1
|
Guo Y, Wang F, Wan S, Liu X, Huang Y, Xie M, Wei X, Zhu W, Yao T, Li Y, Zhang C, Zhu Y. Endothelium-targeted NF-κB siRNA nanogel for magnetic resonance imaging and visualized-anti-inflammation treatment of atherosclerosis. Biomaterials 2025; 314:122897. [PMID: 39437581 DOI: 10.1016/j.biomaterials.2024.122897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Atherosclerosis-induced lethal cardiovascular disease remains a severe healthcare threat due to the limited drug efficiency and untimely prediction of high-risk events caused by inadequate target specificity of medications, incapable recognition of insensitive patients, and variable morphology of vulnerable plaques. Therefore, it is necessary to develop efficient strategies to improve the diagnosis accuracy and achieve visualized treatment of atherosclerosis. Herein, we establish an inflamed endothelium-targeted three-in-one nucleic acid nanogel system that can reverse the inflammatory state of endothelial cells (ECs) in plaques and simultaneously achieve real-time monitoring of the therapy process for efficient atherosclerosis diagnosis and treatment. For this purpose, contrast agent (Gd-DOTA) and VCAM-1-targeted peptide (VP) are first covalently conjugated onto DNA strands by click reaction respectively, which could self-assemble into Y-shaped structures (Gd-Y1 and VP-Y2 motifs) with magnetic resonance (MR) imaging and endothelium targeting capacities. Thereafter, NF-κB subunit p65-targeting siRNA (siNF-κB) is crosslinked with Gd-Y1 and VP-Y2 motifs to construct the endothelium-targeting nanogel platform. With contrast agents inside, the nanogel enables MR-based diagnosis and visualized therapy of atherosclerosis, providing accurate prognostic analysis and indications for treatment results, which ensures timely disclosure of insensitive individuals and avoids acute lethal events. By delivering siNF-κB to inflammatory endothelium, the nanogel significantly regresses plaques in both the aorta and carotid artery with reduced inflammation cytokines, collagens, macrophages, and apoptotic cells, providing a potential anti-inflammation strategy to treat atherosclerosis and avoid acute cardiovascular disease.
Collapse
Affiliation(s)
- Yuanyuan Guo
- Department of Radiology, Shanghai Jiao Tong University School of Medicine Affiliated Shanghai Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China
| | - Fujun Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, China
| | - Sunli Wan
- Department of Radiology, Shanghai Jiao Tong University School of Medicine Affiliated Shanghai Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China
| | - Xinhua Liu
- Department of Radiology, Shanghai Jiao Tong University School of Medicine Affiliated Shanghai Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China
| | - Yu Huang
- Department of Radiology, Shanghai Jiao Tong University School of Medicine Affiliated Shanghai Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China.
| | - Miao Xie
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, China
| | - Xiaoer Wei
- Department of Radiology, Shanghai Jiao Tong University School of Medicine Affiliated Shanghai Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China
| | - Wangshu Zhu
- Department of Radiology, Shanghai Jiao Tong University School of Medicine Affiliated Shanghai Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China
| | - Tingting Yao
- Department of Radiology, Shanghai Jiao Tong University School of Medicine Affiliated Shanghai Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China
| | - Yuehua Li
- Department of Radiology, Shanghai Jiao Tong University School of Medicine Affiliated Shanghai Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China.
| | - Chuan Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai, 200240, China.
| | - Yueqi Zhu
- Department of Radiology, Shanghai Jiao Tong University School of Medicine Affiliated Shanghai Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China.
| |
Collapse
|
2
|
Bingyu W, Jun Q, Bingyang L, Xi Y, Jianqing Z, Jiangfang L. Trimethylamine N-oxide promotes PERK-mediated endothelial-mesenchymal transition and apoptosis thereby aggravates atherosclerosis. Int Immunopharmacol 2024; 142:113209. [PMID: 39340998 DOI: 10.1016/j.intimp.2024.113209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024]
Abstract
The endothelial-mesenchymal transition (EndMT) is involved in the development of atherosclerosis (AS) and is a key process in vascular endothelial injury. Oxidative stress, inflammation, and apoptosis are common causes of EndMT, and EndMT progression can further accelerate the development of AS. The metabolite trimethylamine N-oxide (TMAO) is produced by the gut microbiome and is implicated in the development of several diseases, including diabetes and chronic kidney disease. However, the impact of TMAO on transforming growth factor β1(TGF-β1)-induced EndMT remains unclear. We hypothesize that TMAO exacerbates plaque formation and cardiac function impairment by promoting EndMT. Herein, we showed that high serum TMAO levels caused plaque formation, cardiac function damage and haemodynamic changes in ApoE-/- mice. In vitro, TMAO upregulated mesenchymal markers and downregulated endothelial markers in HAECs. Furthermore, TMAO increased the migratory capacity of EndMT cells. Mechanistically, we found that PERK downregulation could alleviate TMAO-induced oxidative stress, EndMT, plaque formation and cardiac function damage. Further study showed that activated transcription factor 3 (ATF3), the downstream molecule of protein kinase RNA-like endoplasmic reticulum kinase (PERK), could bind with TGF-β1/2 and affect EndMT. Overall, TMAO promotes EndMT, possibly through the PERK-eIF2α-ATF4-CHOP or the PERk-eIF2α-ATF3-TGF-β signalling pathways.
Collapse
Affiliation(s)
- Wang Bingyu
- Department of Cardiovascular, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, China
| | - Qiu Jun
- Department of Cardiovascular, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, China
| | - Liu Bingyang
- Department of Cardiovascular, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, China
| | - Yang Xi
- Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo, China.
| | - Zhou Jianqing
- Department of Cardiovascular, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, China; Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo, China.
| | - Lian Jiangfang
- Department of Cardiovascular, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, China; Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo, China.
| |
Collapse
|
3
|
Li Q, Tintut Y, Demer LL, Vazquez-Padron RI, Bendeck MP, Hsu JJ. Collagen VIII in vascular diseases. Matrix Biol 2024; 133:64-76. [PMID: 39154854 PMCID: PMC11473120 DOI: 10.1016/j.matbio.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 08/20/2024]
Abstract
Collagens have dual functions in the extracellular matrix (ECM), acting as both structural components and signaling molecules in matricellular communication. Although collagen molecules share a common triple helix motif, the supramolecular organization helps classify them into nearly 30 different types of collagens. Collagen type VIII is a non-fibrillar, short-chain, network-forming collagen that is expressed throughout the vasculature. Collagen VIII expression is aberrant in cardiovascular, lung, and renal disease, as well as in several different types of cancer. It plays active roles in angiogenesis, vessel injury repair, maintenance of arterial compliance, atherosclerotic plaque formation and stability modulation, fibrosis, and ECM remodeling. This review presents an overview of the characteristics of collagen VIII in vascular-related disorders, from clinical significance to laboratory studies, with a major focus on highlighting the signaling properties of collagen VIII in the vascular ECM. The expression patterns of collagen VIII in human diseases and experimental animal models highlight the protein's important yet underexplored functions. A deeper understanding of its mechanisms and downstream signaling pathways may pave the way for translational and tissue engineering applications of collagen VIII.
Collapse
Affiliation(s)
- Qian Li
- Departments of Physiology, Bioengineering University of California, Los Angeles, Los Angeles, California, USA
| | - Yin Tintut
- Departments of Physiology, Bioengineering University of California, Los Angeles, Los Angeles, California, USA; Departments of Medicine, Bioengineering University of California, Los Angeles, Los Angeles, California, USA; Departments of Orthopedic Surgery, Bioengineering University of California, Los Angeles, Los Angeles, California, USA
| | - Linda L Demer
- Departments of Physiology, Bioengineering University of California, Los Angeles, Los Angeles, California, USA; Departments of Medicine, Bioengineering University of California, Los Angeles, Los Angeles, California, USA; Bioengineering University of California, Los Angeles, Los Angeles, California, USA
| | - Roberto I Vazquez-Padron
- Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA; Bruce W. Carter Veteran Affairs Medical Center, Miami, Florida, USA
| | - Michelle P Bendeck
- Departments of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada; Ted Rogers Heart Research Centre, University of Toronto, Toronto, Ontario, Canada
| | - Jeffrey J Hsu
- Departments of Physiology, Bioengineering University of California, Los Angeles, Los Angeles, California, USA; Bioengineering University of California, Los Angeles, Los Angeles, California, USA; Veterans Affairs Greater Los Angeles Health Care System, Los Angeles, California, USA.
| |
Collapse
|
4
|
Noh SG, Kim HW, Kim S, Chung KW, Jung YS, Yoon JH, Yu BP, Lee J, Chung HY. Senoinflammation as the underlying mechanism of aging and its modulation by calorie restriction. Ageing Res Rev 2024; 101:102503. [PMID: 39284417 DOI: 10.1016/j.arr.2024.102503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/25/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
Senoinflammation is characterized by an unresolved low-grade inflammatory process that affects multiple organs and systemic functions. This review begins with a brief overview of the fundamental concepts and frameworks of senoinflammation. It is widely involved in the aging of various organs and ultimately leads to progressive systemic degeneration. Senoinflammation underlying age-related inflammation, is causally related to metabolic dysregulation and the formation of senescence-associated secretory phenotype (SASP) during aging and age-related diseases. This review discusses the biochemical evidence and molecular biology data supporting the concept of senoinflammation and its regulatory processes, highlighting the anti-aging and anti-inflammatory effects of calorie restriction (CR). Experimental data from CR studies demonstrated effective suppression of various pro-inflammatory cytokines and chemokines, lipid accumulation, and SASP during aging. In conclusion, senoinflammation represents the basic mechanism that creates a microenvironment conducive to aging and age-related diseases. Furthermore, it serves as a potential therapeutic target for mitigating aging and age-related diseases.
Collapse
Affiliation(s)
- Sang Gyun Noh
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Hyun Woo Kim
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Seungwoo Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Ki Wung Chung
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Young-Suk Jung
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Jeong-Hyun Yoon
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Byung Pal Yu
- Department of Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jaewon Lee
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea.
| | - Hae Young Chung
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea.
| |
Collapse
|
5
|
van Leent MMT, Duivenvoorden R. TGF-β: A Wrench in the Gears of Arteriovenous Fistula Maturation. Arterioscler Thromb Vasc Biol 2024. [PMID: 39445425 DOI: 10.1161/atvbaha.124.321827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Affiliation(s)
- Mandy M T van Leent
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY. (M.M.T.v.L., R.D.)
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY. (M.M.T.v.L.)
| | - Raphaël Duivenvoorden
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY. (M.M.T.v.L., R.D.)
- Department of Nephrology, Radboud University Medical Center, Nijmegen, the Netherlands (R.D.)
| |
Collapse
|
6
|
Al Hageh C, O'Sullivan S, Henschel A, Abchee A, Hantouche M, Iakovidou N, Issa T, Chacar S, Nader M, Zalloua PA. PHACTR1 and APOC1 genetic variants are associated with multi-vessel coronary artery disease. Lipids Health Dis 2024; 23:332. [PMID: 39395990 PMCID: PMC11471027 DOI: 10.1186/s12944-024-02327-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024] Open
Abstract
BACKGROUND Severe coronary artery disease (CAD) represents an advanced arterial narrowing, often associated with critical complications like myocardial infarction and angina. This study aimed to comprehensively investigate determinants of severe and multi-vessel CAD manifestations. METHODS One thousand nine hundred patients with severe and multivessel CAD (stenosis > 70%) were recruited along with 1,056 controls without stenosis. Associations using a genotyping panel comprising 159 Single Nucleotide Polymorphisms (SNPs) previously implicated in CAD pathogenesis were examined and these associations were replicated using the UK Biobank cohort (N = 29,970). RESULTS The investigation identified 14 genetic associations with severe CAD, of which 7 were also associated with multivessel disease. Notably, PHACTR1 SNP (rs9349379*G) showed a higher association with severe and multivessel CAD in individuals aged ≤ 65, indicating a higher risk of early disease onset. Conversely, the APOC1/APOE SNP (rs445925*T) is associated with reduced susceptibility to severe CAD and multivessel disease in individuals aged over 65, indicating a persistent negative association. CONCLUSIONS Following replication of the associations in the large UK Biobank dataset, it was found that patients carrying the rs9349379*G variant in the PHACTR1 gene are at risk of developing severe or multivessel disease. Conversely, the rs445925*T variant in APOC1/APOE is associated with reduced susceptibility to severe CAD and multivessel disease, highlighting the significance of this genetic variant in these specific CAD presentations. This study contributes to a better understanding of CAD heterogeneity, paving the way for tailored management strategies based on genetic profiles.
Collapse
Affiliation(s)
- Cynthia Al Hageh
- Department of Public Health and Epidemiology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Siobhán O'Sullivan
- Department of Biological Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Andreas Henschel
- Department of Computer Science, College of Computing and Mathematical Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Antoine Abchee
- Faculty of Medicine, University of Balamand, Balamand, Lebanon
| | - Mireille Hantouche
- Department of Public Health and Epidemiology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Nantia Iakovidou
- Department of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Taly Issa
- University of Nicosia Medical School, Egkomi, Cyprus
| | - Stephanie Chacar
- Department of Medical Sciences, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, PO Box 127788, United Arab Emirates
| | - Moni Nader
- Department of Medical Sciences, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, PO Box 127788, United Arab Emirates.
| | - Pierre A Zalloua
- Department of Public Health and Epidemiology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
- Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
7
|
Luo Z, Yang L, Zhu T, Fan F, Wang X, Liu Y, Zhan H, Luo D, Guo J. Aucubin ameliorates atherosclerosis by modulating tryptophan metabolism and inhibiting endothelial-mesenchymal transitions via gut microbiota regulation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156122. [PMID: 39396405 DOI: 10.1016/j.phymed.2024.156122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/27/2024] [Accepted: 07/13/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND The gut microbiota is believed to influence atherosclerosis (AS), and Aucubin (Au), a natural compound found in the traditional Chinese medicine Eucommia ulmoides Oliver, is being explored as a potential treatment for cardiovascular disease. Yet, the specific impact of Au on AS through the gut microbiota remains unclear. PURPOSE This study aimed to highlight the potential of Au in improving AS by influencing gut microbiota and investigating its potential mechanisms by which it and its metabolites of gut microbiota regulate lipid metabolism, inflammation and endothelial dysfunction. METHODS The impact of Au on AS in ApoE-/- mice was examined, followed by a fecal microbiota transplantation experiment to confirm the influence of Au on AS through gut microbiota. Subsequent analysis of fecal and serum samples using 16S rRNA gene sequencing and metabolomics revealed distinct features of gut microbiota and metabolites. Identified metabolites were then utilized in vivo experiments to investigate underlying mechanisms. RESULTS Au treatment effectively reduced dietary-induced dyslipidemia and endothelial dysfunction in a dose-dependent manner in atherosclerotic mice. It also improved vascular plaque accumulation and inflammation, increased aortic valve fibrous cap thickness, and decreased necrotic core and collagen fiber area. Subsequently, we observed a substantial increase in indole-3-acrylic acid (IAA), a microbe-derived metabolite, in cecal contents and serum, along with a significant rise in Lactobacillus abundance responsible for IAA production. Our findings demonstrated that IAA played a crucial role in alleviating AS. Furthermore, we discovered that IAA activated the Aryl hydrocarbon receptor (AhR) and suppressed the TGF-β/Smad pathway, potentially ameliorating endothelial-mesenchymal transitions in atherosclerotic mice. CONCLUSION These findings suggested that Au's anti-atherosclerotic effects were primarily due to elevated Lactobacillus-derived IAA, thereby potentially contributing to alleviating AS.
Collapse
Affiliation(s)
- Zhizhong Luo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Ling Yang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Tianxin Zhu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Faxin Fan
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Xin Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Yuqing Liu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Huixia Zhan
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| | - Duosheng Luo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China.
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
8
|
Zhou Z, Korteland SA, Tardajos-Ayllon B, Wu J, Chambers E, Weninck J, Simons M, Dunning M, Schenkel T, Diagbouga M, Wentzel J, Fragiadaki M, Evans PC. Shear stress is uncoupled from atheroprotective KLK10 in atherosclerotic plaques. Atherosclerosis 2024; 398:118622. [PMID: 39413592 DOI: 10.1016/j.atherosclerosis.2024.118622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/18/2024]
Abstract
BACKGROUND AND AIMS Physiological shear stress promotes vascular homeostasis by inducing protective molecules in endothelial cells (EC). However, physiological shear stress has been linked to atherosclerosis progression in some individuals with heightened cardiovascular risk. To address this apparent paradox, we hypothesized that diseased arteries may exhibit reduced responsiveness to the protective effects of physiological shear stress. Consequently, we compared the transcriptome of EC exposed to physiological shear stress in healthy arteries versus atherosclerotic conditions. METHODS Employing 3D light sheet imaging and computational fluid dynamics, we identified NOS3 as a marker of physiological shear stress in both healthy and atherosclerotic murine arteries. Single-cell RNA sequencing was performed on EC from healthy (C57BL/6) mice, mildly diseased (Apoe-/- normal diet) mice, and highly diseased (Apoe-/- high fat diet) mice. The transcriptomes of Nos3high cells (exposed to physiological shear stress) were compared among the groups. RESULTS Nos3high EC were associated with several markers of physiological shear stress in healthy arteries. Clustering of Nos3high EC revealed 8 different EC subsets that varied in proportion between healthy and diseased arteries. Cluster-specific nested functional enrichment of gene ontology terms revealed that Nos3high EC in diseased arteries were enriched for inflammatory and apoptotic gene expression. These alterations were accompanied by changes in several mechanoreceptors, including the atheroprotective factor KLK10, which was enriched in Nos3high EC in healthy arteries but markedly reduced in severely diseased arteries. CONCLUSIONS Physiological shear stress is uncoupled from atheroprotective KLK10 within atherosclerotic plaques. This sheds light on the complex interplay between shear stress, endothelial function, and the progression of atherosclerosis in individuals at risk of cardiovascular complications.
Collapse
Affiliation(s)
- Ziqi Zhou
- Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute, and the Bateson Centre, University of Sheffield, Sheffield, UK
| | - Suze-Anne Korteland
- Department of Cardiology, Erasmus Medical Center, University Medical Center Rotterdam, 3015 GD, Rotterdam, the Netherlands
| | - Blanca Tardajos-Ayllon
- Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute, and the Bateson Centre, University of Sheffield, Sheffield, UK; Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Junxi Wu
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, G1 1QE, UK
| | - Emily Chambers
- Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute, and the Bateson Centre, University of Sheffield, Sheffield, UK
| | - Julia Weninck
- Department of Cardiology, Erasmus Medical Center, University Medical Center Rotterdam, 3015 GD, Rotterdam, the Netherlands
| | - Michael Simons
- Department of Internal Medicine, Yale Cardiovascular Research Center, New Haven, CT, United States
| | - Mark Dunning
- Sheffield Bioinformatics Core, The Medical School, University of Sheffield, Sheffield, UK
| | - Torsten Schenkel
- Department of Engineering and Mathematics, Sheffield Hallam University, Sheffield, UK
| | - Mannekomba Diagbouga
- Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute, and the Bateson Centre, University of Sheffield, Sheffield, UK; Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jolanda Wentzel
- Department of Cardiology, Erasmus Medical Center, University Medical Center Rotterdam, 3015 GD, Rotterdam, the Netherlands
| | - Maria Fragiadaki
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Paul C Evans
- Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute, and the Bateson Centre, University of Sheffield, Sheffield, UK; Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
9
|
Choi Y, Jakob R, Ehret AE, von Bohemer L, Cesarovic N, Falk V, Emmert MY, Mazza E, Giampietro C. Stretch-induced damage in endothelial monolayers. BIOMATERIALS ADVANCES 2024; 163:213938. [PMID: 38959650 DOI: 10.1016/j.bioadv.2024.213938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/12/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Endothelial cells are constantly exposed to mechanical stimuli, of which mechanical stretch has shown various beneficial or deleterious effects depending on whether loads are within physiological or pathological levels, respectively. Vascular properties change with age, and on a cell-scale, senescence elicits changes in endothelial cell mechanical properties that together can impair its response to stretch. Here, high-rate uniaxial stretch experiments were performed to quantify and compare the stretch-induced damage of monolayers consisting of young, senescent, and aged endothelial populations. The aged and senescent phenotypes were more fragile to stretch-induced damage. Prominent damage was detected by immunofluorescence and scanning electron microscopy as intercellular and intracellular void formation. Damage increased proportionally to the applied level of deformation and, for the aged and senescent phenotype, induced significant detachment of cells at lower levels of stretch compared to the young counterpart. Based on the phenotypic difference in cell-substrate adhesion of senescent cells indicating more mature focal adhesions, a discrete network model of endothelial cells being stretched was developed. The model showed that the more affine deformation of senescent cells increased their intracellular energy, thus enhancing the tendency for cellular damage and impending detachment. Next to quantifying for the first-time critical levels of endothelial stretch, the present results indicate that young cells are more resilient to deformation and that the fragility of senescent cells may be associated with their stronger adhesion to the substrate.
Collapse
Affiliation(s)
- Young Choi
- ETH Zürich, Dep. of Mechanical and Process Engineering, Zürich, Switzerland
| | - Raphael Jakob
- ETH Zürich, Dep. of Mechanical and Process Engineering, Zürich, Switzerland
| | - Alexander E Ehret
- ETH Zürich, Dep. of Mechanical and Process Engineering, Zürich, Switzerland; Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Lisa von Bohemer
- University of Zurich, Institute of Regenerative Medicine, Schlieren, Switzerland
| | - Nikola Cesarovic
- ETH Zürich, Dep. of Health Sciences and Technology, Zürich, Switzerland; Deutsches Herzzentrum der Charité (DHZC), Department of Cardiothoracic and Vascular Surgery, Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Volkmar Falk
- ETH Zürich, Dep. of Health Sciences and Technology, Zürich, Switzerland; Deutsches Herzzentrum der Charité (DHZC), Department of Cardiothoracic and Vascular Surgery, Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Maximilian Y Emmert
- University of Zurich, Institute of Regenerative Medicine, Schlieren, Switzerland; Deutsches Herzzentrum der Charité (DHZC), Department of Cardiothoracic and Vascular Surgery, Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Edoardo Mazza
- ETH Zürich, Dep. of Mechanical and Process Engineering, Zürich, Switzerland; Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland.
| | - Costanza Giampietro
- ETH Zürich, Dep. of Mechanical and Process Engineering, Zürich, Switzerland; Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland.
| |
Collapse
|
10
|
Kane J, Lemieux A, Baranwal G, Misra S. The Role of Cardio-Renal Inflammation in Deciding the Fate of the Arteriovenous Fistula in Haemodialysis Therapy. Cells 2024; 13:1637. [PMID: 39404400 PMCID: PMC11475948 DOI: 10.3390/cells13191637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/12/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
Vascular access is an indispensable component of haemodialysis therapy for end-stage kidney disease patients. The arteriovenous fistula (AVF) is most common, but importantly, two-year failure rates are greater than fifty percent. AVF failure can occur due to a lack of suitable vascular remodelling, and inappropriate inflammation preventing maturation, or alternatively neointimal hyperplasia and vascular stenosis preventing long-term use. A comprehensive mechanistic understanding of these processes is still lacking, but recent studies highlight an essential role for inflammation from uraemia and the AVF itself. Inflammation affects each cell in the cascade of AVF failure, the endothelium, the infiltrating immune cells, and the vascular smooth muscle cells. This review examines the role of inflammation in each cell step by step and the influence on AVF failure. Inflammation resulting in AVF failure occurs initially via changes in endothelial cell activation, permeability, and vasoprotective chemokine secretion. Resultingly, immune cells can extravasate into the subendothelial space to release inflammatory cytokines and cause other deleterious changes to the microenvironment. Finally, all these changes modify vascular smooth muscle cell function, resulting in excessive and unchecked hyperplasia and proliferation, eventually leading to stenosis and the failure of the AVF. Finally, the emerging therapeutic options based off these findings are discussed, including mesenchymal stem cells, small-molecule inhibitors, and far-infrared therapies. Recent years have clearly demonstrated a vital role for inflammation in deciding the fate of the AVF, and future works must be centred on this to develop therapies for a hitherto unacceptably underserved patient population.
Collapse
Affiliation(s)
| | | | | | - Sanjay Misra
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA; (J.K.); (A.L.); (G.B.)
| |
Collapse
|
11
|
Stappenbeck F, Wang F, Sinha SK, Hui ST, Farahi L, Mukhamedova N, Fleetwood A, Murphy AJ, Sviridov D, Lusis AJ, Parhami F. Anti-Inflammatory Oxysterol, Oxy210, Inhibits Atherosclerosis in Hyperlipidemic Mice and Inflammatory Responses of Vascular Cells. Cells 2024; 13:1632. [PMID: 39404395 PMCID: PMC11475996 DOI: 10.3390/cells13191632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND AND AIMS We previously reported that Oxy210, an oxysterol-based drug candidate, exhibits antifibrotic and anti-inflammatory properties. We also showed that, in mice, it ameliorates hepatic hallmarks of non-alcoholic steatohepatitis (NASH), including inflammation and fibrosis, and reduces adipose tissue inflammation. Here, we aim to investigate the effects of Oxy210 on atherosclerosis, an inflammatory disease of the large arteries that is linked to NASH in epidemiologic studies, shares many of the same risk factors, and is the major cause of mortality in people with NASH. METHODS Oxy210 was studied in vivo in APOE*3-Leiden.CETP mice, a humanized mouse model for both NASH and atherosclerosis, in which symptoms are induced by consumption of a high fat, high cholesterol "Western" diet (WD). Oxy210 was also studied in vitro using two cell types that are important in atherogenesis: human aortic endothelial cells (HAECs) and macrophages treated with atherogenic and inflammatory agents. RESULTS Oxy210 reduced atherosclerotic lesion formation by more than 50% in hyperlipidemic mice fed the WD for 16 weeks. This was accompanied by reduced plasma cholesterol levels and reduced macrophages in lesions. In HAECs and macrophages, Oxy210 reduced the expression of key inflammatory markers associated with atherosclerosis, including interleukin-1 beta (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), chemokine (C-C motif) ligand 2 (CCL2), vascular cell adhesion molecule-1 (VCAM-1), and E-Selectin. In addition, cholesterol efflux was significantly enhanced in macrophages treated with Oxy210. CONCLUSIONS These findings suggest that Oxy210 could be a drug candidate for targeting both NASH and atherosclerosis, as well as chronic inflammation associated with the manifestations of metabolic syndrome.
Collapse
Affiliation(s)
| | - Feng Wang
- MAX BioPharma Inc., Santa Monica, CA 90404, USA; (F.S.); (F.W.)
| | - Satyesh K. Sinha
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (S.K.S.); (S.T.H.); (L.F.); (A.J.L.)
| | - Simon T. Hui
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (S.K.S.); (S.T.H.); (L.F.); (A.J.L.)
| | - Lia Farahi
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (S.K.S.); (S.T.H.); (L.F.); (A.J.L.)
| | - Nigora Mukhamedova
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (A.F.); (A.J.M.); (D.S.)
| | - Andrew Fleetwood
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (A.F.); (A.J.M.); (D.S.)
| | - Andrew J. Murphy
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (A.F.); (A.J.M.); (D.S.)
| | - Dmitri Sviridov
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (A.F.); (A.J.M.); (D.S.)
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3168, Australia
| | - Aldons J. Lusis
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (S.K.S.); (S.T.H.); (L.F.); (A.J.L.)
| | - Farhad Parhami
- MAX BioPharma Inc., Santa Monica, CA 90404, USA; (F.S.); (F.W.)
| |
Collapse
|
12
|
Jang IH, Kruglov V, Cholensky SH, Smith DM, Carey A, Bai S, Nottoli T, Bernlohr DA, Camell CD. GDF3 promotes adipose tissue macrophage-mediated inflammation via altered chromatin accessibility during aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614375. [PMID: 39386655 PMCID: PMC11463477 DOI: 10.1101/2024.09.23.614375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Age-related susceptibility to sepsis and endotoxemia is poorly defined, although hyperactivation of the immune system and the expansion of the visceral adipose as an immunological reservoir are underlying features. Macrophages from older organisms exhibit substantial changes, including chronic NLRP3 inflammasome activation, genomic remodeling and a dysfunctional, amplified inflammatory response upon new exposure to pathogen. However, the mechanisms by which old macrophages maintain their inflammatory phenotype during endotoxemia remains elusive. We previously identified Gdf3 , a TGFβ superfamily cytokine, as a top-regulated gene by age and the NLRP3 inflammasome in adipose tissue macrophages (ATMs). Here, we demonstrate that endotoxemia increases inflammatory (CD11c + ) ATMs in a Gdf3- dependent manner in old mice. Lifelong systemic or myeloid-specific deletion of Gdf3 leads to reduced endotoxemia- induced inflammation, with decreased CD11c + ATMs and inflammatory cytokines, and protection from hypothermia. Moreover, acute blockade of Gdf3 using JQ1, a BRD4 inhibitor, phenocopies old mice with lifelong Gdf3- deficiency. We show that GDF3 promotes the inflammatory phenotype in ATMs by phosphorylating SMAD2/3. Mechanistically, the differential chromatin landscape of ATMs from old mice with or without myeloid-driven Gdf3 indicates that GDF3- SMAD2/3 signaling axis shifts the chromatin accessibility of ATMs towards an inflammatory state during aging. Furthermore, pharmaceutical inhibition of SMAD3 with a specific inhibitor of SMAD3 (SIS3) mimics Gdf3 deletion. SIS3 reduces endotoxemia-mediated inflammation with fewer CD11c + ATMs and less severe hypothermia in old, but not young mice, as well as reduced mortality. In human adipose tissue, age positively correlates with GDF3 level, while inflammation correlates with pSMAD2/3 level. Overall, these results highlight the importance of GDF3-SMAD2/3 axis in driving inflammation in older organisms and identify this signaling axis as a promising therapeutic target for mitigating endotoxemia-related inflammation in the aged.
Collapse
|
13
|
Peng Q, Arulsamy K, Lu YW, Wu H, Zhu B, Singh B, Cui K, Wylie-Sears J, Li K, Wong S, Cowan DB, Aikawa M, Wang DZ, Bischoff J, Chen K, Chen H. Novel Role of Endothelial CD45 in Regulating Endothelial-to-Mesenchymal Transition in Atherosclerosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.610974. [PMID: 39282400 PMCID: PMC11398423 DOI: 10.1101/2024.09.03.610974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Background Protein-tyrosine-phosphatase CD45 is exclusively expressed in all nucleated cells of the hematopoietic system but is rarely expressed in endothelial cells. Interestingly, our recent study indicated that activation of the endogenous CD45 promoter in human endothelial colony forming cells (ECFCs) induced expression of multiple EndoMT marker genes. However, the detailed molecular mechanisms underlying CD45 that drive EndoMT and the therapeutic potential of manipulation of CD45 expression in atherosclerosis are entirely unknown. Method We generated a tamoxifen-inducible EC-specific CD45 deficient mouse strain (EC-iCD45KO) in an ApoE-deficient (ApoE-/-) background and fed with a Western diet (C57BL/6) for atherosclerosis and molecular analyses. We isolated and enriched mouse aortic endothelial cells with CD31 beads to perform single-cell RNA sequencing. Biomedical, cellular, and molecular approaches were utilized to investigate the role of endothelial CD45-specific deletion in the prevention of EndoMT in ApoE-/- model of atherosclerosis. Results Single-cell RNA sequencing revealed that loss of endothelial CD45 inhibits EndoMT marker expression and transforming growth factor-β signaling in atherosclerotic mice. which is associated with the reductions of lesions in the ApoE-/- mouse model. Mechanistically, the loss of endothelial cell CD45 results in increased KLF2 expression, which inhibits transforming growth factor-β signaling and EndoMT. Consistently, endothelial CD45 deficient mice showed reduced lesion development, plaque macrophages, and expression of cell adhesion molecules when compared to ApoE-/- controls. Conclusions These findings demonstrate that the loss of endothelial CD45 protects against EndoMT-driven atherosclerosis, promoting KLF2 expression while inhibiting TGFβ signaling and EndoMT markers. Thus, targeting endothelial CD45 may be a novel therapeutic strategy for EndoMT and atherosclerosis.
Collapse
Affiliation(s)
- Qianman Peng
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School; Boston, MA, 02115, USA
| | - Kulandaisamy Arulsamy
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School; Boston, MA, USA
| | - Yao Wei Lu
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School; Boston, MA, 02115, USA
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School; Boston, MA, USA
| | - Hao Wu
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School; Boston, MA, 02115, USA
| | - Bo Zhu
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School; Boston, MA, 02115, USA
| | - Bandana Singh
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School; Boston, MA, 02115, USA
| | - Kui Cui
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School; Boston, MA, 02115, USA
| | - Jill Wylie-Sears
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School; Boston, MA, 02115, USA
| | - Kathryn Li
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School; Boston, MA, 02115, USA
| | - Scott Wong
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School; Boston, MA, 02115, USA
| | - Douglas B. Cowan
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School; Boston, MA, 02115, USA
| | - Masanori Aikawa
- Brigham and Women’s Hospital, Harvard Medical School; Boston, MA, 02115, USA
| | - Da-Zhi Wang
- Center for Regenerative Medicine and USF Health Heart Institute, Department of Internal Medicine, University of South Florida, Tampa
| | - Joyce Bischoff
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School; Boston, MA, 02115, USA
| | - Kaifu Chen
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School; Boston, MA, USA
| | - Hong Chen
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School; Boston, MA, 02115, USA
| |
Collapse
|
14
|
Augustin HG, Koh GY. A systems view of the vascular endothelium in health and disease. Cell 2024; 187:4833-4858. [PMID: 39241746 DOI: 10.1016/j.cell.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 06/26/2024] [Accepted: 07/05/2024] [Indexed: 09/09/2024]
Abstract
The dysfunction of blood-vessel-lining endothelial cells is a major cause of mortality. Although endothelial cells, being present in all organs as a single-cell layer, are often conceived as a rather inert cell population, the vascular endothelium as a whole should be considered a highly dynamic and interactive systemically disseminated organ. We present here a holistic view of the field of vascular research and review the diverse functions of blood-vessel-lining endothelial cells during the life cycle of the vasculature, namely responsive and relaying functions of the vascular endothelium and the responsive roles as instructive gatekeepers of organ function. Emerging translational perspectives in regenerative medicine, preventive medicine, and aging research are developed. Collectively, this review is aimed at promoting disciplinary coherence in the field of angioscience for a broader appreciation of the importance of the vasculature for organ function, systemic health, and healthy aging.
Collapse
Affiliation(s)
- Hellmut G Augustin
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ), 69120 Heidelberg, Germany.
| | - Gou Young Koh
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea; Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| |
Collapse
|
15
|
Alfaro E, Casitas R, Díaz-García E, García-Tovar S, Galera R, Torres-Vargas M, Fernández-Velilla M, López-Fernández C, Añón JM, Quintana-Díaz M, García-Río F, Cubillos-Zapata C. TGF-β1 overexpression in severe COVID-19 survivors and its implications for early-phase fibrotic abnormalities and long-term functional impairment. Front Immunol 2024; 15:1401015. [PMID: 39281687 PMCID: PMC11393737 DOI: 10.3389/fimmu.2024.1401015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/12/2024] [Indexed: 09/18/2024] Open
Abstract
Introduction In post-COVID survivors, transforming growth factor-beta-1 (TGF-β1) might mediate fibroblast activation, resulting in persistent fibrosis. Methods In this study, 82 survivors of COVID-19-associated ARDS were examined at 6- and 24-months post-ICU discharge. At 6-months, quantitative CT analysis of lung attenuation was performed and active TGF-β1 was measured in blood and exhaled breath condensate (EBC). Results At 6-months of ICU-discharge, patients with reduced DmCO/alveolar volume ratio exhibited higher plasma and EBC levels of active TGF-β1. Plasma TGF-β1 levels were elevated in dyspneic survivors and directly related to the high-attenuation lung volume. In vitro, plasma and EBC from survivors induced profibrotic changes in human primary fibroblasts in a TGF-β receptor-dependent manner. Finally, at 6-months, plasma and EBC active TGF-β1 levels discriminated patients who, 24-months post-ICU-discharge, developed gas exchange impairment. Discussion TGF-β1 pathway plays a pivotal role in the early-phase fibrotic abnormalities in COVID-19-induced ARDS survivors, with significant implications for long-term functional impairment.
Collapse
Affiliation(s)
- Enrique Alfaro
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Raquel Casitas
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Elena Díaz-García
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Sara García-Tovar
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
| | - Raúl Galera
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Madrid, Spain
| | - María Torres-Vargas
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Madrid, Spain
| | | | - Cristina López-Fernández
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Madrid, Spain
| | - José M. Añón
- Department of Intensive Medicine, La Paz University Hospital, Madrid, Spain
| | - Manuel Quintana-Díaz
- Department of Intensive Medicine, La Paz University Hospital, Madrid, Spain
- Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Francisco García-Río
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Madrid, Spain
- Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Carolina Cubillos-Zapata
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Madrid, Spain
| |
Collapse
|
16
|
Jeong JY, Bafor AE, Freeman BH, Chen PR, Park ES, Kim E. Pathophysiology in Brain Arteriovenous Malformations: Focus on Endothelial Dysfunctions and Endothelial-to-Mesenchymal Transition. Biomedicines 2024; 12:1795. [PMID: 39200259 PMCID: PMC11351371 DOI: 10.3390/biomedicines12081795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/02/2024] Open
Abstract
Brain arteriovenous malformations (bAVMs) substantially increase the risk for intracerebral hemorrhage (ICH), which is associated with significant morbidity and mortality. However, the treatment options for bAVMs are severely limited, primarily relying on invasive methods that carry their own risks for intraoperative hemorrhage or even death. Currently, there are no pharmaceutical agents shown to treat this condition, primarily due to a poor understanding of bAVM pathophysiology. For the last decade, bAVM research has made significant advances, including the identification of novel genetic mutations and relevant signaling in bAVM development. However, bAVM pathophysiology is still largely unclear. Further investigation is required to understand the detailed cellular and molecular mechanisms involved, which will enable the development of safer and more effective treatment options. Endothelial cells (ECs), the cells that line the vascular lumen, are integral to the pathogenesis of bAVMs. Understanding the fundamental role of ECs in pathological conditions is crucial to unraveling bAVM pathophysiology. This review focuses on the current knowledge of bAVM-relevant signaling pathways and dysfunctions in ECs, particularly the endothelial-to-mesenchymal transition (EndMT).
Collapse
Affiliation(s)
| | | | | | | | | | - Eunhee Kim
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (J.Y.J.); (A.E.B.); (B.H.F.); (P.R.C.); (E.S.P.)
| |
Collapse
|
17
|
Nicholas SAE, Helming SR, Ménoret A, Pathoulas C, Xu MM, Hensel J, Kimble AL, Heineman B, Jellison ER, Reese B, Zhou B, Rodriguez-Oquendo A, Vella AT, Murphy PA. Endothelial Immunosuppression in Atherosclerosis : Translational Control by Elavl1/HuR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.605922. [PMID: 39131295 PMCID: PMC11312609 DOI: 10.1101/2024.08.02.605922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Atherosclerotic plaques are defined by the accumulation of lipids and immune cells beneath the endothelium of the arterial intima. CD8 T cells are among the most abundant immune cell types in plaque, and conditions linked to their activation correlate with increased levels of cardiovascular disease. As lethal effectors of the immune response, CD8 T cell activation is suppressed at multiple levels. These checkpoints are critical in dampening autoimmune responses, and limiting damage in cardiovascular disease. Endothelial cells are well known for their role in recruiting CD8 T and other hematopoietic cells to low and disturbed flow (LDF) arterial regions that develop plaque, but whether they locally influence CD8 effector functions is unclear. Here, we show that endothelial cells can actively suppress CD8 T cell responses in settings of chronic plaque inflammation, but that this behavior is governed by expression of the RNA-binding protein Embryonic Lethal, Abnormal Vision-Like 1 (Elavl1). In response to immune cell recruitment in plaque, the endothelium dynamically shifts splicing of pre-mRNA and their translation to enhance expression of immune-regulatory proteins including C1q and CD27. This program is immuno-suppressive, and limited by Elavl1. We show this by Cdh5(PAC)-CreERT2-mediated deletion of Elavl1 (ECKO), and analysis of changes in translation by Translating Ribosome Affinity Purification (TRAP). In ECKO mice, the translational shift in chronic inflammation is enhanced, leading to increased ribosomal association of C1q components and other critical regulators of immune response and resulting in a ~70% reduction in plaque CD8 T cells. CITE-seq analysis of the remaining plaque T cells shows that they exhibit lower levels of markers associated with T cell receptor (TCR) signaling, survival, and activation. To understand whether the immunosuppressive mechanism occurred through failed CD8 recruitment or local modulation of T cell responses, we used a novel in vitro co-culture system to show that ECKO endothelial cells suppress CD8 T cell expansion-even in the presence of wild-type myeloid antigen-presenting cells, antigen-specific CD8 T cells, and antigen. Despite the induction of C1q mRNA by T cell co-culture in both wild-type and ECKO endothelial cells, we find C1q protein abundantly expressed only in co-culture with ECKO cells. Together, our data define a novel immune-suppressive transition in the endothelium, reminiscent of the transition of T cells to T-regs, and demonstrate the regulation of this process by Elavl1.
Collapse
Affiliation(s)
- Sarah-Anne E Nicholas
- Center for Vascular Biology and Calhoun Cardiology Center, UCONN Health School of Medicine, Farmington, CT
| | - Stephen R Helming
- Center for Vascular Biology and Calhoun Cardiology Center, UCONN Health School of Medicine, Farmington, CT
| | | | - Christopher Pathoulas
- Center for Vascular Biology and Calhoun Cardiology Center, UCONN Health School of Medicine, Farmington, CT
| | - Maria M Xu
- Department of Immunology, UCONN Health, Farmington, CT
| | - Jessica Hensel
- Center for Vascular Biology and Calhoun Cardiology Center, UCONN Health School of Medicine, Farmington, CT
| | - Amy L Kimble
- Center for Vascular Biology and Calhoun Cardiology Center, UCONN Health School of Medicine, Farmington, CT
| | - Brent Heineman
- Center for Vascular Biology and Calhoun Cardiology Center, UCONN Health School of Medicine, Farmington, CT
| | | | - Bo Reese
- Institute for Systems Genomics - Center for Genome Innovation, UCONN, Storrs, CT
| | - Beiyan Zhou
- Department of Immunology, UCONN Health, Farmington, CT
| | | | | | - Patrick A Murphy
- Center for Vascular Biology and Calhoun Cardiology Center, UCONN Health School of Medicine, Farmington, CT
| |
Collapse
|
18
|
Coursier D, Calvo F. CAFs vs. TECs: when blood feuds fuel cancer progression, dissemination and therapeutic resistance. Cell Oncol (Dordr) 2024; 47:1091-1112. [PMID: 38453816 PMCID: PMC11322395 DOI: 10.1007/s13402-024-00931-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2024] [Indexed: 03/09/2024] Open
Abstract
Neoplastic progression involves complex interactions between cancer cells and the surrounding stromal milieu, fostering microenvironments that crucially drive tumor progression and dissemination. Of these stromal constituents, cancer-associated fibroblasts (CAFs) emerge as predominant inhabitants within the tumor microenvironment (TME), actively shaping multiple facets of tumorigenesis, including cancer cell proliferation, invasiveness, and immune evasion. Notably, CAFs also orchestrate the production of pro-angiogenic factors, fueling neovascularization to sustain the metabolic demands of proliferating cancer cells. Moreover, CAFs may also directly or indirectly affect endothelial cell behavior and vascular architecture, which may impact in tumor progression and responses to anti-cancer interventions. Conversely, tumor endothelial cells (TECs) exhibit a corrupted state that has been shown to affect cancer cell growth and inflammation. Both CAFs and TECs are emerging as pivotal regulators of the TME, engaging in multifaceted biological processes that significantly impact cancer progression, dissemination, and therapeutic responses. Yet, the intricate interplay between these stromal components and the orchestrated functions of each cell type remains incompletely elucidated. In this review, we summarize the current understanding of the dynamic interrelationships between CAFs and TECs, discussing the challenges and prospects for leveraging their interactions towards therapeutic advancements in cancer.
Collapse
Affiliation(s)
- Diane Coursier
- Instituto de Biomedicina y Biotecnología de Cantabria (Consejo Superior de Investigaciones Científicas, Universidad de Cantabria), Santander, Spain
| | - Fernando Calvo
- Instituto de Biomedicina y Biotecnología de Cantabria (Consejo Superior de Investigaciones Científicas, Universidad de Cantabria), Santander, Spain.
| |
Collapse
|
19
|
Zhao J, Sormani L, Jacquelin S, Li H, Styke C, Zhou C, Beesley J, Oon L, Kaur S, Sim SL, Wong HY, Dight J, Hashemi G, Shafiee A, Roy E, Patel J, Khosrotehrani K. Distinct roles of SOX9 in self-renewal of progenitors and mesenchymal transition of the endothelium. Angiogenesis 2024; 27:545-560. [PMID: 38733496 PMCID: PMC11303482 DOI: 10.1007/s10456-024-09927-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/24/2024] [Indexed: 05/13/2024]
Abstract
Regenerative capabilities of the endothelium rely on vessel-resident progenitors termed endothelial colony forming cells (ECFCs). This study aimed to investigate if these progenitors are impacted by conditions (i.e., obesity or atherosclerosis) characterized by increased serum levels of oxidized low-density lipoprotein (oxLDL), a known inducer of Endothelial-to-Mesenchymal Transition (EndMT). Our investigation focused on understanding the effects of EndMT on the self-renewal capabilities of progenitors and the associated molecular alterations. In the presence of oxLDL, ECFCs displayed classical features of EndMT, through reduced endothelial gene and protein expression, function as well as increased mesenchymal genes, contractility, and motility. Additionally, ECFCs displayed a dramatic loss in self-renewal capacity in the presence of oxLDL. RNA-sequencing analysis of ECFCs exposed to oxLDL validated gene expression changes suggesting EndMT and identified SOX9 as one of the highly differentially expressed genes. ATAC sequencing analysis identified SOX9 binding sites associated with regions of dynamic chromosome accessibility resulting from oxLDL exposure, further pointing to its importance. EndMT phenotype and gene expression changes induced by oxLDL in vitro or high fat diet (HFD) in vivo were reversed by the silencing of SOX9 in ECFCs or the endothelial-specific conditional knockout of Sox9 in murine models. Overall, our findings support that EndMT affects vessel-resident endothelial progenitor's self-renewal. SOX9 activation is an early transcriptional event that drives the mesenchymal transition of endothelial progenitor cells. The identification of the molecular network driving EndMT in vessel-resident endothelial progenitors presents a new avenue in understanding and preventing a range of condition where this process is involved.
Collapse
Affiliation(s)
- Jilai Zhao
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Experimental Dermatology Group, Brisbane, QLD, 4102, Australia
| | - Laura Sormani
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Experimental Dermatology Group, Brisbane, QLD, 4102, Australia
| | - Sebastien Jacquelin
- Mater Research, Translational Research Institute, Macrophage Biology Laboratory, Brisbane, QLD, 4102, Australia
| | - Haiming Li
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Experimental Dermatology Group, Brisbane, QLD, 4102, Australia
| | - Cassandra Styke
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Experimental Dermatology Group, Brisbane, QLD, 4102, Australia
| | - Chenhao Zhou
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Experimental Dermatology Group, Brisbane, QLD, 4102, Australia
| | - Jonathan Beesley
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Linus Oon
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Experimental Dermatology Group, Brisbane, QLD, 4102, Australia
| | - Simranpreet Kaur
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Experimental Dermatology Group, Brisbane, QLD, 4102, Australia
- Mater Research, Translational Research Institute, Macrophage Biology Laboratory, Brisbane, QLD, 4102, Australia
| | - Seen-Ling Sim
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Experimental Dermatology Group, Brisbane, QLD, 4102, Australia
| | - Ho Yi Wong
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Experimental Dermatology Group, Brisbane, QLD, 4102, Australia
| | - James Dight
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Experimental Dermatology Group, Brisbane, QLD, 4102, Australia
| | - Ghazaleh Hashemi
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Experimental Dermatology Group, Brisbane, QLD, 4102, Australia
| | - Abbas Shafiee
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Experimental Dermatology Group, Brisbane, QLD, 4102, Australia
| | - Edwige Roy
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Experimental Dermatology Group, Brisbane, QLD, 4102, Australia
| | - Jatin Patel
- Centre for Ageing Research Program, Queensland University of Technology, Brisbane, QLD, 4102, Australia
| | - Kiarash Khosrotehrani
- Frazer Institute, The University of Queensland, Dermatology Research Centre, Experimental Dermatology Group, Brisbane, QLD, 4102, Australia.
| |
Collapse
|
20
|
Zhong H, Tang H, Wang Y, Tang S, Zhu H. MiR-29c alleviates hyperglycemia-induced inflammation via targeting TGF-β in cardiomyocytes. Mol Cell Biochem 2024; 479:2047-2054. [PMID: 37589861 DOI: 10.1007/s11010-023-04813-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/14/2023] [Indexed: 08/18/2023]
Abstract
This study aims to investigate whether miR-29c is involved in regulating transforming growth factor-β (TGF-β) mediated inflammation in diabetic cardiomyopathy (DCM). Our data showed increased inflammation and oxidative stress in diabetic myocardium together with decrease of miR-29c and elevation of TGF-β expression. In vitro experiments, we transfected miR-29c mimic and antagomir into HL-1 cells to explore the effect of miR-29c on inflammation in hyperglycemic conditions. Overexpression of miR-29c down-regulated the elevated TNF-α level, ROS production and NADPH oxidase activity which caused by high glucose. However, above changes were reversed by miR-29c antagomir. Interestingly, TGF-β protein rather than mRNA expression was changed significantly after transfection with miR-29c mimic, indicating that the modulation of TGF-β mediated by miR-29c was at the posttranslational level. Meanwhile, we found that 3'-UTR of TGF-β was the direct target of miR-29c confirmed by dual-luciferase assay. In conclusion, our study revealed that miR-29c could alleviate hyperglycemic-induced inflammation and ROS production via targeting TGF-β in cardiomyocytes, which provides a potential target for the treatment of DCM.
Collapse
Affiliation(s)
- Hongli Zhong
- General Department of Hyperbaric Oxygen, Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Haitao Tang
- Anhui International Travel Healthcare Center (Hefei Customs Port Clinic), Hefei, China
| | - Yi Wang
- Laboratory of Molecular Biology, Department of Biochemistry, Anhui Medical University, Hefei, China
| | - Songtao Tang
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Huaqing Zhu
- Laboratory of Molecular Biology, Department of Biochemistry, Anhui Medical University, Hefei, China.
| |
Collapse
|
21
|
Kumar V, Narisawa M, Cheng XW. Overview of multifunctional Tregs in cardiovascular disease: From insights into cellular functions to clinical implications. FASEB J 2024; 38:e23786. [PMID: 38979903 DOI: 10.1096/fj.202400839r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/01/2024] [Accepted: 06/21/2024] [Indexed: 07/10/2024]
Abstract
Regulatory T cells (Tregs) are crucial in regulating T-cell-mediated immune responses. Numerous studies have shown that dysfunction or decreased numbers of Tregs may be involved in inflammatory cardiovascular diseases (CVDs) such as atherosclerosis, hypertension, myocardial infarction, myocarditis, cardiomyopathy, valvular heart diseases, heart failure, and abdominal aortic aneurysm. Tregs can help to ameliorate CVDs by suppressing excessive inflammation through various mechanisms, including inhibition of T cells and B cells, inhibition of macrophage-induced inflammation, inhibition of dendritic cells and foam cell formation, and induction of anti-inflammatory macrophages. Enhancing or restoring the immunosuppressive activity of Tregs may thus serve as a fundamental immunotherapy to treat hypertension and CVDs. However, the precise molecular mechanisms underlying the Tregs-induced protection against hypertension and CVDs remain to be investigated. This review focuses on recent advances in our understanding of Tregs subsets and function in CVDs. In addition, we discuss promising strategies for using Tregs through various pharmacological approaches to treat hypertension and CVDs.
Collapse
Affiliation(s)
- Vipin Kumar
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, Jilin, P.R. China
| | - Megumi Narisawa
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Xian Wu Cheng
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, Jilin, P.R. China
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
22
|
Kiskin FN, Yang Y, Yang H, Zhang JZ. Cracking the code of the cardiovascular enigma: hPSC-derived endothelial cells unveil the secrets of endothelial dysfunction. J Mol Cell Cardiol 2024; 192:65-78. [PMID: 38761989 DOI: 10.1016/j.yjmcc.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/20/2024]
Abstract
Endothelial dysfunction is a central contributor to the development of most cardiovascular diseases and is characterised by the reduced synthesis or bioavailability of the vasodilator nitric oxide together with other abnormalities such as inflammation, senescence, and oxidative stress. The use of patient-specific and genome-edited human pluripotent stem cell-derived endothelial cells (hPSC-ECs) has shed novel insights into the role of endothelial dysfunction in cardiovascular diseases with strong genetic components such as genetic cardiomyopathies and pulmonary arterial hypertension. However, their utility in studying complex multifactorial diseases such as atherosclerosis, metabolic syndrome and heart failure poses notable challenges. In this review, we provide an overview of the different methods used to generate and characterise hPSC-ECs before comprehensively assessing their effectiveness in cardiovascular disease modelling and high-throughput drug screening. Furthermore, we explore current obstacles that will need to be overcome to unleash the full potential of hPSC-ECs in facilitating patient-specific precision medicine. Addressing these challenges holds great promise in advancing our understanding of intricate cardiovascular diseases and in tailoring personalised therapeutic strategies.
Collapse
Affiliation(s)
- Fedir N Kiskin
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| | - Yuan Yang
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| | - Hao Yang
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| | - Joe Z Zhang
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| |
Collapse
|
23
|
Ma Y, Harris J, Li P, Jiang C, Sun H, Cao H. An Integrative Transcriptome Subtraction Strategy to Identify Human lncRNAs That Specifically Play a Role in Activation of Human Hepatic Stellate Cells. Noncoding RNA 2024; 10:34. [PMID: 38921831 PMCID: PMC11206700 DOI: 10.3390/ncrna10030034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/27/2024] Open
Abstract
Fibrotic liver features excessive deposition of extracellular matrix (ECM), primarily produced from "activated" hepatic stellate cells (HSCs). While targeting human HSCs (hHSCs) in fibrosis therapeutics shows promise, the overall understanding of hHSC activation remains limited, in part because it is very challenging to define the role of human long non-coding RNAs (lncRNAs) in hHSC activation. To address this challenge, we identified another cell type that acts via a diverse gene network to promote fibrogenesis. Then, we identified the lncRNAs that were differentially regulated in activated hHSCs and the other profibrotic cell. Next, we conducted concurrent analysis to identify those lncRNAs that were specifically involved in fibrogenesis. We tested and confirmed that transdifferentiation of vascular smooth muscle cells (VSMCs) represents such a process. By overlapping TGFβ-regulated lncRNAs in multiple sets of hHSCs and VSMCs, we identified a highly selected list of lncRNA candidates that could specifically play a role in hHSC activation. We experimentally characterized one human lncRNA, named CARMN, which was significantly regulated by TGFβ in all conditions above. CARMN knockdown significantly reduced the expression levels of a panel of marker genes for hHSC activation, as well as the levels of ECM deposition and hHSC migration. Conversely, gain of function of CARMN using CRISPR activation (CRISPR-a) yielded the completely opposite effects. Taken together, our work addresses a bottleneck in identifying human lncRNAs that specifically play a role in hHSC activation and provides a framework to effectively select human lncRNAs with significant pathophysiological role.
Collapse
Affiliation(s)
| | | | | | | | | | - Haiming Cao
- Cardiovascular Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
24
|
Bramel EE, Camejo WAE, Creamer TJ, Restrepo L, Saqib M, Bagirzadeh R, Zeng A, Mitchell JT, Stein-O’Brien GL, Pedroza AJ, Fischbein MP, Dietz HC, MacFarlane EG. Intrinsic Gata4 expression sensitizes the aortic root to dilation in a Loeys-Dietz syndrome mouse model. RESEARCH SQUARE 2024:rs.3.rs-4420617. [PMID: 38883722 PMCID: PMC11177966 DOI: 10.21203/rs.3.rs-4420617/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Loeys-Dietz syndrome (LDS) is an aneurysm disorder caused by mutations that decrease transforming growth factor-β (TGF-β) signaling. Although aneurysms develop throughout the arterial tree, the aortic root is a site of heightened risk. To identify molecular determinants of this vulnerability, we investigated the heterogeneity of vascular smooth muscle cells (VSMCs) in the aorta of Tgfbr1 M318R/+ LDS mice by single cell and spatial transcriptomics. Reduced expression of components of the extracellular matrix-receptor apparatus and upregulation of stress and inflammatory pathways were observed in all LDS VSMCs. However, regardless of genotype, a subset of Gata4-expressing VSMCs predominantly located in the aortic root intrinsically displayed a less differentiated, proinflammatory profile. A similar population was also identified among aortic VSMCs in a human scRNAseq dataset. Postnatal VSMC-specific Gata4 deletion reduced aortic root dilation in LDS mice, suggesting that this factor sensitizes the aortic root to the effects of impaired TGF-β signaling.
Collapse
Affiliation(s)
- Emily E. Bramel
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Predoctoral Training in Human Genetics and Genomics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Wendy A. Espinoza Camejo
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Predoctoral Training in Human Genetics and Genomics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tyler J. Creamer
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Leda Restrepo
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Muzna Saqib
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rustam Bagirzadeh
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Anthony Zeng
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jacob T. Mitchell
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Predoctoral Training in Human Genetics and Genomics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Genevieve L. Stein-O’Brien
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Albert J. Pedroza
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Michael P. Fischbein
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Harry C. Dietz
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Elena Gallo MacFarlane
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
25
|
Lambert J, Oc S, Worssam MD, Häußler D, Solomon CU, Figg NL, Baxter R, Imaz M, Taylor JCK, Foote K, Finigan A, Mahbubani KT, Webb TR, Ye S, Bennett MR, Krüger A, Spivakov M, Jørgensen HF. Network-based prioritization and validation of regulators of vascular smooth muscle cell proliferation in disease. NATURE CARDIOVASCULAR RESEARCH 2024; 3:714-733. [PMID: 39215134 PMCID: PMC11182749 DOI: 10.1038/s44161-024-00474-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 04/18/2024] [Indexed: 06/21/2024]
Abstract
Aberrant vascular smooth muscle cell (VSMC) homeostasis and proliferation characterize vascular diseases causing heart attack and stroke. Here we elucidate molecular determinants governing VSMC proliferation by reconstructing gene regulatory networks from single-cell transcriptomics and epigenetic profiling. We detect widespread activation of enhancers at disease-relevant loci in proliferation-predisposed VSMCs. We compared gene regulatory network rewiring between injury-responsive and nonresponsive VSMCs, which suggested shared transcription factors but differing target loci between VSMC states. Through in silico perturbation analysis, we identified and prioritized previously unrecognized regulators of proliferation, including RUNX1 and TIMP1. Moreover, we showed that the pioneer transcription factor RUNX1 increased VSMC responsiveness and that TIMP1 feeds back to promote VSMC proliferation through CD74-mediated STAT3 signaling. Both RUNX1 and the TIMP1-CD74 axis were expressed in human VSMCs, showing low levels in normal arteries and increased expression in disease, suggesting clinical relevance and potential as vascular disease targets.
Collapse
MESH Headings
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/cytology
- Humans
- Cell Proliferation/genetics
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Gene Regulatory Networks
- Tissue Inhibitor of Metalloproteinase-1/metabolism
- Tissue Inhibitor of Metalloproteinase-1/genetics
- STAT3 Transcription Factor/metabolism
- STAT3 Transcription Factor/genetics
- Signal Transduction/genetics
- Cells, Cultured
- Single-Cell Analysis
- Epigenesis, Genetic
- Transcriptome
- Animals
- Core Binding Factor Alpha 2 Subunit
Collapse
Affiliation(s)
- Jordi Lambert
- Section of Cardiorespiratory Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Sebnem Oc
- Section of Cardiorespiratory Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- Functional Gene Control Group, MRC Laboratory of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College, London, UK
| | - Matthew D Worssam
- Section of Cardiorespiratory Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel Häußler
- TUM School of Medicine and Health, Institute of Experimental Oncology and Therapy Research, Technical University of Munich, Munich, Germany
| | - Charles U Solomon
- Department of Cardiovascular Sciences, University of Leicester, and National Institute for Health Research Leicester Biomedical Research Centre, Leicester, UK
| | - Nichola L Figg
- Section of Cardiorespiratory Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Ruby Baxter
- Section of Cardiorespiratory Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Maria Imaz
- Section of Cardiorespiratory Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - James C K Taylor
- Section of Cardiorespiratory Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Kirsty Foote
- Section of Cardiorespiratory Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Alison Finigan
- Section of Cardiorespiratory Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Krishnaa T Mahbubani
- Collaborative Biorepository for Translational Medicine, Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Tom R Webb
- Department of Cardiovascular Sciences, University of Leicester, and National Institute for Health Research Leicester Biomedical Research Centre, Leicester, UK
| | - Shu Ye
- Department of Cardiovascular Sciences, University of Leicester, and National Institute for Health Research Leicester Biomedical Research Centre, Leicester, UK
- Shantou University Medical College, Shantou, China
- Cardiovascular and Metabolic Disease Translational Research Programme, National University of Singapore, Singapore, Singapore
| | - Martin R Bennett
- Section of Cardiorespiratory Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Achim Krüger
- TUM School of Medicine and Health, Institute of Experimental Oncology and Therapy Research, Technical University of Munich, Munich, Germany
| | - Mikhail Spivakov
- Functional Gene Control Group, MRC Laboratory of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College, London, UK
| | - Helle F Jørgensen
- Section of Cardiorespiratory Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
26
|
Li W, Bai P, Li W. UHRF1 inhibition mitigates vascular endothelial cell injury and ameliorates atherosclerosis in mice via regulating the SMAD7/YAP1 axis. Mol Immunol 2024; 170:119-130. [PMID: 38657333 DOI: 10.1016/j.molimm.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 02/29/2024] [Accepted: 04/06/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Endothelial cell injury and dysfunction lead to cholesterol and lipid accumulation and atherosclerotic plaque formation in the arterial wall during atherosclerosis (AS) progression, Ubiquitin-like containing PHD and RING finger domain 1 (UHRF1), a DNA methylation regulator, was strongly upregulated in atherosclerotic plaque lesions in mice. This study aimed to investigate the precise biological functions and regulatory mechanisms of UHRF1 on endothelial dysfunction during AS development. METHODS UHRF1 levels in the atherosclerotic plaque tissues and normal arterial intima from AS patients were tested with Western blot analysis and immunohistochemistry assays. Human umbilical vein endothelial cells (HUVECs) were stimulated with oxidized low-density lipoprotein (ox-LDL) to induce an injury model and then transfected with short hairpin RNA targeting UHRF1 (sh-UHRF1). Cell proliferation, migration, apoptosis, the levels of inflammatory cytokines including tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), and the protein levels adhesion molecules including vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) were measured. Moreover, co-immunoprecipitation assay was used to determine the interactions between UHRF1 and DNA methyltransferases 1 (DNMT1), As well as mothers against DPP homolog 7 (SMAD7) and yes-associated protein 1 (YAP1). SMAD7 promoter methylation was examined with methylation-specific PCR. In addition, we established an AS mouse model to determine the in vivo effects of UHRF1 on AS progression. RESULTS UHRF1 was upregulated in atherosclerotic plaque tissues and ox-LDL-treated HUVECs. UHRF1 knockdown mitigated ox-LDL-induced proliferation and migration inhibition, apoptosis and the production of TNF-α, IL-6, VCAM-1, and ICAM-1 in HUVECs. Mechanistically, UHRF1 promoted DNMT1-mediated SMAD7 promoter methylation and inhibited its expression. SMAD7 knockdown abolished the protective effects of UHRF1 knockdown on ox-LDL-induced HUVEC injury. Moreover, SMAD7 interacted with YAP1 and inhibited YAP1 expression by promoting YAP1 protein ubiquitination-independent degradation in HUVECs. YAP1 overexpression abrogated SMAD7 overexpression-mediated protective effects on ox-LDL-induced HUVEC injury. Finally, UHRF1 knockdown alleviated atherosclerotic plaque deposition and arterial lesions in AS mice. CONCLUSION UHRF1 inhibition mitigates vascular endothelial cell injury and ameliorates AS progression in mice by regulating the SMAD7/YAP1 axis.
Collapse
Affiliation(s)
- Wenbo Li
- The Third Departments of Cardiovascular, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China
| | - Pengxing Bai
- Department of Thoracic Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China
| | - Wei Li
- Department of Vascular Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China.
| |
Collapse
|
27
|
Diez Benavente E, Hartman RJG, Sakkers TR, Wesseling M, Sloots Y, Slenders L, Boltjes A, Mol BM, de Borst GJ, de Kleijn DPV, Prange KHM, de Winther MPJ, Kuiper J, Civelek M, van der Laan SW, Horvath S, Onland-Moret NC, Mokry M, Pasterkamp G, den Ruijter HM. Atherosclerotic Plaque Epigenetic Age Acceleration Predicts a Poor Prognosis and Is Associated With Endothelial-to-Mesenchymal Transition in Humans. Arterioscler Thromb Vasc Biol 2024; 44:1419-1431. [PMID: 38634280 DOI: 10.1161/atvbaha.123.320692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/25/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Epigenetic age estimators (clocks) are predictive of human mortality risk. However, it is not yet known whether the epigenetic age of atherosclerotic plaques is predictive for the risk of cardiovascular events. METHODS Whole-genome DNA methylation of human carotid atherosclerotic plaques (n=485) and of blood (n=93) from the Athero-Express endarterectomy cohort was used to calculate epigenetic age acceleration (EAA). EAA was linked to clinical characteristics, plaque histology, and future cardiovascular events (n=136). We studied whole-genome DNA methylation and bulk and single-cell transcriptomics to uncover molecular mechanisms of plaque EAA. We experimentally confirmed our in silico findings using in vitro experiments in primary human coronary endothelial cells. RESULTS Male and female patients with severe atherosclerosis had a median chronological age of 69 years. The median epigenetic age was 65 years in females (median EAA, -2.2 [interquartile range, -4.3 to 2.2] years) and 68 years in males (median EAA, -0.3 [interquartile range, -2.9 to 3.8] years). Patients with diabetes and a high body mass index had higher plaque EAA. Increased EAA of plaque predicted future events in a 3-year follow-up in a Cox regression model (univariate hazard ratio, 1.7; P=0.0034) and adjusted multivariate model (hazard ratio, 1.56; P=0.02). Plaque EAA predicted outcome independent of blood EAA (hazard ratio, 1.3; P=0.018) and of plaque hemorrhage (hazard ratio, 1.7; P=0.02). Single-cell RNA sequencing in plaque samples from 46 patients in the same cohort revealed smooth muscle and endothelial cells as important cell types in plaque EAA. Endothelial-to-mesenchymal transition was associated with EAA, which was experimentally confirmed by TGFβ-triggered endothelial-to-mesenchymal transition inducing rapid epigenetic aging in coronary endothelial cells. CONCLUSIONS Plaque EAA is a strong and independent marker of poor outcome in patients with severe atherosclerosis. Plaque EAA was linked to mesenchymal endothelial and smooth muscle cells. Endothelial-to-mesenchymal transition was associated with EAA, which was experimentally validated. Epigenetic aging mechanisms may provide new targets for treatments that reduce atherosclerosis complications.
Collapse
Affiliation(s)
- Ernest Diez Benavente
- Laboratory of Experimental Cardiology (E.D.B., R.J.G.H., T.R.S., Y.S., M.M., H.M.d.R.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Robin J G Hartman
- Laboratory of Experimental Cardiology (E.D.B., R.J.G.H., T.R.S., Y.S., M.M., H.M.d.R.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Tim R Sakkers
- Laboratory of Experimental Cardiology (E.D.B., R.J.G.H., T.R.S., Y.S., M.M., H.M.d.R.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Marian Wesseling
- Central Diagnostic Laboratory (M.W., L.S., A.B., S.W.v.d.L., M.M., G.P.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Yannicke Sloots
- Laboratory of Experimental Cardiology (E.D.B., R.J.G.H., T.R.S., Y.S., M.M., H.M.d.R.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Lotte Slenders
- Central Diagnostic Laboratory (M.W., L.S., A.B., S.W.v.d.L., M.M., G.P.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Arjan Boltjes
- Central Diagnostic Laboratory (M.W., L.S., A.B., S.W.v.d.L., M.M., G.P.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Barend M Mol
- Department of Vascular Surgery (B.M.M., G.J.d.B., D.P.V.d.K.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Gert J de Borst
- Department of Vascular Surgery (B.M.M., G.J.d.B., D.P.V.d.K.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Dominique P V de Kleijn
- Department of Vascular Surgery (B.M.M., G.J.d.B., D.P.V.d.K.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Koen H M Prange
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands (K.H.M.P., M.P.J.d.W., J.K.)
| | - Menno P J de Winther
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands (K.H.M.P., M.P.J.d.W., J.K.)
| | - Johan Kuiper
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands (K.H.M.P., M.P.J.d.W., J.K.)
| | - Mete Civelek
- Center for Public Health Genomics (M.C.), University of Virginia, Charlottesville
- Department of Biomedical Engineering (M.C.), University of Virginia, Charlottesville
| | - Sander W van der Laan
- Central Diagnostic Laboratory (M.W., L.S., A.B., S.W.v.d.L., M.M., G.P.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine (S.H.), University of California, Los Angeles
- Department of Biostatistics, Fielding School of Public Health (S.H.), University of California, Los Angeles
- Altos Labs, Cambridge Institute of Science, United Kingdom (S.H.)
| | - N Charlotte Onland-Moret
- Julius Center for Health Sciences and Primary Care (N.C.O.-M.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Michal Mokry
- Laboratory of Experimental Cardiology (E.D.B., R.J.G.H., T.R.S., Y.S., M.M., H.M.d.R.), University Medical Center Utrecht, Utrecht University, the Netherlands
- Central Diagnostic Laboratory (M.W., L.S., A.B., S.W.v.d.L., M.M., G.P.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Gerard Pasterkamp
- Central Diagnostic Laboratory (M.W., L.S., A.B., S.W.v.d.L., M.M., G.P.), University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Hester M den Ruijter
- Laboratory of Experimental Cardiology (E.D.B., R.J.G.H., T.R.S., Y.S., M.M., H.M.d.R.), University Medical Center Utrecht, Utrecht University, the Netherlands
| |
Collapse
|
28
|
Chen R, Zhang H, Tang B, Luo Y, Yang Y, Zhong X, Chen S, Xu X, Huang S, Liu C. Macrophages in cardiovascular diseases: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:130. [PMID: 38816371 PMCID: PMC11139930 DOI: 10.1038/s41392-024-01840-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/02/2024] [Accepted: 04/21/2024] [Indexed: 06/01/2024] Open
Abstract
The immune response holds a pivotal role in cardiovascular disease development. As multifunctional cells of the innate immune system, macrophages play an essential role in initial inflammatory response that occurs following cardiovascular injury, thereby inducing subsequent damage while also facilitating recovery. Meanwhile, the diverse phenotypes and phenotypic alterations of macrophages strongly associate with distinct types and severity of cardiovascular diseases, including coronary heart disease, valvular disease, myocarditis, cardiomyopathy, heart failure, atherosclerosis and aneurysm, which underscores the importance of investigating macrophage regulatory mechanisms within the context of specific diseases. Besides, recent strides in single-cell sequencing technologies have revealed macrophage heterogeneity, cell-cell interactions, and downstream mechanisms of therapeutic targets at a higher resolution, which brings new perspectives into macrophage-mediated mechanisms and potential therapeutic targets in cardiovascular diseases. Remarkably, myocardial fibrosis, a prevalent characteristic in most cardiac diseases, remains a formidable clinical challenge, necessitating a profound investigation into the impact of macrophages on myocardial fibrosis within the context of cardiac diseases. In this review, we systematically summarize the diverse phenotypic and functional plasticity of macrophages in regulatory mechanisms of cardiovascular diseases and unprecedented insights introduced by single-cell sequencing technologies, with a focus on different causes and characteristics of diseases, especially the relationship between inflammation and fibrosis in cardiac diseases (myocardial infarction, pressure overload, myocarditis, dilated cardiomyopathy, diabetic cardiomyopathy and cardiac aging) and the relationship between inflammation and vascular injury in vascular diseases (atherosclerosis and aneurysm). Finally, we also highlight the preclinical/clinical macrophage targeting strategies and translational implications.
Collapse
Affiliation(s)
- Runkai Chen
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Hongrui Zhang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Botao Tang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Yukun Luo
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Yufei Yang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Xin Zhong
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Sifei Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Xinjie Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Shengkang Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Canzhao Liu
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China.
| |
Collapse
|
29
|
Petrovič D, Letonja J, Petrovič D. SMAD3 rs17228212 Polymorphism Is Associated with Advanced Carotid Atherosclerosis in a Slovenian Population. Biomedicines 2024; 12:1103. [PMID: 38791063 PMCID: PMC11117620 DOI: 10.3390/biomedicines12051103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Smad proteins influence the TGFβ signaling pathway, which plays an important role in the progression of atherosclerosis. The aim of our study was to investigate the association between the rs17228212 polymorphism of the SMAD3 gene and advanced carotid atherosclerosis in Slovenian subjects and to investigate the effect of the rs17228212 SMAD3 polymorphism on the expression of SMAD3 in endarterectomy sequesters. In this cross-sectional case-control study, 881 unrelated Caucasians were divided into two groups. The first group included 308 patients with advanced carotid atherosclerosis of the common or internal carotid artery with stenosis greater than 75% that underwent a revascularization procedure (cases). The control group consisted of 573 subjects without hemodynamically significant carotid atherosclerosis. We analyzed the rs17228212 polymorphism of the SMAD3 gene using the StepOne real-time polymerase chain reaction system and TaqMan SNP genotyping assay. The results in the two genetic models showed a statistically significant association, codominant (OR 4.05; CI 1.10-17.75; p = 0.037) and dominant (OR 3.60; CI 1.15-15.45; p = 0.045). An immunohistochemical analysis of SMAD3 expression was conducted for 26 endarterectomy specimens. The T allele of the rs17228212 SMAD3 gene was shown to be associated with an increased numerical area density of SMAD3-positive cells in carotid plaques.
Collapse
Affiliation(s)
- David Petrovič
- Laboratory for Histology and Genetics of Atherosclerosis and Microvascular Diseases, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia; (D.P.); (J.L.)
| | - Jernej Letonja
- Laboratory for Histology and Genetics of Atherosclerosis and Microvascular Diseases, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia; (D.P.); (J.L.)
- Institute of Histology and Embryology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia
| | - Danijel Petrovič
- Laboratory for Histology and Genetics of Atherosclerosis and Microvascular Diseases, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia; (D.P.); (J.L.)
- Institute of Histology and Embryology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
30
|
Fledderus J, Brouwer L, Kuiper T, Harmsen MC, Krenning G. H3K27Me3 abundance increases fibrogenesis during endothelial-to-mesenchymal transition via the silencing of microRNA-29c. Front Cardiovasc Med 2024; 11:1373279. [PMID: 38774662 PMCID: PMC11106376 DOI: 10.3389/fcvm.2024.1373279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/23/2024] [Indexed: 05/24/2024] Open
Abstract
Objective Endothelial-to-mesenchymal transition (EndMT) is a transdifferentiation process in which endothelial cells (ECs) adopt a mesenchymal-like phenotype. Over the past few years, it became clear that EndMT can contribute to several cardiovascular pathologies. However, the molecular pathways underlying the development of EndMT remain incompletely understood. Since the epigenetic enzyme Enhancer of Zeste Homolog 2 (EZH2) and its concomitant mark H3K27Me3 have been shown to be elevated in many cardiovascular diseases that associate with EndMT, we hypothesized that H3K27Me3 is a determinant for the susceptibility of EndMT. Methods To study the association between H3K27Me3 and EndMT, a knockdown model of EZH2 in human endothelial cells (HUVEC) was utilized to reduce H3K27Me3 abundance, followed by induction of EndMT using TGFβ1. The expression of molecular markers of EndMT and fibrogenesis were analysed. Results In cultured HUVECs, a reduction of H3K27Me3 abundance facilitates EndMT but mitigates fibrogenesis as shown by a decreased expression of collagen I and III. In HUVEC, H3K27Me3 abundance directly affects the expression of miR29c, a collagen-targeting miRNA. Additionally, knockdown of miR-29c in HUVEC with low H3K27Me3 abundance partly restored the expression of collagen I and III. Expectedly, in rats with perivascular fibrosis an increased abundance of H3K27Me3 associated with a decreased expression of miR-29c. Conclusion our data shows that endothelial fibrogenesis underlies an epigenetic regulatory pathway and we demonstrate that a decreased abundance of H3K27Me3 in ECs blunts fibrogenesis in part in a miR-29c dependent manner. Therefore, a reduction of H3K27Me3 could serve as a novel therapeutical strategy to mitigate fibrogenesis and may prove to be beneficial in fibrogenic diseases including atherosclerosis, cardiac fibrosis, and PAH.
Collapse
Affiliation(s)
- Jolien Fledderus
- Laboratory for Cardiovascular Regenerative Medicine, Medical Biology Section, Department Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Linda Brouwer
- Laboratory for Cardiovascular Regenerative Medicine, Medical Biology Section, Department Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Timara Kuiper
- Laboratory for Cardiovascular Regenerative Medicine, Medical Biology Section, Department Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Martin C. Harmsen
- Laboratory for Cardiovascular Regenerative Medicine, Medical Biology Section, Department Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Guido Krenning
- Laboratory for Cardiovascular Regenerative Medicine, Medical Biology Section, Department Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Division Experimental Pharmacology, Department Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
31
|
Ozawa K, Packwood W, Muller MA, Qi Y, Xie A, Varlamov O, McCarty OJ, Chung D, López JA, Lindner JR. Removal of endothelial surface-associated von villebrand factor suppresses accelerate datherosclerosis after myocardial infarction. J Transl Med 2024; 22:412. [PMID: 38693516 PMCID: PMC11062912 DOI: 10.1186/s12967-024-05231-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND Thromboinflammation involving platelet adhesion to endothelial surface-associated von Willebrand factor (VWF) has been implicated in the accelerated progression of non-culprit plaques after MI. The aim of this study was to use arterial endothelial molecular imaging to mechanistically evaluate endothelial-associated VWF as a therapeutic target for reducing remote plaque activation after myocardial infarction (MI). METHODS Hyperlipidemic mice deficient for the low-density lipoprotein receptor and Apobec-1 underwent closed-chest MI and were treated chronically with either: (i) recombinant ADAMTS13 which is responsible for proteolytic removal of VWF from the endothelial surface, (ii) N-acetylcysteine (NAC) which removes VWF by disulfide bond reduction, (iii) function-blocking anti-factor XI (FXI) antibody, or (iv) no therapy. Non-ischemic controls were also studied. At day 3 and 21, ultrasound molecular imaging was performed with probes targeted to endothelial-associated VWF A1-domain, platelet GPIbα, P-selectin and vascular cell adhesion molecule-1 (VCAM-1) at lesion-prone sites of the aorta. Histology was performed at day 21. RESULTS Aortic signal for P-selectin, VCAM-1, VWF, and platelet-GPIbα were all increased several-fold (p < 0.01) in post-MI mice versus sham-treated animals at day 3 and 21. Treatment with NAC and ADAMTS13 significantly attenuated the post-MI increase for all four molecular targets by > 50% (p < 0.05 vs. non-treated at day 3 and 21). On aortic root histology, mice undergoing MI versus controls had 2-4 fold greater plaque size and macrophage content (p < 0.05), approximately 20-fold greater platelet adhesion (p < 0.05), and increased staining for markers of platelet transforming growth factor-β1 signaling. Accelerated plaque growth and inflammatory activation was almost entirely prevented by ADAMTS13 and NAC. Inhibition of FXI had no significant effect on molecular imaging signal or plaque morphology. CONCLUSIONS Plaque inflammatory activation in remote arteries after MI is strongly influenced by VWF-mediated platelet adhesion to the endothelium. These findings support investigation into new secondary preventive therapies for reducing non-culprit artery events after MI.
Collapse
Affiliation(s)
- Koya Ozawa
- Sydney Medical School Nepean, Faculty of Medicine and Health, Department of Cardiology, The University of Sydney, Nepean Hospital, Sydney, NSW, Australia
| | - William Packwood
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Matthew A Muller
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Yue Qi
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Aris Xie
- Cardiovascular Division and Robert M. Berne Cardiovascular Research Center, University of Virginia, Box 801394, 415 Lane Rd, Charlottesville, VA, 22908, USA
| | - Oleg Varlamov
- Oregon National Primate Research Center, Portland, OR, USA
| | - Owen J McCarty
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, USA
| | - Dominic Chung
- BloodWorks Research Institute, University of Washington, Seattle, WA, USA
| | - José A López
- BloodWorks Research Institute, University of Washington, Seattle, WA, USA
| | - Jonathan R Lindner
- Cardiovascular Division and Robert M. Berne Cardiovascular Research Center, University of Virginia, Box 801394, 415 Lane Rd, Charlottesville, VA, 22908, USA.
| |
Collapse
|
32
|
Diaba-Nuhoho P, Mittag J, Brunssen C, Morawietz H, Brendel H. The Vascular Function of Resistance Arteries Depends on NADPH Oxidase 4 and Is Exacerbated by Perivascular Adipose Tissue. Antioxidants (Basel) 2024; 13:503. [PMID: 38790608 PMCID: PMC11118120 DOI: 10.3390/antiox13050503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/12/2024] [Accepted: 04/19/2024] [Indexed: 05/26/2024] Open
Abstract
The NADPH oxidase NOX4 that releases H2O2 can mediate vasoprotective mechanisms under pathophysiological conditions in conductive arteries. However, the role of NOX4 in resistance arteries and in perivascular adipose tissue is not well understood. We hypothesized that NOX4 is of functional importance in resistance arteries and perivascular adipose tissue under dyslipidemia conditions. We detected elevated NOX4 expression in murine and human vessels under dyslipidemia. Diminishing Nox4 under these conditions led to endothelial dysfunction in resistance arteries. The mesenteric arteries of Nox4-/-/Ldlr-/- mice revealed decreased eNos mRNA expression. Inhibition of eNOS in those vessels did not affect vascular function, while in Ldlr-/- mice endothelial function was significantly altered. Anticontractile properties of perivascular adipose tissue at resistance arteries were diminished in Nox4-/-/Ldlr-/- compared with Ldlr-/- mice. In addition, the presence of perivascular adipose tissue further worsened endothelial dysfunction in mesenteric arteries under dyslipidemia conditions. Perivascular adipose tissue from mesenteric arteries revealed a higher expression of markers of white adipocytes compared to markers of beige/brown adipocytes. Among those white adipocyte markers, leptin was significantly less expressed in perivascular adipose tissue from Nox4-/-/Ldlr-/- mice compared with Ldlr-/- mice. Furthermore, in human perivascular adipose tissue with a profound pattern of white adipocyte marker genes, we detected a correlation of NOX4 and LEP expression. In addition, incubating arterial vessels with leptin induced nitrite release, indicating increased eNOS activity. In humans, a higher expression of leptin in perivascular adipose tissue correlated with eNOS expression in the corresponding left internal mammary artery. In conclusion, vascular function of resistance arteries was dependent on Nox4-derived H2O2, especially under dyslipidemia conditions. Perivascular adipose tissue of the mesenteric arteries with white adipose tissue characteristics further aggravated endothelial function through reduced leptin-eNOS signaling.
Collapse
Affiliation(s)
| | | | | | - Henning Morawietz
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital and Faculty of Medicine Carl Gustav Carus, TUD Dresden University of Technology, Fetscherstr. 74, 01307 Dresden, Germany; (P.D.-N.); (C.B.)
| | - Heike Brendel
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital and Faculty of Medicine Carl Gustav Carus, TUD Dresden University of Technology, Fetscherstr. 74, 01307 Dresden, Germany; (P.D.-N.); (C.B.)
| |
Collapse
|
33
|
Vrynas A, Arfan S, Satia K, Bazban-Shotorbani S, Ashna M, Zhang A, Visan D, Chen A, Carter M, Blackhall F, Simpson KL, Dive C, Huang P, Au SH. Circulating tumor cells shed large extracellular vesicles in capillary-sized bifurcations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.17.589880. [PMID: 38659882 PMCID: PMC11042361 DOI: 10.1101/2024.04.17.589880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Circulating tumor cells (CTCs) and their clusters are the drivers of metastasis, but their interactions with capillary beds are poorly understood. Using microfluidic models mimicking human capillary bifurcations, we observed cell size- and bifurcation-dependent shedding of nuclei-free fragments by patient CTCs, CTC-derived explant cells and numerous cancer cell lines. Shedding reduced cell sizes up to 61%, facilitating their transit through bifurcations. We demonstrated that shed fragments were a novel class of large extracellular vesicles (LEVs), whose proteome was associated with immune-related and signaling pathways. LEVs were internalized by endothelial and immune cells, disrupted endothelial barrier integrity and polarized monocytes into M2 tumor-promoting macrophages. Cumulatively, these findings suggest that CTCs shed LEVs in capillary beds that drive key processes involved in the formation of pre-metastatic niches.
Collapse
Affiliation(s)
- Angelos Vrynas
- Department of Bioengineering, Imperial College London; London, SW7 2AZ, United Kingdom
| | - Sara Arfan
- Division of Molecular Pathology, The Institute of Cancer Research; London, SM2 5NG, United Kingdom
| | - Karishma Satia
- Cancer Research UK National Biomarker Centre, University of Manchester; Manchester, M13 9PL, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence; Manchester, M13 9PL, United Kingdom
| | | | - Mymuna Ashna
- Department of Bioengineering, Imperial College London; London, SW7 2AZ, United Kingdom
| | - Aoyu Zhang
- Department of Bioengineering, Imperial College London; London, SW7 2AZ, United Kingdom
| | - Diana Visan
- Department of Bioengineering, Imperial College London; London, SW7 2AZ, United Kingdom
| | - Aisher Chen
- Department of Bioengineering, Imperial College London; London, SW7 2AZ, United Kingdom
| | - Mathew Carter
- Cancer Research UK National Biomarker Centre, University of Manchester; Manchester, M13 9PL, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence; Manchester, M13 9PL, United Kingdom
- Medical Oncology, Christie Hospital National Health Service (NHS) Foundation Trust; Manchester, M20 4BX, United Kingdom
| | - Fiona Blackhall
- Cancer Research UK Lung Cancer Centre of Excellence; Manchester, M13 9PL, United Kingdom
- Medical Oncology, Christie Hospital National Health Service (NHS) Foundation Trust; Manchester, M20 4BX, United Kingdom
- The Division of Cancer Sciences, Faculty of Biology, Medicine, and Health, University of Manchester; Manchester, M13 9PL, United Kingdom
| | - Kathryn L. Simpson
- Cancer Research UK National Biomarker Centre, University of Manchester; Manchester, M13 9PL, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence; Manchester, M13 9PL, United Kingdom
- SCLC Biology Group, Cancer Research UK Manchester Institute, University of Manchester; Manchester, M20 4BX, United Kingdom
| | - Caroline Dive
- Cancer Research UK National Biomarker Centre, University of Manchester; Manchester, M13 9PL, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence; Manchester, M13 9PL, United Kingdom
- SCLC Biology Group, Cancer Research UK Manchester Institute, University of Manchester; Manchester, M20 4BX, United Kingdom
| | - Paul Huang
- Division of Molecular Pathology, The Institute of Cancer Research; London, SM2 5NG, United Kingdom
- Cancer Research UK Convergence Science Centre; London, SW7 2AZ, United Kingdom
| | - Sam H. Au
- Department of Bioengineering, Imperial College London; London, SW7 2AZ, United Kingdom
- Cancer Research UK Convergence Science Centre; London, SW7 2AZ, United Kingdom
| |
Collapse
|
34
|
Stroope C, Nettersheim FS, Coon B, Finney AC, Schwartz MA, Ley K, Rom O, Yurdagul A. Dysregulated cellular metabolism in atherosclerosis: mediators and therapeutic opportunities. Nat Metab 2024; 6:617-638. [PMID: 38532071 PMCID: PMC11055680 DOI: 10.1038/s42255-024-01015-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 02/20/2024] [Indexed: 03/28/2024]
Abstract
Accumulating evidence over the past decades has revealed an intricate relationship between dysregulation of cellular metabolism and the progression of atherosclerotic cardiovascular disease. However, an integrated understanding of dysregulated cellular metabolism in atherosclerotic cardiovascular disease and its potential value as a therapeutic target is missing. In this Review, we (1) summarize recent advances concerning the role of metabolic dysregulation during atherosclerosis progression in lesional cells, including endothelial cells, vascular smooth muscle cells, macrophages and T cells; (2) explore the complexity of metabolic cross-talk between these lesional cells; (3) highlight emerging technologies that promise to illuminate unknown aspects of metabolism in atherosclerosis; and (4) suggest strategies for targeting these underexplored metabolic alterations to mitigate atherosclerosis progression and stabilize rupture-prone atheromas with a potential new generation of cardiovascular therapeutics.
Collapse
Affiliation(s)
- Chad Stroope
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Felix Sebastian Nettersheim
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Brian Coon
- Yale Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Cardiovascular Biology Research Program, OMRF, Oklahoma City, OK, USA
- Department of Cell Biology, Oklahoma University Health Sciences Center, Oklahoma City, OK, USA
| | - Alexandra C Finney
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Martin A Schwartz
- Yale Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Klaus Ley
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Bioengineering, University of California, San Diego, San Diego, CA, USA
- Immunology Center of Georgia (IMMCG), Augusta University Immunology Center of Georgia, Augusta, GA, USA
| | - Oren Rom
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Arif Yurdagul
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
| |
Collapse
|
35
|
Chen K, Chi Y, Cheng H, Yang M, Tan Q, Hao J, Lin Y, Mao F, He S, Yang J. Identification and characterization of extrachromosomal circular DNA in large-artery atherosclerotic stroke. J Cell Mol Med 2024; 28:e18210. [PMID: 38506071 PMCID: PMC10951879 DOI: 10.1111/jcmm.18210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/30/2024] [Accepted: 02/16/2024] [Indexed: 03/21/2024] Open
Abstract
Extrachromosomal circular DNA (eccDNA) is a new biomarker and regulator of diseases. However, the role of eccDNAs in large-artery atherosclerotic (LAA) stroke remains unclear. Through high-throughput circle-sequencing technique, the length distribution, genomic characteristic and motifs feature of plasma eccDNA from healthy controls (CON) and patients with LAA stroke were analysed. Then, the potential functions of the annotated eccDNAs were investigated using GO and KEGG pathway analyses. EccDNAs mapped to the reference genome showed SHN3 and BCL6 were LAA stroke unique transcription factors. The genes of differentially expressed eccDNAs between LAA stroke patients and CON were mainly involved in axon/dendrite/neuron projection development and maintenance of cellular structure via Wnt, Rap1 and MAPK pathways. Moreover, LAA stroke unique eccDNA genes played a role in regulation of coagulation and fibrinolysis, and there were five LAA stroke unique eccDNAs (Chr2:12724406-12724784, Chr4:1867120-186272046, Chr4:186271494-186271696, Chr7:116560296-116560685 and Chr11:57611780-5761192). Additionally, POLR2C and AURKA carried by ecDNAs (eccDNA size >100 kb) of LAA stroke patients were significantly associated with development of LAA stroke. Our data firstly revealed the characteristics of eccDNA in LAA stroke and the functions of LAA stroke unique eccDNAs and eccDNA genes, suggesting eccDNA is a novel biomarker and mechanism of LAA stroke.
Collapse
Affiliation(s)
- Kejie Chen
- School of Public HealthChengdu Medical CollegeChengduPR China
| | - Yanqi Chi
- School of Public HealthChengdu Medical CollegeChengduPR China
| | - Hang Cheng
- Department of NeurologyClinical Medical College and The First Affiliated Hospital of Chengdu Medical CollegeChengduPR China
| | - Min Yang
- Department of NeurologyClinical Medical College and The First Affiliated Hospital of Chengdu Medical CollegeChengduPR China
| | - Quandan Tan
- Department of NeurologyClinical Medical College and The First Affiliated Hospital of Chengdu Medical CollegeChengduPR China
| | - Junli Hao
- School of Bioscience and TechnologyChengdu Medical CollegeChengduPR China
| | - Yapeng Lin
- Department of NeurologyClinical Medical College and The First Affiliated Hospital of Chengdu Medical CollegeChengduPR China
| | - Fengkai Mao
- Department of NeurologyClinical Medical College and The First Affiliated Hospital of Chengdu Medical CollegeChengduPR China
| | - Song He
- Department of NeurologyClinical Medical College and The First Affiliated Hospital of Chengdu Medical CollegeChengduPR China
| | - Jie Yang
- Department of Neurology, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduPR China
| |
Collapse
|
36
|
Zhang L, Wu X, Hong L. Endothelial Reprogramming in Atherosclerosis. Bioengineering (Basel) 2024; 11:325. [PMID: 38671747 PMCID: PMC11048243 DOI: 10.3390/bioengineering11040325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Atherosclerosis (AS) is a severe vascular disease that results in millions of cases of mortality each year. The development of atherosclerosis is associated with vascular structural lesions, characterized by the accumulation of immune cells, mesenchymal cells, lipids, and an extracellular matrix at the intimal resulting in the formation of an atheromatous plaque. AS involves complex interactions among various cell types, including macrophages, endothelial cells (ECs), and smooth muscle cells (SMCs). Endothelial dysfunction plays an essential role in the initiation and progression of AS. Endothelial dysfunction can encompass a constellation of various non-adaptive dynamic alterations of biology and function, termed "endothelial reprogramming". This phenomenon involves transitioning from a quiescent, anti-inflammatory state to a pro-inflammatory and proatherogenic state and alterations in endothelial cell identity, such as endothelial to mesenchymal transition (EndMT) and endothelial-to-immune cell-like transition (EndIT). Targeting these processes to restore endothelial balance and prevent cell identity shifts, alongside modulating epigenetic factors, can attenuate atherosclerosis progression. In the present review, we discuss the role of endothelial cells in AS and summarize studies in endothelial reprogramming associated with the pathogenesis of AS.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Xin Wu
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Liang Hong
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
37
|
Xiang G, Guo S, Xing N, Du Q, Qin J, Gao H, Zhang Y, Wang S. Mangiferin, a Potential Supplement to Improve Metabolic Syndrome: Current Status and Future Opportunities. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:355-386. [PMID: 38533569 DOI: 10.1142/s0192415x24500150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Metabolic syndrome (MetS) represents a considerable clinical and public health burden worldwide. Mangiferin (MF), a flavonoid compound present in diverse species such as mango (Mangifera indica L.), papaya (Pseudocydonia sinensis (Thouin) C. K. Schneid.), zhimu (Anemarrhena asphodeloides Bunge), and honeybush tea (Cyclopia genistoides), boasts a broad array of pharmacological effects. It holds promising uses in nutritionally and functionally targeted foods, particularly concerning MetS treatment. It is therefore pivotal to systematically investigate MF's therapeutic mechanism for MetS and its applications in food and pharmaceutical sectors. This review, with the aid of a network pharmacology approach complemented by this experimental studies, unravels possible mechanisms underlying MF's MetS treatment. Network pharmacology results suggest that MF treats MetS effectively through promoting insulin secretion, targeting obesity and inflammation, alleviating insulin resistance (IR), and mainly operating via the phosphatidylinositol 3 kinase (PI3K)/Akt, nuclear factor kappa-B (NF-[Formula: see text]B), microtubule-associated protein kinase (MAPK), and oxidative stress signaling pathways while repairing damaged insulin signaling. These insights provide a comprehensive framework to understand MF's potential mechanisms in treating MetS. These, however, warrant further experimental validation. Moreover, molecular docking techniques confirmed the plausibility of the predicted outcomes. Hereafter, these findings might form the theoretical bedrock for prospective research into MF's therapeutic potential in MetS therapy.
Collapse
Affiliation(s)
- Gelin Xiang
- State Key Laboratory of Southwestern, Chinese Medicine Resources, School of Ethnic Medicine, Chengdu, P. R. China
| | - Sa Guo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Nan Xing
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Qinyun Du
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Jing Qin
- State Key Laboratory of Southwestern, Chinese Medicine Resources, School of Ethnic Medicine, Chengdu, P. R. China
| | - Huimin Gao
- Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan 620010, P. R. China
| | - Yi Zhang
- State Key Laboratory of Southwestern, Chinese Medicine Resources, School of Ethnic Medicine, Chengdu, P. R. China
| | - Shaohui Wang
- State Key Laboratory of Southwestern, Chinese Medicine Resources, School of Ethnic Medicine, Chengdu, P. R. China
- Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan 620010, P. R. China
| |
Collapse
|
38
|
Hall IF, Kishta F, Xu Y, Baker AH, Kovacic JC. Endothelial to mesenchymal transition: at the axis of cardiovascular health and disease. Cardiovasc Res 2024; 120:223-236. [PMID: 38385523 PMCID: PMC10939465 DOI: 10.1093/cvr/cvae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 08/01/2023] [Accepted: 08/25/2023] [Indexed: 02/23/2024] Open
Abstract
Endothelial cells (ECs) line the luminal surface of blood vessels and play a major role in vascular (patho)-physiology by acting as a barrier, sensing circulating factors and intrinsic/extrinsic signals. ECs have the capacity to undergo endothelial-to-mesenchymal transition (EndMT), a complex differentiation process with key roles both during embryonic development and in adulthood. EndMT can contribute to EC activation and dysfunctional alterations associated with maladaptive tissue responses in human disease. During EndMT, ECs progressively undergo changes leading to expression of mesenchymal markers while repressing EC lineage-specific traits. This phenotypic and functional switch is considered to largely exist in a continuum, being characterized by a gradation of transitioning stages. In this report, we discuss process plasticity and potential reversibility and the hypothesis that different EndMT-derived cell populations may play a different role in disease progression or resolution. In addition, we review advancements in the EndMT field, current technical challenges, as well as therapeutic options and opportunities in the context of cardiovascular biology.
Collapse
Affiliation(s)
- Ignacio Fernando Hall
- Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Franceska Kishta
- Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Yang Xu
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Andrew H Baker
- Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht 6229ER, The Netherlands
| | - Jason C Kovacic
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
- Victor Chang Cardiac Research Institute, Lowy Packer Building, 405 Liverpool Street, Darlinghurst, NSW 2010, Australia
- St. Vincent’s Clinical School and University of New South Wales, 390 Victoria St, Darlinghurst, NSW 2010, Australia
| |
Collapse
|
39
|
Wesseling M, Diez-Benavente E, Mokry M, den Ruijter HM, Pasterkamp G. A critical appreciation of pathway analysis in atherosclerotic disease. Cellular phenotypic plasticity as an illustrative example. Vascul Pharmacol 2024; 154:107286. [PMID: 38408531 DOI: 10.1016/j.vph.2024.107286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/22/2023] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
The rapid advancements in genome-scale (omics) techniques has created significant opportunities to investigate complex disease mechanisms in tissues and cells. Nevertheless, interpreting -omics data can be challenging, and pathway enrichment analysis is a frequently used method to identify candidate molecular pathways that drive gene expression changes. With a growing number of -omics studies dedicated to atherosclerosis, there has been a significant increase in studies and hypotheses relying on enrichment analysis. This brief review discusses the benefits and limitations of pathway enrichment analysis within atherosclerosis research. We highlight the challenges of identifying complex biological processes, such as cell phenotypic switching, within -omics data. Additionally, we emphasize the need for more comprehensive and curated gene sets that reflect the biological complexity of atherosclerosis. Pathway enrichment analysis is a valuable tool for gaining insights into the molecular mechanisms of atherosclerosis. Nevertheless, it is crucial to remain aware of the intrinsic limitations of this approach. By addressing these weaknesses, enrichment analysis in atherosclerosis can lead to breakthroughs in identifying the mechanisms of disease progresses, the identification of key driver genes, and consequently, advance personalized patient care.
Collapse
Affiliation(s)
- M Wesseling
- Central Diagnostics Laboratories, Department of Laboratory, pharmacy and biomedical genetics, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - E Diez-Benavente
- Experimental Cardiology Laboratory, Division of Heart and Lungs, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - M Mokry
- Central Diagnostics Laboratories, Department of Laboratory, pharmacy and biomedical genetics, University Medical Centre Utrecht, Utrecht, the Netherlands; Experimental Cardiology Laboratory, Division of Heart and Lungs, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - H M den Ruijter
- Experimental Cardiology Laboratory, Division of Heart and Lungs, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - G Pasterkamp
- Central Diagnostics Laboratories, Department of Laboratory, pharmacy and biomedical genetics, University Medical Centre Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
40
|
Lin A, Ramaswamy Y, Misra A. Developmental heterogeneity of vascular cells: Insights into cellular plasticity in atherosclerosis? Semin Cell Dev Biol 2024; 155:3-15. [PMID: 37316416 DOI: 10.1016/j.semcdb.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023]
Abstract
Smooth muscle cells, endothelial cells and macrophages display remarkable heterogeneity within the healthy vasculature and under pathological conditions. During development, these cells arise from numerous embryological origins, which confound with different microenvironments to generate postnatal vascular cell diversity. In the atherosclerotic plaque milieu, all these cell types exhibit astonishing plasticity, generating a variety of plaque burdening or plaque stabilizing phenotypes. And yet how developmental origin influences intraplaque cell plasticity remains largely unexplored despite evidence suggesting this may be the case. Uncovering the diversity and plasticity of vascular cells is being revolutionized by unbiased single cell whole transcriptome analysis techniques that will likely continue to pave the way for therapeutic research. Cellular plasticity is only just emerging as a target for future therapeutics, and uncovering how intraplaque plasticity differs across vascular beds may provide key insights into why different plaques behave differently and may confer different risks of subsequent cardiovascular events.
Collapse
Affiliation(s)
- Alexander Lin
- Atherosclerosis and Vascular Remodeling Group, Heart Research Institute, Sydney, NSW, Australia; School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW, Australia
| | - Yogambha Ramaswamy
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW, Australia
| | - Ashish Misra
- Atherosclerosis and Vascular Remodeling Group, Heart Research Institute, Sydney, NSW, Australia; Heart Research Institute, The University of Sydney, Sydney, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
41
|
Chikh A, Raimondi C. Endothelial Neuropilin-1: a multifaced signal transducer with an emerging role in inflammation and atherosclerosis beyond angiogenesis. Biochem Soc Trans 2024; 52:137-150. [PMID: 38323651 PMCID: PMC10903451 DOI: 10.1042/bst20230329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 02/08/2024]
Abstract
Neuropilin-1 (NRP1) is a transmembrane glycoprotein expressed by several cell types including, neurons, endothelial cells (ECs), smooth muscle cells, cardiomyocytes and immune cells comprising macrophages, dendritic cells and T cell subsets. Since NRP1 discovery in 1987 as an adhesion molecule in the frog nervous system, more than 2300 publications on PubMed investigated the function of NRP1 in physiological and pathological contexts. NRP1 has been characterised as a coreceptor for class 3 semaphorins and several members of the vascular endothelial growth factor (VEGF) family. Because the VEGF family is the main regulator of blood and lymphatic vessel growth in addition to promoting neurogenesis, neuronal patterning, neuroprotection and glial growth, the role of NRP1 in these biological processes has been extensively investigated. It is now established that NRP1 promotes the physiological growth of new vessels from pre-existing ones in the process of angiogenesis. Furthermore, several studies have shown that NRP1 mediates signalling pathways regulating pathological vascular growth in ocular neovascular diseases and tumour development. Less defined are the roles of NRP1 in maintaining the function of the quiescent established vasculature in an adult organism. This review will focus on the opposite roles of NRP1 in regulating transforming growth factor β signalling pathways in different cell types, and on the emerging role of endothelial NRP1 as an atheroprotective, anti-inflammatory factor involved in the response of ECs to shear stress.
Collapse
Affiliation(s)
- Anissa Chikh
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London SW17 0RE, U.K
| | - Claudio Raimondi
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Centre of Cardiovascular Medicine and Devices, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, U.K
| |
Collapse
|
42
|
Liuizė (Abramavičiūtė) A, Mongirdienė A. TGF-β Isoforms and GDF-15 in the Development and Progression of Atherosclerosis. Int J Mol Sci 2024; 25:2104. [PMID: 38396781 PMCID: PMC10889676 DOI: 10.3390/ijms25042104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
The effect of oxidised lipoproteins on the endothelium, monocytes, platelets, and macrophages is a key factor in the initiation and development of atherosclerosis. Antioxidant action, lipoprotein metabolism, and chronic inflammation are the fields of research interest for better understanding the development of the disease. All the fields are related to inflammation and hence to the secretion of cytokines, which are being investigated as potential diagnostic markers for the onset of atherosclerosis. Pathways of vascular damage are crucial for the development of new laboratory readouts. The very early detection of endothelial cell damage associated with the onset of atherosclerosis, allowing the initiation of therapy, remains a major research goal. This article summarises the latest results on the relationship of tumour growth factor beta (TGF-β) isoforms and growth differentiation factor 15 (GDF-15) to the pathogenesis of atherosclerosis: which cells involved in atherosclerosis produce them, which effectors stimulate their synthesis and secretion, how they influence atherosclerosis development, and the relationship between the levels of TGF-β and GDF-15 in the blood and the development and extent of atherosclerosis.
Collapse
Affiliation(s)
| | - Aušra Mongirdienė
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania;
| |
Collapse
|
43
|
Hourani T, Eivazitork M, Balendran T, Mc Lee K, Hamilton JA, Zhu HJ, Iaria J, Morokoff AP, Luwor RB, Achuthan AA. Signaling pathways underlying TGF-β mediated suppression of IL-12A gene expression in monocytes. Mol Immunol 2024; 166:101-109. [PMID: 38278031 DOI: 10.1016/j.molimm.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
Transforming growth factor-β (TGF-β) is a pleiotropic cytokine essential for multiple biological processes, including the regulation of inflammatory and immune responses. One of the important functions of TGF-β is the suppression of the proinflammatory cytokine interleukin-12 (IL-12), which is crucial for mounting an anti-tumorigenic response. Although the regulation of the IL-12p40 subunit (encoded by the IL-12B gene) of IL-12 has been extensively investigated, the knowledge of IL-12p35 (encoded by IL-12A gene) subunit regulation is relatively limited. This study investigates the molecular regulation of IL-12A by TGF-β-activated signaling pathways in THP-1 monocytes. Our study identifies a complex regulation of IL-12A gene expression by TGF-β, which involves multiple cellular signaling pathways, such as Smad2/3, NF-κB, p38 and JNK1/2. Pharmacological inhibition of NF-κB signaling decreased IL-12A expression, while blocking the Smad2/3 signaling pathway by overexpression of Smad7 and inhibiting JNK1/2 signaling with a pharmacological inhibitor, SP600125, increased its expression. The elucidated signaling pathways that regulate IL-12A gene expression potentially provide new therapeutic targets to increase IL-12 levels in the tumor microenvironment.
Collapse
Affiliation(s)
- Tetiana Hourani
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Mahtab Eivazitork
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Thivya Balendran
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Kevin Mc Lee
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3052, Australia
| | - John A Hamilton
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Hong-Jian Zhu
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Josephine Iaria
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Andrew P Morokoff
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3052, Australia; Department of Neurosurgery, Royal Melbourne Hospital, Parkville, VIC 3050, Australia
| | - Rodney B Luwor
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3052, Australia; Fiona Elsey Cancer Research Institute, Ballarat, VIC 3350, Australia; Federation University, Ballarat, VIC 3350, Australia
| | - Adrian A Achuthan
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3052, Australia.
| |
Collapse
|
44
|
Li Y, Wu Y, Qin X, Gu J, Liu A, Cao J. Constructing a competitive endogenous RNA network of EndMT-related atherosclerosis through weighted gene co-expression network analysis. Front Cardiovasc Med 2024; 10:1322252. [PMID: 38268851 PMCID: PMC10806165 DOI: 10.3389/fcvm.2023.1322252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/27/2023] [Indexed: 01/26/2024] Open
Abstract
Atherosclerosis is a chronic inflammatory disease characterized by endothelial dysfunction and plaque formation. Under pro-inflammatory conditions, endothelial cells can undergo endothelial-to-mesenchymal transition (EndMT), contributing to atherosclerosis development. However, the specific regulatory mechanisms by which EndMT contributes to atherosclerosis remain unclear and require further investigation. Dan-Shen-Yin (DSY), a traditional Chinese herbal formula, is commonly used for cardiovascular diseases, but its molecular mechanisms remain elusive. Emerging evidence indicates that competing endogenous RNA (ceRNA) networks play critical roles in atherosclerosis pathogenesis. In this study, we constructed an EndMT-associated ceRNA network during atherosclerosis progression by integrating gene expression profiles from the Gene Expression Omnibus (GEO) database and weighted gene co-expression network analysis. Functional enrichment analysis revealed this EndMT-related ceRNA network is predominantly involved in inflammatory responses. ROC curve analysis showed the identified hub genes can effectively distinguish between normal vasculature and atherosclerotic lesions. Furthermore, Kaplan-Meier analysis demonstrated that high expression of IL1B significantly predicts ischemic events in atherosclerosis. Molecular docking revealed most DSY bioactive components can bind key EndMT-related lncRNAs, including AC003092.1, MIR181A1HG, MIR155HG, WEE2-AS1, and MIR137HG, suggesting DSY may mitigate EndMT in atherosclerosis by modulating the ceRNA network.
Collapse
Affiliation(s)
- Yawei Li
- Research Center of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yubiao Wu
- Research Center of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiude Qin
- Encephalopathy Department, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jinchao Gu
- Research Center of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Aijun Liu
- Research Center of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiahui Cao
- Research Center of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
45
|
Li S, He RC, Wu SG, Song Y, Zhang KL, Tang ML, Bei YR, Zhang T, Lu JB, Ma X, Jiang M, Qin LJ, Xu Y, Dong XH, Wu J, Dai X, Hu YW. LncRNA PSMB8-AS1 Instigates Vascular Inflammation to Aggravate Atherosclerosis. Circ Res 2024; 134:60-80. [PMID: 38084631 DOI: 10.1161/circresaha.122.322360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 11/20/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Increasing evidence suggests that long noncoding RNAs play significant roles in vascular biology and disease development. One such long noncoding RNA, PSMB8-AS1, has been implicated in the development of tumors. Nevertheless, the precise role of PSMB8-AS1 in cardiovascular diseases, particularly atherosclerosis, has not been thoroughly elucidated. Thus, the primary aim of this investigation is to assess the influence of PSMB8-AS1 on vascular inflammation and the initiation of atherosclerosis. METHODS We generated PSMB8-AS1 knockin and Apoe (Apolipoprotein E) knockout mice (Apoe-/-PSMB8-AS1KI) and global Apoe and proteasome subunit-β type-9 (Psmb9) double knockout mice (Apoe-/-Psmb9-/-). To explore the roles of PSMB8-AS1 and Psmb9 in atherosclerosis, we fed the mice with a Western diet for 12 weeks. RESULTS Long noncoding RNA PSMB8-AS1 is significantly elevated in human atherosclerotic plaques. Strikingly, Apoe-/-PSMB8-AS1KI mice exhibited increased atherosclerosis development, plaque vulnerability, and vascular inflammation compared with Apoe-/- mice. Moreover, the levels of VCAM1 (vascular adhesion molecule 1) and ICAM1 (intracellular adhesion molecule 1) were significantly upregulated in atherosclerotic lesions and serum of Apoe-/-PSMB8-AS1KI mice. Consistently, in vitro gain- and loss-of-function studies demonstrated that PSMB8-AS1 induced monocyte/macrophage adhesion to endothelial cells and increased VCAM1 and ICAM1 levels in a PSMB9-dependent manner. Mechanistic studies revealed that PSMB8-AS1 induced PSMB9 transcription by recruiting the transcription factor NONO (non-POU domain-containing octamer-binding protein) and binding to the PSMB9 promoter. PSMB9 (proteasome subunit-β type-9) elevated VCAM1 and ICAM1 expression via the upregulation of ZEB1 (zinc finger E-box-binding homeobox 1). Psmb9 deficiency decreased atherosclerotic lesion size, plaque vulnerability, and vascular inflammation in Apoe-/- mice in vivo. Importantly, endothelial overexpression of PSMB8-AS1-increased atherosclerosis and vascular inflammation were attenuated by Psmb9 knockout. CONCLUSIONS PSMB8-AS1 promotes vascular inflammation and atherosclerosis via the NONO/PSMB9/ZEB1 axis. Our findings support the development of new long noncoding RNA-based strategies to counteract atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Shu Li
- Department of Clinical Laboratory, Guangzhou Women & Children Medical Center, Guangzhou Medical University, Guangdong, China (S.L., R.-C.H., Y.S., K.-L.Z., M.-L.T., T.Z., M.J., X.-H.D., J.W., Y.-W.H.)
| | - Run-Chao He
- Department of Clinical Laboratory, Guangzhou Women & Children Medical Center, Guangzhou Medical University, Guangdong, China (S.L., R.-C.H., Y.S., K.-L.Z., M.-L.T., T.Z., M.J., X.-H.D., J.W., Y.-W.H.)
| | - Shao-Guo Wu
- Department of Clinical Laboratory, Guangzhou Twelfth People's Hospital, Guangdong, China (S.-G.W.)
| | - Yu Song
- Department of Clinical Laboratory, Guangzhou Women & Children Medical Center, Guangzhou Medical University, Guangdong, China (S.L., R.-C.H., Y.S., K.-L.Z., M.-L.T., T.Z., M.J., X.-H.D., J.W., Y.-W.H.)
| | - Ke-Lan Zhang
- Department of Clinical Laboratory, Guangzhou Women & Children Medical Center, Guangzhou Medical University, Guangdong, China (S.L., R.-C.H., Y.S., K.-L.Z., M.-L.T., T.Z., M.J., X.-H.D., J.W., Y.-W.H.)
| | - Mao-Lin Tang
- Department of Clinical Laboratory, Guangzhou Women & Children Medical Center, Guangzhou Medical University, Guangdong, China (S.L., R.-C.H., Y.S., K.-L.Z., M.-L.T., T.Z., M.J., X.-H.D., J.W., Y.-W.H.)
| | - Yan-Rou Bei
- Laboratory Medicine Center (Y.-R.B.), Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ting Zhang
- Department of Clinical Laboratory, Guangzhou Women & Children Medical Center, Guangzhou Medical University, Guangdong, China (S.L., R.-C.H., Y.S., K.-L.Z., M.-L.T., T.Z., M.J., X.-H.D., J.W., Y.-W.H.)
| | - Jin-Bo Lu
- Department of Peripheral Vascular Surgery, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen (J.-B.L.)
| | - Xin Ma
- Department of Anesthesiology (X.M.), Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Min Jiang
- Department of Clinical Laboratory, Guangzhou Women & Children Medical Center, Guangzhou Medical University, Guangdong, China (S.L., R.-C.H., Y.S., K.-L.Z., M.-L.T., T.Z., M.J., X.-H.D., J.W., Y.-W.H.)
| | - Liang-Jun Qin
- Department of Pathology, Guangzhou Women & Children Medical Center, Guangzhou Medical University, Guangdong, China (L.J.Q.)
| | - Yudan Xu
- Laboratory Medicine Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China (Y.X.)
| | - Xian-Hui Dong
- Department of Clinical Laboratory, Guangzhou Women & Children Medical Center, Guangzhou Medical University, Guangdong, China (S.L., R.-C.H., Y.S., K.-L.Z., M.-L.T., T.Z., M.J., X.-H.D., J.W., Y.-W.H.)
| | - Jia Wu
- Department of Clinical Laboratory, Guangzhou Women & Children Medical Center, Guangzhou Medical University, Guangdong, China (S.L., R.-C.H., Y.S., K.-L.Z., M.-L.T., T.Z., M.J., X.-H.D., J.W., Y.-W.H.)
| | - Xiaoyan Dai
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangdong, China (X.D.)
- Clinical Research Institute, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hunan, China (X.D.)
| | - Yan-Wei Hu
- Department of Clinical Laboratory, Guangzhou Women & Children Medical Center, Guangzhou Medical University, Guangdong, China (S.L., R.-C.H., Y.S., K.-L.Z., M.-L.T., T.Z., M.J., X.-H.D., J.W., Y.-W.H.)
- Department of Laboratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China (Y.-W.H.)
| |
Collapse
|
46
|
Jiang W, Zhang T, Qiu Y, Liu Q, Chen X, Wang Q, Min X, Ouyang L, Jia S, Lu Q, He Y, Zhao M. Keratinocyte-to-macrophage communication exacerbate psoriasiform dermatitis via LRG1-enriched extracellular vesicles. Theranostics 2024; 14:1049-1064. [PMID: 38250043 PMCID: PMC10797285 DOI: 10.7150/thno.89180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Rationale: Macrophage-associated inflammation and keratinocytes excessive proliferation and inflammatory cytokines secretion induced by stimulation play an important role in the progression of psoriasiform dermatitis. However, how these two types of cells communicate remains obscure. Methods: We induced a mouse model with experimental psoriasiform dermatitis by Imiquimod (IMQ). To investigate whether damaged keratinocytes promote macrophage polarization and accelerate skin lesions by releasing extracellular vesicle (EV), purified EV were isolated from the primary epidermis of 5-day IMQ-induced psoriasiform dermatitis model mice, and then fluorescence-labeled the EV with PKH67. The EV was injected into the skin of mice treated with IMQ or vehicle 2 days in situ. In addition, we established a co-culture system of the human monocytic cell line (THP-1) and HaCaT, and THP-1/HaCaT conditioned media culture model in vitro respectively. Subsequently, we evaluated the effect of Leucine-rich α-2-glycoprotein 1 (LRG1)-enriched EV on macrophage activation. Results: We demonstrated macrophages can significantly promote keratinocyte inflammation and macrophage polarization may be mediated by intercellular communication with keratinocytes. Interestingly, IMQ-induced 5-day, keratinocyte-derived EV recruited macrophage and enhanced the progression of skin lesions. Similar to results in vivo, EV released from M5-treated HaCaT significantly promotes Interleukin 1β (IL-1β) and Tumor necrosis factor α (TNF-α) expression of THP-1 cells. Importantly, we found that LRG1-enriched EV regulates macrophages via TGF beta Receptor 1 (TGFβR1) dependent process. Conclusion: Our findings indicated a novel mechanism for promoting psoriasiform dermatitis, which could be a potential therapeutic target.
Collapse
Affiliation(s)
- Wenjuan Jiang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Tingting Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, China
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yueqi Qiu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Qianmei Liu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Xiaoyun Chen
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qiaolin Wang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Xiaoli Min
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Lianlian Ouyang
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Sujie Jia
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, China
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yuan He
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ming Zhao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, China
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
47
|
Lv N, Zhang Y, Wang L, Suo Y, Zeng W, Yu Q, Yu B, Jiang X. LncRNA/CircRNA-miRNA-mRNA Axis in Atherosclerotic Inflammation: Research Progress. Curr Pharm Biotechnol 2024; 25:1021-1040. [PMID: 37842894 DOI: 10.2174/0113892010267577231005102901] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/09/2023] [Accepted: 08/21/2023] [Indexed: 10/17/2023]
Abstract
Atherosclerosis is characterized by chronic inflammation of the arterial wall. However, the exact mechanism underlying atherosclerosis-related inflammation has not been fully elucidated. To gain insight into the mechanisms underlying the inflammatory process that leads to atherosclerosis, there is need to identify novel molecular markers. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-protein-coding RNAs (lncRNAs) and circular RNAs (circRNAs) have gained prominence in recent years. LncRNAs/circRNAs act as competing endogenous RNAs (ceRNAs) that bind to miRNAs via microRNA response elements (MREs), thereby inhibiting the silencing of miRNA target mRNAs. Inflammatory mediators and inflammatory signaling pathways are closely regulated by ceRNA regulatory networks in atherosclerosis. In this review, we discuss the role of LncRNA/CircRNA-miRNA-mRNA axis in atherosclerotic inflammation and how it can be targeted for early clinical detection and treatment.
Collapse
Affiliation(s)
- Nuan Lv
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yilin Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Luming Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanrong Suo
- Traditional Chinese Medicine Department, Ganzhou People's Hospital, Ganzhou, China
| | - Wenyun Zeng
- Oncology Department, Ganzhou People's Hospital, Ganzhou, China
| | - Qun Yu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bin Yu
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
48
|
Ye W, Wang J, Little PJ, Zou J, Zheng Z, Lu J, Yin Y, Liu H, Zhang D, Liu P, Xu S, Ye W, Liu Z. Anti-atherosclerotic effects and molecular targets of ginkgolide B from Ginkgo biloba. Acta Pharm Sin B 2024; 14:1-19. [PMID: 38239238 PMCID: PMC10792990 DOI: 10.1016/j.apsb.2023.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/03/2023] [Accepted: 09/13/2023] [Indexed: 01/22/2024] Open
Abstract
Bioactive compounds derived from herbal medicinal plants modulate various therapeutic targets and signaling pathways associated with cardiovascular diseases (CVDs), the world's primary cause of death. Ginkgo biloba , a well-known traditional Chinese medicine with notable cardiovascular actions, has been used as a cardio- and cerebrovascular therapeutic drug and nutraceutical in Asian countries for centuries. Preclinical studies have shown that ginkgolide B, a bioactive component in Ginkgo biloba , can ameliorate atherosclerosis in cultured vascular cells and disease models. Of clinical relevance, several clinical trials are ongoing or being completed to examine the efficacy and safety of ginkgolide B-related drug preparations in the prevention of cerebrovascular diseases, such as ischemia stroke. Here, we present a comprehensive review of the pharmacological activities, pharmacokinetic characteristics, and mechanisms of action of ginkgolide B in atherosclerosis prevention and therapy. We highlight new molecular targets of ginkgolide B, including nicotinamide adenine dinucleotide phosphate oxidases (NADPH oxidase), lectin-like oxidized LDL receptor-1 (LOX-1), sirtuin 1 (SIRT1), platelet-activating factor (PAF), proprotein convertase subtilisin/kexin type 9 (PCSK9) and others. Finally, we provide an overview and discussion of the therapeutic potential of ginkgolide B and highlight the future perspective of developing ginkgolide B as an effective therapeutic agent for treating atherosclerosis.
Collapse
Affiliation(s)
- Weile Ye
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Jiaojiao Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Peter J. Little
- Pharmacy Australia Centre of Excellence, School of Pharmacy, University of Queensland, Woolloongabba QLD 4102, Australia
- Sunshine Coast Health Institute and School of Health and Behavioural Sciences, University of the Sunshine Coast, Birtinya QLD 4575, Australia
| | - Jiami Zou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Zhihua Zheng
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Jing Lu
- National-Local Joint Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Yanjun Yin
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - Hao Liu
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - Dongmei Zhang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Peiqing Liu
- National-Local Joint Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Suowen Xu
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
- Institute of Endocrine and Metabolic Diseases, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Wencai Ye
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Zhiping Liu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| |
Collapse
|
49
|
Silva RCMC, Travassos LH, Dutra FF. The dichotomic role of single cytokines: Fine-tuning immune responses. Cytokine 2024; 173:156408. [PMID: 37925788 DOI: 10.1016/j.cyto.2023.156408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
Cytokines are known for their pleiotropic effects. They can be classified by their function as pro-inflammatory, such as tumor necrosis factor (TNF), interleukin (IL) 1 and IL-12, or anti-inflammatory, like IL-10, IL-35 and transforming growth factor β (TGF-β). Though this type of classification is an important simplification for the understanding of the general cytokine's role, it can be misleading. Here, we discuss recent studies that show a dichotomic role of the so-called pro and anti-inflammatory cytokines, highlighting that their function can be dependent on the microenvironment and their concentrations. Furthermore, we discuss how the back-and-forth interplay between cytokines and immunometabolism can influence the dichotomic role of inflammatory responses as an important target to complement cytokine-based therapies.
Collapse
Affiliation(s)
| | - Leonardo Holanda Travassos
- Laboratório de Receptores e Sinalização intracelular, Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro, Brazil
| | - Fabianno Ferreira Dutra
- Laboratório de Imunologia e Inflamação, Instituto de Microbiologia Paulo de Góes, UFRJ, Rio de Janeiro, Brazil
| |
Collapse
|
50
|
Shin J, Hong J, Edwards-Glenn J, Krukovets I, Tkachenko S, Adelus ML, Romanoski CE, Rajagopalan S, Podrez E, Byzova TV, Stenina-Adongravi O, Cherepanova OA. Unraveling the Role of Sex in Endothelial Cell Dysfunction: Evidence From Lineage Tracing Mice and Cultured Cells. Arterioscler Thromb Vasc Biol 2024; 44:238-253. [PMID: 38031841 PMCID: PMC10842863 DOI: 10.1161/atvbaha.123.319833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Biological sex differences play a vital role in cardiovascular diseases, including atherosclerosis. The endothelium is a critical contributor to cardiovascular pathologies since endothelial cells (ECs) regulate vascular tone, redox balance, and inflammatory reactions. Although EC activation and dysfunction play an essential role in the early and late stages of atherosclerosis development, little is known about sex-dependent differences in EC. METHODS We used human and mouse aortic EC as well as EC-lineage tracing (Cdh5-CreERT2 Rosa-YFP [yellow fluorescence protein]) atherosclerotic Apoe-/- mice to investigate the biological sexual dimorphism of the EC functions in vitro and in vivo. Bioinformatics analyses were performed on male and female mouse aortic EC and human lung and aortic EC. RESULTS In vitro, female human and mouse aortic ECs showed more apoptosis and higher cellular reactive oxygen species levels than male EC. In addition, female mouse aortic EC had lower mitochondrial membrane potential (ΔΨm), lower TFAM (mitochondrial transcription factor A) levels, and decreased angiogenic potential (tube formation, cell viability, and proliferation) compared with male mouse aortic EC. In vivo, female mice had significantly higher lipid accumulation within the aortas, impaired glucose tolerance, and lower endothelial-mediated vasorelaxation than males. Using the EC-lineage tracing approach, we found that female lesions had significantly lower rates of intraplaque neovascularization and endothelial-to-mesenchymal transition within advanced atherosclerotic lesions but higher incidents of missing EC lumen coverage and higher levels of oxidative products and apoptosis. RNA-seq analyses revealed that both mouse and human female EC had higher expression of genes associated with inflammation and apoptosis and lower expression of genes related to angiogenesis and oxidative phosphorylation than male EC. CONCLUSIONS Our study delineates critical sex-specific differences in EC relevant to proinflammatory, pro-oxidant, and angiogenic characteristics, which are entirely consistent with a vulnerable phenotype in females. Our results provide a biological basis for sex-specific proatherosclerotic mechanisms.
Collapse
Affiliation(s)
- Junchul Shin
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Junyoung Hong
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jonnelle Edwards-Glenn
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Irene Krukovets
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Svyatoslav Tkachenko
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Maria L. Adelus
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ, USA
- Clinical Translational Sciences Graduate Program, The University of Arizona, Tucson, AZ, USA
| | - Casey E. Romanoski
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ, USA
| | - Sanjay Rajagopalan
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Eugene Podrez
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Tatiana V. Byzova
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Olga Stenina-Adongravi
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Olga A. Cherepanova
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|