We uncovered genomic signal in the differentiation process, mostly related to common variants associated with neurodevelopmental conditions. Investigating the differentiation of early-life behavioral and emotional problems may enhance our understanding of the developmental emergence of different psychiatric and neurodevelopmental conditions.
Collapse
Affiliation(s)
- Adrian Dahl Askelund
- PsychGen Center for Genetic Epidemiology and Mental Health, Norwegian Institute of Public Health, Oslo, Norway; Psychiatric Genetic Epidemiology Group, Research Department, Lovisenberg Diaconal Hospital, Oslo, Norway.
| | - Laura Hegemann
- PsychGen Center for Genetic Epidemiology and Mental Health, Norwegian Institute of Public Health, Oslo, Norway; Psychiatric Genetic Epidemiology Group, Research Department, Lovisenberg Diaconal Hospital, Oslo, Norway
| | - Andrea G Allegrini
- Division of Psychology and Language Sciences, Department of Clinical, Educational and Health Psychology, University College London, London, United Kingdom; Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Elizabeth C Corfield
- PsychGen Center for Genetic Epidemiology and Mental Health, Norwegian Institute of Public Health, Oslo, Norway; Psychiatric Genetic Epidemiology Group, Research Department, Lovisenberg Diaconal Hospital, Oslo, Norway
| | - Helga Ask
- PsychGen Center for Genetic Epidemiology and Mental Health, Norwegian Institute of Public Health, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Neil M Davies
- Medical Research Council Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, United Kingdom; Division of Psychiatry, University College London, London, United Kingdom; Department of Statistical Sciences, University College London, London, United Kingdom; K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Alexandra Havdahl
- PsychGen Center for Genetic Epidemiology and Mental Health, Norwegian Institute of Public Health, Oslo, Norway; Psychiatric Genetic Epidemiology Group, Research Department, Lovisenberg Diaconal Hospital, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway; Medical Research Council Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Laurie J Hannigan
- PsychGen Center for Genetic Epidemiology and Mental Health, Norwegian Institute of Public Health, Oslo, Norway; Psychiatric Genetic Epidemiology Group, Research Department, Lovisenberg Diaconal Hospital, Oslo, Norway; Medical Research Council Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
3
|
Panchal Z, Sakai J, Goldstein-Piekarski AN, Ellingson JM, Iacono W, Corley RP, Vrieze S, Hopfer CJ, Hewitt JK, McGue MK, Ross JM. Mental Health, Substance Use, and Related Factors Associated with Recent Use of Cannabis for Sleep: A Co-Twin Control Study. Behav Sleep Med 2025:1-13. [PMID: 40400361 DOI: 10.1080/15402002.2025.2508770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
OBJECTIVES To examine: 1) cross-sectional associations between past-month use of cannabis for sleep with mental health, substance use, and related factors in adults and 2) the role of genetic and early environmental factors shared by twins (familial confounds) in explaining significant associations. METHODS In a population-based sample of adult twins (n = 3,165, Mage36.7) we ran regression (phenotypic) and multilevel (co-twin control) models examining associations between past-month use of cannabis for sleep without comes of interest. We controlled for cannabis frequency and sleep quality except when each was the outcome of interest. RESULTS Recent use of cannabis for sleep was associated with multiple mental health, substance use, and related factors in phenotypic models. In co-twincontrol models, within-family effects were significant between using cannabis for sleep with more problems from cannabis use, higher cannabis frequency, worse sleep quality, and more frequent use of alcohol and medication for sleep. CONCLUSIONS Familial confounds may explain many, but not all, associations between recent use of cannabis for sleep and mental health, substance use, and related factors. Longitudinal work is needed to clarify the directionality of associations not explained by familial confounds, and whether they are risks of using cannabis for sleep.
Collapse
Affiliation(s)
- Zoë Panchal
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Joseph Sakai
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Andrea N Goldstein-Piekarski
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Sierra-Pacific Mental Illness Research, Education, and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Jarrod M Ellingson
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
| | - William Iacono
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Robin P Corley
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
| | - Scott Vrieze
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Christian J Hopfer
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
| | - John K Hewitt
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Matt K McGue
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - J Megan Ross
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
4
|
Chen Y, Li HT, Luo X, Li G, Ide JS, Li CSR. The effects of alcohol use severity and polygenic risk on gray matter volumes in young adults. Front Psychiatry 2025; 16:1560053. [PMID: 40433172 PMCID: PMC12106418 DOI: 10.3389/fpsyt.2025.1560053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 04/21/2025] [Indexed: 05/29/2025] Open
Abstract
Introduction Genetic factors contribute to alcohol misuse. Chronic alcohol consumption is associated with decreases in gray matter volumes (GMVs) of the brain. However, it remains unclear whether or how genetic risks may alter GMVs independent of the effects of alcohol exposure. Methods Here, we employed the Human Connectome Project data of neurotypical adults (n = 995; ages 22-35; 534 women) and, with voxel-based morphometry analysis, computed the GMVs of 166 regions in the automated anatomical atlas 3. Alcohol use behaviors were assessed with the Semi-Structured Assessment for the Genetics of Alcoholism. Alcohol use severity was quantified by the first principal component (PC1) identified of principal component analysis of 15 drinking measures. Polygenic risk scores (PRS) for alcohol dependence were computed for all subjects using the Psychiatric Genomics Consortium study of alcohol dependence as the base sample. With age, sex, race, and total intracranial volume as covariates, we evaluated the relationships of regional GMVs with PC1 and PRS together in a linear regression. Results PC1 was negatively correlated with GMVs of right insula and Heschl's gyrus, and PRS was positively correlated with GMVs of left posterior orbitofrontal cortex, bilateral intralaminar nuclei of the thalamus and lingual gyri. Discussion These findings suggest distinct volumetric neural markers of drinking severity and genetic risks of alcohol misuse. Notably, in contrast to volumetric reduction, the genetic risks of dependent drinking may involve larger regional volumes in the reward, emotion, and saliency circuits.
Collapse
Affiliation(s)
- Yu Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | | | - Xingguang Luo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Guangfei Li
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
- Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China
| | - Jaime S. Ide
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Chiang-Shan R. Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, United States
- Inter-Department Neuroscience Program, Yale University, New
Haven, CT, United States
- Wu Tsai Institute, Yale University, New Haven, CT, United States
| |
Collapse
|
5
|
Strom NI, Gerring ZF, Galimberti M, Yu D, Halvorsen MW, Abdellaoui A, Rodriguez-Fontenla C, Sealock JM, Bigdeli T, Coleman JR, Mahjani B, Thorp JG, Bey K, Burton CL, Luykx JJ, Zai G, Alemany S, Andre C, Askland KD, Bäckman J, Banaj N, Barlassina C, Nissen JB, Bienvenu OJ, Black D, Bloch MH, Børte S, Bosch R, Breen M, Brennan BP, Brentani H, Buxbaum JD, Bybjerg-Grauholm J, Byrne EM, Cabana-Dominguez J, Camarena B, Camarena A, Cappi C, Carracedo A, Casas M, Cavallini MC, Ciullo V, Cook EH, Crosby J, Cullen BA, De Schipper EJ, Delorme R, Djurovic S, Elias JA, Estivill X, Falkenstein MJ, Fundin BT, Garner L, Gironda C, Goes FS, Grados MA, Grove J, Guo W, Haavik J, Hagen K, Harrington K, Havdahl A, Höffler KD, Hounie AG, Hucks D, Hultman C, Janecka M, Jenike E, Karlsson EK, Kelley K, Klawohn J, Krasnow JE, Krebs K, Lange C, Lanzagorta N, Levey D, Lindblad-Toh K, Macciardi F, Maher B, Mathes B, McArthur E, McGregor N, McLaughlin NC, Meier S, Miguel EC, Mulhern M, Nestadt PS, Nurmi EL, O'Connell KS, Osiecki L, Ousdal OT, Palviainen T, Pedersen NL, Piras F, Piras F, Potluri S, Rabionet R, Ramirez A, Rauch S, Reichenberg A, et alStrom NI, Gerring ZF, Galimberti M, Yu D, Halvorsen MW, Abdellaoui A, Rodriguez-Fontenla C, Sealock JM, Bigdeli T, Coleman JR, Mahjani B, Thorp JG, Bey K, Burton CL, Luykx JJ, Zai G, Alemany S, Andre C, Askland KD, Bäckman J, Banaj N, Barlassina C, Nissen JB, Bienvenu OJ, Black D, Bloch MH, Børte S, Bosch R, Breen M, Brennan BP, Brentani H, Buxbaum JD, Bybjerg-Grauholm J, Byrne EM, Cabana-Dominguez J, Camarena B, Camarena A, Cappi C, Carracedo A, Casas M, Cavallini MC, Ciullo V, Cook EH, Crosby J, Cullen BA, De Schipper EJ, Delorme R, Djurovic S, Elias JA, Estivill X, Falkenstein MJ, Fundin BT, Garner L, Gironda C, Goes FS, Grados MA, Grove J, Guo W, Haavik J, Hagen K, Harrington K, Havdahl A, Höffler KD, Hounie AG, Hucks D, Hultman C, Janecka M, Jenike E, Karlsson EK, Kelley K, Klawohn J, Krasnow JE, Krebs K, Lange C, Lanzagorta N, Levey D, Lindblad-Toh K, Macciardi F, Maher B, Mathes B, McArthur E, McGregor N, McLaughlin NC, Meier S, Miguel EC, Mulhern M, Nestadt PS, Nurmi EL, O'Connell KS, Osiecki L, Ousdal OT, Palviainen T, Pedersen NL, Piras F, Piras F, Potluri S, Rabionet R, Ramirez A, Rauch S, Reichenberg A, Riddle MA, Ripke S, Rosário MC, Sampaio AS, Schiele MA, Skogholt AH, Sloofman LG, Smit J, Artigas MS, Thomas LF, Tifft E, Vallada H, van Kirk N, Veenstra-VanderWeele J, Vulink NN, Walker CP, Wang Y, Wendland JR, Winsvold BS, Yao Y, Zhou H, Agrawal A, Alonso P, Berberich G, Bucholz KK, Bulik CM, Cath D, Denys D, Eapen V, Edenberg H, Falkai P, Fernandez TV, Fyer AJ, Gaziano JM, Geller DA, Grabe HJ, Greenberg BD, Hanna GL, Hickie IB, Hougaard DM, Kathmann N, Kennedy J, Lai D, Landén M, Hellard SL, Leboyer M, Lochner C, McCracken JT, Medland SE, Mortensen PB, Neale BM, Nicolini H, Nordentoft M, Pato M, Pato C, Pauls DL, Piacentini J, Pittenger C, Posthuma D, Ramos-Quiroga JA, Rasmussen SA, Richter MA, Rosenberg DR, Ruhrmann S, Samuels JF, Sandin S, Sandor P, Spalletta G, Stein DJ, Stewart SE, Storch EA, Stranger BE, Turiel M, Werge T, Andreassen OA, Børglum AD, Walitza S, Hveem K, Hansen BK, Rück C, Martin NG, Milani L, Mors O, Reichborn-Kjennerud T, Ribasés M, Kvale G, Mataix-Cols D, Domschke K, Grünblatt E, Wagner M, Zwart JA, Breen G, Nestadt G, Kaprio J, Arnold PD, Grice DE, Knowles JA, Ask H, Verweij KJ, Davis LK, Smit DJ, Crowley JJ, Scharf JM, Stein MB, Gelernter J, Mathews CA, Derks EM, Mattheisen M. Genome-wide analyses identify 30 loci associated with obsessive-compulsive disorder. Nat Genet 2025:10.1038/s41588-025-02189-z. [PMID: 40360802 DOI: 10.1038/s41588-025-02189-z] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/07/2025] [Indexed: 05/15/2025]
Abstract
Obsessive-compulsive disorder (OCD) affects ~1% of children and adults and is partly caused by genetic factors. We conducted a genome-wide association study (GWAS) meta-analysis combining 53,660 OCD cases and 2,044,417 controls and identified 30 independent genome-wide significant loci. Gene-based approaches identified 249 potential effector genes for OCD, with 25 of these classified as the most likely causal candidates, including WDR6, DALRD3 and CTNND1 and multiple genes in the major histocompatibility complex (MHC) region. We estimated that ~11,500 genetic variants explained 90% of OCD genetic heritability. OCD genetic risk was associated with excitatory neurons in the hippocampus and the cortex, along with D1 and D2 type dopamine receptor-containing medium spiny neurons. OCD genetic risk was shared with 65 of 112 additional phenotypes, including all the psychiatric disorders we examined. In particular, OCD shared genetic risk with anxiety, depression, anorexia nervosa and Tourette syndrome and was negatively associated with inflammatory bowel diseases, educational attainment and body mass index.
Collapse
Affiliation(s)
- Nora I Strom
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany.
- Department of Psychiatric Phenomics and Genomics (IPPG), Ludwig-Maximilians University Munich, Munich, Germany.
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Services, Region Stockholm, Stockholm, Sweden.
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.
| | - Zachary F Gerring
- Department of Mental Health and Neuroscience, Translational Neurogenomics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Department of Population Health and Immunity, Healthy Development and Ageing, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Marco Galimberti
- Department of Psychiatry, Human Genetics, Yale University, New Haven, CT, USA
- VA Connecticut Healthcare System, West Haven, CT, USA
| | - Dongmei Yu
- Department of Center for Genomic Medicine, Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Matthew W Halvorsen
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Abdel Abdellaoui
- Department of Psychiatry, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Cristina Rodriguez-Fontenla
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Genomics and Bioinformatics, University of Santiago de Compostela, Santiago de Compostela, Spain
- Grupo de Medicina Xenómica, Genetics, Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Santiago de Compostela, Spain
| | - Julia M Sealock
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
| | - Tim Bigdeli
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
- VA NY Harbor Healthcare System, Brooklyn, NY, USA
| | - Jonathan R Coleman
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- National Institute for Health and Care Research Maudsley Biomedical Research Centre, South London and Maudsley NHS Trust, London, UK
| | - Behrang Mahjani
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jackson G Thorp
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Katharina Bey
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Christie L Burton
- Department of Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jurjen J Luykx
- Department of Psychiatry, Brain University Medical Center Utrecht, Utrecht, the Netherlands
- Second Opinion Outpatient Clinic, GGNet, Warnsveld, the Netherlands
| | - Gwyneth Zai
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Silvia Alemany
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
| | - Christine Andre
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
| | - Kathleen D Askland
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Hamilton, Ontario, Canada
| | - Julia Bäckman
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Services, Region Stockholm, Stockholm, Sweden
| | - Nerisa Banaj
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
| | | | - Judith Becker Nissen
- Department of Child and Adolescent Psychiatry, Aarhus University Hospital, Psychiatry, Aarhus, Denmark
- Institute of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark
| | - O Joseph Bienvenu
- Department of Psychiatry and Behavioral Sciences, General Hospital Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Donald Black
- Departments of Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Michael H Bloch
- Department of Child Study Center and Psychiatry, Yale University, New Haven, CT, USA
| | - Sigrid Børte
- Department of Research and Innovation, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, HUNT Center for Molecular and Clinical Epidemiology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Rosa Bosch
- Department of Child and Adolescent Mental Health, Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
- Instituto de Salut Carlos III, Centro de Investigación Biomédica en Red de Salut Mental (CIBERSAM), Madrid, Spain
| | - Michael Breen
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian P Brennan
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Helena Brentani
- Department of Psychiatry, Universidade de São Paulo, São Paulo, Brazil
| | - Joseph D Buxbaum
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Enda M Byrne
- Child Health Research Centre, University of Queensland, Brisbane, Queensland, Australia
| | - Judit Cabana-Dominguez
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
| | - Beatriz Camarena
- Pharmacogenetics Department, Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramon de la Fuente Muñiz, Mexico City, México
| | | | - Carolina Cappi
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA
- Department of Psychiatry, University of São Paulo, São Paulo, Brazil
| | - Angel Carracedo
- CiMUS, Genomics and Bioinformatics Group, University of Santiago de Compostela, Santiago de Compostela, Spain
- Galician Foundation of Genomic Medicine, Grupo de Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
- Medicina Genómica, Centro de Investigación Biomédica en Red, Enfermedades Raras (CIBERER), Santiago de Compostela, Spain
| | - Miguel Casas
- Programa MIND Escoles, Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
- Departamento de Psiquiatría y Medicina Legal, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | - Valentina Ciullo
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Edwin H Cook
- Department of Psychiatry, University of Illinois Chicago, Chicago, IL, USA
| | - Jesse Crosby
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Bernadette A Cullen
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Department of Mental Health, Bloomberg School of Public Health, Baltimore, MD, USA
| | - Elles J De Schipper
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Services, Region Stockholm, Stockholm, Sweden
| | - Richard Delorme
- Child and Adolesccent Psychiatry Department, APHP, Paris, France
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Jason A Elias
- Psychiatry, McLean Hospital OCDI, Harvard Medical School, Belmont, MA, USA
- Adult Psychological Services, CBTeam LLC, Lexington, MA, USA
| | - Xavier Estivill
- qGenomics (Quantitative Genomics Laboratories), Esplugues de Llobregat, Spain
| | - Martha J Falkenstein
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Bengt T Fundin
- Department of Medical Epidemiology and Biostatistics, Center for Eating Disorders Innovation, Karolinska Institutet, Stockholm, Sweden
| | - Lauryn Garner
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
| | - Christina Gironda
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
| | - Fernando S Goes
- Department of Psychiatry, Johns Hopkins University, Baltimore, MD, USA
| | - Marco A Grados
- Department of Psychiatry and Behavioral Sciences, Child and Adolescent Psychiatry, Johns Hopkins University, Baltimore, MD, USA
| | - Jakob Grove
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
- Bioinformatics Research Centre, Aarhus, Denmark
| | - Wei Guo
- Genetic Epidemiology Research Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Bergen Center for Brain Plasticity, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Kristen Hagen
- Department of Psychiatry, Møre og Romsdal Hospital Trust, Molde, Norway
- Bergen Center for Brain Plasticity, Psychiatry, Haukeland University Hospital, Bergen, Norway
- Department of Mental Health, Norwegian University for Science and Technology, Trondheim, Norway
| | - Kelly Harrington
- Million Veteran Program (MVP) Coordinating Center, VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Alexandra Havdahl
- PsychGen Centre for Genetic Epidemiology and Mental Health, Norwegian Institute of Public Health, Oslo, Norway
- Nic Waals Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
| | - Kira D Höffler
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Bergen Center for Brain Plasticity, Haukeland University Hospital, Bergen, Norway
- Department of Medical Genetics, Dr. Einar Martens Research Group for Biological Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Ana G Hounie
- Department of Psychiatry, University of São Paulo, São Paulo, Brazil
| | - Donald Hucks
- Department of Medicine, Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christina Hultman
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Magdalena Janecka
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Child and Adolescent Psychiatry, NYU Grossman School of Medicine, New York, NY, USA
| | - Eric Jenike
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
| | - Elinor K Karlsson
- Department of Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kara Kelley
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
| | - Julia Klawohn
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Medicine, MSB Medical School Berlin, Berlin, Germany
| | - Janice E Krasnow
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Kristi Krebs
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Christoph Lange
- Department of Biostatistics, T.H. Chan School of Public Health, Boston, MA, USA
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Daniel Levey
- Department of Psychiatry, Yale University, West Haven, CT, USA
- Office of Research and Development, United States Department of Veterans Affairs, West Haven, CT, USA
| | - Kerstin Lindblad-Toh
- Department of Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- SciLifeLab, Uppsala University, Uppsala, Sweden
| | - Fabio Macciardi
- Department of Psychiatry, University of California, Irvine, Irvine, CA, USA
| | - Brion Maher
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Brittany Mathes
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
| | - Evonne McArthur
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Nicole C McLaughlin
- Department of Psychiatry and Human Behavior, Alpert Medical School, Brown University, Providence, RI, USA
- Butler Hospital, Providence, RI, USA
| | - Sandra Meier
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Euripedes C Miguel
- Department of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Maureen Mulhern
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Paul S Nestadt
- Department of Psychiatry and Behavioral Science, Johns Hopkins University, Baltimore, MD, USA
| | - Erika L Nurmi
- Department of Psychiatry and Biobehavioral Sciences, Division of Child and Adolescent Psychiatry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kevin S O'Connell
- Department of Clinical Medicine, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- NORMENT, University of Oslo, Oslo, Norway
| | - Lisa Osiecki
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Psychiatric and Neurodevelopmental Genetics Unit, Harvard Medical School, Boston, MA, USA
| | - Olga Therese Ousdal
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Biomedicine, Haukeland University Hospital, Bergen, Norway
| | - Teemu Palviainen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Fabrizio Piras
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Federica Piras
- Department of Clinical Neuroscience and Neurorehabilitation, Neuropsychiatry Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Sriramya Potluri
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
| | - Raquel Rabionet
- Department of Genetics, Microbiology and Statistics, IBUB, Universitat de Barcelona, Barcelona, Spain
- CIBERER, Centro de Investigación Biomédica en Red, Madrid, Spain
- Department of Human Molecular Genetics, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Alfredo Ramirez
- Department of Psychiatry and Psychotherapy, Division of Neurogenetics and Molecular Psychiatry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, Medical Faculty, University Hospital Bonn, Bonn, Germany
- DZNE Bonn, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Psychiatry and Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA
- Cologne Excellence Cluster for Stress Responses in Ageing-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Scott Rauch
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Abraham Reichenberg
- Department of Mental Disorders, Norwegian Institute of Public Health, New York, NY, USA
| | - Mark A Riddle
- Department of Psychiatry and Behavioral Sciences, Child and Adolescent, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stephan Ripke
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Site Berlin-Potsdam, German Center for Mental Health (DZPG), Berlin, Germany
| | - Maria C Rosário
- Department of Psychiatry, Child and Adolescent Psychiatry Unit (UPIA), Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Aline S Sampaio
- Department of Neurosciences and Mental Health, Medical School, Federal University of Bahia, Salvador, Brazil
| | - Miriam A Schiele
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Freiburg, Medical Center-University of Freiburg, Freiburg, Germany
| | - Anne Heidi Skogholt
- Department of Public Health and Nursing, HUNT Center for Molecular and Clinical Epidemiology, Trondheim, Norway
| | - Laura G Sloofman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jan Smit
- Department of Psychiatry, Faculty of Medicine, Locaion VUmc, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - María Soler Artigas
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Laurent F Thomas
- Department of Clinical and Molecular Medicine, NTNU, Trondheim, Norway
- Department of Public Health and Nursing, K.G. Jebsen Center for Genetic Epidemiology, NTNU, Trondheim, Norway
- BioCore, Bioinformatics Core Facility, NTNU, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Eric Tifft
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
| | - Homero Vallada
- Department of Psychiatry, Universidade de São Paulo, São Paulo, Brazil
- Department of Molecular Medicine and Surgery, CMM, Karolinska Institutet, Stockholm, Sweden
| | - Nathanial van Kirk
- OCD Institute, Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Belmont, MA, USA
| | - Jeremy Veenstra-VanderWeele
- Department of Psychiatry, Division of Child and Adolescent Psychiatry, Columbia University, New York, NY, USA
- Department of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, USA
| | - Nienke N Vulink
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Ying Wang
- Department of Neurology, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jens R Wendland
- Laboratory of Clinical Science, NIMH Intramural Research Program, Bethesda, MD, USA
| | - Bendik S Winsvold
- Department of Research and Innovation, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, NTNU, Trondheim, Norway
| | - Yin Yao
- Department of Computional Biology, Institute of Life Science, Fudan University, Fudan, China
| | - Hang Zhou
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Section of Biomedical Informatics and Data Science, Yale School of Medicine, New Haven, CT, USA
| | - Arpana Agrawal
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA
| | - Pino Alonso
- Department of Psychiatry, OCD Clinical and Research Unit, Bellvitge Hospital, Barcelona, Spain
- Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
- Department of Psychiatry and Mental Health, Bellvitge Biomedical Research Institute IDIBELLL, Barcelona, Spain
- CIBERSAM, Mental Health Network Biomedical Research Center, Madrid, Spain
| | - Götz Berberich
- Psychosomatic Department, Windach Hospital of Neurobehavioural Research and Therapy, Windach, Germany
| | - Kathleen K Bucholz
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - Cynthia M Bulik
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Danielle Cath
- Departments of Rijksuniversiteit Groningen and Psychiatry, University Medical Center Groningen, Groningen, the Netherlands
- Department of Specialized Training, Drenthe Mental Health Care Institute, Groningen, the Netherlands
| | - Damiaan Denys
- Department of Psychiatry, Institute of the Royal Netherlands Academy of Arts and Sciences (NIN-KNAW), Amsterdam, the Netherlands
| | - Valsamma Eapen
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, UNSW, Sydney, New South Wales, Australia
- Academic Unit of Child Psychiatry South-West Sydney, South-West Sydney Clinical School, SWSLHD and Ingham Institute, Sydney, New South Wales, Australia
| | - Howard Edenberg
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany
- Department of Psychiatry, Max Planck Institute, Munich, Germany
| | - Thomas V Fernandez
- Child Study Center and Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Abby J Fyer
- Department of Psychiatry, New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
| | - J M Gaziano
- Department of Medicine, VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Mass General Brigham, Boston, MA, USA
| | - Dan A Geller
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Child Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Benjamin D Greenberg
- COBRE Center on Neuromodulation, Butler Hospital, Providence, RI, USA
- Center for Neurorestoration and Neurotechnology, VA Providence Healthcare System, Providence, RI, USA
- Department of Psychiatry and Human Behavior, Alpert Medical School, Brown University, Providence, RI, USA
| | - Gregory L Hanna
- Department of Psychiatry, Child and Adolescent Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Ian B Hickie
- Brain and Mind Centre, the University of Sydney, Sydney, New South Wales, Australia
| | - David M Hougaard
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
| | - Norbert Kathmann
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - James Kennedy
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Dongbing Lai
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mikael Landén
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Stéphanie Le Hellard
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Bergen Center for Brain Plasticity, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Marion Leboyer
- Department of Addictology and Psychiatry, Université Paris-Est Créteil, AP-HP, Inserm, Paris, France
| | - Christine Lochner
- Department of Psychiatry, SA MRC Unit on Risk and Resilience in Mental Disorders, Stellenbosch University, Stellenbosch, South Africa
| | - James T McCracken
- Department of Psychiatry and Biobehavioral Sciences, Division of Child and Adolescent Psychiatry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sarah E Medland
- Department of Mental Health, Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Preben B Mortensen
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
- National Centre for Register-based Research, Aarhus University, Aarhus, Denmark
- Centre for Integrated Register-based Research, Aarhus University, Aarhus, Denmark
| | - Benjamin M Neale
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Humberto Nicolini
- Department of Psychiatry, Psychiatry, Carracci Medical Group, Mexico City, México
- Psiquiatría, Instituto Nacional de Medicina Genómica, Mexico City, México
| | - Merete Nordentoft
- Mental Health Center Copenhagen, Copenhagen Research Center for Mental Health, Mental Health Services in the Capital Region of Denmark, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Michele Pato
- Department of Psychiatry, Rutgers University, Piscataway, NJ, USA
| | - Carlos Pato
- Department of Psychiatry, Rutgers University, Piscataway, NJ, USA
| | - David L Pauls
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - John Piacentini
- Department of Psychiatry and Biobehavioral Sciences, Child and Adolescent Psychiatry, UCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA
| | | | - Danielle Posthuma
- Department of Complex Trait Genetics, Vrije Universiteit Amsterdam, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Amsterdam, the Netherlands
- Department of Child and Adolescent Psychiatric, Section Complex Trait Genetics, VU Medical Center Amsterdam, Amsterdam, the Netherlands
| | - Josep Antoni Ramos-Quiroga
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Group of Psychiatry, Mental Health and Addictions, Psychiatric Genetics Unit, Vall d'Hebron Research Institute, Barcelona, Spain
- CIBERSAM, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Steven A Rasmussen
- Department of Psychiatry and Human Behavior, Alpert Medical School, Brown University, Providence, RI, USA
| | - Margaret A Richter
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - David R Rosenberg
- Department of Psychiatry and Behavioral Neurosciences, Child and Adolescent Psychiatry, Wayne State University School of Medicine, Detroit, MI, USA
| | - Stephan Ruhrmann
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | - Jack F Samuels
- Department of Psychiatry and Behavioral Sciences, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sven Sandin
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Paul Sandor
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Gianfranco Spalletta
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Psychiatry and Behavioral Sciences, Division of Neuropsychiatry, Baylor College of Medicine, Houston, TX, USA
| | - Dan J Stein
- Department of Psychiatry and Neuroscience Institute, SAMRC Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - S Evelyn Stewart
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- British Columbia Mental Health and Substance Use Services Research Institute, Vancouver, British Columbia, Canada
| | - Eric A Storch
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Barbara E Stranger
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Thomas Werge
- Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Copenhagen University Hospital, Mental Health Services (RHP), Copenhagen, Denmark
- Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ole A Andreassen
- Institute of Clinical Medicine, NORMENT Centre, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Center for Precision Psychiatry, Oslo University Hospital, Oslo, Norway
| | - Anders D Børglum
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus University, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus University, Aarhus, Denmark
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich (PUK), University of Zurich, Zürich, Switzerland
- Neuroscience Center Zurich, University of Zurich and the ETH Zurich, Zürich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland
| | - Kristian Hveem
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, NTNU, Trondheim, Norway
- HUNT Research Center, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, NTNU, Trondheim, Norway
- Department of Research, Innovation and Education, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Bjarne K Hansen
- Bergen Center for Brain Plasticity, Psychiatry, Haukeland University Hospital, Bergen, Norway
- Centre for Crisis Psychology, Psychology, University of Bergen, Bergen, Norway
| | - Christian Rück
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Services, Region Stockholm, Stockholm, Sweden
| | - Nicholas G Martin
- Department of Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Lili Milani
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Ole Mors
- Psychosis Research Unit, Psychiatry, Aarhus University Hospital, Aarhus, Denmark
| | - Ted Reichborn-Kjennerud
- Department of Mental Disorders, Norwegian Institute of Public Health, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Marta Ribasés
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Gerd Kvale
- Department of Mental Health, Norwegian University for Science and Technology, Trondheim, Norway
- Department of Clinical Psychology, Faculty of Psychology, University of Bergen, Bergen, Norway
| | - David Mataix-Cols
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Services, Region Stockholm, Stockholm, Sweden
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Freiburg, Medical Center-University of Freiburg, Freiburg, Germany
- Partner Site Berlin, DZPG, Berlin, Germany
| | - Edna Grünblatt
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich (PUK), University of Zurich, Zürich, Switzerland
- Neuroscience Center Zurich, University of Zurich and the ETH Zurich, Zürich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland
| | - Michael Wagner
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
- DZNE, Bonn, Germany
| | - John-Anker Zwart
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, NTNU, Trondheim, Norway
- Department of Research and Innovation, Clinical Neuroscience, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Gerome Breen
- Social, Genetic and Developmental Psychiatric Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Gerald Nestadt
- Department of Psychiatry and Behavioral Science, Johns Hopkins University, Baltimore, MD, USA
| | | | - Paul D Arnold
- Department of Psychiatry, the Mathison Centre for Mental Health Research and Education, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Program in Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Dorothy E Grice
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James A Knowles
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Helga Ask
- PsychGen Center for Genetic Epidemiology, Norwegian Institute of Public Health, Oslo, Norway
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway
| | - Karin J Verweij
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Lea K Davis
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dirk J Smit
- Department of Psychiatry, Amsterdam UMC location AMC, Amsterdam, the Netherlands
| | - James J Crowley
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Services, Region Stockholm, Stockholm, Sweden
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jeremiah M Scharf
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Murray B Stein
- Psychiatry Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry and School of Public Health, University of California San Diego, La Jolla, CA, USA
| | - Joel Gelernter
- Department of Psychiatry, Human Genetics (Psychiatry), Yale University School of Medicine, West Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - Carol A Mathews
- Psychiatry and Genetics Institute, Evelyn F. and William L. Mc Knight Brain Institute, Center for OCD, Anxiety and Related Disorders, University of Florida, Gainesville, FL, USA
| | - Eske M Derks
- Department of Mental Health and Neuroscience, QIMR Berghofer, Brisbane, Queensland, Australia
| | - Manuel Mattheisen
- Department of Psychiatric Phenomics and Genomics (IPPG), Ludwig-Maximilians University Munich, Munich, Germany.
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
- Department of Community Health and Epidemiology and Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
6
|
Norden-Krichmar TM, Rotroff D, Schwantes-An TH, Bataller R, Goldman D, Nagy LE, Liangpunsakul S. Genomic approaches to explore susceptibility and pathogenesis of alcohol use disorder and alcohol-associated liver disease. Hepatology 2025; 81:1595-1606. [PMID: 37796138 PMCID: PMC10985049 DOI: 10.1097/hep.0000000000000617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/13/2023] [Indexed: 10/06/2023]
Abstract
Excessive alcohol use is a major risk factor for the development of an alcohol use disorder (AUD) and contributes to a wide variety of other medical illnesses, including alcohol-associated liver disease (ALD). Both AUD and ALD are complex and causally interrelated diseases, and multiple factors other than alcohol consumption are implicated in the disease pathogenesis. While the underlying pathophysiology of AUD and ALD is complex, there is substantial evidence for a genetic susceptibility of both diseases. Current genome-wide association studies indicate that the genes associated with clinical AUD only poorly overlap with the genes identified for heavy drinking and, in turn, neither overlap with the genes identified for ALD. Uncovering the main genetic factors will enable us to identify molecular drivers underlying the pathogenesis, discover potential targets for therapy, and implement patient care early in disease progression. In this review, we described multiple genomic approaches and their implications to investigate the susceptibility and pathogenesis of both AUD and ALD. We concluded our review with a discussion of the knowledge gaps and future research on genomic studies in these 2 diseases.
Collapse
Affiliation(s)
| | - Daniel Rotroff
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH
| | - Tae-Hwi Schwantes-An
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
| | - Ramon Bataller
- Liver Unit, Institut of Digestive and Metabolic Diseases, Hospital Clinic, Barcelona, Spain
- Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS)
| | - David Goldman
- Laboratory of Neurogenetics and Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, Rockville, MD
| | - Laura E. Nagy
- Center for Liver Disease Research, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
- Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indianapolis, IN
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
- Roudebush Veterans Administration Medical Center, Indianapolis, IN
| |
Collapse
|
7
|
Chen T, Ramos AM, Maes HHM, Maggs JL, Neiderhiser JM. Are Depressive and Anxiety Symptoms Differentially Associated with Alcohol Use Behaviors: Multivariate Behavioral Genetic Analyses. Behav Genet 2025; 55:169-184. [PMID: 40014270 PMCID: PMC12043400 DOI: 10.1007/s10519-025-10218-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 02/11/2025] [Indexed: 02/28/2025]
Abstract
This study examined whether adolescent depressive and anxiety symptoms were differentially associated with alcohol use behaviors, and how these associations were explained by genetic, shared, and nonshared environmental influences. Participants were from the Nonshared Environment and Adolescent Development project of same-sex twin/sibling pairs from 720 families. Twin/sibling depressive and anxiety symptoms were measured by self-report at Time 1 (Mage = 13.71 years, range = 9-18 years). Alcohol initiation and alcohol use severity were measured by self-report three years after Time 1 (age range = 12-21 years). Phenotypic Cholesky models were used to estimate the variance of depressive symptoms and the unique variance of anxiety symptoms (independent of depressive symptoms), and how these variances were associated with alcohol initiation and alcohol use severity. Biometric Cholesky models then estimated contributions of genetic, shared and nonshared environmental influences to these variances and covariances. Antisocial behaviors were included in all analyses to account for their associations with depressive symptoms, anxiety symptoms and alcohol use behaviors. Analyses were conducted using the full, the younger half, and the older half of the sample to explore age differences in all associations. Depressive or anxiety symptoms were not associated with alcohol use behaviors after controlling for variance shared with antisocial behaviors, although age-specific analyses suggested some potential effects to explore in future studies for late adolescence. To conclude, longitudinal associations between depressive or anxiety symptoms and alcohol use behaviors during adolescence were mainly driven by the general psychopathology factor shared between internalizing and externalizing problems.
Collapse
Affiliation(s)
- Tong Chen
- Department of Psychology, The Pennsylvania State University, University Park, PA, USA.
| | - Amanda M Ramos
- Human Development and Family Studies, Utah State University, Logan, UT, USA
| | - Hermine H M Maes
- Department of Human and Molecular Genetics, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Jennifer L Maggs
- Human Development and Family Studies, The Pennsylvania State University, University Park, PA, USA
| | - Jenae M Neiderhiser
- Department of Psychology, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
8
|
Madory LE, Kazerani I, Lee EC, Denning CJE, Mosqueda De Rosas E, Nguyen DT, Feng E, Kotlyar D, Kharwa A, Munn-Chernoff MA, Bryant CD, Szumlinski KK. Cross-Sensitization between Binge Eating and Binge Drinking in a Novel C57BL/6NJ Murine Model of Disease Comorbidity Requires PDE4B Activation. J Neurosci 2025; 45:e1810242025. [PMID: 40164512 PMCID: PMC12005363 DOI: 10.1523/jneurosci.1810-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 02/12/2025] [Accepted: 02/20/2025] [Indexed: 04/02/2025] Open
Abstract
There is a high rate of comorbidity between binge eating (BE) and binge drinking (BD) behaviors, suggesting a common neuropathology. Recently, phosphodiesterase 4B (PDE4B) was identified as a pleiotropic gene associated with comorbid alcohol use disorder (AUD) and anorexia nervosa with BE in a genome-wide association study, implicating PDE4B as a potential contributor to shared genetic risk between these disorders. Here, we developed a novel mouse model of comorbid BE and BD in C57BL/6NJ mice in which mice underwent 10 d of BE, followed by 10 d of BD. Females exhibited cross-sensitization from BE to BD, which was apparent on the first day of ethanol access, whereas cross-sensitization emerged in males over multiple trials of BD. Accordingly immunoblotting of the nucleus accumbens tissue indicated a female-selective increase in PDE4B protein expression that was apparent on both the first and last day of BD in mice with a prior BE history. Acute pretreatment with the selective PDE4B inhibitor A33 (1.0 mg/kg) reduced the expression of cross-sensitization to BD in females on Day 1, and this effect was maintained during a 5 d A33 treatment regimen. The 5 d A33 treatment regimen also reduced expression of cross-sensitization to BD that had emerged in males over repeated sessions. These results provide preclinical, functional validation of PDE4B as a driver of food-ethanol cross-sensitization in a novel model for BE and BD comorbidity and support PDE4B in the shared genetic risk for these behavioral pathologies and as a target for pharmacotherapeutic intervention in comorbid AUD and BE behaviors.
Collapse
Affiliation(s)
- Lauren E Madory
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, California 93106-9660
| | - Ida Kazerani
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, California 93106-9660
| | - Edward C Lee
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, California 93106-9660
| | - Christopher J E Denning
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, California 93106-9660
| | - Estevan Mosqueda De Rosas
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, California 93106-9660
| | - Dylan T Nguyen
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, California 93106-9660
| | - Elwin Feng
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, California 93106-9660
| | - Daniel Kotlyar
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, California 93106-9660
| | - Aadithya Kharwa
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, California 93106-9660
| | - Melissa A Munn-Chernoff
- Department of Community, Family and Addiction Sciences, Texas Tech University, Lubbock, Texas 79409
| | - Camron D Bryant
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115
| | - Karen K Szumlinski
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, California 93106-9660
| |
Collapse
|
9
|
Zillich L, Artioli A, Pohořalá V, Zillich E, Stertz L, Belschner H, Jabali A, Frank J, Streit F, Avetyan D, Völker MP, Müller S, Hansson AC, Meyer TD, Rietschel M, Ladewig J, Spanagel R, Oliveira AMM, Walss-Bass C, Bernardi RE, Koch P, Witt SH. Cell type-specific multi-omics analysis of cocaine use disorder in the human caudate nucleus. Nat Commun 2025; 16:3381. [PMID: 40204703 PMCID: PMC11982542 DOI: 10.1038/s41467-025-57339-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 02/11/2025] [Indexed: 04/11/2025] Open
Abstract
Structural and functional alterations in the brain's reward circuitry are present in cocaine use disorder (CocUD), but their molecular underpinnings remain unclear. To investigate these mechanisms, we performed single-nuclei multiome profiling on postmortem caudate nucleus tissue from six individuals with CocUD and eight controls. We profiled 30,030 nuclei, identifying 13 cell types including D1- and D2-medium spiny neurons (MSNs) and glial cells. We observed 1485 differentially regulated genes and 10,342 differentially accessible peaks, with alterations in MSNs and astrocytes related to neurotransmitter activity and synapse organization. Gene regulatory network analysis identified transcription factors including ZEB1 as exhibiting distinct CocUD-specific subclusters, activating downstream expression of ion- and calcium-channels in MSNs. Further, PDE10A emerged as a potential drug target, showing conserved effects in a rat model. This study highlights cell type-specific molecular alterations in CocUD and provides targets for further investigation, demonstrating the value of multi-omics approaches in addiction research.
Collapse
Affiliation(s)
- Lea Zillich
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
- Department of Translational Brain Research, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
- HITBR Hector Institute for Translational Brain Research gGmbH, Mannheim, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
- German Center for Mental Health (DZPG), partner site Mannheim/Heidelberg/Ulm, Mannheim, Germany.
| | - Annasara Artioli
- Department of Translational Brain Research, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, Mannheim, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Veronika Pohořalá
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Eric Zillich
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Laura Stertz
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hanna Belschner
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ammar Jabali
- Department of Translational Brain Research, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, Mannheim, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Josef Frank
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Fabian Streit
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Center for Mental Health (DZPG), partner site Mannheim/Heidelberg/Ulm, Mannheim, Germany
| | - Diana Avetyan
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Maja P Völker
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Svenja Müller
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Center for Mental Health (DZPG), partner site Mannheim/Heidelberg/Ulm, Mannheim, Germany
| | - Anita C Hansson
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Thomas D Meyer
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Julia Ladewig
- Department of Translational Brain Research, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, Mannheim, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rainer Spanagel
- German Center for Mental Health (DZPG), partner site Mannheim/Heidelberg/Ulm, Mannheim, Germany
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ana M M Oliveira
- German Center for Mental Health (DZPG), partner site Mannheim/Heidelberg/Ulm, Mannheim, Germany
- Department of Molecular and Cellular Cognition Research, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Consuelo Walss-Bass
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Rick E Bernardi
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Philipp Koch
- Department of Translational Brain Research, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, Mannheim, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Center for Mental Health (DZPG), partner site Mannheim/Heidelberg/Ulm, Mannheim, Germany
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Center for Mental Health (DZPG), partner site Mannheim/Heidelberg/Ulm, Mannheim, Germany
- Center for Innovative Psychiatric and Psychotherapeutic Research, Biobank, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
10
|
Sha T, Zhang Y, Joshi AD, Lane NE, Wei J, Li W, Xie H, Li J, Li C, Zeng C, Lei G, Wang Y. Smoking, alcohol and risk of sarcopenia: a Mendelian randomisation study. BMJ Open 2025; 15:e091656. [PMID: 40194871 PMCID: PMC11977482 DOI: 10.1136/bmjopen-2024-091656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 03/25/2025] [Indexed: 04/09/2025] Open
Abstract
OBJECTIVE Observational studies have found that cigarette smoking increased the prevalence and incidence of sarcopenia, whereas alcohol consumption appeared to decrease the risk. These findings, however, may be susceptible to either confounding bias or reverse causation. We conducted a Mendelian randomisation (MR) study to appraise the causal relation of cigarette smoking and alcohol consumption to the risk of sarcopenia. METHODS Genetic instruments associated with cigarette smoking (cigarettes per day) and alcohol consumption (drinks per week) were retrieved from the publicly available genome-wide association data. Individual-level, electronic medical record-linked data on sarcopenia, grip strength and appendicular lean mass were obtained from the UK Biobank. We performed two-sample univariable and multivariable MR analyses to examine the relation of genetically determined cigarette smoking and alcohol consumption to the risk of sarcopenia and its indices. RESULTS One SD increase of genetically determined cigarette smoking was associated with an increased risk of sarcopenia (OR=2.51, 95% CI: 1.26 to 5.01, p=0.001), decreased grip strength (β=-0.63 kg, 95% CI: -1.13 to -0.13, p=0.01) and less appendicular lean mass (β=-0.22 kg, 95% CI: -0.44 to -0.01, p=0.04). Although one SD increase of genetically determined alcohol consumption was associated with decreased grip strength (β=-1.15 kg, 95% CI: -2.09 to -0.10, p=0.02), no statistically significant causal association was observed between genetically determined alcohol consumption and either sarcopenia (OR=0.96, 95% CI: 0.35 to 2.62, p=0.94) or appendicular lean mass (β=-0.23 kg, 95% CI: -0.91 to 0.45, p=0.51). CONCLUSIONS Our findings showed that genetically determined cigarette smoking, but not alcohol consumption, was causally associated with the risk of sarcopenia.
Collapse
Affiliation(s)
- Tingting Sha
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment of Ministry of Education, Changsha, China
| | - Yuqing Zhang
- Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- The Mongan Institute, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Amit D Joshi
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Nancy E Lane
- Center for Musculoskeletal Health, and Division of Rheumatology, Allergy and Clinical Immunology, Department of Medicine, UC Davis Department of Medicine, Hillsborough, Florida, USA
| | - Jie Wei
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment of Ministry of Education, Changsha, China
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Haibin Xie
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Jinchen Li
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Changjun Li
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Chao Zeng
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment of Ministry of Education, Changsha, China
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Guanghua Lei
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment of Ministry of Education, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yilun Wang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment of Ministry of Education, Changsha, China
| |
Collapse
|
11
|
Gottlieb S, Zeliff D, O'Rourke B, Rogers WD, Miles MF. GSK3B inhibition partially reverses brain ethanol-induced transcriptomic changes in C57BL/6J mice: Expression network co-analysis with human genome-wide association studies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.03.647116. [PMID: 40235963 PMCID: PMC11996488 DOI: 10.1101/2025.04.03.647116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Alcohol use disorder (AUD) is a chronic behavioral disease with greater than 50% of its risk due to complex genetic contributions. Existing pharmacological and behavioral treatments for AUD are minimally effective and underutilized. Animal model behavioral genetics and human genome-wide association studies have begun to identify individual genes contributing to the progressive compulsive consumption of ethanol that occurs with AUD, promising possible new therapeutic targets. Our laboratory has previously identified Gsk3b as a central member in a network of ethanol-responsive genes in mouse prefrontal cortex, which altered ethanol consumption with genetic manipulation and was also significantly associated with risk for alcohol dependence in human genome-wide association studies. Here we perform detailed brain RNA sequencing transcriptomic studies to characterize a highly specific and clinically available GSK3B pharmacological inhibitor, tideglusib, as a possible therapeutic for clinical trials on treatment of AUD. A model of chronic intermittent ethanol consumption was used to study gene expression changes in prefrontal cortex and nucleus accumbens in the presence or absence of tideglusib treatment. Multivariate analysis of differentially expressed genes showed that tideglusib largely reversed ethanol- induced expression changes for two prominent clusters of genes in both prefrontal cortex and nucleus accumbens. Bioinformatic analysis showed these genes to have prominent roles in neuronal functioning and synaptic activity. Additionally, mouse brain differential gene expression data was analyzed together with human protein-protein interaction and genome-wide association studies on AUD to derive networks responding to tideglusib and relevant to human genetic risk for alcohol dependence. These studies identified discrete networks significantly enriched with genes provisionally associated with AUD, and provide key information on central hubs of such networks. Together these studies document tideglusib as a major modulator of chronic ethanol consumption-evoked brain gene expression signatures, and identify possible new targets for therapeutic modulation of AUD.
Collapse
|
12
|
Yokoyama A, Yokoyama T, Yumoto Y, Takimura T, Toyama T, Yoneda J, Nishimura K, Minobe R, Matsuzaki T, Kimura M, Matsushita S. History of mental comorbidities and their relationships with drinking milestones, hazardous drug use, suicide attempts, and the ADH1B and ALDH2 genotypes in 4116 Japanese men with alcohol dependence: An exploratory study. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2025; 49:804-817. [PMID: 40146027 DOI: 10.1111/acer.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 02/03/2025] [Indexed: 03/28/2025]
Abstract
BACKGROUND Alcohol dependence (AD) is often comorbid with other mental disorders. We assessed how comorbidities are associated with the clinical features of AD. METHODS Information on the history of mental comorbidities, hazardous drug use, suicide attempts, and drinking milestones was collected on a semi-structured medical history form from 4116 Japanese male AD inpatients (2007-2018); the subjects' ADH1B and ALDH2 genotypes (rs1229984/rs671) were also determined. RESULTS Of the total, 889 (21.60%) patients reported a history of mental comorbidities, including mood disorders (15.48%) and insomnia (2.89%); 202 (4.91%) reported a history of hazardous drug use, and 614 (14.92%) reported suicide attempts. Comorbidities were most commonly diagnosed around the time of onset of advanced alcohol use disorder (aAUD). Patients with comorbidities who began drinking regularly showed more rapid progression to aAUD and to the start of treatment for AD. Multivariate odds ratios (MORs [95%CI]) for the fast-metabolizing ADH1B*1/*2 and ADH1B*2/*2, protective against AD, were higher in patients with comorbidities [1.43 (1.16-1.76) and 1.35 (1.11-1.66)], drug use [1.64 (1.09-2.46) and 1.60 (1.07-2.38)], and suicide attempts [1.45 (1.13-1.85) and 1.49 (1.17-1.88)] compared with the ADH1B*1/*1. MORs for the inactive protective ALDH2*1/*2 were increased only in patients with insomnia [2.65 (1.75-4.02)] compared with the ALDH2*1/*1. MORs for smoking [0.74 (0.58-0.94)] and for age ≤15 years at first drink [0.66 (0.54-0.81)] were lower in patients with comorbidities. MORs for suicide attempts were 2.87 (2.36-3.48) in patients with comorbidities and 3.38 (2.47-4.62) in patients with drug use. CONCLUSIONS Mental comorbidities and a history of suicide attempts were frequent in Japanese patients with AD. Risk factors for AD (ADH1B*1/*1, smoking, early initiation of drinking) were negatively associated with the risk of comorbidities, suggesting interactions between comorbidities and AD risk factors. Insomnia was positively associated with the inactive ALDH2*1/*2. AD patients with mental comorbidities require multifaceted interventions, including suicide prevention.
Collapse
Affiliation(s)
- Akira Yokoyama
- National Hospital Organization Kurihama Medical and Addiction Center, Yokosuka, Japan
| | - Tetsuji Yokoyama
- Department of Health Promotion, National Institute of Public Health, Wako, Japan
| | - Yosuke Yumoto
- National Hospital Organization Kurihama Medical and Addiction Center, Yokosuka, Japan
| | - Tsuyoshi Takimura
- National Hospital Organization Kurihama Medical and Addiction Center, Yokosuka, Japan
| | - Tomomi Toyama
- National Hospital Organization Kurihama Medical and Addiction Center, Yokosuka, Japan
| | - Junichi Yoneda
- National Hospital Organization Kurihama Medical and Addiction Center, Yokosuka, Japan
| | - Kotaro Nishimura
- National Hospital Organization Kurihama Medical and Addiction Center, Yokosuka, Japan
| | - Ruriko Minobe
- National Hospital Organization Kurihama Medical and Addiction Center, Yokosuka, Japan
| | - Takanobu Matsuzaki
- National Hospital Organization Kurihama Medical and Addiction Center, Yokosuka, Japan
| | - Mitsuru Kimura
- National Hospital Organization Kurihama Medical and Addiction Center, Yokosuka, Japan
| | - Sachio Matsushita
- National Hospital Organization Kurihama Medical and Addiction Center, Yokosuka, Japan
| |
Collapse
|
13
|
Willis C, White JD, Minto MS, Quach BC, Han S, Tao R, Shin JH, Deep-Soboslay A, Hyde TM, Mayfield RD, Webb BT, Johnson EO, Kleinman JE, Bierut LJ, Hancock DB. Gene expression differences associated with alcohol use disorder in human brain. Mol Psychiatry 2025; 30:1617-1626. [PMID: 39394458 PMCID: PMC11919698 DOI: 10.1038/s41380-024-02777-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/13/2024]
Abstract
Excessive alcohol consumption is a leading cause of preventable death worldwide. To improve understanding of neurobiological mechanisms associated with alcohol use disorder (AUD) in humans, we compared gene expression data from deceased individuals with and without AUD across two addiction-relevant brain regions: the nucleus accumbens (NAc) and dorsolateral prefrontal cortex (DLPFC). Bulk RNA-seq data from NAc and DLPFC (N ≥50 with AUD, ≥46 non-AUD) were analyzed for differential gene expression using modified negative binomial regression adjusting for technical and biological covariates. The region-level results were meta-analyzed with those from an independent dataset (NNAc = 28 AUD, 29 non-AUD; NPFC = 66 AUD, 77 non-AUD). We further tested for heritability enrichment of AUD-related phenotypes, gene co-expression networks, gene ontology enrichment, and drug repurposing. We identified 176 differentially expressed genes (DEGs; 12 in both regions, 78 in NAc only, 86 in DLPFC only) for AUD in our new dataset. After meta-analyzing with published data, we identified 476 AUD DEGs (25 in both regions, 29 in NAc only, 422 in PFC only). Of these DEGs, 17 were significant when looked up in GWAS of problematic alcohol use or drinks per week. Gene co-expression analysis showed both concordant and unique gene networks across brain regions. We also identified 29 and 436 drug compounds that target DEGs from our meta-analysis in NAc and PFC, respectively. This study identified robust AUD-associated DEGs, contributing novel neurobiological insights into AUD and highlighting genes targeted by known drug compounds, generating opportunity for drug repurposing to treat AUD.
Collapse
Affiliation(s)
- Caryn Willis
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, NC, USA.
| | - Julie D White
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, NC, USA
| | - Melyssa S Minto
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, NC, USA
| | - Bryan C Quach
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, NC, USA
| | - Shizhong Han
- Lieber Institute for Brain Development (LIBD), Baltimore, MD, USA
| | - Ran Tao
- Lieber Institute for Brain Development (LIBD), Baltimore, MD, USA
| | - Joo Heon Shin
- Lieber Institute for Brain Development (LIBD), Baltimore, MD, USA
| | | | - Thomas M Hyde
- Lieber Institute for Brain Development (LIBD), Baltimore, MD, USA
| | - R Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, USA
| | - Bradley T Webb
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, NC, USA
| | - Eric O Johnson
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, NC, USA
- Fellow Program, RTI International, Research Triangle Park, NC, USA
| | - Joel E Kleinman
- Lieber Institute for Brain Development (LIBD), Baltimore, MD, USA
| | - Laura J Bierut
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Dana B Hancock
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, NC, USA
| |
Collapse
|
14
|
Zhu H, Wang Y, Li L, Wang L, Zhang H, Jin X. Cell-free DNA from clinical testing as a resource of population genetic analysis. Trends Genet 2025; 41:330-344. [PMID: 39578178 DOI: 10.1016/j.tig.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 11/24/2024]
Abstract
As a noninvasive biomarker, cell-free DNA (cfDNA) has achieved remarkable success in clinical applications. Notably, cfDNA is essentially DNA, and conducting whole-genome sequencing (WGS) can yield a wealth of genetic information. These invaluable data should not be confined to one-time use; instead, they should be leveraged for more comprehensive population genetic analysis, including genetic variation spectrum, population structure and genetic selection, and genome-wide association studies (GWASs), among others. Such research findings can, in turn, facilitate clinical practice, enabling more advanced and accurate disease predictions. This review explores the advantages, challenges, and current research areas of cfDNA in population genetics. We hope that this review can serve as a new chapter in the repurposing of cfDNA sequence data generated from clinical testing in population genetics.
Collapse
Affiliation(s)
- Huanhuan Zhu
- BGI Research, Shenzhen 518083, China; Shenzhen Key Laboratory of Transomics Biotechnologies, BGI Research, Shenzhen 518083, China
| | - Yu Wang
- BGI Research, Shenzhen 518083, China; Shenzhen Key Laboratory of Transomics Biotechnologies, BGI Research, Shenzhen 518083, China
| | - Linxuan Li
- BGI Research, Shenzhen 518083, China; Shenzhen Key Laboratory of Transomics Biotechnologies, BGI Research, Shenzhen 518083, China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Wang
- BGI Research, Shenzhen 518083, China; Shenzhen Key Laboratory of Transomics Biotechnologies, BGI Research, Shenzhen 518083, China
| | - Haiqiang Zhang
- BGI Research, Shenzhen 518083, China; Shenzhen Key Laboratory of Transomics Biotechnologies, BGI Research, Shenzhen 518083, China
| | - Xin Jin
- BGI Research, Shenzhen 518083, China; Shenzhen Key Laboratory of Transomics Biotechnologies, BGI Research, Shenzhen 518083, China; School of Medicine, South China University of Technology, Guangzhou 510641, China; Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
15
|
Al-Soufi L, Hindley G, Rødevand L, Shadrin AA, Jaholkowski P, Fominykh V, Icick R, Tesfaye M, Costas J, Andreassen OA. Polygenic overlap of substance use behaviors and disorders with externalizing and internalizing problems independent of genetic correlations. Psychol Med 2025; 55:e100. [PMID: 40162501 DOI: 10.1017/s0033291725000108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
BACKGROUND Externalizing and internalizing pathways may lead to the development of substance use behaviors (SUBs) and substance use disorders (SUDs), which are all heritable phenotypes. Genetic correlation studies have indicated differences in the genetic susceptibility between SUBs and SUDs. We investigated whether these substance use phenotypes are differently related to externalizing and internalizing problems at a genetic level. METHODS We analyzed data from genome-wide association studies (GWAS) of four SUBs and SUDs, five externalizing traits, and five internalizing traits using the bivariate causal mixture model (MiXeR) to estimate genetic overlap beyond genetic correlation. RESULTS Two distinct patterns were found. SUBs demonstrated high genetic overlap but low genetic correlation of shared variants with internalizing traits, suggesting a pattern of mixed effect directions of shared genetic variants. Conversely, SUDs and externalizing traits exhibited considerable genetic overlap with moderate to high positive genetic correlation of shared variants, suggesting concordant effect direction of shared risk variants. CONCLUSIONS These results highlight the importance of the externalizing pathway in SUDs as well as the limited role of the internalizing pathway in SUBs. As MiXeR is not intended for the identification of specific genes, further studies are needed to reveal the underlying shared mechanisms of these traits.
Collapse
Affiliation(s)
- Laila Al-Soufi
- Psychiatric Genetics group, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Galicia, Spain. Red de Investigación en Atención Primaria de Adicciones (RIAPAd)
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Galicia, Spain
| | - Guy Hindley
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Linn Rødevand
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Alexey A Shadrin
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Piotr Jaholkowski
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Vera Fominykh
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Romain Icick
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Université Paris-Cité, INSERM, Optimisation thérapeutique en neuropsychopharmacologie OPTEN U1144, 75006, Paris, France
| | - Markos Tesfaye
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Javier Costas
- Psychiatric Genetics group, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Galicia, Spain. Red de Investigación en Atención Primaria de Adicciones (RIAPAd)
- Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Galicia, Spain
| | - Ole A Andreassen
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
16
|
Dinkelbach L, Peters T, Grasemann C, Hinney A, Hirtz R. The causal role of male pubertal timing for the development of externalizing and internalizing traits: results from Mendelian randomization studies. Psychol Med 2025; 55:e101. [PMID: 40151865 DOI: 10.1017/s0033291725000352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
BACKGROUND Preexisting epidemiological studies suggest that early pubertal development in males is associated with externalizing (e.g. conduct problems, risky behavior, and aggression) and internalizing (e.g. depression and anxiety) traits and disorders. However, due to problems inherent to observational studies, especially of residual confounding, it remains unclear whether these associations are causal. Mendelian randomization (MR) studies take advantage of the random allocation of genes at conception and can establish causal relationships. METHODS In this study, N = 76 independent genetic variants for male puberty timing (MPT) were derived from a large genome-wide association study (GWAS) on 205,354 participants and used as an instrumental variable in MR studies on 17 externalizing and internalizing traits and psychopathologies utilizing outcome GWAS with 16,400-1,045,957 participants. RESULTS In these MR studies, earlier MPT was significantly associated with higher scores for the overarching phenotype of 'Externalizing Traits' (b = -0.03, 95% CI [-0.06, -0.01]). However, this effect was likely driven by an earlier age at first sexual contact (b = -0.17, 95% CI [-0.21, -0.13]), without evidence for an effect on further externalizing phenotypes. Regarding internalizing phenotypes, earlier MPT was associated with higher levels of the 'Depressed Affect' subdomain of neuroticism (b = -0.04, 95% CI [-0.07, -0.01]). Late MPT was related to higher scores of internalizing traits in early life (b = 0.04, 95% CI [0.01, 0.08]). CONCLUSIONS This comprehensive MR study supports a causal effect of MPT on specific traits and behaviors. However, no evidence for an effect of MPT on long-term clinical outcomes (depression, anxiety disorders, alcohol dependency, cannabis abuse) was found.
Collapse
Affiliation(s)
- Lars Dinkelbach
- Department of Pediatrics III, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Institute of Sex- and Gender-sensitive Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Triinu Peters
- Institute of Sex- and Gender-sensitive Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Section of Molecular Genetics in Mental Disorders, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Corinna Grasemann
- Department of Pediatrics, Division of Rare Diseases and CeSER, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Anke Hinney
- Institute of Sex- and Gender-sensitive Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Section of Molecular Genetics in Mental Disorders, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Raphael Hirtz
- Center for Child and Adolescent Medicine, Helios University Hospital Wuppertal, Witten/Herdecke University, Wuppertal, Germany
| |
Collapse
|
17
|
Savage JE, Aliev F, Barr PB, Choi M, Drouard G, Cooke ME, Kuo SI, Stephenson M, Brislin SJ, Neale ZE, Spit for Science Working Group, COGA Investigators, Latvala A, Rose RJ, Kaprio J, Dick DM, Meyers J, Salvatore JE, Posthuma D. Trajectories of genetic risk across dimensions of alcohol use behaviors. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.27.25324798. [PMID: 40196263 PMCID: PMC11974985 DOI: 10.1101/2025.03.27.25324798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Background Alcohol use behaviors (AUBs) manifest in a variety of normative and problematic ways across the life course, all of which are heritable. Twin studies show that genetic influences on AUBs change across development, but this is usually not considered in research identifying and investigating the genes linked to AUBs. Aims Understanding the dynamics of how genes shape AUBs could point to critical periods in which interventions may be most effective and provide insight into the mechanisms behind AUB-related genes. In this project, we investigate how genetic associations with AUBs unfold across development using longitudinal modelling of polygenic scores (PGSs). Design Using results from genome-wide association studies (GWASs), we created PGSs to index individual-level genetic risk for multiple AUB-related dimensions: Consumption, Problems, a variable pattern of drinking associated with a preference for beer (BeerPref), and externalizing behavior (EXT). We created latent growth curve models and tested PGSs as predictors of latent growth factors (intercept, slope, quadratic) underlying trajectories of AUBs. Setting PGSs were derived in six longitudinal epidemiological cohorts from the US, UK, and Finland. Participants Participant data were obtained from AddHealth, ALSPAC, COGA, FinnTwin12, the older Finnish Twin Cohort, and Spit for Science (total N = 19,194). These cohorts included individuals aged 14 to 67, with repeated measures collected over a span of 4 to 36 years. Measurements Primary measures included monthly frequency of typical alcohol consumption (CON) and heavy episodic drinking (HED). Findings Results indicated that higher PGSs for all AUBs are robustly associated with higher mean levels of CON and/or HED (B = 0.064-0.333, p < 3.09E-04). However, these same genetic indices were largely not associated with drinking trajectories across cohorts. In the meta-analysis, only PGSs for chronic alcohol Problems consistently predicted a steeper slope (increasing trajectory) of CON across time (B = 0.470, p = 4.20E-06). Conclusions The results indicate that genetic associations with AUBs not only differ between behaviors, but also across developmental time points and across cohorts. Genetic studies that take such heterogeneity into account are needed to better represent the underlying etiology of AUBs. Individual-level genetic profiles may be useful to point to personalized intervention timelines, particularly for individuals with high alcohol Problems genetic risk scores.
Collapse
Affiliation(s)
- Jeanne E Savage
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Fazil Aliev
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Peter B Barr
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
- Veterans Affairs New York Harbor Healthcare System, Brooklyn, NY, USA
| | - Maia Choi
- Department of Psychology, School of Arts and Sciences, Rutgers University
- Rutgers Addiction Research Center, Rutgers University, Piscataway, NJ, USA
| | - Gabin Drouard
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Megan E Cooke
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Sally I Kuo
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Mallory Stephenson
- Virginia Institute for Psychiatric and Behavioral Genetics, Department of Psychiatry, Virginia Commonwealth University, USA
| | - Sarah J Brislin
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Zoe E Neale
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
- Veterans Affairs New York Harbor Healthcare System, Brooklyn, NY, USA
| | | | - Antti Latvala
- Institute of Criminology and Legal Policy, University of Helsinki, Finland
| | - Richard J. Rose
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Danielle M Dick
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
- Rutgers Addiction Research Center, Rutgers University, Piscataway, NJ, USA
| | - Jacquelyn Meyers
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
- Veterans Affairs New York Harbor Healthcare System, Brooklyn, NY, USA
| | - Jessica E Salvatore
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Danielle Posthuma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
18
|
Weekley BH, Ahmed NI, Maze I. Elucidating neuroepigenetic mechanisms to inform targeted therapeutics for brain disorders. iScience 2025; 28:112092. [PMID: 40160416 PMCID: PMC11951040 DOI: 10.1016/j.isci.2025.112092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
The evolving field of neuroepigenetics provides important insights into the molecular foundations of brain function. Novel sequencing technologies have identified patient-specific mutations and gene expression profiles involved in shaping the epigenetic landscape during neurodevelopment and in disease. Traditional methods to investigate the consequences of chromatin-related mutations provide valuable phenotypic insights but often lack information on the biochemical mechanisms underlying these processes. Recent studies, however, are beginning to elucidate how structural and/or functional aspects of histone, DNA, and RNA post-translational modifications affect transcriptional landscapes and neurological phenotypes. Here, we review the identification of epigenetic regulators from genomic studies of brain disease, as well as mechanistic findings that reveal the intricacies of neuronal chromatin regulation. We then discuss how these mechanistic studies serve as a guideline for future neuroepigenetics investigations. We end by proposing a roadmap to future therapies that exploit these findings by coupling them to recent advances in targeted therapeutics.
Collapse
Affiliation(s)
- Benjamin H. Weekley
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Newaz I. Ahmed
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ian Maze
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Howard Hughes Medical Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
19
|
Belau MH, Wiessner C, Sehner S, Dekker A, Briken P. Sexual assault experience, depression, and heavy substance use among German adults: an exploratory mediation analysis. BMC Public Health 2025; 25:935. [PMID: 40065280 PMCID: PMC11892163 DOI: 10.1186/s12889-025-22117-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND The experience of sexual assault may be associated with numerous adverse outcomes, including depressive disorders and heavy substance use. We aimed to examine the relationship between heavy substance use and depression in victims of sexual assault. METHODS We used nationally representative data from the German Health and Sexuality Survey (GeSiD) with N = 4,955 women and men aged 18-75 years. We assessed (i) the potential effect of sexual assault experience on depression mediated through hazardous alcohol, heavy tobacco, and frequent cannabis use and (ii) sexual assault experience on heavy substance use mediated through depression using logistic regression analysis to estimate proportion mediated (PM). RESULTS We found some evidence of mediation between sexual assault as a lifetime event and depression by heavy tobacco use (PM = 1.6%) and frequent cannabis use (PM = 14.7%) among women. We also observed mediation by hazardous alcohol use (PM = 35.5%) and heavy tobacco use (PM = 48.6%) among men who experienced childhood sexual assault. Focusing on depression as a potential mediator, we found some evidence of mediation between sexual assault as a lifetime event and heavy tobacco use among women (PM = 17.6%) and men (PM = 13.3%), and between sexual assault as a lifetime event and frequent cannabis use (PM = 26.9%) among women. CONCLUSIONS Our findings suggest that public health specialists, clinicians, and therapists should develop early interventions to prevent addiction and the development of depression after experiencing sexual assault.
Collapse
Affiliation(s)
- Matthias Hans Belau
- Institute of Medical Biometry and Epidemiology, University Medical Centre Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany.
| | - Christian Wiessner
- Institute of Medical Biometry and Epidemiology, University Medical Centre Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
- Institute of Sex Research, Sexual Medicine, and Forensic Psychiatry, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Susanne Sehner
- Institute of Medical Biometry and Epidemiology, University Medical Centre Hamburg-Eppendorf, Martinistr. 52, Hamburg, 20246, Germany
| | - Arne Dekker
- Institute of Sex Research, Sexual Medicine, and Forensic Psychiatry, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Peer Briken
- Institute of Sex Research, Sexual Medicine, and Forensic Psychiatry, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
20
|
Casten LG, Koomar T, Thomas TR, Koh JY, Hofamman D, Thenuwara S, Momany A, O'Brien M, Murra JC, Bruce Tomblin J, Michaelson JJ. Rapidly evolved genomic regions shape individual language abilities in present-day humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.07.641231. [PMID: 40161630 PMCID: PMC11952349 DOI: 10.1101/2025.03.07.641231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
1Minor genetic changes have produced profound differences in cognitive abilities between humans and our closest relatives, particularly in language. Despite decades of research, ranging from single-gene studies to broader evolutionary analyses[1, 2, 3, 4, 5], key questions about the genomic foundations of human language have persisted, including which sequences are involved, how they evolved, and whether similar changes occur in other vocal learning species. Here we provide the first evidence directly linking rapidly evolved genomic regions to language abilities in contemporary humans. Through extensive analysis of 65 million years of evolutionary events in over 30,000 individuals, we demonstrate that Human Ancestor Quickly Evolved Regions (HAQERs)[5] - sequences that rapidly accumulated mutations after the human-chimpanzee split - specifically influence language but not general cognition. These regions evolved to shape language development by altering binding of Forkhead domain transcription factors, including FOXP2. Strikingly, language-associated HAQER variants show higher prevalence in Neanderthals than modern humans, have been stable throughout recent human history, and show evidence of convergent evolution across other mammalian vocal learners. An unexpected pattern of balancing selection acting on these apparently beneficial alleles is explained by their pleiotropic effects on prenatal brain development contributing to birth complications, reflecting an evolutionary trade-off between language capability and reproductive fitness. By developing the Evolution Stratified-Polygenic Score analysis, we show that language capabilities likely emerged before the human-Neanderthal split - far earlier than previously thought[3, 6, 7]. Our findings establish the first direct link between ancient genomic divergence and present-day variation in language abilities, while revealing how evolutionary constraints continue to shape human cognitive development.
Collapse
Affiliation(s)
| | | | | | - Jin-Young Koh
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland
| | | | | | - Allison Momany
- Stead Family Department of Pediatrics, University of Iowa
| | - Marlea O'Brien
- Department of Communication Science and Disorders, University of Iowa
| | | | - J Bruce Tomblin
- Department of Communication Science and Disorders, University of Iowa
| | - Jacob J Michaelson
- Department of Psychiatry, University of Iowa
- Department of Communication Science and Disorders, University of Iowa
| |
Collapse
|
21
|
Moghaddam M, Dzemidzic M, Guerrero D, Liu M, Alessi J, Plawecki MH, Harezlak J, Kareken DA, Goñi J. Tangent space functional reconfigurations in individuals at risk for alcohol use disorder. Netw Neurosci 2025; 9:38-60. [PMID: 40161978 PMCID: PMC11949615 DOI: 10.1162/netn_a_00419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/25/2024] [Indexed: 04/02/2025] Open
Abstract
Human brain function dynamically adjusts to ever-changing stimuli from the external environment. Studies characterizing brain functional reconfiguration are, nevertheless, scarce. Here, we present a principled mathematical framework to quantify brain functional reconfiguration when engaging and disengaging from a stop signal task (SST). We apply tangent space projection (a Riemannian geometry mapping technique) to transform the functional connectomes (FCs) of 54 participants and quantify functional reconfiguration using the correlation distance of the resulting tangent-FCs. Our goal was to compare functional reconfigurations in individuals at risk for alcohol use disorder (AUD). We hypothesized that functional reconfigurations when transitioning to/from a task would be influenced by family history of AUD (FHA) and other AUD risk factors. Multilinear regression models showed that engaging and disengaging functional reconfiguration were associated with FHA and recent drinking. When engaging in the SST after a rest condition, functional reconfiguration was negatively associated with recent drinking, while functional reconfiguration when disengaging from the SST was negatively associated with FHA. In both models, several other factors contributed to the functional reconfiguration. This study demonstrates that tangent-FCs can characterize task-induced functional reconfiguration and that it is related to AUD risk.
Collapse
Affiliation(s)
- Mahdi Moghaddam
- Edwardson School of Industrial Engineering, Purdue University, West Lafayette, IN, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
| | - Mario Dzemidzic
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alcohol Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Daniel Guerrero
- Edwardson School of Industrial Engineering, Purdue University, West Lafayette, IN, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
| | - Mintao Liu
- Edwardson School of Industrial Engineering, Purdue University, West Lafayette, IN, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
| | - Jonathan Alessi
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alcohol Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Martin H. Plawecki
- Indiana Alcohol Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jaroslaw Harezlak
- Indiana Alcohol Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Epidemiology and Biostatistics, Indiana University Bloomington, Bloomington, IN, USA
| | - David A. Kareken
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alcohol Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Joaquín Goñi
- Edwardson School of Industrial Engineering, Purdue University, West Lafayette, IN, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
- Indiana Alcohol Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
22
|
Schwaba T, Mallard TT, Maihofer AX, Rhemtulla M, Lee PH, Smoller JW, Davis LK, Nivard MG, Grotzinger AD, Tucker-Drob EM. Comparison of the multivariate genetic architecture of eight major psychiatric disorders across sex. Nat Genet 2025; 57:583-590. [PMID: 40055480 PMCID: PMC12022846 DOI: 10.1038/s41588-025-02093-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/20/2025] [Indexed: 03/15/2025]
Abstract
Differences in the patterning of genetic sharing between groups of individuals may arise from biological pathways, social mechanisms, phenotyping and ascertainment. We expand genomic structural equation modeling to allow for testing genomic structural invariance (GSI), that is, the formal comparison of multivariate genetic architecture across groups. We apply GSI to compare the autosomal multivariate genetic architecture of eight psychiatric disorders spanning three factors (psychotic, neurodevelopmental and internalizing) between cisgender males and females. We find that the genetic factor structure is largely similar across sex, permitting meaningful comparisons of associations at the level of the factors. However, in females, problematic alcohol use and posttraumatic stress disorder loaded more strongly on the internalizing factor, while the neurodevelopmental disorder factor exhibited weaker genetic correlations with the other factors. Four phenotypes (educational attainment, insomnia, smoking and deprivation) showed significant, albeit small, sex-differentiated associations with the psychotic factor. As genome-wide association study samples grow and diversify, GSI will become increasingly valuable for comparing multivariate genetic architecture across groups.
Collapse
Affiliation(s)
- Ted Schwaba
- Department of Psychology, Michigan State University, East Lansing, MI, USA.
| | - Travis T Mallard
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Precision Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Adam X Maihofer
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, CA, USA
- Center of Excellence for Stress and Mental Health, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Mijke Rhemtulla
- Department of Psychology, University of California, Davis, Davis, CA, USA
| | - Phil H Lee
- Stanley Center for Psychiatric Research, The Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jordan W Smoller
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for Precision Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, The Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Lea K Davis
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- Division of Data Driven and Digital Medicine, Department of Medicine, Mount Sinai Hospital, New York City, NY, USA
| | - Michel G Nivard
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Andrew D Grotzinger
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Elliot M Tucker-Drob
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
- Population Research Center, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
23
|
Doyle AE, Bearden CE, Gur RE, Ledbetter DH, Martin CL, McCoy TH, Pasaniuc B, Perlis RH, Smoller JW, Davis LK. Advancing Mental Health Research Through Strategic Integration of Transdiagnostic Dimensions and Genomics. Biol Psychiatry 2025; 97:450-460. [PMID: 39424167 DOI: 10.1016/j.biopsych.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 09/11/2024] [Accepted: 10/04/2024] [Indexed: 10/21/2024]
Abstract
Genome-wide studies are yielding a growing catalog of common and rare variants that confer risk for psychopathology. However, despite representing unprecedented progress, emerging data also indicate that the full promise of psychiatric genetics-including understanding pathophysiology and improving personalized care-will not be fully realized by targeting traditional dichotomous diagnostic categories. The current article provides reflections on themes that emerged from a 2021 National Institute of Mental Health-sponsored conference convened to address strategies for the evolving field of psychiatric genetics. As anticipated by the National Institute of Mental Health's Research Domain Criteria framework, multilevel investigations of dimensional and transdiagnostic phenotypes, particularly when integrated with biobanks and big data, will be critical to advancing knowledge. The path forward will also require more diverse representation in source studies. Additionally, progress will be catalyzed by a range of converging approaches, including capitalizing on computational methods, pursuing biological insights, working within a developmental framework, and engaging health care systems and patient communities.
Collapse
Affiliation(s)
- Alysa E Doyle
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts.
| | - Carrie E Bearden
- Departments of Psychiatry and Biobehavioral Sciences & Psychology, University of California at Los Angeles, Los Angeles, California
| | - Raquel E Gur
- Departments of Psychiatry, Neurology and Radiology, Perelman School of Medicine, University of Pennsylvania, and the Lifespan Brain Institute of Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, Pennsylvania
| | - David H Ledbetter
- Departments of Pediatrics and Psychiatry, University of Florida College of Medicine, Jacksonville, Florida
| | - Christa L Martin
- Geisinger Autism & Developmental Medicine Institute, Lewisburg, Pennsylvania
| | - Thomas H McCoy
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Bogdan Pasaniuc
- Departments of Computational Medicine, Pathology and Laboratory Medicine, and Human Genetics, University of California at Los Angeles, Los Angeles, California
| | - Roy H Perlis
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Jordan W Smoller
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Lea K Davis
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
24
|
Martin SS, Aday AW, Allen NB, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, Baker-Smith CM, Bansal N, Beaton AZ, Commodore-Mensah Y, Currie ME, Elkind MSV, Fan W, Generoso G, Gibbs BB, Heard DG, Hiremath S, Johansen MC, Kazi DS, Ko D, Leppert MH, Magnani JW, Michos ED, Mussolino ME, Parikh NI, Perman SM, Rezk-Hanna M, Roth GA, Shah NS, Springer MV, St-Onge MP, Thacker EL, Urbut SM, Van Spall HGC, Voeks JH, Whelton SP, Wong ND, Wong SS, Yaffe K, Palaniappan LP. 2025 Heart Disease and Stroke Statistics: A Report of US and Global Data From the American Heart Association. Circulation 2025; 151:e41-e660. [PMID: 39866113 DOI: 10.1161/cir.0000000000001303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
BACKGROUND The American Heart Association (AHA), in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, nutrition, sleep, and obesity) and health factors (cholesterol, blood pressure, glucose control, and metabolic syndrome) that contribute to cardiovascular health. The AHA Heart Disease and Stroke Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, brain health, complications of pregnancy, kidney disease, congenital heart disease, rhythm disorders, sudden cardiac arrest, subclinical atherosclerosis, coronary heart disease, cardiomyopathy, heart failure, valvular disease, venous thromboembolism, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The AHA, through its Epidemiology and Prevention Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States and globally to provide the most current information available in the annual Statistical Update with review of published literature through the year before writing. The 2025 AHA Statistical Update is the product of a full year's worth of effort in 2024 by dedicated volunteer clinicians and scientists, committed government professionals, and AHA staff members. This year's edition includes a continued focus on health equity across several key domains and enhanced global data that reflect improved methods and incorporation of ≈3000 new data sources since last year's Statistical Update. RESULTS Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
25
|
Spychala KM, Yeung EW, Miller AP, Slutske WS, Action Consortium, Wilhelmsen KC, Gizer IR. Genetic risk for trait aggression and alcohol use predict unique facets of alcohol-related aggression. PSYCHOLOGY OF ADDICTIVE BEHAVIORS 2025; 39:63-75. [PMID: 38842867 PMCID: PMC11621227 DOI: 10.1037/adb0001015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
OBJECTIVE A propensity for aggression or alcohol use may be associated with alcohol-related aggression. Previous research has shown genetic overlap between alcohol use and aggression but has not looked at how alcohol-related aggression may be uniquely influenced by genetic risk for aggression or alcohol use. The present study examined the associations of genetic risk for trait aggression, alcohol use, and alcohol use disorder (AUD) with alcohol-related aggression using a polygenic risk score (PRS) approach. METHOD Using genome-wide association study summary statistics, PRSs were created for trait aggression, alcohol consumption, and AUD. These PRSs were used to predict the phenotype of alcohol-related aggression among drinkers in two independent samples: the University of California at San Francisco (UCSF) Family Alcoholism Study (n = 1,162) and the National Longitudinal Study of Adolescent to Adult Health (Add Health; n = 4,291). RESULTS There were significant associations between the AUD PRS and lifetime alcohol-related aggression in the UCSF study sample. Additionally, the trait aggression PRS was associated with three or more experiences of hitting anyone else and getting into physical fights while under the influence of alcohol, along with a composite score of three or more experiences of alcohol-related aggression, in the UCSF study sample. No significant associations were observed in the Add Health sample. Limited sex-specific genetic effects were observed. CONCLUSIONS These results provide preliminary evidence that genetic influences underlying alcohol use and aggression are uniquely associated with alcohol-related aggression and suggest that these associations may differ by type and frequency of alcohol-related aggression incidents. (PsycInfo Database Record (c) 2025 APA, all rights reserved).
Collapse
Affiliation(s)
| | - Ellen W Yeung
- Department of Psychological Sciences, University of Missouri
| | - Alex P Miller
- Department of Psychological Sciences, University of Missouri
| | - Wendy S Slutske
- Department of Family Medicine and Community Health, Center for Tobacco Research and Intervention, University of Wisconsin School of Medicine and Public Health
| | | | | | - Ian R Gizer
- Department of Psychological Sciences, University of Missouri
| |
Collapse
|
26
|
Choudhury M, Yamamoto R, Xiao X. Genetic architecture of RNA editing, splicing and gene expression in schizophrenia. Hum Mol Genet 2025; 34:277-290. [PMID: 39656777 PMCID: PMC11792240 DOI: 10.1093/hmg/ddae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024] Open
Abstract
Genome wide association studies (GWAS) have been conducted over the past decades to investigate the underlying genetic origin of neuropsychiatric diseases, such as schizophrenia (SCZ). While these studies demonstrated the significance of disease-phenotype associations, there is a pressing need to fully characterize the functional relevance of disease-associated genetic variants. Functional genetic loci can affect transcriptional and post-transcriptional phenotypes that may contribute to disease pathology. Here, we investigate the associations between genetic variation and RNA editing, splicing, and overall gene expression through identification of quantitative trait loci (QTL) in the CommonMind Consortium SCZ cohort. We find that editing QTL (edQTL), splicing QTL (sQTL) and expression QTL (eQTL) possess both unique and common gene targets, which are involved in many disease-relevant pathways, including brain function and immune response. We identified two QTL that fall into all three QTL categories (seedQTL), one of which, rs146498205, targets the lincRNA gene, RP11-156P1.3. In addition, we observe that the RNA binding protein AKAP1, with known roles in neuronal regulation and mitochondrial function, had enriched binding sites among edQTL, including the seedQTL, rs146498205. We conduct colocalization with various brain disorders and find that all QTL have top colocalizations with SCZ and related neuropsychiatric diseases. Furthermore, we identify QTL within biologically relevant GWAS loci, such as in ELA2, an important tRNA processing gene associated with SCZ risk. This work presents the investigation of multiple QTL types in parallel and demonstrates how they target both distinct and overlapping SCZ-relevant genes and pathways.
Collapse
Affiliation(s)
- Mudra Choudhury
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095-1570, United States
| | - Ryo Yamamoto
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095-1570, United States
| | - Xinshu Xiao
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095-1570, United States
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 612 Charles E. Young Drive East, Box 957246, Los Angeles, CA 90095-7246, United States
- Molecular Biology Institute, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095-1570, United States
| |
Collapse
|
27
|
Icick R, Shadrin A, Holen B, Karadag N, Parker N, O’Connell KS, Frei O, Bahrami S, Høegh MC, Lagerberg TV, Cheng W, Seibert TM, Djurovic S, Dale AM, Zhou H, Edenberg HJ, Gelernter J, Smeland OB, Hindley G, Andreassen OA. Identification of risk variants and cross-disorder pleiotropy through multi-ancestry genome-wide analysis of alcohol use disorder. NATURE. MENTAL HEALTH 2025; 3:253-265. [PMID: 40322774 PMCID: PMC12048032 DOI: 10.1038/s44220-024-00353-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 10/16/2024] [Indexed: 05/08/2025]
Abstract
Alcohol use disorder (AUD) is highly heritable and burdensome worldwide. Genome-wide association studies (GWASs) can provide new evidence regarding the aetiology of AUD. We report a multi-ancestry GWAS focusing on a narrow AUD phenotype, using novel statistical tools in a total sample of 1,041,450 individuals [102,079 cases; European, 75,583; African, 20,689 (mostly African-American); Hispanic American, 3,449; East Asian, 2,254; South Asian, 104; descent]. Cross-ancestry functional analyses were performed with European and African samples. Thirty-seven genome-wide significant loci (105 variants) were identified, of which seven were novel for AUD and six for other alcohol phenotypes. Loci were mapped to genes, which show altered expression in brain regions relevant for AUD (striatum, hypothalamus, and prefrontal cortex) and encode potential drug targets (GABAergic, dopaminergic and serotonergic neurons). African-specific analysis yielded a unique pattern of immune-related gene sets. Polygenic overlap and positive genetic correlations showed extensive shared genetic architecture between AUD and both mental and general medical phenotypes, suggesting they are not only complications of alcohol use but also share genetic liability with AUD. Leveraging a cross-ancestry approach allowed identification of novel genetic loci for AUD and underscores the value of multi-ancestry genetic studies. These findings advance our understanding of AUD risk and clinically-relevant comorbidities.
Collapse
Affiliation(s)
- Romain Icick
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407 Oslo, Norway
- Université Paris Cité, INSERM U1144, F-75006, France
| | - Alexey Shadrin
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407 Oslo, Norway
| | - Børge Holen
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407 Oslo, Norway
| | - Naz Karadag
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407 Oslo, Norway
| | - Nadine Parker
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407 Oslo, Norway
| | - Kevin S. O’Connell
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407 Oslo, Norway
| | - Oleksandr Frei
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407 Oslo, Norway
- Center for Bioinformatics, Department of Informatics, University of Oslo, PO box 1080, Blindern, 0316 Oslo, Norway
| | - Shahram Bahrami
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407 Oslo, Norway
| | - Margrethe Collier Høegh
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407 Oslo, Norway
| | - Trine Vik Lagerberg
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407 Oslo, Norway
| | - Weiqiu Cheng
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407 Oslo, Norway
| | - Tyler M. Seibert
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, CA, USA
- Department of Radiology, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Srdjan Djurovic
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407 Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- NORMENT Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Anders M. Dale
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407 Oslo, Norway
- Multimodal Imaging Laboratory, University of California San Diego, La Jolla, CA 92093, USA
- KG Jebsen Centre for Neurodevelopmental disorders, University of Oslo, Oslo, Norway
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Hang Zhou
- Department of Psychiatry, Yale University, New Haven, CT06511, USA. Veterans Affairs Connecticut Healthcare System, West Haven, CT06516, USA
| | - Howard J. Edenberg
- Department of Biochemistry and Molecular Biology & Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Joel Gelernter
- Department of Psychiatry, Yale University, New Haven, CT06511, USA. Veterans Affairs Connecticut Healthcare System, West Haven, CT06516, USA
| | - Olav B. Smeland
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407 Oslo, Norway
| | - Guy Hindley
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407 Oslo, Norway
| | - Ole A. Andreassen
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407 Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental disorders, University of Oslo, Oslo, Norway
| |
Collapse
|
28
|
Wen Y, Wang X, Deng L, Zhu G, Si X, Gao X, Lu X, Wang T. Genetic evidence of the causal relationships between psychiatric disorders and cardiovascular diseases. J Psychosom Res 2025; 189:112029. [PMID: 39752762 DOI: 10.1016/j.jpsychores.2024.112029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 12/16/2024] [Accepted: 12/25/2024] [Indexed: 01/22/2025]
Abstract
OBJECTIVE Our primary objective is to investigate the causal relationships between 12 psychiatric disorders (PDs) and atrial fibrillation (AF), coronary artery disease (CAD), myocardial infarction (MI), and heart failure (HF). METHODS Firstly, we used linkage disequilibrium score regression to calculate the genetic correlations between 12 PDs and 4 cardiovascular diseases (CVDs). Subsequently, we performed two-sample and bidirectional Mendelian randomization (MR) analyses of phenotypes with significant genetic correlations to explore the causal relationships between PDs and CVDs. Inverse variance weighted with modified weights (MW-IVW), Robust Adjusted Profile Score, Inverse Variance Weighted, weighted median and weighted mode were used to evaluate causal effects, with MW-IVW being the main analysis method. And to validate the MR results, we conducted the replicate analyses using data from the FinnGen database. RESULTS Conducting MR analyses in phenotypes with significant genetic correlations, we identified bidirectional causal relationships between depression (DEP) and MI (DEP as exposure: OR = 1.1324, 95 % confidence interval (CI): 1.0984-1.1663, P < 0.0001; MI as exposure: OR = 1.0268, 95 % CI: 1.0160-1.0375, P < 0.0001). Similar relationships were observed in Attention Deficit/Hyperactivity Disorder (ADHD) and HF (ADHD as exposure: OR = 1.0270, 95 % CI: 1.0144-1.0395, P < 0.0001; HF as exposure: OR = 1.0980, 95 % CI: 1.0502-1.1458, P < 0.0001). CONCLUSIONS In our study, we conducted the comprehensive analyses between 12 PDs and CVDs. By bidirectional MR analysis, we observed significant causal relationships between MI and DEP, HF and ADHD. These findings suggest possible complex causal relationships between PDs and CVDs.
Collapse
Affiliation(s)
- Yanchao Wen
- Department of Health Statistics, School of Public Health, Shanxi Medical University, 56 Xin Jian South Road Street, Taiyuan, Shanxi, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, Taiyuan, Shanxi, China
| | - Xingyu Wang
- Department of Health Statistics, School of Public Health, Shanxi Medical University, 56 Xin Jian South Road Street, Taiyuan, Shanxi, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, Taiyuan, Shanxi, China
| | - Liufei Deng
- Department of Health Statistics, School of Public Health, Shanxi Medical University, 56 Xin Jian South Road Street, Taiyuan, Shanxi, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, Taiyuan, Shanxi, China
| | - Guiming Zhu
- Department of Health Statistics, School of Public Health, Shanxi Medical University, 56 Xin Jian South Road Street, Taiyuan, Shanxi, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, Taiyuan, Shanxi, China
| | - Xinyu Si
- Department of Health Statistics, School of Public Health, Shanxi Medical University, 56 Xin Jian South Road Street, Taiyuan, Shanxi, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, Taiyuan, Shanxi, China
| | - Xue Gao
- Department of Health Statistics, School of Public Health, Shanxi Medical University, 56 Xin Jian South Road Street, Taiyuan, Shanxi, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, Taiyuan, Shanxi, China
| | - Xiangfeng Lu
- Key Laboratory of Cardiovascular Epidemiology, Department of Epidemiology, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, China
| | - Tong Wang
- Department of Health Statistics, School of Public Health, Shanxi Medical University, 56 Xin Jian South Road Street, Taiyuan, Shanxi, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, Taiyuan, Shanxi, China.
| |
Collapse
|
29
|
Wang L, Kranzler HR, Gelernter J, Zhou H. Investigating the Contribution of Coding Variants in Alcohol Use Disorder Using Whole-Exome Sequencing Across Ancestries. Biol Psychiatry 2025:S0006-3223(25)00062-9. [PMID: 39892688 DOI: 10.1016/j.biopsych.2025.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 12/16/2024] [Accepted: 01/26/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND Alcohol use disorder (AUD) is a leading cause of death and disability worldwide. There has been substantial progress in identifying genetic variants that underlie AUD. However, whole-exome sequencing studies of AUD have been hampered by the lack of available samples. METHODS We analyzed whole-exome sequencing data of 4530 samples from the Yale-Penn cohort and 469,835 samples from the UK Biobank, which represent an unprecedented resource for exploring the contribution of coding variants in AUD. After quality control, 1750 African-ancestry (1142 cases) and 2039 European-ancestry (1420 cases) samples from the Yale-Penn and 6142 African-ancestry (130 cases), 415,617 European-ancestry (12,861 cases), and 4607 South Asian (130 cases) samples from the UK Biobank cohorts were included in the analyses. RESULTS We confirmed the well-known functional variant rs1229984 in ADH1B (p = 4.88 × 10-31) and several other variants in ADH1C. Gene-based collapsing tests that considered the high allelic heterogeneity revealed the previously unreported genes CNST (p = 1.19 × 10-6), attributable to rare variants with allele frequency < 0.001, and IFIT5 (p = 3.74 × 10-6), driven by the burden of both common and rare loss-of-function and missense variants. CONCLUSIONS This study extends our understanding of the genetic architecture of AUD by providing insights into the contribution of rare coding variants, separately and convergently with common variants in AUD.
Collapse
Affiliation(s)
- Lu Wang
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut; Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Henry R Kranzler
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
| | - Joel Gelernter
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut; Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut; Department of Genetics, Yale School of Medicine, New Haven, Connecticut; Department of Neuroscience, Yale School of Medicine, New Haven, Connecticut.
| | - Hang Zhou
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut; Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut; Department of Biomedical Informatics and Data Science, Yale School of Medicine, New Haven, Connecticut; Center for Brain and Mind Health, Yale School of Medicine, New Haven, Connecticut.
| |
Collapse
|
30
|
Aliev F, De Sa Nogueira D, Aston-Jones G, Dick DM. Genetic associations between orexin genes and phenotypes related to behavioral regulation in humans, including substance use. Mol Psychiatry 2025:10.1038/s41380-025-02895-4. [PMID: 39880903 DOI: 10.1038/s41380-025-02895-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/23/2024] [Accepted: 01/14/2025] [Indexed: 01/31/2025]
Abstract
The hypothalamic neuropeptide system of orexin (hypocretin) neurons provides projections throughout the neuraxis and has been linked to sleep regulation, feeding and motivation for salient rewards including drugs of abuse. However, relatively little has been done to examine genes associated with orexin signaling and specific behavioral phenotypes in humans. Here, we tested for association of twenty-seven genes involved in orexin signaling with behavioral phenotypes in humans. We tested the full gene set, functional subsets, and individual genes involved in orexin signaling. Our primary phenotype of interest was Externalizing, a composite factor comprised of behaviors and disorders associated with reward-seeking, motivation, and behavioral regulation. We also tested for association with additional phenotypes that have been related to orexin regulation in model organism studies, including alcohol consumption, problematic alcohol use, daytime sleepiness, insomnia, cigarettes per day, smoking initiation, and body mass index. The composite set of 27 genes corresponding to orexin function was highly associated with Externalizing, as well as with alcohol consumption, insomnia, cigarettes per day, smoking initiation and BMI. In addition, all gene subsets (except the OXR2/HCRTR2 subset) were associated with Externalizing. BMI was significantly associated with all gene subsets. The "validated factors for PPOX/HCRT" and "PPOX/HCRT upregulation" gene subsets also were associated with alcohol consumption. Individually, 8 genes showed a strong association with Externalizing, 12 with BMI, 7 with smoking initiation, 3 with alcohol consumption, and 2 with problematic alcohol use, after correction for multiple testing. This study indicates that orexin genes are associated with multiple behaviors and disorders related to self-regulation in humans. This is consistent with prior work in animals that implicated orexin signaling in motivational activation induced by salient stimuli, and supports the hypothesis that orexin signaling is an important potential therapeutic target for numerous behavioral disorders.
Collapse
Affiliation(s)
- Fazil Aliev
- Department of Psychiatry, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
- Rutgers Addiction Research Center, Brain Health Institute, Rutgers University and Rutgers Health, Piscataway, NJ, 08854, USA
| | - David De Sa Nogueira
- Department of Psychiatry, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
- Rutgers Addiction Research Center, Brain Health Institute, Rutgers University and Rutgers Health, Piscataway, NJ, 08854, USA
| | - Gary Aston-Jones
- Department of Psychiatry, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
- Rutgers Addiction Research Center, Brain Health Institute, Rutgers University and Rutgers Health, Piscataway, NJ, 08854, USA
| | - Danielle M Dick
- Department of Psychiatry, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA.
- Rutgers Addiction Research Center, Brain Health Institute, Rutgers University and Rutgers Health, Piscataway, NJ, 08854, USA.
| |
Collapse
|
31
|
McGrouther CC, Rangan AV, Di Florio A, Elman JA, Schork NJ, Kelsoe J, Bipolar Disorder Working Group of the Psychiatric Genomics Consortium. Heterogeneity analysis provides evidence for a genetically homogeneous subtype of bipolar-disorder. PLoS One 2025; 20:e0314288. [PMID: 39879180 PMCID: PMC11778664 DOI: 10.1371/journal.pone.0314288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/07/2024] [Indexed: 01/31/2025] Open
Abstract
BACKGROUND Bipolar Disorder (BD) is a complex disease. It is heterogeneous, both at the phenotypic and genetic level, although the extent and impact of this heterogeneity is not fully understood. One way to assess this heterogeneity is to look for patterns in the subphenotype data. Because of the variability in how phenotypic data was collected by the various BD studies over the years, homogenizing this subphenotypic data is a challenging task, and so is replication. An alternative methodology, taken here, is to set aside the intricacies of subphenotype and allow the genetic data itself to determine which subjects define a homogeneous genetic subgroup (termed 'bicluster' below). RESULTS In this paper, we leverage recent advances in heterogeneity analysis to look for genetically-driven subgroups (i.e., biclusters) within the broad phenotype of Bipolar Disorder. We first apply this covariate-corrected biclustering algorithm to a cohort of 2524 BD cases and 4106 controls from the Bipolar Disease Research Network (BDRN) within the Psychiatric Genomics Consortium (PGC). We find evidence of genetic heterogeneity delineating a statistically significant bicluster comprising a subset of BD cases which exhibits a disease-specific pattern of differential-expression across a subset of SNPs. This disease-specific genetic pattern (i.e., 'genetic subgroup') replicates across the remaining data-sets collected by the PGC containing 5781/8289, 3581/7591, and 6825/9752 cases/controls, respectively. This genetic subgroup (discovered without using any BD subtype information) was more prevalent in Bipolar type-I than in Bipolar type-II. CONCLUSIONS Our methodology has successfully identified a replicable homogeneous genetic subgroup of bipolar disorder. This subgroup may represent a collection of correlated genetic risk-factors for BDI. By investigating the subgroup's bicluster-informed polygenic-risk-scoring (PRS), we find that the disease-specific pattern highlighted by the bicluster can be leveraged to eliminate noise from our GWAS analyses and improve risk prediction. This improvement is particularly notable when using only a relatively small subset of the available SNPs, implying improved SNP replication. Though our primary focus is only the analysis of disease-related signal, we also identify replicable control-related heterogeneity.
Collapse
Affiliation(s)
- Caroline C. McGrouther
- Courant Institute of Mathematical Sciences, New York University, New York, NY, United States of America
| | - Aaditya V. Rangan
- Courant Institute of Mathematical Sciences, New York University, New York, NY, United States of America
| | - Arianna Di Florio
- School of Medicine, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
| | - Jeremy A. Elman
- Department of Psychiatry, University of California San Diego, San Diego, CA, United States of America
| | - Nicholas J. Schork
- The Translational Genomics Research Institute, Quantitative Medicine and Systems Biology, Phoenix, AZ, United States of America
| | - John Kelsoe
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States of America
| | | |
Collapse
|
32
|
Gui Y, Zhou G, Cui S, Li H, Lu H, Zhao H. The left amygdala is genetically sexually-dimorphic: multi-omics analysis of structural MRI volumes. Transl Psychiatry 2025; 15:17. [PMID: 39843917 PMCID: PMC11754786 DOI: 10.1038/s41398-025-03223-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 12/03/2024] [Accepted: 01/07/2025] [Indexed: 01/24/2025] Open
Abstract
Brain anatomy plays a key role in complex behaviors and mental disorders that are sexually divergent. While our understanding of the sex differences in the brain anatomy remains relatively limited, particularly of the underlying genetic and molecular mechanisms that contribute to these differences. We performed the largest study of sex differences in brain volumes (N = 33,208) by examining sex differences both in the raw brain volumes and after controlling the whole brain volumes. Genetic correlation analysis revealed sex differences only in the left amygdala. We compared transcriptome differences between males and females using data from GTEx and characterized cell-type compositions using GTEx bulk amygdala RNA-seq data and LIBD amygdala single-cell reference profiles. We also constructed polygenic risk scores (PRS) to investigate sex-specific genetic correlations between left amygdala volume and mental disorders (N = 25,576~105,318) of Psychiatric Genomics Consortium and other traits of UKB (N = 347,996). Although there were pronounced sex differences in brain volumes, there was no difference in the heritability between sexes. There was a significant sex-specific genetic correlation between male and female left amygdala. We identified sex-differentiated genetic effects of PRSs for schizophrenia on left amygdala volume, as well as significant sex-differentiated genetic correlations between PRSs of left amygdala and six traits in UKB. We also found several sex-differentially expressed genes in the amygdala. These findings not only advanced the current knowledge of genetic basis of sex differences in brain anatomy, but also presented an important clue for future research on the mechanism of sex differences in mental disorders and targeted treatments.
Collapse
Affiliation(s)
- Yuanyuan Gui
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Geyu Zhou
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - Shuya Cui
- SJTU-Yale Joint Center for Biostatistics and Data Science, Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hongyu Li
- Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Hui Lu
- SJTU-Yale Joint Center for Biostatistics and Data Science, Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Hongyu Zhao
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA.
- Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, CT, USA.
| |
Collapse
|
33
|
Chen Y, Li HT, Luo X, Li G, Ide JS, Li CSR. The effects of alcohol use severity and polygenic risk on gray matter volumes in young adults. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.20.25320842. [PMID: 39974144 PMCID: PMC11838964 DOI: 10.1101/2025.01.20.25320842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Genetic factors contribute to alcohol misuse. Chronic alcohol consumption is associated with decreases in gray matter volumes (GMVs) of the brain. However, it remains unclear whether or how genetic risks may alter GMVs independent of the effects of alcohol exposure. Here, we employed the Human Connectome Project data of neurotypical adults (n = 995; age 22-35; 618 women) and, with voxel-based morphometry analysis, computed the GMVs of 166 regions in the automated anatomical atlas 3. Alcohol use behaviors were assessed with the Semi-Structured Assessment for the Genetics of Alcoholism. Alcohol use severity was quantified by the first principal component (PC1) identified of principal component analysis of 15 drinking measures. Polygenic risk scores (PRS) for alcohol dependence were computed for all subjects using the Psychiatric Genomics Consortium study of alcohol dependence as the base sample. With age, sex, race, and total intracranial volume as covariates, we evaluated the relationships of regional GMVs with PC1 and PRS together in a linear regression. PC1 was negatively correlated with GMVs of right insula and Heschl's gyrus, and PRS was positively correlated with GMVs of left posterior orbitofrontal cortex, bilateral intralaminar nuclei of the thalamus and lingual gyri. These findings suggest distinct volumetric neural markers of drinking severity and genetic risks of alcohol misuse. Notably, in contrast to volumetric reduction, the genetic risks of dependent drinking may involve larger regional volumes in the reward, emotion, and saliency circuits.
Collapse
Affiliation(s)
- Yu Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, U.S.A
| | | | - Xingguang Luo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, U.S.A
| | - Guangfei Li
- Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
- Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China
| | - Jaime S. Ide
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, U.S.A
| | - Chiang-Shan R. Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, U.S.A
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, U.S.A
- Inter-department Neuroscience Program, Yale University, New Haven, CT 06520, U.S.A
- Wu Tsai Institute, Yale University, New Haven, CT 06520, U.S.A
| |
Collapse
|
34
|
Lukas E, Veeneman RR, Smit DJA, Ahluwalia TS, Vermeulen JM, Pathak GA, Polimanti R, Verweij KJH, Treur JL. A genetic exploration of the relationship between posttraumatic stress disorder and cardiovascular diseases. Transl Psychiatry 2025; 15:1. [PMID: 39755697 PMCID: PMC11700205 DOI: 10.1038/s41398-024-03197-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 11/16/2024] [Accepted: 12/06/2024] [Indexed: 01/06/2025] Open
Abstract
Experiencing a traumatic event may lead to Posttraumatic Stress Disorder (PTSD), including symptoms such as flashbacks and hyperarousal. Individuals suffering from PTSD are at increased risk of cardiovascular disease (CVD), but it is unclear why. This study assesses shared genetic liability and potential causal pathways between PTSD and CVD. We leveraged summary-level data of genome-wide association studies (PTSD: N = 1,222,882; atrial fibrillation (AF): N = 482,409; coronary artery disease (CAD): N = 1,165,690; hypertension (HT): N = 458,554; heart failure (HF): N = 977,323). First, we estimated genetic correlations and utilized genomic structural equation modeling to identify a common genetic factor for PTSD and CVD. Next, we assessed biological, behavioural, and psychosocial factors as potential mediators. Finally, we employed multivariable Mendelian randomization to examine causal pathways between PTSD and CVD, incorporating the same potential mediators. Significant genetic correlations were found between PTSD and CAD, HT, and HF (rg = 0.21-0.32, p ≤ 3.08 · 10-16), but not between PTSD and AF. Insomnia, smoking, alcohol dependence, waist-to-hip ratio, and inflammation (IL6, C-reactive protein) partly mediated these associations. Mendelian randomization indicated that PTSD causally increases CAD (IVW OR = 1.53, 95% CIs = 1.19-1.96, p = 0.001), HF (OR = 1.44, CIs = 1.08-1.92, p = 0.012), and to a lesser degree HT (OR = 1.25, CIs = 1.05-1.49, p = 0.012). While insomnia, smoking, alcohol, and inflammation were important mediators, independent causal effects also remained. In addition to shared genetic liability between PTSD and CVD, we present strong evidence for causal effects of PTSD on CVD. Crucially, we implicate specific lifestyle and biological mediators (insomnia, substance use, inflammation) which has important implications for interventions to prevent CVD in PTSD patients.
Collapse
Affiliation(s)
- Eva Lukas
- Genetic Epidemiology Group, Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| | - Rada R Veeneman
- Genetic Epidemiology Group, Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Dirk J A Smit
- Genetic Epidemiology Group, Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Tarunveer S Ahluwalia
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- Bioinformatics Center, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jentien M Vermeulen
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Gita A Pathak
- Department of Psychiatry, Yale University School of Medicine, 60 Temple, Suite 7A, New Haven, CT, USA
- Veteran Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Renato Polimanti
- Department of Psychiatry, Yale University School of Medicine, 60 Temple, Suite 7A, New Haven, CT, USA
- Veteran Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Karin J H Verweij
- Genetic Epidemiology Group, Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Jorien L Treur
- Genetic Epidemiology Group, Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
35
|
Kalungi A, Kinyanda E, Akena DH, Gelaye B, Ssembajjwe W, Mpango RS, Ongaria T, Mugisha J, Makanga R, Kakande A, Kimono B, Amanyire P, Kirumira F, Lewis CM, McIntosh AM, Kuchenbaecker K, Nyirenda M, Kaleebu P, Fatumo S. Prevalence and correlates of common mental disorders among participants of the Uganda Genome Resource: Opportunities for psychiatric genetics research. Mol Psychiatry 2025; 30:122-130. [PMID: 39003415 PMCID: PMC11649557 DOI: 10.1038/s41380-024-02665-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 06/27/2024] [Accepted: 07/04/2024] [Indexed: 07/15/2024]
Abstract
Genetics research has potential to alleviate the burden of mental disorders in low- and middle-income-countries through identification of new mechanistic pathways which can lead to efficacious drugs or new drug targets. However, there is currently limited genetics data from Africa. The Uganda Genome Resource provides opportunity for psychiatric genetics research among underrepresented people from Africa. We aimed at determining the prevalence and correlates of major depressive disorder (MDD), suicidality, post-traumatic stress disorder (PTSD), alcohol abuse, generalised anxiety disorder (GAD) and probable attention-deficit hyperactivity disorder (ADHD) among participants of the Uganda Genome Resource. Standardised tools assessed for each mental disorder. Prevalence of each disorder was calculated with 95% confidence intervals. Multivariate logistic regression models evaluated the association between each mental disorder and associated demographic and clinical factors. Among 985 participants, prevalence of the disorders were: current MDD 19.3%, life-time MDD 23.3%, suicidality 10.6%, PTSD 3.1%, alcohol abuse 5.7%, GAD 12.9% and probable ADHD 9.2%. This is the first study to determine the prevalence of probable ADHD among adult Ugandans from a general population. We found significant association between sex and alcohol abuse (adjusted odds ratio [AOR] = 0.26 [0.14,0.45], p < 0.001) and GAD (AOR = 1.78 [1.09,2.49], p = 0.019) respectively. We also found significant association between body mass index and suicidality (AOR = 0.85 [0.73,0.99], p = 0.041), alcohol abuse (AOR = 0.86 [0.78,0.94], p = 0.003) and GAD (AOR = 0.93 [0.87,0.98], p = 0.008) respectively. We also found a significant association between high blood pressure and life-time MDD (AOR = 2.87 [1.08,7.66], p = 0.035) and probable ADHD (AOR = 1.99 [1.00,3.97], p = 0.050) respectively. We also found a statistically significant association between tobacco smoking and alcohol abuse (AOR = 3.2 [1.56,6.67], p = 0.002). We also found ever been married to be a risk factor for probable ADHD (AOR = 2.12 [0.88,5.14], p = 0.049). The Uganda Genome Resource presents opportunity for psychiatric genetics research among underrepresented people from Africa.
Collapse
Affiliation(s)
- Allan Kalungi
- The African Computational Genomics (TACG) Research Group, Medical Research Council/ Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine (MRC/UVRI & LSHTM) Uganda Research Unit, Entebbe, Uganda.
- Department of Medical Biochemistry, College of Health Sciences, Makerere University, Kampala, Uganda.
- The Department of Non-communicable Diseases Epidemiology, London School of Hygiene and Tropical Medicine London, London, UK.
| | - Eugene Kinyanda
- Mental Health Section, Medical Research Council/ Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine (MRC/UVRI & LSHTM) Uganda Research Unit, Entebbe, Uganda
- Department of Psychiatry, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Dickens Howard Akena
- Department of Psychiatry, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Bizu Gelaye
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Ave Room 505F, Boston, MA, 02115, USA
- The Chester M. Pierce, MD Division of Global Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Wilber Ssembajjwe
- Mental Health Section, Medical Research Council/ Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine (MRC/UVRI & LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Richard Steven Mpango
- The African Computational Genomics (TACG) Research Group, Medical Research Council/ Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine (MRC/UVRI & LSHTM) Uganda Research Unit, Entebbe, Uganda
- Mental Health Section, Medical Research Council/ Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine (MRC/UVRI & LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Terry Ongaria
- Medical Research Council/ Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine (MRC/UVRI & LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Joseph Mugisha
- Medical Research Council/ Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine (MRC/UVRI & LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Ronald Makanga
- Medical Research Council/ Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine (MRC/UVRI & LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Ayoub Kakande
- Medical Research Council/ Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine (MRC/UVRI & LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Beatrice Kimono
- Medical Research Council/ Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine (MRC/UVRI & LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Philip Amanyire
- Mental Health Section, Medical Research Council/ Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine (MRC/UVRI & LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Fred Kirumira
- Medical Research Council/ Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine (MRC/UVRI & LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Cathryn M Lewis
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, de Crespigny Park, London, SE5 8AF, UK
| | - Andrew M McIntosh
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | | | - Moffat Nyirenda
- The Department of Non-communicable Diseases Epidemiology, London School of Hygiene and Tropical Medicine London, London, UK
- Medical Research Council/ Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine (MRC/UVRI & LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Pontiano Kaleebu
- Medical Research Council/ Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine (MRC/UVRI & LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Segun Fatumo
- The African Computational Genomics (TACG) Research Group, Medical Research Council/ Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine (MRC/UVRI & LSHTM) Uganda Research Unit, Entebbe, Uganda.
- Precision Healthcare University Research Institute, Queen Mary University of London, London, UK.
| |
Collapse
|
36
|
Clark SL, Hartwell EE, Choi DS, Krystal JH, Messing RO, Ferguson LB. Next-generation biomarkers for alcohol consumption and alcohol use disorder diagnosis, prognosis, and treatment: A critical review. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2025; 49:5-24. [PMID: 39532676 PMCID: PMC11747793 DOI: 10.1111/acer.15476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 10/04/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
This critical review summarizes the current state of omics-based biomarkers in the alcohol research field. We first provide definitions and background information on alcohol and alcohol use disorder (AUD), biomarkers, and "omic" technologies. We next summarize using (1) genetic information as risk/prognostic biomarkers for the onset of alcohol-related problems and the progression from regular drinking to problematic drinking (including AUD), (2) epigenetic information as diagnostic biomarkers for AUD and risk biomarkers for alcohol consumption, (3) transcriptomic information as diagnostic biomarkers for AUD, risk biomarkers for alcohol consumption, and (4) metabolomic information as diagnostic biomarkers for AUD, risk biomarkers for alcohol consumption, and predictive biomarkers for response to acamprosate in subjects with AUD. In the final section, the clinical implications of the findings are discussed, and recommendations are made for future research.
Collapse
Affiliation(s)
- Shaunna L. Clark
- Department of Psychiatry & Behavioral Sciences, Texas A&M University, College Station, TX, USA
| | - Emily E. Hartwell
- Mental Illness Research, Education and Clinical Center, Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Center for Studies of Addiction, Department of Psychiatry, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
- Neuroscience Program, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - John H. Krystal
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Robert O. Messing
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, Texas, USA
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, Texas, USA
- Department of Neuroscience, University of Texas at Austin, Austin, Texas, USA
| | - Laura B. Ferguson
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, Texas, USA
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, Texas, USA
- Department of Neuroscience, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
37
|
Barr PB, Neale Z, Chatzinakos C, Schulman J, Mullins N, Zhang J, Chorlian DB, Kamarajan C, Kinreich S, Pandey AK, Pandey G, Saenz de Viteri S, Acion L, Bauer L, Bucholz KK, Chan G, Dick DM, Edenberg HJ, Foroud T, Goate A, Hesselbrock V, Johnson EC, Kramer JR, Lai D, Plawecki MH, Salvatore J, Wetherill L, Agrawal A, Porjesz B, Meyers JL. Clinical, Genomic, and Neurophysiological Correlates of Lifetime Suicide Attempts among Individuals with an Alcohol Use Disorder. Complex Psychiatry 2025; 11:1-11. [PMID: 40061584 PMCID: PMC11888779 DOI: 10.1159/000543222] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 12/06/2024] [Indexed: 03/19/2025] Open
Abstract
Introduction Research has identified multiple risk factors associated with suicide attempt (SA) among individuals with psychiatric illness. However, there is limited research among those with an alcohol use disorder (AUD), despite their disproportionately higher rates of SA. Methods We examined lifetime SA in 4,068 individuals with an AUD from the Collaborative Study on the Genetics of Alcoholism (23% lifetime SA; 53% female; mean age: 38). We explored risk for lifetime SA across other clinical conditions ascertained from a clinical interview, polygenic scores for comorbid psychiatric problems, and neurocognitive functioning. Results Participants with an AUD who attempted suicide had greater rates of trauma exposure, major depressive disorder, post-traumatic stress disorder, other substance use disorders (SUDs), and suicidal ideation. Polygenic scores for SA, depression, and PTSD were associated with increased odds of reporting an SA (ORs = 1.22-1.44). Participants who reported an SA also had decreased right hemispheric frontal-parietal theta and decreased interhemispheric temporal-parietal alpha electroencephalogram resting-state coherences relative to those who did not, but differences were small. Conclusions Overall, individuals with an AUD who report lifetime SA experience greater levels of trauma, have more severe comorbidities, and carry increased polygenic risk for other psychiatric problems. Our results demonstrate the need to further investigate SAs in the presence of SUDs.
Collapse
Affiliation(s)
- Peter B. Barr
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
- VA New York Harbor Healthcare System, Brooklyn, NY, USA
- Institute for Genomics in Health (IGH), SUNY Downstate Health Sciences University, Brooklyn, NY, USA
- Department of Community Health Sciences, School of Public Health, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Zoe Neale
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
- VA New York Harbor Healthcare System, Brooklyn, NY, USA
- Institute for Genomics in Health (IGH), SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Chris Chatzinakos
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
- Institute for Genomics in Health (IGH), SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | | | - Niamh Mullins
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jian Zhang
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - David B. Chorlian
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Chella Kamarajan
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Sivan Kinreich
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Ashwini K. Pandey
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Gayathri Pandey
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | | | - Laura Acion
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Lance Bauer
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Kathleen K. Bucholz
- Department of Psychiatry, School of Medicine, Washington University in St. Louis, St Louis, MO, USA
| | - Grace Chan
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Psychiatry, School of Medicine, University of Connecticut, Farmington, CT, USA
| | - Danielle M. Dick
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
- Rutgers Addiction Research Center, Rutgers University, Piscataway, NJ, USA
| | - Howard J. Edenberg
- Department of Medical and Molecular Genetics, School of Medicine, Indiana University, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, School of Medicine, Indiana University, Indianapolis, IN, USA
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alison Goate
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Victor Hesselbrock
- Department of Psychiatry, School of Medicine, University of Connecticut, Farmington, CT, USA
| | - Emma C. Johnson
- Department of Psychiatry, School of Medicine, Washington University in St. Louis, St Louis, MO, USA
| | - John R. Kramer
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Dongbing Lai
- Department of Medical and Molecular Genetics, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Martin H. Plawecki
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jessica Salvatore
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Leah Wetherill
- Department of Medical and Molecular Genetics, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Arpana Agrawal
- Department of Psychiatry, School of Medicine, Washington University in St. Louis, St Louis, MO, USA
| | - Bernice Porjesz
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Jacquelyn L. Meyers
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
- Institute for Genomics in Health (IGH), SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| |
Collapse
|
38
|
Rosoff DB, Wagner J, Bell AS, Mavromatis LA, Jung J, Lohoff FW. A multi-omics Mendelian randomization study identifies new therapeutic targets for alcohol use disorder and problem drinking. Nat Hum Behav 2025; 9:188-207. [PMID: 39528761 DOI: 10.1038/s41562-024-02040-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/01/2024] [Indexed: 11/16/2024]
Abstract
Integrating proteomic and transcriptomic data with genetic architectures of problematic alcohol use and alcohol consumption behaviours can advance our understanding and help identify therapeutic targets. We conducted systematic screens using genome-wise association study data from ~3,500 cortical proteins (N = 722) and ~6,100 genes in 8 canonical brain cell types (N = 192) with 4 alcohol-related outcomes (N ≤ 537,349), identifying 217 cortical proteins and 255 cell-type genes associated with these behaviours, with 36 proteins and 37 cell-type genes being new. Although there was limited overlap between proteome and transcriptome targets, downstream neuroimaging revealed shared neurophysiological pathways. Colocalization with independent genome-wise association study data further prioritized 16 proteins, including CAB39L and NRBP1, and 12 cell-type genes, implicating mechanisms such as mTOR signalling. In addition, genes such as SAMHD1, VIPAS39, NUP160 and INO80E were identified as having favourable neuropsychiatric profiles. These findings provide insights into the genetic landscapes governing problematic alcohol use and alcohol consumption behaviours, highlighting promising therapeutic targets for future research.
Collapse
Affiliation(s)
- Daniel B Rosoff
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
- NIH Oxford-Cambridge Scholars Program, National Institutes of Health, Bethesda, MD, USA
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Josephin Wagner
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Andrew S Bell
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Lucas A Mavromatis
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Jeesun Jung
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Falk W Lohoff
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
39
|
Al-Soufi L, Arana ÁJ, Facal F, Flórez G, Vázquez FL, Arrojo M, Sánchez L, Costas J. Identification of gene co-expression modules from zebrafish brain data: Applications in psychiatry illustrated through alcohol-related traits. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111136. [PMID: 39237023 DOI: 10.1016/j.pnpbp.2024.111136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Cumulative evidence suggests that zebrafish is a useful model in psychiatric research. Weighted Gene Co-expression Network Analysis (WGCNA) enables the reduction of genome-wide expression data to modules of highly co-expressed genes, which are hypothesized to interact within molecular networks. In this study, we first applied WGCNA to zebrafish brain expression data across different experimental conditions. Then, we characterized the different co-expression modules by gene-set enrichment analysis and hub gene-phenotype association. Finally, we analyzed association of polygenic risk scores (PRSs) based on genes of some interesting co-expression modules with alcohol dependence in 524 patients and 729 controls from Galicia, using competitive tests. Our approach revealed 34 co-expression modules in the zebrafish brain, with some showing enrichment in human synaptic genes, brain tissues, or brain developmental stages. Moreover, certain co-expression modules were enriched in psychiatry-related GWAS and comprised hub genes associated with psychiatry-related traits in both human GWAS and zebrafish models. Expression patterns of some co-expression modules were associated with the tested experimental conditions, mainly with substance withdrawal and cold stress. Notably, a PRS based on genes from co-expression modules exclusively associated with substance withdrawal in zebrafish showed a stronger association with human alcohol dependence than PRSs based on randomly selected brain-expressed genes. In conclusion, our analysis led to the identification of co-expressed gene modules that may model human brain gene networks involved in psychiatry-related traits. Specifically, we detected a cluster of co-expressed genes whose expression was exclusively associated with substance withdrawal in zebrafish, which significantly contributed to alcohol dependence susceptibility in humans.
Collapse
Affiliation(s)
- Laila Al-Soufi
- Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Psychiatric Genetics Group, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Galicia, Spain; Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - Álvaro J Arana
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - Fernando Facal
- Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Psychiatric Genetics Group, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Galicia, Spain; Servizo de Psiquiatría, Complexo Hospitalario Universitario de Santiago de Compostela, Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Galicia, Spain
| | - Gerardo Flórez
- Addictive Treatment Unit, Ourense University Hospital, Ourense, Galicia, Spain; Centre for Biomedical Research in the Mental Health Network (CIBERSAM), Oviedo, Spain
| | - Fernando L Vázquez
- Department of Clinical Psychology and Psychobiology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Manuel Arrojo
- Servizo de Psiquiatría, Complexo Hospitalario Universitario de Santiago de Compostela, Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Galicia, Spain
| | - Laura Sánchez
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - Javier Costas
- Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Psychiatric Genetics Group, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Galicia, Spain; Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Galicia, Spain.
| |
Collapse
|
40
|
Lai D, Zhang M, Abreu M, Schwantes-An TH, Chan G, Dick DM, Kamarajan C, Kuang W, Nurnberger JI, Plawecki MH, Rice J, Schuckit M, Porjesz B, Liu Y, Foroud T. Alcohol Use Disorder Polygenic Score Compared With Family History and ADH1B. JAMA Netw Open 2024; 7:e2452705. [PMID: 39786404 PMCID: PMC11686414 DOI: 10.1001/jamanetworkopen.2024.52705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/31/2024] [Indexed: 01/12/2025] Open
Abstract
Importance Identification of individuals at high risk of alcohol use disorder (AUD) and subsequent application of prevention and intervention programs has been reported to decrease the incidence of AUD. The polygenic score (PGS), which measures an individual's genetic liability to a disease, can potentially be used to evaluate AUD risk. Objective To assess the estimability and generalizability of the PGS, compared with family history and ADH1B, in evaluating the risk of AUD among populations of European ancestry. Design, Setting, and Participants This genetic association study was conducted between October 1, 2023, and May 21, 2024. A 2-stage design was used. First, the pruning and thresholding method was used to calculate PGSs in the screening stage. Second, the estimability and generalizability of the best PGS was determined using 2 independent samples in the testing stage. Three cohorts ascertained to study AUD were used in the screening stage: the Collaborative Study on the Genetics of Alcoholism (COGA), the Study of Addiction: Genetics and Environment (SAGE), and the Australian Twin-Family Study of Alcohol Use Disorder (OZALC). The All of Us Research Program (AOU), which comprises participants with diverse backgrounds and conditions, and the Indiana Biobank (IB), consisting of Indiana University Health system patients, were used to test the best PGS. For the COGA, SAGE, and OZALC cohorts, cases with AUD were determined using Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) or Fifth Edition (DSM-5) criteria; controls did not meet any criteria or did not have any other substance use disorders. For the AOU and IB cohorts, cases with AUD were identified using International Classification of Diseases, Ninth Revision (ICD-9) or International Classification of Diseases, Tenth Revision (ICD-10) codes; controls were aged 21 years or older and did not have AUD. Exposure The PGS was calculated using single-nucleotide variants with concordant effects in 3 large-scale genome-wide association studies of AUD-related phenotypes. Main Outcomes and Measures The main outcome was AUD determined with DSM-IV or DSM-5 criteria and ICD-9 or ICD-10 codes. Generalized linear mixed models and logistic regression models were used to analyze related and unrelated samples, respectively. Results The COGA, SAGE, and OZALC cohorts included a total of 8799 samples (6323 cases and 2476 controls; 50.6% were men). The AOU cohort had a total of 116 064 samples (5660 cases and 110 404 controls; 60.4% were women). The IB cohort had 6373 samples (936 cases and 5437 controls; 54.9% were women). The 5% of samples with the highest PGS in the AOU and IB cohorts were approximately 2 times more likely to develop AUD (odds ratio [OR], 1.96 [95% CI, 1.78-2.16]; P = 4.10 × 10-43; and OR, 2.07 [95% CI, 1.59-2.71]; P = 9.15 × 10-8, respectively) compared with the remaining 95% of samples; these ORs were comparable to family history of AUD. For the 5% of samples with the lowest PGS in the AOU and IB cohorts, the risk of AUD development was approximately half (OR, 0.53 [95% CI, 0.45-0.62]; P = 6.98 × 10-15; and OR, 0.57 [95% CI, 0.39-0.84]; P = 4.88 × 10-3) compared with the remaining 95% of samples; these ORs were comparable to the protective effect of ADH1B. PGS had similar estimabilities in male and female individuals. Conclusions and Relevance In this study of AUD risk among populations of European ancestry, PGSs were calculated using concordant single-nucleotide variants and the best PGS was tested in targeted datasets. The findings suggest that the PGS may potentially be used to evaluate AUD risk. More datasets with similar AUD prevalence as in general populations are needed to further test the generalizability of PGS.
Collapse
Affiliation(s)
- Dongbing Lai
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis
| | - Michael Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis
| | - Marco Abreu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis
| | - Tae-Hwi Schwantes-An
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis
| | - Grace Chan
- Department of Psychiatry, University of Connecticut School of Medicine, Farmington
- Department of Psychiatry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City
| | - Danielle M. Dick
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey
| | - Chella Kamarajan
- Henri Begleiter Neurodynamics Laboratory, Department of Psychiatry, SUNY Downstate Health Science University, New York, New York
| | - Weipeng Kuang
- Henri Begleiter Neurodynamics Laboratory, Department of Psychiatry, SUNY Downstate Health Science University, New York, New York
| | - John I. Nurnberger
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis
| | - Martin H. Plawecki
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis
| | - John Rice
- Department of Psychiatry, Washington University in St Louis School of Medicine, St Louis, Missouri
| | - Marc Schuckit
- Department of Psychiatry, University of California San Diego Medical School, San Diego
| | - Bernice Porjesz
- Henri Begleiter Neurodynamics Laboratory, Department of Psychiatry, SUNY Downstate Health Science University, New York, New York
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis
| |
Collapse
|
41
|
Mignogna KM, Tatom Z, Macleod L, Sergi Z, Nguyen A, Michenkova M, Smith ML, Miles MF. Identification of novel genetic loci and candidate genes for progressive ethanol consumption in diversity outbred mice. Neuropsychopharmacology 2024; 49:1892-1904. [PMID: 38951586 PMCID: PMC11473901 DOI: 10.1038/s41386-024-01902-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/26/2024] [Accepted: 06/05/2024] [Indexed: 07/03/2024]
Abstract
Mouse behavioral genetic mapping studies can identify genomic intervals modulating complex traits under well-controlled environmental conditions and have been used to study ethanol behaviors to aid in understanding genetic risk and the neurobiology of alcohol use disorder (AUD). However, historically such studies have produced large confidence intervals, thus complicating identification of potential causal candidate genes. Diversity Outbred (DO) mice offer the ability to perform high-resolution quantitative trait loci (QTL) mapping on a very genetically diverse background, thus facilitating identification of candidate genes. Here, we studied a population of 636 male DO mice with four weeks of intermittent ethanol access via a three-bottle choice procedure, producing a progressive ethanol consumption phenotype. QTL analysis identified 3 significant (Chrs 3, 4, and 12) and 13 suggestive loci for ethanol-drinking behaviors with narrow confidence intervals (1-4 Mbp for significant QTLs). Results suggested that genetic influences on initial versus progressive ethanol consumption were localized to different genomic intervals. A defined set of positional candidate genes were prioritized using haplotype analysis, identified coding polymorphisms, prefrontal cortex transcriptomics data, human GWAS data and prior rodent gene set data for ethanol or other misused substances. These candidates included Car8, the lone gene with a significant cis-eQTL within a Chr 4 QTL for week four ethanol consumption. These results represent the highest-resolution genetic mapping of ethanol consumption behaviors in mice to date, providing identification of novel loci and candidate genes for study in relation to the neurobiology of AUD.
Collapse
Affiliation(s)
- Kristin M Mignogna
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Zachary Tatom
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Lorna Macleod
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Zachary Sergi
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Angel Nguyen
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Marie Michenkova
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Maren L Smith
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Michael F Miles
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA.
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA.
- Department of Neurology, Virginia Commonwealth University, Richmond, VA, USA.
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
42
|
White JD, Minto MS, Willis C, Quach BC, Han S, Tao R, Deep-Soboslay A, Zillich L, Witt SH, Spanagel R, Hansson AC, Clark SL, van den Oord EJ, Hyde TM, Mayfield RD, Webb BT, Johnson EO, Kleinman JE, Bierut LJ, Hancock DB. Alcohol Use Disorder-Associated DNA Methylation in the Nucleus Accumbens and Dorsolateral Prefrontal Cortex. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100375. [PMID: 39399155 PMCID: PMC11470413 DOI: 10.1016/j.bpsgos.2024.100375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/02/2024] [Accepted: 07/31/2024] [Indexed: 10/15/2024] Open
Abstract
Background Alcohol use disorder (AUD) has a profound public health impact. However, understanding of the molecular mechanisms that underlie the development and progression of AUD remains limited. Here, we investigated AUD-associated DNA methylation changes within and across 2 addiction-relevant brain regions, the nucleus accumbens and dorsolateral prefrontal cortex. Methods Illumina HumanMethylation EPIC array data from 119 decedents (61 cases, 58 controls) were analyzed using robust linear regression with adjustment for technical and biological variables. Associations were characterized using integrative analyses of public annotation data and published genetic and epigenetic studies. We also tested for brain region-shared and brain region-specific associations using mixed-effects modeling and assessed implications of these results using public gene expression data from human brain. Results At a false discovery rate of ≤.05, we identified 105 unique AUD-associated CpGs (annotated to 120 genes) within and across brain regions. AUD-associated CpGs were enriched in histone marks that tag active promoters, and our strongest signals were specific to a single brain region. Some concordance was found between our results and those of earlier published alcohol use or dependence methylation studies. Of the 120 genes, 23 overlapped with previous genetic associations for substance use behaviors, some of which also overlapped with previous addiction-related methylation studies. Conclusions Our findings identify AUD-associated methylation signals and provide evidence of overlap with previous genetic and methylation studies. These signals may constitute predisposing genetic differences or robust methylation changes associated with AUD, although more work is needed to further disentangle the mechanisms that underlie these associations and their implications for AUD.
Collapse
Affiliation(s)
- Julie D. White
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, North Carolina
| | - Melyssa S. Minto
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, North Carolina
| | - Caryn Willis
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, North Carolina
| | - Bryan C. Quach
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, North Carolina
| | - Shizhong Han
- Lieber Institute for Brain Development, Baltimore, Maryland
| | - Ran Tao
- Lieber Institute for Brain Development, Baltimore, Maryland
| | | | - Lea Zillich
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stephanie H. Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Anita C. Hansson
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Shaunna L. Clark
- Department of Psychiatry & Behavioral Sciences, Texas A&M University, College Station, Texas
| | - Edwin J.C.G. van den Oord
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, Virgina
| | - Thomas M. Hyde
- Lieber Institute for Brain Development, Baltimore, Maryland
| | - R. Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research, the University of Texas at Austin, Austin, Texas
| | - Bradley T. Webb
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, North Carolina
| | - Eric O. Johnson
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, North Carolina
- Fellow Program, RTI International, Research Triangle Park, North Carolina
| | | | - Laura J. Bierut
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, St. Louis, Missouri
| | - Dana B. Hancock
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, North Carolina
| |
Collapse
|
43
|
Tan Q, Xu X, Zhou H, Jia J, Jia Y, Tu H, Zhou D, Wu X. A multi-ancestry cerebral cortex transcriptome-wide association study identifies genes associated with smoking behaviors. Mol Psychiatry 2024; 29:3580-3589. [PMID: 38816585 DOI: 10.1038/s41380-024-02605-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 06/01/2024]
Abstract
Transcriptome-wide association studies (TWAS) have provided valuable insight in identifying genes that may impact cigarette smoking. Most of previous studies, however, mainly focused on European ancestry. Limited TWAS studies have been conducted across multiple ancestries to explore genes that may impact smoking behaviors. In this study, we used cis-eQTL data of cerebral cortex from multiple ancestries in MetaBrain, including European, East Asian, and African samples, as reference panels to perform multi-ancestry TWAS analyses on ancestry-matched GWASs of four smoking behaviors including smoking initiation, smoking cessation, age of smoking initiation, and number of cigarettes per day in GWAS & Sequencing Consortium of Alcohol and Nicotine use (GSCAN). Multiple-ancestry fine-mapping approach was conducted to identify credible gene sets associated with these four traits. Enrichment and module network analyses were further performed to explore the potential roles of these identified gene sets. A total of 719 unique genes were identified to be associated with at least one of the four smoking traits across ancestries. Among those, 249 genes were further prioritized as putative causal genes in multiple ancestry-based fine-mapping approach. Several well-known smoking-related genes, including PSMA4, IREB2, and CHRNA3, showed high confidence across ancestries. Some novel genes, e.g., TSPAN3 and ANK2, were also identified in the credible sets. The enrichment analysis identified a series of critical pathways related to smoking such as synaptic transmission and glutamate receptor activity. Leveraging the power of the latest multi-ancestry GWAS and eQTL data sources, this study revealed hundreds of genes and relevant biological processes related to smoking behaviors. These findings provide new insights for future functional studies on smoking behaviors.
Collapse
Affiliation(s)
- Qilong Tan
- Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, 310058, China
| | - Xiaohang Xu
- Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, 310058, China
| | - Hanyi Zhou
- Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, 310058, China
| | - Junlin Jia
- Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, 310058, China
| | - Yubing Jia
- Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, 310058, China
| | - Huakang Tu
- Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, 310058, China
- National Institute for Data Science in Health and Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dan Zhou
- Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Xifeng Wu
- Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, 310058, China.
- School of Medicine and Health Science, George Washington University, Washington, DC, USA.
| |
Collapse
|
44
|
Savage JE, Barr PB, Phung T, Lee YH, Zhang Y, McCutcheon VV, Ge T, Smoller JW, Davis LK, Meyers J, Porjesz B, Posthuma D, Mallard TT, Sanchez-Roige S. Genetic Heterogeneity Across Dimensions of Alcohol Use Behaviors. Am J Psychiatry 2024; 181:1006-1017. [PMID: 39380376 DOI: 10.1176/appi.ajp.20231055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
OBJECTIVE Increasingly large samples in genome-wide association studies (GWASs) for alcohol use behaviors (AUBs) have led to an influx of implicated genes, yet the clinical and functional understanding of these associations remains low, in part because most GWASs do not account for the complex and varied manifestations of AUBs. This study applied a multidimensional framework to investigate the latent genetic structure underlying heterogeneous dimensions of AUBs. METHODS Multimodal assessments (self-report, interview, electronic health records) were obtained from approximately 400,000 UK Biobank participants. GWAS was conducted for 18 distinct AUBs, including consumption, drinking patterns, alcohol problems, and clinical sequelae. Latent genetic factors were identified and carried forward to GWAS using genomic structural equation modeling, followed by functional annotation, genetic correlation, and enrichment analyses to interpret the genetic associations. RESULTS Four latent factors were identified: Problems, Consumption, BeerPref (declining alcohol consumption with a preference for drinking beer), and AtypicalPref (drinking fortified wine and spirits). The latent factors were moderately correlated (rg values, 0.12-0.57) and had distinct patterns of associations, with BeerPref in particular implicating many novel genomic regions. Patterns of regional and cell type-specific gene expression in the brain also differed between the latent factors. CONCLUSIONS Deep phenotyping is an important next step to improve understanding of the genetic etiology of AUBs, in addition to increasing sample size. Further effort is required to uncover the genetic heterogeneity underlying AUBs using methods that account for their complex, multidimensional nature.
Collapse
Affiliation(s)
- Jeanne E Savage
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam (Savage, Phung, Posthuma); Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, New York (Barr, Meyers, Porjesz); VA New York Harbor Healthcare System, Brooklyn, New York (Barr, Meyers); Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine (Lee, Zhang, Ge, Smoller, Mallard), and Center for Precision Psychiatry (Ge, Smoller), Massachusetts General Hospital, Boston; Department of Psychiatry, Harvard Medical School, Boston (Lee, Ge, Smoller, Mallard); Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge (Lee, Zhang, Ge, Smoller, Mallard); Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston (Zhang); Department of Psychiatry, Washington University School of Medicine, St. Louis (McCutcheon); Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville (Davis, Sanchez-Roige); Department of Child and Adolescent Psychology and Psychiatry, section Complex Trait Genetics, VU University Medical Center, Amsterdam (Posthuma); Department of Psychiatry and Institute for Genomic Medicine, University of California San Diego, La Jolla (Sanchez-Roige)
| | - Peter B Barr
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam (Savage, Phung, Posthuma); Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, New York (Barr, Meyers, Porjesz); VA New York Harbor Healthcare System, Brooklyn, New York (Barr, Meyers); Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine (Lee, Zhang, Ge, Smoller, Mallard), and Center for Precision Psychiatry (Ge, Smoller), Massachusetts General Hospital, Boston; Department of Psychiatry, Harvard Medical School, Boston (Lee, Ge, Smoller, Mallard); Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge (Lee, Zhang, Ge, Smoller, Mallard); Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston (Zhang); Department of Psychiatry, Washington University School of Medicine, St. Louis (McCutcheon); Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville (Davis, Sanchez-Roige); Department of Child and Adolescent Psychology and Psychiatry, section Complex Trait Genetics, VU University Medical Center, Amsterdam (Posthuma); Department of Psychiatry and Institute for Genomic Medicine, University of California San Diego, La Jolla (Sanchez-Roige)
| | - Tanya Phung
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam (Savage, Phung, Posthuma); Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, New York (Barr, Meyers, Porjesz); VA New York Harbor Healthcare System, Brooklyn, New York (Barr, Meyers); Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine (Lee, Zhang, Ge, Smoller, Mallard), and Center for Precision Psychiatry (Ge, Smoller), Massachusetts General Hospital, Boston; Department of Psychiatry, Harvard Medical School, Boston (Lee, Ge, Smoller, Mallard); Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge (Lee, Zhang, Ge, Smoller, Mallard); Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston (Zhang); Department of Psychiatry, Washington University School of Medicine, St. Louis (McCutcheon); Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville (Davis, Sanchez-Roige); Department of Child and Adolescent Psychology and Psychiatry, section Complex Trait Genetics, VU University Medical Center, Amsterdam (Posthuma); Department of Psychiatry and Institute for Genomic Medicine, University of California San Diego, La Jolla (Sanchez-Roige)
| | - Younga H Lee
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam (Savage, Phung, Posthuma); Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, New York (Barr, Meyers, Porjesz); VA New York Harbor Healthcare System, Brooklyn, New York (Barr, Meyers); Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine (Lee, Zhang, Ge, Smoller, Mallard), and Center for Precision Psychiatry (Ge, Smoller), Massachusetts General Hospital, Boston; Department of Psychiatry, Harvard Medical School, Boston (Lee, Ge, Smoller, Mallard); Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge (Lee, Zhang, Ge, Smoller, Mallard); Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston (Zhang); Department of Psychiatry, Washington University School of Medicine, St. Louis (McCutcheon); Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville (Davis, Sanchez-Roige); Department of Child and Adolescent Psychology and Psychiatry, section Complex Trait Genetics, VU University Medical Center, Amsterdam (Posthuma); Department of Psychiatry and Institute for Genomic Medicine, University of California San Diego, La Jolla (Sanchez-Roige)
| | - Yingzhe Zhang
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam (Savage, Phung, Posthuma); Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, New York (Barr, Meyers, Porjesz); VA New York Harbor Healthcare System, Brooklyn, New York (Barr, Meyers); Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine (Lee, Zhang, Ge, Smoller, Mallard), and Center for Precision Psychiatry (Ge, Smoller), Massachusetts General Hospital, Boston; Department of Psychiatry, Harvard Medical School, Boston (Lee, Ge, Smoller, Mallard); Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge (Lee, Zhang, Ge, Smoller, Mallard); Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston (Zhang); Department of Psychiatry, Washington University School of Medicine, St. Louis (McCutcheon); Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville (Davis, Sanchez-Roige); Department of Child and Adolescent Psychology and Psychiatry, section Complex Trait Genetics, VU University Medical Center, Amsterdam (Posthuma); Department of Psychiatry and Institute for Genomic Medicine, University of California San Diego, La Jolla (Sanchez-Roige)
| | - Vivia V McCutcheon
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam (Savage, Phung, Posthuma); Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, New York (Barr, Meyers, Porjesz); VA New York Harbor Healthcare System, Brooklyn, New York (Barr, Meyers); Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine (Lee, Zhang, Ge, Smoller, Mallard), and Center for Precision Psychiatry (Ge, Smoller), Massachusetts General Hospital, Boston; Department of Psychiatry, Harvard Medical School, Boston (Lee, Ge, Smoller, Mallard); Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge (Lee, Zhang, Ge, Smoller, Mallard); Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston (Zhang); Department of Psychiatry, Washington University School of Medicine, St. Louis (McCutcheon); Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville (Davis, Sanchez-Roige); Department of Child and Adolescent Psychology and Psychiatry, section Complex Trait Genetics, VU University Medical Center, Amsterdam (Posthuma); Department of Psychiatry and Institute for Genomic Medicine, University of California San Diego, La Jolla (Sanchez-Roige)
| | - Tian Ge
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam (Savage, Phung, Posthuma); Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, New York (Barr, Meyers, Porjesz); VA New York Harbor Healthcare System, Brooklyn, New York (Barr, Meyers); Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine (Lee, Zhang, Ge, Smoller, Mallard), and Center for Precision Psychiatry (Ge, Smoller), Massachusetts General Hospital, Boston; Department of Psychiatry, Harvard Medical School, Boston (Lee, Ge, Smoller, Mallard); Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge (Lee, Zhang, Ge, Smoller, Mallard); Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston (Zhang); Department of Psychiatry, Washington University School of Medicine, St. Louis (McCutcheon); Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville (Davis, Sanchez-Roige); Department of Child and Adolescent Psychology and Psychiatry, section Complex Trait Genetics, VU University Medical Center, Amsterdam (Posthuma); Department of Psychiatry and Institute for Genomic Medicine, University of California San Diego, La Jolla (Sanchez-Roige)
| | - Jordan W Smoller
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam (Savage, Phung, Posthuma); Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, New York (Barr, Meyers, Porjesz); VA New York Harbor Healthcare System, Brooklyn, New York (Barr, Meyers); Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine (Lee, Zhang, Ge, Smoller, Mallard), and Center for Precision Psychiatry (Ge, Smoller), Massachusetts General Hospital, Boston; Department of Psychiatry, Harvard Medical School, Boston (Lee, Ge, Smoller, Mallard); Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge (Lee, Zhang, Ge, Smoller, Mallard); Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston (Zhang); Department of Psychiatry, Washington University School of Medicine, St. Louis (McCutcheon); Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville (Davis, Sanchez-Roige); Department of Child and Adolescent Psychology and Psychiatry, section Complex Trait Genetics, VU University Medical Center, Amsterdam (Posthuma); Department of Psychiatry and Institute for Genomic Medicine, University of California San Diego, La Jolla (Sanchez-Roige)
| | - Lea K Davis
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam (Savage, Phung, Posthuma); Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, New York (Barr, Meyers, Porjesz); VA New York Harbor Healthcare System, Brooklyn, New York (Barr, Meyers); Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine (Lee, Zhang, Ge, Smoller, Mallard), and Center for Precision Psychiatry (Ge, Smoller), Massachusetts General Hospital, Boston; Department of Psychiatry, Harvard Medical School, Boston (Lee, Ge, Smoller, Mallard); Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge (Lee, Zhang, Ge, Smoller, Mallard); Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston (Zhang); Department of Psychiatry, Washington University School of Medicine, St. Louis (McCutcheon); Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville (Davis, Sanchez-Roige); Department of Child and Adolescent Psychology and Psychiatry, section Complex Trait Genetics, VU University Medical Center, Amsterdam (Posthuma); Department of Psychiatry and Institute for Genomic Medicine, University of California San Diego, La Jolla (Sanchez-Roige)
| | - Jacquelyn Meyers
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam (Savage, Phung, Posthuma); Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, New York (Barr, Meyers, Porjesz); VA New York Harbor Healthcare System, Brooklyn, New York (Barr, Meyers); Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine (Lee, Zhang, Ge, Smoller, Mallard), and Center for Precision Psychiatry (Ge, Smoller), Massachusetts General Hospital, Boston; Department of Psychiatry, Harvard Medical School, Boston (Lee, Ge, Smoller, Mallard); Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge (Lee, Zhang, Ge, Smoller, Mallard); Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston (Zhang); Department of Psychiatry, Washington University School of Medicine, St. Louis (McCutcheon); Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville (Davis, Sanchez-Roige); Department of Child and Adolescent Psychology and Psychiatry, section Complex Trait Genetics, VU University Medical Center, Amsterdam (Posthuma); Department of Psychiatry and Institute for Genomic Medicine, University of California San Diego, La Jolla (Sanchez-Roige)
| | - Bernice Porjesz
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam (Savage, Phung, Posthuma); Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, New York (Barr, Meyers, Porjesz); VA New York Harbor Healthcare System, Brooklyn, New York (Barr, Meyers); Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine (Lee, Zhang, Ge, Smoller, Mallard), and Center for Precision Psychiatry (Ge, Smoller), Massachusetts General Hospital, Boston; Department of Psychiatry, Harvard Medical School, Boston (Lee, Ge, Smoller, Mallard); Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge (Lee, Zhang, Ge, Smoller, Mallard); Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston (Zhang); Department of Psychiatry, Washington University School of Medicine, St. Louis (McCutcheon); Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville (Davis, Sanchez-Roige); Department of Child and Adolescent Psychology and Psychiatry, section Complex Trait Genetics, VU University Medical Center, Amsterdam (Posthuma); Department of Psychiatry and Institute for Genomic Medicine, University of California San Diego, La Jolla (Sanchez-Roige)
| | - Danielle Posthuma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam (Savage, Phung, Posthuma); Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, New York (Barr, Meyers, Porjesz); VA New York Harbor Healthcare System, Brooklyn, New York (Barr, Meyers); Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine (Lee, Zhang, Ge, Smoller, Mallard), and Center for Precision Psychiatry (Ge, Smoller), Massachusetts General Hospital, Boston; Department of Psychiatry, Harvard Medical School, Boston (Lee, Ge, Smoller, Mallard); Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge (Lee, Zhang, Ge, Smoller, Mallard); Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston (Zhang); Department of Psychiatry, Washington University School of Medicine, St. Louis (McCutcheon); Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville (Davis, Sanchez-Roige); Department of Child and Adolescent Psychology and Psychiatry, section Complex Trait Genetics, VU University Medical Center, Amsterdam (Posthuma); Department of Psychiatry and Institute for Genomic Medicine, University of California San Diego, La Jolla (Sanchez-Roige)
| | - Travis T Mallard
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam (Savage, Phung, Posthuma); Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, New York (Barr, Meyers, Porjesz); VA New York Harbor Healthcare System, Brooklyn, New York (Barr, Meyers); Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine (Lee, Zhang, Ge, Smoller, Mallard), and Center for Precision Psychiatry (Ge, Smoller), Massachusetts General Hospital, Boston; Department of Psychiatry, Harvard Medical School, Boston (Lee, Ge, Smoller, Mallard); Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge (Lee, Zhang, Ge, Smoller, Mallard); Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston (Zhang); Department of Psychiatry, Washington University School of Medicine, St. Louis (McCutcheon); Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville (Davis, Sanchez-Roige); Department of Child and Adolescent Psychology and Psychiatry, section Complex Trait Genetics, VU University Medical Center, Amsterdam (Posthuma); Department of Psychiatry and Institute for Genomic Medicine, University of California San Diego, La Jolla (Sanchez-Roige)
| | - Sandra Sanchez-Roige
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam (Savage, Phung, Posthuma); Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, New York (Barr, Meyers, Porjesz); VA New York Harbor Healthcare System, Brooklyn, New York (Barr, Meyers); Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine (Lee, Zhang, Ge, Smoller, Mallard), and Center for Precision Psychiatry (Ge, Smoller), Massachusetts General Hospital, Boston; Department of Psychiatry, Harvard Medical School, Boston (Lee, Ge, Smoller, Mallard); Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge (Lee, Zhang, Ge, Smoller, Mallard); Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston (Zhang); Department of Psychiatry, Washington University School of Medicine, St. Louis (McCutcheon); Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville (Davis, Sanchez-Roige); Department of Child and Adolescent Psychology and Psychiatry, section Complex Trait Genetics, VU University Medical Center, Amsterdam (Posthuma); Department of Psychiatry and Institute for Genomic Medicine, University of California San Diego, La Jolla (Sanchez-Roige)
| |
Collapse
|
45
|
Campbell-Sills L, Choi KW, Strizver SD, Kautz JD, Papini S, Aliaga PA, Lester PB, Naifeh JA, Ray C, Kessler RC, Ursano RJ, Stein MB, Bliese PD. Interactive effects of genetic liability and combat exposure on risk of alcohol use disorder among US service members. Drug Alcohol Depend 2024; 264:112459. [PMID: 39393159 DOI: 10.1016/j.drugalcdep.2024.112459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/04/2024] [Accepted: 09/24/2024] [Indexed: 10/13/2024]
Abstract
BACKGROUND An improved understanding of pathways to alcohol use disorder (AUD) among service members may inform efforts to reduce the substantial impact of AUD on this population. This study examined whether the relationship between a service-related risk factor (combat exposure) and later AUD varied based on individual differences in genetic liability to AUD. METHODS The sample consisted of 1203 US Army soldiers of genetically determined European ancestry who provided survey and genomic data in the Army STARRS Pre/Post Deployment Study (PPDS; 2012-2014) and follow-up survey data in wave 1 of the STARRS Longitudinal Study (2016-2018). Logistic regression was used to estimate the conditional effect of combat exposure level (self-reported in PPDS) on odds of probable AUD diagnosis at follow-up, as a function of a soldier's polygenic risk score (PRS) for AUD. RESULTS The direct effect of combat exposure on AUD risk was non-significant (AOR=1.12, 95 % CI=1.00-1.26, p=.051); however, a significant combat exposure x PRS interaction was observed (AOR=1.60, 95 % CI=1.03-2.46, p=.033). Higher combat exposure was more strongly associated with elevated AUD risk among soldiers with heightened genetic liability to AUD. CONCLUSIONS The effect of combat exposure on AUD risk appeared to vary based on a service member's level of genetic risk for AUD. Continued investigation is warranted to determine whether PRS can help stratify AUD risk within stress-exposed groups such as combat-deployed soldiers. Such efforts might reveal opportunities to focus prevention efforts on smaller subgroups at the intersection of having both environmental exposures and genetic vulnerability to AUD.
Collapse
Affiliation(s)
- Laura Campbell-Sills
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
| | - Karmel W Choi
- Center for Precision Psychiatry, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA; Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Sam D Strizver
- Department of Management, Darla Moore School of Business, University of South Carolina, Columbia, SC, USA
| | - Jason D Kautz
- Department of Organizations, Strategy, and International Management, University of Texas at Dallas, Dallas, TX, USA
| | - Santiago Papini
- Department of Psychology, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Pablo A Aliaga
- Center for the Study of Traumatic Stress, Department of Psychiatry, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Paul B Lester
- Graduate School of Defense Management, Naval Postgraduate School, Monterey, CA, USA
| | - James A Naifeh
- Center for the Study of Traumatic Stress, Department of Psychiatry, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Caitlin Ray
- School of Industrial and Labor Relations, Cornell University, Ithaca, NY, USA
| | - Ronald C Kessler
- Department of Health Care Policy, Harvard Medical School, Boston, MA, USA
| | - Robert J Ursano
- Center for the Study of Traumatic Stress, Department of Psychiatry, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Murray B Stein
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA; VA San Diego Healthcare System, San Diego, CA, USA; Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, USA
| | - Paul D Bliese
- Department of Management, Darla Moore School of Business, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
46
|
Gerring ZF, Thorp JG, Treur JL, Verweij KJH, Derks EM. The genetic landscape of substance use disorders. Mol Psychiatry 2024; 29:3694-3705. [PMID: 38811691 PMCID: PMC11541208 DOI: 10.1038/s41380-024-02547-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 05/31/2024]
Abstract
Substance use disorders represent a significant public health concern with considerable socioeconomic implications worldwide. Twin and family-based studies have long established a heritable component underlying these disorders. In recent years, genome-wide association studies of large, broadly phenotyped samples have identified regions of the genome that harbour genetic risk variants associated with substance use disorders. These regions have enabled the discovery of putative causal genes and improved our understanding of genetic relationships among substance use disorders and other traits. Furthermore, the integration of these data with clinical information has yielded promising insights into how individuals respond to medications, allowing for the development of personalized treatment approaches based on an individual's genetic profile. This review article provides an overview of recent advances in the genetics of substance use disorders and demonstrates how genetic data may be used to reduce the burden of disease and improve public health outcomes.
Collapse
Affiliation(s)
- Zachary F Gerring
- Translational Neurogenomics Laboratory, Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jackson G Thorp
- Translational Neurogenomics Laboratory, Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jorien L Treur
- Department of Psychiatry, Amsterdam UMC, location University of Amsterdam, Amsterdam, the Netherlands
| | - Karin J H Verweij
- Department of Psychiatry, Amsterdam UMC, location University of Amsterdam, Amsterdam, the Netherlands
| | - Eske M Derks
- Translational Neurogenomics Laboratory, Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
| |
Collapse
|
47
|
Green N, Gao H, Chu X, Yuan Q, McGuire P, Lai D, Jiang G, Xuei X, Reiter JL, Stevens J, Sutherland GT, Goate AM, Pang ZP, Slesinger PA, Hart RP, Tischfield JA, Agrawal A, Wang Y, Duren Z, Edenberg HJ, Liu Y. Integrated Single-Cell Multiomic Profiling of Caudate Nucleus Suggests Key Mechanisms in Alcohol Use Disorder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.606355. [PMID: 39149227 PMCID: PMC11326171 DOI: 10.1101/2024.08.02.606355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Alcohol use disorder (AUD) induces complex transcriptional and regulatory changes across multiple brain regions including the caudate nucleus, which remains understudied. Using paired single-nucleus RNA-seq and ATAC-seq on caudate samples from 143 human postmortem brains, including 74 with AUD, we identified 17 distinct cell types. We found that a significant portion of the alcohol-induced changes in gene expression occurred through altered chromatin accessibility. Notably, we identified novel transcriptional and chromatin accessibility differences in medium spiny neurons, impacting pathways such as RNA metabolism and immune response. A small cluster of D1/D2 hybrid neurons showed distinct differences, suggesting a unique role in AUD. Microglia exhibited distinct activation states deviating from classical M1/M2 designations, and astrocytes entered a reactive state partially regulated by JUND , affecting glutamatergic synapse pathways. Oligodendrocyte dysregulation, driven in part by OLIG2 , was linked to demyelination and increased TGF-β1 signaling from microglia and astrocytes. We also observed increased microglia-astrocyte communication via the IL-1β pathway. Leveraging our multiomic data, we performed cell type-specific expression quantitative trait loci analysis, integrating that with public genome-wide association studies to identify AUD risk genes such as ADAL and PPP2R3C , providing a direct link between genetic variants, chromatin accessibility, and gene expression in AUD. These findings not only provide new insights into the genetic and cellular mechanisms in the caudate related to AUD but also demonstrate the broader utility of large-scale multiomic studies in uncovering complex gene regulation across diverse cell types, which has implications beyond the substance use field.
Collapse
|
48
|
McGrouther CC, Rangan AV, Di Florio A, Elman JA, Schork NJ, Kelsoe J, Bipolar Disorder Working Group of the Psychiatric Genomics Consortium. Heterogeneity analysis provides evidence for a genetically homogeneous subtype of bipolar-disorder. ARXIV 2024:arXiv:2405.00159v2. [PMID: 38745705 PMCID: PMC11092873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Background Bipolar Disorder (BD) is a complex disease. It is heterogeneous, both at the phenotypic and genetic level, although the extent and impact of this heterogeneity is not fully understood. One way to assess this heterogeneity is to look for patterns in the subphenotype data. Because of the variability in how phenotypic data was collected by the various BD studies over the years, homogenizing this subphenotypic data is a challenging task, and so is replication. An alternative methodology, taken here, is to set aside the intricacies of subphenotype and allow the genetic data itself to determine which subjects define a homogeneous genetic subgroup (termed 'bicluster' below). Results In this paper, we leverage recent advances in heterogeneity analysis to look for genetically-driven subgroups (i.e., biclusters) within the broad phenotype of Bipolar Disorder. We first apply this covariate-corrected biclustering algorithm to a cohort of 2524 BD cases and 4106 controls from the Bipolar Disease Research Network (BDRN) within the Psychiatric Genomics Consortium (PGC). We find evidence of genetic heterogeneity delineating a statistically significant bicluster comprising a subset of BD cases which exhibits a disease-specific pattern of differential-expression across a subset of SNPs. This disease-specific genetic pattern (i.e., 'genetic subgroup') replicates across the remaining data-sets collected by the PGC containing 5781/8289, 3581/7591, and 6825/9752 cases/controls, respectively. This genetic subgroup (discovered without using any BD subtype information) was more prevalent in Bipolar type-I than in Bipolar type-II. Conclusions Our methodology has successfully identified a replicable homogeneous genetic subgroup of bipolar disorder. This subgroup may represent a collection of correlated genetic risk-factors for BDI. By investigating the subgroup's bicluster-informed polygenic-risk-scoring (PRS), we find that the disease-specific pattern highlighted by the bicluster can be leveraged to eliminate noise from our GWAS analyses and improve risk prediction. This improvement is particularly notable when using only a relatively small subset of the available SNPs, implying improved SNP replication. Though our primary focus is only the analysis of disease-related signal, we also identify replicable control-related heterogeneity.
Collapse
Affiliation(s)
- Caroline C. McGrouther
- Courant Institute of Mathematical Sciences, New York University, New York, NY, United States of America
| | - Aaditya V. Rangan
- Courant Institute of Mathematical Sciences, New York University, New York, NY, United States of America
| | - Arianna Di Florio
- School of Medicine, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
| | - Jeremy A. Elman
- Department of Psychiatry, University of California San Diego, San Diego, CA, United States of America
| | - Nicholas J. Schork
- The Translational Genomics Research Institute, Quantitative Medicine and Systems Biology, Phoenix, AZ, United States of America
| | - John Kelsoe
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States of America
| | | |
Collapse
|
49
|
Morey RA, Zheng Y, Bayly H, Sun D, Garrett ME, Gasperi M, Maihofer AX, Baird CL, Grasby KL, Huggins AA, Haswell CC, Thompson PM, Medland S, Gustavson DE, Panizzon MS, Kremen WS, Nievergelt CM, Ashley-Koch AE, Logue MW. Genomic structural equation modeling reveals latent phenotypes in the human cortex with distinct genetic architecture. Transl Psychiatry 2024; 14:451. [PMID: 39448598 PMCID: PMC11502831 DOI: 10.1038/s41398-024-03152-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024] Open
Abstract
Genetic contributions to human cortical structure manifest pervasive pleiotropy. This pleiotropy may be harnessed to identify unique genetically-informed parcellations of the cortex that are neurobiologically distinct from functional, cytoarchitectural, or other cortical parcellation schemes. We investigated genetic pleiotropy by applying genomic structural equation modeling (SEM) to map the genetic architecture of cortical surface area (SA) and cortical thickness (CT) for 34 brain regions recently reported in the ENIGMA cortical GWAS. Genomic SEM uses the empirical genetic covariance estimated from GWAS summary statistics with LD score regression (LDSC) to discover factors underlying genetic covariance, which we are denoting genetically informed brain networks (GIBNs). Genomic SEM can fit a multivariate GWAS from summary statistics for each of the GIBNs, which can subsequently be used for LD score regression (LDSC). We found the best-fitting model of cortical SA identified 6 GIBNs and CT identified 4 GIBNs, although sensitivity analyses indicated that other structures were plausible. The multivariate GWASs of the GIBNs identified 74 genome-wide significant (GWS) loci (p < 5 × 10-8), including many previously implicated in neuroimaging phenotypes, behavioral traits, and psychiatric conditions. LDSC of GIBN GWASs found that SA-derived GIBNs had a positive genetic correlation with bipolar disorder (BPD), and cannabis use disorder, indicating genetic predisposition to a larger SA in the specific GIBN is associated with greater genetic risk of these disorders. A negative genetic correlation was observed between attention deficit hyperactivity disorder (ADHD) and major depressive disorder (MDD). CT GIBNs displayed a negative genetic correlation with alcohol dependence. Even though we observed model instability in our application of genomic SEM to high-dimensional data, jointly modeling the genetic architecture of complex traits and investigating multivariate genetic links across neuroimaging phenotypes offers new insights into the genetics of cortical structure and relationships to psychopathology.
Collapse
Affiliation(s)
- Rajendra A Morey
- Brain Imaging and Analysis Center, Duke University, Durham, NC, 27710, USA
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
- VISN 6 MIRECC, VA Health Care System, Croasdaile Drive, Durham, NC, 27705, USA
| | - Yuanchao Zheng
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, 02130, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Henry Bayly
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, 02130, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Delin Sun
- Brain Imaging and Analysis Center, Duke University, Durham, NC, 27710, USA
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
- VISN 6 MIRECC, VA Health Care System, Croasdaile Drive, Durham, NC, 27705, USA
| | - Melanie E Garrett
- VISN 6 MIRECC, VA Health Care System, Croasdaile Drive, Durham, NC, 27705, USA
- Department of Medicine, Duke Molecular Physiology Institute, Carmichael Building, Duke University Medical Center, Durham, NC, 27701, USA
| | - Marianna Gasperi
- VA Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA, 92161, USA
- Research Service VA, San Diego Healthcare System, San Diego, CA, 92161, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Adam X Maihofer
- Research Service VA, San Diego Healthcare System, San Diego, CA, 92161, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - C Lexi Baird
- Brain Imaging and Analysis Center, Duke University, Durham, NC, 27710, USA
| | - Katrina L Grasby
- Psychiatric Genetics, QIMR, Berghofer Medical Research Institute, 4006, Brisbane, QLD, Australia
| | - Ashley A Huggins
- Brain Imaging and Analysis Center, Duke University, Durham, NC, 27710, USA
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
- VISN 6 MIRECC, VA Health Care System, Croasdaile Drive, Durham, NC, 27705, USA
| | - Courtney C Haswell
- Brain Imaging and Analysis Center, Duke University, Durham, NC, 27710, USA
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute Keck School of Medicine University of Southern California, Los Angeles, CA, 90033, USA
| | - Sarah Medland
- Queensland Institute for Medical Research, Berghofer Medical Research Institute, 4006, Brisbane, QLD, Australia
| | - Daniel E Gustavson
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Matthew S Panizzon
- Stein Institute for Research on Aging, University of California San Diego, La Jolla, CA, 92093, USA
| | - William S Kremen
- Stein Institute for Research on Aging, University of California San Diego, La Jolla, CA, 92093, USA
| | - Caroline M Nievergelt
- VA Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA, 92161, USA
- Research Service VA, San Diego Healthcare System, San Diego, CA, 92161, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Allison E Ashley-Koch
- VISN 6 MIRECC, VA Health Care System, Croasdaile Drive, Durham, NC, 27705, USA
- Department of Medicine, Duke Molecular Physiology Institute, Carmichael Building, Duke University Medical Center, Durham, NC, 27701, USA
| | - Mark W Logue
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, 02130, USA.
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA.
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, 02118, USA.
- Biomedical Genetics, Boston University School of Medicine, Boston, MA, 02118-2526, USA.
| |
Collapse
|
50
|
Shi X, Wang Y, Yang Z, Yuan W, Li MD. Identification and validation of a novel gene ARVCF associated with alcohol dependence among Chinese population. iScience 2024; 27:110976. [PMID: 39429782 PMCID: PMC11490727 DOI: 10.1016/j.isci.2024.110976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/24/2024] [Accepted: 09/13/2024] [Indexed: 10/22/2024] Open
Abstract
Alcohol dependence is a heritable disorder, yet its genetic basis and underlying mechanisms remain poorly understood, especially in Chinese population. In this study, we conducted gene-based and transcript-based association tests and found a significant association between ARVCF expression in the cortex and hippocampus of the brain and alcohol use in a cohort of 1,329 individuals with Chinese ancestry. Further analysis using the effective-median-based Mendelian randomization framework for inferring the causal genes (EMIC) revealed a causal relationship between ARVCF expression in the frontal cortex and alcohol use. Moreover, leveraging extensive European alcohol dependence data, our gene association tests and EMIC analysis showed that ARVCF expression in the nucleus accumbens was significantly associated with alcohol dependence. Finally, animal studies indicated that Arvcf knockout mice lacked conditioned place preference for alcohol. Together, our combined human genetic and animal studies indicate that ARVCF plays a crucial role in alcohol dependence.
Collapse
Affiliation(s)
- Xiaoqiang Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yan Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zhongli Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Wenji Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Ming D. Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Research Center for Air Pollution and Health, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|