1
|
Sim J, Park CE, Cho I, Min K, Eom M, Han S, Jeon H, Cho ES, Lee Y, Yun YH, Lee S, Cheon DH, Kim J, Kim M, Cho HJ, Park JW, Kumar A, Chong Y, Kang JS, Piatkevich KD, Jung EE, Kang DS, Kwon SK, Kim J, Yoon KJ, Lee JS, Kim CH, Choi M, Kim JW, Song MR, Choi HJ, Boyden ES, Yoon YG, Chang JB. Nanoscale Resolution Imaging of Whole Mouse Embryos Using Expansion Microscopy. ACS NANO 2025; 19:7910-7927. [PMID: 39964913 DOI: 10.1021/acsnano.4c14791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Nanoscale imaging of whole vertebrates is essential for the systematic understanding of human diseases, yet this goal has not yet been achieved. Expansion microscopy (ExM) is an attractive option for accomplishing this aim; however, the expansion of even mouse embryos at mid- and late-developmental stages, which have fewer calcified body parts than adult mice, is yet to be demonstrated due to the challenges of expanding calcified tissues. Here, we introduce a state-of-the-art ExM technique, termed whole-body ExM, that utilizes cyclic digestion. This technique allows for the super-resolution, volumetric imaging of anatomical structures, proteins, and endogenous fluorescent proteins (FPs) within embryonic and neonatal mice by expanding them 4-fold. The key feature of whole-body ExM is the alternating application of two enzyme compositions repeated multiple times. Through the simple repetition of this digestion process with an increasing number of cycles, mouse embryos of various stages up to E18.5, and even neonatal mice, which display a dramatic difference in the content of calcified tissues compared to embryos, are expanded without further laborious optimization. Furthermore, the whole-body ExM's ability to retain FP signals allows the visualization of various neuronal structures in transgenic mice. Whole-body ExM could facilitate studies of molecular changes in various vertebrates.
Collapse
Affiliation(s)
- Jueun Sim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Chan E Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - In Cho
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Kyeongbae Min
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon 21102, Republic of Korea
| | - Minho Eom
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Seungjae Han
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Hyungju Jeon
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Eun-Seo Cho
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yunjeong Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Young Hyun Yun
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Sungho Lee
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Deok-Hyeon Cheon
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jihyun Kim
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Integrated Biomedical and Life Sciences, College of Health Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Museong Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Hyun-Ju Cho
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Ji-Won Park
- Department of Biology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ajeet Kumar
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yosep Chong
- Department of Hospital Pathology, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu 11765, Republic of Korea
| | - Jeong Seuk Kang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Kiryl D Piatkevich
- School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou 310024, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Erica E Jung
- Department of Mechanical and Industrial Engineering, The University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Du-Seock Kang
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Seok-Kyu Kwon
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Jinhyun Kim
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Integrated Biomedical and Life Sciences, College of Health Sciences, Korea University, Seoul 02841, Republic of Korea
- KIST-SKKU Brain Research Center, SKKU Institute for Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ki-Jun Yoon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jeong-Soo Lee
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- KRIBB School, University of Science and Technology, Daejeon 34141, Republic of Korea
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Myunghwan Choi
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin Woo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Mi-Ryoung Song
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Hyung Jin Choi
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Edward S Boyden
- Howard Hughes Medical Institute, Cambridge, Massachusetts 02138, United States
- McGovern Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Departments of Brain and Cognitive Sciences, Media Arts and Sciences, and Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Young-Gyu Yoon
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- KAIST Institute for Health Science and Technology, Daejeon 34141, Republic of Korea
| | - Jae-Byum Chang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Bioimaging Data Curation Center, Seoul 03760, Republic of Korea
| |
Collapse
|
2
|
Khoury N, Pizzo ME, Discenza CB, Joy D, Tatarakis D, Todorov MI, Negwer M, Ha C, De Melo GL, Sarrafha L, Simon MJ, Chan D, Chau R, Chew KS, Chow J, Clemens A, Robles-Colmenares Y, Dugas JC, Duque J, Kaltenecker D, Kane H, Leung A, Lozano E, Moshkforoush A, Roche E, Sandmann T, Tong M, Xa K, Zhou Y, Lewcock JW, Ertürk A, Thorne RG, Calvert MEK, Yu Zuchero YJ. Fc-engineered large molecules targeting blood-brain barrier transferrin receptor and CD98hc have distinct central nervous system and peripheral biodistribution. Nat Commun 2025; 16:1822. [PMID: 39979268 PMCID: PMC11842567 DOI: 10.1038/s41467-025-57108-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 02/10/2025] [Indexed: 02/22/2025] Open
Abstract
Blood brain barrier-crossing molecules targeting transferrin receptor (TfR) and CD98 heavy chain (CD98hc) are widely reported to promote enhanced brain delivery of therapeutics. Here, we provide a comprehensive and unbiased biodistribution characterization of TfR and CD98hc antibody transport vehicles (ATVTfR and ATVCD98hc) compared to control IgG. Mouse whole-body tissue clearing reveals distinct organ localization for each molecule. In the brain, ATVTfR and ATVCD98hc achieve enhanced exposure and parenchymal distribution even when brain exposures are matched between ATV and control IgG in bulk tissue. Using a combination of cell sorting and single-cell RNAseq, we reveal that control IgG is nearly absent from parenchymal cells and is distributed primarily to brain perivascular and leptomeningeal cells. In contrast, ATVTfR and ATVCD98hc exhibit broad and unique parenchymal cell-type distribution. Finally, we profile in detail brain region-specific biodistribution of ATVTfR in cynomolgus monkey brain and spinal cord. Taken together, this in-depth multiscale characterization will guide platform selection for therapeutic targets of interest.
Collapse
Affiliation(s)
- Nathalie Khoury
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Michelle E Pizzo
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Claire B Discenza
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - David Joy
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - David Tatarakis
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | | | | | - Connie Ha
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Gabrielly L De Melo
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Lily Sarrafha
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Matthew J Simon
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Darren Chan
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Roni Chau
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Kylie S Chew
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Johann Chow
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Allisa Clemens
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | | | - Jason C Dugas
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Joseph Duque
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | | | - Holly Kane
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Amy Leung
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Edwin Lozano
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Arash Moshkforoush
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Elysia Roche
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Thomas Sandmann
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Mabel Tong
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Kaitlin Xa
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Yinhan Zhou
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Joseph W Lewcock
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | | | - Robert G Thorne
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA
| | - Meredith E K Calvert
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA.
| | - Y Joy Yu Zuchero
- Denali Therapeutics, Inc., 161 Oyster Point Blvd., South San Francisco, CA, 94080, USA.
| |
Collapse
|
3
|
Eiff B, Bullmore ET, Clatworthy MR, Fryer TD, Pariante CM, Mondelli V, Maccioni L, Hadjikhani N, Loggia ML, Moskowitz MA, Bruner E, Veronese M, Turkheimer FE, Schubert JJ. Extra-axial inflammatory signal and its relationship to peripheral and central immunity in depression. Brain 2025; 148:635-646. [PMID: 39657983 PMCID: PMC11788198 DOI: 10.1093/brain/awae343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/13/2024] [Accepted: 10/06/2024] [Indexed: 12/12/2024] Open
Abstract
Although both central and peripheral inflammation have been observed consistently in depression, the relationship between the two remains obscure. Extra-axial immune cells may play a role in mediating the connection between central and peripheral immunity. This study investigates the potential roles of calvarial bone marrow and parameningeal spaces in mediating interactions between central and peripheral immunity in depression. PET was used to measure regional TSPO expression in the skull and parameninges as a marker of inflammatory activity. This measure was correlated with brain TSPO expression and peripheral cytokine concentrations in a cohort enriched for heightened peripheral and central immunity comprising 51 individuals with depression and 25 healthy controls. The findings reveal a complex relationship between regional skull TSPO expression and both peripheral and central immunity. Facial and parietal skull bone TSPO expression showed significant associations with both peripheral and central immunity. TSPO expression in the confluence of sinuses was also linked to both central and peripheral immune markers. Group-dependent elevations in TSPO expression within the occipital skull bone marrow were also found to be significantly associated with central inflammation. Significant associations between immune activity within the skull, parameninges, parenchyma and periphery highlight the role of the skull bone marrow and venous sinuses as pivotal sites for peripheral and central immune interactions.
Collapse
Affiliation(s)
- Brandi Eiff
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London SE5 8AF, UK
| | - Edward T Bullmore
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SZ, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge CB21 5EF, UK
| | - Menna R Clatworthy
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, UK
- Cambridge University Hospitals NHS Foundation Trust, and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK
| | - Tim D Fryer
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Carmine M Pariante
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London SE5 8AF, UK
| | - Valeria Mondelli
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London SE5 8AF, UK
| | - Lucia Maccioni
- Department of Information Engineering, University of Padova, 35131 Padova, Italy
| | - Nouchine Hadjikhani
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Marco L Loggia
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Michael A Moskowitz
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Emiliano Bruner
- Department of Paleobiology, Museo Nacional de Ciencias Naturales (CSIC), 28006 Madrid, Spain
- Alzheimer Center Reina Sofía, CIEN Foundation, ISCIII, 28031 Madrid, Spain
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London SE5 8AF, UK
- Department of Information Engineering, University of Padova, 35131 Padova, Italy
| | - Federico E Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London SE5 8AF, UK
| | - Julia J Schubert
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London SE5 8AF, UK
| |
Collapse
|
4
|
Rong Z, Ertürk A, Tang Y, Mai H. Tissue Clearing and Its Application in Nanoparticle Development. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2410032. [PMID: 39901464 DOI: 10.1002/smll.202410032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/16/2024] [Indexed: 02/05/2025]
Abstract
Nanoparticles are widely used in biomedical applications due to their small size, large surface area, and unique physicochemical properties. These characteristics make them ideal for drug delivery, diagnostic imaging, and therapeutic interventions. Their ability to interact with biological systems at the cellular and molecular levels enables targeted treatments. Understanding the biodistribution of nanoparticles at the cellular level within whole organisms is crucial for assessing their safety and effectiveness; however, proper technologies have been lacking to achieve this. For example, traditional imaging techniques like magnetic resonance imaging (MRI) and computed tomography (CT) often lack the resolution needed, while tissue-section-based methods miss the whole-body systemic view. Recent tissue clearing methods have emerged as a promising solution for 3D visualization of nanoparticles in entire organs, as they enable cellular-level imaging of whole organisms without the need for sectioning. This review explores advancements in diverse tissue clearing techniques and their application in studying nanoparticle biodistribution, providing insights crucial for the development of nanoparticle-based therapies.
Collapse
Affiliation(s)
- Zhouyi Rong
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, 85764, Neuherberg, Germany
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University Munich, 81377, Munich, Germany
| | - Ali Ertürk
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, 85764, Neuherberg, Germany
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University Munich, 81377, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377, Munich, Germany
- School of Medicine, Koç University, İstanbul, 34450, Turkey
| | - Yamei Tang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Hongcheng Mai
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| |
Collapse
|
5
|
Schwarz S, Denis L, Nedoschill E, Buehler A, Danko V, Hilger AC, Brevis Nuñez F, Dürr NR, Schlunz-Hendann M, Brassel F, Felderhoff-Müser U, Reutter H, Woelfle J, Jüngert J, Dohna-Schwake C, Bruns N, Regensburger AP, Couture O, Mandelbaum H, Knieling F. Ultrasound Super-Resolution Imaging of Neonatal Cerebral Vascular Reorganization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2415235. [PMID: 39899647 DOI: 10.1002/advs.202415235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/29/2024] [Indexed: 02/05/2025]
Abstract
During the first days of neonatal growth, the central nervous system (CNS) develops self-regulatory mechanisms to ensure constant cerebral perfusion. However, this vascular neogenesis takes place at a microscopic scale that cannot be observed with current clinical imaging techniques. Ultrasound localization microscopy (ULM) allows us to observe micro-vessels of the order of a few microns at depths of several centimeters. This can be done using conventional clinical ultrasound scanners and contrast sequences (CEUS). In this study, ULM is used to observe the human microvasculature in neonatal patients undergoing treatment for life-threatening malformations forming direct connections between the cerebral arterial and venous systems. It is observed that neuroendovascular treatment of neonatal arteriovenous malformations causes remodeling and reorganization of the cerebral vasculature by also activating corticomedullary vascular connections. ULM enables us to follow microvascular changes in human neonates with high spatio-temporal resolution. ULM may provide a novel clinical translatable tool, particularly including cerebral imaging in very young patients.
Collapse
Affiliation(s)
- Simone Schwarz
- Department of Neonatology and Pediatric Intensive Care Medicine, Sana Clinics Duisburg, Zu den Rehwiesen 9, 47055, Duisburg, Germany
- Department of Pediatrics I, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
- Centre for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Louise Denis
- Laboratoire d'Imagerie Biomédicale, Sorbonne Université, CNRS, INSERM, 15 Rue de l'Ecole de Médecine, 75006, Paris, France
| | - Emmanuel Nedoschill
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Loschgestraße 15, 91054, Erlangen, Germany
| | - Adrian Buehler
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Loschgestraße 15, 91054, Erlangen, Germany
| | - Vera Danko
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Loschgestraße 15, 91054, Erlangen, Germany
| | - Alina C Hilger
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Loschgestraße 15, 91054, Erlangen, Germany
| | - Francisco Brevis Nuñez
- Department of Neonatology and Pediatric Intensive Care Medicine, Sana Clinics Duisburg, Zu den Rehwiesen 9, 47055, Duisburg, Germany
| | - Nikola R Dürr
- Clinic for Radiology and Neuroradiology, Sana Clinics Duisburg, Zu den Rehwiesen 9, 47055, Duisburg, Germany
| | - Martin Schlunz-Hendann
- Clinic for Radiology and Neuroradiology, Sana Clinics Duisburg, Zu den Rehwiesen 9, 47055, Duisburg, Germany
| | - Friedhelm Brassel
- Clinic for Radiology and Neuroradiology, Sana Clinics Duisburg, Zu den Rehwiesen 9, 47055, Duisburg, Germany
| | - Ursula Felderhoff-Müser
- Department of Pediatrics I, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
- Centre for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Heiko Reutter
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Loschgestraße 15, 91054, Erlangen, Germany
| | - Joachim Woelfle
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Loschgestraße 15, 91054, Erlangen, Germany
| | - Jörg Jüngert
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Loschgestraße 15, 91054, Erlangen, Germany
| | - Christian Dohna-Schwake
- Department of Pediatrics I, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
- Centre for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Nora Bruns
- Department of Pediatrics I, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
- Centre for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Adrian P Regensburger
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Loschgestraße 15, 91054, Erlangen, Germany
| | - Olivier Couture
- Laboratoire d'Imagerie Biomédicale, Sorbonne Université, CNRS, INSERM, 15 Rue de l'Ecole de Médecine, 75006, Paris, France
| | - Henriette Mandelbaum
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Loschgestraße 15, 91054, Erlangen, Germany
| | - Ferdinand Knieling
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Loschgestraße 15, 91054, Erlangen, Germany
| |
Collapse
|
6
|
Kovacs M, Dominguez-Belloso A, Ali-Moussa S, Deczkowska A. Immune control of brain physiology. Nat Rev Immunol 2025:10.1038/s41577-025-01129-6. [PMID: 39890999 DOI: 10.1038/s41577-025-01129-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2025] [Indexed: 02/03/2025]
Abstract
The peripheral immune system communicates with the brain through complex anatomical routes involving the skull, the brain borders, circumventricular organs and peripheral nerves. These immune-brain communication pathways were classically considered to be dormant under physiological conditions and active only in cases of infection or damage. Yet, peripheral immune cells and signals are key in brain development, function and maintenance. In this Perspective, we propose an alternative framework for understanding the mechanisms of immune-brain communication. During brain development and in homeostasis, these anatomical structures allow selected elements of the peripheral immune system to affect the brain directly or indirectly, within physiological limits. By contrast, in ageing and pathological settings, detrimental peripheral immune signals hijack the existing communication routes or alter their structure. We discuss why a diversity of communication channels is needed and how they work in relation to one another to maintain homeostasis of the brain.
Collapse
Affiliation(s)
- Mariángeles Kovacs
- Brain-Immune Communication Lab, Institut Pasteur, Université Paris Cité, Inserm U1224, Paris, France
| | - Amaia Dominguez-Belloso
- Brain-Immune Communication Lab, Institut Pasteur, Université Paris Cité, Inserm U1224, Paris, France
| | - Samir Ali-Moussa
- Brain-Immune Communication Lab, Institut Pasteur, Université Paris Cité, Inserm U1224, Paris, France
| | - Aleksandra Deczkowska
- Brain-Immune Communication Lab, Institut Pasteur, Université Paris Cité, Inserm U1224, Paris, France.
| |
Collapse
|
7
|
Liu L, Zhang X, Chai Y, Zhang J, Deng Q, Chen X. Skull bone marrow and skull meninges channels: redefining the landscape of central nervous system immune surveillance. Cell Death Dis 2025; 16:53. [PMID: 39875352 PMCID: PMC11775313 DOI: 10.1038/s41419-025-07336-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/18/2024] [Accepted: 01/07/2025] [Indexed: 01/30/2025]
Abstract
The understanding of neuroimmune function has evolved from concepts of immune privilege and protection to a new stage of immune interaction. The discovery of skull meninges channels (SMCs) has opened new avenues for understanding central nervous system (CNS) immunity. Here, we characterize skull bone marrow and SMCs by detailing the anatomical structures adjacent to the skull, the differences between skull and peripheral bone marrow, mainstream animal processing methods, and the role of skull bone marrow in monitoring various CNS diseases. Additionally, we highlight several unresolved issues based on current research findings, aiming to guide future research directions.
Collapse
Affiliation(s)
- Liang Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, P.R. China
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, P.R. China
| | - Xian Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, P.R. China
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, P.R. China
| | - Yan Chai
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, P.R. China
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, P.R. China
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, P.R. China
| | - Quanjun Deng
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Xin Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, P.R. China.
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, P.R. China.
| |
Collapse
|
8
|
Eide Therkelsen H, Enger R, Eide PK, Ringstad G. Evidence for cellular and solute passage between the brain and skull bone marrow across meninges: A systematic review. J Cereb Blood Flow Metab 2025:271678X251316392. [PMID: 39862438 PMCID: PMC11765306 DOI: 10.1177/0271678x251316392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 11/24/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025]
Abstract
A potential two-way passage of cells and substances between the brain and skull bone marrow may open for new insights into neurological disease. The arachnoid membrane was traditionally considered to restrict cells and larger molecules in CSF from entering the dura and bone marrow directly. However, new data on exchange between brain and skull bone marrow have recently emerged. Here, we conducted a systematic literature to answer the question: What is the current evidence regarding the movement of cells and molecules between the brain and skull bone marrow, spanning CSF and meninges? We excluded studies related to head or skull trauma, cranial fractures or defects, cancer invasion, CSF leakage, spontaneous intracranial hypotension, spinal dura mater, and studies solely focusing on meningeal lymphatic vessels or the passage of substances from CSF to meningeal lymphatic vessels. The review identified 16 studies that provide evidence of communication between the brain, meninges and skull bone marrow. Cells (such as B and T cells and neutrophils), bacteria, and substances (tracers, drug compounds) have been reported to pass between the brain and skull bone. However, most studies are performed in rodents, emphasizing the need for translation to humans.
Collapse
Affiliation(s)
| | - Rune Enger
- GliaLab and the Letten Centre, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Brain Fluid Research, University of Oslo, Oslo, Norway
- Department of Neurosurgery, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Per Kristian Eide
- KG Jebsen Centre for Brain Fluid Research, University of Oslo, Oslo, Norway
- Department of Neurosurgery, Oslo University Hospital-Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Geir Ringstad
- KG Jebsen Centre for Brain Fluid Research, University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Radiology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
- Department of Geriatrics and Internal Medicine, Sorlandet Hospital, Arendal, Norway
| |
Collapse
|
9
|
Yun DH, Park YG, Cho JH, Kamentsky L, Evans NB, DiNapoli N, Xie K, Choi SW, Albanese A, Tian Y, Sohn CH, Zhang Q, Kim ME, Swaney J, Guan W, Park J, Drummond G, Choi H, Ruelas L, Feng G, Chung K. Uniform volumetric single-cell processing for organ-scale molecular phenotyping. Nat Biotechnol 2025:10.1038/s41587-024-02533-4. [PMID: 39856430 DOI: 10.1038/s41587-024-02533-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 12/11/2024] [Indexed: 01/27/2025]
Abstract
Extending single-cell analysis to intact tissues while maintaining organ-scale spatial information poses a major challenge due to unequal chemical processing of densely packed cells. Here we introduce Continuous Redispersion of Volumetric Equilibrium (CuRVE) in nanoporous matrices, a framework to address this challenge. CuRVE ensures uniform processing of all cells in organ-scale tissues by perpetually maintaining dynamic equilibrium of the tissue's gradually shifting chemical environment. The tissue chemical reaction environment changes at a continuous, slow rate, allowing redispersion of unevenly distributed chemicals and preserving chemical equilibrium tissue wide at any given moment. We implemented CuRVE to immunologically label whole mouse and rat brains and marmoset and human tissue blocks within 1 day. We discovered highly variable regionalized reduction of parvalbumin immunoreactive cells in wild-type adult mice, a phenotype missed by the commonly used genetic labeling. We envision that our platform will advance volumetric single-cell processing and analysis, facilitating comprehensive single-cell level investigations within their spatial context in organ-scale tissues.
Collapse
Affiliation(s)
- Dae Hee Yun
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Young-Gyun Park
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Jae Hun Cho
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Lee Kamentsky
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Nicholas B Evans
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Nicholas DiNapoli
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Katherine Xie
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Seo Woo Choi
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Alexandre Albanese
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Yuxuan Tian
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Chang Ho Sohn
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Qiangge Zhang
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Yang Tan Collective and McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Minyoung E Kim
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Justin Swaney
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Webster Guan
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Juhyuk Park
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Gabi Drummond
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Heejin Choi
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Luzdary Ruelas
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Guoping Feng
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Yang Tan Collective and McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kwanghun Chung
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
10
|
Yi Y, Zhao H. Revolutionizing Tissue Clearing and 3-Dimensional Imaging: Transparent Embedding Solvent System for Uniform High-Resolution Imaging. BME FRONTIERS 2025; 6:0095. [PMID: 39850149 PMCID: PMC11754538 DOI: 10.34133/bmef.0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/20/2024] [Accepted: 01/06/2025] [Indexed: 01/25/2025] Open
Abstract
Combining transparent embedding with sectioning is likely to be the future direction for tissue clearing and 3-dimensional (3D) imaging. A newly published transparent embedding system, TESOS (Transparent Embedding Solvent System), ensures consistent submicron resolution imaging throughout the entire sample, and can be compatible with different microscopy systems. This method shows great potential in connectome mapping, and might be an optimal option for future 3D multiplex immunofluorescence and RNA in situ hybridization imaging. Additional efforts would be needed to innovate labeling, imaging, and data processing strategies to fully utilize the potential of transparent embedding systems in high-resolution imaging of large-scale samples.
Collapse
Affiliation(s)
- Yating Yi
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology,
Sichuan University, Chengdu, Sichuan, China
| | - Hu Zhao
- Chinese Institute for Brain Research, Beijing, China
| |
Collapse
|
11
|
Wu B, Meng L, Zhao Y, Li J, Tian Q, Pang Y, Ren C, Dong Z. Meningeal neutrophil immune signaling influences behavioral adaptation following threat. Neuron 2025; 113:260-276.e8. [PMID: 39561768 DOI: 10.1016/j.neuron.2024.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 05/27/2024] [Accepted: 10/17/2024] [Indexed: 11/21/2024]
Abstract
Social creatures must attend to threat signals from conspecifics and respond appropriately, both behaviorally and physiologically. In this work, we show in mice a threat-sensitive immune mechanism that orchestrates psychological processes and is amenable to social modulation. Repeated encounters with socially cued threats triggered meningeal neutrophil (MN) priming preferentially in males. MN activity was correlated with attenuated defensive responses to cues. Canonical neutrophil-specific activation marker CD177 was upregulated after social threat cueing, and its genetic ablation abrogated male behavioral phenotypes. CD177 signals favored meningeal T helper (Th)1-like immune bias, which blunted neural response to threatening stimuli by enhancing intrinsic GABAergic inhibition within the prelimbic cortex via interferon-gamma (IFN-γ). MN signaling was sensitized by negative emotional states and governed by socially dependent androgen release. This male-biased hormone/neutrophil regulatory axis is seemingly conserved in humans. Our findings provide insights into how immune responses influence behavioral threat responses, suggesting a possible neuroimmune basis of emotional regulation.
Collapse
Affiliation(s)
- Bin Wu
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ling Meng
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China; Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Zhao
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junjie Li
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Qiuyun Tian
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yayan Pang
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Chunguang Ren
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China.
| | - Zhifang Dong
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
12
|
Luo J, Molbay M, Chen Y, Horvath I, Kadletz K, Kick B, Zhao S, Al-Maskari R, Singh I, Ali M, Bhatia HS, Minde DP, Negwer M, Hoeher L, Calandra GM, Groschup B, Su J, Kimna C, Rong Z, Galensowske N, Todorov MI, Jeridi D, Ohn TL, Roth S, Simats A, Singh V, Khalin I, Pan C, Arús BA, Bruns OT, Zeidler R, Liesz A, Protzer U, Plesnila N, Ussar S, Hellal F, Paetzold J, Elsner M, Dietz H, Erturk A. Nanocarrier imaging at single-cell resolution across entire mouse bodies with deep learning. Nat Biotechnol 2025:10.1038/s41587-024-02528-1. [PMID: 39809933 DOI: 10.1038/s41587-024-02528-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025]
Abstract
Efficient and accurate nanocarrier development for targeted drug delivery is hindered by a lack of methods to analyze its cell-level biodistribution across whole organisms. Here we present Single Cell Precision Nanocarrier Identification (SCP-Nano), an integrated experimental and deep learning pipeline to comprehensively quantify the targeting of nanocarriers throughout the whole mouse body at single-cell resolution. SCP-Nano reveals the tissue distribution patterns of lipid nanoparticles (LNPs) after different injection routes at doses as low as 0.0005 mg kg-1-far below the detection limits of conventional whole body imaging techniques. We demonstrate that intramuscularly injected LNPs carrying SARS-CoV-2 spike mRNA reach heart tissue, leading to proteome changes, suggesting immune activation and blood vessel damage. SCP-Nano generalizes to various types of nanocarriers, including liposomes, polyplexes, DNA origami and adeno-associated viruses (AAVs), revealing that an AAV2 variant transduces adipocytes throughout the body. SCP-Nano enables comprehensive three-dimensional mapping of nanocarrier distribution throughout mouse bodies with high sensitivity and should accelerate the development of precise and safe nanocarrier-based therapeutics.
Collapse
Affiliation(s)
- Jie Luo
- Institute for Intelligent Biotechnologies (iBIO), Helmholtz Center Munich, Neuherberg, Germany
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Deep Piction, Munich, Germany
| | - Muge Molbay
- Institute for Intelligent Biotechnologies (iBIO), Helmholtz Center Munich, Neuherberg, Germany
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, Germany
- Munich Medical Research School (MMRS), Munich, Germany
- Pharmaceutical Technology and Biopharmaceutics, Department of Pharmacy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Ying Chen
- Institute for Intelligent Biotechnologies (iBIO), Helmholtz Center Munich, Neuherberg, Germany
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Munich Medical Research School (MMRS), Munich, Germany
- Faculty of Medicine, Ludwig-Maximilians University Munich, Munich, Germany
| | - Izabela Horvath
- Institute for Intelligent Biotechnologies (iBIO), Helmholtz Center Munich, Neuherberg, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Deep Piction, Munich, Germany
- TUM School of Computation, Information and Technology, Technical University of Munich, Munich, Germany
| | - Karoline Kadletz
- Institute for Intelligent Biotechnologies (iBIO), Helmholtz Center Munich, Neuherberg, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Deep Piction, Munich, Germany
| | - Benjamin Kick
- Department of Biosciences, School of Natural Sciences, Technical University of Munich, Garching, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany
| | - Shan Zhao
- Institute for Intelligent Biotechnologies (iBIO), Helmholtz Center Munich, Neuherberg, Germany
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, Germany
- Munich Medical Research School (MMRS), Munich, Germany
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- ETH Zurich, Institute for Molecular Health Sciences, Zurich, Switzerland
| | - Rami Al-Maskari
- Institute for Intelligent Biotechnologies (iBIO), Helmholtz Center Munich, Neuherberg, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Deep Piction, Munich, Germany
- TUM School of Computation, Information and Technology, Technical University of Munich, Munich, Germany
| | - Inderjeet Singh
- Research Unit Adipocytes & Metabolism (ADM), Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Department of Medicine, Technische Universität München, Munich, Germany
| | - Mayar Ali
- Institute for Intelligent Biotechnologies (iBIO), Helmholtz Center Munich, Neuherberg, Germany
- Graduate School of Neuroscience (GSN), Munich, Germany
- Institute of Computational Biology, Helmholtz Munich, Neuherberg, Germany
| | - Harsharan Singh Bhatia
- Institute for Intelligent Biotechnologies (iBIO), Helmholtz Center Munich, Neuherberg, Germany
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Deep Piction, Munich, Germany
| | - David-Paul Minde
- Institute for Intelligent Biotechnologies (iBIO), Helmholtz Center Munich, Neuherberg, Germany
| | - Moritz Negwer
- Institute for Intelligent Biotechnologies (iBIO), Helmholtz Center Munich, Neuherberg, Germany
- Deep Piction, Munich, Germany
| | - Luciano Hoeher
- Institute for Intelligent Biotechnologies (iBIO), Helmholtz Center Munich, Neuherberg, Germany
| | - Gian Marco Calandra
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Bernhard Groschup
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Jinpeng Su
- Institute of Virology, Technical University of Munich / Helmholtz Munich, Munich, Germany
- German Center for Infection Research (DZIF), Munich partner site, Munich, Germany
| | - Ceren Kimna
- Institute for Intelligent Biotechnologies (iBIO), Helmholtz Center Munich, Neuherberg, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Deep Piction, Munich, Germany
| | - Zhouyi Rong
- Institute for Intelligent Biotechnologies (iBIO), Helmholtz Center Munich, Neuherberg, Germany
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Munich Medical Research School (MMRS), Munich, Germany
| | - Nikolas Galensowske
- Institute for Intelligent Biotechnologies (iBIO), Helmholtz Center Munich, Neuherberg, Germany
| | - Mihail Ivilinov Todorov
- Institute for Intelligent Biotechnologies (iBIO), Helmholtz Center Munich, Neuherberg, Germany
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, Germany
- Deep Piction, Munich, Germany
| | - Denise Jeridi
- Institute for Intelligent Biotechnologies (iBIO), Helmholtz Center Munich, Neuherberg, Germany
- Deep Piction, Munich, Germany
| | - Tzu-Lun Ohn
- Institute for Intelligent Biotechnologies (iBIO), Helmholtz Center Munich, Neuherberg, Germany
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, Germany
| | - Stefan Roth
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, Germany
| | - Alba Simats
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, Germany
| | - Vikramjeet Singh
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Igor Khalin
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institute Blood and Brain @Caen-Normandie (BB@C), Caen, France
| | - Chenchen Pan
- Institute for Intelligent Biotechnologies (iBIO), Helmholtz Center Munich, Neuherberg, Germany
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, Germany
| | - Bernardo A Arús
- Department of Functional Imaging in Surgical Oncology, National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medizinische Fakultät and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Oliver T Bruns
- Department of Functional Imaging in Surgical Oncology, National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medizinische Fakultät and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
| | - Reinhard Zeidler
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Structural Biology, Munich, Germany
- Department of Otorhinolaryngology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Arthur Liesz
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Ulrike Protzer
- Institute of Virology, Technical University of Munich / Helmholtz Munich, Munich, Germany
- German Center for Infection Research (DZIF), Munich partner site, Munich, Germany
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Siegfried Ussar
- Research Unit Adipocytes & Metabolism (ADM), Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Farida Hellal
- Institute for Intelligent Biotechnologies (iBIO), Helmholtz Center Munich, Neuherberg, Germany
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Johannes Paetzold
- Institute for Intelligent Biotechnologies (iBIO), Helmholtz Center Munich, Neuherberg, Germany
- Deep Piction, Munich, Germany
- Department of Computing, Imperial College London, London, UK
| | - Markus Elsner
- Institute for Intelligent Biotechnologies (iBIO), Helmholtz Center Munich, Neuherberg, Germany
- Deep Piction, Munich, Germany
| | - Hendrik Dietz
- Department of Biosciences, School of Natural Sciences, Technical University of Munich, Garching, Germany.
- Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany.
| | - Ali Erturk
- Institute for Intelligent Biotechnologies (iBIO), Helmholtz Center Munich, Neuherberg, Germany.
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
- Deep Piction, Munich, Germany.
- School of Medicine, Koç University, İstanbul, Turkey.
| |
Collapse
|
13
|
Evans MA, Chavkin NW, Sano S, Sun H, Sardana T, Ravi R, Doviak H, Wang Y, Yura Y, Polizio AH, Horitani K, Ogawa H, Hirschi KK, Walsh K. Tet2-mediated clonal hematopoiesis modestly improves neurological deficits and is associated with inflammation resolution in the subacute phase of experimental stroke. Front Cell Neurosci 2024; 18:1487867. [PMID: 39742155 PMCID: PMC11685025 DOI: 10.3389/fncel.2024.1487867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/12/2024] [Indexed: 01/03/2025] Open
Abstract
Introduction Recent work has revealed that clonal hematopoiesis (CH) is associated with a higher risk of numerous age-related diseases, including ischemic stroke, however little is known about whether it influences stroke outcome independent of its widespread effects on cardiovascular disease. Studies suggest that leukocytes carrying CH driver mutations have an enhanced inflammatory profile, which could conceivably exacerbate brain injury after a stroke. Methods Using a competitive bone marrow transplant model of Tet2-mediated CH, we tested the hypothesis that CH would lead to a poorer outcome after ischemic stroke by augmenting brain inflammation. Stroke was induced in mice by middle cerebral artery occlusion and neurological outcome was assessed at acute (24 h) and subacute (14 d) timepoints. Brains were collected at both time points for histological, immunofluorescence and gene expression assays. Results Unexpectedly, Tet2-mediated CH had no effect on acute stroke outcome but led to a reduction in neurological deficits during the subacute phase. This improved neurological outcome was associated with lower levels of brain inflammation as evidenced by lower transcript levels of various inflammatory molecules alongside reduced astrogliosis. Discussion These findings suggest that Tet2-mediated CH may have beneficial effects on outcome after stroke, contrasting with the conventional understanding of CH whereby leukocytes with driver mutations promote disease by exacerbating inflammation.
Collapse
Affiliation(s)
- Megan A. Evans
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Nicholas W. Chavkin
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Soichi Sano
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Hanna Sun
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Taneesha Sardana
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Ramya Ravi
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Heather Doviak
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Ying Wang
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Yoshimitsu Yura
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Ariel H. Polizio
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Keita Horitani
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Hayato Ogawa
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Karen K. Hirschi
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Kenneth Walsh
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| |
Collapse
|
14
|
Rong Z, Mai H, Ebert G, Kapoor S, Puelles VG, Czogalla J, Hu S, Su J, Prtvar D, Singh I, Schädler J, Delbridge C, Steinke H, Frenzel H, Schmidt K, Braun C, Bruch G, Ruf V, Ali M, Sühs KW, Nemati M, Hopfner F, Ulukaya S, Jeridi D, Mistretta D, Caliskan ÖS, Wettengel JM, Cherif F, Kolabas ZI, Molbay M, Horvath I, Zhao S, Krahmer N, Yildirim AÖ, Ussar S, Herms J, Huber TB, Tahirovic S, Schwarzmaier SM, Plesnila N, Höglinger G, Ondruschka B, Bechmann I, Protzer U, Elsner M, Bhatia HS, Hellal F, Ertürk A. Persistence of spike protein at the skull-meninges-brain axis may contribute to the neurological sequelae of COVID-19. Cell Host Microbe 2024; 32:2112-2130.e10. [PMID: 39615487 DOI: 10.1016/j.chom.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/10/2024] [Accepted: 11/08/2024] [Indexed: 12/14/2024]
Abstract
SARS-CoV-2 infection is associated with long-lasting neurological symptoms, although the underlying mechanisms remain unclear. Using optical clearing and imaging, we observed the accumulation of SARS-CoV-2 spike protein in the skull-meninges-brain axis of human COVID-19 patients, persisting long after viral clearance. Further, biomarkers of neurodegeneration were elevated in the cerebrospinal fluid from long COVID patients, and proteomic analysis of human skull, meninges, and brain samples revealed dysregulated inflammatory pathways and neurodegeneration-associated changes. Similar distribution patterns of the spike protein were observed in SARS-CoV-2-infected mice. Injection of spike protein alone was sufficient to induce neuroinflammation, proteome changes in the skull-meninges-brain axis, anxiety-like behavior, and exacerbated outcomes in mouse models of stroke and traumatic brain injury. Vaccination reduced but did not eliminate spike protein accumulation after infection in mice. Our findings suggest persistent spike protein at the brain borders may contribute to lasting neurological sequelae of COVID-19.
Collapse
Affiliation(s)
- Zhouyi Rong
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Neuherberg, Germany; Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany; Munich Medical Research School (MMRS), Munich, Germany
| | - Hongcheng Mai
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Neuherberg, Germany; Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany; Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Munich Medical Research School (MMRS), Munich, Germany
| | - Gregor Ebert
- Institute of Virology, Technical University of Munich/Helmholtz Munich, Munich, Germany; German Center for Infection Research (DZIF), Munich Partner Site, Munich, Germany
| | - Saketh Kapoor
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Neuherberg, Germany; Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Victor G Puelles
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Jan Czogalla
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Senbin Hu
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Jinpeng Su
- Institute of Virology, Technical University of Munich/Helmholtz Munich, Munich, Germany
| | - Danilo Prtvar
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - Inderjeet Singh
- Research Unit Adipocytes & Metabolism (ADM), Helmholtz Diabetes Center, Helmholtz Munich, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Julia Schädler
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claire Delbridge
- Institute of Pathology, Division of Neuropathology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Hanno Steinke
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Hannah Frenzel
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Katja Schmidt
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Christian Braun
- Institute of Legal Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Gina Bruch
- Institute of Legal Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Viktoria Ruf
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-University Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Mayar Ali
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Neuherberg, Germany; Graduate School of Neuroscience (GSN), Munich, Germany
| | | | - Mojtaba Nemati
- Department of Neurology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Franziska Hopfner
- Department of Neurology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Selin Ulukaya
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Neuherberg, Germany
| | - Denise Jeridi
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Neuherberg, Germany
| | - Daniele Mistretta
- Institute of Virology, Technical University of Munich/Helmholtz Munich, Munich, Germany
| | | | | | - Fatma Cherif
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - Zeynep Ilgin Kolabas
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Neuherberg, Germany; Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany; Graduate School of Neuroscience (GSN), Munich, Germany
| | - Müge Molbay
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Neuherberg, Germany; Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany; Munich Medical Research School (MMRS), Munich, Germany
| | - Izabela Horvath
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Neuherberg, Germany; Center of Doctoral Studies in Informatics and its Applications (CEDOSIA), Technical University of Munich, Munich, Germany
| | - Shan Zhao
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Neuherberg, Germany; Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Natalie Krahmer
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany
| | - Ali Önder Yildirim
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Siegfried Ussar
- Research Unit Adipocytes & Metabolism (ADM), Helmholtz Diabetes Center, Helmholtz Munich, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Jochen Herms
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-University Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sabina Tahirovic
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - Susanne M Schwarzmaier
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Günter Höglinger
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany; Department of Neurology, Ludwig-Maximilians-University Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Benjamin Ondruschka
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ingo Bechmann
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Ulrike Protzer
- Institute of Virology, Technical University of Munich/Helmholtz Munich, Munich, Germany; German Center for Infection Research (DZIF), Munich Partner Site, Munich, Germany
| | - Markus Elsner
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Neuherberg, Germany
| | - Harsharan Singh Bhatia
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Neuherberg, Germany; Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Farida Hellal
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Neuherberg, Germany; Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Ali Ertürk
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Munich, Neuherberg, Germany; Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Koç University, School of Medicine, İstanbul, Turkey.
| |
Collapse
|
15
|
Saglam-Metiner P, Yanasik S, Odabasi YC, Modamio J, Negwer M, Biray-Avci C, Guler A, Erturk A, Yildirim E, Yesil-Celiktas O. ICU patient-on-a-chip emulating orchestration of mast cells and cerebral organoids in neuroinflammation. Commun Biol 2024; 7:1627. [PMID: 39639082 PMCID: PMC11621364 DOI: 10.1038/s42003-024-07313-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024] Open
Abstract
Propofol and midazolam are the current standard of care for prolonged sedation in Intensive Care Units (ICUs). However, the effects and mechanism of these sedatives in brain tissue are unclear. Herein, the development of an ICU patient-on-a-chip platform to elucidate those effects is reported. The humanized neural tissue compartment combines mast cells differentiated from human induced pluripotent stem cells (hiPSCs) with cerebral organoids in a three-dimensional (3D) matrix, which is covered with a membrane populated with human cerebral microvascular endothelial cells (hCMEC/D3) that separates the tissue chamber from the vascular lumen, where sedatives were infused for four days to evaluate neurotoxicity and cell-mediated immune responses. Subsequent to propofol administration, gene expressions of CD40 and TNF-α in mast cells, AIF1 in microglia and GFAP/S100B/OLIG2/MBP in macroglia were elevated, as well as NOS2, CD80, CD40, CD68, IL6 and TNF-α mediated proinflammation is noted in cerebral organoids, which resulted in higher expressions of GJB1, GABA-A and NMDAR1 in the tissue construct of the platform. Besides, midazolam administration stimulated expression of CD40 and CD203c+ reactivated mast cell proliferation and compromised BBB permeability and decreased TEER values with higher barrier disruption, whereas increased populations of CD11b+ microglia, higher expressions of GFAP/DLG4/GJB1 and GABA-A-/NMDAR1- identities, as well as glutamate related neurotoxicity and IL1B, IFNG, IFNA1, IL6 genes mediated proinflammation, resulting in increased apoptotic zones are observed in cerebral organoids. These results suggest that different sedatives cause variations in cell type activation that modulate different pathways related to neuroinflammation and neurotoxicity in the ICU patient-on-chip platform.
Collapse
Affiliation(s)
- Pelin Saglam-Metiner
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Türkiye
| | - Sena Yanasik
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Türkiye
| | - Yusuf Caglar Odabasi
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Türkiye
| | - Jennifer Modamio
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, Neuherberg, Germany
| | - Moritz Negwer
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, Neuherberg, Germany
| | - Cigir Biray-Avci
- Department of Medical Biology, Faculty of Medicine, Ege University, Bornova, Izmir, Türkiye
| | - Ayse Guler
- Department of Neuroscience, Faculty of Medicine, Ege University, Bornova, Izmir, Türkiye
| | - Ali Erturk
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, Neuherberg, Germany
| | - Ender Yildirim
- Department of Mechanical Engineering, Middle East Technical University, Ankara, Türkiye
- ODTÜ MEMS Center, Ankara, Türkiye
| | - Ozlem Yesil-Celiktas
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Türkiye.
- ODTÜ MEMS Center, Ankara, Türkiye.
| |
Collapse
|
16
|
Yu T, Zhong X, Li D, Zhu J, Tuchin VV, Zhu D. Delivery and kinetics of immersion optical clearing agents in tissues: Optical imaging from ex vivo to in vivo. Adv Drug Deliv Rev 2024; 215:115470. [PMID: 39481483 DOI: 10.1016/j.addr.2024.115470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/30/2024] [Accepted: 10/27/2024] [Indexed: 11/02/2024]
Abstract
Advanced optical imaging provides a powerful tool for the structural and functional analysis of tissues with high resolution and contrast, but the imaging performance decreases as light propagates deeper into the tissue. Tissue optical clearing technique demonstrates an innovative way to realize deep-tissue imaging and have emerged substantially in the last two decades. Here, we briefly reviewed the basic principles of tissue optical clearing techniques in the view of delivery strategies via either free diffusion or external forces-driven advection, and the commonly-used optical techniques for monitoring kinetics of clearing agents in tissue, as well as their ex vivo to in vivo applications in multiple biomedical research fields. With future efforts on the even distribution of both clearing agents and probes, excavation of more effective clearing agents, and automation of tissue clearing processes, tissue optical clearing should provide more insights into the fundamental questions in biological events clinical diagnostics.
Collapse
Affiliation(s)
- Tingting Yu
- Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Xiang Zhong
- Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Dongyu Li
- Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China; School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Jingtan Zhu
- Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Valery V Tuchin
- Institute of Physics and Science Medical Center, Saratov State University, Saratov 410012, Russia; Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk 634050, Russia; Institute of Precision Mechanics and Control, FRS "Saratov Scientific Centre of the RAS", Saratov 410028, Russia
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China.
| |
Collapse
|
17
|
Zhang X, Liu L, Chai Y, Zhang J, Deng Q, Chen X. Reimagining the meninges from a neuroimmune perspective: a boundary, but not peripheral. J Neuroinflammation 2024; 21:299. [PMID: 39548515 PMCID: PMC11568633 DOI: 10.1186/s12974-024-03286-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/03/2024] [Indexed: 11/18/2024] Open
Abstract
Recent advances in neuroscience have transformed our understanding of the meninges, the layers surrounding the central nervous system (CNS). Two key findings have advanced our understanding: researchers identified cranial bone marrow as a reservoir for meningeal immune cells, and rediscovered a brain lymphatic system. Once viewed merely as a protective barrier, the meninges are now recognized as a dynamic interface crucial for neuroimmune interactions. This shift in perspective highlights their unique role in maintaining CNS balance, shaping brain development, and regulating responses to injury and disease. This review synthesizes the latest insights into meningeal anatomy and function, with a focus on newly identified structures such as dural-associated lymphoid tissues (DALT) and arachnoid cuff exit (ACE) points. We also examine the diverse immune cell populations within the meninges and their interactions with the CNS, underscoring the emerging view of the meninges as active participants in brain immunity. Finally, we outline critical unanswered questions about meningeal immunity, proposing directions for future research. By addressing these knowledge gaps, we aim to deepen our understanding of the meninges' role in brain health and disease, potentially paving the way for novel therapeutic approaches.
Collapse
Affiliation(s)
- Xian Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, No.154, Anshan Road, Tianjin, 300052, P.R. China
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, P.R. China
| | - Liang Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, No.154, Anshan Road, Tianjin, 300052, P.R. China
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, P.R. China
| | - Yan Chai
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, P.R. China
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, No.154, Anshan Road, Tianjin, 300052, P.R. China
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, P.R. China
| | - Quanjun Deng
- Department of Neurosurgery, Tianjin Medical University General Hospital, No.154, Anshan Road, Tianjin, 300052, P.R. China.
| | - Xin Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, No.154, Anshan Road, Tianjin, 300052, P.R. China.
- Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, P.R. China.
| |
Collapse
|
18
|
Roostalu U, Hansen HH, Hecksher-Sørensen J. 3D light-sheet fluorescence microscopy in preclinical and clinical drug discovery. Drug Discov Today 2024; 29:104196. [PMID: 39368696 DOI: 10.1016/j.drudis.2024.104196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/10/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
Light-sheet fluorescence microscopy (LSFM) combined with tissue clearing has emerged as a powerful technology in drug discovery. LSFM is applicable to a variety of samples, from rodent organs to clinical tissue biopsies, and has been used for characterizing drug targets in tissues, demonstrating the biodistribution of pharmaceuticals and determining their efficacy and mode of action. LSFM is scalable to high-throughput analysis and provides resolution down to the single cell level. In this review, we describe the advantages of implementing LSFM into the drug discovery pipeline and highlight recent advances in this field.
Collapse
|
19
|
Betsholtz C, Engelhardt B, Koh GY, McDonald DM, Proulx ST, Siegenthaler J. Advances and controversies in meningeal biology. Nat Neurosci 2024; 27:2056-2072. [PMID: 39333784 PMCID: PMC11862877 DOI: 10.1038/s41593-024-01701-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 06/12/2024] [Indexed: 09/30/2024]
Abstract
The dura, arachnoid and pia mater, as the constituent layers of the meninges, along with cerebrospinal fluid in the subarachnoid space and ventricles, are essential protectors of the brain and spinal cord. Complemented by immune cells, blood vessels, lymphatic vessels and nerves, these connective tissue layers have held many secrets that have only recently begun to be revealed. Each meningeal layer is now known to have molecularly distinct types of fibroblasts. Cerebrospinal fluid clearance through peripheral lymphatics and lymph nodes is well documented, but its routes and flow dynamics are debated. Advances made in meningeal immune functions are also debated. This Review considers the cellular and molecular structure and function of the dura, arachnoid and pia mater in the context of conventional views, recent progress, and what is uncertain or unknown. The hallmarks of meningeal pathophysiology are identified toward developing a more complete understanding of the meninges in health and disease.
Collapse
Affiliation(s)
- Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden and Department of Medicine-Huddinge, Karolinska Institutet, Huddinge, Sweden
| | | | - Gou Young Koh
- Center for Vascular Research, Institute for Basic Science and Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Donald M McDonald
- Department of Anatomy, Cardiovascular Research Institute, and UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Steven T Proulx
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Julie Siegenthaler
- Department of Pediatrics, Section of Developmental Biology, University of Colorado, Anschutz Medical Campus Aurora, Colorado, CO, USA.
| |
Collapse
|
20
|
Kitamura E, Imai N. Molecular and Cellular Neurobiology of Spreading Depolarization/Depression and Migraine: A Narrative Review. Int J Mol Sci 2024; 25:11163. [PMID: 39456943 PMCID: PMC11508361 DOI: 10.3390/ijms252011163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Migraine is a prevalent neurological disorder, particularly among individuals aged 20-50 years, with significant social and economic impacts. Despite its high prevalence, the pathogenesis of migraine remains unclear. In this review, we provide a comprehensive overview of cortical spreading depolarization/depression (CSD) and its close association with migraine aura, focusing on its role in understanding migraine pathogenesis and therapeutic interventions. We discuss historical studies that have demonstrated the role of CSD in the visual phenomenon of migraine aura, along with modern imaging techniques confirming its propagation across the occipital cortex. Animal studies are examined to indicate that CSD is not exclusive to migraines; it also occurs in other neurological conditions. At the cellular level, we review how CSD is characterized by ionic changes and excitotoxicity, leading to neuronal and glial responses. We explore how CSD activates the trigeminal nervous system and upregulates the expression of calcitonin gene-related peptides (CGRP), thereby contributing to migraine pain. Factors such as genetics, obesity, and environmental conditions that influence the CSD threshold are discussed, suggesting potential therapeutic targets. Current treatments for migraine, including prophylactic agents and CGRP-targeting drugs, are evaluated in the context of their expected effects on suppressing CSD activity. Additionally, we highlight emerging therapies such as intranasal insulin-like growth factor 1 and vagus nerve stimulation, which have shown promise in reducing CSD susceptibility and frequency. By elucidating the molecular and cellular mechanisms of CSD, this review aims to enhance the understanding of migraine pathogenesis and support the development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Eiji Kitamura
- Department of Neurology, Kitasato University School of Medicine, Sagamihara 252-0329, Japan;
| | - Noboru Imai
- Department of Neurology and Headache Center, Japanese Red Cross Shizuoka Hospital, Shizuoka 420-0853, Japan
| |
Collapse
|
21
|
Kang JH, Yang JK, Cho KH, Lee OH, Kwon H, Kim SY, Kim S, Ko YT. Intracalvariosseous administration of donepezil microspheres protects against cognitive impairment by virtue of long-lasting brain exposure in mice. Theranostics 2024; 14:6708-6725. [PMID: 39479440 PMCID: PMC11519799 DOI: 10.7150/thno.100986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
Rationale: Recent studies have demonstrated the direct connections between the skull bone marrow, meninges, and brain. In an effort to explore these connections for the purpose of brain drug delivery, we previously proposed the direct application of CNS drugs into the diploic space between the outer and inner cortex of the skull, namely, intracalvariosseous administration (ICO). It was successfully demonstrated that small molecular to large colloidal drugs can readily reach the brain after ICO in mice and rabbits. Here, we report that a single ICO of donepezil microspheres protects cognitive impairment in Alzheimer mouse models over a month-long period. Methods: Donepezil-loaded long-acting microspheres (DPZ@LAM) were prepared with biodegradable poly(DL-lactide-co-glycolide) (PLGA). Pharmacokinetic study and behavioral test were performed to determine the brain exposure and therapeutic effects after ICO of DPZ@LAM in scopolamine-induced memory-deficient mice. Results: DPZ@LAM were capable of a month-long and precisely controlled drug release. After a single ICO of DPZ@LAM, DPZ concentration in brain sustained above the effective therapeutic levels for four weeks. The long-lasting brain exposure also led to significantly recovered cognitive function in scopolamine-induced memory-deficient mice, along with decreased acetylcholinesterase activity and increased brain-derived neurotrophic factor. Conclusions: ICO allows for BBB-bypassing brain drug delivery through the direct connection between the skull bone marrow and brain, providing an alternative approach for the treatment of neurodegenerative diseases with otherwise BBB impermeable CNS drugs.
Collapse
Affiliation(s)
- Ji Hee Kang
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, 21936, Republic of Korea
| | - Jin-Kyoung Yang
- Department of Chemical Engineering, Dong-Eui University, Busan, 47340, Republic of Korea
| | - Kyo Hee Cho
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, 21936, Republic of Korea
| | - O Hyun Lee
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, 21936, Republic of Korea
| | - Hayoon Kwon
- Chemical & Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Sun Yeou Kim
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, 21936, Republic of Korea
| | - Sehoon Kim
- Chemical & Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Young Tag Ko
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, 21936, Republic of Korea
| |
Collapse
|
22
|
Kuhn AM, Bosis KE, Wohleb ES. Looking Back to Move Forward: Research in Stress, Behavior, and Immune Function. Neuroimmunomodulation 2024; 31:211-229. [PMID: 39369707 DOI: 10.1159/000541592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024] Open
Abstract
BACKGROUND From the original studies investigating the effects of adrenal gland secretion to modern high-throughput multidimensional analyses, stress research has been a topic of scientific interest spanning just over a century. SUMMARY The objective of this review was to provide historical context for influential discoveries, surprising findings, and preclinical models in stress-related neuroimmune research. Furthermore, we summarize this work and present a current understanding of the stress pathways and their effects on the immune system and behavior. We focus on recent work demonstrating stress-induced immune changes within the brain and highlight studies investigating stress effects on microglia. Lastly, we conclude with potential areas for future investigation concerning microglia heterogeneity, bone marrow niches, and sex differences. KEY MESSAGES Stress is a phenomenon that ties together not only the central and peripheral nervous system, but the immune system as well. The cumulative effects of stress can enhance or suppress immune function, based on the intensity and duration of the stressor. These stress-induced immune alterations are associated with neurobiological changes, including structural remodeling of neurons and decreased neurogenesis, and these contribute to the development of behavioral and cognitive deficits. As such, research in this field has revealed important insights into neuroimmune communication as well as molecular and cellular mediators of complex behaviors relevant to psychiatric disorders.
Collapse
Affiliation(s)
- Alexander M Kuhn
- Department of Pharmacology, Physiology, and Neurobiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Kelly E Bosis
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Eric S Wohleb
- Department of Pharmacology, Physiology, and Neurobiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
23
|
Zanluqui NG, McGavern DB. Why do central nervous system barriers host a diverse immune landscape? Trends Immunol 2024; 45:738-749. [PMID: 39299888 PMCID: PMC11471389 DOI: 10.1016/j.it.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/22/2024]
Abstract
The meninges in vertebrates comprise three layers (dura, arachnoid, pia mater), representing an important barrier surrounding and protecting the central nervous system (CNS). The most exterior CNS barrier, the dura mater, is unique because it resembles a peripheral tissue. It hosts a rich immune landscape, lymphatic vessels, and fenestrated vasculature, allowing microbes and other threats from the blood to extravasate into the meninges, potentially reaching the underlying CNS. The highly specialized large venous drainage system in the dura is especially susceptible to infection. Here, we explore specializations in the CNS barrier system from an anatomical and immunological perspective and posit that the dura mater evolved an elaborate innate and adaptive immune system in specific locations within it to protect underlying CNS tissue against invading pathogens.
Collapse
Affiliation(s)
- Nagela G Zanluqui
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institute of Health (NIH), Bethesda, MD, USA
| | - Dorian B McGavern
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institute of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
24
|
Wang Z, Xiao X, Zhou Z, Chen Y, Xia T, Sheng X, Han Y, Gong W, Si K. FLUID: a fluorescence-friendly lipid-compatible ultrafast clearing method. BIOMEDICAL OPTICS EXPRESS 2024; 15:5609-5624. [PMID: 39421767 PMCID: PMC11482171 DOI: 10.1364/boe.533072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 10/19/2024]
Abstract
Many clearing methods achieve high transparency by removing lipid components from tissues, which damages microstructure and limits their application in lipid research. As for methods which preserve lipid, it is difficult to balance transparency, fluorescence preservation and clearing speed. In this study, we propose a rapid water-based clearing method that is fluorescence-friendly and preserves lipid components. FLUID allows for preservation of endogenous fluorescence over 60 days. It shows negligible tissue distortion and is compatible with various types of fluorescent labeling and tissue staining methods. High quality imaging of human brain tissue and compatibility with pathological staining demonstrated the potential of our method for three-dimensional (3D) biopsy and clinical pathological diagnosis.
Collapse
Affiliation(s)
- Zizheng Wang
- Department of Psychiatry of the First Affiliated Hospital, Zhejiang University School of Medicine, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Xiao Xiao
- Department of Psychiatry of the First Affiliated Hospital, Zhejiang University School of Medicine, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310058, China
- Nanhu Brain-computer Interface Institute, Hangzhou 311100, China
| | - Ziwen Zhou
- Department of Psychiatry of the First Affiliated Hospital, Zhejiang University School of Medicine, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yunyin Chen
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
| | - Tianqi Xia
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
| | - Xiangyi Sheng
- NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yiping Han
- NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China
| | - Wei Gong
- Nanhu Brain-computer Interface Institute, Hangzhou 311100, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China
- Lingang Laboratory, Shanghai 200031, China
| | - Ke Si
- Department of Psychiatry of the First Affiliated Hospital, Zhejiang University School of Medicine, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
25
|
Zhu J, Liu X, Liu Z, Deng Y, Xu J, Liu K, Zhang R, Meng X, Fei P, Yu T, Zhu D. SOLID: minimizing tissue distortion for brain-wide profiling of diverse architectures. Nat Commun 2024; 15:8303. [PMID: 39333107 PMCID: PMC11436996 DOI: 10.1038/s41467-024-52560-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 09/12/2024] [Indexed: 09/29/2024] Open
Abstract
Brain-wide profiling of diverse biological components is fundamental for understanding complex brain pathology. Despite the availability in whole-brain imaging, it is still challenging to conduct multiplexed, brain-wide analysis with current tissue clearing techniques. Here, we propose SOLID, a hydrophobic tissue clearing method that can minimize tissue distortion while offering impressive clearing performance. SOLID achieves high-quality imaging of multi-color labeled mouse brain, and the acquired datasets can be effectively registered to the Allen Brain Atlas via commonly-used algorithms. SOLID enables generation of neural and vascular maps within one mouse brain, as well as tracing of specific neural projections labeled with viruses. SOLID also allows cross-channel investigations of β-amyloid plaques and neurovascular lesions in the reconstructed all-in-one panorama, providing quantitative insights into structural interactions at different stages of Alzheimer's disease. Altogether, SOLID provides a robust pipeline for whole-brain mapping, which may widen the utility of tissue clearing techniques in diverse neuroscience research.
Collapse
Affiliation(s)
- Jingtan Zhu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Xiaomei Liu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Zhang Liu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Yating Deng
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Jianyi Xu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Kunxing Liu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Ruiying Zhang
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Xizhi Meng
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Peng Fei
- School of Optical Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Tingting Yu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
| |
Collapse
|
26
|
Ouyang Q, Qin R, Li Q, Huang P, Lin C, Xu Q, Quan W, Fang F, Zhu Y, Liao J, Wu K. A novel m-xylylene-diamine/glucose based-supramolecular eutectogels with tissue clearing for three dimensional histological imaging. Colloids Surf B Biointerfaces 2024; 245:114262. [PMID: 39303383 DOI: 10.1016/j.colsurfb.2024.114262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/27/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Hydrogel-based tissue clearing technologies have shown significant promise for deep-tissue imaging and subcellular-level optical 3D reconstruction of whole organs. This study proposes a novel approach utilizing a deep eutectic solvent (DES) formulated with glucose and m-xylylene-diamine (MXDA) to create a highly efficient tissue-clearing hydrogel system named the passive hydrogel clearing system (PHCS). PHCS achieved efficient tissue clearing through a single-step tissue gelation process. The resulting hydrogel-tissue complex exhibited thermoreversible properties, transitioning into a sol state upon heating and vice versa upon cooling. Notably, PHCS enabled media embedding, facilitating immunofluorescence histopathology. Additionally, the system demonstrated compatibility with various fluorescent probes, particularly lipophilic dyes. Our study successfully employed PHCS for the reconstruction of vascular structures within the intestine, enabling the generation of a 3D pathology model. These findings suggest that PHCS is a promising novel method for fabricating hydrogels for tissue clearing and holds great potential for application as a mounting medium for morphological imaging.
Collapse
Affiliation(s)
- Qianqian Ouyang
- The second Affiliated Hospital of Guangdong Medical University, Zhanjiang 524023, China; Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, PR China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, PR China
| | - Ruixiu Qin
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, PR China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, PR China
| | - Qian Li
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, PR China
| | - Peixin Huang
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, PR China
| | - Changmei Lin
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, PR China
| | - Qingbao Xu
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, PR China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, PR China
| | - Weiyan Quan
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, PR China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, PR China
| | - Fang Fang
- The second Affiliated Hospital of Guangdong Medical University, Zhanjiang 524023, China
| | - Yuzhen Zhu
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, PR China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, PR China
| | - Jing Liao
- The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524002, PR China.
| | - Kefeng Wu
- The second Affiliated Hospital of Guangdong Medical University, Zhanjiang 524023, China; Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, PR China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, PR China.
| |
Collapse
|
27
|
Cao X, Li X, Li M, Sun J, Gao Z, Li X, Li Q, Shao Z, Fan C, Sun J. Light-Sheet Microscopic Imaging of Whole-Mouse Vascular Network with Fluorescent Microsphere Perfusion. ACS Biomater Sci Eng 2024; 10:5609-5616. [PMID: 38775700 DOI: 10.1021/acsbiomaterials.4c00546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Visualizing the whole vascular network system is crucial for understanding the pathogenesis of specific diseases and devising targeted therapeutic interventions. Although the combination of light sheet microscopy and tissue-clearing methods has emerged as a promising approach for investigating the blood vascular network, leveraging the spatial resolution down to the capillary level and the ability to image centimeter-scale samples remains difficult. Especially, as the resolution improves, the issue of photobleaching outside the field of view poses a challenge to image the whole vascular network of adult mice at capillary resolution. Here, we devise a fluorescent microsphere vascular perfusion method to enable labeling of the whole vascular network in adult mice, which overcomes the photobleaching limit during the imaging of large samples. Moreover, by combining the utilization of a large-scale light-sheet microscope and tissue clearing protocols for whole-mouse samples, we achieve the capillary-level imaging resolution (3.2 × 3.2 × 6.5 μm) of the whole vascular network with dimensions of 45 × 15 × 82 mm in adult mice. This method thus holds great potential to deliver mesoscopic resolution images of various tissue organs for whole-animal imaging.
Collapse
Affiliation(s)
- Xiaojie Cao
- School of Biomedical Engineering, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Xiaoyan Li
- School of Biomedical Engineering, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Min Li
- School of Biomedical Engineering, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Jiawei Sun
- School of Biomedical Engineering, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Zhaoshuai Gao
- School of Biomedical Engineering, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Xiaowei Li
- School of Biomedical Engineering, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Qian Li
- School of Biomedical Engineering, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Zhifeng Shao
- School of Biomedical Engineering, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Chunhai Fan
- School of Biomedical Engineering, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Jielin Sun
- School of Biomedical Engineering, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, 200240 Shanghai, China
| |
Collapse
|
28
|
Fridy PC, Farrell RJ, Molloy KR, Keegan S, Wang J, Jacobs EY, Li Y, Trivedi J, Sehgal V, Fenyö D, Wu Z, Chait BT, Rout MP. A new generation of nanobody research tools using improved mass spectrometry-based discovery methods. J Biol Chem 2024; 300:107623. [PMID: 39098531 PMCID: PMC11401214 DOI: 10.1016/j.jbc.2024.107623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/01/2024] [Accepted: 07/22/2024] [Indexed: 08/06/2024] Open
Abstract
Single-domain antibodies ("nanobodies") derived from the variable region of camelid heavy-chain only antibody variants have proven to be widely useful tools for research, therapeutic, and diagnostic applications. In addition to traditional display techniques, methods to generate nanobodies using direct detection by mass spectrometry and DNA sequencing have been highly effective. However, certain technical challenges have limited widespread application. We have optimized a new pipeline for this approach that greatly improves screening sensitivity, depth of antibody coverage, antigen compatibility, and overall hit rate and affinity. We have applied this improved methodology to generate significantly higher affinity nanobody repertoires against widely used targets in biological research-i.e., GFP, tdTomato, GST, and mouse, rabbit, and goat immunoglobulin G. We have characterized these reagents in affinity isolations and tissue immunofluorescence microscopy, identifying those that are optimal for these particularly demanding applications, and engineering dimeric constructs for ultra-high affinity. This study thus provides new nanobody tools directly applicable to a wide variety of research problems, and improved techniques enabling future nanobody development against diverse targets.
Collapse
Affiliation(s)
- Peter C Fridy
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York, USA
| | - Ryan J Farrell
- Laboratory of Brain Development and Repair, The Rockefeller University, New York, New York, USA; Department of Biochemistry, Weill Cornell Medicine, New York, New York, USA
| | - Kelly R Molloy
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York, USA
| | - Sarah Keegan
- Department of Biochemistry and Molecular Pharmacology, Institute for Systems Genetics, NYU Grossman School of Medicine, New York, New York, USA
| | - Junjie Wang
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York, USA
| | - Erica Y Jacobs
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York, USA; Chemistry Department, St John's University, Queens, New York, USA
| | - Yinyin Li
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York, USA
| | - Jill Trivedi
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York, USA
| | - Viren Sehgal
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York, USA
| | - David Fenyö
- Department of Biochemistry and Molecular Pharmacology, Institute for Systems Genetics, NYU Grossman School of Medicine, New York, New York, USA
| | - Zhuhao Wu
- Laboratory of Brain Development and Repair, The Rockefeller University, New York, New York, USA
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York, USA.
| | - Michael P Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York, USA.
| |
Collapse
|
29
|
Weng D, Yang L, Xie Y. Engineering and characterization of GFP-targeting nanobody: Expression, purification, and post-translational modification analysis. Protein Expr Purif 2024; 221:106501. [PMID: 38782081 DOI: 10.1016/j.pep.2024.106501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Nanobodies are single-variable domain antibodies with excellent properties, which are evolving as versatile tools to guide cognate antigens in vitro and in vivo for biological research, diagnosis, and treatment. Given their simple structure, nanobodies are readily produced in multiple systems. However, selecting an appropriate expression system is crucial because different conditions might cause proteins to produce different folds or post-translational modifications (PTMs), and these differences often result in different functions. At present, the strategies of PTMs are rarely reported. The GFP nanobody can specifically target the GFP protein. Here, we engineered a GFP nanobody fused with 6 × His tag and Fc tag, respectively, and expressed in bacteria and mammalian cells. The 6 × His-GFP-nanobody was produced from Escherichia coli at high yields and the pull-down assay indicated that it can precipitate the GFP protein. Meanwhile, the Fc-GFP-nanobody can be expressed in HEK293T cells, and the co-immunoprecipitation experiment can trace and target the GFP-tagged protein in vivo. Furthermore, some different PTMs in antigen-binding regions have been identified after using mass spectrometry (MS) to analyze the GFP nanobodies, which are expressed in prokaryotes and eukaryotes. In this study, a GFP nanobody was designed, and its binding ability was verified by using the eukaryotic and prokaryotic protein expression systems. In addition, this GFP nanobody was transformed into a useful instrument for more in-depth functional investigations of GFP fusion proteins. MS was further used to explore the reason for the difference in binding ability, providing a novel perspective for the study of GFP nanobodies and protein expression purification.
Collapse
Affiliation(s)
- Dunchu Weng
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Lin Yang
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yajun Xie
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
30
|
Xu C, Nedergaard M, Fowell DJ, Friedl P, Ji N. Multiphoton fluorescence microscopy for in vivo imaging. Cell 2024; 187:4458-4487. [PMID: 39178829 PMCID: PMC11373887 DOI: 10.1016/j.cell.2024.07.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/26/2024]
Abstract
Multiphoton fluorescence microscopy (MPFM) has been a game-changer for optical imaging, particularly for studying biological tissues deep within living organisms. MPFM overcomes the strong scattering of light in heterogeneous tissue by utilizing nonlinear excitation that confines fluorescence emission mostly to the microscope focal volume. This enables high-resolution imaging deep within intact tissue and has opened new avenues for structural and functional studies. MPFM has found widespread applications and has led to numerous scientific discoveries and insights into complex biological processes. Today, MPFM is an indispensable tool in many research communities. Its versatility and effectiveness make it a go-to technique for researchers investigating biological phenomena at the cellular and subcellular levels in their native environments. In this Review, the principles, implementations, capabilities, and limitations of MPFM are presented. Three application areas of MPFM, neuroscience, cancer biology, and immunology, are reviewed in detail and serve as examples for applying MPFM to biological research.
Collapse
Affiliation(s)
- Chris Xu
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14850, USA
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Alle 3B, 2200 Copenhagen, Denmark; University of Rochester Medical School, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Deborah J Fowell
- Department of Microbiology & Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Peter Friedl
- Department of Medical BioSciences, Radboud University Medical Centre, Geert Grooteplein 26-28, Nijmegen HB 6500, the Netherlands
| | - Na Ji
- Department of Neuroscience, Department of Physics, University of California Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
31
|
Li Y, Lu S, Zhang Z, Li X, Li Y, Li X, Xiong L. Fluorescent Pdots Facilitate High-Resolution Mapping of the Intact Meningeal Vascular Network and Eye-Brain Connections. ACS NANO 2024; 18:22080-22094. [PMID: 39102350 DOI: 10.1021/acsnano.4c05333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Meningeal vascular network is significant in neurology and neurosurgery. However, high-resolution imaging of intact meningeal vascular network is lacking. In this work, we develop a practical experimental method to ensure that the intact meninges are morphologically unfolded and fixed in an agarose gel. With the help of high-brightness polymer dots (Pdots) as probe, macroscopic and detailed imaging of the vascular network on the intact dorsal meninges can be performed. Meningeal vessels are symmetrically distributed along the superior sagittal sinus, and the distribution of meningeal vessels had a certain degree of hierarchy. The meninges are thicker blood vessels and capillary networks from the outside to the inside. Moreover, the diameter of the capillaries is 3.96 ± 0.89 μm. Interestingly, meningeal primo vessels in the central nervous system of mice is imaged with the diameter of 4.18 ± 1.18 μm, which has not been reported previously. It is worth mentioning that we found that orthotopic xenografts of brain tumors caused the appearance of corneal neovascularization and morphological changes in optic nerve microvessels. In conclusion, our work provides an effective Pdots-based imaging method for follow-up research on meningeal vascular-related diseases, and illustrates that the eye can serve as a window for the prevention and diagnosis of brain diseases.
Collapse
Affiliation(s)
- Yuqiao Li
- Shanghai Med-X Engineering Center for Medical Equipment and Technology School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200030, P. R. China
| | - Shuting Lu
- Shanghai Med-X Engineering Center for Medical Equipment and Technology School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200030, P. R. China
| | - Zhuang Zhang
- Shanghai Med-X Engineering Center for Medical Equipment and Technology School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200030, P. R. China
| | - Xiaoyan Li
- Shanghai Med-X Engineering Center for Medical Equipment and Technology School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200030, P. R. China
| | - Yankun Li
- Shanghai Med-X Engineering Center for Medical Equipment and Technology School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200030, P. R. China
| | - Xiaowei Li
- Shanghai Med-X Engineering Center for Medical Equipment and Technology School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200030, P. R. China
| | - Liqin Xiong
- Shanghai Med-X Engineering Center for Medical Equipment and Technology School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200030, P. R. China
| |
Collapse
|
32
|
Huber D, Rabl L, Orsini C, Labek K, Viviani R. The fMRI global signal and its association with the signal from cranial bone. Neuroimage 2024; 297:120754. [PMID: 39059682 DOI: 10.1016/j.neuroimage.2024.120754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 07/28/2024] Open
Abstract
The nature of the global signal, i.e. the average signal from sequential functional imaging scans of the brain or the cortex, is not well understood, but is thought to include vascular and neural components. Using resting state data, we report on the strong association between the global signal and the average signal from the part of the volume that includes the cranial bone and subdural vessels and venous collectors, separated from each other and the subdural space by multispectral segmentation procedures. While subdural vessels carried a signal with a phase delay relative to the cortex, the association with the cortical signal was strongest in the parts of the scan corresponding to the laminae of the cranial bone, reaching 80% shared variance in some individuals. These findings suggest that in resting state data vascular components may play a prominent role in the genesis of fluctuations of the global signal. Evidence from other studies on the existence of neural sources of the global signal suggests that it may reflect the action of multiple mechanisms (including cerebrovascular reactivity and autonomic control) concurrently acting to regulate global cerebral perfusion.
Collapse
Affiliation(s)
- Daniel Huber
- Institute of Psychology, University of Innsbruck, Innsbruck, Austria
| | - Luna Rabl
- Institute of Psychology, University of Innsbruck, Innsbruck, Austria
| | - Chiara Orsini
- Institute of Psychology, University of Innsbruck, Innsbruck, Austria
| | - Karin Labek
- Institute of Psychology, University of Innsbruck, Innsbruck, Austria
| | - Roberto Viviani
- Institute of Psychology, University of Innsbruck, Innsbruck, Austria; Psychiatry and Psychotherapy Clinic, University of Ulm, Ulm, Germany.
| |
Collapse
|
33
|
Du S, Drieu A, Cheng Y, Storck SE, Rustenhoven J, Mamuladze T, Bhattarai B, Brioschi S, Nguyen K, Ou F, Cao J, Rodrigues PF, Smirnov I, DeNardo D, Ginhoux F, Cella M, Colonna M, Kipnis J. Brain-Engrafted Monocyte-derived Macrophages from Blood and Skull-Bone Marrow Exhibit Distinct Identities from Microglia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.606900. [PMID: 39211090 PMCID: PMC11361186 DOI: 10.1101/2024.08.08.606900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microglia are thought to originate exclusively from primitive macrophage progenitors in the yolk sac (YS) and to persist throughout life without much contribution from definitive hematopoiesis. Here, using lineage tracing, pharmacological manipulation, and RNA-sequencing, we elucidated the presence and characteristics of monocyte-derived macrophages (MDMs) in the brain parenchyma at baseline and during microglia repopulation, and defined the core transcriptional signatures of brain-engrafted MDMs. Lineage tracing mouse models revealed that MDMs transiently express CD206 during brain engraftment as CD206 + microglia precursors in the YS. We found that brain-engrafted MDMs exhibit transcriptional and epigenetic characteristics akin to meningeal macrophages, likely due to environmental imprinting within the meningeal space. Utilizing parabiosis and skull transplantation, we demonstrated that monocytes from both peripheral blood and skull bone marrow can repopulate microglia-depleted brains. Our results reveal the heterogeneous origins and cellular dynamics of brain parenchymal macrophages at baseline and in models of microglia depletion.
Collapse
|
34
|
Jacob AM, Lindemann AF, Wagenpfeil J, Geiger S, Layer YC, Salam B, Panahabadi S, Kurt D, Wintergerst MWM, Schildberg FA, Kuetting D, Attenberger UI, Abdullah Z, Böhner AMC. Autofluorescence-based tissue characterization enhances clinical prospects of light-sheet-microscopy. Sci Rep 2024; 14:18033. [PMID: 39098935 PMCID: PMC11298517 DOI: 10.1038/s41598-024-67366-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 07/10/2024] [Indexed: 08/06/2024] Open
Abstract
Light sheet fluorescence microscopy (LSFM) is a transformative imaging method that enables the visualization of non-dissected specimen in real-time 3D. Optical clearing of tissues is essential for LSFM, typically employing toxic solvents. Here, we test the applicability of a non-hazardous alternative, ethyl cinnamate (ECi). We comprehensively characterized autofluorescence (AF) spectra in diverse murine tissues-ocular globe, knee, and liver-employing LSFM under various excitation wavelengths (405-785 nm) to test the feasibility of unstained samples for diagnostic purposes, in particular regarding percutaneous biopsies, as they constitute to most harvested type of tissue sample in clinical routine. Ocular globe structures were best discerned with 640 nm excitation. Knee tissue showed complex variation in AF spectra variation influenced by tissue depth and structure. Liver exhibited a unique AF pattern, likely linked to vasculature. Hepatic tissue samples were used to demonstrate the compatibility of our protocol for antibody staining. Furthermore, we employed machine learning to augment raw images and segment liver structures based on AF spectra. Radiologists rated representative samples transferred to the clinical assessment software. Learning-generated images scored highest in quality. Additionally, we investigated an actual murine biopsy. Our study pioneers the application of AF spectra for tissue characterization and diagnostic potential of optically cleared unstained percutaneous biopsies, contributing to the clinical translation of LSFM.
Collapse
Affiliation(s)
- Alice M Jacob
- Institute of Molecular Medicine and Experimental Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Anna F Lindemann
- Institute of Molecular Medicine and Experimental Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Julia Wagenpfeil
- Clinics for Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Sergej Geiger
- Clinics for Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Yannik C Layer
- Clinics for Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Babak Salam
- Clinics for Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Sarah Panahabadi
- Clinic for Diagnostic and Interventional Neuroradiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Darius Kurt
- Clinics for Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | | | - Frank A Schildberg
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Daniel Kuetting
- Clinics for Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Ulrike I Attenberger
- Clinics for Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna and General Hospital, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Zeinab Abdullah
- Institute of Molecular Medicine and Experimental Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Alexander M C Böhner
- Clinics for Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
35
|
Salvador AFM, Abduljawad N, Kipnis J. Meningeal Lymphatics in Central Nervous System Diseases. Annu Rev Neurosci 2024; 47:323-344. [PMID: 38648267 DOI: 10.1146/annurev-neuro-113023-103045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Since its recent discovery, the meningeal lymphatic system has reshaped our understanding of central nervous system (CNS) fluid exchange, waste clearance, immune cell trafficking, and immune privilege. Meningeal lymphatics have also been demonstrated to functionally modify the outcome of neurological disorders and their responses to treatment, including brain tumors, inflammatory diseases such as multiple sclerosis, CNS injuries, and neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. In this review, we discuss recent evidence of the contribution of meningeal lymphatics to neurological diseases, as well as the available experimental methods for manipulating meningeal lymphatics in these conditions. Finally, we also provide a discussion of the pressing questions and challenges in utilizing meningeal lymphatics as a prime target for CNS therapeutic intervention and possibly drug delivery for brain disorders.
Collapse
Affiliation(s)
- Andrea Francesca M Salvador
- Brain Immunology and Glia (BIG) Center and Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA;
| | - Nora Abduljawad
- Neuroscience Graduate Program, Washington University School of Medicine, St. Louis, Missouri, USA
- Brain Immunology and Glia (BIG) Center and Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA;
| | - Jonathan Kipnis
- Neuroscience Graduate Program, Washington University School of Medicine, St. Louis, Missouri, USA
- Brain Immunology and Glia (BIG) Center and Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA;
| |
Collapse
|
36
|
Kaag Rasmussen M, Møllgård K, Bork PAR, Weikop P, Esmail T, Drici L, Wewer Albrechtsen NJ, Carlsen JF, Huynh NPT, Ghitani N, Mann M, Goldman SA, Mori Y, Chesler AT, Nedergaard M. Trigeminal ganglion neurons are directly activated by influx of CSF solutes in a migraine model. Science 2024; 385:80-86. [PMID: 38963846 DOI: 10.1126/science.adl0544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 05/01/2024] [Indexed: 07/06/2024]
Abstract
Classical migraine patients experience aura, which is transient neurological deficits associated with cortical spreading depression (CSD), preceding headache attacks. It is not currently understood how a pathological event in cortex can affect peripheral sensory neurons. In this study, we show that cerebrospinal fluid (CSF) flows into the trigeminal ganglion, establishing nonsynaptic signaling between brain and trigeminal cells. After CSD, ~11% of the CSF proteome is altered, with up-regulation of proteins that directly activate receptors in the trigeminal ganglion. CSF collected from animals exposed to CSD activates trigeminal neurons in naïve mice in part by CSF-borne calcitonin gene-related peptide (CGRP). We identify a communication pathway between the central and peripheral nervous system that might explain the relationship between migrainous aura and headache.
Collapse
Affiliation(s)
- Martin Kaag Rasmussen
- Center for Translational Neuromedicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kjeld Møllgård
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Peter A R Bork
- Center for Translational Neuromedicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Pia Weikop
- Center for Translational Neuromedicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Tina Esmail
- Center for Translational Neuromedicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Lylia Drici
- NNF Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Nicolai J Wewer Albrechtsen
- NNF Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department for Clinical Biochemistry, University Hospital Copenhagen - Bispebjerg, Copenhagen, 2400 Copenhagen, Denmark
| | - Jonathan Frederik Carlsen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Radiology, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark
| | - Nguyen P T Huynh
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, University of Rochester Medical Center, Rochester, NY 14642, USA
- Sana Biotechnology, Cambridge, MA 02139, USA
| | - Nima Ghitani
- National Center for Complementary and Integrative Health (NCCIH), Bethesda, MD 20892, USA
| | - Matthias Mann
- NNF Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Steven A Goldman
- Center for Translational Neuromedicine, University of Copenhagen, 2200 Copenhagen, Denmark
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, University of Rochester Medical Center, Rochester, NY 14642, USA
- Sana Biotechnology, Cambridge, MA 02139, USA
| | - Yuki Mori
- Center for Translational Neuromedicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Alexander T Chesler
- National Center for Complementary and Integrative Health (NCCIH), Bethesda, MD 20892, USA
- National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Copenhagen, 2200 Copenhagen, Denmark
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
37
|
Tissue histology in 3D. Nat Methods 2024; 21:1133. [PMID: 38997594 DOI: 10.1038/s41592-024-02361-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
|
38
|
Le Thuc O, García-Cáceres C. Obesity-induced inflammation: connecting the periphery to the brain. Nat Metab 2024; 6:1237-1252. [PMID: 38997442 DOI: 10.1038/s42255-024-01079-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 06/11/2024] [Indexed: 07/14/2024]
Abstract
Obesity is often associated with a chronic, low-grade inflammatory state affecting the entire body. This sustained inflammatory state disrupts the coordinated communication between the periphery and the brain, which has a crucial role in maintaining homeostasis through humoural, nutrient-mediated, immune and nervous signalling pathways. The inflammatory changes induced by obesity specifically affect communication interfaces, including the blood-brain barrier, glymphatic system and meninges. Consequently, brain areas near the third ventricle, including the hypothalamus and other cognition-relevant regions, become susceptible to impairments, resulting in energy homeostasis dysregulation and an elevated risk of cognitive impairments such as Alzheimer's disease and dementia. This Review explores the intricate communication between the brain and the periphery, highlighting the effect of obesity-induced inflammation on brain function.
Collapse
Affiliation(s)
- Ophélia Le Thuc
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Cristina García-Cáceres
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
39
|
Kaltenecker D, Al-Maskari R, Negwer M, Hoeher L, Kofler F, Zhao S, Todorov M, Rong Z, Paetzold JC, Wiestler B, Piraud M, Rueckert D, Geppert J, Morigny P, Rohm M, Menze BH, Herzig S, Berriel Diaz M, Ertürk A. Virtual reality-empowered deep-learning analysis of brain cells. Nat Methods 2024; 21:1306-1315. [PMID: 38649742 PMCID: PMC11239522 DOI: 10.1038/s41592-024-02245-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 03/12/2024] [Indexed: 04/25/2024]
Abstract
Automated detection of specific cells in three-dimensional datasets such as whole-brain light-sheet image stacks is challenging. Here, we present DELiVR, a virtual reality-trained deep-learning pipeline for detecting c-Fos+ cells as markers for neuronal activity in cleared mouse brains. Virtual reality annotation substantially accelerated training data generation, enabling DELiVR to outperform state-of-the-art cell-segmenting approaches. Our pipeline is available in a user-friendly Docker container that runs with a standalone Fiji plugin. DELiVR features a comprehensive toolkit for data visualization and can be customized to other cell types of interest, as we did here for microglia somata, using Fiji for dataset-specific training. We applied DELiVR to investigate cancer-related brain activity, unveiling an activation pattern that distinguishes weight-stable cancer from cancers associated with weight loss. Overall, DELiVR is a robust deep-learning tool that does not require advanced coding skills to analyze whole-brain imaging data in health and disease.
Collapse
Affiliation(s)
- Doris Kaltenecker
- Institute for Diabetes and Cancer (IDC), Helmholtz Munich, Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Rami Al-Maskari
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
- Institute for Tissue Engineering and Regenerative Medicine, Helmholtz Munich, Neuherberg, Germany
- Department of Computer Science, TUM Computation, Information and Technology, Technical University of Munich (TUM), Munich, Germany
- Center for Translational Cancer Research of the TUM (TranslaTUM), Munich, Germany
| | - Moritz Negwer
- Institute for Tissue Engineering and Regenerative Medicine, Helmholtz Munich, Neuherberg, Germany
| | - Luciano Hoeher
- Institute for Tissue Engineering and Regenerative Medicine, Helmholtz Munich, Neuherberg, Germany
| | - Florian Kofler
- Department of Computer Science, TUM Computation, Information and Technology, Technical University of Munich (TUM), Munich, Germany
- Center for Translational Cancer Research of the TUM (TranslaTUM), Munich, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Helmholtz AI, Helmholtz Munich, Neuherberg, Germany
| | - Shan Zhao
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
- Institute for Tissue Engineering and Regenerative Medicine, Helmholtz Munich, Neuherberg, Germany
| | - Mihail Todorov
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
- Institute for Tissue Engineering and Regenerative Medicine, Helmholtz Munich, Neuherberg, Germany
| | - Zhouyi Rong
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
- Institute for Tissue Engineering and Regenerative Medicine, Helmholtz Munich, Neuherberg, Germany
| | - Johannes Christian Paetzold
- Institute for Tissue Engineering and Regenerative Medicine, Helmholtz Munich, Neuherberg, Germany
- Center for Translational Cancer Research of the TUM (TranslaTUM), Munich, Germany
- Department of Computing, Imperial College London, London, United Kingdom
| | - Benedikt Wiestler
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Marie Piraud
- Helmholtz AI, Helmholtz Munich, Neuherberg, Germany
| | - Daniel Rueckert
- Department of Computing, Imperial College London, London, United Kingdom
| | - Julia Geppert
- Institute for Diabetes and Cancer (IDC), Helmholtz Munich, Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Pauline Morigny
- Institute for Diabetes and Cancer (IDC), Helmholtz Munich, Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Maria Rohm
- Institute for Diabetes and Cancer (IDC), Helmholtz Munich, Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Bjoern H Menze
- Department of Computer Science, TUM Computation, Information and Technology, Technical University of Munich (TUM), Munich, Germany
- Department for Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Stephan Herzig
- Institute for Diabetes and Cancer (IDC), Helmholtz Munich, Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Chair Molecular Metabolic Control, TU Munich, Munich, Germany
| | - Mauricio Berriel Diaz
- Institute for Diabetes and Cancer (IDC), Helmholtz Munich, Neuherberg, Germany.
- Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| | - Ali Ertürk
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany.
- Institute for Tissue Engineering and Regenerative Medicine, Helmholtz Munich, Neuherberg, Germany.
- School of Medicine, Koç University, İstanbul, Turkey.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
- Deep Piction, Munich, Germany.
| |
Collapse
|
40
|
Whiteley AE, Ma D, Wang L, Yu SY, Yin C, Price TT, Simon BG, Xu KR, Marsh KA, Brockman ML, Prioleau TM, Zhou KI, Cui X, Fecci PE, Jeck WR, McCall CM, Neff JL, Sipkins DA. Breast cancer exploits neural signaling pathways for bone-to-meninges metastasis. Science 2024; 384:eadh5548. [PMID: 38900896 DOI: 10.1126/science.adh5548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 04/23/2024] [Indexed: 06/22/2024]
Abstract
The molecular mechanisms that regulate breast cancer cell (BCC) metastasis and proliferation within the leptomeninges (LM) are poorly understood, which limits the development of effective therapies. In this work, we show that BCCs in mice can invade the LM by abluminal migration along blood vessels that connect vertebral or calvarial bone marrow and meninges, bypassing the blood-brain barrier. This process is dependent on BCC engagement with vascular basement membrane laminin through expression of the neuronal pathfinding molecule integrin α6. Once in the LM, BCCs colocalize with perivascular meningeal macrophages and induce their expression of the prosurvival neurotrophin glial-derived neurotrophic factor (GDNF). Intrathecal GDNF blockade, macrophage-specific GDNF ablation, or deletion of the GDNF receptor neural cell adhesion molecule (NCAM) from BCCs inhibits breast cancer growth within the LM. These data suggest integrin α6 and the GDNF signaling axis as new therapeutic targets against breast cancer LM metastasis.
Collapse
Affiliation(s)
- Andrew E Whiteley
- Department of Medicine, Division of Hematologic Malignancies and Cellular Therapy, Duke University, Durham, NC 27710, USA
| | - Danhui Ma
- Department of Medicine, Division of Hematologic Malignancies and Cellular Therapy, Duke University, Durham, NC 27710, USA
| | - Lihua Wang
- Department of Medicine, Division of Hematologic Malignancies and Cellular Therapy, Duke University, Durham, NC 27710, USA
| | - Seok-Yeong Yu
- Department of Medicine, Division of Hematologic Malignancies and Cellular Therapy, Duke University, Durham, NC 27710, USA
| | - Claire Yin
- Department of Medicine, Division of Hematologic Malignancies and Cellular Therapy, Duke University, Durham, NC 27710, USA
| | - Trevor T Price
- Department of Medicine, Division of Hematologic Malignancies and Cellular Therapy, Duke University, Durham, NC 27710, USA
| | - Brennan G Simon
- Department of Medicine, Division of Hematologic Malignancies and Cellular Therapy, Duke University, Durham, NC 27710, USA
| | - Katie R Xu
- Department of Medicine, Division of Hematologic Malignancies and Cellular Therapy, Duke University, Durham, NC 27710, USA
| | - Kathleen A Marsh
- Department of Medicine, Division of Hematologic Malignancies and Cellular Therapy, Duke University, Durham, NC 27710, USA
| | - Maegan L Brockman
- Department of Medicine, Division of Hematologic Malignancies and Cellular Therapy, Duke University, Durham, NC 27710, USA
| | - Tatiana M Prioleau
- Department of Medicine, Division of Hematologic Malignancies and Cellular Therapy, Duke University, Durham, NC 27710, USA
| | - Katherine I Zhou
- Department of Medicine, Division of Hematologic Malignancies and Cellular Therapy, Duke University, Durham, NC 27710, USA
| | - Xiuyu Cui
- Department of Neurosurgery, Duke University, Durham, NC 27710, USA
| | - Peter E Fecci
- Department of Neurosurgery, Duke University, Durham, NC 27710, USA
| | - William R Jeck
- Department of Pathology, Duke University, Durham, NC 27710, USA
| | - Chad M McCall
- Department of Pathology, Duke University, Durham, NC 27710, USA
| | - Jadee L Neff
- Department of Pathology, Duke University, Durham, NC 27710, USA
| | - Dorothy A Sipkins
- Department of Medicine, Division of Hematologic Malignancies and Cellular Therapy, Duke University, Durham, NC 27710, USA
| |
Collapse
|
41
|
Eden T, Schaffrath AZ, Wesolowski J, Stähler T, Tode N, Richter N, Schäfer W, Hambach J, Hermans-Borgmeyer I, Woens J, Le Gall CM, Wendler S, Linke-Winnebeck C, Stobbe M, Budnicki I, Wanney A, Heitz Y, Schimmelpfennig L, Schweitzer L, Zimmer D, Stahl E, Seyfried F, Gebhardt AJ, Dieckow L, Riecken K, Fehse B, Bannas P, Magnus T, Verdoes M, Figdor CG, Hartlepp KF, Schleer H, Füner J, Tomas NM, Haag F, Rissiek B, Mann AM, Menzel S, Koch-Nolte F. Generation of nanobodies from transgenic 'LamaMice' lacking an endogenous immunoglobulin repertoire. Nat Commun 2024; 15:4728. [PMID: 38830864 PMCID: PMC11148044 DOI: 10.1038/s41467-024-48735-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/02/2024] [Indexed: 06/05/2024] Open
Abstract
Due to their exceptional solubility and stability, nanobodies have emerged as powerful building blocks for research tools and therapeutics. However, their generation in llamas is cumbersome and costly. Here, by inserting an engineered llama immunoglobulin heavy chain (IgH) locus into IgH-deficient mice, we generate a transgenic mouse line, which we refer to as 'LamaMouse'. We demonstrate that LamaMice solely express llama IgH molecules without association to Igκ or λ light chains. Immunization of LamaMice with AAV8, the receptor-binding domain of the SARS-CoV-2 spike protein, IgE, IgG2c, and CLEC9A enabled us to readily select respective target-specific nanobodies using classical hybridoma and phage display technologies, single B cell screening, and direct cloning of the nanobody-repertoire into a mammalian expression vector. Our work shows that the LamaMouse represents a flexible and broadly applicable platform for a facilitated selection of target-specific nanobodies.
Collapse
Affiliation(s)
- Thomas Eden
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alessa Z Schaffrath
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Janusz Wesolowski
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Stähler
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Natalie Tode
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nathalie Richter
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Waldemar Schäfer
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julia Hambach
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Irm Hermans-Borgmeyer
- Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jannis Woens
- Research Department Cell and Gene Therapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Camille M Le Gall
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sabrina Wendler
- ChromoTek GmbH, Martinsried, Germany - A part of Proteintech Group, Martinsried, Germany
| | | | - Martina Stobbe
- ChromoTek GmbH, Martinsried, Germany - A part of Proteintech Group, Martinsried, Germany
| | | | | | | | | | | | | | | | - Fabienne Seyfried
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna J Gebhardt
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lynn Dieckow
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kristoffer Riecken
- Research Department Cell and Gene Therapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Boris Fehse
- Research Department Cell and Gene Therapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter Bannas
- Department of Radiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martijn Verdoes
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Carl G Figdor
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Klaus F Hartlepp
- ChromoTek GmbH, Martinsried, Germany - A part of Proteintech Group, Martinsried, Germany
| | | | | | - Nicola M Tomas
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Haag
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Rissiek
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna M Mann
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephan Menzel
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Core Facility Nanobodies, University of Bonn, Bonn, Germany
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
42
|
Dourson AJ, Fadaka AO, Warshak AM, Paranjpe A, Weinhaus B, Queme LF, Hofmann MC, Evans HM, Donmez OA, Forney C, Weirauch MT, Kottyan LC, Lucas D, Deepe GS, Jankowski MP. Macrophage memories of early-life injury drive neonatal nociceptive priming. Cell Rep 2024; 43:114129. [PMID: 38640063 PMCID: PMC11197107 DOI: 10.1016/j.celrep.2024.114129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 01/05/2024] [Accepted: 04/04/2024] [Indexed: 04/21/2024] Open
Abstract
The developing peripheral nervous and immune systems are functionally distinct from those of adults. These systems are vulnerable to early-life injury, which influences outcomes related to nociception following subsequent injury later in life (i.e., "neonatal nociceptive priming"). The underpinnings of this phenomenon are unclear, although previous work indicates that macrophages are trained by inflammation and injury. Our findings show that macrophages are both necessary and partially sufficient to drive neonatal nociceptive priming, possibly due to a long-lasting remodeling in chromatin structure. The p75 neurotrophic factor receptor is an important effector in regulating neonatal nociceptive priming through modulation of the inflammatory profile of rodent and human macrophages. This "pain memory" is long lasting in females and can be transferred to a naive host to alter sex-specific pain-related behaviors. This study reveals a mechanism by which acute, neonatal post-surgical pain drives a peripheral immune-related predisposition to persistent pain following a subsequent injury.
Collapse
Affiliation(s)
- Adam J Dourson
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Adewale O Fadaka
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Anna M Warshak
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Aditi Paranjpe
- Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Benjamin Weinhaus
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Medical Center, Cincinnati, OH, USA
| | - Luis F Queme
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Megan C Hofmann
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Heather M Evans
- Division of Infectious Diseases, University of Cincinnati, Cincinnati, OH, USA
| | - Omer A Donmez
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Carmy Forney
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Leah C Kottyan
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Daniel Lucas
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Medical Center, Cincinnati, OH, USA; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - George S Deepe
- Division of Infectious Diseases, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Michael P Jankowski
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA; Pediatric Pain Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
43
|
Lee EJ, Suh M, Choi H, Choi Y, Hwang DW, Bae S, Lee DS. Spatial transcriptomic brain imaging reveals the effects of immunomodulation therapy on specific regional brain cells in a mouse dementia model. BMC Genomics 2024; 25:516. [PMID: 38796425 PMCID: PMC11128132 DOI: 10.1186/s12864-024-10434-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024] Open
Abstract
Increasing evidence of brain-immune crosstalk raises expectations for the efficacy of novel immunotherapies in Alzheimer's disease (AD), but the lack of methods to examine brain tissues makes it difficult to evaluate therapeutics. Here, we investigated the changes in spatial transcriptomic signatures and brain cell types using the 10x Genomics Visium platform in immune-modulated AD models after various treatments. To proceed with an analysis suitable for barcode-based spatial transcriptomics, we first organized a workflow for segmentation of neuroanatomical regions, establishment of appropriate gene combinations, and comprehensive review of altered brain cell signatures. Ultimately, we investigated spatial transcriptomic changes following administration of immunomodulators, NK cell supplements and an anti-CD4 antibody, which ameliorated behavior impairment, and designated brain cells and regions showing probable associations with behavior changes. We provided the customized analytic pipeline into an application named STquantool. Thus, we anticipate that our approach can help researchers interpret the real action of drug candidates by simultaneously investigating the dynamics of all transcripts for the development of novel AD therapeutics.
Collapse
Affiliation(s)
- Eun Ji Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Minseok Suh
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Radiation Medicine, Medical Research Center, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Hongyoon Choi
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yoori Choi
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Cliniclal Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Do Won Hwang
- Research and Development Center, THERABEST Inc., Seocho-daero 40-gil, Seoul, 06657, Republic of Korea
| | - Sungwoo Bae
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
- Institute of Radiation Medicine, Medical Research Center, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| | - Dong Soo Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea.
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
- Institute of Radiation Medicine, Medical Research Center, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
- Medical Science and Engineering, School of Convergence Science and Technology, POSTECH, Pohang, Republic of Korea.
| |
Collapse
|
44
|
Lin YH, Wang LW, Chen YH, Chan YC, Hu SH, Wu SY, Chiang CS, Huang GJ, Yang SD, Chu SW, Wang KC, Lin CH, Huang PH, Cheng HJ, Chen BC, Chu LA. Revealing intact neuronal circuitry in centimeter-sized formalin-fixed paraffin-embedded brain. eLife 2024; 13:RP93212. [PMID: 38775133 PMCID: PMC11111220 DOI: 10.7554/elife.93212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024] Open
Abstract
Tissue-clearing and labeling techniques have revolutionized brain-wide imaging and analysis, yet their application to clinical formalin-fixed paraffin-embedded (FFPE) blocks remains challenging. We introduce HIF-Clear, a novel method for efficiently clearing and labeling centimeter-thick FFPE specimens using elevated temperature and concentrated detergents. HIF-Clear with multi-round immunolabeling reveals neuron circuitry regulating multiple neurotransmitter systems in a whole FFPE mouse brain and is able to be used as the evaluation of disease treatment efficiency. HIF-Clear also supports expansion microscopy and can be performed on a non-sectioned 15-year-old FFPE specimen, as well as a 3-month formalin-fixed mouse brain. Thus, HIF-Clear represents a feasible approach for researching archived FFPE specimens for future neuroscientific and 3D neuropathological analyses.
Collapse
Affiliation(s)
- Ya-Hui Lin
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua UniversityHsinchuTaiwan
- Brain Research Center, National Tsing Hua UniversityHsinchuTaiwan
| | - Li-Wen Wang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua UniversityHsinchuTaiwan
- Brain Research Center, National Tsing Hua UniversityHsinchuTaiwan
| | - Yen-Hui Chen
- Institute of Biomedical Sciences, Academia SinicaTaipeiTaiwan
| | - Yi-Chieh Chan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua UniversityHsinchuTaiwan
| | - Shang-Hsiu Hu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua UniversityHsinchuTaiwan
| | - Sheng-Yan Wu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua UniversityHsinchuTaiwan
| | - Chi-Shiun Chiang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua UniversityHsinchuTaiwan
| | - Guan-Jie Huang
- Department of Physics, National Taiwan UniversityTaipeiTaiwan
| | - Shang-Da Yang
- Institute of Photonics Technologies, National Tsing Hua UniversityHsinchuTaiwan
| | - Shi-Wei Chu
- Department of Physics, National Taiwan UniversityTaipeiTaiwan
| | - Kuo-Chuan Wang
- Department of Neurosurgery, National Taiwan University HospitalTaipeiTaiwan
| | - Chin-Hsien Lin
- Department of Neurosurgery, National Taiwan University HospitalTaipeiTaiwan
| | - Pei-Hsin Huang
- Department of Pathology, National Taiwan University HospitalTaipeiTaiwan
| | | | - Bi-Chang Chen
- Research Center for Applied Sciences, Academia SinicaTaipeiTaiwan
| | - Li-An Chu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua UniversityHsinchuTaiwan
- Brain Research Center, National Tsing Hua UniversityHsinchuTaiwan
| |
Collapse
|
45
|
Xie DF, Crouzet C, LoPresti K, Wang Y, Robinson C, Jones W, Muqolli F, Fang C, Cribbs DH, Fisher M, Choi B. Semi-automated protocol to quantify and characterize fluorescent three-dimensional vascular images. PLoS One 2024; 19:e0289109. [PMID: 38753706 PMCID: PMC11098357 DOI: 10.1371/journal.pone.0289109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 07/11/2023] [Indexed: 05/18/2024] Open
Abstract
The microvasculature facilitates gas exchange, provides nutrients to cells, and regulates blood flow in response to stimuli. Vascular abnormalities are an indicator of pathology for various conditions, such as compromised vessel integrity in small vessel disease and angiogenesis in tumors. Traditional immunohistochemistry enables the visualization of tissue cross-sections containing exogenously labeled vasculature. Although this approach can be utilized to quantify vascular changes within small fields of view, it is not a practical way to study the vasculature on the scale of whole organs. Three-dimensional (3D) imaging presents a more appropriate method to visualize the vascular architecture in tissue. Here we describe the complete protocol that we use to characterize the vasculature of different organs in mice encompassing the methods to fluorescently label vessels, optically clear tissue, collect 3D vascular images, and quantify these vascular images with a semi-automated approach. To validate the automated segmentation of vascular images, one user manually segmented one hundred random regions of interest across different vascular images. The automated segmentation results had an average sensitivity of 83±11% and an average specificity of 91±6% when compared to manual segmentation. Applying this procedure of image analysis presents a method to reliably quantify and characterize vascular networks in a timely fashion. This procedure is also applicable to other methods of tissue clearing and vascular labels that generate 3D images of microvasculature.
Collapse
Affiliation(s)
- Danny F. Xie
- Beckman Laser Institute and Medical Clinic, University of California-Irvine, Irvine, CA, United States of America
- Department of Biomedical Engineering, University of California-Irvine, Irvine, CA, United States of America
| | - Christian Crouzet
- Beckman Laser Institute and Medical Clinic, University of California-Irvine, Irvine, CA, United States of America
- Department of Biomedical Engineering, University of California-Irvine, Irvine, CA, United States of America
| | - Krystal LoPresti
- Beckman Laser Institute and Medical Clinic, University of California-Irvine, Irvine, CA, United States of America
- Department of Biomedical Engineering, University of California-Irvine, Irvine, CA, United States of America
| | - Yuke Wang
- Beckman Laser Institute and Medical Clinic, University of California-Irvine, Irvine, CA, United States of America
- Department of Biomedical Engineering, University of California-Irvine, Irvine, CA, United States of America
| | - Christopher Robinson
- Beckman Laser Institute and Medical Clinic, University of California-Irvine, Irvine, CA, United States of America
- Department of Biomedical Engineering, University of California-Irvine, Irvine, CA, United States of America
| | - William Jones
- Beckman Laser Institute and Medical Clinic, University of California-Irvine, Irvine, CA, United States of America
| | - Fjolla Muqolli
- Beckman Laser Institute and Medical Clinic, University of California-Irvine, Irvine, CA, United States of America
| | - Chuo Fang
- Department of Neurology, University of California-Irvine, Irvine, CA, United States of America
| | - David H. Cribbs
- Institute for Memory Impairments and Neurological Disorders, University of California-Irvine, Irvine, CA, United States of America
| | - Mark Fisher
- Beckman Laser Institute and Medical Clinic, University of California-Irvine, Irvine, CA, United States of America
- Department of Neurology, University of California-Irvine, Irvine, CA, United States of America
- Institute for Memory Impairments and Neurological Disorders, University of California-Irvine, Irvine, CA, United States of America
- Department of Pathology & Laboratory Medicine, University of California-Irvine, Irvine, CA, United States of America
| | - Bernard Choi
- Beckman Laser Institute and Medical Clinic, University of California-Irvine, Irvine, CA, United States of America
- Department of Biomedical Engineering, University of California-Irvine, Irvine, CA, United States of America
| |
Collapse
|
46
|
He C, Yuan Y, Gong C, Wang X, Lyu G. Applications of Tissue Clearing in Central and Peripheral Nerves. Neuroscience 2024; 546:104-117. [PMID: 38570062 DOI: 10.1016/j.neuroscience.2024.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/05/2024]
Abstract
The techniques of tissue clearing have been proposed and applied in anatomical and biomedical research since the 19th century. As we all know, the original study of the nervous system relied on serial ultrathin sections and stereoscopic techniques. The 3D visualization of the nervous system was established by software splicing and reconstruction. With the development of science and technology, microscope equipment had constantly been upgraded. Despite the great progress that has been made in this field, the workload is too complex, and it needs high technical requirements. Abundant mistakes due to manual sections were inescapable and structural integrity remained questionable. According to the classification of tissue transparency methods, we introduced the latest application of transparency methods in central and peripheral nerve research from optical imaging, molecular markers and data analysis. This review summarizes the application of transparent technology in neural pathways. We hope to provide some inspiration for the continuous optimization of tissue clearing methods.
Collapse
Affiliation(s)
- Cheng He
- Department of Anatomy, Medical School of Nantong University, Nantong, China
| | - Ye Yuan
- Department of Anatomy, Medical School of Nantong University, Nantong, China
| | - Chuanhui Gong
- Department of Anatomy, Medical School of Nantong University, Nantong, China
| | - Xueying Wang
- Medical School of Nantong University, Nantong, China
| | - Guangming Lyu
- Department of Anatomy, Medical School of Nantong University, Nantong, China; Department of Anatomy, Institute of Neurobiology, Jiangsu Key Laboratory of Neuroregeneration, Medical School of Nantong University, Nantong, China.
| |
Collapse
|
47
|
Da Mesquita S, Rua R. Brain border-associated macrophages: common denominators in infection, aging, and Alzheimer's disease? Trends Immunol 2024; 45:346-357. [PMID: 38632001 PMCID: PMC11088519 DOI: 10.1016/j.it.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/19/2024]
Abstract
Mammalian brain border-associated macrophages (BAMs) are strategically positioned to support vital properties and processes: for example, the composition of the brain's perivascular extracellular matrix and cerebrospinal fluid flow via the glymphatic pathway. BAMs also effectively restrict the spread of infectious microbes into the brain. However, while fighting infections, BAMs sustain long-term transcriptomic changes and can be replaced by inflammatory monocytes, potentially leading to a gradual loss of their beneficial homeostatic functions. We hypothesize that by expediting the deterioration of BAMs, multiple infection episodes might be associated with accelerated brain aging and the putative development of neurodegenerative diseases. Our viewpoint is supported by recent studies suggesting that rejuvenating aged BAMs, and counterbalancing their detrimental inflammatory signatures during infections, might hold promise in treating aging-related neurological disorders, including Alzheimer's disease (AD).
Collapse
Affiliation(s)
| | - Rejane Rua
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, Marseille, France.
| |
Collapse
|
48
|
Gao P, Rivera M, Lin X, Holmes TC, Zhao H, Xu X. Immunolabeling-compatible PEGASOS tissue clearing for high-resolution whole mouse brain imaging. Front Neural Circuits 2024; 18:1345692. [PMID: 38694272 PMCID: PMC11061518 DOI: 10.3389/fncir.2024.1345692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/13/2024] [Indexed: 05/04/2024] Open
Abstract
Novel brain clearing methods revolutionize imaging by increasing visualization throughout the brain at high resolution. However, combining the standard tool of immunostaining targets of interest with clearing methods has lagged behind. We integrate whole-mount immunostaining with PEGASOS tissue clearing, referred to as iPEGASOS (immunostaining-compatible PEGASOS), to address the challenge of signal quenching during clearing processes. iPEGASOS effectively enhances molecular-genetically targeted fluorescent signals that are otherwise compromised during conventional clearing procedures. Additionally, we demonstrate the utility of iPEGASOS for visualizing neurochemical markers or viral labels to augment visualization that transgenic mouse lines cannot provide. Our study encompasses three distinct applications, each showcasing the versatility and efficacy of this approach. We employ whole-mount immunostaining to enhance molecular signals in transgenic reporter mouse lines to visualize the whole-brain spatial distribution of specific cellular populations. We also significantly improve the visualization of neural circuit connections by enhancing signals from viral tracers injected into the brain. Last, we show immunostaining without genetic markers to selectively label beta-amyloid deposits in a mouse model of Alzheimer's disease, facilitating the comprehensive whole-brain study of pathological features.
Collapse
Affiliation(s)
- Pan Gao
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Matthew Rivera
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Xiaoxiao Lin
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Todd C. Holmes
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA, United States
- Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA, United States
| | - Hu Zhao
- Chinese Institute for Brain Research, Beijing, China
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, United States
- Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
49
|
Goodman GW, Devlin P, West BE, Ritzel RM. The emerging importance of skull-brain interactions in traumatic brain injury. Front Immunol 2024; 15:1353513. [PMID: 38680490 PMCID: PMC11047125 DOI: 10.3389/fimmu.2024.1353513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 04/01/2024] [Indexed: 05/01/2024] Open
Abstract
The recent identification of skull bone marrow as a reactive hematopoietic niche that can contribute to and direct leukocyte trafficking into the meninges and brain has transformed our view of this bone structure from a solid, protective casing to a living, dynamic tissue poised to modulate brain homeostasis and neuroinflammation. This emerging concept may be highly relevant to injuries that directly impact the skull such as in traumatic brain injury (TBI). From mild concussion to severe contusion with skull fracturing, the bone marrow response of this local myeloid cell reservoir has the potential to impact not just the acute inflammatory response in the brain, but also the remodeling of the calvarium itself, influencing its response to future head impacts. If we borrow understanding from recent discoveries in other CNS immunological niches and extend them to this nascent, but growing, subfield of neuroimmunology, it is not unreasonable to consider the hematopoietic compartment in the skull may similarly play an important role in health, aging, and neurodegenerative disease following TBI. This literature review briefly summarizes the traditional role of the skull in TBI and offers some additional insights into skull-brain interactions and their potential role in affecting secondary neuroinflammation and injury outcomes.
Collapse
Affiliation(s)
| | | | | | - Rodney M. Ritzel
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
50
|
Francis VI, Liddle C, Camacho E, Kulkarni M, Junior SRS, Harvey JA, Ballou ER, Thomson DD, Brown GD, Hardwick JM, Casadevall A, Witton J, Coelho C. Cryptococcus neoformans rapidly invades the murine brain by sequential breaching of airway and endothelial tissues barriers, followed by engulfment by microglia. mBio 2024; 15:e0307823. [PMID: 38511961 PMCID: PMC11005363 DOI: 10.1128/mbio.03078-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/29/2024] [Indexed: 03/22/2024] Open
Abstract
Cryptococcus neoformans causes lethal meningitis and accounts for approximately 10%-15% of AIDS-associated deaths worldwide. There are major gaps in our understanding of how this fungus invades the mammalian brain. To investigate the dynamics of C. neoformans tissue invasion, we mapped fungal localization and host cell interactions in infected brain, lung, and upper airways using mouse models of systemic and airway infection. To enable this, we developed an in situ imaging pipeline capable of measuring large volumes of tissue while preserving anatomical and cellular information by combining thick tissue sections, tissue clarification, and confocal imaging. We confirm high fungal burden in mouse upper airway after nasal inoculation. Yeast in turbinates were frequently titan cells, with faster kinetics than reported in mouse lungs. Importantly, we observed one instance of fungal cells enmeshed in lamina propria of the upper airways, suggesting penetration of airway mucosa as a possible route of tissue invasion and dissemination to the bloodstream. We extend previous literature positing bloodstream dissemination of C. neoformans, by finding viable fungi in the bloodstream of mice a few days after intranasal infection. As early as 24 h post systemic infection, the majority of C. neoformans cells traversed the blood-brain barrier, and were engulfed or in close proximity to microglia. Our work presents a new method for investigating microbial invasion, establishes that C. neoformans can breach multiple tissue barriers within the first days of infection, and demonstrates microglia as the first cells responding to C. neoformans invasion of the brain.IMPORTANCECryptococcal meningitis causes 10%-15% of AIDS-associated deaths globally. Still, brain-specific immunity to cryptococci is a conundrum. By employing innovative imaging, this study reveals what occurs during the first days of infection in brain and in airways. We found that titan cells predominate in upper airways and that cryptococci breach the upper airway mucosa, which implies that, at least in mice, the upper airways are a site for fungal dissemination. This would signify that mucosal immunity of the upper airway needs to be better understood. Importantly, we also show that microglia, the brain-resident macrophages, are the first responders to infection, and microglia clusters are formed surrounding cryptococci. This study opens the field to detailed molecular investigations on airway immune response, how fungus traverses the blood-brain barrier, how microglia respond to infection, and ultimately how microglia monitor the blood-brain barrier to preserve brain function.
Collapse
Affiliation(s)
- Vanessa I. Francis
- MRC Centre for Medical Mycology at University of Exeter, University of Exeter, Exeter, United Kingdom
- Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Corin Liddle
- Bioimaging Facility, University of Exeter, Exeter, United Kingdom
| | - Emma Camacho
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Madhura Kulkarni
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | | - Jamie A. Harvey
- MRC Centre for Medical Mycology at University of Exeter, University of Exeter, Exeter, United Kingdom
| | - Elizabeth R. Ballou
- MRC Centre for Medical Mycology at University of Exeter, University of Exeter, Exeter, United Kingdom
| | - Darren D. Thomson
- MRC Centre for Medical Mycology at University of Exeter, University of Exeter, Exeter, United Kingdom
| | - Gordon D. Brown
- MRC Centre for Medical Mycology at University of Exeter, University of Exeter, Exeter, United Kingdom
- Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - J. Marie Hardwick
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Arturo Casadevall
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jonathan Witton
- Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Carolina Coelho
- MRC Centre for Medical Mycology at University of Exeter, University of Exeter, Exeter, United Kingdom
- Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|