1
|
Koukol O, Delgado G, Tabé A, Yorou NS. The genus Hermatomyces in Benin, with the description of H. griseomarginatus, sp. nov. Mycologia 2025:1-11. [PMID: 39773146 DOI: 10.1080/00275514.2024.2433367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025]
Abstract
Intensive mycological surveys in southern Benin focused on species of Hermatomyces (Pleosporales) resulted in the collection and sequencing of numerous specimens on dead plant debris of different hosts. Majority of the collections belonged to the monomorphic species H. sphaericus, except for two specimens of a hitherto unknown species, which is introduced as Hermatomyces griseomarginatus. The fungus was collected on dead twig of Hymenocardia acida still attached to the tree and dead peduncle of Tectona grandis. It is distinct in having sporodochia with a dense and dark gray margin enclosing their lenticular conidia. Phylogenetically, it formed a well-supported lineage sister to two other monomorphic species, H. verrucosus and H. sphaericoides. Two dimorphic species were also found, H. krabiensis and H. nabanheensis, which are reported for the first time outside of Asia. Detailed morphological descriptions are provided, and the diversity of Hermatomyces in Benin is summarized based on published data and results from the GlobalFungi database.
Collapse
Affiliation(s)
- Ondřej Koukol
- Department of Botany, Faculty of Science, Charles University, Benátská 2, Prague CZ-128 01, Czech Republic
| | - Gregorio Delgado
- Department of Mycology, Eurofins Built Environment, 6110 W. 34th Street, Houston, Texas 77092, USA
| | - Affoussatou Tabé
- Research Unit Tropical Mycology and Plants-Soil Fungi Interactions (Mytips), Faculty of Agronomy, University of Parakou, Parakou BP 123, Benin
| | - Nourou Soulemane Yorou
- Research Unit Tropical Mycology and Plants-Soil Fungi Interactions (Mytips), Faculty of Agronomy, University of Parakou, Parakou BP 123, Benin
| |
Collapse
|
2
|
Wang M, Xing X, Zhang Y, Sui X, Zheng C. Geographic Distribution Pattern Determines Soil Microbial Community Assembly Process in Acanthopanax senticosus Rhizosphere Soil. Microorganisms 2024; 12:2506. [PMID: 39770709 PMCID: PMC11728389 DOI: 10.3390/microorganisms12122506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/22/2024] [Accepted: 11/29/2024] [Indexed: 01/16/2025] Open
Abstract
The geographic distribution patterns of soil microbial communities associated with cultivated Acanthopanax senticosus plants in Northeast China were investigated. High-throughput sequencing revealed that the diversity and community assembly of bacterial and fungal communities in the inter-root soil varied significantly with geographic location. The study found that bacterial communities were predominantly assembled through stochastic processes at most sites, while fungal communities showed greater variation, with both stochastic and deterministic processes involved. The complexity of bacterial-fungal co-occurrence networks also varied with longitude and latitude, demonstrating both positive and negative interactions. PICRUSt 2.0 and FUNGuild were used to predict the potential functions of soil bacterial and fungal microbiota, respectively, during different land use patterns. The average taxonomic distinctness (AVD) index indicated varying degrees of community stability across sites. Key microbial taxa contributing to community variability were identified through Random Forest modeling, with Bacteriap25 and Sutterellaceae standing out among bacteria, and Archaeorhizomyces and Clavaria among fungi. Soil chemical properties, including pH, TN, TP, EC, and SOC, significantly correlated with microbial diversity, composition, and co-occurrence networks. Structural equation modeling revealed that geographic distribution patterns directly and indirectly influenced soil chemical properties and microbial communities. Overall, the study provides insights into the geographic distribution patterns of soil microbial communities associated with A. senticosus and highlights the need for further research into the underlying mechanisms shaping these patterns.
Collapse
Affiliation(s)
| | | | | | - Xin Sui
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; (M.W.); (X.X.); (Y.Z.)
| | - Chunying Zheng
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; (M.W.); (X.X.); (Y.Z.)
| |
Collapse
|
3
|
Riedling OL, David KT, Rokas A. Global patterns of species diversity and distribution in the biomedically and biotechnologically important fungal genus Aspergillus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.29.626055. [PMID: 39677661 PMCID: PMC11642779 DOI: 10.1101/2024.11.29.626055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Aspergillus fungi are key producers of pharmaceuticals, enzymes, and food products and exhibit diverse lifestyles, ranging from saprophytes to opportunistic pathogens. To improve understanding of Aspergillus species diversity, identify key environmental factors influencing their geographic distributions, and estimate the impact of future climate change, we trained a random forest machine learning classifier on 30,542 terrestrial occurrence records for 176 species (~40% of known species in the genus) and 96 environmental variables. We found that regions with high species diversity are concentrated in temperate forests, which suggests that areas with mild seasonal variation may serve as diversity hotspots. Species range estimates revealed extensive variability, both within and across taxonomic sections; while some species are cosmopolitan, others have more restricted ranges. Furthermore, range overlap between species is generally low. The top predictors of mean species richness were the index of cumulative human impact and five bioclimatic factors, such as temperature and temperate vs non-temperate ecoregions. Our future climate analyses revealed considerable variation in species range estimates in response to changing climates; some species ranges are predicted to expand (e.g., the food spoilage and mycotoxin-producing Aspergillus versicolor), and others are predicted to contract or remain stable. Notably, the predicted range of the major pathogen Aspergillus fumigatus was predicted to decrease in response to climate change, whereas the range of the major pathogen Aspergillus flavus was predicted to increase and gradually decrease. Our findings reveal how both natural and human factors influence Aspergillus species ranges and highlight their ecological diversity, including the diversity of their responses to changing climates, which is of relevance to pathogen and mycotoxin risk assessment.
Collapse
Affiliation(s)
- Olivia L. Riedling
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Kyle T. David
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
4
|
Netherway T, Bahram M. Melanized root-associated fungi: key players in plant-soil systems. Trends Microbiol 2024; 32:1190-1199. [PMID: 38987052 DOI: 10.1016/j.tim.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/03/2024] [Accepted: 06/21/2024] [Indexed: 07/12/2024]
Abstract
Melanized root-associated fungi are a group of fungi that produce melanized structures and form root associations, including different mycorrhizal and endophytic symbioses with plants. They are pervasive across terrestrial ecosystems and play an important role in the prevailing soil carbon (C) and nutrient cycling syndromes through direct and indirect mechanisms, where they may strongly modulate plant-microbe interactions and structure root and soil microbiomes. Furthermore, melanized root-associated fungi can confer on plants an enhanced ability to tolerate abiotic and biotic stressors such as drought, extreme temperatures, heavy metals, and pathogen attacks. We propose that melanized root-associated fungi are a cohesive and ecologically relevant grouping that can be an indicator of plant-soil system functioning, and considering them will advance research on plant-soil interactions.
Collapse
Affiliation(s)
- Tarquin Netherway
- Department of Ecology, Swedish University of Agricultural Sciences, Ulls väg 16, 756 51 Uppsala, Sweden.
| | - Mohammad Bahram
- Department of Ecology, Swedish University of Agricultural Sciences, Ulls väg 16, 756 51 Uppsala, Sweden; Department of Agroecology, Aarhus University, Slagelse, Denmark; Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| |
Collapse
|
5
|
Goswami SK, Viswanathan R, Kumar R, Gujjar RS, Yadav P, Chakdar H, Choudhary P, Verma S. Endophyte Chaetomium globosum Strain CGSR13 Mediated Sugarcane Growth and Bio-control of Red Rot Caused by Colletotrichum falcatum in Sub-tropical India. JOURNAL OF CROP HEALTH 2024; 76:1433-1446. [DOI: 10.1007/s10343-024-01059-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 10/11/2024] [Indexed: 01/11/2025]
|
6
|
Goswami SK, Gujjar RS, Kumar R, Yadav P, Chakdar H, Choudhary P, Viswanathan R. Endophyte Chaetomium Globosum CGSR-13 strain enhanced plant growth promotion and antifungal activity against pokkah boeng caused by Fusarium verticillioides in India. INDIAN PHYTOPATHOLOGY 2024; 77:1057-1066. [DOI: 10.1007/s42360-024-00789-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/13/2024] [Accepted: 09/26/2024] [Indexed: 01/11/2025]
|
7
|
Urquhart A, Vogan AA, Gluck-Thaler E. Starships: a new frontier for fungal biology. Trends Genet 2024; 40:1060-1073. [PMID: 39299886 DOI: 10.1016/j.tig.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/22/2024]
Abstract
Transposable elements (TEs) are semiautonomous genetic entities that proliferate in genomes. We recently discovered the Starships, a previously hidden superfamily of giant TEs found in a diverse subphylum of filamentous fungi, the Pezizomycotina. Starships are unlike other eukaryotic TEs because they have evolved mechanisms for both mobilizing entire genes, including those encoding conditionally beneficial phenotypes, and for horizontally transferring between individuals. We argue that Starships have unrivaled capacity to engage their fungal hosts as genetic parasites and mutualists, revealing unexplored terrain for investigating the ecoevolutionary dynamics of TE-eukaryote interactions. We build on existing models of fungal genome evolution by conceptualizing Starships as a distinct genomic compartment whose dynamics profoundly shape fungal biology.
Collapse
Affiliation(s)
- Andrew Urquhart
- Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala, 752 36, Sweden
| | - Aaron A Vogan
- Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala, 752 36, Sweden
| | - Emile Gluck-Thaler
- Department of Plant Pathology, University of Wisconsin - Madison, Madison, WI 53706, USA; Wisconsin Institute for Discovery, Madison, WI 53706, USA.
| |
Collapse
|
8
|
Yin Z, Wei X, Cao Y, Dong Z, Long Y, Wan X. Regulatory balance between ear rot resistance and grain yield and their breeding applications in maize and other crops. J Adv Res 2024:S2090-1232(24)00479-X. [PMID: 39447642 DOI: 10.1016/j.jare.2024.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/19/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Fungi are prevalent pathogens that cause substantial yield losses of major crops. Ear rot (ER), which is primarily induced by Fusarium or Aspergillus species, poses a significant challenge to maize production worldwide. ER resistance is regulated by several small effect quantitative trait loci (QTLs). To date, only a few ER-related genes have been identified that impede molecular breeding efforts to breed ER-resistant maize varieties. AIM OF REVIEW Our aim here is to explore the research progress and mine genic resources related to ER resistance, and to propose a regulatory model elucidating the ER-resistant mechanism in maize as well as a trade-off model illustrating how crops balance fungal resistance and grain yield. Key Scientific Concepts of Review: This review presents a comprehensive bibliometric analysis of the research history and current trends in the genetic and molecular regulation underlying ER resistance in maize. Moreover, we analyzed and discovered the genic resources by identifying 162 environmentally stable loci (ESLs) from various independent forward genetics studies as well as 1391 conservatively differentially expressed genes (DEGs) that respond to Fusarium or Aspergillus infection through multi-omics data analysis. Additionally, this review discusses the syntenies found among maize ER, wheat Fusariumhead blight (FHB), and rice Bakanaedisease (RBD) resistance-related loci, along with the significant overlap between fungal resistance loci and reported yield-related loci, thus providing valuable insights into the regulatory mechanisms underlying the trade-offs between yield and defense in crops.
Collapse
Affiliation(s)
- Zechao Yin
- Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xun Wei
- Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Yanyong Cao
- Institute of Cereal Crops, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Zhenying Dong
- Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China.
| | - Yan Long
- Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China.
| | - Xiangyuan Wan
- Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China.
| |
Collapse
|
9
|
Wijayawardene NN, Hyde KD, Mikhailov KV, Péter G, Aptroot A, Pires-Zottarelli CLA, Goto BT, Tokarev YS, Haelewaters D, Karunarathna SC, Kirk PM, de A. Santiago ALCM, Saxena RK, Schoutteten N, Wimalasena MK, Aleoshin VV, Al-Hatmi AMS, Ariyawansa KGSU, Assunção AR, Bamunuarachchige TC, Baral HO, Bhat DJ, Błaszkowski J, Boekhout T, Boonyuen N, Brysch-Herzberg M, Cao B, Cazabonne J, Chen XM, Coleine C, Dai DQ, Daniel HM, da Silva SBG, de Souza FA, Dolatabadi S, Dubey MK, Dutta AK, Ediriweera A, Egidi E, Elshahed MS, Fan X, Felix JRB, Galappaththi MCA, Groenewald M, Han LS, Huang B, Hurdeal VG, Ignatieva AN, Jerônimo GH, de Jesus AL, Kondratyuk S, Kumla J, Kukwa M, Li Q, Lima JLR, Liu XY, Lu W, Lumbsch HT, Madrid H, Magurno F, Marson G, McKenzie EHC, Menkis A, Mešić A, Nascimento ECR, Nassonova ES, Nie Y, Oliveira NVL, Ossowska EA, Pawłowska J, Peintner U, Pozdnyakov IR, Premarathne BM, Priyashantha AKH, Quandt CA, Queiroz MB, Rajeshkumar KC, Raza M, Roy N, Samarakoon MC, Santos AA, Santos LA, Schumm F, Selbmann L, Selçuk F, Simmons DR, Simakova AV, Smith MT, Sruthi OP, Suwannarach N, Tanaka K, Tibpromma S, Tomás EO, Ulukapı M, Van Vooren N, Wanasinghe DN, Weber E, Wu Q, Yang EF, Yoshioka R, Youssef NH, Zandijk A, Zhang GQ, Zhang JY, Zhao H, Zhao R, Zverkov OA, Thines M, Karpov SA. Classes and phyla of the kingdom Fungi. FUNGAL DIVERS 2024; 128:1-165. [DOI: 10.1007/s13225-024-00540-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/03/2024] [Indexed: 01/05/2025]
Abstract
AbstractFungi are one of the most diverse groups of organisms with an estimated number of species in the range of 2–3 million. The higher-level ranking of fungi has been discussed in the framework of molecular phylogenetics since Hibbett et al., and the definition and the higher ranks (e.g., phyla) of the ‘true fungi’ have been revised in several subsequent publications. Rapid accumulation of novel genomic data and the advancements in phylogenetics now facilitate a robust and precise foundation for the higher-level classification within the kingdom. This study provides an updated classification of the kingdom Fungi, drawing upon a comprehensive phylogenomic analysis of Holomycota, with which we outline well-supported nodes of the fungal tree and explore more contentious groupings. We accept 19 phyla of Fungi, viz. Aphelidiomycota, Ascomycota, Basidiobolomycota, Basidiomycota, Blastocladiomycota, Calcarisporiellomycota, Chytridiomycota, Entomophthoromycota, Entorrhizomycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota, Sanchytriomycota, and Zoopagomycota. In the phylogenies, Caulochytriomycota resides in Chytridiomycota; thus, the former is regarded as a synonym of the latter, while Caulochytriomycetes is viewed as a class in Chytridiomycota. We provide a description of each phylum followed by its classes. A new subphylum, Sanchytriomycotina Karpov is introduced as the only subphylum in Sanchytriomycota. The subclass Pneumocystomycetidae Kirk et al. in Pneumocystomycetes, Ascomycota is invalid and thus validated. Placements of fossil fungi in phyla and classes are also discussed, providing examples.
Collapse
|
10
|
Kohout P, Sudová R, Odriozola I, Kvasničková J, Petružálková M, Hadincová V, Krahulec F, Pecháčková S, Skálová H, Herben T. Accumulation of pathogens in soil microbiome can explain long-term fluctuations of legumes in a grassland community. THE NEW PHYTOLOGIST 2024; 244:235-248. [PMID: 39101271 DOI: 10.1111/nph.20031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 07/18/2024] [Indexed: 08/06/2024]
Abstract
All plant populations fluctuate in time. Apart from the dynamics imposed by external forces such as climate, these fluctuations can be driven by endogenous processes taking place within the community. In this study, we aimed to identify potential role of soil-borne microbial communities in driving endogenous fluctuations of plant populations. We combined a unique, 35-yr long abundance data of 11 common plant species from a species-rich mountain meadow with development of their soil microbiome (pathogenic fungi, arbuscular mycorrhizal fungi and oomycetes) observed during 4 yr of experimental cultivation in monocultures. Plant species which abundance fluctuated highly in the field (particularly legumes) accumulated plant pathogens in their soil mycobiome. We also identified increasing proportion of mycoparasitic fungi under highly fluctuating legume species, which may indicate an adaptation of these species to mitigate the detrimental effects of pathogens. Our study documented that long-term fluctuations in the abundance of plant species in grassland communities can be explained by the accumulation of plant pathogens in plant-soil microbiome. By contrast, we found little evidence of the role of mutualists in plant population fluctuations. These findings offer new insights for understanding mechanisms driving both long-term vegetation dynamics and patterns of species coexistence and richness.
Collapse
Affiliation(s)
- Petr Kohout
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czechia
- Faculty of Science, Charles University in Prague, Albertov 6, 128 00, Prague, Czechia
| | - Radka Sudová
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czechia
| | - Iñaki Odriozola
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czechia
| | - Jana Kvasničková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czechia
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czechia
| | - Markéta Petružálková
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czechia
| | - Věroslava Hadincová
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czechia
| | - František Krahulec
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czechia
| | - Sylvie Pecháčková
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czechia
| | - Hana Skálová
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czechia
| | - Tomáš Herben
- Faculty of Science, Charles University in Prague, Albertov 6, 128 00, Prague, Czechia
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czechia
| |
Collapse
|
11
|
Harrison MC, Opulente DA, Wolters JF, Shen XX, Zhou X, Groenewald M, Hittinger CT, Rokas A, LaBella AL. Exploring Saccharomycotina Yeast Ecology Through an Ecological Ontology Framework. Yeast 2024; 41:615-628. [PMID: 39295298 PMCID: PMC11522959 DOI: 10.1002/yea.3981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 09/21/2024] Open
Abstract
Yeasts in the subphylum Saccharomycotina are found across the globe in disparate ecosystems. A major aim of yeast research is to understand the diversity and evolution of ecological traits, such as carbon metabolic breadth, insect association, and cactophily. This includes studying aspects of ecological traits like genetic architecture or association with other phenotypic traits. Genomic resources in the Saccharomycotina have grown rapidly. Ecological data, however, are still limited for many species, especially those only known from species descriptions where usually only a limited number of strains are studied. Moreover, ecological information is recorded in natural language format limiting high throughput computational analysis. To address these limitations, we developed an ontological framework for the analysis of yeast ecology. A total of 1,088 yeast strains were added to the Ontology of Yeast Environments (OYE) and analyzed in a machine-learning framework to connect genotype to ecology. This framework is flexible and can be extended to additional isolates, species, or environmental sequencing data. Widespread adoption of OYE would greatly aid the study of macroecology in the Saccharomycotina subphylum.
Collapse
Affiliation(s)
- Marie-Claire Harrison
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| | - Dana A. Opulente
- Department of Biology, Villanova University, Villanova, Pennsylvania, USA
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - John F. Wolters
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Xing-Xing Shen
- Centre for Evolutionary and Organismal Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xiaofan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China
| | | | - Chris Todd Hittinger
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| | - Abigail Leavitt LaBella
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Kannapolis, North Carolina, USA
- Center for Computational Intelligence to Predict Health and Environmental Risks (CIPHER), University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| |
Collapse
|
12
|
Caboňová M, Vadkertiová R, Adamčík S, Bacigálová K, Slovák M, Zaib S, Caboň M. Taxonomic reintroduction of Taphrinaviridis (Taphrinales, Ascomycota) associated with Alnusalnobetula as one of five well defined European species colonizing alders. MycoKeys 2024; 108:249-267. [PMID: 39296989 PMCID: PMC11408875 DOI: 10.3897/mycokeys.108.127292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/15/2024] [Indexed: 09/21/2024] Open
Abstract
Phylogenetic analysis of four DNA regions (ITS, LSU, mtSSU and tef1α) supported the existence of five European Taphrina species which colonise Alnus in Europe. In addition to previously well-defined species, T.viridis is, for the first time recognised, by molecular study as a species related to T.sadebeckii. Analysis of publicly available sequences of barcoding regions suggested that T.viridis is only associated with A.alnobetula and no other Taphrina species colonize this host tree. Symptomatic, morphological, and physiological characterisation of T.viridis are provided together with the key for identification of Alnus associated Taphrina species in Europe and North America.
Collapse
Affiliation(s)
- Michaela Caboňová
- Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 845 23 Bratislava, Slovakia Plant Science and Biodiversity Centre, Slovak Academy of Sciences Bratislava Slovakia
| | - Renáta Vadkertiová
- Culture Collection of Yeasts, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia Institute of Chemistry, Slovak Academy of Sciences Bratislava Slovakia
| | - Slavomír Adamčík
- Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 845 23 Bratislava, Slovakia Plant Science and Biodiversity Centre, Slovak Academy of Sciences Bratislava Slovakia
- Department of Botany, Faculty of Natural Sciences, Comenius University in Bratislava, Révová 39, 811 02 Bratislava, Slovakia Comenius University in Bratislava Bratislava Slovakia
| | - Kamila Bacigálová
- Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 845 23 Bratislava, Slovakia Plant Science and Biodiversity Centre, Slovak Academy of Sciences Bratislava Slovakia
| | - Marek Slovák
- Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 845 23 Bratislava, Slovakia Plant Science and Biodiversity Centre, Slovak Academy of Sciences Bratislava Slovakia
- Department of Botany, Charles University, Benátská 2, 128 01 Prague, Czech Republic Charles University Prague Czech Republic
| | - Shanza Zaib
- Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 845 23 Bratislava, Slovakia Plant Science and Biodiversity Centre, Slovak Academy of Sciences Bratislava Slovakia
| | - Miroslav Caboň
- Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 845 23 Bratislava, Slovakia Plant Science and Biodiversity Centre, Slovak Academy of Sciences Bratislava Slovakia
- Department of Plant Pathology, University of Florida, 2527 Fifield Hall, 32611-0680 Gainesville, Florida, USA University of Florida Gainesville United States of America
| |
Collapse
|
13
|
Zalesky T, Bradshaw AJ, Bair ZJ, Meyer KW, Stamets P. Fungal cryopreservation across 61 genera: Practical application and method evaluation. Mycologia 2024; 116:865-876. [PMID: 38949868 DOI: 10.1080/00275514.2024.2363135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 05/30/2024] [Indexed: 07/03/2024]
Abstract
Fungi occupy important environmental, cultural, and socioeconomic roles. However, biological research of this diverse kingdom has lagged behind that of other phylogenetic groups. This is partially the result of the notorious difficulty in culturing a diverse array of filamentous fungal species due to their (i) often unpredictable growth, (ii) unknown preferences for culturing conditions, and (iii) long incubation times compared with other microorganisms such as bacteria and yeasts. Given the complexity associated with concurrently culturing diverse fungal species, developing practical methods for preserving as many species as possible for future research is vital. The widely accepted best practice for preserving fungal tissue is the use of cryogenic biobanking at -165 C, allowing for the preservation and documentation of stable genetic lineages, thus enabling long-term diversity-centered research. Despite the extensive literature on fungal cryopreservation, substantial barriers remain for implementation of cryogenic biobanks in smaller mycological laboratories. In this work, we present practical considerations for the establishment of a fungal culture biobank, as well as provide evidence for the viability of 61 fungal genera in cryogenic storage. By providing a pragmatic methodology for cryogenically preserving and managing many filamentous fungi, we show that creating a biobank can be economical for independently owned and operated mycology laboratories, which can serve as a long-term resource for biodiversity, conservation, and strain maintenance.
Collapse
Affiliation(s)
- Travis Zalesky
- School of Geography, Development and Environment, University of Arizona, 1200 E University Boulevard, Tucson, Arizona 85721
| | - Alexander J Bradshaw
- School of Biological Sciences, University of Utah, 201 Presidents Circle, Salt Lake City, Utah 84112
| | | | | | | |
Collapse
|
14
|
Ortiz-Colin P, Hulshof CM. Ecotones as Windows into Organismal-to-Biome Scale Responses across Neotropical Forests. PLANTS (BASEL, SWITZERLAND) 2024; 13:2396. [PMID: 39273880 PMCID: PMC11397621 DOI: 10.3390/plants13172396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/17/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024]
Abstract
Tropical forests are incredibly diverse in structure and function. Despite, or perhaps because of, this diversity, tropical biologists often conduct research exclusively in one or perhaps a few forest types. Rarely do we study the ecotone-the interstitial region between forest types. Ecotones are hyper-diverse, dynamic systems that control the flow of energy and organisms between adjacent ecosystems, with their locations determined by species' physiological limits. In this review, we describe how studying ecotones can provide key indicators for monitoring the state of Neotropical forests from organisms to ecosystems. We first describe how ecotones have been studied in the past and summarize our current understanding of tropical ecotones. Next, we provide three example lines of research focusing on the ecological and evolutionary dynamics of the ecotone between tropical dry forests and desert; between tropical dry and rainforests; and between Cerrado and Atlantic rainforests, with the latter being a particularly well-studied ecotone. Lastly, we outline methods and tools for studying ecotones that combine remote sensing, new statistical techniques, and field-based forest dynamics plot data, among others, for understanding these important systems.
Collapse
Affiliation(s)
- Perla Ortiz-Colin
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Catherine M Hulshof
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
15
|
Dreyling L, Boch S, Lumbsch HT, Schmitt I. Surveying lichen diversity in forests: A comparison of expert mapping and eDNA metabarcoding of bark surfaces. MycoKeys 2024; 106:153-172. [PMID: 38948916 PMCID: PMC11214015 DOI: 10.3897/mycokeys.106.117540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/10/2024] [Indexed: 07/02/2024] Open
Abstract
Lichens are an important part of forest ecosystems, contributing to forest biodiversity, the formation of micro-niches and nutrient cycling. Assessing the diversity of lichenised fungi in complex ecosystems, such as forests, requires time and substantial skills in collecting and identifying lichens. The completeness of inventories thus largely depends on the expertise of the collector, time available for the survey and size of the studied area. Molecular methods of surveying biodiversity hold the promise to overcome these challenges. DNA barcoding of individual lichen specimens and bulk collections is already being applied; however, eDNA methods have not yet been evaluated as a tool for lichen surveys. Here, we assess which species of lichenised fungi can be detected in eDNA swabbed from bark surfaces of living trees in central European forests. We compare our findings to an expert floristic survey carried out in the same plots about a decade earlier. In total, we studied 150 plots located in three study regions across Germany. In each plot, we took one composite sample based on six trees, belonging to the species Fagussylvatica, Piceaabies and Pinussylvestris. The eDNA method yielded 123 species, the floristic survey 87. The total number of species found with both methods was 167, of which 48% were detected only in eDNA, 26% only in the floristic survey and 26% in both methods. The eDNA contained a higher diversity of inconspicuous species. Many prevalent taxa reported in the floristic survey could not be found in the eDNA due to gaps in molecular reference databases. We conclude that, currently, eDNA has merit as a complementary tool to monitor lichen biodiversity at large scales, but cannot be used on its own. We advocate for the further development of specialised and more complete databases.
Collapse
Affiliation(s)
- Lukas Dreyling
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, GermanySenckenberg Biodiversity and Climate Research Centre (SBiK-F)Frankfurt am MainGermany
- Goethe University Frankfurt, Institute of Ecology, Evolution and Diversity, Frankfurt am Main, GermanyGoethe University FrankfurtFrankfurt am MainGermany
| | - Steffen Boch
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, SwitzerlandWSL Swiss Federal Institute for Forest, Snow and Landscape ResearchBirmensdorfSwitzerland
| | - H. Thorsten Lumbsch
- Collections, Conservation, and Research, The Field Museum, Chicago, IL 60605-2496, USAThe Field MuseumChicagoUnited States of America
| | - Imke Schmitt
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, GermanySenckenberg Biodiversity and Climate Research Centre (SBiK-F)Frankfurt am MainGermany
- Goethe University Frankfurt, Institute of Ecology, Evolution and Diversity, Frankfurt am Main, GermanyGoethe University FrankfurtFrankfurt am MainGermany
| |
Collapse
|
16
|
Martorelli I, Pooryousefi A, van Thiel H, Sicking FJ, Ramackers GJ, Merckx V, Verbeek FJ. Multiple graphical views for automatically generating SQL for the MycoDiversity DB; making fungal biodiversity studies accessible. Biodivers Data J 2024; 12:e119660. [PMID: 38933486 PMCID: PMC11199959 DOI: 10.3897/bdj.12.e119660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Fungi is a highly diverse group of eukaryotic organisms that live under an extremely wide range of environmental conditions. Nowadays, there is a fundamental focus on observing how biodiversity varies on different spatial scales, in addition to understanding the environmental factors which drive fungal biodiversity. Metabarcoding is a high-throughput DNA sequencing technology that has positively contributed to observing fungal communities in environments. While the DNA sequencing data generated from metabarcoding studies are available in public archives, this valuable data resource is not directly usable for fungal biodiversity investigation. Additionally, due to its fragmented storage and distributed nature, it is not immediately accessible through a single user interface. We developed the MycoDiversity DataBase User Interface (https://mycodiversity.liacs.nl) to provide direct access and retrieval of fungal data that was previously inaccessible in the public domain. The user interface provides multiple graphical views of the data components used to reveal fungal biodiversity. These components include reliable geo-location terms, the reference taxonomic scientific names associated with fungal species and the standard features describing the environment where they occur. Direct observation of the public DNA sequencing data in association with fungi is accessible through SQL search queries created by interactively manipulating topological maps and dynamic hierarchical tree views. The search results are presented in configurable data table views that can be downloaded for further use. With the MycoDiversity DataBase User Interface, we make fungal biodiversity data accessible, assisting researchers and other stakeholders in using metabarcoding studies for assessing fungal biodiversity.
Collapse
Affiliation(s)
- Irene Martorelli
- Leiden Institute of Advanced Computer Science (LIACS), Leiden University, Leiden, NetherlandsLeiden Institute of Advanced Computer Science (LIACS), Leiden UniversityLeidenNetherlands
- Naturalis Biodiversity Center, Leiden, NetherlandsNaturalis Biodiversity CenterLeidenNetherlands
| | - Aram Pooryousefi
- Leiden Institute of Advanced Computer Science (LIACS), Leiden University, Leiden, NetherlandsLeiden Institute of Advanced Computer Science (LIACS), Leiden UniversityLeidenNetherlands
| | - Haike van Thiel
- Leiden Institute of Advanced Computer Science (LIACS), Leiden University, Leiden, NetherlandsLeiden Institute of Advanced Computer Science (LIACS), Leiden UniversityLeidenNetherlands
| | - Floris J Sicking
- Leiden Institute of Advanced Computer Science (LIACS), Leiden University, Leiden, NetherlandsLeiden Institute of Advanced Computer Science (LIACS), Leiden UniversityLeidenNetherlands
| | - Guus J Ramackers
- Leiden Institute of Advanced Computer Science (LIACS), Leiden University, Leiden, NetherlandsLeiden Institute of Advanced Computer Science (LIACS), Leiden UniversityLeidenNetherlands
| | - Vincent Merckx
- Naturalis Biodiversity Center, Leiden, NetherlandsNaturalis Biodiversity CenterLeidenNetherlands
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, NetherlandsInstitute for Biodiversity and Ecosystem Dynamics, University of AmsterdamAmsterdamNetherlands
| | - Fons J Verbeek
- Leiden Institute of Advanced Computer Science (LIACS), Leiden University, Leiden, NetherlandsLeiden Institute of Advanced Computer Science (LIACS), Leiden UniversityLeidenNetherlands
| |
Collapse
|
17
|
Simpson HJ, Andrew C, Skrede I, Kauserud H, Schilling JS. Global field collection data confirm an affinity of brown rot fungi for coniferous habitats and substrates. THE NEW PHYTOLOGIST 2024; 242:2775-2786. [PMID: 38567688 DOI: 10.1111/nph.19723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 03/11/2024] [Indexed: 04/04/2024]
Abstract
Unlike 'white rot' (WR) wood-decomposing fungi that remove lignin to access cellulosic sugars, 'brown rot' (BR) fungi selectively extract sugars and leave lignin behind. The relative frequency and distribution of these fungal types (decay modes) have not been thoroughly assessed at a global scale; thus, the fate of one-third of Earth's aboveground carbon, wood lignin, remains unclear. Using c. 1.5 million fungal sporocarp and c. 30 million tree records from publicly accessible databases, we mapped and compared decay mode and tree type (conifer vs angiosperm) distributions. Additionally, we mined fungal record metadata to assess substrate specificity per decay mode. The global average for BR fungi proportion (BR/(BR + WR records)) was 13% and geographic variation was positively correlated (R2 = 0.45) with conifer trees proportion (conifer/(conifer + angiosperm records)). Most BR species (61%) were conifer, rather than angiosperm (22%), specialists. The reverse was true for WR (conifer: 19%; angiosperm: 62%). Global BR proportion patterns were predicted with greater accuracy using the relative distributions of individual tree species (R2 = 0.82), rather than tree type. Fungal decay mode distributions can be explained by tree type and, more importantly, tree species distributions, which our data suggest is due to strong substrate specificities.
Collapse
Affiliation(s)
- Hunter J Simpson
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St Paul, MN, 55108, USA
| | - Carrie Andrew
- Section for Genetics and Evolutionary Biology (EVOGENE), University of Oslo, Blindernveien 31, 0316, Oslo, Norway
- Natural History Museum, University of Oslo, Sars' gate 1, 0562, Oslo, Norway
| | - Inger Skrede
- Section for Genetics and Evolutionary Biology (EVOGENE), University of Oslo, Blindernveien 31, 0316, Oslo, Norway
| | - Håvard Kauserud
- Section for Genetics and Evolutionary Biology (EVOGENE), University of Oslo, Blindernveien 31, 0316, Oslo, Norway
| | | |
Collapse
|
18
|
Abramczyk BM, Wiktorowicz DG, Okrasińska A, Pawłowska JZ. Mucor thermorhizoides-A New Species from Post-mining Site in Sudety Mountains (Poland). Curr Microbiol 2024; 81:201. [PMID: 38822823 PMCID: PMC11144139 DOI: 10.1007/s00284-024-03708-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 04/21/2024] [Indexed: 06/03/2024]
Abstract
Mucor representatives are mostly rapidly growing cosmopolitan soil saprotrophs of early diverged Mucoromycotina subphylum. Although this is the most speciose genus within the group, some lineages are still understudied. In this study, new species of Mucor was isolated from the post-mining area in southwestern Poland, where soil chemical composition analysis revealed high concentration of hydrocarbons and heavy metals. Phylogenetic analysis based on multigene phylogeny showed that the new isolate clusters distinctly from other Mucor species as a sister group to Mucor microsporus. New species Mucor thermorhizoides Abramczyk (Mucorales, Mucoromycota) is characterized by the extensive rhizoid production in elevated temperatures and formation of two layers of sporangiophores. It also significantly differs from M. microsporus in the shape of spores and the size of sporangia. M. thermorhizoides was shown to be able to grow in oligotrophic conditions at low temperatures. Together with M. microsporus they represent understudied and highly variable lineage of the Mucor genus.
Collapse
Affiliation(s)
- Beniamin M Abramczyk
- Biology of Microorganisms Students' Society, Faculty of Biology, University of Warsaw, ul. Miecznikowa 1, 02-096, Warsaw, Poland.
| | - Dorota G Wiktorowicz
- Biology of Microorganisms Students' Society, Faculty of Biology, University of Warsaw, ul. Miecznikowa 1, 02-096, Warsaw, Poland
| | - Alicja Okrasińska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, ul. Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Julia Z Pawłowska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, ul. Żwirki i Wigury 101, 02-089, Warsaw, Poland
| |
Collapse
|
19
|
Martin FM, van der Heijden MGA. The mycorrhizal symbiosis: research frontiers in genomics, ecology, and agricultural application. THE NEW PHYTOLOGIST 2024; 242:1486-1506. [PMID: 38297461 DOI: 10.1111/nph.19541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/07/2023] [Indexed: 02/02/2024]
Abstract
Mycorrhizal symbioses between plants and fungi are vital for the soil structure, nutrient cycling, plant diversity, and ecosystem sustainability. More than 250 000 plant species are associated with mycorrhizal fungi. Recent advances in genomics and related approaches have revolutionized our understanding of the biology and ecology of mycorrhizal associations. The genomes of 250+ mycorrhizal fungi have been released and hundreds of genes that play pivotal roles in regulating symbiosis development and metabolism have been characterized. rDNA metabarcoding and metatranscriptomics provide novel insights into the ecological cues driving mycorrhizal communities and functions expressed by these associations, linking genes to ecological traits such as nutrient acquisition and soil organic matter decomposition. Here, we review genomic studies that have revealed genes involved in nutrient uptake and symbiosis development, and discuss adaptations that are fundamental to the evolution of mycorrhizal lifestyles. We also evaluated the ecosystem services provided by mycorrhizal networks and discuss how mycorrhizal symbioses hold promise for sustainable agriculture and forestry by enhancing nutrient acquisition and stress tolerance. Overall, unraveling the intricate dynamics of mycorrhizal symbioses is paramount for promoting ecological sustainability and addressing current pressing environmental concerns. This review ends with major frontiers for further research.
Collapse
Affiliation(s)
- Francis M Martin
- Université de Lorraine, INRAE, UMR IAM, Champenoux, 54280, France
- Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Marcel G A van der Heijden
- Department of Agroecology & Environment, Plant-Soil Interactions, Agroscope, Zürich, 8046, Switzerland
- Department of Plant and Microbial Biology, University of Zürich, Zürich, 8057, Switzerland
| |
Collapse
|
20
|
Cosio T, Pica F, Fontana C, Pistoia ES, Favaro M, Valsecchi I, Zarabian N, Campione E, Botterel F, Gaziano R. Stephanoascus ciferrii Complex: The Current State of Infections and Drug Resistance in Humans. J Fungi (Basel) 2024; 10:294. [PMID: 38667965 PMCID: PMC11050938 DOI: 10.3390/jof10040294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
In recent years, the incidence of fungal infections in humans has increased dramatically, accompanied by an expansion in the number of species implicated as etiological agents, especially environmental fungi never involved before in human infection. Among fungal pathogens, Candida species are the most common opportunistic fungi that can cause local and systemic infections, especially in immunocompromised individuals. Candida albicans (C. albicans) is the most common causative agent of mucosal and healthcare-associated systemic infections. However, during recent decades, there has been a worrying increase in the number of emerging multi-drug-resistant non-albicans Candida (NAC) species, i.e., C. glabrata, C. parapsilosis, C. tropicalis, C. krusei, C. auris, and C. ciferrii. In particular, Candida ciferrii, also known as Stephanoascus ciferrii or Trichomonascus ciferrii, is a heterothallic ascomycete yeast-like fungus that has received attention in recent decades as a cause of local and systemic fungal diseases. Today, the new definition of the S. ciferrii complex, which consists of S. ciferrii, Candida allociferrii, and Candida mucifera, was proposed after sequencing the 18S rRNA gene. Currently, the S. ciferrii complex is mostly associated with non-severe ear and eye infections, although a few cases of severe candidemia have been reported in immunocompromised individuals. Low susceptibility to currently available antifungal drugs is a rising concern, especially in NAC species. In this regard, a high rate of resistance to azoles and more recently also to echinocandins has emerged in the S. ciferrii complex. This review focuses on epidemiological, biological, and clinical aspects of the S. ciferrii complex, including its pathogenicity and drug resistance.
Collapse
Affiliation(s)
- Terenzio Cosio
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (F.P.); (E.S.P.); (M.F.); (R.G.)
- Dermatology Unit, Department of Systems Medicine, Tor Vergata University Hospital, 00133 Rome, Italy;
| | - Francesca Pica
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (F.P.); (E.S.P.); (M.F.); (R.G.)
| | - Carla Fontana
- Laboratory of Microbiology and BioBank, National Institute for Infectious Diseases “Lazzaro Spallanzani” I.R.C.C.S., 00149 Rome, Italy;
| | - Enrico Salvatore Pistoia
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (F.P.); (E.S.P.); (M.F.); (R.G.)
| | - Marco Favaro
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (F.P.); (E.S.P.); (M.F.); (R.G.)
| | - Isabel Valsecchi
- DYNAMYC 7380, Faculté de Santé, Université Paris-Est Créteil (UPEC), 94010 Créteil, France; (I.V.); (F.B.)
| | - Nikkia Zarabian
- School of Medicine and Health Sciences, George Washington University, 2300 I St NW, Washington, DC 20052, USA
| | - Elena Campione
- Dermatology Unit, Department of Systems Medicine, Tor Vergata University Hospital, 00133 Rome, Italy;
| | - Françoise Botterel
- DYNAMYC 7380, Faculté de Santé, Université Paris-Est Créteil (UPEC), 94010 Créteil, France; (I.V.); (F.B.)
| | - Roberta Gaziano
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (F.P.); (E.S.P.); (M.F.); (R.G.)
| |
Collapse
|
21
|
Filippova N, Zvyagina E, Rudykina EA, Ishmanov TF, Filippov IV, Bulyonkova TM, Dobrynina AS. DNA-based occurrence dataset on peatland fungal communities studied by metabarcoding in north-western Siberia. Biodivers Data J 2024; 12:e119851. [PMID: 38586530 PMCID: PMC10998959 DOI: 10.3897/bdj.12.e119851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/19/2024] [Indexed: 04/09/2024] Open
Abstract
Background The paper represents the first DNA-based occurrence dataset on peatland fungal communities published for north-western Siberia, the first for Russia and complements several existing datasets on metabarcoding of peat soils globally. New information The aim of the present publication is to describe the first DNA-based occurrence dataset on fungal communities in peat soils and other substrates studied by the eDNA approach in the Mukhrino raised bog, located in a large paludified area of north-western Siberia. A comparison of the species diversity of larger fungi identified by the conventional approach and by eDNA showed a high proportion of shared taxa. Other groups (mainly Ascomycota), described by metabarcoding, revealed high diversity compared with conventional observation. Overall, the species richness identified in one peatland locality (the Mukhrino Bog) was comparable in number of species to the global estimation of fungal diversity in peatlands, previously reported in literature.
Collapse
Affiliation(s)
- Nina Filippova
- Yugra State University, Khanty-Mansiysk, RussiaYugra State UniversityKhanty-MansiyskRussia
| | - Elena Zvyagina
- Yugra State University, Khanty-Mansiysk, RussiaYugra State UniversityKhanty-MansiyskRussia
- Moscow State University, Moscow, RussiaMoscow State UniversityMoscowRussia
| | - Elena A. Rudykina
- Yugra State University, Khanty-Mansiysk, RussiaYugra State UniversityKhanty-MansiyskRussia
| | - Tagir F. Ishmanov
- Yugra State University, Khanty-Mansiysk, RussiaYugra State UniversityKhanty-MansiyskRussia
| | - Ilya V. Filippov
- Yugra State University, Khanty-Mansiysk, RussiaYugra State UniversityKhanty-MansiyskRussia
| | | | - Alevtina S. Dobrynina
- Yugra State University, Khanty-Mansiysk, RussiaYugra State UniversityKhanty-MansiyskRussia
| |
Collapse
|
22
|
Hui X, Yang J, Sun J, Liu F, Pan W. MCSS: microbial community simulator based on structure. Front Microbiol 2024; 15:1358257. [PMID: 38516019 PMCID: PMC10956353 DOI: 10.3389/fmicb.2024.1358257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/20/2024] [Indexed: 03/23/2024] Open
Abstract
De novo assembly plays a pivotal role in metagenomic analysis, and the incorporation of third-generation sequencing technology can significantly improve the integrity and accuracy of assembly results. Recently, with advancements in sequencing technology (Hi-Fi, ultra-long), several long-read-based bioinformatic tools have been developed. However, the validation of the performance and reliability of these tools is a crucial concern. To address this gap, we present MCSS (microbial community simulator based on structure), which has the capability to generate simulated microbial community and sequencing datasets based on the structure attributes of real microbiome communities. The evaluation results indicate that it can generate simulated communities that exhibit both diversity and similarity to actual community structures. Additionally, MCSS generates synthetic PacBio Hi-Fi and Oxford Nanopore Technologies (ONT) long reads for the species within the simulated community. This innovative tool provides a valuable resource for benchmarking and refining metagenomic analysis methods. Code available at: https://github.com/panlab-bio/mcss.
Collapse
Affiliation(s)
- Xingqi Hui
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences (ICR, CAAS), Shenzhen, China
| | - Jinbao Yang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences (ICR, CAAS), Shenzhen, China
- College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Jinhuan Sun
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Fang Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, China
| | - Weihua Pan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences (ICR, CAAS), Shenzhen, China
| |
Collapse
|
23
|
David KT, Harrison MC, Opulente DA, LaBella AL, Wolters JF, Zhou X, Shen XX, Groenewald M, Pennell M, Hittinger CT, Rokas A. Saccharomycotina yeasts defy long-standing macroecological patterns. Proc Natl Acad Sci U S A 2024; 121:e2316031121. [PMID: 38412132 PMCID: PMC10927492 DOI: 10.1073/pnas.2316031121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/24/2024] [Indexed: 02/29/2024] Open
Abstract
The Saccharomycotina yeasts ("yeasts" hereafter) are a fungal clade of scientific, economic, and medical significance. Yeasts are highly ecologically diverse, found across a broad range of environments in every biome and continent on earth; however, little is known about what rules govern the macroecology of yeast species and their range limits in the wild. Here, we trained machine learning models on 12,816 terrestrial occurrence records and 96 environmental variables to infer global distribution maps at ~1 km2 resolution for 186 yeast species (~15% of described species from 75% of orders) and to test environmental drivers of yeast biogeography and macroecology. We found that predicted yeast diversity hotspots occur in mixed montane forests in temperate climates. Diversity in vegetation type and topography were some of the greatest predictors of yeast species richness, suggesting that microhabitats and environmental clines are key to yeast diversity. We further found that range limits in yeasts are significantly influenced by carbon niche breadth and range overlap with other yeast species, with carbon specialists and species in high-diversity environments exhibiting reduced geographic ranges. Finally, yeasts contravene many long-standing macroecological principles, including the latitudinal diversity gradient, temperature-dependent species richness, and a positive relationship between latitude and range size (Rapoport's rule). These results unveil how the environment governs the global diversity and distribution of species in the yeast subphylum. These high-resolution models of yeast species distributions will facilitate the prediction of economically relevant and emerging pathogenic species under current and future climate scenarios.
Collapse
Affiliation(s)
- Kyle T. David
- Department of Biological Sciences, Vanderbilt University, Nashville, TN37235
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN37235
| | - Marie-Claire Harrison
- Department of Biological Sciences, Vanderbilt University, Nashville, TN37235
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN37235
| | - Dana A. Opulente
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, Department of Energy (DOE) Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI53726
- Department of Biology, Villanova University, Villanova, PA19085
| | - Abigail L. LaBella
- Department of Biological Sciences, Vanderbilt University, Nashville, TN37235
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN37235
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC28223
| | - John F. Wolters
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, Department of Energy (DOE) Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI53726
| | - Xiaofan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou510642, China
| | - Xing-Xing Shen
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou310058, China
| | | | - Matt Pennell
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA90089
- Department of Biological Sciences, University of Southern California, Los Angeles, CA90089
| | - Chris Todd Hittinger
- Laboratory of Genetics, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, Department of Energy (DOE) Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI53726
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN37235
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN37235
| |
Collapse
|
24
|
Noffsinger CR, Adamčíková K, Eberhardt U, Caboň M, Bazzicalupo A, Buyck B, Kaufmann H, Weholt Ø, Looney BP, Matheny PB, Berbee ML, Tausan D, Adamčík S. Three new species in Russula subsection Xerampelinae supported by genealogical and phenotypic coherence. Mycologia 2024; 116:322-349. [PMID: 38363178 DOI: 10.1080/00275514.2023.2295957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/13/2023] [Indexed: 02/17/2024]
Abstract
Xerampelinae is a subsection composed of species of ectomycorrhizal fungi belonging to the hyperdiverse and cosmopolitan genus Russula (Russulales). Species of Xerampelinae are recognized by their fishy or shrimp odor, browning context, and a green reaction to iron sulfate. However, species delimitation has traditionally relied on morphology and analysis of limited molecular data. Prior taxonomic work in Xerampelinae has led to the description of as many as 59 taxa in Europe and 19 in North America. Here we provide the first multilocus phylogeny of European and North American members based on two nrDNA loci and two protein-coding genes. The resulting phylogeny supports the recognition of 17 species-rank Xerampelinae clades; however, higher species richness (~23) is suggested by a more inclusive nuclear rDNA internal transcribed spacer region ITS1-5.8S-ITS2 (ITS barcode) analysis. Phylogenetic and morphological analyses support three new species with restricted geographic distributions: R. lapponica, R. neopascua, and R. olympiana. We confirm that the European species R. subrubens is present in North America and the North American species R. serissima (previously known as R. favrei) is present in Europe. Most other Xerampelinae appear restricted to either North America or Eurasia, which indicates a high degree of regional endemism; this includes R. xerampelina, a name widely applied to North American taxa, but a species restricted to Eurasia.
Collapse
Affiliation(s)
- Chance R Noffsinger
- Department of Ecology and Evolutionary Biology, University of Tennessee, 1416 Circle Drive, Knoxville, Tennessee 37996
| | - Katarína Adamčíková
- Department of Plant Pathology and Mycology, Institute of Forest Ecology, Slovak Academy of Sciences, Akademická 2, Zvolen, Nitra 94901, Slovakia
| | - Ursula Eberhardt
- Staatliches Museum für Naturkunde Stuttgart, Rosenstein 1, Stuttgart 70191, Germany
| | - Miroslav Caboň
- Laboratory of Molecular Ecology and Mycology, Institute of Botany, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 84523, Slovakia
| | - Anna Bazzicalupo
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond TW9 3DS, UK
| | - Bart Buyck
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, Centre national de la recherche scientifique (CNRS), Sorbonne Université, École partique des hautes études (EPHE), Université des Antilles, CP 39, 57 rue Cuvier, Paris 75005, France
| | | | | | - Brian P Looney
- Department of Biology, Duke University, 130 Science Drive, Durham, North Carolina 27708
| | - P Brandon Matheny
- Department of Ecology and Evolutionary Biology, University of Tennessee, 1416 Circle Drive, Knoxville, Tennessee 37996
| | - Mary L Berbee
- Department of Botany, University of British Columbia, 6270 University Boulevard no. 3158, Vancouver, BC V6T 1Z4, Canada
| | - Daniel Tausan
- Department of Botany, University of British Columbia, 6270 University Boulevard no. 3158, Vancouver, BC V6T 1Z4, Canada
| | - Slavomír Adamčík
- Laboratory of Molecular Ecology and Mycology, Institute of Botany, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 84523, Slovakia
- Department of Botany, Faculty of Natural Sciences, Comenius University in Bratislava, Révová 39, Bratislava 81102, Slovakia
| |
Collapse
|
25
|
Wanasinghe DN, Nimalrathna TS, Qin Xian L, Faraj TK, Xu J, Mortimer PE. Taxonomic novelties and global biogeography of Montagnula (Ascomycota, Didymosphaeriaceae). MycoKeys 2024; 101:191-232. [PMID: 38283721 PMCID: PMC10820738 DOI: 10.3897/mycokeys.101.113259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/17/2023] [Indexed: 01/30/2024] Open
Abstract
Whilst conducting surveys of lignicolous microfungi in Yunnan Province, we collected a large number of taxa that resemble Montagnula (Didymosphaeriaceae, Pleosporales). Our phylogenetic study on Montagnula involved analysing sequence data from ribosomal RNA genes (nc18S, nc28S, ITS) and protein-coding genes (rpb2, tef1-α). We present a biphasic approach (morphological and molecular phylogenetic evidence) that supports the recognition of four new species in Montagnula viz., M.lijiangensis, M.menglaensis, M.shangrilana and M.thevetiae. The global diversity of Montagnula is also inferred from metabarcoding data and published records based on field observations. Metabarcoding data from GlobalFungi and field observations provided insights into the global diversity and distribution patterns of Montagnula. Studies conducted in Asia, Australia, Europe, and North America revealed a concentration of Montagnula species, suggesting regional variations in ecological preferences and distribution. Montagnula species were found on various substrates, with sediments yielding a high number of sequences. Poaceae emerged as a significant contributor, indicating a potential association between Montagnula species and grasses. Culture-based investigations from previously published data revealed Montagnula species associations with 105 plant genera (in 45 plant families), across 55 countries, highlighting their wide ecological range and adaptability. This study enhances our understanding of the taxonomy, distribution, and ecological preferences of Montagnula species. It emphasizes their role in the decomposition of organic matter in grasslands and savannah systems and suggests further investigation into their functional roles in ecosystem processes. The global distribution patterns and ecological interactions of Montagnula species underscore the need for continued research and conservation efforts.
Collapse
Affiliation(s)
- Dhanushka N. Wanasinghe
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe County 654400, Yunnan, ChinaKunming Institute of Botany, Chinese Academy of SciencesHonghe CountyChina
| | - Thilina S. Nimalrathna
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, ChinaCAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of SciencesMenglaChina
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences & Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, ChinaSoutheast Asia Biodiversity Research Institute, Chinese Academy of Sciences & Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of SciencesMenglaChina
- Yunnan International Joint Laboratory of Southeast Asia Biodiversity Conservation & Yunnan Key Laboratory for Conservation of Tropical Rainforests and Asian Elephants, Menglun, Mengla, Yunnan 666303, ChinaYunnan International Joint Laboratory of Southeast Asia Biodiversity Conservation & Yunnan Key Laboratory for Conservation of Tropical Rainforests and Asian ElephantsMenglaChina
- International College, University of Chinese Academy of Sciences, Beijing, ChinaUniversity of Chinese Academy of SciencesBeijingChina
| | - Li Qin Xian
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe County 654400, Yunnan, ChinaKunming Institute of Botany, Chinese Academy of SciencesHonghe CountyChina
| | - Turki Kh. Faraj
- Department of Soil Science, College of Food and Agriculture Sciences, King Saud University, P.O. Box 145111, Riyadh 11362, Saudi ArabiaKing Saud UniversityRiyadhSaudi Arabia
| | - Jianchu Xu
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe County 654400, Yunnan, ChinaKunming Institute of Botany, Chinese Academy of SciencesHonghe CountyChina
- CIFOR-ICRAF China Country Program, Kunming, Yunnan, ChinaCIFOR-ICRAF China Country ProgramKunmingChina
| | - Peter E. Mortimer
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe County 654400, Yunnan, ChinaKunming Institute of Botany, Chinese Academy of SciencesHonghe CountyChina
| |
Collapse
|
26
|
He C, Zhang M, Li X, He X. Seasonal dynamics of phyllosphere epiphytic microbial communities of medicinal plants in farmland environment. FRONTIERS IN PLANT SCIENCE 2024; 14:1328586. [PMID: 38239215 PMCID: PMC10794659 DOI: 10.3389/fpls.2023.1328586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024]
Abstract
Introduction The phyllosphere of plants is inhabited by various microorganisms, which play a crucial role in plant physiological metabolism. Currently, there is limited research on the dynamic effects of species and seasons on plant phyllosphere microbial community diversity and microbial interactions. Methods In this study, high-throughput sequencing technology was used to sequence the leaf surface parasitic microorganisms of five medicinal plants (Bupleurum chinense, Atractylodes lancea, Salvia miltiorrhiza, Astragalus membranaceus, and Lonicera japonica). Results The results showed that bacteria and fungi clustered into 3,898 and 1,572 operational taxonomic units (OTUs), respectively. Compared to host species, seasons had a more significant impact on the a diversity of bacteria and fungi. The heterogeneity of phyllosphere microbial communities was greater in winter compared to summer. Key species analysis at the OTU level and Spearman correlation analysis demonstrated significant preferences in microbial interactions under plant and seasonal backgrounds. The network connections between bacterial and fungal communities significantly increased during seasonal transitions compared to connections with plants. Discussion This study enhances our understanding of the composition and ecological roles of plant-associated microbial communities in small-scale agricultural environments. Additionally, it provides valuable insights for assessing the biodiversity of medicinal plants.
Collapse
Affiliation(s)
- Chao He
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Man Zhang
- College of Life Sciences, Hebei University, Baoding, China
| | - Xianen Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xueli He
- College of Life Sciences, Hebei University, Baoding, China
| |
Collapse
|
27
|
Siedlecki I, Piątek M, Majchrowska M, Okrasińska A, Owczarek-Kościelniak M, Pawłowska J. Discovery of Formicomyces microglobosus gen. et sp. nov. strengthens the hypothesis of independent evolution of ant-associated fungi in Trichomeriaceae. Fungal Biol 2023; 127:1466-1474. [PMID: 38097320 DOI: 10.1016/j.funbio.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/26/2023] [Accepted: 10/23/2023] [Indexed: 12/18/2023]
Abstract
Different groups of fungi have been reported to interact with ants. Recent studies have shown that fungi of the order Chaetothyriales are important components of ant-fungus networks, including members of the family Trichomeriaceae, which is particularly rich in fungi isolated from carton ants nests. One of the still understudied ant-related environments are ants' infrabuccal pockets and pellets, which often contain fungal matter. The aim of this work was to determine the systematic and phylogenetic position of two slow growing strains of Trichomeriaceae isolated from infrabuccal pellets of Formica polyctena ants. Molecular analyses based on maximum likelihood and bayesian inference, using sequences of two ribosomal DNA markers: ITS and LSU have shown that the isolated strains form a monophyletic clade within the family Trichomeriaceae, sister to a clade formed by representatives of the genus Trichomerium. Morphological analyses additionally justified distinctiveness of the isolated strains, which have different morphology of conidia and conidiophores than Trichomerium representatives. Therefore, our results show that the isolated strains represent a new species within a not yet described fungal genus. Due to the strains' isolation source and their close relatedness to a fungal strain isolated from a carton nest of Lasius fuliginosus, we propose a name Formicomyces microglobosus Siedlecki & Piątek for this fungus. While our discovery strengthens a hypothesis of the multiple, independent evolution of ant-associated fungi in the family Trichomeriaceae, the ecology of F. microglobosus still remains to be characterized.
Collapse
Affiliation(s)
- Igor Siedlecki
- University of Warsaw Botanic Garden, Aleje Ujazdowskie 4, 00-478, Warsaw, Poland; Institute of Evolutionary Biology, Faculty of Biology, University of Warsaw, ul. Żwirki i Wigury 101, 02-089, Warsaw, Poland.
| | - Marcin Piątek
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512, Kraków, Poland.
| | - Maria Majchrowska
- Institute of Evolutionary Biology, Faculty of Biology, University of Warsaw, ul. Żwirki i Wigury 101, 02-089, Warsaw, Poland.
| | - Alicja Okrasińska
- Institute of Evolutionary Biology, Faculty of Biology, University of Warsaw, ul. Żwirki i Wigury 101, 02-089, Warsaw, Poland.
| | | | - Julia Pawłowska
- Institute of Evolutionary Biology, Faculty of Biology, University of Warsaw, ul. Żwirki i Wigury 101, 02-089, Warsaw, Poland.
| |
Collapse
|
28
|
Mikryukov V, Dulya O, Zizka A, Bahram M, Hagh-Doust N, Anslan S, Prylutskyi O, Delgado-Baquerizo M, Maestre FT, Nilsson H, Pärn J, Öpik M, Moora M, Zobel M, Espenberg M, Mander Ü, Khalid AN, Corrales A, Agan A, Vasco-Palacios AM, Saitta A, Rinaldi A, Verbeken A, Sulistyo B, Tamgnoue B, Furneaux B, Duarte Ritter C, Nyamukondiwa C, Sharp C, Marín C, Gohar D, Klavina D, Sharmah D, Dai DQ, Nouhra E, Biersma EM, Rähn E, Cameron E, De Crop E, Otsing E, Davydov E, Albornoz F, Brearley F, Buegger F, Zahn G, Bonito G, Hiiesalu I, Barrio I, Heilmann-Clausen J, Ankuda J, Doležal J, Kupagme J, Maciá-Vicente J, Djeugap Fovo J, Geml J, Alatalo J, Alvarez-Manjarrez J, Põldmaa K, Runnel K, Adamson K, Bråthen KA, Pritsch K, Tchan Issifou K, Armolaitis K, Hyde K, Newsham KK, Panksep K, Lateef AA, Hansson L, Lamit L, Saba M, Tuomi M, Gryzenhout M, Bauters M, Piepenbring M, Wijayawardene NN, Yorou N, Kurina O, Mortimer P, Meidl P, Kohout P, Puusepp R, Drenkhan R, Garibay-Orijel R, Godoy R, Alkahtani S, Rahimlou S, Dudov S, Põlme S, Ghosh S, Mundra S, Ahmed T, Netherway T, Henkel T, Roslin T, Nteziryayo V, Fedosov V, Onipchenko V, Yasanthika WAE, Lim Y, Van Nuland M, Soudzilovskaia N, Antonelli A, Kõljalg U, Abarenkov K, Tedersoo L. Connecting the multiple dimensions of global soil fungal diversity. SCIENCE ADVANCES 2023; 9:eadj8016. [PMID: 38019923 PMCID: PMC10686567 DOI: 10.1126/sciadv.adj8016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Abstract
How the multiple facets of soil fungal diversity vary worldwide remains virtually unknown, hindering the management of this essential species-rich group. By sequencing high-resolution DNA markers in over 4000 topsoil samples from natural and human-altered ecosystems across all continents, we illustrate the distributions and drivers of different levels of taxonomic and phylogenetic diversity of fungi and their ecological groups. We show the impact of precipitation and temperature interactions on local fungal species richness (alpha diversity) across different climates. Our findings reveal how temperature drives fungal compositional turnover (beta diversity) and phylogenetic diversity, linking them with regional species richness (gamma diversity). We integrate fungi into the principles of global biodiversity distribution and present detailed maps for biodiversity conservation and modeling of global ecological processes.
Collapse
Affiliation(s)
- Vladimir Mikryukov
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu 50409, Estonia
| | - Olesya Dulya
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu 50409, Estonia
| | - Alexander Zizka
- Department of Biology, Philipps-University, Marburg 35032, Germany
| | - Mohammad Bahram
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala 75007, Sweden
| | - Niloufar Hagh-Doust
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu 50409, Estonia
| | - Sten Anslan
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu 50409, Estonia
| | - Oleh Prylutskyi
- Department of Mycology and Plant Resistance, School of Biology, V.N. Karazin Kharkiv National University, Kharkiv 61022, Ukraine
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistemico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), Consejo Superior de Investigaciones Científicas, Sevilla 41012, Spain
| | - Fernando T. Maestre
- Instituto Multidisciplinar para el Estudio del Medio ‘Ramón Margalef’ and Departamento de Ecología, Universidad de Alicante, Alicante 03690, Spain
| | - Henrik Nilsson
- Gothenburg Global Biodiversity Centre, University of Gothenburg, Gothenburg 40530, Sweden
| | - Jaan Pärn
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu 50409, Estonia
| | - Maarja Öpik
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu 50409, Estonia
| | - Mari Moora
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu 50409, Estonia
| | - Martin Zobel
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu 50409, Estonia
| | - Mikk Espenberg
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu 50409, Estonia
| | - Ülo Mander
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu 50409, Estonia
| | | | - Adriana Corrales
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Universidad del Rosario, Bogotá 111221, Colombia
| | - Ahto Agan
- Institute of Forestry and Engineering, Estonian University of Life Sciences, Tartu 51006, Estonia
| | - Aída-M. Vasco-Palacios
- Grupo de BioMicro y Microbiología Ambiental, Escuela de Microbiologia, Universidad de Antioquia UdeA, Medellin 050010, Colombia
| | - Alessandro Saitta
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Palermo 90128, Italy
| | - Andrea Rinaldi
- Department of Biomedical Sciences, University of Cagliari, Cagliari 09124, Italy
| | | | - Bobby Sulistyo
- Department Biology, Ghent University, Ghent 9000, Belgium
| | - Boris Tamgnoue
- Department of Crop Science, University of Dschang, Dschang, Cameroon
| | - Brendan Furneaux
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä 40014, Finland
| | | | - Casper Nyamukondiwa
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye 10071, Botswana
| | - Cathy Sharp
- Natural History Museum of Zimbabwe, Bulawayo, Zimbabwe
| | - César Marín
- Centro de Investigación e Innovación para el Cambio Climático (CiiCC), Universidad SantoTomás, Valdivia, Chile
| | - Daniyal Gohar
- Center of Mycology and Microbiology, University of Tartu, Tartu 50409, Estonia
| | - Darta Klavina
- Latvian State Forest Research Institute Silava, Salaspils 2169, Latvia
| | - Dipon Sharmah
- Department of Botany, Jawaharlal Nehru Rajkeeya Mahavidyalaya, Pondicherry University, Port Blair 744101, India
| | - Dong-Qin Dai
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China
| | - Eduardo Nouhra
- Instituto Multidisciplinario de Biología Vegetal (CONICET), Universidad Nacional de Córdoba, Cordoba 5000, Argentina
| | - Elisabeth Machteld Biersma
- Natural History Museum of Denmark, Copenhagen 1123, Denmark
- British Antarctic Survey, NERC, High Cross, Cambridge CB3 0ET, UK
| | - Elisabeth Rähn
- Institute of Forestry and Engineering, Estonian University of Life Sciences, Tartu 51006, Estonia
| | - Erin Cameron
- Department of Environmental Science, Saint Mary's University, Halifax B3H 3C3, Canada
| | - Eske De Crop
- Department Biology, Ghent University, Ghent 9000, Belgium
| | - Eveli Otsing
- Center of Mycology and Microbiology, University of Tartu, Tartu 50409, Estonia
| | | | - Felipe Albornoz
- Land and Water, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Wembley 6014, Australia
| | - Francis Brearley
- Department of Natural Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Franz Buegger
- Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Geoffrey Zahn
- Biology Department, Utah Valley University, Orem, UT 84058, USA
| | - Gregory Bonito
- Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824-6254, USA
| | - Inga Hiiesalu
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu 50409, Estonia
| | - Isabel Barrio
- Faculty of Natural and Environmental Sciences, Agricultural University of Iceland, Reykjavík 112, Iceland
| | - Jacob Heilmann-Clausen
- Center for Macroecology, Evolution and Climate, University of Copenhagen, Copenhagen 1350, Denmark
| | - Jelena Ankuda
- Vokė branch, Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry (LAMMC), Vilnius LT-02232, Lithuania
| | - Jiri Doležal
- Department of Botany, Faculty of Science, University of South Bohemia, České Budějovice 37005, Czech Republic
| | - John Kupagme
- Center of Mycology and Microbiology, University of Tartu, Tartu 50409, Estonia
| | - Jose Maciá-Vicente
- Department of Environmental Sciences, Plant Ecology and Nature Conservation, Wageningen University and Research, Wageningen 6708, Netherlands
| | | | - József Geml
- ELKH-EKKE Lendület Environmental Microbiome Research Group, Eszterházy Károly Catholic University, Eger 3300, Hungary
| | - Juha Alatalo
- Environmental Science Center, Qatar University, Doha, Qatar
| | | | - Kadri Põldmaa
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu 50409, Estonia
- Natural History Museum, University of Tartu, Tartu 51003, Estonia
| | - Kadri Runnel
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu 50409, Estonia
| | - Kalev Adamson
- Institute of Forestry and Engineering, Estonian University of Life Sciences, Tartu 51006, Estonia
| | - Kari-Anne Bråthen
- Department of Arctic and Marine Biology, The Arctic University of Norway, Tromsø 9019, Norway
| | - Karin Pritsch
- Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Kassim Tchan Issifou
- Research Unit Tropical Mycology and Plants-Soil Fungi Interactions, University of Parakou, Parakou 00229, Benin
| | - Kęstutis Armolaitis
- Department of Silviculture and Ecology, Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry (LAMMC), Girionys 53101, Lithuania
| | - Kevin Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Kevin K. Newsham
- British Antarctic Survey, NERC, High Cross, Cambridge CB3 0ET, UK
| | - Kristel Panksep
- Chair of Hydrobiology and Fishery, Estonian University of Life Sciences, Tartu 51006, Estonia
| | - Adebola Azeez Lateef
- Department of Plant Biology, Faculty of Life Science, University of Ilorin, Ilorin 240102, Nigeria
- Department of Forest Sciences, University of Helsinki, Helsinki 00014, Finland
| | - Linda Hansson
- Gothenburg Centre for Sustainable Development, Gothenburg 41133, Sweden
| | - Louis Lamit
- Department of Biology, Syracuse University, Syracuse 13244, USA
| | - Malka Saba
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Maria Tuomi
- Department of Arctic and Marine Biology, The Arctic University of Norway, Tromsø 9019, Norway
| | - Marieka Gryzenhout
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Marijn Bauters
- Department of Environment, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| | - Meike Piepenbring
- Mycology Working Group, Goethe University Frankfurt am Main, Frankfurt am Main 60438, Germany
| | - Nalin N. Wijayawardene
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, China
| | - Nourou Yorou
- Research Unit Tropical Mycology and Plants-Soil Fungi Interactions, University of Parakou, Parakou 00229, Benin
| | - Olavi Kurina
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu 51006, Estonia
| | - Peter Mortimer
- Center For Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Peter Meidl
- Freie Universität Berlin, Institut für Biologie, Berlin 14195, Germany
| | - Petr Kohout
- Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Rasmus Puusepp
- Center of Mycology and Microbiology, University of Tartu, Tartu 50409, Estonia
| | - Rein Drenkhan
- Institute of Forestry and Engineering, Estonian University of Life Sciences, Tartu 51006, Estonia
| | - Roberto Garibay-Orijel
- Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Roberto Godoy
- Instituto Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh Rahimlou
- Center of Mycology and Microbiology, University of Tartu, Tartu 50409, Estonia
| | - Sergey Dudov
- Department of Ecology and Plant Geography, Moscow Lomonosov State University, Moscow 119234, Russia
| | - Sergei Põlme
- Center of Mycology and Microbiology, University of Tartu, Tartu 50409, Estonia
- Natural History Museum, University of Tartu, Tartu 51003, Estonia
| | - Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9300, South Africa
| | - Sunil Mundra
- Department of Biology, College of Science, United Arab Emirates University (UAEU), Al Ain, UAE
| | - Talaat Ahmed
- Environmental Science Center, Qatar University, Doha, Qatar
| | - Tarquin Netherway
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala 75007, Sweden
| | - Terry Henkel
- Department of Biological Sciences, California State Polytechnic University, Arcata, CA 95521, USA
| | - Tomas Roslin
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala 75007, Sweden
| | - Vincent Nteziryayo
- Department of Food Science and Technology, University of Burundi, Bujumbura Burundi
| | - Vladimir Fedosov
- Department of Ecology and Plant Geography, Moscow Lomonosov State University, Moscow 119234, Russia
| | - Vladimir Onipchenko
- Department of Ecology and Plant Geography, Moscow Lomonosov State University, Moscow 119234, Russia
| | | | - Young Lim
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul 08826, Korea
| | - Michael Van Nuland
- Society for the Protection of Underground Networks (SPUN), Dover, DE 19901, USA
| | | | | | - Urmas Kõljalg
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu 50409, Estonia
- Natural History Museum, University of Tartu, Tartu 51003, Estonia
| | - Kessy Abarenkov
- Natural History Museum, University of Tartu, Tartu 51003, Estonia
| | - Leho Tedersoo
- Center of Mycology and Microbiology, University of Tartu, Tartu 50409, Estonia
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
29
|
Torres-Garcia D, Gené J, García D, Cano-Lira JF. Insights into Some Onygenalean Fungi from Freshwater Sediments in Spain and Description of Novel Taxa. J Fungi (Basel) 2023; 9:1129. [PMID: 38132730 PMCID: PMC10744713 DOI: 10.3390/jof9121129] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
During the course of a project investigating culturable Ascomycota diversity from freshwater sediments in Spain, we isolated 63 strains of cycloheximide-resistant fungi belonging to the order Onygenales. These well-known ascomycetes, able to infect both humans and animals, are commonly found in terrestrial habitats, colonizing keratin-rich soils or dung. Little is known about their diversity in aquatic environments. Combining morphological features and sequence analyses of the ITS and LSU regions of the nrDNA, we identified 14 species distributed in the genera Aphanoascus, Arachniotus, Arthroderma, Arthropsis, Emmonsiellopsis, Gymnoascoideus, Leucothecium, Malbranchea, and Myriodontium. Furthermore, three novel species for the genus Malbranchea are proposed as M. echinulata sp. nov., M. irregularis sp. nov., and M. sinuata sp. nov. The new genera Albidomyces and Neoarthropsis are introduced based on Arachniotus albicans and Arthropsis hispanica, respectively. Neoarthropsis sexualis sp. nov. is characterized and differentiated morphologically from its counterpart by the production of a sexual morph. The novel family Neoarthropsidaceae is proposed for the genera Albidomyes, Apinisia, Arachnotheca, Myriodontium, and Neoarthropsis, based on their phylogenetic relationships and phenotypic and ecological traits. Pseudoamaurascopsis gen. nov. is introduced to accommodate P. spiralis sp. nov., a fungus with unclear taxonomy related to Amaurascopsis and Polytolypa. We traced the ecology and global distribution of the novel fungi through ITS environmental sequences deposited in the GlobalFungi database. Studying the fungal diversity from freshwater sediments not only contributes to filling gaps in the relationships and taxonomy of the Ascomycota but also gives us insights into the fungal community that might represent a putative risk to the health of animals and humans inhabiting or transient in aquatic environments.
Collapse
Affiliation(s)
| | - Josepa Gené
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut and IU-RESCAT, Universitat Rovira i Virgili, 43201 Reus, Spain; (D.T.-G.); (D.G.); (J.F.C.-L.)
| | | | | |
Collapse
|
30
|
Li P, Tedersoo L, Crowther TW, Wang B, Shi Y, Kuang L, Li T, Wu M, Liu M, Luan L, Liu J, Li D, Li Y, Wang S, Saleem M, Dumbrell AJ, Li Z, Jiang J. Global diversity and biogeography of potential phytopathogenic fungi in a changing world. Nat Commun 2023; 14:6482. [PMID: 37838711 PMCID: PMC10576792 DOI: 10.1038/s41467-023-42142-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 10/02/2023] [Indexed: 10/16/2023] Open
Abstract
Phytopathogenic fungi threaten global food security but the ecological drivers of their global diversity and biogeography remain unknown. Here, we construct and analyse a global atlas of potential phytopathogenic fungi from 20,312 samples across all continents and major oceanic island regions, eleven land cover types, and twelve habitat types. We show a peak in the diversity of phytopathogenic fungi in mid-latitude regions, in contrast to the latitudinal diversity gradients observed in aboveground organisms. Our study identifies climate as an important driver of the global distribution of phytopathogenic fungi, and our models suggest that their diversity and invasion potential will increase globally by 2100. Importantly, phytopathogen diversity will increase largely in forest (37.27-79.12%) and cropland (34.93-82.51%) ecosystems, and this becomes more pronounced under fossil-fuelled industry dependent future scenarios. Thus, we recommend improved biomonitoring in forests and croplands, and optimised sustainable development approaches to reduce potential threats from phytopathogenic fungi.
Collapse
Affiliation(s)
- Pengfa Li
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, 210095, Nanjing, China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 210008, Nanjing, China
| | - Leho Tedersoo
- Mycology and Microbiology Center, University of Tartu, Tartu, Estonia
| | - Thomas W Crowther
- Institute of Integrative Biology, ETH Zürich, 8092, Zürich, Switzerland
| | - Baozhan Wang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, 210095, Nanjing, China.
| | - Yu Shi
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Lu Kuang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, 210095, Nanjing, China
| | - Ting Li
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, 210095, Nanjing, China
| | - Meng Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 210008, Nanjing, China
| | - Ming Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 210008, Nanjing, China
| | - Lu Luan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 210008, Nanjing, China
| | - Jia Liu
- Soil and Fertilizer & Resources and Environment Institute, Jiangxi Academy of Agricultural Sciences, 330200, Nanchang, China
| | - Dongzhen Li
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, 100091, Beijing, China
| | - Yongxia Li
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, 100091, Beijing, China
| | - Songhan Wang
- College of Agriculture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Muhammad Saleem
- Department of Biological Sciences, Alabama State University, Montgomery, AL, 36104, USA
| | - Alex J Dumbrell
- School of Life Sciences, University of Essex, Colchester, Essex, UK.
| | - Zhongpei Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 210008, Nanjing, China
| | - Jiandong Jiang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, 210095, Nanjing, China.
| |
Collapse
|
31
|
Dos Santos MSN, Ody LP, Kerber BD, Araujo BA, Oro CED, Wancura JHC, Mazutti MA, Zabot GL, Tres MV. New frontiers of soil fungal microbiome and its application for biotechnology in agriculture. World J Microbiol Biotechnol 2023; 39:287. [PMID: 37632593 DOI: 10.1007/s11274-023-03728-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/10/2023] [Indexed: 08/28/2023]
Abstract
The fungi-based technology provided encouraging scenarios in the transition from a conventionally based economic system to the potential security of sources closely associated with the agricultural sphere such as the agriculture. In recent years, the intensification of fungi-based processes has generated significant gains, additionally to the production of materials with significant benefits and strong environmental importance. Furthermore, the growing concern for human health, especially in the agriculture scenario, has fostered the investigation of organisms with high biological and beneficial potential for use in agricultural systems. Accordingly, this study offered a comprehensive review of the diversity of the soil fungal microbiome and its main applications in a biotechnological approach aimed at agriculture and food chain-related areas. Moreover, the spectrum of opportunities and the extensive optimization platform for obtaining fungi compounds and metabolites are discussed. Finally, future perspectives regarding the insurgency of innovations and challenges on the broad rise of visionary solutions applied to the biotechnology context are provided.
Collapse
Affiliation(s)
- Maicon S N Dos Santos
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria (UFSM),, 1040, Sete de Setembro St., Center DC, Cachoeira do Sul, RS 96508-010, Brazil
| | - Lissara P Ody
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria (UFSM),, 1040, Sete de Setembro St., Center DC, Cachoeira do Sul, RS 96508-010, Brazil
| | - Bruno D Kerber
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria (UFSM),, 1040, Sete de Setembro St., Center DC, Cachoeira do Sul, RS 96508-010, Brazil
| | - Beatriz A Araujo
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria (UFSM),, 1040, Sete de Setembro St., Center DC, Cachoeira do Sul, RS 96508-010, Brazil
| | - Carolina E D Oro
- Department of Food Engineering, Integrated Regional University of Alto Uruguay and Missions, 1621, Sete de Setembro Av., Fátima, Erechim, RS 99709-910, Brazil
| | - João H C Wancura
- Department of Chemical Engineering, Federal University of Santa Maria (UFSM), 1000, Roraima Av., Camobi, Santa Maria, RS 97105-900, Brazil
| | - Marcio A Mazutti
- Department of Chemical Engineering, Federal University of Santa Maria (UFSM), 1000, Roraima Av., Camobi, Santa Maria, RS 97105-900, Brazil
| | - Giovani L Zabot
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria (UFSM),, 1040, Sete de Setembro St., Center DC, Cachoeira do Sul, RS 96508-010, Brazil
| | - Marcus V Tres
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria (UFSM),, 1040, Sete de Setembro St., Center DC, Cachoeira do Sul, RS 96508-010, Brazil.
| |
Collapse
|
32
|
Bradshaw MJ, Aime MC, Rokas A, Maust A, Moparthi S, Jellings K, Pane AM, Hendricks D, Pandey B, Li Y, Pfister DH. Extensive intragenomic variation in the internal transcribed spacer region of fungi. iScience 2023; 26:107317. [PMID: 37529098 PMCID: PMC10387565 DOI: 10.1016/j.isci.2023.107317] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/08/2023] [Accepted: 07/04/2023] [Indexed: 08/03/2023] Open
Abstract
Fungi are among the most biodiverse organisms in the world. Accurate species identification is imperative for studies on fungal ecology and evolution. The internal transcribed spacer (ITS) rDNA region has been widely accepted as the universal barcode for fungi. However, several recent studies have uncovered intragenomic sequence variation within the ITS in multiple fungal species. Here, we mined the genome of 2414 fungal species to determine the prevalence of intragenomic variation and found that the genomes of 641 species, about one-quarter of the 2414 species examined, contained multiple ITS copies. Of those 641 species, 419 (∼65%) contained variation among copies revealing that intragenomic variation is common in fungi. We proceeded to show how these copies could result in the erroneous description of hundreds of fungal species and skew studies evaluating environmental DNA (eDNA) especially when making diversity estimates. Additionally, many genomes were found to be contaminated, especially those of unculturable fungi.
Collapse
Affiliation(s)
- Michael J. Bradshaw
- Harvard University Herbaria and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - M. Catherine Aime
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Antonis Rokas
- Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Autumn Maust
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98195, USA
| | - Swarnalatha Moparthi
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613, USA
| | - Keila Jellings
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Alexander M. Pane
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98195, USA
| | - Dylan Hendricks
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98195, USA
| | - Binod Pandey
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, USA
| | - Yuanning Li
- Institute of Marine Science and Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Donald H. Pfister
- Harvard University Herbaria and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
33
|
Kerr M, Leavitt SD. A Custom Regional DNA Barcode Reference Library for Lichen-Forming Fungi of the Intermountain West, USA, Increases Successful Specimen Identification. J Fungi (Basel) 2023; 9:741. [PMID: 37504730 PMCID: PMC10381598 DOI: 10.3390/jof9070741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/27/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023] Open
Abstract
DNA barcoding approaches provide powerful tools for characterizing fungal diversity. However, DNA barcoding is limited by poor representation of species-level diversity in fungal sequence databases. Can the development of custom, regionally focused DNA reference libraries improve species-level identification rates for lichen-forming fungi? To explore this question, we created a regional ITS database for lichen-forming fungi (LFF) in the Intermountain West of the United States. The custom database comprised over 4800 sequences and represented over 600 formally described and provisional species. Lichen communities were sampled at 11 sites throughout the Intermountain West, and LFF diversity was characterized using high-throughput ITS2 amplicon sequencing. We compared the species-level identification success rates from our bulk community samples using our regional ITS database and the widely used UNITE database. The custom regional database resulted in significantly higher species-level assignments (72.3%) of candidate species than the UNITE database (28.3-34.2%). Within each site, identification of candidate species ranged from 72.3-82.1% using the custom database; and 31.5-55.4% using the UNITE database. These results highlight that developing regional databases may accelerate a wide range of LFF research by improving our ability to characterize species-level diversity using DNA barcoding.
Collapse
Affiliation(s)
- Michael Kerr
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Steven D Leavitt
- M.L. Bean Life Science Museum and Department of Biology, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
34
|
Charria-Girón E, Stchigel AM, Čmoková A, Kolařík M, Surup F, Marin-Felix Y. Amesia hispanica sp. nov., Producer of the Antifungal Class of Antibiotics Dactylfungins. J Fungi (Basel) 2023; 9:463. [PMID: 37108917 PMCID: PMC10141101 DOI: 10.3390/jof9040463] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
During a study of the diversity of soilborne fungi from Spain, a strain belonging to the family Chaetomiaceae (Sordariales) was isolated. The multigene phylogenetic inference using five DNA loci showed that this strain represents an undescribed species of the genus Amesia, herein introduced as A. hispanica sp. nov. Investigation of its secondary metabolome led to the isolation of two new derivatives (2 and 3) of the known antifungal antibiotic dactylfungin A (1), together with the known compound cochliodinol (4). The planar structures of 1-4 were determined by ultrahigh performance liquid chromatography coupled with diode array detection and ion mobility tandem mass spectrometry (UHPLC-DAD-IM-MS/MS) and extensive 1D and 2D nuclear magnetic resonance (NMR) spectroscopy after isolation by HPLC. All isolated secondary metabolites were tested for their antimicrobial and cytotoxic activities. Dactylfungin A (1) showed selective and strong antifungal activity against some of the tested human pathogens (Aspergillus fumigatus and Cryptococcus neoformans). The additional hydroxyl group in 2 resulted in the loss of activity against C. neoformans but still retained the inhibition of As. fumigatus in a lower concentration than that of the respective control, without showing any cytotoxic effects. In contrast, 25″-dehydroxy-dactylfungin A (3) exhibited improved activity against yeasts (Schizosaccharomyces pombe and Rhodotorula glutinis) than 1 and 2, but resulted in the appearance of slight cytotoxicity. The present study exemplifies how even in a well-studied taxonomic group such as the Chaetomiaceae, the investigation of novel taxa still brings chemistry novelty, as demonstrated in this first report of this antibiotic class for chaetomiaceous and sordarialean taxa.
Collapse
Affiliation(s)
- Esteban Charria-Girón
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Alberto Miguel Stchigel
- Mycology Unit, Medical School, Universitat Rovira i Virgili, C/Sant Llorenç 21, 43201 Tarragona, Spain
| | - Adéla Čmoková
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic
| | - Miroslav Kolařík
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic
| | - Frank Surup
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Yasmina Marin-Felix
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| |
Collapse
|
35
|
Baldrian P, López-Mondéjar R, Kohout P. Forest microbiome and global change. Nat Rev Microbiol 2023:10.1038/s41579-023-00876-4. [PMID: 36941408 DOI: 10.1038/s41579-023-00876-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2023] [Indexed: 03/23/2023]
Abstract
Forests influence climate and mitigate global change through the storage of carbon in soils. In turn, these complex ecosystems face important challenges, including increases in carbon dioxide, warming, drought and fire, pest outbreaks and nitrogen deposition. The response of forests to these changes is largely mediated by microorganisms, especially fungi and bacteria. The effects of global change differ among boreal, temperate and tropical forests. The future of forests depends mostly on the performance and balance of fungal symbiotic guilds, saprotrophic fungi and bacteria, and fungal plant pathogens. Drought severely weakens forest resilience, as it triggers adverse processes such as pathogen outbreaks and fires that impact the microbial and forest performance for carbon storage and nutrient turnover. Nitrogen deposition also substantially affects forest microbial processes, with a pronounced effect in the temperate zone. Considering plant-microorganism interactions would help predict the future of forests and identify management strategies to increase ecosystem stability and alleviate climate change effects. In this Review, we describe the impact of global change on the forest ecosystem and its microbiome across different climatic zones. We propose potential approaches to control the adverse effects of global change on forest stability, and present future research directions to understand the changes ahead.
Collapse
Affiliation(s)
- Petr Baldrian
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Rubén López-Mondéjar
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Soil and Water Conservation and Waste Management, CEBAS-CSIC, Campus Universitario de Espinardo, Murcia, Spain
| | - Petr Kohout
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
36
|
Aranguren R, Voyron S, Ungaro F, Cañón J, Lumini E. Metabarcoding Reveals Impact of Different Land Uses on Fungal Diversity in the South-Eastern Region of Antioquia, Colombia. PLANTS (BASEL, SWITZERLAND) 2023; 12:1126. [PMID: 36903986 PMCID: PMC10005449 DOI: 10.3390/plants12051126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/20/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Changes in soil fungal communities caused by land use have not been sufficiently studied in South American Andosols, which are considered key food production areas. Since fungal communities play an important role in soil functionality, this study analysed 26 soil samples of Andosols collected from locations devoted to conservation, agriculture and mining activities in Antioquia, Colombia, to establish differences between fungal communities as indicators of soil biodiversity loss using Illumina MiSeq metabarcoding on nuclear ribosomal ITS2 region. A non-metric multidimensional scaling allowed to explore driver factors of changes in fungal communities, while the significance of these variations was assessed by PERMANOVA. Furthermore, the effect size of land use over relevant taxa was quantified. Our results suggest a good coverage of fungal diversity with a detection of 353,312 high-quality ITS2 sequences. We found strong correlations of Shannon and Fisher indexes with dissimilarities on fungal communities (r = 0.94). These correlations allow grouping soil samples according to land use. Variations in temperature, air humidity and organic matter content lead to changes in abundances of relevant orders (Wallemiales and Trichosporonales). The study highlights specific sensitivities of fungal biodiversity features in tropical Andosols, which may serve as a basis for robust assessments of soil quality in the region.
Collapse
Affiliation(s)
- Raul Aranguren
- GAIA Research Group, Universidad de Antioquia, Medellín 050010, Colombia
| | - Samuele Voyron
- Department of Life Sciences and Systems Biology, University of Turin, 10124 Turin, Italy
- Institute for Sustainable Plant Protection (IPSP), National Research Council (CNR), 10125 Turin, Italy
| | - Fabrizio Ungaro
- Institute for Bio-Economy (IBE), National Research Council (CNR), 50018 Florence, Italy
| | - Julio Cañón
- GAIA Research Group, Universidad de Antioquia, Medellín 050010, Colombia
| | - Erica Lumini
- Institute for Sustainable Plant Protection (IPSP), National Research Council (CNR), 10125 Turin, Italy
| |
Collapse
|
37
|
Beenken L, Stroheker S, Dubach V, Schlegel M, Queloz V, Gross A. Microstrobilinia castrans, a new genus and species of the Sclerotiniaceae parasitizing pollen cones of Picea spp. Mycol Prog 2023. [DOI: 10.1007/s11557-023-01865-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
AbstractThe fungal pathogens of spruce are well known in Europe and elsewhere. Therefore, it was surprising to discover a new fungal species and genus in Central Europe that attacks the pollen cones of three spruce species. The new ascomycete forms apothecia on stromatized pollen cones of Norway spruce (Picea abies) and Serbian spruce (Picea omorika) in mountain areas and on West Himalayan spruce (Picea smithiana) planted in urban lowland regions of Switzerland, Germany, and Italy. It was also detected in France, based on metabarcode sequences deposited in the GlobalFungi database. Its sudden appearance and the different origins of the host trees in Europe and Asia leave the origin of the fungus unclear. The new fungus might be a neomycete for Europe. A phylogenetic analysis using SSU, LSU, ITS, RPB2, and TEF1 sequences classified the fungus as a member of Sclerotiniaceae (Helotiales, Leotiomycetes). However, it differs morphologically from the other genera of this family in having an ascus without apical apparatus containing four mainly citriform spores with 16 nuclei each. Furthermore, it is the only known cup fungus that parasitizes pollen cones of conifers by stromatizing their tissue and infecting pollen grains. The fungus does not seem to cause major damage to the spruce populations, as only a few pollen cones per tree are affected. All this leads us to describe the newly discovered fungus as the new species and new genus Microstrobilinia castrans, the fungus that castrates pollen cones of spruce.
Collapse
|
38
|
DNA metabarcoding reveals compositional and functional differences in fungal communities among Amazonian canga formations. FUNGAL ECOL 2023. [DOI: 10.1016/j.funeco.2022.101209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
39
|
Shen Q, Zhang K, Voroney P, Meng L, Xu J, Brookes P. Biodiesel Co-Product enhances microbial stability and beneficial microbial communities along a gradient of soil water content. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159204. [PMID: 36198351 DOI: 10.1016/j.scitotenv.2022.159204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Biodiesel Co-Product (BCP) is a complex carbonaceous liquid formed during the commercial production of biodiesel. Previously, BCP was shown to decrease nitrogen (N) leaching from the soil, but the effects of BCP on the diversity, composition, and structure of soil microbial communities are not well understood. Here, we applied 1.5 mg BCP-C to acidic soil (pH 3.5) at a range of different water contents (from 40 % to 100 % water holding capacity) to investigate the interactions between BCP and increasing water holding capacity on the diversity, composition, and interactions of soil microbial communities. Distance-based multivariate linear model (DistLM) and non-metric multidimensional scaling (NMDS) analyses showed that BCP caused larger changes in fungal than bacterial communities, while soil water content had a greater effect on bacterial communities relative to fungal communities. Co-occurrence network analyses indicated that BCP amendment produced more robust and complex bacterial networks and more stable fungal ones. BCP significantly increased the OTU numbers of beneficial microbes (e.g., Trichoderma spp.) in all water contents, with fewer OTU numbers of putative pathogenetic species (Fusarium spp. and Aspergillus spp.). These findings indicate that BCP addition may be conducive to the health and stability of soil ecosystems.
Collapse
Affiliation(s)
- Qunli Shen
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China; Faculty of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Kaile Zhang
- North Florida Research and Education Center, University of Florida, Quincy, FL 32351, USA; Soil and Water Sciences Department, University of Florida, Gainesville, FL 32611, USA.
| | - Paul Voroney
- Faculty of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Lei Meng
- School of Tropical Crops, Hainan University, Haikou 570228, China
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Philip Brookes
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
40
|
Krah F, March‐Salas M. eDNA metabarcoding reveals high soil fungal diversity and variation in community composition among Spanish cliffs. Ecol Evol 2022; 12:e9594. [PMID: 36523524 PMCID: PMC9745262 DOI: 10.1002/ece3.9594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 09/10/2024] Open
Abstract
Environments characterized by physical extremes harbor unique species diversity with particular adaptations. Cliffs are harsh environments for organisms but host a great diversity of specialized plants with many endemics, rare and even endangered species. It is, however, less known which fungal diversity the cliff habitats contain and whether it differs among different cliff locations. We thus sampled soil from three separate cliff locations in the North, Centre, and South of Spain and used eDNA metabarcoding to determine fungal diversity. To better understand whether cliff specialist plants may promote particular fungal communities, we have sampled soil from crevices with cliff specialist plants and no apparent plants as controls. Major lifestyles found in cliff soils were saprotrophs, and major fungal orders were Dothideomycetes, Sordariomycetes, and Eurotiomycetes, while the amount of symbiotrophic fungi was relatively low. We found no significant differences in fungal amplicon sequence variant (ASV) richness among the three sampled locations, but the sites were significantly different in their community composition and their main indicator species. Overall, there were no significant differences in fungal ASV richness or composition between soils from cliff specialist plants and soils without plants, suggesting a unique fungal diversity in cliff soils independent from specialized plants. However, preliminary findings on soils of the specialist cliff plant Sedum dasyphyllum against control soils suggest that the presence of a specialist plant may be a relevant factor affecting the specificity of the fungal community in cliff soils. Our results indicate the existence of particular cliff fungal communities in each location, and that, despite limited and poorly developed soils and harsh conditions, cliffs can harbor a great diversity of fungal species, comparable to other ecosystems of Spain. This study points out that some fungi may be cliff-specific, shaping particular communities that mediate plant adaptations to cliffs' extreme conditions.
Collapse
Affiliation(s)
- Franz‐Sebastian Krah
- Faculty of Biological Sciences, Institute for Ecology, Evolution and Diversity, Conservation BiologyGoethe University FrankfurtFrankfurt am MainGermany
| | - Martí March‐Salas
- Faculty of Biological Sciences, Institute for Ecology, Evolution and Diversity, Plant Evolutionary EcologyGoethe University FrankfurtFrankfurt am MainGermany
| |
Collapse
|
41
|
Jarrige D, Haridas S, Bleykasten-Grosshans C, Joly M, Nadalig T, Sancelme M, Vuilleumier S, Grigoriev IV, Amato P, Bringel F. High-quality genome of the basidiomycete yeast Dioszegia hungarica PDD-24b-2 isolated from cloud water. G3 (BETHESDA, MD.) 2022; 12:jkac282. [PMID: 36259934 PMCID: PMC9713403 DOI: 10.1093/g3journal/jkac282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/06/2022] [Indexed: 04/26/2024]
Abstract
The genome of the basidiomycete yeast Dioszegia hungarica strain PDD-24b-2 isolated from cloud water at the summit of puy de Dôme (France) was sequenced using a hybrid PacBio and Illumina sequencing strategy. The obtained assembled genome of 20.98 Mb and a GC content of 57% is structured in 16 large-scale contigs ranging from 90 kb to 5.56 Mb, and another 27.2 kb contig representing the complete circular mitochondrial genome. In total, 8,234 proteins were predicted from the genome sequence. The mitochondrial genome shows 16.2% cgu codon usage for arginine but has no canonical cognate tRNA to translate this codon. Detected transposable element (TE)-related sequences account for about 0.63% of the assembled genome. A dataset of 2,068 hand-picked public environmental metagenomes, representing over 20 Tbp of raw reads, was probed for D. hungarica related ITS sequences, and revealed worldwide distribution of this species, particularly in aerial habitats. Growth experiments suggested a psychrophilic phenotype and the ability to disperse by producing ballistospores. The high-quality assembled genome obtained for this D. hungarica strain will help investigate the behavior and ecological functions of this species in the environment.
Collapse
Affiliation(s)
- Domitille Jarrige
- Génétique Moléculaire, Génomique, Microbiologie (GMGM), Université de Strasbourg, UMR 7156 CNRS, Strasbourg, France
| | - Sajeet Haridas
- Lawrence Berkeley National Laboratory, U.S. Department of Energy Joint Genome Institute, Berkeley, CA 94720, USA
| | | | - Muriel Joly
- Université Clermont Auvergne, Clermont Auvergne Institut National Polytechnique (INP), Centre National de la Recherche Scientifique (CNRS), Institut de Chimie de Clermont-Ferrand (ICCF), 63000 Clermont-Ferrand, France
| | - Thierry Nadalig
- Génétique Moléculaire, Génomique, Microbiologie (GMGM), Université de Strasbourg, UMR 7156 CNRS, Strasbourg, France
| | - Martine Sancelme
- Université Clermont Auvergne, Clermont Auvergne Institut National Polytechnique (INP), Centre National de la Recherche Scientifique (CNRS), Institut de Chimie de Clermont-Ferrand (ICCF), 63000 Clermont-Ferrand, France
| | - Stéphane Vuilleumier
- Génétique Moléculaire, Génomique, Microbiologie (GMGM), Université de Strasbourg, UMR 7156 CNRS, Strasbourg, France
| | - Igor V Grigoriev
- Lawrence Berkeley National Laboratory, U.S. Department of Energy Joint Genome Institute, Berkeley, CA 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Pierre Amato
- Université Clermont Auvergne, Clermont Auvergne Institut National Polytechnique (INP), Centre National de la Recherche Scientifique (CNRS), Institut de Chimie de Clermont-Ferrand (ICCF), 63000 Clermont-Ferrand, France
| | - Françoise Bringel
- Génétique Moléculaire, Génomique, Microbiologie (GMGM), Université de Strasbourg, UMR 7156 CNRS, Strasbourg, France
| |
Collapse
|
42
|
Corrales A, Koch RA, Vasco-Palacios AM, Smith ME, Ge ZW, Henkel TW. Diversity and distribution of tropical ectomycorrhizal fungi. Mycologia 2022; 114:919-933. [PMID: 36194092 DOI: 10.1080/00275514.2022.2115284] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Abstract
The tropics were long considered to have few ectomycorrhizal fungi, presumably due to a paucity of ectomycorrhizal host plants relative to higher-latitude ecosystems. However, an increase in research in tropical regions over the past 30 years has greatly expanded knowledge about the occurrence of tropical ectomycorrhizal fungi. To assess their broad biogeographic and diversity patterns, we conducted a comprehensive review and quantitative data analysis of 49 studies with 80 individual data sets along with additional data from GlobalFungi to elucidate tropical diversity patterns and biogeography of ectomycorrhizal fungi across the four main tropical regions: the Afrotropics, the Neotropics, Southeast Asia, and Oceania. Generalized linear models were used to explore biotic and abiotic influences on the relative abundance of the 10 most frequently occurring lineages. We also reviewed the available literature and synthesized current knowledge about responses of fungi to anthropogenic disturbances, and their conservation status and threats. We found that /russula-lactarius and /tomentella-thelephora were the most abundant lineages in the Afrotropics, the Neotropics, and Southeast Asia, whereas /cortinarius was the most abundant lineage in Oceania, and that /russula-lactarius, /inocybe, and /tomentella-thelephora were the most species-rich lineages across all of the tropical regions. Based on these analyses, we highlight knowledge gaps for each tropical region. Increased sampling of tropical regions, collaborative efforts, and use of molecular methodologies are needed for a more comprehensive view of the ecology and diversity of tropical ectomycorrhizal fungi.
Collapse
Affiliation(s)
- Adriana Corrales
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Carrera 26 # 63B - 48, Bogotá 111221, Colombia
| | - Rachel A Koch
- Department of Plant Science and Landscape Architecture, University of Connecticut, 1376 Storrs Rd., Storrs, Connecticut 06269, USA
| | - Aída M Vasco-Palacios
- Grupo BioMicro y de Microbiología Ambiental, Escuela de Microbiología, Universidad de Antioquia UdeA, Calle 70 No. 52-2, Medellín, Colombia. Asociación Colombiana de Micología, ASCOLMIC
| | - Matthew E Smith
- Department of Plant Pathology, University of Florida, 2550 Hull Road, Gainesville, Florida 32611, USA
| | - Zai-Wei Ge
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, Kunming 650201, China
| | - Terry W Henkel
- Department of Biological Sciences, California State Polytechnic University, Humboldt, 1 Harpst St., Arcata, California 95521, USA
| |
Collapse
|
43
|
Defending Earth's terrestrial microbiome. Nat Microbiol 2022; 7:1717-1725. [PMID: 36192539 DOI: 10.1038/s41564-022-01228-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 08/17/2022] [Indexed: 11/08/2022]
Abstract
Microbial life represents the majority of Earth's biodiversity. Across disparate disciplines from medicine to forestry, scientists continue to discover how the microbiome drives essential, macro-scale processes in plants, animals and entire ecosystems. Yet, there is an emerging realization that Earth's microbial biodiversity is under threat. Here we advocate for the conservation and restoration of soil microbial life, as well as active incorporation of microbial biodiversity into managed food and forest landscapes, with an emphasis on soil fungi. We analyse 80 experiments to show that native soil microbiome restoration can accelerate plant biomass production by 64% on average, across ecosystems. Enormous potential also exists within managed landscapes, as agriculture and forestry are the dominant uses of land on Earth. Along with improving and stabilizing yields, enhancing microbial biodiversity in managed landscapes is a critical and underappreciated opportunity to build reservoirs, rather than deserts, of microbial life across our planet. As markets emerge to engineer the ecosystem microbiome, we can avert the mistakes of aboveground ecosystem management and avoid microbial monocultures of single high-performing microbial strains, which can exacerbate ecosystem vulnerability to pathogens and extreme events. Harnessing the planet's breadth of microbial life has the potential to transform ecosystem management, but it requires that we understand how to monitor and conserve the Earth's microbiome.
Collapse
|
44
|
Harrington AH, Sarmiento C, Zalamea PC, Dalling JW, Davis AS, Arnold AE. Acrogenospora terricola sp. nov., a fungal species associated with seeds of pioneer trees in the soil seed bank of a lowland forest in Panama. Int J Syst Evol Microbiol 2022; 72. [PMID: 36314898 DOI: 10.1099/ijsem.0.005558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023] Open
Abstract
As currently circumscribed, Acrogenospora (Acrogenosporaceae, Minutisphaerales, Dothideomycetes) is a genus of saprobic hyphomycetes with distinctive conidia. Although considered common and cosmopolitan, the genus is poorly represented by sequence data, and no neotropical representatives are present in public sequence databases. Consequently, Acrogenospora has been largely invisible to ecological studies that rely on sequence-based identification. As part of an effort to identify fungi collected during ecological studies, we identified strains of Acrogenospora isolated in culture from seeds in the soil seed bank of a lowland tropical forest in Panama. Here we describe Acrogenospora terricola sp. nov. based on morphological and phylogenetic analyses. We confirm that the genus has a pantropical distribution. The observation of Acrogenospora infecting seeds in a terrestrial environment contrasts with previously described species in the genus, most of which occur on decaying wood in freshwater environments. This work highlights the often hidden taxonomic value of collections derived from ecological studies of fungal communities and the ways in which rich sequence databases can shed light on the identity, distributions and diversity of cryptic microfungi.
Collapse
Affiliation(s)
- Alison H Harrington
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| | - Carolina Sarmiento
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
- Smithsonian Tropical Research Institute, Panama City, Republic of Panama
| | - Paul-Camilo Zalamea
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
- Smithsonian Tropical Research Institute, Panama City, Republic of Panama
| | - James W Dalling
- Smithsonian Tropical Research Institute, Panama City, Republic of Panama
- Department of Plant Biology, University of Illinois, Urbana, IL, USA
| | - Adam S Davis
- Department of Crop Science, University of Illinois, Urbana, IL, USA
| | - A Elizabeth Arnold
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
- School of Plant Sciences, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
45
|
Réblová M, Hernández-Restrepo M, Sklenář F, Nekvindová J, Réblová K, Kolařík M. Consolidation of Chloridium: new classification into eight sections with 37 species and reinstatement of the genera Gongromeriza and Psilobotrys. Stud Mycol 2022; 103:87-212. [PMID: 37342155 PMCID: PMC10277272 DOI: 10.3114/sim.2022.103.04] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/02/2022] [Indexed: 06/13/2024] Open
Abstract
Chloridium is a little-studied group of soil- and wood-inhabiting dematiaceous hyphomycetes that share a rare mode of phialidic conidiogenesis on multiple loci. The genus has historically been divided into three morphological sections, i.e. Chloridium, Gongromeriza, and Psilobotrys. Sexual morphs have been placed in the widely perceived genus Chaetosphaeria, but unlike their asexual counterparts, they show little or no morphological variation. Recent molecular studies have expanded the generic concept to include species defined by a new set of morphological characters, such as the collar-like hyphae, setae, discrete phialides, and penicillately branched conidiophores. The study is based on the consilience of molecular species delimitation methods, phylogenetic analyses, ancestral state reconstruction, morphological hypotheses, and global biogeographic analyses. The multilocus phylogeny demonstrated that the classic concept of Chloridium is polyphyletic, and the original sections are not congeneric. Therefore, we abolish the existing classification and propose to restore the generic status of Gongromeriza and Psilobotrys. We present a new generic concept and define Chloridium as a monophyletic, polythetic genus comprising 37 species distributed in eight sections. In addition, of the taxa earlier referred to Gongromeriza, two have been redisposed to the new genus Gongromerizella. Analysis of published metabarcoding data showed that Chloridium is a common soil fungus representing a significant (0.3 %) proportion of sequence reads in environmental samples deposited in the GlobalFungi database. The analysis also showed that they are typically associated with forest habitats, and their distribution is strongly influenced by climate, which is confirmed by our data on their ability to grow at different temperatures. We demonstrated that Chloridium forms species-specific ranges of distribution, which is rarely documented for microscopic soil fungi. Our study shows the feasibility of using the GlobalFungi database to study the biogeography and ecology of fungi. Taxonomic novelties: New genus: Gongromerizella Réblová; New sections: Chloridium section Cryptogonytrichum Réblová, Hern.-Restr., M. Kolařík & F. Sklenar, Chloridium section Gonytrichopsis Réblová, Hern.-Restr., M. Kolařík & F. Sklenar, Chloridium section Metachloridium Réblová, Hern.-Restr., M. Kolařík & F. Sklenar, Chloridium section Volubilia Réblová, Hern.-Restr., M. Kolařík & F. Sklenar; New species: Chloridium bellum Réblová & Hern.-Restr., Chloridium biforme Réblová & Hern.-Restr., Chloridium detriticola Réblová & Hern.-Restr., Chloridium gamsii Réblová & Hern.-Restr., Chloridium guttiferum Réblová & Hern.-Restr., Chloridium moratum Réblová & Hern.-Restr., Chloridium peruense Réblová & Hern.-Restr., Chloridium novae-zelandiae Réblová & Hern.-Restr., Chloridium elongatum Réblová & Hern.-Restr., Chloridium volubile Réblová & Hern.-Restr.; New varieties: Chloridium bellum var. luteum Réblová & Hern.-Restr., Chloridium detriticola var. effusum Réblová & Hern.-Restr., Chloridium chloridioides var. convolutum Réblová & Hern.-Restr.; New combinations: Chloridium section Gonytrichum (Nees & T. Nees) Réblová, Hern.-Restr., M. Kolařík & F. Sklenar, Chloridium section Mesobotrys (Sacc.) Réblová, Hern.-Restr., M. Kolařík & F. Sklenar, Chloridium section Pseudophialocephala (M.S. Calabon et al.) Réblová, Hern.-Restr., M. Kolařík & F. Sklenar, Chloridium simile (W. Gams & Hol.-Jech.) Réblová & Hern.-Restr., Chloridium chloridioides (W. Gams & Hol.-Jech.) Réblová & Hern.-Restr., Chloridium subglobosum (W. Gams & Hol.-Jech.) Réblová & Hern.-Restr., Chloridium fuscum (Corda) Réblová & Hern.-Restr., Chloridium ypsilosporum (Hol.-Jech.) Réblová & Hern.-Restr., Chloridium costaricense (G. Weber et al.) Réblová & Hern.-Restr., Chloridium cuneatum (N.G. Liu et al.) Réblová & Hern.-Restr., Fusichloridium cylindrosporum (W. Gams & Hol.-Jech.) Réblová, Gongromeriza myriocarpa (Fr.) Réblová, Gongromeriza pygmaea (P. Karst.) Réblová, Gongromerizella lignicola (F. Mangenot) Réblová, Gongromerizella pachytrachela (W. Gams & Hol.-Jech) Réblová, Gongromerizella pini (Crous & Akulov) Réblová; New name: Chloridium pellucidum Réblová & Hern.-Restr.; Epitypifications (basionyms): Chaetopsis fusca Corda, Gonytrichum caesium var. subglobosum W. Gams & Hol.-Jech.; Lectotypification (basionym): Gonytrichum caesium Nees & T. Nees. Citation: Réblová M, Hernández-Restrepo M, Sklenář F, Nekvindová J, Réblová K, Kolařík M (2022). Consolidation of Chloridium: new classification into eight sections with 37 species and reinstatement of the genera Gongromeriza and Psilobotrys. Studies in Mycology 103: 87-212. doi: 10.3114/sim.2022.103.04.
Collapse
Affiliation(s)
- M. Réblová
- The Czech Academy of Sciences, Institute of Botany, Department of Taxonomy, 252 43 Průhonice, Czech Republic
| | - M. Hernández-Restrepo
- The Czech Academy of Sciences, Institute of Botany, Department of Taxonomy, 252 43 Průhonice, Czech Republic
| | - F. Sklenář
- The Czech Academy of Sciences, Institute of Botany, Department of Taxonomy, 252 43 Průhonice, Czech Republic
- The Czech Academy of Sciences, Institute of Microbiology, Laboratory of Fungal Genetics and Metabolism, 142 20 Prague 4, Czech Republic
| | - J. Nekvindová
- Institute of Clinical Biochemistry and Diagnostics, University Hospital, 500 05 Hradec Králové, Czech Republic
| | - K. Réblová
- The Czech Academy of Sciences, Institute of Botany, Department of Taxonomy, 252 43 Průhonice, Czech Republic
- CEITEC - Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - M. Kolařík
- The Czech Academy of Sciences, Institute of Microbiology, Laboratory of Fungal Genetics and Metabolism, 142 20 Prague 4, Czech Republic
| |
Collapse
|
46
|
Gautier M, Moreau PA, Boury B, Richard F. Unravelling the French National Fungal Database: Geography, Temporality, Taxonomy and Ecology of the Recorded Diversity. J Fungi (Basel) 2022; 8:jof8090926. [PMID: 36135651 PMCID: PMC9504494 DOI: 10.3390/jof8090926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Large datasets are highly valuable resources to investigate multi-scale patterns of organisms, and lay foundations for citizen science-based conservation strategies. Here, we used 1,043,262 records from 1708 to 2021 to explore the geography, taxonomy, ecology and distribution patterns of 11,556 fungal taxa in metropolitan France. Our analysis reveals a four-phase pattern of temporal recording, with a main contribution of post-1977 observations in relation with the structuration of associative mycology. The dataset shows an uneven geography of fungal recording. Four clusters of high-intensity sampling scattered across France contrast with poorly documented areas, including the Mediterranean. Basidiomycota and Agaricales highly dominate the dataset, accounting for 88.8 and 50.4% of records, respectively. The dataset is composed of many rare taxa, with 61.2% of them showing fewer than 100 records, and 20.5% recorded only once. The analysis of metadata brings to light a preponderance of the mycorrhizal guild (44.6%), followed by litter saprotrophs (31.6%) and wood saprotrophs (18.1%). Highly documented forests (76.3% of records) contrast with poorly investigated artificial (6.43%) and open habitats (10.1%). This work provides the first comprehensive overview of fungal diversity in France and identifies the Mediterranean area and open habitats as priorities to integrate into a global strategy for fungal conservation in France.
Collapse
Affiliation(s)
- Montan Gautier
- Centre d’Ecologie Fonctionelle et Evolutive (UMR CEFE), University Montpellier-CNRS-EPHE-IRD, 1919 route de Mende, CEDEX 5, F-34293 Montpellier, France
| | - Pierre-Arthur Moreau
- Laboratoire de Génie Civil et géo-Environnement (ULR 4515-LGCgE), University Lille, F-59000 Lille, France
- Association pour le développement d’outils naturalistes et informatiques pour la Fonge (AdoniF), 3 rue du Pr Laguesse, F-59000 Lille, France
| | - Béatrice Boury
- Association pour le développement d’outils naturalistes et informatiques pour la Fonge (AdoniF), 3 rue du Pr Laguesse, F-59000 Lille, France
| | - Franck Richard
- Centre d’Ecologie Fonctionelle et Evolutive (UMR CEFE), University Montpellier-CNRS-EPHE-IRD, 1919 route de Mende, CEDEX 5, F-34293 Montpellier, France
- Correspondence:
| |
Collapse
|
47
|
Smith CIE, Bergman P, Hagey DW. Estimating the number of diseases - the concept of rare, ultra-rare, and hyper-rare. iScience 2022; 25:104698. [PMID: 35856030 PMCID: PMC9287598 DOI: 10.1016/j.isci.2022.104698] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
At the dawn of the personalized medicine era, the number of rare diseases has been estimated at 10,000. By considering the influence of environmental factors together with genetic variations and our improved diagnostic capabilities, an assessment suggests a considerably larger number. The majority would be extremely rare, and hence, we introduce the term "hyper-rare," defined as affecting <1/108 individuals. Such disorders would potentially outnumber all currently known rare diseases. Because autosomal recessive disorders are likely concentrated in consanguineous populations, and rare toxicities in rural areas, establishing their existence necessitates a greater reach than is currently viable. Moreover, the randomness of X-linked and gain-of-function mutations greatly compound this challenge. However, whether concurrent diseases actually cause a distinct illness will depend on if their pathological mechanisms interact (phenotype conversion) or not (phenotype maintenance). The hyper-rare disease concept will be important in precision medicine with improved diagnosis and treatment of rare disease patients.
Collapse
Affiliation(s)
- C. I. Edvard Smith
- Department of Laboratory Medicine, Biomolecular and Cellular Medicine and Translational Research Center Karolinska (TRACK), Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Stellenbosch Institute for Advanced Study, Wallenberg Research Centre, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Peter Bergman
- Department of Infectious Diseases, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Department of Laboratory Medicine, Clinical Microbiology, Karolinska Institutet, Stockholm, Sweden
| | - Daniel W. Hagey
- Department of Laboratory Medicine, Biomolecular and Cellular Medicine and Translational Research Center Karolinska (TRACK), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
48
|
Marín C, Rubio J, Godoy R. Chilean blind spots in soil biodiversity and ecosystem function research. AUSTRAL ECOL 2022. [DOI: 10.1111/aec.13232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- César Marín
- Centro de Investigación e Innovación para el Cambio Climático (CiiCC) Universidad Santo Tomás Av. Ramón Picarte 1130 5090000 Valdivia Chile
| | - Javiera Rubio
- Escuela de Geografía, Facultad de Ciencias Universidad Austral de Chile Valdivia Chile
| | - Roberto Godoy
- Instituto Ciencias Ambientales y Evolutivas, Facultad de Ciencias Universidad Austral de Chile Valdivia Chile
| |
Collapse
|
49
|
Torres-Garcia D, García D, Cano-Lira JF, Gené J. Two Novel Genera, Neostemphylium and Scleromyces (Pleosporaceae) from Freshwater Sediments and Their Global Biogeography. J Fungi (Basel) 2022; 8:jof8080868. [PMID: 36012856 PMCID: PMC9409710 DOI: 10.3390/jof8080868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Although the Pleosporaceae is one of the species-richest families in the Pleosporales, research into less-explored substrates can contribute to widening the knowledge of its diversity. In our ongoing survey on culturable Ascomycota from freshwater sediments in Spain, several pleosporacean specimens of taxonomic interest were isolated. Phylogenetic analyses based on five gene markers (ITS, LSU, gapdh, rbp2, and tef1) revealed that these fungi represent so far undescribed lineages, which are proposed as two novel genera in the family, i.e., Neostemphylium typified by Neostemphylium polymorphum sp. nov., and Scleromyces to accommodate Scleromyces submersus sp. nov. Neostemphylium is characterized by the production of phaeodictyospores from apically swollen and darkened conidiogenous cells, the presence of a synanamorph that consists of cylindrical and brown phragmoconidia growing terminally or laterally on hyphae, and by the ability to produce secondary conidia by a microconidiation cycle. Scleromyces is placed phylogenetically distant to any genera in the family and only produces sclerotium-like structures in vitro. The geographic distribution and ecology of N. polymorphum and Sc. submersus were inferred from metabarcoding data using the GlobalFungi database. The results suggest that N. polymorphum is a globally distributed fungus represented by environmental sequences originating primarily from soil samples collected in Australia, Europe, and the USA, whereas Sc. submersus is a less common species that has only been found associated with one environmental sequence from an Australian soil sample. The phylogenetic analyses of the environmental ITS1 and ITS2 sequences revealed at least four dark taxa that might be related to Neostemphylium and Scleromyces. The phylogeny presented here allows us to resolve the taxonomy of the genus Asteromyces as a member of the Pleosporaceae.
Collapse
|
50
|
Spinelli V, Brasili E, Sciubba F, Ceci A, Giampaoli O, Miccheli A, Pasqua G, Persiani AM. Biostimulant Effects of Chaetomium globosum and Minimedusa polyspora Culture Filtrates on Cichorium intybus Plant: Growth Performance and Metabolomic Traits. FRONTIERS IN PLANT SCIENCE 2022; 13:879076. [PMID: 35646045 PMCID: PMC9134003 DOI: 10.3389/fpls.2022.879076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/11/2022] [Indexed: 06/12/2023]
Abstract
In this study, we investigated the biostimulant effect of fungal culture filtrates obtained from Chaetomium globosum and Minimedusa polyspora on growth performance and metabolomic traits of chicory (Cichorium intybus) plants. For the first time, we showed that M. polyspora culture filtrate exerts a direct plant growth-promoting effect through an increase of biomass, both in shoots and roots, and of the leaf area. Conversely, no significant effect on morphological traits and biomass yield was observed in C. intybus plants treated with C. globosum culture filtrate. Based on 1H-NMR metabolomics data, differential metabolites and their related metabolic pathways were highlighted. The treatment with C. globosum and M. polyspora culture filtrates stimulated a common response in C. intybus roots involving the synthesis of 3-OH-butyrate through the decrease in the synthesis of fatty acids and sterols, as a mechanism balancing the NADPH/NADP+ ratio. The fungal culture filtrates differently triggered the phenylpropanoid pathway in C. intybus plants: C. globosum culture filtrate increased phenylalanine and chicoric acid in the roots, whereas M. polyspora culture filtrate stimulated an increase of 4-OH-benzoate. Chicoric acid, whose biosynthetic pathway in the chicory plant is putative and still not well known, is a very promising natural compound playing an important role in plant defense. On the contrary, benzoic acids serve as precursors for a wide variety of essential compounds playing crucial roles in plant fitness and defense response activation. To the best of our knowledge, this is the first study that shows the biostimulant effect of C. globosum and M. polyspora culture filtrates on C. intybus growth and metabolome, increasing the knowledge on fungal bioresources for the development of biostimulants.
Collapse
Affiliation(s)
- Veronica Spinelli
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - Elisa Brasili
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Rome, Italy
| | - Fabio Sciubba
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Rome, Italy
| | - Andrea Ceci
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - Ottavia Giampaoli
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Rome, Italy
| | - Alfredo Miccheli
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Rome, Italy
| | - Gabriella Pasqua
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Rome, Italy
| | - Anna Maria Persiani
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|