1
|
Manning KY, Jaffer A, Lebel C. Windows of Opportunity: How Age and Sex Shape the Influence of Prenatal Depression on the Child Brain. Biol Psychiatry 2025; 97:227-247. [PMID: 39117167 DOI: 10.1016/j.biopsych.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024]
Abstract
Maternal prenatal depression can affect child brain and behavioral development. Specifically, altered limbic network structure and function is a likely mechanism through which prenatal depression impacts the life-long mental health of exposed children. While developmental trajectories are influenced by many factors that exacerbate risk or promote resiliency, the role of child age and sex in the relationship between prenatal depression and the child brain remains unclear. Here, we review studies of associations between prenatal depression and brain structure and function, with a focus on the role of age and sex in these relationships. After exposure to maternal prenatal depression, altered amygdala, hippocampal, and frontal cortical structure, as well as changes in functional and structural connectivity within the limbic network, are evident during the fetal, infant, preschool, childhood, and adolescent stages of development. Sex appears to play a key role in this relationship, with evidence of differential findings particularly in infants, with males showing smaller and females larger hippocampal and amygdala volumes following prenatal depression. Longitudinal studies in this area have only begun to emerge within the last 5 years and will be key to understanding critical windows of opportunity. Future research focused on the role of age and sex in this relationship is essential to further inform screening, policy, and interventions for children exposed to prenatal depression, interrupt the intergenerational transmission of depression, and ultimately support healthy brain development.
Collapse
Affiliation(s)
- Kathryn Y Manning
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Aliza Jaffer
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
| | - Catherine Lebel
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada; Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
2
|
Moniri M, Mirghafourvand M, Meedya S, Ghanbari‐Homaie S. Can Pregnancy Experience Predict Birth Experience, Postpartum Depression and Anxiety? A Prospective Descriptive Study. Nurs Open 2024; 11:e70116. [PMID: 39642152 PMCID: PMC11623343 DOI: 10.1002/nop2.70116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/31/2024] [Accepted: 11/22/2024] [Indexed: 12/08/2024] Open
Abstract
AIM A positive pregnancy experience can be a good start for healthy motherhood. This study aimed to investigate Iranian women's pregnancy experience and how self-reported hassles and uplifts influence birth experience, postpartum depression and anxiety, and the association between childbirth experience and postpartum mental health. DESIGN A prospective descriptive study. METHODS A prospective descriptive study was conducted among 228 pregnant women from health centres in Tabriz, Iran. From the 28th to 36th weeks of pregnancy, participants completed the Pregnancy Experience Scale. Then, the mothers were followed up until 4-6 weeks postpartum, and Childbirth Experience Questionnaires version 2.0, Edinburgh Postnatal Depression and the short form of Specific Postpartum Anxiety Scales were completed. The data were analysed using the general linear model. RESULTS After adjusting for possible confounding variables, there was no statistically significant association between women's pregnancy and childbirth experiences. However, the mean scores of postpartum depression and anxiety were significantly higher in women who felt unhappy about the discomforts that they experienced during pregnancy (β [95% CI] = 0.01 [0.01-0.02]; p < 0.001, 0.22 [0.09-0.35]; p = 0.001, respectively). CONCLUSION There was a significant statistical reverse association between childbirth experience and postpartum anxiety and depression. The study demonstrated a significant association between women's pregnancy, birth experiences and postpartum psychological outcomes. Implementing interventions that create a positive pregnancy experience will likely have an impact on reducing the prevalence of postpartum depression and anxiety. PATIENT OR PUBLIC CONTRIBUTION Pregnant women participated solely in the data collection by responding to the questionnaires. No participant contributions were required for the study's design, outcome measurement or implementation.
Collapse
Affiliation(s)
- Monireh Moniri
- Students Research CommitteeTabriz University of Medical SciencesTabrizIran
| | - Mojgan Mirghafourvand
- Social Determinants of Health Research CenterTabriz University of Medical SciencesTabrizIran
| | | | - Solmaz Ghanbari‐Homaie
- Assistant Professor, Department of Midwifery, Faculty of Nursing and MidwiferyTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
3
|
Olasunkanmi OI, Aremu J, Wong ML, Licinio J, Zheng P. Maternal gut-microbiota impacts the influence of intrauterine environmental stressors on the modulation of human cognitive development and behavior. J Psychiatr Res 2024; 180:307-326. [PMID: 39488009 DOI: 10.1016/j.jpsychires.2024.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/01/2023] [Accepted: 10/23/2024] [Indexed: 11/04/2024]
Abstract
This review examines the longstanding debate of nature and intrauterine environmental challenges that shapes human development and behavior, with a special focus on the influence of maternal prenatal gut microbes. Recent research has revealed the critical role of the gut microbiome in human neurodevelopment, and evidence suggest that maternal microbiota can impact fetal gene and microenvironment composition, as well as immunophysiology and neurochemical responses. Furthermore, intrauterine neuroepigenetic regulation may be influenced by maternal microbiota, capable of having long-lasting effects on offspring behavior and cognition. By examining the complex relationship between maternal prenatal gut microbes and human development, this review highlights the importance of early-life environmental factors in shaping neurodevelopment and cognition.
Collapse
Affiliation(s)
- Oluwatayo Israel Olasunkanmi
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China; Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education) Chongqing Medical University, Chongqing, China.
| | - John Aremu
- Department of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Ma-Li Wong
- Department of Psychiatry, College of Medicine, Upstate Medical University, Syracuse, NY, USA
| | - Julio Licinio
- Department of Psychiatry, College of Medicine, Upstate Medical University, Syracuse, NY, USA.
| | - Peng Zheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China; Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education) Chongqing Medical University, Chongqing, China.
| |
Collapse
|
4
|
Westerhuis JAW, Dudink J, Wijnands BECA, De Zeeuw CI, Canto CB. Impact of Intrauterine Insults on Fetal and Postnatal Cerebellar Development in Humans and Rodents. Cells 2024; 13:1911. [PMID: 39594658 PMCID: PMC11592629 DOI: 10.3390/cells13221911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Many children suffer from neurodevelopmental aberrations that have long-term effects. To understand the consequences of pathological processes during particular periods in neurodevelopment, one has to understand the differences in the developmental timelines of brain regions. The cerebellum is one of the first brain structures to differentiate during development but one of the last to achieve maturity. This relatively long period of development underscores its vulnerability to detrimental environmental exposures throughout gestation. Moreover, as postnatal functionality of the cerebellum is multifaceted, enveloping sensorimotor, cognitive, and emotional domains, prenatal disruptions in cerebellar development can result in a large variety of neurological and mental health disorders. Here, we review major intrauterine insults that affect cerebellar development in both humans and rodents, ranging from abuse of toxic chemical agents, such as alcohol, nicotine, cannabis, and opioids, to stress, malnutrition, and infections. Understanding these pathological mechanisms in the context of the different stages of cerebellar development in humans and rodents can help us to identify critical and vulnerable periods and thereby prevent the risk of associated prenatal and early postnatal damage that can lead to lifelong neurological and cognitive disabilities. The aim of the review is to raise awareness and to provide information for obstetricians and other healthcare professionals to eventually design strategies for preventing or rescuing related neurodevelopmental disorders.
Collapse
Affiliation(s)
- Judith A. W. Westerhuis
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands; (J.A.W.W.); (C.I.D.Z.)
| | - Jeroen Dudink
- Department of Neonatology, Wilhelmina Children’s Hospital, University Medical Centre Utrecht, 3584 EA Utrecht, The Netherlands; (J.D.); (B.E.C.A.W.)
| | - Bente E. C. A. Wijnands
- Department of Neonatology, Wilhelmina Children’s Hospital, University Medical Centre Utrecht, 3584 EA Utrecht, The Netherlands; (J.D.); (B.E.C.A.W.)
| | - Chris I. De Zeeuw
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands; (J.A.W.W.); (C.I.D.Z.)
- Department of Neuroscience, Erasmus Medical Center, 3015 AA Rotterdam, The Netherlands
| | - Cathrin B. Canto
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands; (J.A.W.W.); (C.I.D.Z.)
- Department of Neuroscience, Erasmus Medical Center, 3015 AA Rotterdam, The Netherlands
| |
Collapse
|
5
|
Lautarescu A, Bonthrone AF, Bos B, Barratt B, Counsell SJ. Advances in fetal and neonatal neuroimaging and everyday exposures. Pediatr Res 2024; 96:1404-1416. [PMID: 38877283 PMCID: PMC11624138 DOI: 10.1038/s41390-024-03294-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 06/16/2024]
Abstract
The complex, tightly regulated process of prenatal brain development may be adversely affected by "everyday exposures" such as stress and environmental pollutants. Researchers are only just beginning to understand the neural sequelae of such exposures, with advances in fetal and neonatal neuroimaging elucidating structural, microstructural, and functional correlates in the developing brain. This narrative review discusses the wide-ranging literature investigating the influence of parental stress on fetal and neonatal brain development as well as emerging literature assessing the impact of exposure to environmental toxicants such as lead and air pollution. These 'everyday exposures' can co-occur with other stressors such as social and financial deprivation, and therefore we include a brief discussion of neuroimaging studies assessing the effect of social disadvantage. Increased exposure to prenatal stressors is associated with alterations in the brain structure, microstructure and function, with some evidence these associations are moderated by factors such as infant sex. However, most studies examine only single exposures and the literature on the relationship between in utero exposure to pollutants and fetal or neonatal brain development is sparse. Large cohort studies are required that include evaluation of multiple co-occurring exposures in order to fully characterize their impact on early brain development. IMPACT: Increased prenatal exposure to parental stress and is associated with altered functional, macro and microstructural fetal and neonatal brain development. Exposure to air pollution and lead may also alter brain development in the fetal and neonatal period. Further research is needed to investigate the effect of multiple co-occurring exposures, including stress, environmental toxicants, and socioeconomic deprivation on early brain development.
Collapse
Affiliation(s)
- Alexandra Lautarescu
- Department of Perinatal Imaging and Health, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Alexandra F Bonthrone
- Department of Perinatal Imaging and Health, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Brendan Bos
- MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Ben Barratt
- MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Serena J Counsell
- Department of Perinatal Imaging and Health, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.
| |
Collapse
|
6
|
Mariani Wigley ILC, Nazzari S, Pastore M, Grumi S, Provenzi L. Exclusive breastfeeding mitigates the association between prenatal maternal pandemic-related stress and children sleep problems at 24 months of age. Dev Psychopathol 2024:1-11. [PMID: 39397696 DOI: 10.1017/s0954579424001627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Infant sleep quality is increasingly regarded as an important factor for children long-term functioning and adaptation. The early roots of sleep disturbances are still poorly understood and likely involve a complex interplay between prenatal and postnatal factors. This study investigated whether exclusive breastfeeding during the first 6 months moderated the association between maternal prenatal pandemic-related stress (PRS) and sleep problems in 24-months children born during the COVID-19 pandemic. We also explored the potential contribution of maternal postnatal anxiety in these relations. Seventy-eight infants (50% males) and their mothers provided complete data from birth to 24 months. Between 12 and 48 h from birth, maternal PRS during pregnancy was retrospectively reported as well as maternal anxiety and exclusive breastfeeding. Maternal anxiety and exclusive breastfeeding were also reported at 3 and 6 months after childbirth. Children sleep disturbances were reported at 24 months. Bayesian analyses revealed that maternal PRS was positively associated with sleep problems in children who were not exclusively breastfed from birth to 6 months. Findings add to the growing literature on the lasting impact of early pre- and postnatal experiences on child well-being and development.
Collapse
Affiliation(s)
- Isabella Lucia Chiara Mariani Wigley
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, Turku University Hospital and University of Turku, Turku, Finland
| | - Sarah Nazzari
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Massimiliano Pastore
- Department of Developmental and Social Psychology, University of Padua, Padova, Veneto, Italy
| | - Serena Grumi
- Developmental Psychobiology Lab, IRCCS Mondino Foundation, Pavia, Italy
| | - Livio Provenzi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Developmental Psychobiology Lab, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
7
|
Geiger SD, Chandran A, Churchill ML, Mansolf M, Zhang C, Musaad S, Blackwell CK, Eick SM, Goin DE, Korrick S, Alshawabkeh A, Brennan PA, Breton CV, Cordero JF, Deoni S, D'Sa V, Dunlop AL, Elliott AJ, Ferrara A, Keddie A, LeBourgeois M, LeWinn KZ, Koinis-Mitchell D, Lucchini M, Nozadi SS, O'Connor T, Zhu Y, Zimmerman E, Schantz SL. Association between maternal stress and child sleep quality: a nationwide ECHO prospective cohort study. Pediatr Res 2024:10.1038/s41390-024-03542-4. [PMID: 39394425 DOI: 10.1038/s41390-024-03542-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 10/13/2024]
Abstract
BACKGROUND Childhood sleep quality is associated with physical, cognitive, and behavioral health and predicts later sleep quality; it has many determinants, including developmental exposures. OBJECTIVES To examine associations between maternal stress during pregnancy and childhood sleep quality and determine whether postnatal stress mediates the association. METHOD Data from the Environmental Influences on Child Health Outcomes cohort were used. Perceived Stress Scale (PSS) T-scores were the exposure measure. Outcome measures were preschool Child Behavior Checklist (CBCL) sleep syndrome scale and Patient-Reported Outcomes Measurement Information System Sleep Disturbance Parent Proxy short form 4a (PSD4a) T-scores at ages 4-8 years. Linear mixed-effects regression modeling was performed for each sleep outcome, adjusting for maternal age at delivery and education and child sex, gestational age at birth, and age at outcome ascertainment, with random intercepts for cohorts. RESULTS Prenatal PSS score was associated with both CBCL (B = 0.09, 95% confidence interval [CI]: 0.06, 0.11; p < 0.01) and PSD4a (B = 0.07, 95% CI: 0.03, 0.12; p < 0.01) scores. Postnatal perceived stress mediated a proportion of the total effect of prenatal stress in both CBCL (66.3%) and PSD4a (95.9%) samples. CONCLUSIONS Both pre- and postnatal maternal perceived stress appear to influence sleep quality during early life. IMPACT Prenatal stress significantly associates with child sleep problems and disturbances at ages 4-8 years; postnatal maternal stress is a significant mediator of these associations. Research suggests a range of prenatal affective/distress exposures associated with child sleep problems, but the conclusions remain in doubt due to the mixture of exposures and outcomes employed. Ours is the first US-based effort to explore associations between perceived maternal stress during pregnancy and child sleep problems and disturbance in early and middle childhood. Even a small effect of a prevalent issue like psychosocial stress may have important public health implications at the population level.
Collapse
Affiliation(s)
- Sarah Dee Geiger
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Aruna Chandran
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Marie L Churchill
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Maxwell Mansolf
- Department of Medical Social Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Cai Zhang
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Salma Musaad
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Courtney K Blackwell
- Department of Medical Social Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Stephanie M Eick
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Dana E Goin
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Program on Reproductive Health and the Environment, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Susan Korrick
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Akram Alshawabkeh
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, USA
| | | | - Carrie V Breton
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jose F Cordero
- Department of Epidemiology, University of Georgia College of Public Health, Athens, Georgia
| | - Sean Deoni
- Department of Pediatrics, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Viren D'Sa
- Department of Pediatrics, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Anne L Dunlop
- Department of Gynecology & Obstetrics, Emory University School of Medicine, Atlanta, Georgia
| | | | - Assiamira Ferrara
- Division of Research, Kaiser Permanente North California, Oakland, CA, USA
| | - Arlene Keddie
- School of Health Studies, Northern Illinois University, DeKalb, IL, USA
| | - Monique LeBourgeois
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Kaja Z LeWinn
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Daphne Koinis-Mitchell
- Department of Pediatrics, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | | | - Sara S Nozadi
- Community Environmental Health Program, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Thomas O'Connor
- Departments of Psychiatry, Neuroscience, Obstetrics and Gynecology, University of Rochester, Rochester, NY, USA
| | - Yeyi Zhu
- Kaiser Permanente North California Division of Research, Oakland, CA, USA
| | - Emily Zimmerman
- Department of Communication Sciences and Disorders, Northeastern University, Boston, MA, USA
| | - Susan L Schantz
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
8
|
van Dijk MT, Talati A, Barrios PG, Crandall AJ, Lugo-Candelas C. Prenatal depression outcomes in the next generation: A critical review of recent DOHaD studies and recommendations for future research. Semin Perinatol 2024; 48:151948. [PMID: 39043475 DOI: 10.1016/j.semperi.2024.151948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Prenatal depression, a common pregnancy-related risk with a prevalence of 10-20 %, may affect in utero development and socioemotional and neurodevelopmental outcomes in the next generation. Although there is a growing body of work that suggests prenatal depression has an independent and long-lasting effect on offspring outcomes, important questions remain, and findings often do not converge. The present review examines work carried out in the last decade, with an emphasis on studies focusing on mechanisms and leveraging innovative technologies and study designs to fill in gaps in research. Overall, the past decade of research continues to suggest that prenatal depression increases risk for offspring socioemotional problems and may alter early brain development by affecting maternal-fetal physiology during pregnancy. However, important limitations remain; lack of diversity in study samples, inconsistent consideration of potential confounders (e.g., genetics, postnatal depression, parenting), and restriction of examination to narrow time windows and single exposures. On the other hand, exciting work has begun uncovering potential mechanisms underlying transmission, including alterations in mitochondria functioning, epigenetics, and the prenatal microbiome. We review the evidence to date, identify limitations, and suggest strategies for the next decade of research to detect mechanisms as well as sources of plasticity and resilience to ensure this work translates into meaningful, actionable science that improves the lives of families.
Collapse
Affiliation(s)
- M T van Dijk
- Columbia University Irving Medical Center, United States; New York State Psychiatric Institute, United States
| | - A Talati
- Columbia University Irving Medical Center, United States; New York State Psychiatric Institute, United States
| | | | - A J Crandall
- Columbia University Irving Medical Center, United States; New York State Psychiatric Institute, United States
| | - C Lugo-Candelas
- Columbia University Irving Medical Center, United States; New York State Psychiatric Institute, United States.
| |
Collapse
|
9
|
Hoyniak CP, Donohue MR, Luby JL, Barch DM, Zhao P, Smyser CD, Warner B, Rogers CE, Herzog ED, England SK. The association between maternal sleep and circadian rhythms during pregnancy and infant sleep and socioemotional outcomes. Eur Child Adolesc Psychiatry 2024:10.1007/s00787-024-02571-y. [PMID: 39180688 DOI: 10.1007/s00787-024-02571-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
Studies have established that maternal sleep and circadian rhythm disturbances during pregnancy are associated with poor prenatal and perinatal outcomes for mothers and offspring. However, little work has explored its effects on infant sleep or socioemotional outcomes. The current study examined the relationship between maternal sleep and circadian rhythm disturbances during pregnancy and infant sleep and socioemotional outcomes in a diverse sample of N = 193 mothers and their infants (51% White; 52% Female; Mage = 11.95 months). Maternal sleep and circadian rhythms during pregnancy were assessed using self-reports and actigraphy. Mothers reported on infants' sleep and socioemotional outcomes when infants were one year old. When controlling for infant sex, age, gestational age at birth, family income-to-needs ratios, and maternal depression, mothers who reported more sleep problems during pregnancy had infants with more sleep disturbances when they were one year old. Moreover, mothers who had later sleep timing (i.e., went to bed and woke up later, measured via actigraphy) during pregnancy had infants with more dysregulation (e.g., increased feeding difficulties, sensory sensitivities) and externalizing problems, and mothers with increased intra-daily variability in rest-activity rhythms (as measured via actigraphy) had infants with more externalizing problems. Findings suggest that maternal sleep and circadian rhythm disturbances during pregnancy may be a risk factor for infant sleep problems and socioemotional difficulties.
Collapse
Affiliation(s)
- Caroline P Hoyniak
- Department of Psychiatry, Washington University School of Medicine in St. Louis, 4444 Forest Park Ave, Suite 2100, St. Louis, MO, 63108, USA.
| | - Meghan R Donohue
- Department of Psychiatry, Washington University School of Medicine in St. Louis, 4444 Forest Park Ave, Suite 2100, St. Louis, MO, 63108, USA
| | - Joan L Luby
- Department of Psychiatry, Washington University School of Medicine in St. Louis, 4444 Forest Park Ave, Suite 2100, St. Louis, MO, 63108, USA
| | - Deanna M Barch
- Department of Psychiatry, Washington University School of Medicine in St. Louis, 4444 Forest Park Ave, Suite 2100, St. Louis, MO, 63108, USA
- The Program in Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
- Department of Radiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Peinan Zhao
- Department of Obstetrics and Gynecology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Christopher D Smyser
- Department of Radiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Barbara Warner
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Cynthia E Rogers
- Department of Psychiatry, Washington University School of Medicine in St. Louis, 4444 Forest Park Ave, Suite 2100, St. Louis, MO, 63108, USA
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Erik D Herzog
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Sarah K England
- Department of Obstetrics and Gynecology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| |
Collapse
|
10
|
Nightingale HJ, Watts C, Pham K. Experiences of attending prenatal ultrasounds during the COVID-19 pandemic in Australia: A cross-sectional survey. Birth 2024. [PMID: 39177421 DOI: 10.1111/birt.12867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/26/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Prenatal ultrasounds form an important part of routine maternity care in Australia and indeed internationally. The COVID-19 pandemic necessitated rapid changes in society and healthcare to curb transmission, with evidence demonstrating detrimental impacts on childbearing women associated with these restrictions. However, experiences with pandemic restrictions for prenatal ultrasounds in relation to distress, patient expectations, and satisfaction are largely unknown. This study aimed to explore the experiences of pregnant women attending prenatal ultrasound during the pandemic in Australia. METHODS A cross-sectional online survey of people in Australia who had undergone at least one prenatal ultrasound during the period of maternity care restrictions was performed. The survey included validated tools for assessing post-traumatic stress, satisfaction, and expectations with maternity care. RESULTS A total of 1280 responses were obtained. Almost 37% of respondents returned a PCL-C score consistent with probable post-traumatic stress disorder. Unexpected ultrasound findings or a high PCL-C score were more likely to have higher expectations and lower levels of satisfaction with their maternity care experience. Having an ultrasound for pregnancy loss, fetal abnormality, and/or a prior post-traumatic stress disorder diagnosis were the strongest factors correlating with a high PCL-C score. DISCUSSION The prevalence of post-traumatic stress symptoms in the study population is concerning and elucidates the distress experienced in association with prenatal ultrasounds during pandemic restrictions in Australia. Maternity services should acknowledge the high levels of service consumers with post-trauma symptoms and consider trauma-responsive maternity care adaptations in response to adverse perinatal outcomes for those afflicted with post-trauma and distress-related symptoms.
Collapse
Affiliation(s)
- Helen J Nightingale
- Rural Department of Nursing & Midwifery, La Trobe University, Bendigo, Victoria, Australia
| | - Christina Watts
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Kim Pham
- Department of Women's & Children's Services, Bendigo Health, Bendigo, Australia
| |
Collapse
|
11
|
Wu Y, De Asis-Cruz J, Limperopoulos C. Brain structural and functional outcomes in the offspring of women experiencing psychological distress during pregnancy. Mol Psychiatry 2024; 29:2223-2240. [PMID: 38418579 PMCID: PMC11408260 DOI: 10.1038/s41380-024-02449-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 03/01/2024]
Abstract
In-utero exposure to maternal psychological distress is increasingly linked with disrupted fetal and neonatal brain development and long-term neurobehavioral dysfunction in children and adults. Elevated maternal psychological distress is associated with changes in fetal brain structure and function, including reduced hippocampal and cerebellar volumes, increased cerebral cortical gyrification and sulcal depth, decreased brain metabolites (e.g., choline and creatine levels), and disrupted functional connectivity. After birth, reduced cerebral and cerebellar gray matter volumes, increased cerebral cortical gyrification, altered amygdala and hippocampal volumes, and disturbed brain microstructure and functional connectivity have been reported in the offspring months or even years after exposure to maternal distress during pregnancy. Additionally, adverse child neurodevelopment outcomes such as cognitive, language, learning, memory, social-emotional problems, and neuropsychiatric dysfunction are being increasingly reported after prenatal exposure to maternal distress. The mechanisms by which prenatal maternal psychological distress influences early brain development include but are not limited to impaired placental function, disrupted fetal epigenetic regulation, altered microbiome and inflammation, dysregulated hypothalamic pituitary adrenal axis, altered distribution of the fetal cardiac output to the brain, and disrupted maternal sleep and appetite. This review will appraise the available literature on the brain structural and functional outcomes and neurodevelopmental outcomes in the offspring of pregnant women experiencing elevated psychological distress. In addition, it will also provide an overview of the mechanistic underpinnings of brain development changes in stress response and discuss current treatments for elevated maternal psychological distress, including pharmacotherapy (e.g., selective serotonin reuptake inhibitors) and non-pharmacotherapy (e.g., cognitive-behavior therapy). Finally, it will end with a consideration of future directions in the field.
Collapse
Affiliation(s)
- Yao Wu
- Developing Brain Institute, Children's National Hospital, Washington, DC, 20010, USA
| | | | - Catherine Limperopoulos
- Developing Brain Institute, Children's National Hospital, Washington, DC, 20010, USA.
- Department of Diagnostic Imaging and Radiology, Children's National Hospital, Washington, DC, 20010, USA.
| |
Collapse
|
12
|
Meredith Weiss S, Aydin E, Lloyd-Fox S, Johnson MH. Trajectories of brain and behaviour development in the womb, at birth and through infancy. Nat Hum Behav 2024; 8:1251-1262. [PMID: 38886534 DOI: 10.1038/s41562-024-01896-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 04/04/2024] [Indexed: 06/20/2024]
Abstract
Birth is often seen as the starting point for studying effects of the environment on human development, with much research focused on the capacities of young infants. However, recent imaging advances have revealed that the complex behaviours of the fetus and the uterine environment exert influence. Birth is now viewed as a punctuate event along a developmental pathway of increasing autonomy of the child from their mother. Here we highlight (1) increasing physiological autonomy and perceptual sensitivity in the fetus, (2) physiological and neurochemical processes associated with birth that influence future behaviour, (3) the recalibration of motor and sensory systems in the newborn to adapt to the world outside the womb and (4) the effect of the prenatal environment on later infant behaviours and brain function. Taken together, these lines of evidence move us beyond nature-nurture issues to a developmental human lifespan view beginning within the womb.
Collapse
Affiliation(s)
- Staci Meredith Weiss
- University of Cambridge, Department of Psychology, Cambridge, UK.
- University of Roehampton, School of Psychology, London, UK.
| | - Ezra Aydin
- University of Cambridge, Department of Psychology, Cambridge, UK
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Sarah Lloyd-Fox
- University of Cambridge, Department of Psychology, Cambridge, UK
| | - Mark H Johnson
- University of Cambridge, Department of Psychology, Cambridge, UK
- Centre for Brain and Cognitive Development, Birkbeck, University of London, London, UK
| |
Collapse
|
13
|
Nazzari S, Pili MP, Günay Y, Provenzi L. Pandemic babies: A systematic review of the association between maternal pandemic-related stress during pregnancy and infant development. Neurosci Biobehav Rev 2024; 162:105723. [PMID: 38762129 DOI: 10.1016/j.neubiorev.2024.105723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
The COVID-19 pandemic, with its far-reaching influence on daily life, constituted a highly stressful experience for many people worldwide, jeopardizing individuals' mental health, particularly in vulnerable populations such as pregnant women. While a growing body of evidence links prenatal maternal stress to biological and developmental alterations in offspring, the specific impact of prenatal exposure to maternal pandemic-related stress (PRS) on infant development remains unclear. A comprehensive literature search was performed in October 2023 according to the PRISMA guidelines, which yielded a total of 28 records. The selected papers investigated a vast range of developmental and biological outcomes in the offspring with large methodological variations. The reviewed studies showed mixed results. Either direct associations between maternal PRS during pregnancy and infant temperament and socio-emotional development, or indirect links, mediated by maternal mental health, emerged in most studies. Furthermore, maternal PRS was associated with epigenetic and brain alterations in the offspring, although studies were limited in number. Collectively, the reviewed findings contribute to a deeper understanding of the role of early adverse exposures on infant development.
Collapse
Affiliation(s)
- Sarah Nazzari
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.
| | - Miriam Paola Pili
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Yaren Günay
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Livio Provenzi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; Developmental Psychobiology Lab, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
14
|
Arichi T. Characterizing Large-Scale Human Circuit Development with In Vivo Neuroimaging. Cold Spring Harb Perspect Biol 2024; 16:a041496. [PMID: 38438187 PMCID: PMC11146311 DOI: 10.1101/cshperspect.a041496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Large-scale coordinated patterns of neural activity are crucial for the integration of information in the human brain and to enable complex and flexible human behavior across the life span. Through recent advances in noninvasive functional magnetic resonance imaging (fMRI) methods, it is now possible to study this activity and how it emerges in the living fetal brain across the second half of human gestation. This work has demonstrated that functional activity in the fetal brain has several features in keeping with highly organized networks of activity, which are undergoing a highly programmed and rapid sequence of development before birth, in which long-range connections emerge and core features of the mature functional connectome (such as hub regions and a gradient organization) are established. In this review, the findings of these studies are summarized, their relationship to the known changes in developmental neurobiology is considered, and considerations for future work in the context of limitations to the fMRI approach are presented.
Collapse
Affiliation(s)
- Tomoki Arichi
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London SE1 7EH, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, United Kingdom
- Children's Neurosciences, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London SE1 7EH, United Kingdom
| |
Collapse
|
15
|
Zhao Y, Liu F, Lin P, Tu Z, Wu B. Sleep quality and mental health among Chinese nurses after the COVID-19 pandemic: A moderated model. PLoS One 2024; 19:e0295105. [PMID: 38820459 PMCID: PMC11142611 DOI: 10.1371/journal.pone.0295105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/15/2024] [Indexed: 06/02/2024] Open
Abstract
INTRODUCTION AND AIMS In the specialized nursing setting, nurses are susceptible to developing negative mental health issues. Such conditions among nurses can potentially result in unfavorable medical outcomes. Consequently, this study aims to explore the role of social support in regulating between sleep and mental health in nurses. METHODS A cross-sectional study was carried out in September 2022 on 1219 nurses in Quanzhou. The study comprised general demographic information and utilized various questionnaires, namely the Social Support Rate Scale (SSRS), Pittsburgh Sleep Quality Index Questionnaire (PSQI), Generalized Anxiety Disorder Questionnaire (GAD-7), and Patient Health Questionnaire-9 (PHQ-9). The data analysis was performed using t-tests, ANOVAs, Pearsons correlations and hierarchical regression analyses in SPSS software. RESULTS Results show that significant associations of sleep quality and social support with anxiety and depression. Simple slope analysis shows that under low levels of social support, sleep quality has a positive impact on anxiety(β = 0.598) and depression(β = 0.851), and the impact is significant. Under high levels of social support, sleep quality also has a positive impact on anxiety(β = 0.462) and depression(β = 0.578), but the impact is smaller. This indicates that as the level of social support increases, the positive predictive effect of sleep quality on anxiety and depression gradually diminishes. CONCLUSIONS Social support has the potential to alter the impact of sleep quality on anxiety and depression. Therefore, healthcare policymakers need to focus on enhancing the level of social support and mitigating the impact of poor sleep on anxiety and depression.
Collapse
Affiliation(s)
- Yanyan Zhao
- Department of Nursing, Quanzhou First Hospital, Quanzhou, China
| | - Fuzhi Liu
- Department of Preventive Medicine, School of Health, Quanzhou Medical College, Quanzhou, China
| | - Pingzhen Lin
- Department of Nursing, Quanzhou First Hospital, Quanzhou, China
| | - Zhuote Tu
- Department of Preventive Medicine, School of Health, Quanzhou Medical College, Quanzhou, China
| | - Biyu Wu
- Department of Nursing, Quanzhou First Hospital, Quanzhou, China
| |
Collapse
|
16
|
Van den Bergh BRH, Antonelli MC, Stein DJ. Current perspectives on perinatal mental health and neurobehavioral development: focus on regulation, coregulation and self-regulation. Curr Opin Psychiatry 2024; 37:237-250. [PMID: 38415742 DOI: 10.1097/yco.0000000000000932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
PURPOSE OF REVIEW Perinatal mental health research provides an important perspective on neurobehavioral development. Here, we aim to review the association of maternal perinatal health with offspring neurodevelopment, providing an update on (self-)regulation problems, hypothesized mechanistic pathways, progress and challenges, and implications for mental health. RECENT FINDINGS (1) Meta-analyses confirm that maternal perinatal mental distress is associated with (self-)regulation problems which constitute cognitive, behavioral, and affective social-emotional problems, while exposure to positive parental mental health has a positive impact. However, effect sizes are small. (2) Hypothesized mechanistic pathways underlying this association are complex. Interactive and compensatory mechanisms across developmental time are neglected topics. (3) Progress has been made in multiexposure studies. However, challenges remain and these are shared by clinical, translational and public health sciences. (4) From a mental healthcare perspective, a multidisciplinary and system level approach employing developmentally-sensitive measures and timely treatment of (self-)regulation and coregulation problems in a dyadic caregiver-child and family level approach seems needed. The existing evidence-base is sparse. SUMMARY During the perinatal period, addressing vulnerable contexts and building resilient systems may promote neurobehavioral development. A pluralistic approach to research, taking a multidisciplinary approach to theoretical models and empirical investigation needs to be fostered.
Collapse
Affiliation(s)
| | - Marta C Antonelli
- Laboratorio de Programación Perinatal del Neurodesarrollo, Instituto de Biología Celular y Neurociencias "Prof.E. De Robertis", Facultad de Medicina. Universidad de Buenos Aires, Buenos Aires, Argentina
- Frauenklinik und Poliklinik, Klinikum rechts der Isar, Munich, Germany
| | - Dan J Stein
- South African Medical Research Council Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
17
|
Mandl S, Alexopoulos J, Doering S, Wildner B, Seidl R, Bartha-Doering L. The effect of prenatal maternal distress on offspring brain development: A systematic review. Early Hum Dev 2024; 192:106009. [PMID: 38642513 DOI: 10.1016/j.earlhumdev.2024.106009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND Prenatal maternal distress can negatively affect pregnancy outcomes, yet its impact on the offspring's brain structure and function remains unclear. This systematic review summarizes the available literature on the relationship between prenatal maternal distress and brain development in fetuses and infants up to 12 months of age. METHODS We searched Central, Embase, MEDLINE, PsycINFO, and PSYNDEXplus for studies published between database inception and December 2023. Studies were included if prenatal maternal anxiety, stress, and/or depression was assessed, neuroimaging was used to examine the offspring, and the offspring's brain was imaged within the first year of life. The quality of the included studies was evaluated using the Quality Assessment of Diagnostic Accuracy Studies-II. RESULTS Out of the 1516 studies retrieved, 71 met our inclusion criteria. Although the studies varied greatly in their methodology, the results generally pointed to structural and functional aberrations in the limbic system, prefrontal cortex, and insula in fetuses and infants prenatally exposed to maternal distress. CONCLUSIONS The hippocampus, amygdala, and prefrontal cortex have a high density of glucocorticoid receptors, which play a key role in adapting to stressors and maintaining stress-related homeostasis. We thus conclude that in utero exposure to maternal distress prompts these brain regions to adapt by undergoing structural and functional changes, with the consequence that these alterations increase the risk for developing a neuropsychiatric illness later on. Future research should investigate the effect of providing psychological support for pregnant women on the offspring's early brain development.
Collapse
Affiliation(s)
- Sophie Mandl
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria.
| | - Johanna Alexopoulos
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria; Department of Psychoanalysis and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Stephan Doering
- Department of Psychoanalysis and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Brigitte Wildner
- University Library, Medical University of Vienna, Vienna, Austria
| | - Rainer Seidl
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Lisa Bartha-Doering
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
18
|
Kocevska D, Schuurmans IK, Cecil CAM, Jansen PW, van Someren EJW, Luik AI. A Longitudinal Study of Stress During Pregnancy, Children's Sleep and Polygenic Risk for Poor Sleep in the General Pediatric Population. Res Child Adolesc Psychopathol 2023; 51:1909-1918. [PMID: 37439941 PMCID: PMC10661881 DOI: 10.1007/s10802-023-01097-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2023] [Indexed: 07/14/2023]
Abstract
Early life stress is robustly associated with poor sleep across life. Preliminary studies suggest that these associations may begin already in utero. Here, we study the longitudinal associations of prenatal psychosocial stress with sleep across childhood, and assess whether prenatal stress interacts with genetic liability for poor sleep.The study is embedded in the Generation R population-based birth cohort. Caregivers reported on prenatal psychosocial stress (life events, contextual, parental or interpersonal stressors) and on children's sleep at ages 2 months, 1.5, 2, 3 and 6 years. The study sample consisted of 4,930 children; polygenic risk scores for sleep traits were available in 2,063.Prenatal stress was consistently associated with more sleep problems across assessments. Effect sizes ranged from small (B = 0.21, 95%CI: 0.14;0.27) at 2 months to medium (B = 0.45, 95%CI: 0.38;0.53) at 2 years. Prenatal stress was moreover associated with shorter sleep duration at 2 months (Bhrs = -0.22, 95%CI: -0.32;-0.12) and at 2 years (Bhrs = -0.04, 95%CI -0.07; -0.001), but not at 3 years (Bhrs = 0.02, 95%CI: -0.02;0.06). Prenatal negative life events interacted with polygenic risk for insomnia to exacerbate sleep problems at 6 years (Binteraction = 0.07, 95%CI: 0.02;0.13).Psychosocial stress during pregnancy has negative associations with children's sleep that persist across childhood, and are exacerbated by genetic liability for insomnia. Associations with sleep duration were more pronounced in infancy and seem to attenuate with age. These findings highlight the role of the prenatal environment for developing sleep regulation, and could inform early intervention programs targeting sleep in children from high-risk pregnancies.
Collapse
Affiliation(s)
- Desana Kocevska
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Amsterdam, Netherlands.
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center, Rotterdam, Netherlands.
- Generation R Study, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands.
| | - Isabel K Schuurmans
- Generation R Study, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Charlotte A M Cecil
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center, Rotterdam, Netherlands
- Generation R Study, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Pauline W Jansen
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center, Rotterdam, Netherlands
- Generation R Study, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Psychology, Erasmus University Rotterdam, Education, and Child Studies, Rotterdam, The Netherlands
| | - Eus J W van Someren
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
- Department of Psychiatry, UMC, Amsterdam Public Health Research Institute and Amsterdam Neuroscience Research Institute, Vrije Universiteit, Amsterdam, Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Netherlands
| | - Annemarie I Luik
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center, Rotterdam, Netherlands
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
19
|
Turk E, van den Heuvel MI, Sleurs C, Billiet T, Uyttebroeck A, Sunaert S, Mennes M, Van den Bergh BRH. Maternal anxiety during pregnancy is associated with weaker prefrontal functional connectivity in adult offspring. Brain Imaging Behav 2023; 17:595-607. [PMID: 37380807 PMCID: PMC10733226 DOI: 10.1007/s11682-023-00787-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2023] [Indexed: 06/30/2023]
Abstract
BACKGROUND The connectome, constituting a unique fingerprint of a person's brain, may be influenced by its prenatal environment, potentially affecting later-life resilience and mental health. METHODS We conducted a prospective resting-state functional Magnetic Resonance Imaging study in 28-year-old offspring (N = 49) of mothers whose anxiety was monitored during pregnancy. Two offspring anxiety subgroups were defined: "High anxiety" (n = 13) group versus "low-to-medium anxiety" (n = 36) group, based on maternal self-reported state anxiety at 12-22 weeks of gestation. To predict resting-state functional connectivity of 32 by 32 ROIs, maternal state anxiety during pregnancy was included as a predictor in general linear models for both ROI-to-ROI and graph theoretical metrics. Sex, birth weight and postnatal anxiety were included as covariates. RESULTS Higher maternal anxiety was associated with weaker functional connectivity of medial prefrontal cortex with left inferior frontal gyrus (t = 3.45, pFDR < 0.05). Moreover, network-based statistics (NBS) confirmed our finding and revealed an additional association of weaker connectivity between left lateral prefontal cortex with left somatosensory motor gyrus in the offspring. While our results showed a general pattern of lower functional connectivity in adults prenatally exposed to maternal anxiety, we did not observe significant differences in global brain networks between groups. CONCLUSIONS Weaker (medial) prefrontal cortex functional connectivity in the high anxiety adult offspring group suggests a long-term negative impact of prenatal exposure to high maternal anxiety, extending into adulthood. To prevent mental health problems at population level, universal primary prevention strategies should aim at lowering maternal anxiety during pregnancy.
Collapse
Affiliation(s)
- Elise Turk
- Department of Cognitive Neuropsychology, Tilburg University, Warandelaan 2, 5037AB, Tilburg, The Netherlands.
| | - Marion I van den Heuvel
- Department of Cognitive Neuropsychology, Tilburg University, Warandelaan 2, 5037AB, Tilburg, The Netherlands
| | - Charlotte Sleurs
- Department of Cognitive Neuropsychology, Tilburg University, Warandelaan 2, 5037AB, Tilburg, The Netherlands
- Department of Oncology, Catholic University of Leuven, KU Leuven, Leuven, Belgium
| | | | - Anne Uyttebroeck
- Department of Oncology, Catholic University of Leuven, KU Leuven, Leuven, Belgium
| | | | - Maarten Mennes
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Bea R H Van den Bergh
- Health Psychology Research Group, Catholic University of Leuven, KU Leuven, Leuven, Belgium
- Department of Welfare, Public Health and Family, Flemish Government, Brussels, Belgium
| |
Collapse
|
20
|
Bradley H, Fine D, Minai Y, Gilabert L, Gregory K, Smith L, Gao W, Giase G, Krogh-Jespersen S, Zhang Y, Wakschlag L, Brito NH, Feliciano I, Thomason M, Cabral L, Panigrahy A, Potter A, Cioffredi LA, Smith BA. Maternal perceived stress and infant behavior during the COVID-19 pandemic. Pediatr Res 2023; 94:2098-2104. [PMID: 37500757 PMCID: PMC10665182 DOI: 10.1038/s41390-023-02748-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/07/2023] [Accepted: 07/09/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND Maternal stress has negative consequences on infant behavioral development, and COVID-19 presented uniquely stressful situations to mothers of infants born during the pandemic. We hypothesized that mothers with higher levels of perceived stress during the pandemic would report higher levels of infant regulatory problems including crying and interrupted sleep patterns. METHODS As part 6 sites of a longitudinal study, mothers of infants born during the pandemic completed the Perceived Stress Scale, the Brief Infant Sleep Questionnaire, and an Infant Crying survey at 6 (n = 433) and 12 (n = 344) months of infant age. RESULTS Maternal perceived stress, which remained consistent at 6 and 12 months of infant age, was significantly positively correlated with time taken to settle infants. Although maternal perceived stress was not correlated with uninterrupted sleep length, time taken to put the infant to sleep was correlated. Perceived stress was also correlated with the amount of infant crying and fussiness reported at 6 months. CONCLUSIONS Mothers who reported higher levels of perceived stress during the pandemic reported higher levels of regulatory problems, specifically at 6 months. Examining how varying levels of maternal stress and infant behaviors relate to overall infant developmental status over time is an important next step. IMPACT Women giving birth during the COVID-19 pandemic who reported higher levels of stress on the Perceived Stress Scale also reported higher levels of infant fussiness and crying at 6 months old, and more disruptive sleep patterns in their infants at 6 months and 12 months old. Sleeping problems and excessive crying in infancy are two regulatory problems that are known risk factors for emotional and behavioral issues in later childhood. This paper is one of the first studies highlighting the associations between maternal stress and infant behaviors during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Holly Bradley
- Developmental Behavioral Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Dana Fine
- Developmental Behavioral Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Yasmin Minai
- Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA, USA
| | - Laurel Gilabert
- Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA, USA
| | - Kimberly Gregory
- Cedars-Sinai Medical Center, Department of Obstetrics and Gynecology, Los Angeles, CA, USA
| | - Lynne Smith
- Harbor-UCLA Medical Center Department of Pediatrics, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Wei Gao
- Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA, USA
| | - Gina Giase
- Department of Medical Social Sciences, Northwestern University, Chicago, IL, USA
| | | | - Yudong Zhang
- Department of Medical Social Sciences, Northwestern University, Chicago, IL, USA
| | - Lauren Wakschlag
- Department of Medical Social Sciences, Northwestern University, Chicago, IL, USA
| | - Natalie H Brito
- Department of Applied Psychology, New York University, New York, NY, USA
| | - Integra Feliciano
- Department of Child and Adolescent Psychiatry, New York University, New York, NY, USA
| | - Moriah Thomason
- Department of Child and Adolescent Psychiatry, New York University, New York, NY, USA
| | - Laura Cabral
- Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Ashok Panigrahy
- Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Alexandra Potter
- University of Vermont Medical Center, Psychiatry, Burlington, VT, USA
| | - Leigh-Anne Cioffredi
- Department of Pediatrics, University of Vermont Medical Center, Larner College of Medicine at the University of Vermont, Burlington, VT, USA
| | - Beth A Smith
- Developmental Behavioral Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, USA.
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA.
- Department of Pediatrics, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
21
|
van den Heuvel MI, Monk C, Hendrix CL, Hect J, Lee S, Feng T, Thomason ME. Intergenerational Transmission of Maternal Childhood Maltreatment Prior to Birth: Effects on Human Fetal Amygdala Functional Connectivity. J Am Acad Child Adolesc Psychiatry 2023; 62:1134-1146. [PMID: 37245707 PMCID: PMC10845129 DOI: 10.1016/j.jaac.2023.03.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 02/27/2023] [Accepted: 05/19/2023] [Indexed: 05/30/2023]
Abstract
OBJECTIVE Childhood maltreatment (CM) is a potent risk factor for developing psychopathology later in life. Accumulating research suggests that the influence is not limited to the exposed individual but may also be transmitted across generations. In this study, we examine the effect of CM in pregnant women on fetal amygdala-cortical function, prior to postnatal influences. METHOD Healthy pregnant women (N = 89) completed fetal resting-state functional magnetic resonance imaging (rsfMRI) scans between the late second trimester and birth. Women were primarily from low socioeconomic status households with relatively high CM. Mothers completed questionnaires prospectively evaluating prenatal psychosocial health and retrospectively evaluating trauma from their own childhood. Voxelwise functional connectivity was calculated from bilateral amygdala masks. RESULTS Connectivity of the amygdala network was relatively higher to left frontal areas (prefrontal cortex and premotor) and relatively lower to right premotor area and brainstem areas in fetuses of mothers exposed to higher CM. These associations persisted after controlling for maternal socioeconomic status, maternal prenatal distress, measures of fetal motion, and gestational age at the time of scan and at birth. CONCLUSION Pregnant women's experiences of CM are associated with offspring brain development in utero. The strongest effects were found in the left hemisphere, potentially indicating lateralization of the effects of maternal CM on the fetal brain. This study suggests that the time frame of the Developmental Origins of Health and Disease research should be extended to exposures from mothers' childhood, and indicates that the intergenerational transmission of trauma may occur prior to birth.
Collapse
Affiliation(s)
| | - Catherine Monk
- New York State Psychiatric Institute, New York; Columbia University, New York, NY
| | | | - Jasmine Hect
- University of Pittsburgh, Pennsylvania, Pittsburgh
| | - Seonjoo Lee
- New York State Psychiatric Institute, New York; Columbia University, New York, NY
| | - Tianshu Feng
- New York State Psychiatric Institute, New York; Research Foundation for Mental Hygiene, Inc., New York
| | - Moriah E Thomason
- NYU Langone Health, New York; Neuroscience Institute, NYU Langone Health, New York
| |
Collapse
|
22
|
Hendrix CL, Ji L, Werchan DM, Majbri A, Trentacosta CJ, Burt SA, Thomason ME. Fetal Frontolimbic Connectivity Prospectively Associates With Aggression in Toddlers. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:969-978. [PMID: 37881555 PMCID: PMC10593887 DOI: 10.1016/j.bpsgos.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/15/2022] [Accepted: 09/13/2022] [Indexed: 11/28/2022] Open
Abstract
Background Aggression is a major public health concern that emerges early in development and lacks optimized treatment, highlighting need for improved mechanistic understanding regarding the etiology of aggression. The present study leveraged fetal resting-state functional magnetic resonance imaging to identify candidate neurocircuitry for the onset of aggressive behaviors before symptom emergence. Methods Pregnant mothers were recruited during the third trimester of pregnancy to complete a fetal resting-state functional magnetic resonance imaging scan. Mothers subsequently completed the Child Behavior Checklist to assess child aggression at 3 years postpartum (n = 79). Independent component analysis was used to define frontal and limbic regions of interest. Results Child aggression was not related to within-network connectivity of subcortical limbic regions or within-medial prefrontal network connectivity in fetuses. However, weaker functional coupling between the subcortical limbic network and medial prefrontal network in fetuses was prospectively associated with greater maternal-rated child aggression at 3 years of age even after controlling for maternal emotion dysregulation and toddler language ability. We observed similar, but weaker, associations between fetal frontolimbic functional connectivity and toddler internalizing symptoms. Conclusions Neural correlates of aggressive behavior may be detectable in utero, well before the onset of aggression symptoms. These preliminary results highlight frontolimbic connections as potential candidate neurocircuitry that should be further investigated in relation to the unfolding of child behavior and psychiatric risk.
Collapse
Affiliation(s)
- Cassandra L. Hendrix
- Department of Child & Adolescent Psychiatry, NYU Langone Health, New York, New York
| | - Lanxin Ji
- Department of Child & Adolescent Psychiatry, NYU Langone Health, New York, New York
| | - Denise M. Werchan
- Department of Child & Adolescent Psychiatry, NYU Langone Health, New York, New York
- Department of Population Health, NYU Langone Health, New York, New York
| | - Amyn Majbri
- Department of Child & Adolescent Psychiatry, NYU Langone Health, New York, New York
| | | | - S. Alexandra Burt
- Department of Psychology, Michigan State University, Lansing, Michigan
| | - Moriah E. Thomason
- Department of Child & Adolescent Psychiatry, NYU Langone Health, New York, New York
- Department of Population Health, NYU Langone Health, New York, New York
- Neuroscience Institute, NYU Langone Health, New York, New York
| |
Collapse
|
23
|
Payette K, Li HB, de Dumast P, Licandro R, Ji H, Siddiquee MMR, Xu D, Myronenko A, Liu H, Pei Y, Wang L, Peng Y, Xie J, Zhang H, Dong G, Fu H, Wang G, Rieu Z, Kim D, Kim HG, Karimi D, Gholipour A, Torres HR, Oliveira B, Vilaça JL, Lin Y, Avisdris N, Ben-Zvi O, Bashat DB, Fidon L, Aertsen M, Vercauteren T, Sobotka D, Langs G, Alenyà M, Villanueva MI, Camara O, Fadida BS, Joskowicz L, Weibin L, Yi L, Xuesong L, Mazher M, Qayyum A, Puig D, Kebiri H, Zhang Z, Xu X, Wu D, Liao K, Wu Y, Chen J, Xu Y, Zhao L, Vasung L, Menze B, Cuadra MB, Jakab A. Fetal brain tissue annotation and segmentation challenge results. Med Image Anal 2023; 88:102833. [PMID: 37267773 DOI: 10.1016/j.media.2023.102833] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 03/16/2023] [Accepted: 04/20/2023] [Indexed: 06/04/2023]
Abstract
In-utero fetal MRI is emerging as an important tool in the diagnosis and analysis of the developing human brain. Automatic segmentation of the developing fetal brain is a vital step in the quantitative analysis of prenatal neurodevelopment both in the research and clinical context. However, manual segmentation of cerebral structures is time-consuming and prone to error and inter-observer variability. Therefore, we organized the Fetal Tissue Annotation (FeTA) Challenge in 2021 in order to encourage the development of automatic segmentation algorithms on an international level. The challenge utilized FeTA Dataset, an open dataset of fetal brain MRI reconstructions segmented into seven different tissues (external cerebrospinal fluid, gray matter, white matter, ventricles, cerebellum, brainstem, deep gray matter). 20 international teams participated in this challenge, submitting a total of 21 algorithms for evaluation. In this paper, we provide a detailed analysis of the results from both a technical and clinical perspective. All participants relied on deep learning methods, mainly U-Nets, with some variability present in the network architecture, optimization, and image pre- and post-processing. The majority of teams used existing medical imaging deep learning frameworks. The main differences between the submissions were the fine tuning done during training, and the specific pre- and post-processing steps performed. The challenge results showed that almost all submissions performed similarly. Four of the top five teams used ensemble learning methods. However, one team's algorithm performed significantly superior to the other submissions, and consisted of an asymmetrical U-Net network architecture. This paper provides a first of its kind benchmark for future automatic multi-tissue segmentation algorithms for the developing human brain in utero.
Collapse
Affiliation(s)
- Kelly Payette
- Center for MR Research, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland.
| | - Hongwei Bran Li
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland; Department of Informatics, Technical University of Munich, Munich, Germany
| | - Priscille de Dumast
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; CIBM, Center for Biomedical Imaging, Lausanne, Switzerland
| | - Roxane Licandro
- Laboratory for Computational Neuroimaging, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, United States; Department of Biomedical Imaging and Image-guided Therapy, Computational Imaging Research Lab (CIR), Medical University of Vienna, Vienna, Austria
| | - Hui Ji
- Center for MR Research, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | | | | | | | - Hao Liu
- Shanghai Jiaotong University, China
| | | | | | - Ying Peng
- School of Computer Science, Shaanxi Normal University, Xi'an 710119, China
| | - Juanying Xie
- School of Computer Science, Shaanxi Normal University, Xi'an 710119, China
| | - Huiquan Zhang
- School of Computer Science, Shaanxi Normal University, Xi'an 710119, China
| | - Guiming Dong
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Hao Fu
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Guotai Wang
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - ZunHyan Rieu
- Research Institute, NEUROPHET Inc., Seoul 06247, South Korea
| | - Donghyeon Kim
- Research Institute, NEUROPHET Inc., Seoul 06247, South Korea
| | - Hyun Gi Kim
- Department of Radiology, The Catholic University of Korea, Eunpyeong St. Mary's Hospital, Seoul 06247, South Korea
| | - Davood Karimi
- Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Ali Gholipour
- Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Helena R Torres
- Algoritmi Center, School of Engineering, University of Minho, Guimarães, Portugal; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga Guimarães, Portugal
| | - Bruno Oliveira
- Algoritmi Center, School of Engineering, University of Minho, Guimarães, Portugal; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga Guimarães, Portugal
| | - João L Vilaça
- 2Ai - School of Technology, IPCA, Barcelos, Portugal
| | - Yang Lin
- Department of Computer Science, Hong Kong University of Science and Technology, China
| | - Netanell Avisdris
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Israel; Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Israel
| | - Ori Ben-Zvi
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Israel; Sagol School of Neuroscience, Tel Aviv University, Israel
| | - Dafna Ben Bashat
- Sagol School of Neuroscience, Tel Aviv University, Israel; Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Lucas Fidon
- School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EU, United Kingdom
| | - Michael Aertsen
- Department of Radiology, University Hospitals Leuven, Leuven 3000, Belgium
| | - Tom Vercauteren
- School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EU, United Kingdom
| | - Daniel Sobotka
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Georg Langs
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Mireia Alenyà
- BCN-MedTech, Department of Information and Communications Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Maria Inmaculada Villanueva
- Department of Information and Communications Technologies, Universitat Pompeu Fabra, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Oscar Camara
- BCN-MedTech, Department of Information and Communications Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Bella Specktor Fadida
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Israel
| | - Leo Joskowicz
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Israel
| | - Liao Weibin
- School of Computer Science, Beijing Institute of Technology, China
| | - Lv Yi
- School of Computer Science, Beijing Institute of Technology, China
| | - Li Xuesong
- School of Computer Science, Beijing Institute of Technology, China
| | - Moona Mazher
- Department of Computer Engineering and Mathematics, University Rovira i Virgili,Spain
| | | | - Domenec Puig
- Department of Computer Engineering and Mathematics, University Rovira i Virgili,Spain
| | - Hamza Kebiri
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; CIBM, Center for Biomedical Imaging, Lausanne, Switzerland
| | - Zelin Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Yuquan Campus, Hangzhou, China
| | - Xinyi Xu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Yuquan Campus, Hangzhou, China
| | - Dan Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Yuquan Campus, Hangzhou, China
| | | | - Yixuan Wu
- Zhejiang University, Hangzhou, China
| | | | - Yunzhi Xu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Yuquan Campus, Hangzhou, China
| | - Li Zhao
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Yuquan Campus, Hangzhou, China
| | - Lana Vasung
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, United States; Department of Pediatrics, Harvard Medical School, United States
| | - Bjoern Menze
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Meritxell Bach Cuadra
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; CIBM, Center for Biomedical Imaging, Lausanne, Switzerland
| | - Andras Jakab
- Center for MR Research, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland; University Research Priority Project Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zürich, Zurich, Switzerland
| |
Collapse
|
24
|
Deer LK, Su C, Thwaites NA, Davis EP, Doom JR. A framework for testing pathways from prenatal stress-responsive hormones to cardiovascular disease risk. Front Endocrinol (Lausanne) 2023; 14:1111474. [PMID: 37223037 PMCID: PMC10200937 DOI: 10.3389/fendo.2023.1111474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/10/2023] [Indexed: 05/25/2023] Open
Abstract
Cardiovascular disease (CVD) is a leading cause of death globally, with the prevalence projected to keep rising. Risk factors for adult CVD emerge at least as early as the prenatal period. Alterations in stress-responsive hormones in the prenatal period are hypothesized to contribute to CVD in adulthood, but little is known about relations between prenatal stress-responsive hormones and early precursors of CVD, such as cardiometabolic risk and health behaviors. The current review presents a theoretical model of the relation between prenatal stress-responsive hormones and adult CVD through cardiometabolic risk markers (e.g., rapid catch-up growth, high BMI/adiposity, high blood pressure, and altered blood glucose, lipids, and metabolic hormones) and health behaviors (e.g., substance use, poor sleep, poor diet and eating behaviors, and low physical activity levels). Emerging evidence in human and non-human animal literatures suggest that altered stress-responsive hormones during gestation predict higher cardiometabolic risk and poorer health behaviors in offspring. This review additionally highlights limitations of the current literature (e.g., lack of racial/ethnic diversity, lack of examination of sex differences), and discusses future directions for this promising area of research.
Collapse
Affiliation(s)
- LillyBelle K. Deer
- Department of Psychology, University of Denver, Denver, CO, United States
| | - Chen Su
- Department of Psychology, University of Denver, Denver, CO, United States
| | | | - Elysia Poggi Davis
- Department of Psychology, University of Denver, Denver, CO, United States
- Department of Psychiatry & Human Behavior, University of California, Irvine, Irvine, CA, United States
| | - Jenalee R. Doom
- Department of Psychology, University of Denver, Denver, CO, United States
| |
Collapse
|
25
|
Sylvester CM, Kaplan S, Myers MJ, Gordon EM, Schwarzlose RF, Alexopoulos D, Nielsen AN, Kenley JK, Meyer D, Yu Q, Graham AM, Fair DA, Warner BB, Barch DM, Rogers CE, Luby JL, Petersen SE, Smyser CD. Network-specific selectivity of functional connections in the neonatal brain. Cereb Cortex 2023; 33:2200-2214. [PMID: 35595540 PMCID: PMC9977389 DOI: 10.1093/cercor/bhac202] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
The adult human brain is organized into functional brain networks, groups of functionally connected segregated brain regions. A key feature of adult functional networks is long-range selectivity, the property that spatially distant regions from the same network have higher functional connectivity than spatially distant regions from different networks. Although it is critical to establish the status of functional networks and long-range selectivity during the neonatal period as a foundation for typical and atypical brain development, prior work in this area has been mixed. Although some studies report distributed adult-like networks, other studies suggest that neonatal networks are immature and consist primarily of spatially isolated regions. Using a large sample of neonates (n = 262), we demonstrate that neonates have long-range selective functional connections for the default mode, fronto-parietal, and dorsal attention networks. An adult-like pattern of functional brain networks is evident in neonates when network-detection algorithms are tuned to these long-range connections, when using surface-based registration (versus volume-based registration), and as per-subject data quantity increases. These results help clarify factors that have led to prior mixed results, establish that key adult-like functional network features are evident in neonates, and provide a foundation for studies of typical and atypical brain development.
Collapse
Affiliation(s)
- Chad M Sylvester
- Department of Psychiatry, Washington University, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Sydney Kaplan
- Department of Neurology, Washington University, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Michael J Myers
- Department of Psychiatry, Washington University, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Evan M Gordon
- Department of Radiology, Washington University, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Rebecca F Schwarzlose
- Department of Psychiatry, Washington University, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Dimitrios Alexopoulos
- Department of Neurology, Washington University, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Ashley N Nielsen
- Department of Neurology, Washington University, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Jeanette K Kenley
- Department of Neurology, Washington University, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Dominique Meyer
- Department of Neurology, Washington University, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Qiongru Yu
- Joint Doctoral Program in Clinical Psychology, San Diego State University/University of California San Diego, 6363 Alvarado Court, Suite 103, San Diego, CA 92120, USA
| | - Alice M Graham
- Department of Psychiatry, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Damien A Fair
- Masonic Institute for the Developing Brain, Department of Pediatrics, and Institute of Child Development, University of Minnesota, 2025 E. River Parkway, Minneapolis, MN 55414, USA
| | - Barbara B Warner
- Department of Pediatrics, Washington University, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Deanna M Barch
- Department of Psychiatry, Washington University, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
- Department of Radiology, Washington University, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
- Department of Psychological and Brain Sciences, Washington University, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Cynthia E Rogers
- Department of Psychiatry, Washington University, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
- Department of Pediatrics, Washington University, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Joan L Luby
- Department of Psychiatry, Washington University, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Steven E Petersen
- Department of Neurology, Washington University, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Christopher D Smyser
- Department of Neurology, Washington University, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
- Department of Radiology, Washington University, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
- Department of Pediatrics, Washington University, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| |
Collapse
|
26
|
Markovic A, Schoch SF, Huber R, Kohler M, Kurth S. The sleeping brain's connectivity and family environment: characterizing sleep EEG coherence in an infant cohort. Sci Rep 2023; 13:2055. [PMID: 36739318 PMCID: PMC9899221 DOI: 10.1038/s41598-023-29129-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/31/2023] [Indexed: 02/06/2023] Open
Abstract
Brain connectivity closely reflects brain function and behavior. Sleep EEG coherence, a measure of brain's connectivity during sleep, undergoes pronounced changes across development under the influence of environmental factors. Yet, the determinants of the developing brain's sleep EEG coherence from the child's family environment remain unknown. After characterizing high-density sleep EEG coherence in 31 healthy 6-month-old infants by detecting strongly synchronized clusters through a data-driven approach, we examined the association of sleep EEG coherence from these clusters with factors from the infant's family environment. Clusters with greatest coherence were observed over the frontal lobe. Higher delta coherence over the left frontal cortex was found in infants sleeping in their parents' room, while infants sleeping in a room shared with their sibling(s) showed greater delta coherence over the central parts of the frontal cortex, suggesting a link between local brain connectivity and co-sleeping. Finally, lower occipital delta coherence was associated with maternal anxiety regarding their infant's sleep. These interesting links between sleep EEG coherence and family factors have the potential to serve in early health interventions as a new set of targets from the child's immediate environment.
Collapse
Affiliation(s)
- Andjela Markovic
- Department of Psychology, University of Fribourg, Fribourg, Switzerland. .,Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland. .,University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.
| | - Sarah F Schoch
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland.,Center of Competence Sleep & Health Zurich, University of Zurich, Zurich, Switzerland.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Reto Huber
- Center of Competence Sleep & Health Zurich, University of Zurich, Zurich, Switzerland.,Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland.,Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Malcolm Kohler
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland.,Center of Competence Sleep & Health Zurich, University of Zurich, Zurich, Switzerland
| | - Salome Kurth
- Department of Psychology, University of Fribourg, Fribourg, Switzerland.,Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland.,Center of Competence Sleep & Health Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
27
|
Nazzari S, Grumi S, Biasucci G, Decembrino L, Fazzi E, Giacchero R, Magnani ML, Nacinovich R, Scelsa B, Spinillo A, Capelli E, Roberti E, Provenzi L. Maternal pandemic-related stress during pregnancy associates with infants' socio-cognitive development at 12 months: A longitudinal multi-centric study. PLoS One 2023; 18:e0284578. [PMID: 37068062 PMCID: PMC10109481 DOI: 10.1371/journal.pone.0284578] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 04/04/2023] [Indexed: 04/18/2023] Open
Abstract
BACKGROUND Prenatal maternal stress is a key risk factor for infants' development. Previous research has highlighted consequences for infants' socio-emotional and cognitive outcomes, but less is known for what regards socio-cognitive development. In this study, we report on the effects of maternal prenatal stress related to the COVID-19 pandemic on 12-month-old infants' behavioral markers of socio-cognitive development. METHODS Ninety infants and their mothers provided complete longitudinal data from birth to 12 months. At birth, mothers reported on pandemic-related stress during pregnancy. At infants' 12-month-age, a remote mother-infant interaction was videotaped: after an initial 2-min face-to-face episode, the experimenter remotely played a series of four auditory stimuli (2 human and 2 non-human sounds). The auditory stimuli sequence was counterbalanced among participants and each sound was repeated three times every 10 seconds (Exposure, 30 seconds) while mothers were instructed not to interact with their infants and to display a neutral still-face expression. Infants' orienting, communication, and pointing toward the auditory source was coded micro-analytically and a socio-cognitive score (SCS) was obtained by means of a principal component analysis. RESULTS Infants equally oriented to human and non-human auditory stimuli. All infants oriented toward the sound during the Exposure episode, 80% exhibited any communication directed to the auditory source, and 48% showed at least one pointing toward the sound. Mothers who reported greater prenatal pandemic-related stress had infants with higher probability of showing no communication, t = 2.14 (p = .035), or pointing, t = 1.93 (p = .057). A significant and negative linear association was found between maternal prenatal pandemic-related stress and infants' SCS at 12 months, R2 = .07 (p = .010), while adjusting for potential confounders. CONCLUSIONS This study suggests that prenatal maternal stress during the COVID-19 pandemic might have increased the risk of an altered socio-cognitive development in infants as assessed through an observational paradigm at 12 months. Special preventive attention should be devoted to infants born during the pandemic.
Collapse
Affiliation(s)
- Sarah Nazzari
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Serena Grumi
- Developmental Psychobiology, IRCCS Mondino Foundation, Pavia, Italy
| | - Giacomo Biasucci
- Pediatrics & Neonatology Unit, Ospedale Guglielmo da Saliceto, Piacenza, Italy
| | | | - Elisa Fazzi
- Department of Clinical And Experimental Sciences, University of Brescia, Brescia, Italy
- Unit of Child and Adolescence Neuropsychiatry, Azienda Ospedaliera Spedali Civili of Brescia, Brescia, Italy
| | | | | | - Renata Nacinovich
- Child and Adolescent Neuropsychiatry, Fondazione IRCCS San Gerardo dei Tintori Monza, Monza, Italy
- School of Medicine and Surgery and Milan Center for Neuroscience (NeuroMi), Università Bicocca, Milan, Italy
| | - Barbara Scelsa
- Unit of Pediatric Neurology, Buzzi Children's Hospital, Milan, Italy
| | - Arsenio Spinillo
- Department of Obstetrics and Gynecology, IRCCS Policlinico San Matteo, Pavia, Italy
| | - Elena Capelli
- Developmental Psychobiology, IRCCS Mondino Foundation, Pavia, Italy
| | - Elisa Roberti
- Developmental Psychobiology, IRCCS Mondino Foundation, Pavia, Italy
| | - Livio Provenzi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Developmental Psychobiology, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
28
|
De Asis-Cruz J, Limperopoulos C. Harnessing the Power of Advanced Fetal Neuroimaging to Understand In Utero Footprints for Later Neuropsychiatric Disorders. Biol Psychiatry 2022; 93:867-879. [PMID: 36804195 DOI: 10.1016/j.biopsych.2022.11.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/03/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
Adverse intrauterine events may profoundly impact fetal risk for future adult diseases. The mechanisms underlying this increased vulnerability are complex and remain poorly understood. Contemporary advances in fetal magnetic resonance imaging (MRI) have provided clinicians and scientists with unprecedented access to in vivo human fetal brain development to begin to identify emerging endophenotypes of neuropsychiatric disorders such as autism spectrum disorder, attention-deficit/hyperactivity disorder, and schizophrenia. In this review, we discuss salient findings of normal fetal neurodevelopment from studies using advanced, multimodal MRI that have provided unparalleled characterization of in utero prenatal brain morphology, metabolism, microstructure, and functional connectivity. We appraise the clinical utility of these normative data in identifying high-risk fetuses before birth. We highlight available studies that have investigated the predictive validity of advanced prenatal brain MRI findings and long-term neurodevelopmental outcomes. We then discuss how ex utero quantitative MRI findings can inform in utero investigations toward the pursuit of early biomarkers of risk. Lastly, we explore future opportunities to advance our understanding of the prenatal origins of neuropsychiatric disorders using precision fetal imaging.
Collapse
|
29
|
Dai Y, Trout KK, Liu J. Perinatal Physiological and Psychological Risk Factors and Childhood Sleep Outcomes: A Systematic Review and Meta-analysis. J Dev Behav Pediatr 2022; 43:e629-e644. [PMID: 36067425 PMCID: PMC10002289 DOI: 10.1097/dbp.0000000000001123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 07/06/2022] [Indexed: 01/01/2023]
Abstract
OBJECTIVES The purpose of this study was to investigate the influence of maternal physiological and psychological factors during pregnancy and after birth on infant and children's sleep outcomes. METHODS Six databases were searched from inception to April 2021. Longitudinal studies that investigated the association of risk factors during and after pregnancy and children's sleep-related outcomes were included. Hedge's g and odds ratio were pooled as effect size with random effects model. RESULTS A total of 32 articles were included. Both prenatal maternal alcohol use (odds ratio [OR] = 1.85, 95% confidence interval [CI]: 1.04-3.28) and tobacco smoking (OR = 1.28, 95% CI: 1.01-1.62) were associated with shorter child sleep duration. Prenatal and postnatal maternal depression symptoms were associated with increased child sleep problems at age 6 months (OR = 1.97, 95% CI: 1.19-3.24, and 2.05, 95% CI: 1.37-3.07, respectively). Prenatal and postnatal maternal major depression disorders were associated with shorter sleep duration (Hedge's g = -0.97, 95% CI: -1.57 to -0.37) and lower sleep efficiency (Hedge's g = -1.44, 95% CI: -1.93 to -0.95). Prenatal anxiety had no impact on child sleep problems (OR = 1.34, 95% CI: 0.86-2.10). CONCLUSION Maternal pregnancy and obstetric factors and psychological factors are potential risk factors of poor child sleep health. Future research is warranted to better understand the impact of these risk factors on long-term child sleep outcomes and their potential mediating mechanisms.
Collapse
Affiliation(s)
- Ying Dai
- School of Nursing, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Jianghong Liu
- School of Nursing, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
30
|
Impact of COVID-19 Related Maternal Stress on Fetal Brain Development: A Multimodal MRI Study. J Clin Med 2022; 11:jcm11226635. [PMID: 36431112 PMCID: PMC9695517 DOI: 10.3390/jcm11226635] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Disruptions in perinatal care and support due to the COVID-19 pandemic was an unprecedented but significant stressor among pregnant women. Various neurostructural differences have been re-ported among fetuses and infants born during the pandemic compared to pre-pandemic counterparts. The relationship between maternal stress due to pandemic related disruptions and fetal brain is yet unexamined. METHODS Pregnant participants with healthy pregnancies were prospectively recruited in 2020-2022 in the greater Los Angeles Area. Participants completed multiple self-report assessments for experiences of pandemic related disruptions, perceived stress, and coping behaviors and underwent fetal MRI. Maternal perceived stress exposures were correlated with quantitative multimodal MRI measures of fetal brain development using multivariate models. RESULTS Increased maternal perception of pandemic related stress positively correlated with normalized fetal brainstem volume (suggesting accelerated brainstem maturation). In contrast, increased maternal perception of pandemic related stress correlated with reduced global fetal brain temporal functional variance (suggesting reduced functional connectivity). CONCLUSIONS We report alterations in fetal brainstem structure and global functional fetal brain activity associated with increased maternal stress due to pandemic related disruptions, suggesting altered fetal programming. Long term follow-up studies are required to better understand the sequalae of these early multi-modal brain disruptions among infants born during the COVID-19 pandemic.
Collapse
|
31
|
Wang Y, Li M, Li W, Xiao L, Huo X, Ding J, Sun T. Is the insula linked to sleep? A systematic review and narrative synthesis. Heliyon 2022; 8:e11406. [DOI: 10.1016/j.heliyon.2022.e11406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/12/2022] [Accepted: 10/31/2022] [Indexed: 11/08/2022] Open
|
32
|
Rajagopalan V, Reynolds WT, Zepeda J, Lopez J, Ponrartana S, Wood J, Ceschin R, Panigrahy A. Impact of COVID-19 related maternal stress on fetal brain development: A Multimodal MRI study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.10.26.22281575. [PMID: 36324796 PMCID: PMC9628193 DOI: 10.1101/2022.10.26.22281575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Disruptions in perinatal care and support due to the COVID-19 pandemic was an unprecedented but significant stressor among pregnant women. Various neurostructural differences have been re-ported among fetuses and infants born during the pandemic compared to pre-pandemic counterparts. The relationship between maternal stress due to pandemic related disruptions and fetal brain is yet unexamined. Methods Pregnant participants with healthy pregnancies were prospectively recruited in 2020-2022 in the greater Los Angeles Area. Participants completed multiple self-report assessments for experiences of pandemic related disruptions, perceived stress, and coping behaviors and underwent fetal MRI. Maternal perceived stress exposures were correlated with quantitative multimodal MRI measures of fetal brain development using ltivariate models. Results Fetal brain stem volume increased with increased maternal perception of pandemic related stress positively correlated with normalized fetal brainstem volume (suggesting accelerated brainstem maturation). In contrast, increased maternal perception of pandemic related stress correlated with reduced global fetal brain temporal functional variance (suggesting reduced functional connectivity). Conclusions We report alterations in fetal brainstem structure and global functional fetal brain activity associated with increased maternal stress due to pandemic related disruptions, suggesting altered fetal programming. Long term follow-up studies are required to better understand the sequalae of these early multi-modal brain disruptions among infants born during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Vidya Rajagopalan
- Department of Radiology Childrens Hospital Los Angeles, Keck School of Medicine University of Southern California, Los Angeles CA
| | - William T. Reynolds
- Department of Biomedical Informatics University of Pittsburgh, Pittsburgh, PA 15206, USA
| | - Jeremy Zepeda
- Department of Radiology Childrens Hospital Los Angeles, Los Angeles CA
| | - Jeraldine Lopez
- Neuropsychology Core, The Saban Research Institute, Childrens Hospital Los Angeles
| | - Skorn Ponrartana
- Department of Pediatric Radiology, Keck School of Medicine University of Southern California, Los Angeles CA
| | - John Wood
- Departments of Radiology and Pediatrics, Childrens Hospital Los Angeles, Keck School of Medicine University of Southern California, Los Angeles CA
| | - Rafael Ceschin
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15206
| | - Ashok Panigrahy
- Department of Pediatric Radiology, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, USA
| |
Collapse
|
33
|
Mbiydzenyuy NE, Hemmings SMJ, Qulu L. Prenatal maternal stress and offspring aggressive behavior: Intergenerational and transgenerational inheritance. Front Behav Neurosci 2022; 16:977416. [PMID: 36212196 PMCID: PMC9539686 DOI: 10.3389/fnbeh.2022.977416] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Even though studies have shown that prenatal maternal stress is associated with increased reactivity of the HPA axis, the association between prenatal maternal stress and fetal glucocorticoid exposure is complex and most likely dependent on unidentified and poorly understood variables including nature and timing of prenatal insults. The precise mechanisms in which prenatal maternal stress influence neuroendocrine signaling between the maternal-placental-fetal interface are still unclear. The aim of this review article is to bring comprehensive basic concepts about prenatal maternal stress and mechanisms of transmission of maternal stress to the fetus. This review covers recent studies showing associations between maternal stress and alterations in offspring aggressive behavior, as well as the possible pathways for the “transmission” of maternal stress to the fetus: (1) maternal-fetal HPA axis dysregulation; (2) intrauterine environment disruption due to variations in uterine artery flow; (3) epigenetic modifications of genes implicated in aggressive behavior. Here, we present evidence for the phenomenon of intergenerational and transgenerational transmission, to better understands the mechanism(s) of transmission from parent to offspring. We discuss studies showing associations between maternal stress and alterations in offspring taking note of neuroendocrine, brain architecture and epigenetic changes that may suggest risk for aggressive behavior. We highlight animal and human studies that focus on intergenerational transmission following exposure to stress from a biological mechanistic point of view, and maternal stress-induced epigenetic modifications that have potential to impact on aggressive behavior in later generations.
Collapse
Affiliation(s)
- Ngala Elvis Mbiydzenyuy
- Department of Basic Science, School of Medicine, Copperbelt University, Ndola, Zambia
- Division of Medical Physiology, Biomedical Science Research Institute, Stellenbosch University, Cape Town, South Africa
- *Correspondence: Ngala Elvis Mbiydzenyuy,
| | - Sian Megan Joanna Hemmings
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Lihle Qulu
- Division of Medical Physiology, Biomedical Science Research Institute, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
34
|
Deoni SC, Beauchemin J, Volpe A, Dâ Sa V. The COVID-19 Pandemic and Early Child Cognitive Development: A Comparison of Development in Children Born During the Pandemic and Historical References. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2021.08.10.21261846. [PMID: 34401887 PMCID: PMC8366807 DOI: 10.1101/2021.08.10.21261846] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Objective To characterize cognitive function in young children under 3 years of age over the past decade, and test whether children exhibit different cognitive development profiles through the COVID-19 pandemic. Study Design Neurocognitive data (Mullen Scales of Early Learning, MSEL) were drawn from 700 healthy and neurotypically developing children between 2011 to 2021 without reported positive tests or clinical diagnosis of SARS-CoV-2 infection. We compared MSEL composite measures (general cognition, verbal, and non-verbal development) to test if those measured during 2020 and 2021 differed significantly from historical 2011-2019 values. We also compared MSEL values in a sub-cohort comprising infants 0-16 months of age born during the pandemic vs. infants born prior. In all analyses, we also included measures of socioeconomic status, birth outcome history, and maternal stress. Results A significant decrease in mean population MSEL measures was observed in 2021 compared to historical references. Infants born during the pandemic exhibited significantly reduced verbal, non-verbal, and overall cognitive performance compared to children born pre-pandemic. Maternal stress was not found to be associated with observed declines but a higher socioeconomic status was found to be protective. Conclusions Results reveal a striking decline in cognitive performance since the onset of the COVID-19 pandemic with infants born since mid-2020 showing an average decrease of 27-37 points. Further work is merited to understand the underlying causative factors.
Collapse
|
35
|
Evans J, Bansal A, Schoenaker DAJM, Cherbuin N, Peek MJ, Davis DL. Birth Outcomes, Health, and Health Care Needs of Childbearing Women following Wildfire Disasters: An Integrative, State-of-the-Science Review. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:86001. [PMID: 35980335 PMCID: PMC9387511 DOI: 10.1289/ehp10544] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 06/27/2022] [Accepted: 08/01/2022] [Indexed: 05/10/2023]
Abstract
BACKGROUND The frequency and severity of extreme weather events such as wildfires are expected to increase due to climate change. Childbearing women, that is, women who are pregnant, soon to be pregnant, or have recently given birth, may be particularly vulnerable to the effect of wildfire exposure. OBJECTIVES This review sought to systematically assess what is known about birth outcomes, health, and health care needs of childbearing women during and after exposure to wildfires. METHODS An integrative review methodology was utilized to enable article selection, data extraction, and synthesis across qualitative and quantitative studies. Comprehensive searches of SCOPUS (including MEDLINE and Embase), CINAHL, PubMed, and Google Scholar identified studies for inclusion with no date restriction. Included studies were independently appraised by two reviewers using the Crowe Critical Appraisal Tool. The findings are summarized and illustrated in tables. RESULTS Database searches identified 480 records. Following title, abstract, and full text screening, sixteen studies published between 2012 and 2022 were identified for this review. Eleven studies considered an association between in utero exposure to wildfire and impacts on birth weight and length of gestation. One study reported increased rates of maternal gestational diabetes mellitus and gestational hypertension following exposure; whereas one study reported differences in the secondary sex ratio. Two studies reported higher incidence of birth defects following in utero exposure to wildfire smoke. Three studies reported increased mental health morbidity, and one study associated a reduction in breastfeeding among women who evacuated from a wildfire disaster. DISCUSSION Evidence indicates that wildfire exposure may be associated with changes to birth outcomes and increased morbidity for childbearing women and their babies. These effects may be profound and have long-term and wide-ranging public health implications. This research can inform the development of effective clinical and public health strategies to address the needs of childbearing women exposed to wildfire disaster. https://doi.org/10.1289/EHP10544.
Collapse
Affiliation(s)
- Jo Evans
- School of Midwifery, University of Canberra, Canberra, Australian Capital Territory, Australia
- Centenary Hospital for Women and Children, Canberra Health Services, Canberra, Australian Capital Territory, Australia
| | - Amita Bansal
- ANU Medical School, College of Health and Medicine, Australian National University, Canberra, Australian Capital Territory, Australia
- John Curtin School of Medical Research, College of Health and Medicine, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Danielle A J M Schoenaker
- School of Primary Care, Population Sciences and Medical Education, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
- School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia
| | - Nicolas Cherbuin
- Centre for Research on Ageing, Health and Wellbeing, Research School of Population Health, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Michael J Peek
- Centenary Hospital for Women and Children, Canberra Health Services, Canberra, Australian Capital Territory, Australia
- ANU Medical School, College of Health and Medicine, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Deborah L Davis
- School of Midwifery, University of Canberra, Canberra, Australian Capital Territory, Australia
- ACT Government, Health Directorate, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
36
|
Hendrix CL, Srinivasan H, Feliciano I, Carré JM, Thomason ME. Fetal Hippocampal Connectivity Shows Dissociable Associations with Maternal Cortisol and Self-Reported Distress during Pregnancy. Life (Basel) 2022; 12:943. [PMID: 35888033 PMCID: PMC9316091 DOI: 10.3390/life12070943] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 02/05/2023] Open
Abstract
Maternal stress can shape long-term child neurodevelopment beginning in utero. One mechanism by which stress is transmitted from mothers to their offspring is via alterations in maternal cortisol, which can cross the placenta and bind to glucocorticoid receptor-rich regions in the fetal brain, such as the hippocampus. Although prior studies have demonstrated associations between maternal prenatal stress and cortisol levels with child brain development, we lack information about the extent to which these associations originate prior to birth and prior to confounding postnatal influences. Pregnant mothers (n = 77) completed questionnaires about current perceived stress, depressive symptoms, and anxiety symptoms, provided three to four salivary cortisol samples, and completed a fetal resting-state functional MRI scan during their second or third trimester of pregnancy (mean gestational age = 32.8 weeks). Voxelwise seed-based connectivity analyses revealed that higher prenatal self-reported distress and higher maternal cortisol levels corresponded to dissociable differences in fetal hippocampal functional connectivity. Specifically, self-reported distress was correlated with increased positive functional coupling between the hippocampus and right posterior parietal association cortex, while higher maternal cortisol was associated with stronger positive hippocampal coupling with the dorsal anterior cingulate cortex and left medial prefrontal cortex. Moreover, the association between maternal distress, but not maternal cortisol, on fetal hippocampal connectivity was moderated by fetal sex. These results suggest that prenatal stress and peripheral cortisol levels may shape fetal hippocampal development through unique mechanisms.
Collapse
Affiliation(s)
- Cassandra L. Hendrix
- Department of Child and Adolescent Psychiatry, New York University Langone Health, New York, NY 10016, USA; (H.S.); (I.F.); (M.E.T.)
| | - Harini Srinivasan
- Department of Child and Adolescent Psychiatry, New York University Langone Health, New York, NY 10016, USA; (H.S.); (I.F.); (M.E.T.)
| | - Integra Feliciano
- Department of Child and Adolescent Psychiatry, New York University Langone Health, New York, NY 10016, USA; (H.S.); (I.F.); (M.E.T.)
| | - Justin M. Carré
- Department of Psychology, Nipissing University, North Bay, ON P1B 8L7, Canada;
| | - Moriah E. Thomason
- Department of Child and Adolescent Psychiatry, New York University Langone Health, New York, NY 10016, USA; (H.S.); (I.F.); (M.E.T.)
- Department of Population Health, New York University Langone Health, New York, NY 10016, USA
- Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA
| |
Collapse
|
37
|
Lu YC, Andescavage N, Wu Y, Kapse K, Andersen NR, Quistorff J, Saeed H, Lopez C, Henderson D, Barnett SD, Vezina G, Wessel D, du Plessis A, Limperopoulos C. Maternal psychological distress during the COVID-19 pandemic and structural changes of the human fetal brain. COMMUNICATIONS MEDICINE 2022; 2:47. [PMID: 35647608 PMCID: PMC9135751 DOI: 10.1038/s43856-022-00111-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 04/11/2022] [Indexed: 12/12/2022] Open
Abstract
Background Elevated maternal psychological distress during pregnancy is linked to adverse outcomes in offspring. The potential effects of intensified levels of maternal distress during the COVID-19 pandemic on the developing fetal brain are currently unknown. Methods We prospectively enrolled 202 pregnant women: 65 without known COVID-19 exposures during the pandemic who underwent 92 fetal MRI scans, and 137 pre-pandemic controls who had 182 MRI scans. Multi-plane, multi-phase single shot fast spin echo T2-weighted images were acquired on a GE 1.5 T MRI Scanner. Volumes of six brain tissue types were calculated. Cortical folding measures, including brain surface area, local gyrification index, and sulcal depth were determined. At each MRI scan, maternal distress was assessed using validated stress, anxiety, and depression scales. Generalized estimating equations were utilized to compare maternal distress measures, brain volume and cortical folding differences between pandemic and pre-pandemic cohorts. Results Stress and depression scores are significantly higher in the pandemic cohort, compared to the pre-pandemic cohort. Fetal white matter, hippocampal, and cerebellar volumes are decreased in the pandemic cohort. Cortical surface area and local gyrification index are also decreased in all four lobes, while sulcal depth is lower in the frontal, parietal, and occipital lobes in the pandemic cohort, indicating delayed brain gyrification. Conclusions We report impaired fetal brain growth and delayed cerebral cortical gyrification in COVID-19 pandemic era pregnancies, in the setting of heightened maternal psychological distress. The potential long-term neurodevelopmental consequences of altered fetal brain development in COVID-era pregnancies merit further study.
Collapse
Affiliation(s)
- Yuan-Chiao Lu
- Developing Brain Institute, Children’s National Hospital, Washington, DC USA
| | - Nickie Andescavage
- Developing Brain Institute, Children’s National Hospital, Washington, DC USA
- Department of Pediatrics, School of Medicine and Health Sciences, the George Washington University, Washington, DC USA
| | - Yao Wu
- Developing Brain Institute, Children’s National Hospital, Washington, DC USA
| | - Kushal Kapse
- Developing Brain Institute, Children’s National Hospital, Washington, DC USA
| | - Nicole R. Andersen
- Developing Brain Institute, Children’s National Hospital, Washington, DC USA
| | - Jessica Quistorff
- Developing Brain Institute, Children’s National Hospital, Washington, DC USA
| | - Haleema Saeed
- MedStar Washington Hospital Center, Washington, DC USA
| | - Catherine Lopez
- Developing Brain Institute, Children’s National Hospital, Washington, DC USA
| | - Diedtra Henderson
- Developing Brain Institute, Children’s National Hospital, Washington, DC USA
| | - Scott D. Barnett
- Developing Brain Institute, Children’s National Hospital, Washington, DC USA
| | - Gilbert Vezina
- Developing Brain Institute, Children’s National Hospital, Washington, DC USA
| | - David Wessel
- Critical Care Medicine, Children’s National Hospital, Washington, DC USA
| | - Adre du Plessis
- Prenatal Pediatrics Institute, Children’s National Hospital, Washington, DC USA
| | - Catherine Limperopoulos
- Developing Brain Institute, Children’s National Hospital, Washington, DC USA
- Department of Pediatrics, School of Medicine and Health Sciences, the George Washington University, Washington, DC USA
| |
Collapse
|
38
|
De Asis-Cruz J, Andescavage N, Limperopoulos C. Adverse Prenatal Exposures and Fetal Brain Development: Insights From Advanced Fetal Magnetic Resonance Imaging. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:480-490. [PMID: 34848383 DOI: 10.1016/j.bpsc.2021.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/26/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022]
Abstract
Converging evidence from clinical and preclinical studies suggests that fetal vulnerability to adverse prenatal exposures increases the risk for neuropsychiatric diseases such as autism spectrum disorder, schizophrenia, and depression. Recent advances in fetal magnetic resonance imaging have allowed us to characterize typical fetal brain growth trajectories in vivo and to interrogate structural and functional alterations associated with intrauterine exposures, such as maternal stress, environmental toxins, drugs, and obesity. Here, we review proposed mechanisms for how prenatal influences disrupt neurodevelopment, including the role played by maternal and fetal inflammatory responses. We summarize insights from magnetic resonance imaging research in fetuses, highlight recent discoveries in normative fetal development using quantitative magnetic resonance imaging techniques (i.e., three-dimensional volumetry, proton magnetic resonance spectroscopy, placental diffusion imaging, and functional imaging), and discuss how baseline trajectories are shaped by prenatal exposures.
Collapse
Affiliation(s)
- Josepheen De Asis-Cruz
- Developing Brain Institute, Department of Radiology, Children's National Hospital, Washington, DC
| | - Nickie Andescavage
- Developing Brain Institute, Department of Radiology, Children's National Hospital, Washington, DC; Department of Neonatology, Children's National Hospital, Washington, DC
| | - Catherine Limperopoulos
- Developing Brain Institute, Department of Radiology, Children's National Hospital, Washington, DC.
| |
Collapse
|
39
|
Sobotka D, Ebner M, Schwartz E, Nenning KH, Taymourtash A, Vercauteren T, Ourselin S, Kasprian G, Prayer D, Langs G, Licandro R. Motion correction and volumetric reconstruction for fetal functional magnetic resonance imaging data. Neuroimage 2022; 255:119213. [PMID: 35430359 DOI: 10.1016/j.neuroimage.2022.119213] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/21/2022] [Accepted: 04/13/2022] [Indexed: 10/18/2022] Open
Abstract
Motion correction is an essential preprocessing step in functional Magnetic Resonance Imaging (fMRI) of the fetal brain with the aim to remove artifacts caused by fetal movement and maternal breathing and consequently to suppress erroneous signal correlations. Current motion correction approaches for fetal fMRI choose a single 3D volume from a specific acquisition timepoint with least motion artefacts as reference volume, and perform interpolation for the reconstruction of the motion corrected time series. The results can suffer, if no low-motion frame is available, and if reconstruction does not exploit any assumptions about the continuity of the fMRI signal. Here, we propose a novel framework, which estimates a high-resolution reference volume by using outlier-robust motion correction, and by utilizing Huber L2 regularization for intra-stack volumetric reconstruction of the motion-corrected fetal brain fMRI. We performed an extensive parameter study to investigate the effectiveness of motion estimation and present in this work benchmark metrics to quantify the effect of motion correction and regularised volumetric reconstruction approaches on functional connectivity computations. We demonstrate the proposed framework's ability to improve functional connectivity estimates, reproducibility and signal interpretability, which is clinically highly desirable for the establishment of prognostic noninvasive imaging biomarkers. The motion correction and volumetric reconstruction framework is made available as an open-source package of NiftyMIC.
Collapse
Affiliation(s)
- Daniel Sobotka
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Michael Ebner
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Ernst Schwartz
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Karl-Heinz Nenning
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, NY, USA
| | - Athena Taymourtash
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Tom Vercauteren
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Sebastien Ourselin
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Gregor Kasprian
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Daniela Prayer
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Georg Langs
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.
| | - Roxane Licandro
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; Laboratory for Computational Neuroimaging, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
40
|
Association of maternal prenatal depression and anxiety with toddler sleep: the China-Anhui Birth Cohort study. Arch Womens Ment Health 2022; 25:431-439. [PMID: 34997848 DOI: 10.1007/s00737-021-01200-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/26/2021] [Indexed: 12/24/2022]
Abstract
Maternal prenatal depression is associated with child sleep. We investigated whether maternal depression comorbid with anxiety worsens toddler's sleep problems in a prospective cohort study. A total of 1583 mother-infant pairs from the China-Anhui Birth Cohort study were examined. The participants completed the Center for Epidemiologic Studies Depression Scale (CES-D) and Self-Rating Anxiety Scale (SAS) at 30-34 weeks of gestation, and the Edinburgh Postnatal Depression Scale (EPDS) at 3-month postpartum. Toddler's sleep was assessed by the Brief Infant Sleep Questionnaire (BISQ) at 30 months old. Logistic regression models were used to investigate the associations between prenatal depression and anxiety and toddler's sleep, while adjusting for maternal gestational age, education, family income, alcohol use, premature birth, fetal growth restriction, mode of delivery, postnatal depression, and 3-month breastfeeding. In total, 9.0% of participants reported prenatal depression comorbid with anxiety symptoms, and the prevalence of depression, anxiety was 6.7% and 7.3%, respectively. Compared with mothers without depression and anxiety, maternal depression combined with anxiety were significantly associated with shorter total sleep duration (11.16 ± 1.06 h), longer settling time (29.25 ± 23.57 min), and higher risk of toddlers' sleep problems assessed by BISQ (OR = 2.09, 95% CI: 1.22-3.57) or parental report (OR = 1.84, 95% CI: 1.22-2.77). However, there was no significant association between maternal postnatal depression and toddler sleep behaviors. Maternal prenatal depression comorbid with anxiety significantly associated with poorer toddler's sleep. Strategies to regulate prenatal mood status should be considered during prenatal health care to improve children's sleep development.
Collapse
|
41
|
Pollatou A, Filippi CA, Aydin E, Vaughn K, Thompson D, Korom M, Dufford AJ, Howell B, Zöllei L, Martino AD, Graham A, Scheinost D, Spann MN. An ode to fetal, infant, and toddler neuroimaging: Chronicling early clinical to research applications with MRI, and an introduction to an academic society connecting the field. Dev Cogn Neurosci 2022; 54:101083. [PMID: 35184026 PMCID: PMC8861425 DOI: 10.1016/j.dcn.2022.101083] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/17/2021] [Accepted: 02/04/2022] [Indexed: 12/14/2022] Open
Abstract
Fetal, infant, and toddler neuroimaging is commonly thought of as a development of modern times (last two decades). Yet, this field mobilized shortly after the discovery and implementation of MRI technology. Here, we provide a review of the parallel advancements in the fields of fetal, infant, and toddler neuroimaging, noting the shifts from clinical to research use, and the ongoing challenges in this fast-growing field. We chronicle the pioneering science of fetal, infant, and toddler neuroimaging, highlighting the early studies that set the stage for modern advances in imaging during this developmental period, and the large-scale multi-site efforts which ultimately led to the explosion of interest in the field today. Lastly, we consider the growing pains of the community and the need for an academic society that bridges expertise in developmental neuroscience, clinical science, as well as computational and biomedical engineering, to ensure special consideration of the vulnerable mother-offspring dyad (especially during pregnancy), data quality, and image processing tools that are created, rather than adapted, for the young brain.
Collapse
Affiliation(s)
- Angeliki Pollatou
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Courtney A Filippi
- Section on Development and Affective Neuroscience, National Institute of Mental Health, Bethesda, MD, USA; Department of Human Development and Quantitative Methodology, University of Maryland, College Park, MD, USA
| | - Ezra Aydin
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA; Department of Psychology, University of Cambridge, Cambridge, UK
| | - Kelly Vaughn
- Department of Pediatrics, University of Texas Health Sciences Center, Houston, TX, USA
| | - Deanne Thompson
- Clinical Sciences, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Marta Korom
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA
| | - Alexander J Dufford
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Brittany Howell
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA; Department of Human Development and Family Science, Virginia Tech, Blacksburg, VA, USA
| | - Lilla Zöllei
- Laboratory for Computational Neuroimaging, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | | | - Alice Graham
- Department of Psychiatry, Oregon Health and Science University, Portland, OR, USA
| | - Dustin Scheinost
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA; Yale Child Study Center, Yale School of Medicine, New Haven, CT, USA
| | - Marisa N Spann
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA; Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
42
|
Wu Y, Espinosa KM, Barnett SD, Kapse A, Quistorff JL, Lopez C, Andescavage N, Pradhan S, Lu YC, Kapse K, Henderson D, Vezina G, Wessel D, du Plessis AJ, Limperopoulos C. Association of Elevated Maternal Psychological Distress, Altered Fetal Brain, and Offspring Cognitive and Social-Emotional Outcomes at 18 Months. JAMA Netw Open 2022; 5:e229244. [PMID: 35486403 PMCID: PMC9055453 DOI: 10.1001/jamanetworkopen.2022.9244] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/22/2022] [Indexed: 01/12/2023] Open
Abstract
Importance Prenatal maternal psychological distress is associated with disturbances in fetal brain development. However, the association between altered fetal brain development, prenatal maternal psychological distress, and long-term neurodevelopmental outcomes is unknown. Objective To determine the association of fetal brain development using 3-dimensional magnetic resonance imaging (MRI) volumes, cortical folding, and metabolites in the setting of maternal psychological distress with infant 18-month neurodevelopment. Design, Setting, and Participants Healthy mother-infant dyads were prospectively recruited into a longitudinal observational cohort study from January 2016 to October 2020 at Children's National Hospital in Washington, DC. Data analysis was performed from January 2016 to July 2021. Exposures Prenatal maternal stress, anxiety, and depression. Main Outcomes and Measures Prenatal maternal stress, anxiety, and depression were measured using validated self-report questionnaires. Fetal brain volumes and cortical folding were measured from 3-dimensional, reconstructed T2-weighted MRI scans. Fetal brain creatine and choline were quantified using proton magnetic resonance spectroscopy. Infant neurodevelopment at 18 months was measured using Bayley Scales of Infant and Toddler Development III and Infant-Toddler Social and Emotional Assessment. The parenting stress in the parent-child dyad was measured using the Parenting Stress Index-Short Form at 18-month testing. Results The cohort consisted of 97 mother-infant dyads (mean [SD] maternal age, 34.79 [5.64] years) who underwent 184 fetal MRI visits (87 participants with 2 fetal studies each) with maternal psychological distress measures between 24 and 40 gestational weeks and completed follow-up infant neurodevelopmental testing. Prenatal maternal stress was negatively associated with infant cognitive performance (β = -0.51; 95% CI, -0.92 to -0.09; P = .01), and this association was mediated by fetal left hippocampal volume. In addition, prenatal maternal anxiety, stress, and depression were positively associated with all parenting stress measures at 18-month testing. Finally, fetal cortical local gyrification index and sulcal depth were negatively associated with infant social-emotional performance (local gyrification index: β = -54.62; 95% CI, -85.05 to -24.19; P < .001; sulcal depth: β = -14.22; 95% CI, -23.59 to -4.85; P = .002) and competence scores (local gyrification index: β = -24.01; 95% CI, -40.34 to -7.69; P = .003; sulcal depth: β = -7.53; 95% CI, -11.73 to -3.32; P < .001). Conclusions and Relevance In this cohort study of 97 mother-infant dyads, fetal cortical local gyrification index and sulcal depth were associated with infant 18-month social-emotional and competence outcomes, and fetal left hippocampal volume mediated the association between prenatal maternal stress and infant cognitive outcome. These findings suggest that altered prenatal brain development in the setting of elevated maternal distress has adverse infant sociocognitive outcomes, and identifying early biomarkers associated with long-term neurodevelopment may assist in early targeted interventions.
Collapse
Affiliation(s)
- Yao Wu
- Developing Brain Institute, Children’s National Hospital, Washington, DC
| | | | - Scott D. Barnett
- Developing Brain Institute, Children’s National Hospital, Washington, DC
| | - Anushree Kapse
- Developing Brain Institute, Children’s National Hospital, Washington, DC
| | | | - Catherine Lopez
- Developing Brain Institute, Children’s National Hospital, Washington, DC
| | | | - Subechhya Pradhan
- Developing Brain Institute, Children’s National Hospital, Washington, DC
| | - Yuan-Chiao Lu
- Developing Brain Institute, Children’s National Hospital, Washington, DC
| | - Kushal Kapse
- Developing Brain Institute, Children’s National Hospital, Washington, DC
| | - Diedtra Henderson
- Developing Brain Institute, Children’s National Hospital, Washington, DC
| | - Gilbert Vezina
- Department of Diagnostic Imaging and Radiology, Children’s National Hospital, Washington, DC
| | - David Wessel
- Hospital and Specialty Services, Children’s National Hospital, Washington, DC
| | - Adré J. du Plessis
- Prenatal Pediatrics Institute, Children’s National Hospital, Washington, DC
| | - Catherine Limperopoulos
- Developing Brain Institute, Children’s National Hospital, Washington, DC
- Department of Diagnostic Imaging and Radiology, Children’s National Hospital, Washington, DC
| |
Collapse
|
43
|
Cohen MF, Dunlop AL, Johnson DA, Dunn Amore A, Corwin EJ, Brennan PA. Intergenerational Effects of Discrimination on Black American Children's Sleep Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:4021. [PMID: 35409703 PMCID: PMC8997890 DOI: 10.3390/ijerph19074021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 01/27/2023]
Abstract
Greater exposure to racial/ethnic discrimination among pregnant Black American women is associated with elevated prenatal depressive symptomatology, poorer prenatal sleep quality, and poorer child health outcomes. Given the transdiagnostic importance of early childhood sleep health, we examined associations between pregnant women's lifetime exposure to racial/ethnic discrimination and their two-year-old children's sleep health. We also examined women's gendered racial stress as a predictor variable. In exploratory analyses, we examined prenatal sleep quality and prenatal depressive symptoms as potential mediators of the prior associations. We utilized data from a sample of Black American women and children (n = 205). Women self-reported their lifetime experiences of discrimination during early pregnancy, their sleep quality and depressive symptoms during mid-pregnancy, and their children's sleep health at age two. Hierarchical linear multiple regression models were fit to examine direct associations between women's experiences of discrimination and children's sleep health. We tested our mediation hypotheses using a parallel mediator model. Higher levels of gendered racial stress, but not racial/ethnic discrimination, were directly associated with poorer sleep health in children. Higher levels of racial/ethnic discrimination were indirectly associated with poorer sleep health in children, via women's prenatal depressive symptomatology, but not prenatal sleep quality. Clinical efforts to mitigate the effects of discrimination on Black American women may benefit women's prenatal mental health and their children's sleep health.
Collapse
Affiliation(s)
| | - Anne L Dunlop
- Department of Gynecology and Obstetrics, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Dayna A Johnson
- Department of Epidemiology, Emory University, Atlanta, GA 30322, USA
| | - Alexis Dunn Amore
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
44
|
Infant sleep and negative reactivity: The role of maternal adversity and perinatal sleep. Infant Behav Dev 2022; 66:101664. [PMID: 34958975 PMCID: PMC9162035 DOI: 10.1016/j.infbeh.2021.101664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/02/2021] [Accepted: 11/07/2021] [Indexed: 02/03/2023]
Abstract
Sleep during infancy contributes to the development and maintenance of infant regulatory functioning and may be an early risk marker for more difficult temperamental traits like negative reactivity. Further, maternal adverse childhood experiences (ACEs) may predispose individuals to greater sleep disturbances in adulthood and have been linked with sleep disturbances in both mothers and infants. Thus, examining maternal history of ACEs and maternal sleep difficulties during pregnancy and postpartum may provide insight into underlying risk factors affecting infant sleep difficulties and early temperament development. Fifty-nine mothers from a diverse, community sample (44% white) completed questionnaires on ACEs, maternal sleep, infant sleep, and infant temperament at 30-weeks gestation, 6-weeks postpartum, and 16-weeks postpartum. Results indicated that maternal ACES and sleep problems during pregnancy have long term implications for infant negative reactivity at 16-weeks, with significant indirect effects through maternal and infant sleep problems at 6-weeks. Addressing psychosocial functioning and prenatal sleep during pregnancy, particularly among women with high ACEs, may be a target of intervention to improve maternal and infant sleep health during the postpartum, and reduce the risk for difficult infant temperament.
Collapse
|
45
|
Bolte EE, Moorshead D, Aagaard KM. Maternal and early life exposures and their potential to influence development of the microbiome. Genome Med 2022; 14:4. [PMID: 35016706 PMCID: PMC8751292 DOI: 10.1186/s13073-021-01005-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/16/2021] [Indexed: 02/07/2023] Open
Abstract
At the dawn of the twentieth century, the medical care of mothers and children was largely relegated to family members and informally trained birth attendants. As the industrial era progressed, early and key public health observations among women and children linked the persistence of adverse health outcomes to poverty and poor nutrition. In the time hence, numerous studies connecting genetics ("nature") to public health and epidemiologic data on the role of the environment ("nurture") have yielded insights into the importance of early life exposures in relation to the occurrence of common diseases, such as diabetes, allergic and atopic disease, cardiovascular disease, and obesity. As a result of these parallel efforts in science, medicine, and public health, the developing brain, immune system, and metabolic physiology are now recognized as being particularly vulnerable to poor nutrition and stressful environments from the start of pregnancy to 3 years of age. In particular, compelling evidence arising from a diverse array of studies across mammalian lineages suggest that modifications to our metagenome and/or microbiome occur following certain environmental exposures during pregnancy and lactation, which in turn render risk of childhood and adult diseases. In this review, we will consider the evidence suggesting that development of the offspring microbiome may be vulnerable to maternal exposures, including an analysis of the data regarding the presence or absence of a low-biomass intrauterine microbiome.
Collapse
Affiliation(s)
- Erin E Bolte
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, USA
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, USA
| | - David Moorshead
- Immunology & Microbiology Graduate Program, Baylor College of Medicine, Houston, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, USA
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, USA
| | - Kjersti M Aagaard
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
- Immunology & Microbiology Graduate Program, Baylor College of Medicine, Houston, USA.
- Medical Scientist Training Program, Baylor College of Medicine, Houston, USA.
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, USA.
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, USA.
- Department of Molecular & Cell Biology, Baylor College of Medicine, Houston, USA.
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, USA.
| |
Collapse
|
46
|
Reiss JD, Peterson LS, Nesamoney SN, Chang AL, Pasca AM, Marić I, Shaw GM, Gaudilliere B, Wong RJ, Sylvester KG, Bonifacio SL, Aghaeepour N, Gibbs RS, Stevenson DK. Perinatal infection, inflammation, preterm birth, and brain injury: A review with proposals for future investigations. Exp Neurol 2022; 351:113988. [DOI: 10.1016/j.expneurol.2022.113988] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/06/2022] [Accepted: 01/13/2022] [Indexed: 11/26/2022]
|
47
|
Ksinan Jiskrova G, Pikhart H, Bobák M, Klanova J, Stepanikova I. Prenatal psychosocial stress and children's sleep problems: Evidence from the ELSPAC-CZ study. J Sleep Res 2021; 31:e13531. [PMID: 34879444 DOI: 10.1111/jsr.13531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/24/2021] [Accepted: 11/23/2021] [Indexed: 11/28/2022]
Abstract
Prenatal exposure to maternal stress may increase the risk of developing sleep problems in childhood. This study examined the association between prenatal stressful life events (PSLE) and children's sleep problems, taking into consideration their trajectory over time. Data were obtained from the Czech portion of the European Longitudinal Cohort Study of Pregnancy and Childhood (ELSPAC-CZ; N = 4,371 children). Mothers reported PSLE using an inventory of 42 life events and child sleep problems at five time-points (child age of 1.5, 3, 5, 7, and 11 years). The association was tested by a Poisson latent growth model, controlling for maternal and family demographics, birth characteristics, maternal depression, and alcohol use in pregnancy. The average rate of sleep problems was 2.06 (p < 0.001) at the age of 1.5 years and the rate of sleep problems decreased in a linear fashion over time (estimate = -0.118; p < 0.001). A higher number of PSLE was associated with a higher rate of sleep problems at the age of 1.5 years (incidence rate ratio [IRR] per interquartile range = 1.08, 95% confidence interval [CI] 1.05-1.12, p < 0.001) and with a reduced rate of decrease in sleep problems between the ages of 1.5 and 11 years (p < 0.001). Thus, PSLE were associated with chronicity of sleep problems in addition to their amount during early childhood. Prenatal exposure to stress may predispose individuals to the development of sleep problems in later life.
Collapse
Affiliation(s)
| | - Hynek Pikhart
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic.,Department of Epidemiology & Public Health, University College London, London, UK
| | - Martin Bobák
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic.,Department of Epidemiology & Public Health, University College London, London, UK
| | - Jana Klanova
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Irena Stepanikova
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic.,Department of Sociology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
48
|
Early life exposure to poly I:C impairs striatal DA-D2 receptor binding, myelination and associated behavioural abilities in rats. J Chem Neuroanat 2021; 118:102035. [PMID: 34597812 DOI: 10.1016/j.jchemneu.2021.102035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/01/2021] [Accepted: 09/25/2021] [Indexed: 11/22/2022]
Abstract
Early-life viral infections critically influence the brain development and have been variously reported to cause neuropsychiatric diseases such as Schizophrenia, Parkinson's diseases, demyelinating diseases, etc. To investigate the alterations in the dopaminergic system, myelination and associated behavioral impairments following neonatal viral infection, the viral immune activation model was created by an intraperitoneal injection of Poly I:C (5 mg/kg bw/ip) to neonatal rat pups on PND-7. The DA-D2 receptor binding was assessed in corpus striatum by using 3H-Spiperone at 3, 6 and 12 weeks of age. MOG immunolabelling was performed to check myelination stature and myelin integrity, while corpus callosum calibre was assessed by Luxol fast blue staining. Relative behavioral tasks i.e., motor activity, motor coordination and neuromuscular strength were assessed by open field, rotarod and grip strength meter respectively at 3, 6 and 12 weeks of age. Following Poly I:C exposure, a significant decrease in DA-D2 receptor binding, reduction in corpus callosum calibre and MOG immunolabelling indicating demyelination and a significant decrease in locomotor activity, neuromuscular strength and motor coordination signify motor deficits and hypokinetic influence of early life viral infection. Thus, the findings suggest that early life poly I:C exposure may cause demyelination and motor deficits by decreasing DA-D2 receptor binding affinity.
Collapse
|
49
|
Thomason ME, Hect JL, Waller R, Curtin P. Interactive relations between maternal prenatal stress, fetal brain connectivity, and gestational age at delivery. Neuropsychopharmacology 2021; 46:1839-1847. [PMID: 34188185 PMCID: PMC8357800 DOI: 10.1038/s41386-021-01066-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 12/15/2022]
Abstract
Studies reporting significant associations between maternal prenatal stress and child outcomes are frequently confounded by correlates of prenatal stress that influence the postnatal rearing environment. The major objective of this study is to identify whether maternal prenatal stress is associated with variation in human brain functional connectivity prior to birth. We utilized fetal fMRI in 118 fetuses [48 female; mean age 32.9 weeks (SD = 3.87)] to evaluate this association and further addressed whether fetal neural differences were related to maternal health behaviors, social support, or birth outcomes. Community detection was used to empirically define networks and enrichment was used to isolate differential within- or between-network connectivity effects. Significance for χ2 enrichment was determined by randomly permuting the subject pairing of fetal brain connectivity and maternal stress values 10,000 times. Mixtures modelling was used to test whether fetal neural differences were related to maternal health behaviors, social support, or birth outcomes. Increased maternal prenatal negative affect/stress was associated with alterations in fetal frontoparietal, striatal, and temporoparietal connectivity (β = 0.82, p < 0.001). Follow-up analysis demonstrated that these associations were stronger in women with better health behaviors, more positive interpersonal support, and lower overall stress (β = 0.16, p = 0.02). Additionally, magnitude of stress-related differences in neural connectivity was marginally correlated with younger gestational age at delivery (β = -0.18, p = 0.05). This is the first evidence that negative affect/stress during pregnancy is reflected in functional network differences in the human brain in utero, and also provides information about how positive interpersonal and health behaviors could mitigate prenatal brain programming.
Collapse
Affiliation(s)
- Moriah E Thomason
- Department of Child and Adolescent Psychiatry, New York University Medical Center, New York, NY, USA.
- Department of Population Health, New York University Medical Center, New York, NY, USA.
- Neuroscience Institute, NYU Langone Health, New York, NY, USA.
| | - Jasmine L Hect
- Medical Scientist Training Program, University of Pittsburgh & Carnegie Mellon University, Pittsburgh, PA, USA
| | - Rebecca Waller
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - Paul Curtin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
50
|
Moog NK, Nolvi S, Kleih TS, Styner M, Gilmore JH, Rasmussen JM, Heim CM, Entringer S, Wadhwa PD, Buss C. Prospective association of maternal psychosocial stress in pregnancy with newborn hippocampal volume and implications for infant social-emotional development. Neurobiol Stress 2021; 15:100368. [PMID: 34355050 PMCID: PMC8319845 DOI: 10.1016/j.ynstr.2021.100368] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/30/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023] Open
Abstract
Maternal psychosocial stress during pregnancy can impact the developing fetal brain and influence offspring mental health. In this context, animal studies have identified the hippocampus and amygdala as key brain regions of interest, however, evidence in humans is sparse. We, therefore, examined the associations between maternal prenatal psychosocial stress, newborn hippocampal and amygdala volumes, and child social-emotional development. In a sample of 86 mother-child dyads, maternal perceived stress was assessed serially in early, mid and late pregnancy. Following birth, newborn (aged 5–64 postnatal days, mean: 25.8 ± 12.9) hippocampal and amygdala volume was assessed using structural magnetic resonance imaging. Infant social-emotional developmental milestones were assessed at 6- and 12-months age using the Bayley-III. After adjusting for covariates, maternal perceived stress during pregnancy was inversely associated with newborn left hippocampal volume (β = −0.26, p = .019), but not with right hippocampal (β = −0.170, p = .121) or bilateral amygdala volumes (ps > .5). Furthermore, newborn left hippocampal volume was positively associated with infant social-emotional development across the first year of postnatal life (B = 0.01, p = .011). Maternal perceived stress was indirectly associated with infant social-emotional development via newborn left hippocampal volume (B = −0.34, 95% CIBC [-0.97, −0.01]), suggesting mediation. This study provides prospective evidence in humans linking maternal psychosocial stress in pregnancy with newborn hippocampal volume and subsequent infant social-emotional development across the first year of life. These findings highlight the importance of maternal psychosocial state during pregnancy as a target amenable to interventions to prevent or attenuate its potentially unfavorable neural and behavioral consequences in the offspring. Maternal perceived stress predicted smaller neonatal left hippocampal volume (HCV). Neonatal left HCV was positively associated with infant social-emotional function. Variation in HCV may mediate maternal stress-related effects on child mental health.
Collapse
Affiliation(s)
- Nora K Moog
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Medical Psychology, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Saara Nolvi
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Medical Psychology, Augustenburger Platz 1, 13353, Berlin, Germany.,Turku Institute for Advanced Studies, Department of Psychology and Speech-Language Pathology, University of Turku, Finland
| | - Theresa S Kleih
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Medical Psychology, Augustenburger Platz 1, 13353, Berlin, Germany.,Institute of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Martin Styner
- Departments of Psychiatry and Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - John H Gilmore
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jerod M Rasmussen
- Development, Health, and Disease Research Program, Departments of Pediatrics, Psychiatry and Human Behavior, Obstetrics and Gynecology, and Epidemiology, University of California, Irvine, School of Medicine, Irvine, CA, USA
| | - Christine M Heim
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Medical Psychology, Augustenburger Platz 1, 13353, Berlin, Germany.,Department of Biobehavioral Health, Pennsylvania State University, College of Health and Human Development, University Park, PA, USA
| | - Sonja Entringer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Medical Psychology, Augustenburger Platz 1, 13353, Berlin, Germany.,Development, Health, and Disease Research Program, Departments of Pediatrics, Psychiatry and Human Behavior, Obstetrics and Gynecology, and Epidemiology, University of California, Irvine, School of Medicine, Irvine, CA, USA.,Department of Pediatrics, University of California, Irvine, School of Medicine, Orange, CA, USA
| | - Pathik D Wadhwa
- Development, Health, and Disease Research Program, Departments of Pediatrics, Psychiatry and Human Behavior, Obstetrics and Gynecology, and Epidemiology, University of California, Irvine, School of Medicine, Irvine, CA, USA.,Department of Pediatrics, University of California, Irvine, School of Medicine, Orange, CA, USA.,Departments of Psychiatry and Human Behavior, Obstetrics and Gynecology, and Epidemiology, University of California, Irvine, School of Medicine, Orange, CA, USA
| | - Claudia Buss
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Medical Psychology, Augustenburger Platz 1, 13353, Berlin, Germany.,Development, Health, and Disease Research Program, Departments of Pediatrics, Psychiatry and Human Behavior, Obstetrics and Gynecology, and Epidemiology, University of California, Irvine, School of Medicine, Irvine, CA, USA.,Department of Pediatrics, University of California, Irvine, School of Medicine, Orange, CA, USA
| |
Collapse
|