1
|
Pantopoulos K. Oral iron supplementation: new formulations, old questions. Haematologica 2024; 109:2790-2801. [PMID: 38618666 PMCID: PMC11367235 DOI: 10.3324/haematol.2024.284967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Indexed: 04/16/2024] Open
Abstract
Iron-deficiency anemia and pre-anemic iron deficiency are the most frequent pathologies. The first line of treatment involves oral iron supplementation. The simplest, least expensive, and most commonly prescribed drug is ferrous sulfate, while other ferrous salts and ferric complexes with polysaccharides or succinylated milk proteins are also widely used. In recent years, novel iron formulations have been developed, such as the lipophilic iron donor ferric maltol, or nanoparticle encapsulated sucrosomial® iron. Oral iron supplementation is usually efficacious in correcting iron-deficiency anemia and replenishing iron stores but causes gastrointestinal side effects that reduce compliance. When oral iron supplementation is contraindicated, intravenous iron therapy can rapidly achieve therapeutic targets without gastrointestinal complications. Herein, we critically review literature on relative efficacy and tolerability of currently available oral iron supplements, and summarize recent data on optimal dosage and frequency.
Collapse
Affiliation(s)
- Kostas Pantopoulos
- Lady Davis Institute for Medical Research, Jewish General Hospital, and Department of Medicine, McGill University, Montreal, Quebec.
| |
Collapse
|
2
|
Ren J, Dai J, Chen Y, Wang Z, Sha R, Mao J. Physiochemical characterization and ameliorative effect of rice resistant starch modified by heat-stable α-amylase and glucoamylase on the gut microbial community in T2DM mice. Food Funct 2024; 15:5596-5612. [PMID: 38722000 DOI: 10.1039/d3fo05456j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
In the presented study, natural rice containing high resistant starch content was used as a raw material to produce rice resistant starch (RRS) through enzymatic hydrolysis with heat-stable α-amylase and glucoamylase. The chemical composition, structural characteristics and in vitro glycemic index (GI) of RRS were evaluated. The effects of RRS at different doses on the body weight, serum biochemical levels, pathological indexes, production of short-chain fatty acids (SCFAs) in the gut and the intestinal microbial composition in T2DM mice were investigated. The results of physiochemical characterization indicated that, relative to rice flour, RRS mainly comprising resistant starch had higher crystallinity (25.85%) and a more stable structure, which contributed to its lower digestibility and decreased GI in vitro. Compared with the model control group, 1 g per kg BW and 2 g per kg BW oral gavage dosages of RRS effectively enhanced the SCFA productivity in the T2DM mouse gut, as well as alleviating T2DM symptoms, involving an increase in body weight, reduction in fasting blood glucose, total cholesterol, triglyceride, low-density lipoprotein cholesterol, alanine transaminase and aspartate aminotransferase, and an increase in serum insulin and high-density lipoprotein cholesterol. Besides, 1 g per kg BW and 2 g per kg BW dosages of RRS mitigated T2DM-induced pancreas damage. Furthermore, up-regulation in the abundance of probiotics (Lactobacillus, Ruminococcus, etc.) and down-regulation in the number of harmful bacteria (Desulfovibrio, Prevotella, etc.) were observed in all RRS-treated groups. In summary, this work suggested that RRS prepared using heat-stable α-amylase and glucoamylase could be a potential functional component for amelioration of T2DM applied in the fields of food and pharmaceutics.
Collapse
Affiliation(s)
- Jianing Ren
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Jing Dai
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Yue Chen
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Zhenzhen Wang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Ruyi Sha
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Jianwei Mao
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| |
Collapse
|
3
|
Li P, Tong T, Shao X, Han Y, Zhang M, Li Y, Lv X, Li H, Li Z. The synergism of Lactobacillaceae, inulin, polyglucose, and aerobic exercise ameliorates hyperglycemia by modulating the gut microbiota community and the metabolic profiles in db/db mice. Food Funct 2024; 15:4832-4851. [PMID: 38623620 DOI: 10.1039/d3fo04642g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
This study aimed to assess the impact of Lactobacillaceae (L or H represents a low or high dose), inulin (I), and polydextrose (P) combined with aerobic exercise (A) on the composition of the gut microbiota and metabolic profiles in db/db mice. After a 12-week intervention, LIP, LIPA, and HIPA groups exhibited significant improvements in hyperglycemia, glucose tolerance, insulin resistance, inflammatory response, and short-chain fatty acid (SCFA) and blood lipid levels compared to type 2 diabetes mice (MC). After treatment, the gut microbiota composition shifted favorably in the treatment groups which significantly increased the abundance of beneficial bacteria, such as Bacteroides, Blautia, Akkermansia, and Faecalibaculum, and significantly decreased the abundance of Proteus. Metabolomics analysis showed that compared to the MC group, the contents of 5-hydroxyindoleacetic acid, 3-hydroxysebacic acid, adenosine monophosphate (AMP), xanthine and hypoxanthine were significantly decreased, while 3-ketosphinganine, sphinganine, and sphingosine were significantly increased in the LIP and LIPA groups, respectively. Additionally, LIP and LIPA not only improved sphingolipid metabolism and purine metabolism pathways but also activated AMP-activated protein kinase to promote β-oxidation by increasing the levels of SCFAs. Faecalibaculum, Blautia, Bacteroides, and Akkermansia exhibited positive correlations with sphingosine, 3-ketosphinganine, and sphinganine, and exhibited negative correlations with hypoxanthine, xanthine and AMP. Faecalibaculum, Blautia, Bacteroides, and Akkermansia may have the potential to improve sphingolipid metabolism and purine metabolism pathways. These findings suggest that the synergism of Lactobacillaceae, inulin, polydextrose, and aerobic exercise provides a promising strategy for the prevention and management of type 2 diabetes.
Collapse
Affiliation(s)
- Peifan Li
- College of Biochemical Engineering, Beijing Union University, Beijing, 100023, China.
| | - Tong Tong
- College of Biochemical Engineering, Beijing Union University, Beijing, 100023, China.
| | - Xinyu Shao
- College of Biochemical Engineering, Beijing Union University, Beijing, 100023, China.
| | - Yan Han
- College of Biochemical Engineering, Beijing Union University, Beijing, 100023, China.
| | - Michael Zhang
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Sino Canada Health Engineering Research Institute, Hefei, China
| | - Yongli Li
- Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Xue Lv
- Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Hao Li
- Fuwai Central China Cardiovascular Hospital, Zhengzhou, 450003, China.
| | - Zuming Li
- College of Biochemical Engineering, Beijing Union University, Beijing, 100023, China.
| |
Collapse
|
4
|
Wang Y, Hu Y, Niu Z, Zhang X, Fan D, Ji X, Lv H, Wang S, Zhao Y. Immunomodulation of nutritional formula containing epigallocatechin-3-gallate, ginseng extract, and polydextrose on inflammation and macrophage polarization. Front Nutr 2024; 11:1370608. [PMID: 38445210 PMCID: PMC10912162 DOI: 10.3389/fnut.2024.1370608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/05/2024] [Indexed: 03/07/2024] Open
Abstract
Single nutrient likes polyphenol or dietary fiber have been exhaustively investigated to validate their positive intervention in health or disease. Meanwhile, the common interaction of inner systems with the nutrient complex has not been well elucidated, which raises the scientific issue of the modulatory effect of the nutrient complex on immunity. The representative prebiotics of epigallocatechin-3-gallate (EGCG), ginseng extract, and polydextrose (PDX) were selected on behalf of the classification of polyphenol, flavone or polysaccharides, and dietary fiber to generally cover the daily food intake in this study to explore their intervention in inflammation and macrophage polarization. The intervention of selected nutrients on inflammation and macrophage polarization has been evaluated against macrophages to unveil their comprehensive effects. The synergistic effect of selected nutrients was demonstrated by inhibiting M1 macrophage polarization and the promotion of M2 macrophage polarization. Then, the nutrient formula was set up to verify the intervention effect, and the results revealed the significant inhibition of cell inflammation and the effect on cell proliferation through promoting the cell cycle in the G2 phase. The nutrient complex could inhibit M1 macrophage polarization to inhibit M1-mediated inflammation and promote M2 macrophages for anti-inflammatory effect and enhance cell phagocytosis. Moreover, the varied intervention effects of the nutrient complex with different formulas could be summarized. In general, the formula containing EGCG, ginseng extract, and PDX was demonstrated to possess an enhanced immunomodulatory effect on cell inflammation and macrophage polarization, which could potentially inspire the investigation of complex nutrients in health and diseases.
Collapse
Affiliation(s)
- Yi Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Yaozhong Hu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Zhenhua Niu
- Shanghai M-Action Health Technology Co., Ltd., Shanghai, China
| | - Xuejiao Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Dancai Fan
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Xuemeng Ji
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Huan Lv
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Yanrong Zhao
- Shanghai M-Action Health Technology Co., Ltd., Shanghai, China
| |
Collapse
|
5
|
Lauw S, Kei N, Chan PL, Yau TK, Ma KL, Szeto CYY, Lin JSC, Wong SH, Cheung PCK, Kwan HS. Effects of Synbiotic Supplementation on Metabolic Syndrome Traits and Gut Microbial Profile among Overweight and Obese Hong Kong Chinese Individuals: A Randomized Trial. Nutrients 2023; 15:4248. [PMID: 37836532 PMCID: PMC10574554 DOI: 10.3390/nu15194248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/29/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
In view of the limited evidence showing anti-obesity effects of synbiotics via modulation of the gut microbiota in humans, a randomized clinical trial was performed. Assessment of the metabolic syndrome traits and profiling of the fecal gut microbiota using 16S rRNA gene sequencing in overweight and obese Hong Kong Chinese individuals before and after dietary intervention with an 8-week increased consumption of fruits and vegetables and/or synbiotic supplementation was conducted. The selected synbiotic contained two probiotics (Lactobacillus acidophilus NCFM and Bifidobacterium lactis HN019) and a prebiotic (polydextrose). Fifty-five overweight or obese individuals were randomized and divided into a synbiotic group (SG; n = 19), a dietary intervention group (DG; n = 18), and a group receiving combined interventions (DSG; n = 18). DSG showed the greatest weight loss effects and number of significant differences in clinical parameters compared to its baseline values-notably, decreases in fasting glucose, insulin, HOMA-IR, and triglycerides and an increase in HDL-cholesterol. DSG lowered Megamonas abundance, which was positively associated with BMI, body fat mass, and trunk fat mass. The results suggested that increasing dietary fiber consumption from fruits and vegetables combined with synbiotic supplementation is more effective than either approach alone in tackling obesity.
Collapse
Affiliation(s)
- Susana Lauw
- Food and Nutritional Sciences Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China; (S.L.); (N.K.); (K.L.M.); (P.C.K.C.)
- Food Research Centre, The Chinese University of Hong Kong, Hong Kong SAR, China;
| | - Nelson Kei
- Food and Nutritional Sciences Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China; (S.L.); (N.K.); (K.L.M.); (P.C.K.C.)
| | - Po Lam Chan
- Food Research Centre, The Chinese University of Hong Kong, Hong Kong SAR, China;
- HSK GeneTech Limited, Hong Kong SAR, China;
| | - Tsz Kwan Yau
- Cell and Molecular Biology Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China;
| | - Ka Lee Ma
- Food and Nutritional Sciences Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China; (S.L.); (N.K.); (K.L.M.); (P.C.K.C.)
| | | | - Janice Su-Chuen Lin
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China;
| | - Sunny Hei Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore;
| | - Peter Chi Keung Cheung
- Food and Nutritional Sciences Program, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China; (S.L.); (N.K.); (K.L.M.); (P.C.K.C.)
- Food Research Centre, The Chinese University of Hong Kong, Hong Kong SAR, China;
| | - Hoi Shan Kwan
- Food Research Centre, The Chinese University of Hong Kong, Hong Kong SAR, China;
- HSK GeneTech Limited, Hong Kong SAR, China;
- ProBioLife Limited, Hong Kong SAR, China
| |
Collapse
|
6
|
Wang S, De Paepe K, Van de Wiele T, Fu X, Wang S, Zhang B, Huang Q. Starch-entrapped microspheres enhance gut microbiome-mediated anti-obesity effects of resistant starch in high-fat diet induced obese C57BL/6J mice. Food Res Int 2023; 172:113215. [PMID: 37689957 DOI: 10.1016/j.foodres.2023.113215] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 09/11/2023]
Abstract
The prevalence of obesity is growing worldwide and has been extensively linked to gut microbiota dysbiosis. In addition to exercise and physical activity, fiber-rich foods may be a first-line prophylactic to manage obesity. This study investigated in vivo dietary intervention with high-amylose maize starch (HAMS) and starch-entrapped microspheres (MS) to treat high-fat diet induced metabolic disorder and gut microbiome dysbiosis in mice. MS more efficiently controlled body weight as well as adipose tissue mass compared to HAMS. Furthermore, MS significantly reduced blood glucose, insulin, lipid and pro-inflammatory cytokine levels compared to the high-fat diet, while the effects of HAMS were less pronounced. The MS-altered gut microbiota composition favoring Streptococcaceae, Bacilli, Firmicutes and unclassified Clostridiales was predicted to promote fatty acid, pantothenate and Coenzyme A biosynthesis. In line with this, elevated fecal short chain fatty acid (SCFA), in particular, propionate concentration was observed in MS-fed mice. Our study provides novel insights into the mechanistic action of MS on intestinal homeostasis, providing a basis for future dietary therapeutic applications.
Collapse
Affiliation(s)
- Shaokang Wang
- State Key Laboratory of Food Nutrition and Safety, School of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Kim De Paepe
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Tom Van de Wiele
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Xiong Fu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Shujun Wang
- State Key Laboratory of Food Nutrition and Safety, School of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Bin Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China; China-Singapore International Research Institute, Guangzhou 510555, China.
| | - Qiang Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China; China-Singapore International Research Institute, Guangzhou 510555, China.
| |
Collapse
|
7
|
Marano G, Mazza M, Lisci FM, Ciliberto M, Traversi G, Kotzalidis GD, De Berardis D, Laterza L, Sani G, Gasbarrini A, Gaetani E. The Microbiota-Gut-Brain Axis: Psychoneuroimmunological Insights. Nutrients 2023; 15:nu15061496. [PMID: 36986226 PMCID: PMC10059722 DOI: 10.3390/nu15061496] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/18/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
There is growing interest in the role that the intestinal microbiota and the related autoimmune processes may have in the genesis and presentation of some psychiatric diseases. An alteration in the communication of the microbiota-gut-brain axis, which constitutes a communicative model between the central nervous system (CNS) and the gastro-enteric tract, has been identified as one of the possible causes of some psychiatric diseases. The purpose of this narrative review is to describe evidence supporting a role of the gut microbiota in psychiatric diseases and the impact of diet on microbiota and mental health. Change in the composition of the gut microbiota could determine an increase in the permeability of the intestinal barrier, leading to a cytokine storm. This could trigger a systemic inflammatory activation and immune response: this series of events could have repercussions on the release of some neurotransmitters, altering the activity of the hypothalamic-pituitary-adrenal axis, and reducing the presence of trophic brain factors. Although gut microbiota and psychiatric disorders seem to be connected, more effort is needed to understand the potential causative mechanisms underlying the interactions between these systems.
Collapse
Affiliation(s)
- Giuseppe Marano
- Department of Geriatrics, Neuroscience and Orthopedics, Institute of Psychiatry and Psychology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Marianna Mazza
- Department of Geriatrics, Neuroscience and Orthopedics, Institute of Psychiatry and Psychology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesco Maria Lisci
- Department of Geriatrics, Neuroscience and Orthopedics, Institute of Psychiatry and Psychology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Michele Ciliberto
- Department of Geriatrics, Neuroscience and Orthopedics, Institute of Psychiatry and Psychology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Gianandrea Traversi
- Unit of Medical Genetics, Department of Laboratory Medicine, Fatebenefratelli Isola Tiberina-Gemelli Isola, 00168 Rome, Italy
| | - Georgios Demetrios Kotzalidis
- Department of Geriatrics, Neuroscience and Orthopedics, Institute of Psychiatry and Psychology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sant'Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy
| | | | - Lucrezia Laterza
- CEMAD Digestive Diseases Center, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Gabriele Sani
- Department of Geriatrics, Neuroscience and Orthopedics, Institute of Psychiatry and Psychology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy
| | - Eleonora Gaetani
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
8
|
Cordyceps militaris polysaccharide alleviates diabetic symptoms by regulating gut microbiota against TLR4/NF-κB pathway. Int J Biol Macromol 2023; 230:123241. [PMID: 36641024 DOI: 10.1016/j.ijbiomac.2023.123241] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
The relationship between gut microbiota and type 2 diabetes mellitus (T2DM) has attracted increasing attention. In our work, one purified fraction a (AEPSa) was obtained from Cordyceps militaris polysaccharides, and its hypoglycemic activity and underlying mechanisms were investigated in high-fat diet (HFD)- and streptozotocin (STZ)-induced T2DM mice. The results revealed that AEPSa reshaped gut microbiota by increasing Allobaculum, Alistipes, Lachnospiraceae_NK4A136_group and norank_f_Muribaculaceae and decreasing Enterococcus and Ruminococcus_torques_group to inhibit the colonic toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB) pathway and upregulate intestinal tight junction protein expression, thereby improving glucose and serum lipid metabolism, hormone secretion and complications. Fecal microbiota transplantation (FMT) also confirmed these findings. These results indicated that symptomatic relief of T2DM might be related to AEPSa regulating the gut microbiota against the TLR4/NF-κB pathway to protect the intestinal barrier. Therefore, AEPSa might be developed as a prebiotic agent against T2DM by regulating gut microbiota.
Collapse
|
9
|
Wang Z, Yao W, Sun Y, Han Y, Chen X, Gong P, Zhai P, Pei S, Xie J, Ba Q, Wang H. Eucommia Bark/Leaf Extract Improves Lipid Metabolism Disorders by Affecting Intestinal Microbiota and Microbiome-Host Interaction in HFD Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3297-3314. [PMID: 36753681 DOI: 10.1021/acs.jafc.2c07239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Eucommia bark contains many bioactive compounds and has anti-hyperlipidemic effects. However, due to the slow growth rate of the plant, there is a limited supply of this resource. Studies have demonstrated that Eucommia leaves contain active ingredients similar to those of Eucommia bark and also have anti-hyperlipidemic effects. It is not currently clear whether Eucommia leaf can be used as a substitute for Eucommia bark. Furthermore, their mechanism of action for anti-hyperlipidemia by improving the structure of the gut microbiota is also unclear. We aimed to determine the composition of the active ingredients in EBE and ELE by HPLC, establish an HFD-induced hyperlipidemia model, and combine fecal microbiota transplantation (FMT) experiments to investigate the mechanism of EBE/ELE anti-hyperlipidemia by modifying the structure of intestinal microbiota, as well as to compare the effects of EBE and ELE. Our results showed that EBE and ELE contained similar active ingredients and significantly alleviated lipid metabolism disorders and blood glucose levels in the HFD-induced hyperlipidemia model. In this study, EBE and ELE significantly reduced the relative abundance of Desulfovibrionaceae and Erysipelotrichaceae and significantly increased the relative abundance of Ruminococcaceae. They also promoted the production of short-chain fatty acids (SCFAs) and activated the gene expression of the SCFA receptors G protein-coupled receptor 41 (GPR41) and GPR43. In addition, EBE and ELE can significantly increase the expression of the fasting-induced adipose factor (Fiaf) gene in the colon and inhibit the secretion of lipoprotein lipase (LPL) in the liver, thereby inhibiting triglyceride (TG) synthesis. They also significantly activate the expression of GPR41 and GPR43 genes in the epididymal fat tissue, leading to reduced lipid accumulation in adipocytes. These effects on the target genes were associated with changes in the abundance of Desulfovibrionaceae, Erysipelotrichaceae, and Ruminococcaceae bacteria in the intestinal microbiota. Thus, regulating the relative abundance of these microbes may serve as prospective targets for EBE/ELE to influence the Fiaf-LPL gut-liver axis and the SCFAs-GPR41/GPR43 gut-fat axis. In addition, there was no significant difference in the anti-hyperlipidemic effects of ELE and EBE, suggesting that Eucommia leaf may be a suitable alternative to Eucommia bark for managing hyperlipidemia by regulating the structure of the intestinal microbiota. These findings suggest that Eucommia leaves have great potential for development as a functional food with lipid-lowering properties.
Collapse
Affiliation(s)
- Zhineng Wang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Wenbo Yao
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Ying Sun
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yewen Han
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xuefeng Chen
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Pin Gong
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Pengtao Zhai
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Shuya Pei
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jianwu Xie
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Qian Ba
- Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Hui Wang
- Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
10
|
Wang Z, Sun Y, Han Y, Chen X, Gong P, Zhai P, Yao W, Ba Q, Wang H. Eucommia bark/leaf extract improves HFD-induced lipid metabolism disorders via targeting gut microbiota to activate the Fiaf-LPL gut-liver axis and SCFAs-GPR43 gut-fat axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 110:154652. [PMID: 36638713 DOI: 10.1016/j.phymed.2023.154652] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/25/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND The bark of Eucommia ulmoides (a perennial deciduous tree termed eucommia hereafter) has anti-hyperlipidemia effects due to its bioactive components. However, the slow growth of eucommia bark leads to a deficit in this resource. Studies have shown that eucommia leaf has bioactive components similar to those of eucommia bark and anti-hyperlipidemia effects. At present, the strength of the anti-hyperlipidemia effect of eucommia bark and eucommia leaf has not been reported. Their interaction with the gut microbiota and the mechanism by which the gut microbiota exerts anti-hyperlipidemia effects are unclear. PURPOSES Through fecal microbiota transplantation (FMT) experiments, this study aimed to investigate the mechanism by which fecal bacteria suspensions containing chlorogenic acid (CGA), eucommia bark extract (EBE), and eucommia leaves extract (ELE) improve high-fat diet (HFD)-induced lipid metabolism disorders. Difference in anti-hyperlipidemia effects between EBE and ELE and exploring an eucommia bark substitute to improve the sustainable utilization of eucommia were also evaluated. RESULTS EBE and ELE contain eight identical bioactive ingredients, and fecal bacteria suspensions containing EBE and ELE significantly improved HFD-induced lipid metabolism disorders and elevated blood glucose levels. The fecal bacteria suspension of healthy mice containing CGA, EBE, and ELE significantly reduced the relative abundance of Erysipelothrichaceae and Ruminococcaceae and promoted short chain fatty acids (SCFAs) production thereby activating the expression of the SCFA. G protein-coupled receptor 43 (GPR43) gene in colon and epididymal fat tissues. In addition, fecal bacteria suspensions of healthy mice containing CGA, EBE, or ELE significantly activated fasting-induced adipose factor (Fiaf) gene expression in colon tissue and inhibited the secretion of lipoprotein lipase (LPL) in liver tissue, thereby inhibiting the synthesis of triglycerides (TG). Changed in the Erysipelotrichaceae and Ruminococcaceae relative abundances were significantly correlated with these target genes. Thus, regulating the abundance of the Erysipelotrichaceae and Ruminococcaceae could serve as a potential target for the role of fecal bacteria suspensions of healthy mice containing CGA, EBE, or ELE in the Fiaf-LPL gut-liver axis and SCFAs-GPR43 gut-fat axis. In addition, regarding HFD-induced lipid metabolism disorders and gut microbiota structural disorders, we found no significant difference between ELE and EBE. CONCLUSIONS Our FMT experiments evidenced that EBE and ELE improve lipid metabolism disorders by regulating the gut microbiota, providing a new pathway for treating hyperlipidemia using eucommia dietary therapy. There was no significant difference in the anti-hyperlipidemia effects of ELE and EBE; thus, eucommia leaf could replace eucommia bark in traditional Chinese medicine, so as to achieve a sustainable utilization of eucommia resources.
Collapse
Affiliation(s)
- Zhineng Wang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Yin Sun
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Yewen Han
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Xuefeng Chen
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Pin Gong
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Pengtao Zhai
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Wenbo Yao
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China.
| | - Qian Ba
- Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Experimental Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Hui Wang
- Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
11
|
Yamanouchi Y, Chudan S, Ishibashi R, Ohue-Kitano R, Nishikawa M, Tabuchi Y, Kimura I, Nagai Y, Ikushiro S, Furusawa Y. The Impact of Low-Viscosity Soluble Dietary Fibers on Intestinal Microenvironment and Experimental Colitis: A Possible Preventive Application of Alpha-Cyclodextrin in Intestinal Inflammation. Mol Nutr Food Res 2022; 66:e2200063. [PMID: 36181445 DOI: 10.1002/mnfr.202200063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/28/2022] [Indexed: 11/06/2022]
Abstract
SCOPE The purpose of this study is to compare the impact of four low-viscosity soluble dietary fibers (DFs) on the intestinal microenvironment, in terms of microbiota composition, short-chain fatty acid (SCFA) production, proportion of colonic peripherally induced regulatory T cells (pTregs), and experimental colitis in mice. METHODS AND RESULTS Mice are administered 5% w/v low-viscosity soluble DFs in drinking water for 2 weeks. The gut microbiota composition is determined using 16S rRNA sequencing. Luminal SCFAs are quantified by gas chromatography, and colonic pTregs are analyzed using flow cytometry. All low-viscosity soluble DFs promote the growth of beneficial bacteria such as Akkermansia muciniphila and Bacteroides acidifaciens, while eliminating pathogenic bacteria such as Clostridium perfringens. Moreover, two low-viscosity soluble DFs significantly increase the abundance of commensal bacteria and promote the accumulation of propionate and butyrate, leading to marked induction of colonic pTregs. Consistently, these two fibers, in particular α-cyclodextrin, show remarkable anti-inflammatory properties in a colitis mouse model. CONCLUSION Mice administered any low-viscosity soluble DF show comparable gut microbiota compositions, but differ in terms of bacterial abundance, SCFA concentration, pTreg population, and colitis development. This exploratory study suggests that administration of α-cyclodextrin may be a possible strategy for the prevention of colitis.
Collapse
Affiliation(s)
- Yuka Yamanouchi
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Kurokawa, Toyama, 939-0398, Japan.,Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-si, Tokyo, 183-8509, Japan
| | - Seita Chudan
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Kurokawa, Toyama, 939-0398, Japan
| | - Riko Ishibashi
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, Kurokawa, Toyama, 939-0398, Japan
| | - Ryuji Ohue-Kitano
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-si, Tokyo, 183-8509, Japan.,Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Kyoto-shi, Kyoto, 606-8501, Japan
| | - Miyu Nishikawa
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Kurokawa, Toyama, 939-0398, Japan
| | - Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Sugitani, Toyama, 930-0194, Japan
| | - Ikuo Kimura
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-si, Tokyo, 183-8509, Japan.,Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Kyoto-shi, Kyoto, 606-8501, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, 100-0004, Japan
| | - Yoshinori Nagai
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, Kurokawa, Toyama, 939-0398, Japan
| | - Shinichi Ikushiro
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Kurokawa, Toyama, 939-0398, Japan
| | - Yukihiro Furusawa
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, Kurokawa, Toyama, 939-0398, Japan
| |
Collapse
|
12
|
Chang D, Hu X, Ma Z. Pea-Resistant Starch with Different Multi-scale Structural Features Attenuates the Obesity-Related Physiological Changes in High-Fat Diet Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11377-11390. [PMID: 36026466 DOI: 10.1021/acs.jafc.2c03289] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The present study compared the modulatory effects of different resistant starches (RSs) isolated from native (NP-RS), acid-hydrolyzed (AHP-RS), and pullulanase debranched (PDP-RS) pea starches on the corresponding in vivo metabolic responses in high fat (HF)-diet-induced obese mice. The biochemical studies on serum lipid profile and antioxidant enzyme activities were supported by histological and gene expression analyses, which suggested a potential therapeutic role for RS in regulating obesity, possibly through the production of short-chain fatty acids and the proliferation of some beneficial colonic bacteria, including Allobaculum, Bifidobacterium, Odoribacter, Clostridium, and Prevotella. Particularly, a more pronounced effect of AHP-RS with a higher proportion of the crystalline region and a more ordered double-helical alignment on improving the hyperlipidemic symptoms in obese mice induced by a HF diet was observed. Our analysis revealed that the RS3 samples seemed to be more effective than RS2 in terms of attenuating obesity in mice that were fed a HF diet.
Collapse
Affiliation(s)
- Danni Chang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Xinzhong Hu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Zhen Ma
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| |
Collapse
|
13
|
Zhou W, Yang T, Xu W, Huang Y, Ran L, Yan Y, Mi J, Lu L, Sun Y, Zeng X, Cao Y. The polysaccharides from the fruits of Lycium barbarum L. confer anti-diabetic effect by regulating gut microbiota and intestinal barrier. Carbohydr Polym 2022; 291:119626. [DOI: 10.1016/j.carbpol.2022.119626] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/29/2022] [Accepted: 05/12/2022] [Indexed: 12/20/2022]
|
14
|
Inonotus hispidus Protects against Hyperlipidemia by Inhibiting Oxidative Stress and Inflammation through Nrf2/NF-κB Signaling in High Fat Diet Fed Mice. Nutrients 2022; 14:nu14173477. [PMID: 36079733 PMCID: PMC9460493 DOI: 10.3390/nu14173477] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 12/28/2022] Open
Abstract
Obesity is frequently associated with dysregulated lipid metabolism and lipotoxicity. Inonotus hispidus (Bull.: Fr.) P. Karst (IH) is an edible and medicinal parasitic mushroom. In this study, after a systematic analysis of its nutritional ingredients, the regulatory effects of IH on lipid metabolism were investigated in mice fed a high-fat diet (HFD). In HFD-fed mice, IH reversed the pathological state of the liver and the three types of fat and significantly decreased the levels of low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC), triglycerides (TG), and leptin (LEP) and increased the level of high-density liptein cholesterol (HDL-C) in serum. Meanwhile, IH ameliorated liver damage by reducing alanine aminotransferase (ALT), aspartate aminotransferase (AST), interleukin (IL)-1β, IL-6, tumor necrosis factor-alpha (TNF-α), and plasminogen activator inhibitor-1 (PAI-1) levels in the liver and serum. Compared with HFD-fed mice, IH significantly modulated the gut microbiota, changed the relative abundances of microflora at different taxonomic levels, and regulated lipid levels. The results showed that 30 differential lipids were found. Results from Western blotting confirmed that IH regulated the nuclear factor erythroid-2 related factor 2 (Nrf2)/nuclear factor-kappa B (NF-κB) signaling pathway and oxidative stress. This study aimed to provide experimental evidence for the applicability of IH in obesity treatment.
Collapse
|
15
|
Koontanatechanon A, Wongphatcharachai M, Nonthabenjawan N, Jariyahatthakij P, Leksrisompong P, Srichana P, Prasopdee S, Roytrakul S, Sriyakul K, Thitapakorn V, Pawa KK. The Effects of Increasing Dietary Fat on Serum Lipid Profile and Modification of Gut Microbiome in C57BL/6N Mice. J Oleo Sci 2022; 71:1039-1049. [PMID: 35781256 DOI: 10.5650/jos.ess22009] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hyperlipidemia is a condition where the blood shows an elevated level of lipid, such as cholesterol and triglyceride. It is considered a risk factor for all coronary artery death globally. Association of microbiome with non-communicable diseases (NCDs) including hyperlipidemia has been reportedly associated. In this study, we hypothesize that the change in microbiome is correlated to the change in serum lipid level, which resulted by increasing dietary fat consumption. The 32 male, 14-week-old, C57BL/6N were divided into 4 groups, each group received control diet, 10%, 20%, and 40% kcal fat diet prepared from purified pork lard, respectively for 28 days. Fasting serum lipids and fecal microbiome were then analyzed. The group of animals assigned to 40% kcal fat showed significantly increased serum cholesterol, LDL, and HDL (p < 0.05). Microbiome analysis revealed the abundance of Muribaculaceae and Saccharimonadaceae were significantly decreased (p < 0.05). On the contrary, the abundance of Clostridia_UCG014, Akkermansiaceae, Bacteroidaceae, Oscillospiraceae, and Erysipelotrichaceae were significantly increased (p < 0.05). Spearman correlation indicated that the abundance of Akkermansiaceae and Bacteroidaceae were positively associated with the increased of serum cholesterol and LDL (p < 0.05), while the abundance of Muribaculaceae, Clostridia_UCG-014, and Saccharimonadaceae were negatively associated (p < 0.05). These results suggest that dietary fat have ability to manipulated microbiome with relative to elevation of serum lipid profile.
Collapse
Affiliation(s)
- Anantawat Koontanatechanon
- Chulabhorn International College of Medicine, Thammasat University.,Feed Technology Office, Charoen Pokphand Foods Public Company Limited (CPF)
| | | | | | | | - Pattarin Leksrisompong
- CPF Food Research & Development Center, Charoen Pokphand Foods Public Company Limited (CPF)
| | - Pairat Srichana
- Feed Technology Office, Charoen Pokphand Foods Public Company Limited (CPF)
| | | | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency
| | - Kusuma Sriyakul
- Chulabhorn International College of Medicine, Thammasat University
| | | | | |
Collapse
|
16
|
Flaxseed Polysaccharide Alters Colonic Gene Expression of Lipid Metabolism and Energy Metabolism in Obese Rats. Foods 2022; 11:foods11131991. [PMID: 35804806 PMCID: PMC9265598 DOI: 10.3390/foods11131991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/15/2022] [Accepted: 06/29/2022] [Indexed: 11/23/2022] Open
Abstract
Obesity is one of the most serious public health challenges. Recently, we found that flaxseed polysaccharides (FPs) had an anti-obesity effect through promoting lipid metabolism, but the obesity-inhibiting pathway of FP is still unclear. In this study, after FP intervention in an obese rat model, a transcriptome study was performed to further investigate how FP intervention alters the gene expression of colonic epithelial tissues (CETs). The results showed that there were 3785 genes differentially expressed due to the FP intervention, namely 374 downregulated and 3411 upregulated genes. After analyzing all the differentially expressed genes, two classical KEGG pathways were found to be related to obesity, namely the PPAR-signaling pathway and energy metabolism, involving genes Fabp1–5, Lpl, Gyk, Qqp7, Pparg, Rxrg, Acsl1, Acsl4, Acsl6, Cpt1c, Car1–4, Ca5b, Car8, Car12–14, Cps1, Ndufa4l2, Cox6b2, Atp6v1g2, Ndufa4l2 and Cox4i2. QRT-PCR results showed a consistent expression trend. Our results indicate that FP promotes lipid metabolism by changing the expression of some key genes of CETs, thus inhibiting obesity.
Collapse
|
17
|
Gu C, Zhou Z, Yu Z, He M, He L, Luo Z, Xiao W, Yang Q, Zhao F, Li W, Shen L, Han J, Cao S, Zuo Z, Deng J, Yan Q, Ren Z, Zhao M, Yu S. The Microbiota and It’s Correlation With Metabolites in the Gut of Mice With Nonalcoholic Fatty Liver Disease. Front Cell Infect Microbiol 2022; 12:870785. [PMID: 35694542 PMCID: PMC9186341 DOI: 10.3389/fcimb.2022.870785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/25/2022] [Indexed: 11/17/2022] Open
Abstract
In recent years, nonalcoholic fatty liver disease (NAFLD) has become the most common liver disease in the world. As an important model animal, the characteristics of gut microbiota alteration in mice with NAFLD have been studied but the changes in metabolite abundance in NAFLD mice and how the gut microbiota affects these intestinal metabolites remain unclear. In this experiment, a mouse model for NAFLD was established by a high-fat diet. The use of 16S rDNA technology showed that while there were no significant changes in the alpha diversity in the cecum of NAFLD mice, the beta diversity changed significantly. The abundance of Blautia, Unidentified-Lachnospiraceae, Romboutsia, Faecalibaculum, and Ileibacterium increased significantly in NAFLD mice, while Allobaculum and Enterorhabdus decreased significantly. Amino acids, lipids, bile acids and nucleotide metabolites were among the 167 significantly different metabolites selected. The metabolic pathways of amino acids, SFAs, and bile acids were significantly enhanced, while the metabolic pathways of PUFAs, vitamins, and nucleotides were significantly inhibited. Through correlation and MIMOSA2 analysis, it is suggested that gut microbiota does not affect the changes of lipids and bile acids but can reduce thiamine, pyridoxine, and promote L-phenylalanine and tyramine production. The findings of this study will help us to better understand the relationship between gut microbiota and metabolites in NAFLD.
Collapse
Affiliation(s)
- Congwei Gu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
| | - Zihan Zhou
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zehui Yu
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
| | - Manli He
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
| | - Lvqin He
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
| | - Zhengzhong Luo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Wudian Xiao
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
| | - Qian Yang
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
| | - Fangfang Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Weiyao Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Liuhong Shen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jianhong Han
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
| | - Suizhong Cao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Junliang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qigui Yan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhihua Ren
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingde Zhao
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- *Correspondence: Mingde Zhao, ; Shumin Yu,
| | - Shumin Yu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Mingde Zhao, ; Shumin Yu,
| |
Collapse
|
18
|
Hu Q, Niu Y, Yang Y, Mao Q, Lu Y, Ran H, Zhang H, Li X, Gu H, Su Q. Polydextrose Alleviates Adipose Tissue Inflammation and Modulates the Gut Microbiota in High-Fat Diet-Fed Mice. Front Pharmacol 2022; 12:795483. [PMID: 35185543 PMCID: PMC8848743 DOI: 10.3389/fphar.2021.795483] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/22/2021] [Indexed: 12/13/2022] Open
Abstract
The soluble dietary fiber polydextrose (PDX) is a randomly linked glucose oligomer containing small amounts of sorbitol and citric acid and is widely used in the food industry. However, whether PDX can prevent and treat obesity in high-fat diet (HFD)-fed mice has not been directly investigated, and further studies are needed to better understand the complex interactions among PDX, adipose tissue inflammation and the gut microbiota. In the present study, PDX reduced body weight, fasting blood glucose (FBG), adipose tissue accumulation, adipocyte hypertrophy, serum total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) levels in HFD-fed mice. Moreover, PDX alleviated serum lipopolysaccharide (LPS) levels and macrophage infiltration in epididymal adipose tissue and resulted in macrophage polarization toward the M2 phenotype. Gut microbiota analysis revealed that PDX promoted the growth of beneficial microbes such as Bacteroides, Parabacteroides, Alloprevotella, Muribaculum, Akkermansia, Ruminococcaceae_UCG-014 and UBA1819 in obese mice, which were negatively correlated with subcutaneous fat, epididymal fat, body weight, FBG, serum TC, HDL-C, LDL-C and LPS levels. Our results indicates that PDX can prevent and treat obesity in HFD-fed mice, specifically in alleviating glucolipid metabolism disorders and adipose tissue inflammation, which may be mediated by modulating the structure of the gut microbiota. Therefore, PDX may become a promising nondrug therapy for obesity.
Collapse
Affiliation(s)
- Qiuyue Hu
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yixin Niu
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanxia Yang
- Department of Endocrinology, Xinhua Hospital Chongming Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianyun Mao
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao Lu
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Ran
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongmei Zhang
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyong Li
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongxia Gu
- Department of Endocrinology, Xinhua Hospital Chongming Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Su
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
19
|
Szklany K, Engen PA, Naqib A, Green SJ, Keshavarzian A, Lopez Rincon A, Siebrand CJ, Diks MAP, van de Kaa M, Garssen J, Knippels LMJ, Kraneveld AD. Dietary Supplementation throughout Life with Non-Digestible Oligosaccharides and/or n-3 Poly-Unsaturated Fatty Acids in Healthy Mice Modulates the Gut-Immune System-Brain Axis. Nutrients 2021; 14:173. [PMID: 35011046 PMCID: PMC8746884 DOI: 10.3390/nu14010173] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/20/2021] [Accepted: 12/24/2021] [Indexed: 12/11/2022] Open
Abstract
The composition and activity of the intestinal microbial community structures can be beneficially modulated by nutritional components such as non-digestible oligosaccharides and omega-3 poly-unsaturated fatty acids (n-3 PUFAs). These components affect immune function, brain development and behaviour. We investigated the additive effect of a dietary combination of scGOS:lcFOS and n-3 PUFAs on caecal content microbial community structures and development of the immune system, brain and behaviour from day of birth to early adulthood in healthy mice. Male BALB/cByJ mice received a control or enriched diet with a combination of scGOS:lcFOS (9:1) and 6% tuna oil (n-3 PUFAs) or individually scGOS:lcFOS (9:1) or 6% tuna oil (n-3 PUFAs). Behaviour, caecal content microbiota composition, short-chain fatty acid levels, brain monoamine levels, enterochromaffin cells and immune parameters in the mesenteric lymph nodes (MLN) and spleen were assessed. Caecal content microbial community structures displayed differences between the control and dietary groups, and between the dietary groups. Compared to control diet, the scGOS:lcFOS and combination diets increased caecal saccharolytic fermentation activity. The diets enhanced the number of enterochromaffin cells. The combination diet had no effects on the immune cells. Although the dietary effect on behaviour was limited, serotonin and serotonin metabolite levels in the amygdala were increased in the combination diet group. The combination and individual interventions affected caecal content microbial profiles, but had limited effects on behaviour and the immune system. No apparent additive effect was observed when scGOS:lcFOS and n-3 PUFAs were combined. The results suggest that scGOS:lcFOS and n-3 PUFAs together create a balance-the best of both in a healthy host.
Collapse
Affiliation(s)
- Kirsten Szklany
- Division of Pharmacology, Utrecht Institute of Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (K.S.); (A.L.R.); (C.J.S.); (M.A.P.D.); (M.v.d.K.); (J.G.); (L.M.J.K.)
| | - Phillip A. Engen
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush Medical College, Rush University Medical Center, Chicago, IL 60602, USA; (P.A.E.); (A.N.); (A.K.)
| | - Ankur Naqib
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush Medical College, Rush University Medical Center, Chicago, IL 60602, USA; (P.A.E.); (A.N.); (A.K.)
| | - Stefan J. Green
- Genomics and Microbiome Core Facility, Rush University Medical Center, Chicago, IL 60602, USA;
| | - Ali Keshavarzian
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush Medical College, Rush University Medical Center, Chicago, IL 60602, USA; (P.A.E.); (A.N.); (A.K.)
- Department of Medicine & Physiology, Rush University Medical Center, Chicago, IL 60602, USA
| | - Alejandro Lopez Rincon
- Division of Pharmacology, Utrecht Institute of Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (K.S.); (A.L.R.); (C.J.S.); (M.A.P.D.); (M.v.d.K.); (J.G.); (L.M.J.K.)
- Department of Data Science, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, 3584 EA Utrecht, The Netherlands
| | - Cynthia J. Siebrand
- Division of Pharmacology, Utrecht Institute of Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (K.S.); (A.L.R.); (C.J.S.); (M.A.P.D.); (M.v.d.K.); (J.G.); (L.M.J.K.)
| | - Mara A. P. Diks
- Division of Pharmacology, Utrecht Institute of Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (K.S.); (A.L.R.); (C.J.S.); (M.A.P.D.); (M.v.d.K.); (J.G.); (L.M.J.K.)
| | - Melanie van de Kaa
- Division of Pharmacology, Utrecht Institute of Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (K.S.); (A.L.R.); (C.J.S.); (M.A.P.D.); (M.v.d.K.); (J.G.); (L.M.J.K.)
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute of Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (K.S.); (A.L.R.); (C.J.S.); (M.A.P.D.); (M.v.d.K.); (J.G.); (L.M.J.K.)
- Global Centre of Excellence Immunology, Nutricia Danone Research, 3584 CT Utrecht, The Netherlands
| | - Leon M. J. Knippels
- Division of Pharmacology, Utrecht Institute of Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (K.S.); (A.L.R.); (C.J.S.); (M.A.P.D.); (M.v.d.K.); (J.G.); (L.M.J.K.)
- Global Centre of Excellence Immunology, Nutricia Danone Research, 3584 CT Utrecht, The Netherlands
| | - Aletta D. Kraneveld
- Division of Pharmacology, Utrecht Institute of Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (K.S.); (A.L.R.); (C.J.S.); (M.A.P.D.); (M.v.d.K.); (J.G.); (L.M.J.K.)
| |
Collapse
|
20
|
Yde CC, Jensen HM, Christensen N, Servant F, Lelouvier B, Lahtinen S, Stenman LK, Airaksinen K, Kailanto HM. Polydextrose with and without Bifidobacterium animalis ssp. lactis 420 drives the prevalence of Akkermansia and improves liver health in a multi-compartmental obesogenic mice study. PLoS One 2021; 16:e0260765. [PMID: 34855861 PMCID: PMC8638982 DOI: 10.1371/journal.pone.0260765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022] Open
Abstract
The past two decades of research have raised gut microbiota composition as a contributing factor to the development of obesity, and higher abundance of certain bacterial species has been linked to the lean phenotype, such as Akkermansia muciniphila. The ability of pre- and probiotics to affect metabolic health could be via microbial community alterations and subsequently changes in metabolite profiles, modulating for example host energy balance via complex signaling pathways. The aim of this mice study was to determine how administration of a prebiotic fiber, polydextrose (PDX) and a probiotic Bifidobacterium animalis ssp. lactis 420 (B420), during high fat diet (HFD; 60 kcal% fat) affects microbiota composition in the gastrointestinal tract and adipose tissue, and metabolite levels in gut and liver. In this study C57Bl/6J mice (N = 200) were split in five treatments and daily gavaged: 1) Normal control (NC); 2) HFD; 3) HFD + PDX; 4) HFD + B420 or 5) HFD + PDX + B420 (HFD+S). At six weeks of treatment intraperitoneal glucose-tolerance test (IPGTT) was performed, and feces were collected at weeks 0, 3, 6 and 9. At end of the intervention, ileum and colon mucosa, adipose tissue and liver samples were collected. The microbiota composition in fecal, ileum, colon and adipose tissue was analyzed using 16S rDNA sequencing, fecal and liver metabolomics were performed by nuclear magnetic resonance (NMR) spectroscopy. It was found that HFD+PDX intervention reduced body weight gain and hepatic fat compared to HFD. Sequencing the mice adipose tissue (MAT) identified Akkermansia and its prevalence was increased in HFD+S group. Furthermore, by the inclusion of PDX, fecal, lleum and colon levels of Akkermansia were increased and liver health was improved as the detoxification capacity and levels of methyl-donors were increased. These new results demonstrate how PDX and B420 can affect the interactions between gut, liver and adipose tissue.
Collapse
Affiliation(s)
- Christian Clement Yde
- IFF Enabling Technologies, Brabrand, Aarhus, Denmark
- Department of Food Science, Aarhus University, Aarhus N, Denmark
- * E-mail:
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Wang Y, Tian Y, Zhang N, Li X, Wang X, Wang W, Zhang J, Piao C, Wang Y, Liu J. Pediococcus pentosaceus PP04 improves high-fat diet-induced liver injury by the modulation of gut inflammation and intestinal microbiota in C57BL/6N mice. Food Funct 2021; 12:6851-6862. [PMID: 34126631 DOI: 10.1039/d1fo00857a] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this study, Pediococcus pentococcus PP04 (PP04) isolated from the Northeast pickled cabbage was given to C57BL/6N mice for eight weeks, aiming to investigate the ameliorative effects of PP04 on liver injury induced by a high-fat diet. The western blot results suggested that PP04 ameliorated the increase of intestinal permeability by dramatically increasing the expressions of tight junction proteins, such as Occludin, Claudin-1 and ZO-1, which decreased hepatic lipopolysaccharides (LPS), alanine aminotransferase (ALT) and aspartate aminotransferase (AST) concentrations to effectively alleviate the liver injury. Furthermore, PP04 relieved the high-fat diet-caused gut inflammation by the NF-κB/Nrf2 signaling pathway, which regulated the expression of inflammatory cytokines and antioxidants, to positively improve the liver injury. In addition, the 16S rDNA sequencing results inferred that PP04 had the potential to rebalance intestinal flora disorders through regulating the relative abundance of inflammation and obesity-related bacteria in mice.
Collapse
Affiliation(s)
- Yu Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Zhao R, Ji Y, Chen X, Hu Q, Zhao L. Polysaccharide from Flammulina velutipes attenuates markers of metabolic syndrome by modulating the gut microbiota and lipid metabolism in high fat diet-fed mice. Food Funct 2021; 12:6964-6980. [PMID: 34137411 DOI: 10.1039/d1fo00534k] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Natural biological macromolecules with putative functions of gut microbiota regulation possess the advantage of improving metabolic syndrome (MS). In this research, we aimed to determine the effects of Flammulina velutipes polysaccharide (FVP) (Expt. 1) and fecal microbiota transplantation (FMT) (Expt. 2) on MS-related disorders, gut microbiota structure changes and their underlying mechanisms in a murine model fed with high-fat diet (HFD). In Expt. 1, six-week-old male C57BL/6J mice were fed with a control diet (10% calories from fat) or a high fat diet (45% calories from fat), administered with saline or FVP (0.4 mg per g b.w.) by gavage over a 12-week period. In Expt. 2, mice were fed with a HFD, administered with fecal supernatants from healthy and FVP-fed donor mice for 12 weeks simultaneously. The body mass, blood lipid levels and blood glucose homeostasis of mice were analyzed, and total RNA from mouse liver and adipose tissue were extracted by TRIzol and the lipid metabolism-related gene expressions were calculated by qRT-PCR. Gut microbiota changes were evaluated by high-throughput sequencing. Results indicated that FVP and FMT supplementations showed an attenuation effect on mouse obesity, hyperlipidemia and insulin resistance. Up-regulated expressions of Ampkα1 and Ppara were found both in FVP and FMT treatment groups. Different changes were found in the gut microbiota caused by FVP and FMT, respectively. PICRUSt analysis indicated that compared with FVP supplementation, FMT showed a significant effect on regulating lipid metabolism in HFD-fed mice. The findings from this study indicated that oral administrations of FVP or FMT could significantly attenuate MS-related obesity, hyperlipidemia and insulin resistance in HFD-fed mice, and the beneficial effects may be mediated through lipid metabolism and gut microbiota regulation in different ways. These results improve the understanding of the functional activity of FVP as prebiotics.
Collapse
Affiliation(s)
- Ruiqiu Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| | | | | | | | | |
Collapse
|
23
|
Fanti M, Mishra A, Longo VD, Brandhorst S. Time-Restricted Eating, Intermittent Fasting, and Fasting-Mimicking Diets in Weight Loss. Curr Obes Rep 2021; 10:70-80. [PMID: 33512641 DOI: 10.1007/s13679-021-00424-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/07/2021] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW This article reviews the current literature on dietary interventions, including time-restricted eating (TRE), intermittent fasting (IF), and fasting-mimicking diets (FMD) and their effects on weight loss. RECENT FINDINGS Dietary interventions, primarily known for their potential health benefits, are attracting considerable interest also for their effects on weight loss. The literature suggests that many popular diets can induce weight loss but only a limited number of studies actually demonstrate long-term weight loss efficacy. Here we present an update on the latest studies on some of the most popular dietary interventions able to trigger the physiology of fasting and highlight their impact on weight loss in overweight or obese individuals.
Collapse
Affiliation(s)
- Maura Fanti
- Longevity Institute and Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Amrendra Mishra
- Longevity Institute and Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Valter D Longo
- Longevity Institute and Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
- IFOM, FIRC Institute of Molecular Oncology, 20139, Milan, Italy
| | - Sebastian Brandhorst
- Longevity Institute and Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
24
|
Armstrong AJS, Quinn K, Fouquier J, Li SX, Schneider JM, Nusbacher NM, Doenges KA, Fiorillo S, Marden TJ, Higgins J, Reisdorph N, Campbell TB, Palmer BE, Lozupone CA. Systems Analysis of Gut Microbiome Influence on Metabolic Disease in HIV-Positive and High-Risk Populations. mSystems 2021; 6:e01178-20. [PMID: 34006628 PMCID: PMC8269254 DOI: 10.1128/msystems.01178-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 04/15/2021] [Indexed: 12/20/2022] Open
Abstract
Poor metabolic health, characterized by insulin resistance and dyslipidemia, is higher in people living with HIV and has been linked with inflammation, antiretroviral therapy (ART) drugs, and ART-associated lipodystrophy (LD). Metabolic disease is associated with gut microbiome composition outside the context of HIV but has not been deeply explored in HIV infection or in high-risk men who have sex with men (HR-MSM), who have a highly altered gut microbiome composition. Furthermore, the contribution of increased bacterial translocation and associated systemic inflammation that has been described in HIV-positive and HR-MSM individuals has not been explored. We used a multiomic approach to explore relationships between impaired metabolic health, defined using fasting blood markers, gut microbes, immune phenotypes, and diet. Our cohort included ART-treated HIV-positive MSM with or without LD, untreated HIV-positive MSM, and HR-MSM. For HIV-positive MSM on ART, we further explored associations with the plasma metabolome. We found that elevated plasma lipopolysaccharide binding protein (LBP) was the most important predictor of impaired metabolic health and network analysis showed that LBP formed a hub joining correlated microbial and immune predictors of metabolic disease. Taken together, our results suggest the role of inflammatory processes linked with bacterial translocation and interaction with the gut microbiome in metabolic disease among HIV-positive and -negative MSM.IMPORTANCE The gut microbiome in people living with HIV (PLWH) is of interest since chronic infection often results in long-term comorbidities. Metabolic disease is prevalent in PLWH even in well-controlled infection and has been linked with the gut microbiome in previous studies, but little attention has been given to PLWH. Furthermore, integrated analyses that consider gut microbiome, together with diet, systemic immune activation, metabolites, and demographics, have been lacking. In a systems-level analysis of predictors of metabolic disease in PLWH and men who are at high risk of acquiring HIV, we found that increased lipopolysaccharide-binding protein, an inflammatory marker indicative of compromised intestinal barrier function, was associated with worse metabolic health. We also found impaired metabolic health associated with specific dietary components, gut microbes, and host and microbial metabolites. This study lays the framework for mechanistic studies aimed at targeting the microbiome to prevent or treat metabolic endotoxemia in HIV-infected individuals.
Collapse
Affiliation(s)
- Abigail J S Armstrong
- Department of Medicine, University of Colorado Denver, Aurora, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado Denver, Aurora, Colorado, USA
- Center for Advanced Biotechnology and Medicine, Rutgers the State University, Piscataway, New Jersey, USA
| | - Kevin Quinn
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado, USA
| | - Jennifer Fouquier
- Department of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | - Sam X Li
- Department of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | | | - Nichole M Nusbacher
- Department of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | - Katrina A Doenges
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado, USA
| | - Suzanne Fiorillo
- Department of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | - Tyson J Marden
- Colorado Clinical and Translational Sciences Institute, Aurora, Colorado, USA
| | - Janine Higgins
- Department of Pediatrics, Section of Endocrinology, University of Colorado, Aurora, Colorado, USA
| | - Nichole Reisdorph
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado, USA
| | - Thomas B Campbell
- Department of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | - Brent E Palmer
- Department of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | | |
Collapse
|
25
|
Du F, Huang R, Lin D, Wang Y, Yang X, Huang X, Zheng B, Chen Z, Huang Y, Wang X, Chen F. Resveratrol Improves Liver Steatosis and Insulin Resistance in Non-alcoholic Fatty Liver Disease in Association With the Gut Microbiota. Front Microbiol 2021; 12:611323. [PMID: 33708180 PMCID: PMC7942199 DOI: 10.3389/fmicb.2021.611323] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
Resveratrol (RSV) is a potential alternative therapy for non-alcoholic fatty liver disease (NAFLD) that has been evaluated in many clinical trials, but the mechanisms of RSV action have not been fully elucidated. Recent studies suggested that the gut microbiota is an important RSV target; therefore, we speculated that the gut microbiota might mediate the beneficial effects of RSV in NAFLD. To verify this hypothesis, we established a high-fat diet (HFD)-induced NAFLD mouse model, which was subjected to RSV gavage to evaluate the therapeutic effects. We observed that RSV reduced liver steatosis and insulin resistance in NAFLD. RSV significantly changed the diversity and composition of the gut microbiota according to 16S rRNA sequencing. Gut microbiota gene function prediction showed that the enrichment of pathways related to lipid and glucose metabolism decreased after RSV treatment. Furthermore, correlation analysis indicated that the improvements in NAFLD metabolic indicators were closely related to the altered gut microbiota. We further fermented RSV with the gut microbiota in vitro to verify that RSV directly affected the gut microbiota. Our data suggested that the gut microbiota might be an important target through which RSV exerts its anti-NAFLD effect.
Collapse
Affiliation(s)
- Fan Du
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fuzhou, China.,Fujian Medical University Cancer Center, Fujian Medical University, Fuzhou, China
| | - Rongfeng Huang
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fuzhou, China.,Fujian Medical University Cancer Center, Fujian Medical University, Fuzhou, China
| | - Dan Lin
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fuzhou, China.,Fujian Medical University Cancer Center, Fujian Medical University, Fuzhou, China
| | - Yuying Wang
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fuzhou, China.,Fujian Medical University Cancer Center, Fujian Medical University, Fuzhou, China
| | - Xiaohuang Yang
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fuzhou, China.,Fujian Medical University Cancer Center, Fujian Medical University, Fuzhou, China
| | - Xiaoyun Huang
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fuzhou, China.,Fujian Medical University Cancer Center, Fujian Medical University, Fuzhou, China
| | - Biyun Zheng
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fuzhou, China.,Fujian Medical University Cancer Center, Fujian Medical University, Fuzhou, China
| | - Zhixin Chen
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fuzhou, China.,Fujian Medical University Cancer Center, Fujian Medical University, Fuzhou, China
| | - Yuehong Huang
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fuzhou, China.,Fujian Medical University Cancer Center, Fujian Medical University, Fuzhou, China
| | - Xiaozhong Wang
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fuzhou, China.,Fujian Medical University Cancer Center, Fujian Medical University, Fuzhou, China
| | - Fenglin Chen
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fuzhou, China.,Fujian Medical University Cancer Center, Fujian Medical University, Fuzhou, China
| |
Collapse
|
26
|
Hussein RM. Upregulation of miR-33 and miR-155 by gum acacia mitigates hyperlipidaemia and inflammation but not weight increase induced by Western diet ingestion in mice. Arch Physiol Biochem 2021:1-7. [PMID: 33529079 DOI: 10.1080/13813455.2021.1876734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE This study, for the first time, investigates the effect of gum acacia (GA) on the expression of miR-33 and miR-155 and its association with the obesity and inflammation induced by Western diet (WD) consumption in mice. METHODS Animals were divided into: normal diet (ND) group, WD group, GA group and GA + WD group. RESULTS The WD group exhibited higher total body, liver, visceral fat weights, blood total cholesterol, triglycerides and glucose levels compared to ND group. The liver tissues showed severe inflammation and degeneration with higher hepatic TNF-α level. Interestingly, GA + WD group showed a decrease in the biochemical parameters and hepatic TNF-α level but had no effect on the weight increase. It also showed a significant upregulation of miR-33 and miR-155 compared to WD group. CONCLUSIONS GA mitigated the hyperlipidaemia and inflammation but not weight increase induced by WD ingestion via upregulation of miR-33 and miR-155 while reducing TNF-α level.
Collapse
Affiliation(s)
- Rasha M Hussein
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Mutah University, Al-Karak, Jordan
- Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
27
|
Xie X, Zhang L, Yuan S, Li H, Zheng C, Xie S, Sun Y, Zhang C, Wang R, Jin Y. Val-Val-Tyr-Pro protects against non-alcoholic steatohepatitis in mice by modulating the gut microbiota and gut-liver axis activation. J Cell Mol Med 2021; 25:1439-1455. [PMID: 33400402 PMCID: PMC7875918 DOI: 10.1111/jcmm.16229] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/06/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022] Open
Abstract
Val‐Val‐Tyr‐Pro (VVYP) peptide is one of the main active components of Globin digest (GD). Our previous studies indicated that VVYP could protect against acetaminophen and carbon tetrachloride‐induced acute liver failure in mice and decrease blood lipid level. However, the effects and underlying mechanisms of VVYP in the treatment of non‐alcoholic steatohepatitis (NASH) have not been discovered. Our present study was designed to investigate the preventive effect of VVYP on NASH and its underlying specific mechanisms. We found that VVYP inhibited the cytotoxicity and lipid accumulation in L‐02 cells that were exposed to a mixture of free fatty acid (FFA). VVYP effectively alleviated the liver injury induced by methionine‐choline‐deficient (MCD) diet, demonstrated by reducing the levels of serum alanine aminotransferase (ALT)/aspartate aminotransferase (AST)/triglycerides (TG)/non‐esterified fatty acids (NEFA) and improving liver histology. VVYP decreased expression levels of lipid synthesis‐related genes and reduced levels of the proinflammation cytokines in the liver of mice fed by MCD diet. Moreover, VVYP inhibited the increased level of LPS and reversed the liver mitochondria dysfunction induced by MCD diet. Meanwhile, VVYP significantly increased the abundance of beneficial bacteria such as Eubacteriaceae, coriobacteriacease, Desulfovibrionaceae, S24‐7 and Bacteroidia in high‐fat diet (HFD)‐fed mice, however, VVYP reduced the abundance of Lactobacillus. Moreover, VVYP conferred the protective effect of intestinal barrier via promoting the expression of the mucins and tight junction (TJ)‐associated genes and inhibited subsequent liver inflammatory responses. These results indicated that the protective role of VVYP on NASH is mediated by modulating gut microbiota imbalance and related gut‐liver axis activation. VVYP might be a promising drug candidate for NASH.
Collapse
Affiliation(s)
- Xinshu Xie
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Lang Zhang
- Jiangxi Provincial Children's Hospital, Nanchang, China
| | - Shun Yuan
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Huilan Li
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Chaojun Zheng
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Saisai Xie
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yongbing Sun
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Changhua Zhang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Rikang Wang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Basic Medical Sciences, Shenzhen University Health Science Centre, Shenzhen, China
| | - Yi Jin
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|
28
|
Abernathy BE, Schoenfuss TC, Bailey AS, Gallaher DD. Polylactose Exhibits Prebiotic Activity and Reduces Adiposity and Nonalcoholic Fatty Liver Disease in Rats Fed a High-Fat Diet. J Nutr 2020; 151:352-360. [PMID: 33382431 PMCID: PMC8096245 DOI: 10.1093/jn/nxaa376] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/23/2020] [Accepted: 11/03/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Prebiotic dietary fibers change the intestinal microbiome favorably and provide a health benefit to the host. OBJECTIVES Polylactose is a novel fiber, synthesized by extrusion of lactose. We evaluated its prebiotic activity by determining its fermentability, effect on the microbiota, and effects on adiposity and liver lipids in a diet-induced obesity animal model. METHODS Male Wistar rats (4-5 wk old) were fed normal-fat (NF, 25% fat energy) or high-fat (HF, 51% fat energy) diets containing different fibers (6% fiber of interest and 3% cellulose, by weight), including cellulose (NFC and HFC, negative and positive controls, respectively), polylactose (HFPL), lactose matched to residual lactose in the HFPL diet, and 2 established prebiotic fibers: polydextrose (HFPD) and fructooligosaccharide (HFFOS). After 10 wk of feeding, organs were harvested and cecal contents collected. RESULTS HFPL animals had greater cecum weight (3 times greater than HFC) and lower cecal pH (∼1 pH unit lower than HFC) than all other groups, suggesting that polylactose is more fermentable than other prebiotic fibers (HFPD, HFFOS; P < 0.05). HFPL animals also had increased taxonomic abundance of the probiotic species Bifidobacterium in the cecum relative to all other groups (P < 0.05). Epididymal fat pad weight was significantly decreased in the HFPL group (29% decrease compared with HFC) compared with all other HF groups (P < 0.05) and did not differ from the NFC group. Liver lipids and cholesterol were reduced in HFPL animals when compared with HFC animals (P < 0.05). CONCLUSIONS Polylactose is a fermentable fiber that elicits a beneficial change in the gut microbiota as well as reducing adiposity in rats fed HF diets. These effects of polylactose were greater than those of 2 established prebiotics, fructooligosaccharide and polydextrose, suggesting that polylactose is a potent prebiotic.
Collapse
Affiliation(s)
- Breann E Abernathy
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA
| | - Tonya C Schoenfuss
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA
| | - Allison S Bailey
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA
| | | |
Collapse
|
29
|
Saarinen MT, Kärkkäinen O, Hanhineva K, Tiihonen K, Hibberd A, Mäkelä KA, Raza GS, Herzig KH, Anglenius H. Metabolomics analysis of plasma and adipose tissue samples from mice orally administered with polydextrose and correlations with cecal microbiota. Sci Rep 2020; 10:21577. [PMID: 33299048 PMCID: PMC7726573 DOI: 10.1038/s41598-020-78484-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/20/2020] [Indexed: 01/07/2023] Open
Abstract
Polydextrose (PDX) is a branched glucose polymer, utilized as a soluble dietary fiber. Recently, PDX was found to have hypolipidemic effects and effects on the gut microbiota. To investigate these findings more closely, a non-targeted metabolomics approach, was exploited to determine metabolic alterations in blood and epididymal adipose tissue samples that were collected from C57BL/6 mice fed with a Western diet, with or without oral administration of PDX. Metabolomic analyses revealed significant differences between PDX- and control mice, which could be due to differences in diet or due to altered microbial metabolism in the gut. Some metabolites were found in both plasma and adipose tissue, such as the bile acid derivative deoxycholic acid and the microbiome-derived tryptophan metabolite indoxyl sulfate, both of which increased by PDX. Additionally, PDX increased the levels of glycine betaine and L-carnitine in plasma samples, which correlated negatively with plasma TG and positively correlated with bacterial genera enriched in PDX mice. The results demonstrated that PDX caused differential metabolite patterns in blood and adipose tissues and that one-carbon metabolism, associated with glycine betaine and L-carnitine, and bile acid and tryptophan metabolism are associated with the hypolipidemic effects observed in mice that were given PDX.
Collapse
Affiliation(s)
| | - Olli Kärkkäinen
- Afekta Technologies Ltd., Kuopio, Finland
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Kati Hanhineva
- Afekta Technologies Ltd., Kuopio, Finland
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Kirsti Tiihonen
- DuPont Nutrition & Biosciences, Global Health & Nutrition Science, Kantvik, Finland
| | - Ashley Hibberd
- DuPont Nutrition & Biosciences, Genomics & Microbiome Science, St. Louis, MO, USA
| | - Kari Antero Mäkelä
- Institute of Biomedicine, Medical Research Center (MRC), University of Oulu, and University Hospital, Oulu, Finland
| | - Ghulam Shere Raza
- Institute of Biomedicine, Medical Research Center (MRC), University of Oulu, and University Hospital, Oulu, Finland
| | - Karl-Heinz Herzig
- Institute of Biomedicine, Medical Research Center (MRC), University of Oulu, and University Hospital, Oulu, Finland
- Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, Poznan, Poland
| | - Heli Anglenius
- DuPont Nutrition & Biosciences, Global Health & Nutrition Science, Kantvik, Finland
| |
Collapse
|
30
|
Watanabe K, Katagiri S, Takahashi H, Sasaki N, Maekawa S, Komazaki R, Hatasa M, Kitajima Y, Maruyama Y, Shiba T, Komatsu K, Ohsugi Y, Tanaka K, Matsuzawa A, Hirota T, Tohara H, Eguchi Y, Anzai K, Hattori A, Iwata T. Porphyromonas gingivalis
impairs glucose uptake in skeletal muscle associated with altering gut microbiota. FASEB J 2020; 35:e21171. [DOI: 10.1096/fj.202001158r] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/30/2020] [Accepted: 10/26/2020] [Indexed: 01/13/2023]
Affiliation(s)
- Kazuki Watanabe
- Department of Periodontology Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University (TMDU) Tokyo Japan
| | - Sayaka Katagiri
- Department of Periodontology Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University (TMDU) Tokyo Japan
| | - Hirokazu Takahashi
- Division of Metabolism and Endocrinology Facility of Medicine Saga University Saga Japan
- Liver Center Saga University Hospital Saga University Saga Japan
| | - Naoki Sasaki
- Department of Periodontology Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University (TMDU) Tokyo Japan
| | - Shogo Maekawa
- Department of Periodontology Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University (TMDU) Tokyo Japan
| | - Rina Komazaki
- Department of Periodontology Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University (TMDU) Tokyo Japan
| | - Masahiro Hatasa
- Department of Periodontology Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University (TMDU) Tokyo Japan
| | - Yoichiro Kitajima
- Division of Metabolism and Endocrinology Facility of Medicine Saga University Saga Japan
- Department of Radiology Eguchi Hospital Saga Japan
| | - Yusuke Maruyama
- Department of Biology College of Liberal Arts and Sciences Tokyo Medical and Dental University (TMDU) Tokyo Japan
| | - Takahiko Shiba
- Department of Periodontology Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University (TMDU) Tokyo Japan
| | - Keiji Komatsu
- Department of Periodontology Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University (TMDU) Tokyo Japan
| | - Yujin Ohsugi
- Department of Periodontology Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University (TMDU) Tokyo Japan
| | - Kenichi Tanaka
- Division of Metabolism and Endocrinology Facility of Medicine Saga University Saga Japan
| | - Ayumi Matsuzawa
- Department of Epigenetics Medical Research Institute Tokyo Medical and Dental University (TMDU) Tokyo Japan
| | - Tomomitsu Hirota
- Division of Molecular Genetics Research Center for Medical Science The Jikei University School of Medicine Tokyo Japan
| | - Haruka Tohara
- Dysphagia Rehabilitation Department of Gerontology and Gerodontology Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University (TMDU) Tokyo Japan
| | - Yuichiro Eguchi
- Liver Center Saga University Hospital Saga University Saga Japan
| | - Keizo Anzai
- Division of Metabolism and Endocrinology Facility of Medicine Saga University Saga Japan
| | - Atsuhiko Hattori
- Department of Biology College of Liberal Arts and Sciences Tokyo Medical and Dental University (TMDU) Tokyo Japan
| | - Takanori Iwata
- Department of Periodontology Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University (TMDU) Tokyo Japan
| |
Collapse
|
31
|
Maragkoudaki X, Naylor M, Papacleovoulou G, Stolarczyk E, Rees D, Pombo JM, Abu-Hayyeh S, Czajka A, Howard JK, Malik AN, Williamson C, Poston L, Taylor PD. Supplementation with a prebiotic (polydextrose) in obese mouse pregnancy improves maternal glucose homeostasis and protects against offspring obesity. Int J Obes (Lond) 2020; 44:2382-2393. [PMID: 33033395 DOI: 10.1038/s41366-020-00682-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/08/2020] [Accepted: 09/04/2020] [Indexed: 12/29/2022]
Abstract
OBJECTIVES We hypothesised that maternal diet-induced-obesity has adverse consequences for offspring energy expenditure and susceptibility to obesity in adulthood, and that the prebiotic polydextrose (PDX) would prevent the consequences of programming by maternal obesity. METHODS Female mice were fed a control (Con) or obesogenic diet (Ob) for 6 weeks prior to mating and throughout pregnancy and lactation. Half the obese dams were supplemented with 5% PDX (ObPDX) in drinking water throughout pregnancy and lactation. Offspring were weaned onto standard chow. At 3 and 6 months, offspring energy intake (EI) and energy expenditure (EE by indirect calorimetry) were measured, and a glucose-tolerance test performed. Offspring of control (OffCon), obese (OffOb) and PDX supplemented (OffObP) dams were subsequently challenged for 3 weeks with Ob, and energy balanced reassessed. Potential modifiers of offspring energy balance including gut microbiota and biomarkers of mitochondrial activity were also evaluated. RESULTS Six-month-old male OffOb demonstrated increased bodyweight (BW, P < 0.001) and white adipose tissue mass (P < 0.05), decreased brown adipose tissue mass (BAT, P < 0.01), lower night-time EE (P < 0.001) versus OffCon, which were prevented in OffObP. Both male and female OffOb showed abnormal glucose-tolerance test (peak [Glucose] P < 0.001; AUC, P < 0.05) which was prevented by PDX. The Ob challenge resulted in greater BW gain in both male and female OffOb versus OffCon (P < 0.05), also associated with increased EI (P < 0.05) and reduced EE in females (P < 0.01). OffObP were protected from accelerated BW gain on the OB diet compared with controls, associated with increased night-time EE in both male (P < 0.05) and female OffObP (P < 0.001). PDX also prevented an increase in skeletal muscle mtDNA copy number in OffOb versus OffCon (P < 0.01) and increased the percentage of Bacteroides cells in faecal samples from male OffObP relative to controls. CONCLUSIONS Maternal obesity adversely influences adult offspring energy balance and propensity for obesity, which is ameliorated by maternal PDX treatment with associated changes in gut microbiota composition and skeletal muscle mitochondrial function.
Collapse
Affiliation(s)
- Xanthi Maragkoudaki
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Matthew Naylor
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Georgia Papacleovoulou
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Emilie Stolarczyk
- Department of Diabetes Research, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Douglas Rees
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Joaquim M Pombo
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Shadi Abu-Hayyeh
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Anja Czajka
- Department of Diabetes Research, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Jane K Howard
- Department of Diabetes Research, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Afshan N Malik
- Department of Diabetes Research, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Catherine Williamson
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Lucilla Poston
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Paul D Taylor
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.
| |
Collapse
|
32
|
He YJ, You CG. The Potential Role of Gut Microbiota in the Prevention and Treatment of Lipid Metabolism Disorders. Int J Endocrinol 2020; 2020:8601796. [PMID: 33005189 PMCID: PMC7509545 DOI: 10.1155/2020/8601796] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/24/2020] [Accepted: 09/03/2020] [Indexed: 12/17/2022] Open
Abstract
Due to changes in lifestyle, diet structure, and aging worldwide, the incidence of metabolic syndromes such as hyperlipidemia, hypertension, diabetes, and obesity is increasing. Metabolic syndrome is considered to be closely related to cardiovascular disease and severely affects human health. In recent years, researchers have revealed that the gut microbiota, through its own or interacting metabolites, has a positive role in regulating metabolic syndrome. Therefore, the gut microbiota has been a new "organ" for the treatment of metabolic syndrome. The role has not been clarified, and more research is necessary to prove the specific role of specific strains. Probiotics are also believed to regulate metabolic syndromes by regulating the gut microbiota and are expected to become a new preparation for treating metabolic syndromes. This review focuses on the regulation of lipid metabolism disorders by the gut microbiota through the effects of bile acids (BA), short-chain fatty acids (SCFAs), bile salt hydrolase (BSH), and genes such as ABCG5 and ABCG8, FXR, NPC1L, and LDL-R.
Collapse
Affiliation(s)
- Yan-Jun He
- Laboratory Medicine Center, Lanzhou University Second Hospital, No. 82 Cuiyingmen Lanzhou, Lanzhou 730030, Gansu, China
| | - Chong-Ge You
- Laboratory Medicine Center, Lanzhou University Second Hospital, No. 82 Cuiyingmen Lanzhou, Lanzhou 730030, Gansu, China
| |
Collapse
|
33
|
A synbiotic consisting of Lactobacillus plantarum S58 and hull-less barley β-glucan ameliorates lipid accumulation in mice fed with a high-fat diet by activating AMPK signaling and modulating the gut microbiota. Carbohydr Polym 2020; 243:116398. [DOI: 10.1016/j.carbpol.2020.116398] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/19/2020] [Accepted: 04/28/2020] [Indexed: 02/08/2023]
|
34
|
Lehtoranta L, Hibberd AA, Reimari J, Junnila J, Yeung N, Maukonen J, Crawford G, Ouwehand AC. Recovery of Vaginal Microbiota After Standard Treatment for Bacterial Vaginosis Infection: An Observational Study. Microorganisms 2020; 8:microorganisms8060875. [PMID: 32527048 PMCID: PMC7355544 DOI: 10.3390/microorganisms8060875] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/02/2020] [Accepted: 06/07/2020] [Indexed: 12/13/2022] Open
Abstract
Vaginal microbiota dysbiosis and bacterial vaginosis (BV) affect negatively women’s health. Understanding vaginal microbiota fluctuations in BV during and after antibiotic treatment would facilitate accurate decision-making on the treatment regimen, avoid unnecessary antibiotic use, and potentially mitigate recurrence. We investigated vaginal microbiota composition of 30 women with BV before and after 5-day metronidazole treatment and compared the results with 30 healthy women. Vaginal microbiota was assessed by Nugent score and analyzed by 16S rRNA gene sequencing in swabs on baseline Day 1, and on Day 8 and 15, after completion of antibiotic treatment by women with BV. Prior to antibiotic treatment (Day 1), BV-positive women were dominated by Lactobacillus iners (25.8%), Prevotella timonensis/bivia (18.0%), and Gardnerella vaginalis (14.6%), whereas healthy women were dominated by L. iners (37.5%) and Lactobacillus crispatus/acidophilus (19.2%). On Day 8, L. iners abundance increased in BV-treated women being significantly higher compared with healthy women (67.8% vs. 37.5%, p = 0.049). On Day 15, the relative abundance of all microbial taxa was similar between the groups. Vaginal microbiota of women with BV shifted to resemble that of healthy controls after metronidazole. Sequencing analysis provides more in-depth understanding of changes in vaginal microbiota. The role of L. iners in vaginal health and dysbiosis requires further investigations.
Collapse
Affiliation(s)
- Liisa Lehtoranta
- Global Health and Nutrition Science, DuPont Nutrition & Biosciences, Sokeritehtaantie 20, FIN-02460 Kantvik, Finland; (J.R.); (N.Y.); (J.M.); (A.C.O.)
- Correspondence:
| | - Ashley A. Hibberd
- Genomics & Microbiome Science, DuPont Nutrition & Biosciences, 4300 Duncan Avenue, Saint Louis, MO 63110, USA;
| | - Jenni Reimari
- Global Health and Nutrition Science, DuPont Nutrition & Biosciences, Sokeritehtaantie 20, FIN-02460 Kantvik, Finland; (J.R.); (N.Y.); (J.M.); (A.C.O.)
| | - Jouni Junnila
- 4Pharma Ltd., Arkadiankatu 7, 00100 Helsinki, Finland;
| | - Nicolas Yeung
- Global Health and Nutrition Science, DuPont Nutrition & Biosciences, Sokeritehtaantie 20, FIN-02460 Kantvik, Finland; (J.R.); (N.Y.); (J.M.); (A.C.O.)
| | - Johanna Maukonen
- Global Health and Nutrition Science, DuPont Nutrition & Biosciences, Sokeritehtaantie 20, FIN-02460 Kantvik, Finland; (J.R.); (N.Y.); (J.M.); (A.C.O.)
| | - Gordon Crawford
- CPS Research, 3 Todd Campus, West of Scotland Science Park, Glasgow G20 0SP, UK;
| | - Arthur C. Ouwehand
- Global Health and Nutrition Science, DuPont Nutrition & Biosciences, Sokeritehtaantie 20, FIN-02460 Kantvik, Finland; (J.R.); (N.Y.); (J.M.); (A.C.O.)
| |
Collapse
|
35
|
Machate DJ, Figueiredo PS, Marcelino G, Guimarães RDCA, Hiane PA, Bogo D, Pinheiro VAZ, de Oliveira LCS, Pott A. Fatty Acid Diets: Regulation of Gut Microbiota Composition and Obesity and Its Related Metabolic Dysbiosis. Int J Mol Sci 2020; 21:E4093. [PMID: 32521778 PMCID: PMC7312778 DOI: 10.3390/ijms21114093] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 02/06/2023] Open
Abstract
Long-term high-fat dietary intake plays a crucial role in the composition of gut microbiota in animal models and human subjects, which affect directly short-chain fatty acid (SCFA) production and host health. This review aims to highlight the interplay of fatty acid (FA) intake and gut microbiota composition and its interaction with hosts in health promotion and obesity prevention and its related metabolic dysbiosis. The abundance of the Bacteroidetes/Firmicutes ratio, as Actinobacteria and Proteobacteria species are associated with increased SCFA production, reported high-fat diet rich in medium-chain fatty acids (MCFAs), monounsaturated fatty acids (MUFAs), and n-3 polyunsaturated fatty acids (PUFAs) as well as low-fat diets rich in long-chain fatty acids (LCFAs). SCFAs play a key role in health promotion and prevention and, reduction and reversion of metabolic syndromes in the host. Furthermore, in this review, we discussed the type of fatty acids and their amount, including the administration time and their interplay with gut microbiota and its results about health or several metabolic dysbioses undergone by hosts.
Collapse
Affiliation(s)
- David Johane Machate
- Graduate Program in Biotechnology and Biodiversity in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; (D.J.M.); (A.P.)
| | - Priscila Silva Figueiredo
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; (P.S.F.); (G.M.); (P.A.H.); (D.B.); (V.A.Z.P.)
| | - Gabriela Marcelino
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; (P.S.F.); (G.M.); (P.A.H.); (D.B.); (V.A.Z.P.)
| | - Rita de Cássia Avellaneda Guimarães
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; (P.S.F.); (G.M.); (P.A.H.); (D.B.); (V.A.Z.P.)
| | - Priscila Aiko Hiane
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; (P.S.F.); (G.M.); (P.A.H.); (D.B.); (V.A.Z.P.)
| | - Danielle Bogo
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; (P.S.F.); (G.M.); (P.A.H.); (D.B.); (V.A.Z.P.)
| | - Verônica Assalin Zorgetto Pinheiro
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; (P.S.F.); (G.M.); (P.A.H.); (D.B.); (V.A.Z.P.)
| | | | - Arnildo Pott
- Graduate Program in Biotechnology and Biodiversity in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; (D.J.M.); (A.P.)
| |
Collapse
|
36
|
Fitzgerald DM, Spence RJ, Stewart ZK, Prentis PJ, Sillence MN, de Laat MA. The effect of diet change and insulin dysregulation on the faecal microbiome of ponies. J Exp Biol 2020; 223:jeb219154. [PMID: 32098884 DOI: 10.1242/jeb.219154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/12/2020] [Indexed: 12/16/2022]
Abstract
The equine microbiome can change in response to dietary alteration and may play a role in insulin dysregulation. The aim of this study was to determine the effect of adding pasture to a hay diet on the faecal bacterial microbiome of both healthy and insulin-dysregulated ponies. Faecal samples were collected from 16 ponies before and after dietary change to enable bacterial 16S rRNA sequencing of the V3-V4 region. The dominant phyla in all samples were the Firmicutes and Bacteroidetes. The evenness of the bacterial populations decreased after grazing pasture, and when a pony was moderately insulin dysregulated (P=0.001). Evenness scores negatively correlated with post-prandial glucagon-like peptide-1 concentration after a hay-only diet (r²=-0.7, P=0.001). A change in diet explained 3% of faecal microbiome variability. We conclude that metabolically healthy ponies have greater microbial stability when challenged with a subtle dietary change, compared with moderately insulin-dysregulated ponies.
Collapse
Affiliation(s)
- Danielle M Fitzgerald
- Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Robert J Spence
- Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Zachary K Stewart
- Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Peter J Prentis
- Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Martin N Sillence
- Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Melody A de Laat
- Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4001, Australia
| |
Collapse
|
37
|
Xu C, Liu J, Gao J, Wu X, Cui C, Wei H, Zheng R, Peng J. Combined Soluble Fiber-Mediated Intestinal Microbiota Improve Insulin Sensitivity of Obese Mice. Nutrients 2020; 12:nu12020351. [PMID: 32013093 PMCID: PMC7071167 DOI: 10.3390/nu12020351] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/15/2020] [Accepted: 01/20/2020] [Indexed: 12/12/2022] Open
Abstract
Dietary fiber, an important regulator of intestinal microbiota, is a promising tool for preventing obesity and related metabolic disorders. However, the functional links between dietary fiber, intestinal microbiota, and obesity phenotype are still not fully understood. Combined soluble fiber (CSF) is a synthetic mixture of polysaccharides and displays high viscosity, water-binding capacity, swelling capacity, and fermentability. We found that supplementing high-fat diet (HFD) with 6% CSF significantly improved the insulin sensitivity of obese mice without affecting their body weight. Replacing the HFD with normal chow basal diet (NCD), the presence of CSF in the feed significantly enhanced satiety, decreased energy intake, promoted weight and fat loss, and augmented insulin sensitivity. CSF also improved the intestinal morphological integrity, attenuated systemic inflammation, promoted intestinal microbiota homeostasis, and stabilized the production of short-chain fatty acids (SCFAs) that was perturbed during HFD-induced obesity, and these stabilizing effects were more prominent when the basal diet was switched to NCD. The enrichment of bacteria of the S24-7 family and Allobaculum genus increased markedly in the intestine following 6% CSF supplementation- and correlated with decreased adiposity and insulin resistance. Five bacterial genera that were decreased by CSF, including Oscillospira, unclassified Lachonospitaceae, unclassified Clostridiales, unclassified Desulfovibrionaceae, and unclassified Ruminococcae, were subjected to co-occurrence network analysis and were positively correlated to adiposity and insulin resistance, indicating a key role in the microbial response to CSF. Thus, CSF has a potential to promote insulin sensitivity and even reduce obesity via beneficial regulation of the gut microecosystem.
Collapse
Affiliation(s)
- Chuanhui Xu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (C.X.); (X.W.); (C.C.); (H.W.); (J.P.)
| | - Jianhua Liu
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (J.G.)
| | - Jianwei Gao
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (J.G.)
| | - Xiaoyu Wu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (C.X.); (X.W.); (C.C.); (H.W.); (J.P.)
| | - Chenbin Cui
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (C.X.); (X.W.); (C.C.); (H.W.); (J.P.)
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (C.X.); (X.W.); (C.C.); (H.W.); (J.P.)
| | - Rong Zheng
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (J.G.)
- Correspondence: ; Tel.: +86-134-1952-7039
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (C.X.); (X.W.); (C.C.); (H.W.); (J.P.)
- The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan 430070, China
| |
Collapse
|
38
|
Zhao R, Ji Y, Chen X, Su A, Ma G, Chen G, Hu Q, Zhao L. Effects of a β-type glycosidic polysaccharide from Flammulina velutipes on anti-inflammation and gut microbiota modulation in colitis mice. Food Funct 2020; 11:4259-4274. [DOI: 10.1039/c9fo03017d] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Using the Flammulina velutipes polysaccharide (FVP) extracted from our previous study, herein, we investigated the improvement of this β-type glycosidic polysaccharide in alleviating dextran sodium sulfate-induced ulcerative colitis (UC) in mice.
Collapse
Affiliation(s)
- Ruiqiu Zhao
- College of Food Science and Technology
- Nanjing Agricultural University
- Nanjing 210095
- People's Republic of China
| | - Yang Ji
- College of Food Science and Engineering
- Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety
- Nanjing 210023
- People's Republic of China
| | - Xin Chen
- College of Food Science and Technology
- Nanjing Agricultural University
- Nanjing 210095
- People's Republic of China
| | - Anxiang Su
- College of Food Science and Engineering
- Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety
- Nanjing 210023
- People's Republic of China
| | - Gaoxing Ma
- College of Food Science and Engineering
- Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety
- Nanjing 210023
- People's Republic of China
| | - Guitang Chen
- Department of Food Quality and Safety
- China Pharmaceutical University
- Nanjing 211198
- People's Republic of China
| | - Qiuhui Hu
- College of Food Science and Technology
- Nanjing Agricultural University
- Nanjing 210095
- People's Republic of China
- College of Food Science and Engineering
| | - Liyan Zhao
- College of Food Science and Technology
- Nanjing Agricultural University
- Nanjing 210095
- People's Republic of China
| |
Collapse
|
39
|
Liebert A, Bicknell B, Johnstone DM, Gordon LC, Kiat H, Hamblin MR. "Photobiomics": Can Light, Including Photobiomodulation, Alter the Microbiome? Photobiomodul Photomed Laser Surg 2019; 37:681-693. [PMID: 31596658 PMCID: PMC6859693 DOI: 10.1089/photob.2019.4628] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 06/18/2019] [Indexed: 12/14/2022] Open
Abstract
Objective: The objective of this review is to consider the dual effects of microbiome and photobiomodulation (PBM) on human health and to suggest a relationship between these two as a novel mechanism. Background: PBM describes the use of low levels of visible or near-infrared (NIR) light to heal and stimulate tissue, and to relieve pain and inflammation. In recent years, PBM has been applied to the head as an investigative approach to treat diverse brain diseases such as stroke, traumatic brain injury (TBI), Alzheimer's and Parkinson's diseases, and psychiatric disorders. Also, in recent years, increasing attention has been paid to the total microbial population that colonizes the human body, chiefly in the gut and the mouth, called the microbiome. It is known that the composition and health of the gut microbiome affects many diseases related to metabolism, obesity, cardiovascular disorders, autoimmunity, and even brain disorders. Materials and methods: A literature search was conducted for published reports on the effect of light on the microbiome. Results: Recent work by our research group has demonstrated that PBM (red and NIR light) delivered to the abdomen in mice, can alter the gut microbiome in a potentially beneficial way. This has also now been demonstrated in human subjects. Conclusions: In consideration of the known effects of PBM on metabolomics, and the now demonstrated effects of PBM on the microbiome, as well as other effects of light on the microbiome, including modulating circadian rhythms, the present perspective introduces a new term "photobiomics" and looks forward to the application of PBM to influence the microbiome in humans. Some mechanisms by which this phenomenon might occur are considered.
Collapse
Affiliation(s)
- Ann Liebert
- Australasian Research Institute, Wahroonga, Australia
- Department of Medicine, University of Sydney, Camperdown, Australia
| | - Brian Bicknell
- Faculty of Health Sciences, Australian Catholic University, North Sydney, Australia
| | | | - Luke C. Gordon
- Discipline of Physiology, University of Sydney, Camperdown, Australia
| | - Hosen Kiat
- Faculty of Medicine and Health Sciences, Macquarie University, Marsfield, Australia
- Faculty of Medicine, University of New South Wales, Kensington, Australia
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts
| |
Collapse
|
40
|
Li X, Zeng F, Huang Y, Liu B. The Positive Effects of Grifola frondosa Heteropolysaccharide on NAFLD and Regulation of the Gut Microbiota. Int J Mol Sci 2019; 20:ijms20215302. [PMID: 31653116 PMCID: PMC6861908 DOI: 10.3390/ijms20215302] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/14/2019] [Accepted: 10/21/2019] [Indexed: 12/14/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major public health problem in many countries. In this study, the ability of Grifola frondosa heteropolysaccharide (GFP) to ameliorate NAFLD was investigated in rats fed a high-fat diet (HFD). The molecular mechanisms modulating the expression of specific gene members related to lipid synthesis and conversion, cholesterol metabolism, and inflammation pathways were determined. The components of the intestinal microflora in rats were analyzed by high-throughput next-generation 16S rRNA gene sequencing. Supplementation with GFP significantly increased the proportions of Allobaculum, Bacteroides, and Bifidobacterium and decreased the proportions of Acetatifactor, Alistipes, Flavonifractor, Paraprevotella, and Oscillibacter. In addition, Alistipes, Flavonifractor, and Oscillibacter were shown to be significant cecal microbiota according to the Spearman’s correlation test between the gut microbiota and biomedical assays (|r| > 0.7). Histological analysis and biomedical assays showed that GFP treatments could significantly protect against NAFLD. In addition, Alistipes, Flavonifractor, and Oscillibacter may play vital roles in the prevention of NAFLD. These results suggest that GFP could be used as a functional material to regulate the gut microbiota of NAFLD individuals.
Collapse
Affiliation(s)
- Xin Li
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Feng Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yifan Huang
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Bin Liu
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
41
|
Salli K, Anglenius H, Hirvonen J, Hibberd AA, Ahonen I, Saarinen MT, Tiihonen K, Maukonen J, Ouwehand AC. The effect of 2'-fucosyllactose on simulated infant gut microbiome and metabolites; a pilot study in comparison to GOS and lactose. Sci Rep 2019; 9:13232. [PMID: 31520068 PMCID: PMC6744565 DOI: 10.1038/s41598-019-49497-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 08/27/2019] [Indexed: 01/01/2023] Open
Abstract
Human milk oligosaccharides (HMOs) shape gut microbiota during infancy by acting as fermentable energy source. Using a semi-continuous colon simulator, effect of an HMO, 2'-fucosyllactose (2'-FL), on composition of the infant microbiota and microbial metabolites was evaluated in comparison to galacto-oligosaccharide (GOS) and lactose and control without additional carbon source. Data was analysed according to faecal sample donor feeding type: breast-fed (BF) or formula-fed (FF), and to rate of 2'-FL fermentation: fast or slow. Variation was found between the simulations in the ability to utilise 2'-FL. The predominant phyla regulated by 2'-FL, GOS and lactose were significant increase in Firmicutes, numerical in Actinobacteria, and numerical decrease in Proteobacteria compared to control. Verrucomicrobia increased in FF accounted for Akkermansia, whereas in fast-fermenting simulations Actinobacteria increased with trend for higher Bifidobacterium, and Proteobacteria decrease accounted for Enterobacteriaceae. Short-chain fatty acids and lactic acid with 2'-FL were produced in intermediate levels being between ones generated by the control and GOS or lactose. In 2'-FL fast-fermenting group, acetic acid specifically increased with 2'-FL, whereas lactose and GOS also increased lactic acid. The results highlight specificity of 2'-FL as energy source for only certain microbes over GOS and lactose in the simulated gut model.
Collapse
Affiliation(s)
- Krista Salli
- DuPont Nutrition & Biosciences, Global Health & Nutrition Science, Kantvik, Finland.
| | - Heli Anglenius
- DuPont Nutrition & Biosciences, Global Health & Nutrition Science, Kantvik, Finland
| | - Johanna Hirvonen
- DuPont Nutrition & Biosciences, Global Health & Nutrition Science, Kantvik, Finland
| | - Ashley A Hibberd
- DuPont Nutrition & Biosciences, Genomics & Microbiome Science, Madison, WI, USA
| | | | - Markku T Saarinen
- DuPont Nutrition & Biosciences, Global Health & Nutrition Science, Kantvik, Finland
| | - Kirsti Tiihonen
- DuPont Nutrition & Biosciences, Global Health & Nutrition Science, Kantvik, Finland
| | - Johanna Maukonen
- DuPont Nutrition & Biosciences, Global Health & Nutrition Science, Kantvik, Finland
| | - Arthur C Ouwehand
- DuPont Nutrition & Biosciences, Global Health & Nutrition Science, Kantvik, Finland
| |
Collapse
|
42
|
Allen JM, Jaggers RM, Solden LM, Loman BR, Davies RH, Mackos AR, Ladaika CA, Berg BM, Chichlowski M, Bailey MT. Dietary Oligosaccharides Attenuate Stress-Induced Disruptions in Immune Reactivity and Microbial B-Vitamin Metabolism. Front Immunol 2019; 10:1774. [PMID: 31417554 PMCID: PMC6681768 DOI: 10.3389/fimmu.2019.01774] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 07/15/2019] [Indexed: 01/12/2023] Open
Abstract
Background: Exposure to stressful stimuli dysregulates inflammatory processes and alters the gut microbiota. Prebiotics, including long-chain fermentable fibers and milk oligosaccharides, have the potential to limit inflammation through modulation of the gut microbiota. To determine whether prebiotics attenuate stress-induced inflammation and microbiota perturbations, mice were fed either a control diet or a diet supplemented with galactooligosaccharides, polydextrose and sialyllactose (GOS+PDX+SL) or sialyllactose (SL) for 2 weeks prior to and during a 6-day exposure to a social disruption stressor. Spleens were collected for immunoreactivity assays. Colon contents were examined for stressor- and diet- induced changes in the gut microbiome and metabolome through 16S rRNA gene sequencing, shotgun metagenomic sequencing and UPLC-MS/MS. Results: Stress increased circulating IL-6 and enhanced splenocyte immunoreactivity to an ex vivo LPS challenge. Diets containing GOS+PDX+SL or SL alone attenuated these responses. Stress exposure resulted in large changes to the gut metabolome, including robust shifts in amino acids, peptides, nucleotides/nucleosides, tryptophan metabolites, and B vitamins. Multiple B vitamins were inversely associated with IL-6 and were augmented in mice fed either GOS+PDX+SL or SL diets. Stressed mice exhibited distinct microbial communities with lower abundances of Lactobacillus spp. and higher abundances of Bacteroides spp. Diet supplementation with GOS+PDX+SL, but not SL alone, orthogonally altered the microbiome and enhanced the growth of Bifidobacterium spp. Metagenome-assembled genomes (MAGs) from mice fed the GOS+PDX+SL diet unveiled genes in a Bifidobacterium MAG for de novo B vitamin synthesis. B vitamers directly attenuated the stressor-induced exacerbation of cytokine production in LPS-stimulated splenocytes. Conclusions: Overall, these data indicate that colonic metabolites, including B vitamins, are responsive to psychosocial stress. Dietary prebiotics reestablish colonic B vitamins and limit stress-induced inflammation.
Collapse
Affiliation(s)
- Jacob M Allen
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Robert M Jaggers
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Lindsey M Solden
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Brett R Loman
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Ronald H Davies
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Amy R Mackos
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Christopher A Ladaika
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Brian M Berg
- Mead Johnson Pediatric Nutrition Institute, Evansville, IN, United States
| | - Maciej Chichlowski
- Mead Johnson Pediatric Nutrition Institute, Evansville, IN, United States
| | - Michael T Bailey
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
| |
Collapse
|
43
|
Barczyńska R, Litwin M, Sliżewska K, Szalecki M, Berdowska A, Bandurska K, Libudzisz Z, Kapuśniak J. Bacterial Microbiota and Fatty Acids in the Faeces of Overweight and Obese Children. Pol J Microbiol 2019; 67:339-345. [PMID: 30451451 PMCID: PMC7256813 DOI: 10.21307/pjm-2018-041] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2018] [Indexed: 12/13/2022] Open
Abstract
The growing number of children with overweight and obesity constitutes a major health problem of the modern world and it has been suggested that intestinal microbiota may influence energy intake from food. The objectives of this study were to determine quantity and proportions of dominant genera of Bacteroides, Prevotella (phylum Bacteroidetes); Clostridium, Lactobacillus (phylum Firmicutes) and Bifidobacterium (phylum Actinobacteria) in the intestines and to determine the content of short-chain fatty acids (SCFAs) and branched-chain fatty acids (BCFAs) in the stool of 20 obese children and 20 children with normal body weight. Strains classified as Firmicutes (Clostridium and Lactobacillus) predominated in stool microbiota of obese children, while those of Bacteroidetes (Prevotella and Bacteroides) were in minority (p < 0.001). Concentration of SCFAs in the stool of obese children was lower in comparison to the stool of normal weight children (p = 0.04). However, these differences were significant only in obese children, not in overweight children in comparison with the lean ones. Therefore, in our study obesity was associated with intestinal dysbiosis and a predominance of phylum Firmicutes. Secondly, stool of obese children contained lower amounts of SCFAs.
Collapse
Affiliation(s)
- Renata Barczyńska
- Institute of Chemistry, Environmental Protection and Biotechnology, Jan Długosz University in Częstochowa, Częstochowa, Poland
| | | | - Katarzyna Sliżewska
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Technical University of Lodz, Lodz, Poland
| | - Mieczyslaw Szalecki
- The Children's Memorial Health Institute, Warsaw, Poland ; Faculty of Health Sciences, Jan Kochanowski University in Kielce, Kielce, Poland
| | - Agnieszka Berdowska
- Institute of Chemistry, Environmental Protection and Biotechnology, Jan Długosz University in Częstochowa, Częstochowa, Poland
| | - Katarzyna Bandurska
- Institute of Chemistry, Environmental Protection and Biotechnology, Jan Długosz University in Częstochowa, Częstochowa, Poland
| | - Zdzisława Libudzisz
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Technical University of Lodz, Lodz, Poland
| | - Janusz Kapuśniak
- Institute of Chemistry, Environmental Protection and Biotechnology, Jan Długosz University in Częstochowa, Częstochowa, Poland
| |
Collapse
|
44
|
Feng J, Yang J, Chang Y, Qiao L, Dang H, Luo K, Guo H, An Y, Ma C, Shao H, Tian J, Yuan Y, Xie L, Xing W, Cheng J. Caffeine-free hawk tea lowers cholesterol by reducing free cholesterol uptake and the production of very-low-density lipoprotein. Commun Biol 2019; 2:173. [PMID: 31098406 PMCID: PMC6506518 DOI: 10.1038/s42003-019-0396-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 03/21/2019] [Indexed: 02/08/2023] Open
Abstract
Medicinal plants show important therapeutic value in chronic disease treatment. However, due to their diverse ingredients and complex biological effects, the molecular mechanisms of medicinal plants are yet to be explored. By means of several high-throughput platforms, here we show hawk tea extract (HTE) inhibits Niemann-Pick C1-like 1 (NPC1L1)-mediated free cholesterol uptake, thereby inducing the transcription of low-density lipoprotein receptor (LDLR) downstream of the sterol response element binding protein 2 (SREBP2) pathway. Meanwhile, HTE suppresses hepatocyte nuclear factor 4α (HNF4α)-mediated transcription of microsomal triglyceride transfer protein (MTP) and apolipoprotein B (APOB), thereby decreasing the production of very-low-density lipoprotein. The catechin EGCG ((-)-epigallocatechin gallate) and the flavonoids kaempferol and quercetin are identified as the bioactive components responsible for the effects on the NPC1L1-SREBP2-LDLR axis and HNF4α-MTP/APOB axis, respectively. Overall, hawk tea works as a previously unrecognized cholesterol-lowering agent in a multi-target and multi-component manner.
Collapse
Affiliation(s)
- Juan Feng
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, 100084 Beijing, China
- Medical Systems Biology Research Center, School of Medicine, Tsinghua University, 100084 Beijing, China
- National Engineering Research Center for Beijing Biochip Technology, 102206 Beijing, China
| | - Jian Yang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700 Beijing, China
| | - Yujun Chang
- National Engineering Research Center for Beijing Biochip Technology, 102206 Beijing, China
| | - Liansheng Qiao
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, 100084 Beijing, China
- Medical Systems Biology Research Center, School of Medicine, Tsinghua University, 100084 Beijing, China
- National Engineering Research Center for Beijing Biochip Technology, 102206 Beijing, China
| | - Honglei Dang
- National Engineering Research Center for Beijing Biochip Technology, 102206 Beijing, China
| | - Kun Luo
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, 100084 Beijing, China
- Medical Systems Biology Research Center, School of Medicine, Tsinghua University, 100084 Beijing, China
- National Engineering Research Center for Beijing Biochip Technology, 102206 Beijing, China
| | - Hongyan Guo
- National Engineering Research Center for Beijing Biochip Technology, 102206 Beijing, China
| | - Yannan An
- National Engineering Research Center for Beijing Biochip Technology, 102206 Beijing, China
| | - Chengmei Ma
- National Engineering Research Center for Beijing Biochip Technology, 102206 Beijing, China
| | - Hong Shao
- National Engineering Research Center for Beijing Biochip Technology, 102206 Beijing, China
| | - Jie Tian
- National Engineering Research Center for Beijing Biochip Technology, 102206 Beijing, China
| | - Yuan Yuan
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700 Beijing, China
| | - Lan Xie
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, 100084 Beijing, China
- Medical Systems Biology Research Center, School of Medicine, Tsinghua University, 100084 Beijing, China
- National Engineering Research Center for Beijing Biochip Technology, 102206 Beijing, China
| | - Wanli Xing
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, 100084 Beijing, China
- Medical Systems Biology Research Center, School of Medicine, Tsinghua University, 100084 Beijing, China
- National Engineering Research Center for Beijing Biochip Technology, 102206 Beijing, China
| | - Jing Cheng
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, 100084 Beijing, China
- Medical Systems Biology Research Center, School of Medicine, Tsinghua University, 100084 Beijing, China
- National Engineering Research Center for Beijing Biochip Technology, 102206 Beijing, China
| |
Collapse
|
45
|
Rangan P, Choi I, Wei M, Navarrete G, Guen E, Brandhorst S, Enyati N, Pasia G, Maesincee D, Ocon V, Abdulridha M, Longo VD. Fasting-Mimicking Diet Modulates Microbiota and Promotes Intestinal Regeneration to Reduce Inflammatory Bowel Disease Pathology. Cell Rep 2019; 26:2704-2719.e6. [PMID: 30840892 PMCID: PMC6528490 DOI: 10.1016/j.celrep.2019.02.019] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/01/2019] [Accepted: 02/06/2019] [Indexed: 12/31/2022] Open
Abstract
Dietary interventions are potentially effective therapies for inflammatory bowel diseases (IBDs). We tested the effect of 4-day fasting-mimicking diet (FMD) cycles on a chronic dextran sodium sulfate (DSS)-induced murine model resulting in symptoms and pathology associated with IBD. These FMD cycles reduced intestinal inflammation, increased stem cell number, stimulated protective gut microbiota, and reversed intestinal pathology caused by DSS, whereas water-only fasting increased regenerative and reduced inflammatory markers without reversing pathology. Transplants of Lactobacillus or fecal microbiota from DSS- and FMD-treated mice reversed DSS-induced colon shortening, reduced inflammation, and increased colonic stem cells. In a clinical trial, three FMD cycles reduced markers associated with systemic inflammation. The effect of FMD cycles on microbiota composition, immune cell profile, intestinal stem cell levels and the reversal of pathology associated with IBD in mice, and the anti-inflammatory effects demonstrated in a clinical trial show promise for FMD cycles to ameliorate IBD-associated inflammation in humans.
Collapse
Affiliation(s)
- Priya Rangan
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Inyoung Choi
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Min Wei
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Gerardo Navarrete
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Esra Guen
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Sebastian Brandhorst
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Nobel Enyati
- USC Dornsife College of Letters, Arts & Sciences, Department of Biological Sciences, University of Southern California, 3551 Trousdale Pkwy, Los Angeles, CA 90089-0191, USA
| | - Gab Pasia
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Daral Maesincee
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Vanessa Ocon
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Maya Abdulridha
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | - Valter D Longo
- USC Dornsife College of Letters, Arts & Sciences, Department of Biological Sciences, University of Southern California, 3551 Trousdale Pkwy, Los Angeles, CA 90089-0191, USA; Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, 1425 San Pablo St, Los Angeles, CA 90033, USA; IFOM FIRC Institute of Molecular Oncology, Via Adamello 16, Milano 20139, Italy.
| |
Collapse
|
46
|
Hao W, He Z, Zhu H, Liu J, Kwek E, Zhao Y, Ma KY, He WS, Chen ZY. Sea buckthorn seed oil reduces blood cholesterol and modulates gut microbiota. Food Funct 2019; 10:5669-5681. [DOI: 10.1039/c9fo01232j] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Sea buckthorn seed oil favorably decreases plasma cholesterol.
Collapse
Affiliation(s)
- Wangjun Hao
- School of Life Sciences
- Chinese University of Hong Kong
- Shatin
- China
| | - Zouyan He
- School of Life Sciences
- Chinese University of Hong Kong
- Shatin
- China
| | - Hanyue Zhu
- School of Life Sciences
- Chinese University of Hong Kong
- Shatin
- China
| | - Jianhui Liu
- School of Life Sciences
- Chinese University of Hong Kong
- Shatin
- China
| | - Erika Kwek
- School of Life Sciences
- Chinese University of Hong Kong
- Shatin
- China
| | - Yimin Zhao
- School of Life Sciences
- Chinese University of Hong Kong
- Shatin
- China
| | - Ka Ying Ma
- School of Life Sciences
- Chinese University of Hong Kong
- Shatin
- China
| | - Wen-Sen He
- School of Life Sciences
- Chinese University of Hong Kong
- Shatin
- China
- School of Food and Biological Engineering
| | - Zhen-Yu Chen
- School of Life Sciences
- Chinese University of Hong Kong
- Shatin
- China
| |
Collapse
|
47
|
Li Y, Lv L, Ye J, Fang D, Shi D, Wu W, Wang Q, Wu J, Yang L, Bian X, Jiang X, Jiang H, Yan R, Peng C, Li L. Bifidobacterium adolescentis CGMCC 15058 alleviates liver injury, enhances the intestinal barrier and modifies the gut microbiota in D-galactosamine-treated rats. Appl Microbiol Biotechnol 2018; 103:375-393. [PMID: 30345482 DOI: 10.1007/s00253-018-9454-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 09/17/2018] [Accepted: 09/20/2018] [Indexed: 02/07/2023]
Abstract
Acute liver failure is a drastic, unpredictable clinical syndrome with high mortality. Various preventive and adjuvant therapies based on modulating the gut flora have been proposed for hepatic injury. We aimed to explore the preventive and therapeutic effects of Bifidobacterium adolescentis CGMCC15058 on rat liver failure, as well as the potential microecological and immunological mechanisms of those effects. B. adolescentis CGMCC15058 (3 × 109 CFU), isolated from healthy human stool, was gavaged to Sprague-Dawley rats for 14 days. Acute liver injury was induced on the 15th day by intraperitoneal injection of D-galactosamine. After 24 h, liver and terminal ileum histology, liver function, plasma cytokines, bacterial translocation and gut microbiota composition were assessed. We found that pretreatment with B. adolescentis significantly relieved elevated serum levels of alanine aminotransferase (ALT), total bile acid and lipopolysaccharide-binding protein and enhanced the expression of mucin 4 and the tight junction protein zonula occludens-1. B. adolescentis exhibited anti-inflammatory properties as indicated by decreased levels of mTOR and the inflammatory cytokines TNF-α and IL-6, as well as elevated levels of the anti-inflammatory cytokine interleukins-10 in the liver. Similar anti-inflammatory signs were also found in plasma. B. adolescentis significantly altered the microbial community, depleting the common pathogenic taxon Proteus and markedly enriching the taxa Coriobacteriaceae, Bacteroidales and Allobaculum, which are involved in regulating the metabolism of lipids and aromatic amino acids. Our findings not only suggest B. adolescentis acts as a prospective probiotic against liver failure but also provide new insights into the prevention and treatment of liver disease.
Collapse
Affiliation(s)
- Yating Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Qingchun Road 79, Hangzhou, 31003, People's Republic of China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Longxian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Qingchun Road 79, Hangzhou, 31003, People's Republic of China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Jianzhong Ye
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Qingchun Road 79, Hangzhou, 31003, People's Republic of China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Daiqiong Fang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Qingchun Road 79, Hangzhou, 31003, People's Republic of China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Ding Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Qingchun Road 79, Hangzhou, 31003, People's Republic of China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Wenrui Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Qingchun Road 79, Hangzhou, 31003, People's Republic of China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Qing Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Qingchun Road 79, Hangzhou, 31003, People's Republic of China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Jingjing Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Qingchun Road 79, Hangzhou, 31003, People's Republic of China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Liya Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Qingchun Road 79, Hangzhou, 31003, People's Republic of China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xiaoyuan Bian
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Qingchun Road 79, Hangzhou, 31003, People's Republic of China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Xianwan Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Qingchun Road 79, Hangzhou, 31003, People's Republic of China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Huiyong Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Qingchun Road 79, Hangzhou, 31003, People's Republic of China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Ren Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Qingchun Road 79, Hangzhou, 31003, People's Republic of China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Conggao Peng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Qingchun Road 79, Hangzhou, 31003, People's Republic of China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Qingchun Road 79, Hangzhou, 31003, People's Republic of China. .,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.
| |
Collapse
|
48
|
Airaksinen K, Jokkala J, Ahonen I, Auriola S, Kolehmainen M, Hanhineva K, Tiihonen K. High-Fat Diet, Betaine, and Polydextrose Induce Changes in Adipose Tissue Inflammation and Metabolism in C57BL/6J Mice. Mol Nutr Food Res 2018; 62:e1800455. [PMID: 30290084 DOI: 10.1002/mnfr.201800455] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/19/2018] [Indexed: 01/17/2023]
Abstract
SCOPE High-fat diets are a likely cause of low-grade inflammation and obesity-related pathologies. This study measures the effects of a high-fat diet, in combination with two dietary supplements-betaine and polydextrose-on metabolism and inflammation in the adipose tissue of diet-induced obese mice. METHODS AND RESULTS Forty male C57BL/6J mice are fed a high-fat diet for 8 weeks and compared with low-fat-diet-fed control animals (n = 10). For the last 4 weeks, the high-fat-diet-fed animals are supplemented with 1% betaine, 3.33% polydextrose, their combination, or plain water. Fat depots from subcutaneous and visceral adipose tissue are analyzed for inflammatory markers and nontargeted metabolomics by quantitative PCR and LC-QTOF-MS. The high-fat diet significantly increases adipose tissue inflammation in both fat depots. By metabolic profiling, clear differences are noted between low-fat-diet and high-fat-diet groups with regard to the levels of several metabolite species-primarily carnitines, lipids, and amino acids. Dietary betaine mitigates the high-fat-diet-induced IL-6 expression and significantly increases betaine and butyrobetaine levels in adipose tissue. CONCLUSIONS The high-fat diet induces patent changes in carnitine and lipid metabolism in adipose tissue. Betaine supplementation elevates the levels of betaine and its derivatives and certain carnitine species, as reported in muscle and liver, and moderately reduces inflammation.
Collapse
Affiliation(s)
- Kaisa Airaksinen
- DuPont Nutrition and Health, Global Health & Nutrition Science, 02460, Kantvik, Finland
| | - Jenna Jokkala
- Institute of Public Health and Clinical Nutrition, Clinical Nutrition, University of Eastern Finland, 70211, Kuopio, Finland
| | | | - Seppo Auriola
- School of Pharmacy, University of Eastern Finland, 70211, Kuopio, Finland
| | - Marjukka Kolehmainen
- Institute of Public Health and Clinical Nutrition, Clinical Nutrition, University of Eastern Finland, 70211, Kuopio, Finland.,VTT Technical Research Centre of Finland, 02044, Espoo, Finland
| | - Kati Hanhineva
- Institute of Public Health and Clinical Nutrition, Clinical Nutrition, University of Eastern Finland, 70211, Kuopio, Finland
| | - Kirsti Tiihonen
- DuPont Nutrition and Health, Global Health & Nutrition Science, 02460, Kantvik, Finland
| |
Collapse
|
49
|
Ye J, Lv L, Wu W, Li Y, Shi D, Fang D, Guo F, Jiang H, Yan R, Ye W, Li L. Butyrate Protects Mice Against Methionine-Choline-Deficient Diet-Induced Non-alcoholic Steatohepatitis by Improving Gut Barrier Function, Attenuating Inflammation and Reducing Endotoxin Levels. Front Microbiol 2018; 9:1967. [PMID: 30186272 PMCID: PMC6111843 DOI: 10.3389/fmicb.2018.01967] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 08/02/2018] [Indexed: 12/15/2022] Open
Abstract
Butyrate exerts protective effects against non-alcoholic steatohepatitis (NASH), but the underlying mechanisms are unclear. We aimed to investigate the role of butyrate-induced gut microbiota and metabolism in NASH development. Sixty-five C57BL/6J mice were divided into four groups (n = 15–17 per group) and were fed either a methionine–choline-sufficient (MCS) diet or methionine–choline-deficient (MCD) diet with or without sodium butyrate (SoB; 0.6 g/kg body weight) supplementation for 6 weeks. Liver injury, systematic inflammation, and gut barrier function were determined. Fecal microbiome and metabolome were analyzed using 16S rRNA deep sequencing and gas chromatography-mass spectrometry (GC-MS). The results showed that butyrate alleviated the MCD diet-induced microbiome dysbiosis, as evidenced by a significantly clustered configuration separate from that of the MCD group and by the depletion of Bilophila and Rikenellaceae and enrichment of promising probiotic genera Akkermansia, Roseburia, Coprococcus, Coprobacillus, Delftia, Sutterella, and Coriobacteriaceae genera. The fecal metabolomic profile was also substantially improved by butyrate; several butyrate-responsive metabolites involved in lipid metabolism and other pathways, such as stearic acid, behenic acid, oleic acid, linoleic acid, squalene, and arachidonic acid, were identified. Correlation analysis of the interaction matrix indicated that the modified gut microbiota and fecal metabolites induced by butyrate were strongly correlated with the alleviation of hepatic injury, fibrosis progression, inflammation, and lipid metabolism and intestinal barrier dysfunction. In conclusion, our results demonstrated that butyrate exerts protective effects against NASH development, and these effects may be driven by the protective gut microbiome and metabolome induced by butyrate. This study thus provides new insights into NASH prevention.
Collapse
Affiliation(s)
- Jianzhong Ye
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Longxian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Wenrui Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Yating Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Ding Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Daiqiong Fang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Feifei Guo
- Department of Infectious Disease, Shulan Hangzhou Hospital, Zhejiang University, Hangzhou, China
| | - Huiyong Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Ren Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Wanchun Ye
- Department of Chemotherapy 2, Wenzhou Central Hospital, Wenzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
50
|
Bicknell B, Liebert A, Johnstone D, Kiat H. Photobiomodulation of the microbiome: implications for metabolic and inflammatory diseases. Lasers Med Sci 2018; 34:317-327. [PMID: 30074108 DOI: 10.1007/s10103-018-2594-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/16/2018] [Indexed: 12/20/2022]
Abstract
The human microbiome is intimately associated with human health, with a role in obesity, metabolic diseases such as type 2 diabetes, and divergent diseases such as cardiovascular and neurodegenerative diseases. The microbiome can be changed by diet, probiotics, and faecal transplants, which has flow-on effects to health outcomes. Photobiomodulation has a therapeutic effect on inflammation and neurological disorders (amongst others) and has been reported to influence metabolic disorders and obesity. The aim of this study was to examine the possibility that PBM could influence the microbiome of mice. Mice had their abdomen irradiated with red (660 nm) or infrared (808 nm) low-level laser, either as single or multiple doses, over a 2-week period. Genomic DNA extracted from faecal pellets was pyrosequenced for the 16S rRNA gene. There was a significant (p < 0.05) difference in microbial diversity between PBM- and sham-treated mice. One genus of bacterium (Allobaculum) significantly increased (p < 0.001) after infrared (but not red light) PBM by day 14. Despite being a preliminary trial with small experimental numbers, we have demonstrated for the first time that PBM can alter microbiome diversity in healthy mice and increase numbers of Allobaculum, a bacterium associated with a healthy microbiome. This change is most probably a result of PBMt affecting the host, which in turn influenced the microbiome. If this is confirmed in humans, the possibility exists for PBMt to be used as an adjunct therapy in treatment of obesity and other lifestyle-related disorders, as well as cardiovascular and neurodegenerative diseases. The clinical implications of altering the microbiome using PBM warrants further investigation.
Collapse
Affiliation(s)
- Brian Bicknell
- Australasian Research Institute, Wahroonga, Australia. .,Faculty of Health Sciences, Australian Catholic University, North Sydney, Australia.
| | - Ann Liebert
- Australasian Research Institute, Wahroonga, Australia.,Department of Medicine, University of Sydney, Camperdown, Australia
| | | | - Hosen Kiat
- Faculty of Medicine and Health Sciences, Macquarie University, West Ryde, Australia.,School of Medical Sciences, University of New South Wales, Kensington, Australia
| |
Collapse
|