1
|
Poudel A, Adhikari P, Adhikari P, Choi SH, Yun JY, Lee YH, Hong SH. Predicting the Invasion Risk of the Highly Invasive Acacia mearnsii in Asia under Global Climate Change. PLANTS (BASEL, SWITZERLAND) 2024; 13:2846. [PMID: 39458793 PMCID: PMC11510992 DOI: 10.3390/plants13202846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024]
Abstract
Acacia mearnsii, among the 100 worst invasive weeds worldwide, negatively impacts native biodiversity, agriculture, and natural ecosystems. Global climate change, characterized by rising temperatures and altered precipitation patterns, enhances the risk of A. mearnsii invasion in Asia, making it crucial to identify high-risk areas for effective management. This study performed species distribution modeling using the maximum entropy (MaxEnt) algorithm to predict the potential introduction and spread of A. mearnsii under various climate scenarios based on shared socio-economic pathways (SSP2-4.5 and SSP5-8.5). Currently, only 4.35% of Asia is invaded, with a high invasion risk identified in six countries, including Bhutan, Lebanon, and Taiwan, where more than 75% of their areas are threatened. Under future climate scenarios, 21 countries face invasion risk, among which 14 countries, such as Georgia, Laos, Republic of Korea, and Turkey, are at moderate to very high risk, potentially encompassing up to 87.89% of their territories. Conversely, Northern Asian countries exhibit minimal changes in invasion risk and are considered relatively safe from invasion. These findings underscore that climate change will exacerbate invasion risks across Asia, emphasizing the urgent need for robust management strategies, including stringent quarantine measures and control efforts, to mitigate the threat of A. mearnsii expansion.
Collapse
Affiliation(s)
- Anil Poudel
- Department of Plant Resources and Landscape Architecture, College of Agriculture and Life Sciences, Hankyong National University, Anseong 17579, Republic of Korea; (A.P.); (P.A.); (J.Y.Y.)
| | - Pradeep Adhikari
- Institute of Humanities and Ecology Consensus Resilience Lab, Hankyong National University, Anseong 17579, Republic of Korea;
| | - Prabhat Adhikari
- Department of Plant Resources and Landscape Architecture, College of Agriculture and Life Sciences, Hankyong National University, Anseong 17579, Republic of Korea; (A.P.); (P.A.); (J.Y.Y.)
| | - Sue Hyuen Choi
- Department of Plant Resources and Landscape Architecture, College of Agriculture and Life Sciences, Hankyong National University, Anseong 17579, Republic of Korea; (A.P.); (P.A.); (J.Y.Y.)
| | - Ji Yeon Yun
- Department of Plant Resources and Landscape Architecture, College of Agriculture and Life Sciences, Hankyong National University, Anseong 17579, Republic of Korea; (A.P.); (P.A.); (J.Y.Y.)
| | - Yong Ho Lee
- Institute of Humanities and Ecology Consensus Resilience Lab, Hankyong National University, Anseong 17579, Republic of Korea;
- OJeong Resilience Institute, Korea University, Seoul 02841, Republic of Korea
| | - Sun Hee Hong
- Department of Plant Resources and Landscape Architecture, College of Agriculture and Life Sciences, Hankyong National University, Anseong 17579, Republic of Korea; (A.P.); (P.A.); (J.Y.Y.)
| |
Collapse
|
2
|
Cloutier A, Chan DTC, Poon ESK, Sin SYW. The genetic consequences of historic climate change on the contemporary population structure of a widespread temperate North American songbird. Mol Phylogenet Evol 2024; 201:108216. [PMID: 39384123 DOI: 10.1016/j.ympev.2024.108216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/29/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024]
Abstract
Studies of widely distributed species can inform our understanding of how past demographic events tied to historic glaciation and ongoing population genetic processes interact to shape contemporaneous patterns of biodiversity at a continental scale. In this study, we used whole-genome resequencing to investigate the current population structure and genetic signatures of past demographic events in the widespread migratory American goldfinch (Spinus tristis). Phylogenetic relationships inferred from whole mitochondrial genomes were poorly resolved. In contrast, a genome-wide panel of > 4.5 million single nucleotide polymorphisms (SNPs) strongly supported the existence of eastern and western populations separated by western mountain ranges and additional population structuring within the western clade. Demographic modeling estimated that the eastern and western populations diverged approximately one million years ago, and both populations experienced subsequent population bottlenecks during the last glacial period. Species distribution models showed a severe contraction of suitable habitat for the American goldfinch during this period, with predicted discontinuities that are consistent with multiple, isolated glacial refugia that coincide with present-day population structure. Low overall genetic differentiation between the eastern and western populations (FST ∼ 0.01) suggests ongoing gene flow accompanied divergence, and individuals with admixed genomic signatures were sampled along a potential contact zone. Nevertheless, outlier SNPs were identified near genes associated with feather color, song, and migratory behavior and provide strong candidates for further study of the mechanisms underlying reproductive isolation and speciation in birds.
Collapse
Affiliation(s)
- Alison Cloutier
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | | | - Emily Shui Kei Poon
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Simon Yung Wa Sin
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
3
|
Sun Y, Farnsworth A, Joachimski MM, Wignall PB, Krystyn L, Bond DPG, Ravidà DCG, Valdes PJ. Mega El Niño instigated the end-Permian mass extinction. Science 2024; 385:1189-1195. [PMID: 39265011 DOI: 10.1126/science.ado2030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 08/05/2024] [Indexed: 09/14/2024]
Abstract
The ultimate driver of the end-Permian mass extinction is a topic of much debate. Here, we used a multiproxy and paleoclimate modeling approach to establish a unifying theory elucidating the heightened susceptibility of the Pangean world to the prolonged and intensified El Niño events leading to an extinction state. As atmospheric partial pressure of carbon dioxide doubled from about 410 to about 860 ppm (parts per million) in the latest Permian, the meridional overturning circulation collapsed, the Hadley cell contracted, and El Niños intensified. The resultant deforestation, reef demise, and plankton crisis marked the start of a cascading environmental disaster. Reduced carbon sequestration initiated positive feedback, producing a warmer hothouse and, consequently, stronger El Niños. The compounding effects of elevated climate variability and mean state warming led to catastrophic but diachronous terrestrial and marine losses.
Collapse
Affiliation(s)
- Yadong Sun
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan 430074, P.R. China
- GeoZentrum Nordbayern, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Alexander Farnsworth
- School of Geographical Sciences, University of Bristol, Bristol BS81SS, UK
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Michael M Joachimski
- GeoZentrum Nordbayern, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Paul B Wignall
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK
| | - Leopold Krystyn
- Department of Palaeontology, University of Vienna, A-1090 Wien, Austria
| | - David P G Bond
- School of Environmental Sciences, University of Hull, Hull HU6 7RX, UK
| | - Domenico C G Ravidà
- Department of Applied Geology, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| | - Paul J Valdes
- School of Geographical Sciences, University of Bristol, Bristol BS81SS, UK
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
4
|
Quinn CB, Preckler-Quisquater S, Buchalski MR, Sacks BN. Whole Genomes Inform Genetic Rescue Strategy for Montane Red Foxes in North America. Mol Biol Evol 2024; 41:msae193. [PMID: 39288165 PMCID: PMC11424165 DOI: 10.1093/molbev/msae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/07/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024] Open
Abstract
A few iconic examples have proven the value of facilitated gene flow for counteracting inbreeding depression and staving off extinction; yet, the practice is often not implemented for fear of causing outbreeding depression. Using genomic sequencing, climatic niche modeling, and demographic reconstruction, we sought to assess the risks and benefits of using translocations as a tool for recovery of endangered montane red fox (Vulpes vulpes) populations in the western United States. We demonstrated elevated inbreeding and homozygosity of deleterious alleles across all populations, but especially those isolated in the Cascade and Sierra Nevada ranges. Consequently, translocations would be expected to increase population growth by masking deleterious recessive alleles. Demographic reconstructions further indicated shallow divergences of less than a few thousand years among montane populations, suggesting low risk of outbreeding depression. These genomic-guided findings set the stage for future management, the documentation of which will provide a roadmap for recovery of other data-deficient taxa.
Collapse
Affiliation(s)
- Cate B Quinn
- Mammalian Ecology and Conservation Unit, Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
- California Department of Fish and Wildlife, Wildlife Genetics Research Unit, Wildlife Health Laboratory, Sacramento, CA, USA
- National Genomics Center for Wildlife and Fish Conservation, USDA Forest Service, Rocky Mountain Research Station, Missoula, MT, USA
| | - Sophie Preckler-Quisquater
- Mammalian Ecology and Conservation Unit, Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Michael R Buchalski
- California Department of Fish and Wildlife, Wildlife Genetics Research Unit, Wildlife Health Laboratory, Sacramento, CA, USA
| | - Benjamin N Sacks
- Mammalian Ecology and Conservation Unit, Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| |
Collapse
|
5
|
Buckley SJ, Brauer CJ, Unmack PJ, Hammer MP, Adams M, Beatty SJ, Morgan DL, Beheregaray LB. Long-term climatic stability drives accumulation and maintenance of divergent freshwater fish lineages in a temperate biodiversity hotspot. Heredity (Edinb) 2024; 133:149-159. [PMID: 38918613 PMCID: PMC11349885 DOI: 10.1038/s41437-024-00700-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
Anthropogenic climate change is forecast to drive regional climate disruption and instability across the globe. These impacts are likely to be exacerbated within biodiversity hotspots, both due to the greater potential for species loss but also to the possibility that endemic lineages might not have experienced significant climatic variation in the past, limiting their evolutionary potential to respond to rapid climate change. We assessed the role of climatic stability on the accumulation and persistence of lineages in an obligate freshwater fish group endemic to the southwest Western Australia (SWWA) biodiversity hotspot. Using 19,426 genomic (ddRAD-seq) markers and species distribution modelling, we explored the phylogeographic history of western (Nannoperca vittata) and little (Nannoperca pygmaea) pygmy perches, assessing population divergence and phylogenetic relationships, delimiting species and estimating changes in species distributions from the Pliocene to 2100. We identified two deep phylogroups comprising three divergent clusters, which showed no historical connectivity since the Pliocene. We conservatively suggest these represent three isolated species with additional intraspecific structure within one widespread species. All lineages showed long-term patterns of isolation and persistence owing to climatic stability but with significant range contractions likely under future climate change. Our results highlighted the role of climatic stability in allowing the persistence of isolated lineages in the SWWA. This biodiversity hotspot is under compounding threat from ongoing climate change and habitat modification, which may further threaten previously undetected cryptic diversity across the region.
Collapse
Affiliation(s)
- Sean James Buckley
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia
- School of Biological Sciences, University of Western Australia, Perth, WA, 6000, Australia
- Molecular Ecology and Evolution Group, School of Science, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Chris J Brauer
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia
| | - Peter J Unmack
- Centre for Applied Water Science, University of Canberra, Canberra, ACT 2601, Australia
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Michael P Hammer
- Natural Sciences, Museum and Art Gallery of the Northern Territory, Darwin, NT, 0801, Australia
| | - Mark Adams
- Evolutionary Biology Unit, South Australian Museum, Adelaide, SA, 5000, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5000, Australia
| | - Stephen J Beatty
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Murdoch, WA, 6150, Australia
| | - David L Morgan
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Murdoch, WA, 6150, Australia
| | - Luciano B Beheregaray
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia.
| |
Collapse
|
6
|
Bede-Fazekas Á, Somodi I. Precipitation and temperature timings underlying bioclimatic variables rearrange under climate change globally. GLOBAL CHANGE BIOLOGY 2024; 30:e17496. [PMID: 39268690 DOI: 10.1111/gcb.17496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 09/17/2024]
Abstract
Modeling how climate change may affect the potential distribution of species and communities typically utilizes bioclimatic variables. Distribution predictions rely on the values of the bioclimatic variable (e.g., precipitation of the wettest quarter). However, the ecological meaning of most of these variables depends strongly on the within-year position of a specific climate period (SCP), for example, the wettest quarter of the year, which is often overlooked. Our aim was to determine how the within-year position of the SCPs would shift (SCP shift) in reaction to climate change in a global context. We calculated the deviations of the future within-year position of the SCPs relative to the reference period. We used four future time periods, four scenarios, and four CMIP6 global climate models (GCMs) to provide an ensemble of expectations regarding SCP shifts and locate the spatial hotspots of the shifts. Also, the size and frequency of the SCP shifts were subjected to linear models to evaluate the importance of the impact modeler's decision on time period, scenario, and GCM. We found ample examples of SCP shifts exceeding 2 months, with 6-month shifts being predicted as well. Many areas in the tropics are expected to experience both temperature and precipitation-related shifts, but precipitation-related shifts are abundantly predicted for the temperate and arctic zones as well. The combined shifts at the Equator reinforce the likelihood of the emergence of no-analogue climates there. The shifts become more pronounced as time and scenario progress, while GCMs could not be ranked in a clear order in this respect. For most SCPs, the modeler's decision on the GCM was the least important, while the choice of time period was typically more important than the choice of scenario. Future predictive distribution models should account for SCP shifts and incorporate the phenomenon in the modeling efforts.
Collapse
Affiliation(s)
- Ákos Bede-Fazekas
- HUN-REN Centre for Ecological Research, Institute of Ecology and Botany, Vácrátót, Hungary
- Department of Environmental and Landscape Geography, Institute of Geography and Earth Sciences, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Imelda Somodi
- HUN-REN Centre for Ecological Research, Institute of Ecology and Botany, Vácrátót, Hungary
| |
Collapse
|
7
|
Biondi M, D’Alessandro P, Salvi D, Berrilli E, Iannella M. Past and current climate as a driver in shaping the distribution of the Longitarsus candidulus species group (Coleoptera: Chrysomelidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2024; 24:2. [PMID: 39367725 PMCID: PMC11452734 DOI: 10.1093/jisesa/ieae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/02/2024] [Accepted: 08/17/2024] [Indexed: 10/06/2024]
Abstract
Longitarsus candidulus (Foudras) is a thermophilic flea beetle species widely distributed in the Mediterranean Basin and associated with Daphne gnidium L. and Thymelaea hirsuta (L.). Longitarsus laureolae Biondi and Longitarsus leonardii Doguet, phylogenetically closely related to L. candidulus, show together a peculiar and rare disjunct distribution along the central-southern Apennines and the Cantabrian-Pyrenean mountain system, respectively. Both are associated with Daphne laureola L. in mesophilic habitats. We used "ecological niche modeling" to infer the Pleistocene dynamics in the distribution of the three flea beetle species and their host plants. We interpreted their current distributions, paying particular attention to the presumed time of species divergence as inferred from recent studies. The differentiation of L. laureolae and L. leonardii from L. candidulus likely represents a response to the marked climatic changes during the Late Pliocene. Such a split was likely associated with a trophic niche shift of the laureolae/leonardii ancestor towards the typically mesophilic host plant D. laureola. The subsequent split between L. laureolae and L. leonardii, possibly due at first to the niche competition, was then boosted by an allopatric divergence during the Middle Pleistocene, likely caused by a large area of low environmental suitability for both species, mainly located between the northern Apennines and the south-western Alps.
Collapse
Affiliation(s)
- Maurizio Biondi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Paola D’Alessandro
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Daniele Salvi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Emanuele Berrilli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Mattia Iannella
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| |
Collapse
|
8
|
Duan S, Yan L, Shen Z, Li X, Chen B, Li D, Qin H, Meegahakumbura MK, Wambulwa MC, Gao L, Chen W, Dong Y, Sheng J. Genomic analyses of agronomic traits in tea plants and related Camellia species. FRONTIERS IN PLANT SCIENCE 2024; 15:1449006. [PMID: 39253572 PMCID: PMC11381259 DOI: 10.3389/fpls.2024.1449006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024]
Abstract
The genus Camellia contains three types of domesticates that meet various needs of ancient humans: the ornamental C. japonica, the edible oil-producing C. oleifera, and the beverage-purposed tea plant C. sinensis. The genomic drivers of the functional diversification of Camellia domesticates remain unknown. Here, we present the genomic variations of 625 Camellia accessions based on a new genome assembly of C. sinensis var. assamica ('YK10'), which consists of 15 pseudo-chromosomes with a total length of 3.35 Gb and a contig N50 of 816,948 bp. These accessions were mainly distributed in East Asia, South Asia, Southeast Asia, and Africa. We profiled the population and subpopulation structure in tea tree Camellia to find new evidence for the parallel domestication of C. sinensis var. assamica (CSA) and C. sinensis var. sinensis (CSS). We also identified candidate genes associated with traits differentiating CSA, CSS, oilseed Camellia, and ornamental Camellia cultivars. Our results provide a unique global view of the genetic diversification of Camellia domesticates and provide valuable resources for ongoing functional and molecular breeding research.
Collapse
Affiliation(s)
- Shengchang Duan
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming, China
| | - Liang Yan
- College of Tea (Pu'er), West Yunnan University of Applied Sciences, Pu'er, China
- Pu'er Institute of Pu-erh Tea, Pu'er, China
| | - Zongfang Shen
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Science, Kunming, China
- University of Chinese Academy of Science, Beijing, China
| | - Xuzhen Li
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Baozheng Chen
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Dawei Li
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Hantao Qin
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, China
- University of Chinese Academy of Science, Beijing, China
| | - Muditha K Meegahakumbura
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, China
- Department of Export Agriculture, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla, Sri Lanka
| | - Moses C Wambulwa
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Science, Kunming, China
- Department of Life Sciences, School of Science and Computing, South Eastern Kenya University, Kitui, Kenya
| | - Lianming Gao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, China
- Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, China
| | - Wei Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming, China
| | - Yang Dong
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming, China
| | - Jun Sheng
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming, China
| |
Collapse
|
9
|
Hofmann S, Rödder D, Andermann T, Matschiner M, Riedel J, Baniya CB, Flecks M, Yang J, Jiang K, Jianping J, Litvinchuk SN, Martin S, Masroor R, Nothnagel M, Vershinin V, Zheng Y, Jablonski D, Schmidt J, Podsiadlowski L. Exploring Paleogene Tibet's warm temperate environments through target enrichment and phylogenetic niche modelling of Himalayan spiny frogs (Paini, Dicroglossidae). Mol Ecol 2024; 33:e17446. [PMID: 38946613 DOI: 10.1111/mec.17446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/25/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024]
Abstract
The Cenozoic topographic development of the Himalaya-Tibet orogen (HTO) substantially affected the paleoenvironment and biodiversity patterns of High Asia. However, concepts on the evolution and paleoenvironmental history of the HTO differ massively in timing, elevational increase and sequence of surface uplift of the different elements of the orogen. Using target enrichment of a large set of transcriptome-derived markers, ancestral range estimation and paleoclimatic niche modelling, we assess a recently proposed concept of a warm temperate paleo-Tibet in Asian spiny frogs of the tribe Paini and reconstruct their historical biogeography. That concept was previously developed in invertebrates. Because of their early evolutionary origin, low dispersal capacity, high degree of local endemism, and strict dependence on temperature and humidity, the cladogenesis of spiny frogs may echo the evolution of the HTO paleoenvironment. We show that diversification of main lineages occurred during the early to Mid-Miocene, while the evolution of alpine taxa started during the late Miocene/early Pliocene. Our distribution and niche modelling results indicate range shifts and niche stability that may explain the modern disjunct distributions of spiny frogs. They probably maintained their (sub)tropical or (warm)temperate preferences and moved out of the ancestral paleo-Tibetan area into the Himalaya as the climate shifted, as opposed to adapting in situ. Based on ancestral range estimation, we assume the existence of low-elevation, climatically suitable corridors across paleo-Tibet during the Miocene along the Kunlun, Qiangtang and/or Gangdese Shan. Our results contribute to a deeper understanding of the mechanisms and processes of faunal evolution in the HTO.
Collapse
Affiliation(s)
- Sylvia Hofmann
- Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig, Bonn, Germany
| | - Dennis Rödder
- Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig, Bonn, Germany
| | - Tobias Andermann
- Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | | | - Jendrian Riedel
- Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig, Bonn, Germany
| | - Chitra B Baniya
- Central Department of Botany, Tribhuvan University, Kathmandu, Nepal
| | - Morris Flecks
- Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig, Bonn, Germany
| | - Jianhuan Yang
- Kadoorie Conservation China, Kadoorie Farm and Botanic Garden, Hong Kong, China
| | - Ke Jiang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Jiang Jianping
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | | | - Sebastian Martin
- Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig, Bonn, Germany
| | | | - Michael Nothnagel
- Statistical Genetics and Bioinformatics, Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Vladimir Vershinin
- Institute of Plant and Animal Ecology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
- Institute of Natural Sciences and Mathematics, Eltsyn Ural Federal University, Yekaterinburg, Russia
| | - Yuchi Zheng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Daniel Jablonski
- Department of Zoology, Comenius University in Bratislava, Bratislava, Slovakia
| | - Joachim Schmidt
- General and Systematic Zoology, Institute of Biosciences, University of Rostock, Rostock, Germany
| | - Lars Podsiadlowski
- Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig, Bonn, Germany
| |
Collapse
|
10
|
Hagen ER, Vasconcelos T, Boyko JD, Beaulieu JM. Investigating historical drivers of latitudinal gradients in polyploid plant biogeography: A multiclade perspective. AMERICAN JOURNAL OF BOTANY 2024; 111:e16356. [PMID: 38867412 DOI: 10.1002/ajb2.16356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 06/14/2024]
Abstract
PREMISE The proportion of polyploid plants in a community increases with latitude, and different hypotheses have been proposed about which factors drive this pattern. Here, we aimed to understand the historical causes of the latitudinal polyploidy gradient using a combination of ancestral state reconstruction methods. Specifically, we assessed whether (1) polyploidization enables movement to higher latitudes (i.e., polyploidization precedes occurrences in higher latitudes) or (2) higher latitudes facilitate polyploidization (i.e., occurrence in higher latitudes precedes polyploidization). METHODS We reconstructed the ploidy states and ancestral niches of 1032 angiosperm species at four paleoclimatic time slices ranging from 3.3 million years ago to the present, comprising taxa from four well-represented clades: Onagraceae, Primulaceae, Solanum (Solanaceae), and Pooideae (Poaceae). We used ancestral niche reconstruction models alongside a customized discrete character evolution model to allow reconstruction of states at specific time slices. Patterns of latitudinal movement were reconstructed and compared in relation to inferred ploidy shifts. RESULTS No single hypothesis applied equally well across all analyzed clades. While significant differences in median latitudinal occurrence were detected in the largest clade, Poaceae, no significant differences were detected in latitudinal movement in any clade. CONCLUSIONS Our preliminary study is the first to attempt to connect ploidy changes to continuous latitudinal movement, but we cannot favor one hypothesis over another. Given that patterns seem to be clade-specific, more clades must be analyzed in future studies for generalities to be drawn.
Collapse
Affiliation(s)
- Eric R Hagen
- Department of Biological Sciences, University of Arkansas, Fayetteville, 72701, AR, USA
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, M5S 3B2, ON, Canada
| | - Thais Vasconcelos
- Department of Biological Sciences, University of Arkansas, Fayetteville, 72701, AR, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, 48109, MI, USA
| | - James D Boyko
- Department of Biological Sciences, University of Arkansas, Fayetteville, 72701, AR, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, 48109, MI, USA
- Michigan Institute for Data Science, University of Michigan, Ann Arbor, 48109, MI, USA
| | - Jeremy M Beaulieu
- Department of Biological Sciences, University of Arkansas, Fayetteville, 72701, AR, USA
| |
Collapse
|
11
|
Pavón-Vázquez CJ, Rana Q, Farleigh K, Crispo E, Zeng M, Liliah J, Mulcahy D, Ascanio A, Jezkova T, Leaché AD, Flouri T, Yang Z, Blair C. Gene Flow and Isolation in the Arid Nearctic Revealed by Genomic Analyses of Desert Spiny Lizards. Syst Biol 2024; 73:323-342. [PMID: 38190300 DOI: 10.1093/sysbio/syae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 12/18/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024] Open
Abstract
The opposing forces of gene flow and isolation are two major processes shaping genetic diversity. Understanding how these vary across space and time is necessary to identify the environmental features that promote diversification. The detection of considerable geographic structure in taxa from the arid Nearctic has prompted research into the drivers of isolation in the region. Several geographic features have been proposed as barriers to gene flow, including the Colorado River, Western Continental Divide (WCD), and a hypothetical Mid-Peninsular Seaway in Baja California. However, recent studies suggest that the role of barriers in genetic differentiation may have been overestimated when compared to other mechanisms of divergence. In this study, we infer historical and spatial patterns of connectivity and isolation in Desert Spiny Lizards (Sceloporus magister) and Baja Spiny Lizards (Sceloporus zosteromus), which together form a species complex composed of parapatric lineages with wide distributions in arid western North America. Our analyses incorporate mitochondrial sequences, genomic-scale data, and past and present climatic data to evaluate the nature and strength of barriers to gene flow in the region. Our approach relies on estimates of migration under the multispecies coalescent to understand the history of lineage divergence in the face of gene flow. Results show that the S. magister complex is geographically structured, but we also detect instances of gene flow. The WCD is a strong barrier to gene flow, while the Colorado River is more permeable. Analyses yield conflicting results for the catalyst of differentiation of peninsular lineages in S. zosteromus. Our study shows how large-scale genomic data for thoroughly sampled species can shed new light on biogeography. Furthermore, our approach highlights the need for the combined analysis of multiple sources of evidence to adequately characterize the drivers of divergence.
Collapse
Affiliation(s)
- Carlos J Pavón-Vázquez
- Department of Biological Sciences, New York City College of Technology, The City University of New York, 285 Jay Street, Brooklyn, NY 11201, USA
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Colonia Los Reyes Ixtacala, Tlalnepantla, Estado de México, C.P. 54090, México
| | - Qaantah Rana
- Department of Biological Sciences, New York City College of Technology, The City University of New York, 285 Jay Street, Brooklyn, NY 11201, USA
| | - Keaka Farleigh
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Erika Crispo
- Department of Biology, Pace University, One Pace Plaza, New York, NY 10038, USA
| | - Mimi Zeng
- Department of Biological Sciences, New York City College of Technology, The City University of New York, 285 Jay Street, Brooklyn, NY 11201, USA
| | - Jeevanie Liliah
- Department of Biological Sciences, New York City College of Technology, The City University of New York, 285 Jay Street, Brooklyn, NY 11201, USA
| | - Daniel Mulcahy
- Collection Future, Museum für Naturkunde, Leibniz-Institute for Evolution and Biodiversity Science, Berlin 10115, Germany
| | - Alfredo Ascanio
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Tereza Jezkova
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Adam D Leaché
- Department of Biology & Burke Museum of Natural History and Culture, University of Washington, Seattle, WA 98195, USA
| | - Tomas Flouri
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Ziheng Yang
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Christopher Blair
- Department of Biological Sciences, New York City College of Technology, The City University of New York, 285 Jay Street, Brooklyn, NY 11201, USA
- Biology PhD Program, CUNY Graduate Center, 365 5th Ave., New York, NY 10016, USA
| |
Collapse
|
12
|
Weng YM, Kavanaugh DH, Schoville SD. Evidence for Admixture and Rapid Evolution During Glacial Climate Change in an Alpine Specialist. Mol Biol Evol 2024; 41:msae130. [PMID: 38935588 PMCID: PMC11247348 DOI: 10.1093/molbev/msae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/30/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024] Open
Abstract
The pace of current climate change is expected to be problematic for alpine flora and fauna, as their adaptive capacity may be limited by small population size. Yet, despite substantial genetic drift following post-glacial recolonization of alpine habitats, alpine species are notable for their success surviving in highly heterogeneous environments. Population genomic analyses demonstrating how alpine species have adapted to novel environments with limited genetic diversity remain rare, yet are important in understanding the potential for species to respond to contemporary climate change. In this study, we explored the evolutionary history of alpine ground beetles in the Nebria ingens complex, including the demographic and adaptive changes that followed the last glacier retreat. We first tested alternative models of evolutionary divergence in the species complex. Using millions of genome-wide SNP markers from hundreds of beetles, we found evidence that the N. ingens complex has been formed by past admixture of lineages responding to glacial cycles. Recolonization of alpine sites involved a distributional range shift to higher elevation, which was accompanied by a reduction in suitable habitat and the emergence of complex spatial genetic structure. We tested several possible genetic pathways involved in adaptation to heterogeneous local environments using genome scan and genotype-environment association approaches. From the identified genes, we found enriched functions associated with abiotic stress responses, with strong evidence for adaptation to hypoxia-related pathways. The results demonstrate that despite rapid demographic change, alpine beetles in the N. ingens complex underwent rapid physiological evolution.
Collapse
Affiliation(s)
- Yi-Ming Weng
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA
- Okinawa Institute of Science and Technology, Graduate University, Okinawa, Japan
| | - David H Kavanaugh
- California Academy of Sciences, Department of Entomology, San Francisco, CA, USA
| | - Sean D Schoville
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
13
|
de Moraes Magaldi L, Gueratto PE, Ortega‐Abboud E, Sobral‐Souza T, Joron M, de Souza AP, Freitas AVL, Silva‐Brandão KL. Montane diversification as a mechanism of speciation in neotropical butterflies. Ecol Evol 2024; 14:e11704. [PMID: 39005883 PMCID: PMC11239956 DOI: 10.1002/ece3.11704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/11/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
The mountains in the Atlantic Forest domain are environments that harbor a high biodiversity, including species adapted to colder climates that were probably influenced by the climatic variations of the Pleistocene. To understand the phylogeographic pattern and assess the taxonomic boundaries between two sister montane species, a genomic study of the butterflies Actinote mantiqueira and A. alalia (Nymphalidae: Acraeini) was conducted. Analyses based on partial sequences of the mitochondrial gene COI (barcode region) failed to recover any phylogenetic or genetic structure discriminating the two species or sampling localities. However, single nucleotide polymorphisms gathered using Genotyping-by-Sequencing provided a strong isolation pattern in all analyses (genetic distance, phylogenetic hypothesis, clustering analyses, and F ST statistics) which is consistent with morphology, separating all individuals of A. alalia from all populations of A. mantiqueira. The three sampled mountain ranges where A. mantiqueira populations occur-Serra do Mar, Serra da Mantiqueira, and Poços de Caldas Plateau-were identified as three isolated clusters. Paleoclimate simulations indicate that both species' distributions changed according to climatic oscillations in the Pleistocene period, with the two species potentially occurring in areas of lower altitude during glacial periods when compared to the interglacial periods (as the present). Besides, a potential path between their distribution through the Serra do Mar Mountain range was inferred. Therefore, the Pleistocene climatic fluctuation had a significant impact on the speciation process between A. alalia and A. mantiqueira, which was brought on by isolation at different mountain summits during interglacial periods, as shown by the modeled historical distribution and the observed genetic structure.
Collapse
Affiliation(s)
- Luiza de Moraes Magaldi
- Departamento de Biologia Animal, Instituto de BiologiaUniversidade Estadual de CampinasCampinasSPBrazil
| | - Patrícia Eyng Gueratto
- Departamento de Biologia Animal, Instituto de BiologiaUniversidade Estadual de CampinasCampinasSPBrazil
| | - Enrique Ortega‐Abboud
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS, EPHE, IRDUniversité de MontpellierMontpellierFrance
| | | | - Mathieu Joron
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS, EPHE, IRDUniversité de MontpellierMontpellierFrance
| | - Anete Pereira de Souza
- Departamento de Biologia Vegetal, Instituto de BiologiaUniversidade Estadual de CampinasCampinasSPBrazil
| | | | | |
Collapse
|
14
|
Chevalier M, Broennimann O, Guisan A. Climate change may reveal currently unavailable parts of species' ecological niches. Nat Ecol Evol 2024; 8:1298-1310. [PMID: 38811837 DOI: 10.1038/s41559-024-02426-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/29/2024] [Indexed: 05/31/2024]
Abstract
The ability of climatic niche models to predict species extinction risks can be hampered if niches are incompletely quantified. This can occur when niches are estimated considering only currently available climatic conditions, disregarding the fact that climate change can open up portions of the fundamental niche that are currently inaccessible to species. Using a new metric, we estimate the prevalence of potential situations of fundamental niche truncation by measuring whether current ecological niche limits are contiguous to the boundaries of currently available climatic conditions for 24,944 species at the global scale in both terrestrial and marine realms and including animals and plants. We show that 12,172 (~49%) species are showing niche contiguity, particularly those inhabiting tropical ecosystems and the marine realm. Using niche expansion scenarios, we find that 86% of species showing niche contiguity could have a fundamental niche potentially expanding beyond current climatic limits, resulting in lower-yet still alarming-rates of predicted biodiversity loss, particularly within the tropics. Caution is therefore advised when forecasting future distributions of species presenting niche contiguity, particularly towards climatic limits that are predicted to expand in the future.
Collapse
Affiliation(s)
- Mathieu Chevalier
- IFREMER, Centre de Bretagne, DYNECO, Laboratoire d'Ecologie Benthique Côtière, Plouzané, France.
| | - Olivier Broennimann
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.
- Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland.
| | - Antoine Guisan
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.
- Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
15
|
Feng H, Banerjee AK, Guo W, Yuan Y, Duan F, Ng WL, Zhao X, Liu Y, Li C, Liu Y, Li L, Huang Y. Origin and evolution of a new tetraploid mangrove species in an intertidal zone. PLANT DIVERSITY 2024; 46:476-490. [PMID: 39280974 PMCID: PMC11390703 DOI: 10.1016/j.pld.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 09/18/2024]
Abstract
Polyploidy is a major factor in the evolution of plants, yet we know little about the origin and evolution of polyploidy in intertidal species. This study aimed to identify the evolutionary transitions in three true-mangrove species of the genus Acanthus distributed in the Indo-West Pacific region. For this purpose, we took an integrative approach that combined data on morphology, cytology, climatic niche, phylogeny, and biogeography of 493 samples from 42 geographic sites. Our results show that the Acanthus ilicifolius lineage distributed east of the Thai-Malay Peninsula possesses a tetraploid karyotype, which is morphologically distinct from that of the lineage on the west side. The haplotype networks and phylogenetic trees for the chloroplast genome and eight nuclear genes reveal that the tetraploid species has two sub-genomes, one each from A. ilicifolius and A . ebracteatus, the paternal and maternal parents, respectively. Population structure analysis also supports the hybrid speciation history of the new tetraploid species. The two sub-genomes of the tetraploid species diverged from their diploid progenitors during the Pleistocene. Environmental niche models revealed that the tetraploid species not only occupied the near-entire niche space of the diploids, but also expanded into novel environments. Our findings suggest that A. ilicifolius species distributed on the east side of the Thai-Malay Peninsula should be regarded as a new species, A. tetraploideus, which originated from hybridization between A. ilicifolius and A. ebracteatus, followed by chromosome doubling. This is the first report of a true-mangrove allopolyploid species that can reproduce sexually and clonally reproduction, which explains the long-term adaptive potential of the species.
Collapse
Affiliation(s)
- Hui Feng
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Achyut Kumar Banerjee
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Wuxia Guo
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, Guangdong, China
| | - Yang Yuan
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Fuyuan Duan
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Wei Lun Ng
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia
| | - Xuming Zhao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Yuting Liu
- School of Agriculture, Sun Yat-sen University, Shenzhen 518107, Guangdong, China
| | - Chunmei Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Ying Liu
- School of Ecology, Sun Yat-sen University, Shenzhen 518107, Guangdong, China
| | - Linfeng Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Yelin Huang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| |
Collapse
|
16
|
Lu WX, Rao GY. The use of an integrated framework combining eco-evolutionary data and species distribution models to predict range shifts of species under changing climates. MethodsX 2024; 12:102608. [PMID: 38379718 PMCID: PMC10878785 DOI: 10.1016/j.mex.2024.102608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/06/2024] [Indexed: 02/22/2024] Open
Abstract
Species distribution models (SDMs) are powerful tools that can predict potential distributions of species under climate change. However, traditional SDMs that rely on current species occurrences may underestimate their climatic tolerances and potential distributions. To address this limitation, we developed an integrated framework that incorporates eco-evolutionary data into SDMs. In our approach, the fundamental niches of species are constructed by their realized niches in different periods, and those fundamental niches are used to predict potential distributions of species. Our framework includes multiple phylogenetic analyses, such as niche evolution rate estimation and ancestral area reconstruction. These analyses provide deeper insights into the responses of species to climate change. We applied our approach to the Chrysanthemum zawadskii species complex to evaluate its efficacy through comprehensive performance evaluations and validation tests. Our framework can be applied broadly to species with available phylogenetic data and occurrence records, making it a valuable tool for understanding species adaptation in a rapidly changing world.•Integrating the niches of species in different periods estimates more complete climatic envelopes for them.•Combining eco-evolutionary data with SDMs predicts more comprehensive potential distributions of species under climate change.•Our framework provides a general procedure for species with phylogenetic data and occurrence records.
Collapse
Affiliation(s)
- Wen-Xun Lu
- School of Life Sciences, Peking University, Beijing, China
| | - Guang-Yuan Rao
- School of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
17
|
Pereira AG, Antonelli A, Silvestro D, Faurby S. Two Major Extinction Events in the Evolutionary History of Turtles: One Caused by an Asteroid, the Other by Hominins. Am Nat 2024; 203:644-654. [PMID: 38781523 DOI: 10.1086/729604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
AbstractWe live in a time of accelerated biological extinctions that has the potential to mirror past mass extinction events. However, the rarity of mass extinctions and the restructuring of diversity they cause complicate direct comparisons between the current extinction crisis and earlier events. Among animals, turtles (Testudinata) are one of few groups that have both a rich fossil record and sufficiently stable ecological and functional roles to enable meaningful comparisons between the end-Cretaceous mass extinction (∼66 Ma) and the ongoing wave of extinctions. Here we analyze the fossil record of the entire turtle clade and identify two peaks in extinction rates over their evolutionary history. The first coincides with the Cretaceous-Paleogene transition, reflecting patterns previously reported for other taxa. The second major extinction event started in the Pliocene and continues until now. This peak is detectable only for terrestrial turtles and started much earlier in Africa and Eurasia than elsewhere. On the basis of the timing, geography, and functional group of this extinction event, we postulate a link to co-occurring hominins rather than climate change as the cause. These results lend further support to the view that negative biodiversity impacts were already incurred by our ancestors and related lineages and demonstrate the severity of this continued impact through human activities.
Collapse
|
18
|
Fonseca EM, Pope NS, Peterman WE, Werneck FP, Colli GR, Carstens BC. Genetic structure and landscape effects on gene flow in the Neotropical lizard Norops brasiliensis (Squamata: Dactyloidae). Heredity (Edinb) 2024; 132:284-295. [PMID: 38575800 PMCID: PMC11166928 DOI: 10.1038/s41437-024-00682-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 04/06/2024] Open
Abstract
One key research goal of evolutionary biology is to understand the origin and maintenance of genetic variation. In the Cerrado, the South American savanna located primarily in the Central Brazilian Plateau, many hypotheses have been proposed to explain how landscape features (e.g., geographic distance, river barriers, topographic compartmentalization, and historical climatic fluctuations) have promoted genetic structure by mediating gene flow. Here, we asked whether these landscape features have influenced the genetic structure and differentiation in the lizard species Norops brasiliensis (Squamata: Dactyloidae). To achieve our goal, we used a genetic clustering analysis and estimate an effective migration surface to assess genetic structure in the focal species. Optimized isolation-by-resistance models and a simulation-based approach combined with machine learning (convolutional neural network; CNN) were then used to infer current and historical effects on population genetic structure through 12 unique landscape models. We recovered five geographically distributed populations that are separated by regions of lower-than-expected gene flow. The results of the CNN showed that geographic distance is the sole predictor of genetic variation in N. brasiliensis, and that slope, rivers, and historical climate had no discernible influence on gene flow. Our novel CNN approach was accurate (89.5%) in differentiating each landscape model. CNN and other machine learning approaches are still largely unexplored in landscape genetics studies, representing promising avenues for future research with increasingly accessible genomic datasets.
Collapse
Affiliation(s)
- Emanuel M Fonseca
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Nathaniel S Pope
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403, USA
| | - William E Peterman
- School of Environment and Natural Resources, The Ohio State University, Columbus, OH, USA
| | - Fernanda P Werneck
- Coordenação de Biodiversidade, Programa de Coleções Científicas Biológicas, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Brazil
| | - Guarino R Colli
- Departamento de Zoologia, Universidade de Brasília, Brasília, Brazil
| | - Bryan C Carstens
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
19
|
Pham MP, Vu DD, Nguyen TT, Nguyen VS. Predictive ecological niche model for Cinnamomumparthenoxylon (Jack) Meisn. (Lauraceae) from Last Glacial Maximum to future in Vietnam. Biodivers Data J 2024; 12:e122325. [PMID: 38827585 PMCID: PMC11140409 DOI: 10.3897/bdj.12.e122325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/26/2024] [Indexed: 06/04/2024] Open
Abstract
Cinnamomumparthenoxylon (Jack) Meisn. is a tree in genus Cinnamomum that has been facing global threats due to forest degradation and habitat fragmentation. Many recent studies aim to describe habitats and assess population and species genetic diversity for species conservation by expanding afforestation models for this species. Understanding their current and future potential distribution plays a major role in guiding conservation efforts. Using five modern machine-learning algorithms available on Google Earth Engine helped us evaluate suitable habitats for the species. The results revealed that Random Forest (RF) had the highest accuracy for model comparison, outperforming Support Vector Machine (SVM), Classification and Regression Trees (CART), Gradient Boosting Decision Tree (GBDT) and Maximum Entropy (MaxEnt). The results also showed that the extremely suitable ecological areas for the species are mostly distributed in northern Vietnam, followed by the North Central Coast and the Central Highlands. Elevation, Temperature Annual Range and Mean Diurnal Range were the three most important parameters affecting the potential distribution of C.parthenoxylon. Evaluation of the impact of climate on its distribution under different climate scenarios in the past (Last Glacial Maximum and Mid-Holocene), in the present (Worldclim) and in the future (using four climate change scenarios: ACCESS, MIROC6, EC-Earth3-Veg and MRI-ESM2-0) revealed that of C.parthenoxylon would likely expand to the northeast, while a large area of central Vietnam will gradually lose its adaptive capacity by 2100.
Collapse
Affiliation(s)
- Mai-Phuong Pham
- Join Vietnam–Russia Tropical Science and Technology Research Center, Hanoi, Vietnam, Ha Noi, VietnamJoin Vietnam–Russia Tropical Science and Technology Research Center, Hanoi, VietnamHa NoiVietnam
- Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology, Ha Noi, VietnamGraduate University of Science and Technology (GUST), Vietnam Academy of Science and TechnologyHa NoiVietnam
| | - Duy Dinh Vu
- Join Vietnam–Russia Tropical Science and Technology Research Center, Hanoi, Vietnam, Ha Noi, VietnamJoin Vietnam–Russia Tropical Science and Technology Research Center, Hanoi, VietnamHa NoiVietnam
| | - Thanh Tuan Nguyen
- Vietnam National University of Forestry at Dong Nai, Dong Nai, VietnamVietnam National University of Forestry at Dong NaiDong NaiVietnam
| | - Van Sinh Nguyen
- Institute of Ecology and Biological Resources, Vietnamese Academy of Science and Technologies, Hanoi, VietnamInstitute of Ecology and Biological Resources, Vietnamese Academy of Science and TechnologiesHanoiVietnam
| |
Collapse
|
20
|
Zhou Y, Tian J, Han M, Lu J. The phylogenetic relationship and demographic history of rhesus macaques ( Macaca mulatta) in subtropical and temperate regions, China. Ecol Evol 2024; 14:e11429. [PMID: 38770128 PMCID: PMC11103769 DOI: 10.1002/ece3.11429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/23/2024] [Accepted: 05/03/2024] [Indexed: 05/22/2024] Open
Abstract
Pleistocene climatic oscillations exerted significant influences on the genetic structure and demography of rhesus macaque (Macaca mulatta) in eastern China. However, the evolutionary history of rhesus macaques in subtropical and temperate China remained unclear and/or controversial. Herein, we analyzed the autosomes, mitochondrial genomes, and Y-chromosomes from 84 individuals of Chinese rhesus macaque. The results revealed that (1) all individuals were clustered into pan-west and pan-east genetic groups, which exhibited Shaanxi Province as the northernmost region of western dispersal route of rhesus macaques in China; (2) in subtropical and temperate China, rhesus macaques were divided into four lineages (TH, DB, HS, and QL), and their divergence times corresponded to the Penultimate Glaciation (300-130 kya) and Last Glaciation (70-10 kya), respectively; (3) the individuals from Mt. Taihangshan (TH) are closely related to individuals from Mt. Dabashan (DB) in the autosomal tree, rather than individuals from Mt. Huangshan (HS) as indicated by the mitogenome tree, which supports the hypothesis that the ancestral rhesus macaques radiated into Mt. Taihangshan from Mt. Huangshan via Mt. Dabashan; and (4) the demographic scenario of the four lineages showed the ancestral rhesus macaques bottleneck and expansion corresponding to the suitable habitat reduction and expansion, which confirmed they had experienced northward recolonization and southward retreat events from Mt. Huangshan area via Northern China Plain to Northernmost China along with Pleistocene glacial cycles. This study provides a new insight into understanding how Pleistocene glaciation has influenced faunal diversity in subtropical and temperate China, especially for those exhibiting differential patterns of sex dispersal.
Collapse
Affiliation(s)
- Yanyan Zhou
- School of Life SciencesZhengzhou UniversityZhengzhouChina
- Institute of Biodiversity and EcologyZhengzhou UniversityZhengzhouChina
| | - Jundong Tian
- School of Life SciencesZhengzhou UniversityZhengzhouChina
- Institute of Biodiversity and EcologyZhengzhou UniversityZhengzhouChina
| | - Mengya Han
- School of Life SciencesZhengzhou UniversityZhengzhouChina
- Institute of Biodiversity and EcologyZhengzhou UniversityZhengzhouChina
| | - Jiqi Lu
- School of Life SciencesZhengzhou UniversityZhengzhouChina
- Institute of Biodiversity and EcologyZhengzhou UniversityZhengzhouChina
| |
Collapse
|
21
|
Tian L, Xu R, Chen D, Ananjeva NB, Brown RM, Min MS, Cai B, Mijidsuren B, Zhang B, Guo X. Range-Wide Phylogeography and Ecological Niche Modeling Provide Insights into the Evolutionary History of the Mongolian Racerunner ( Eremias argus) in Northeast Asia. Animals (Basel) 2024; 14:1124. [PMID: 38612363 PMCID: PMC11011046 DOI: 10.3390/ani14071124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
The Mongolian racerunner, Eremias argus, is a small lizard endemic to Northeast Asia that can serve as an excellent model for investigating how geography and past climate change have jointly influenced the evolution of biodiversity in this region. To elucidate the processes underlying its diversification and demography, we reconstructed the range-wide phylogeographic pattern and evolutionary trajectory, using phylogenetic, population genetic, landscape genetic, Bayesian phylogeographic reconstruction and ecological niche modeling approaches. Phylogenetic analyses of the mtDNA cyt b gene revealed eight lineages that were unbounded by geographic region. The genetic structure of E. argus was mainly determined by geographic distance. Divergence dating indicated that E. argus and E. brenchleyi diverged during the Mid-Pliocene Warm Period. E. argus was estimated to have coalesced at~0.4351 Ma (Marine Isotope Stage 19). Bayesian phylogeographic diffusion analysis revealed out-of-Inner Mongolia and rapid colonization events from the end of the Last Interglacial to the Last Glacial Maximum, which is consistent with the expanded suitable range of the Last Glacial Maximum. Pre-Last Glacial Maximum growth of population is presented for most lineages of E. argus. The Glacial Maximum contraction model and the previous multiple glacial refugia hypotheses are rejected. This may be due to an increase in the amount of climatically favorable habitats in Northeast Asia. Furthermore, E. argus barbouri most likely represents an invalid taxon. The present study is the first to report a range-wide phylogeography of reptiles over such a large region in Northeast Asia. Our results make a significant contribution towards understanding the biogeography of the entire Northeast Asia.
Collapse
Affiliation(s)
- Lili Tian
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610223, China; (L.T.); (R.X.); (B.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Xu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610223, China; (L.T.); (R.X.); (B.C.)
| | - Dali Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China;
| | - Natalia B. Ananjeva
- Zoological Institute, Russian Academy of Sciences, St. Petersburg 199034, Russia;
| | - Rafe M. Brown
- Biodiversity Institute, Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA;
| | - Mi-Sook Min
- Conservation Genome Resource Bank for Korean Wildlife, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea;
| | - Bo Cai
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610223, China; (L.T.); (R.X.); (B.C.)
| | - Byambasuren Mijidsuren
- Plant Protection Research Institute, Mongolian University of Life Sciences, Ulaanbaatar 210153, Mongolia;
| | - Bin Zhang
- College of Life Sciences and Technology, Inner Mongolia Normal University, Hohhot 010022, China;
| | - Xianguang Guo
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610223, China; (L.T.); (R.X.); (B.C.)
| |
Collapse
|
22
|
Coello AJ, Vargas P, Cano E, Riina R, Fernández-Mazuecos M. Phylogenetics and phylogeography of Euphorbia canariensis reveal an extreme Canarian-Asian disjunction but limited inter-island colonization. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:398-414. [PMID: 38444147 DOI: 10.1111/plb.13635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/05/2024] [Indexed: 03/07/2024]
Abstract
Euphorbia canariensis is an iconic endemic species representative of the lowland xerophytic communities of the Canary Islands. It is widely distributed in the archipelago despite having diasporas unspecialized for long-distance dispersal. Here, we reconstructed the evolutionary history of E. canariensis at two levels: a time-calibrated phylogenetic analysis aimed at clarifying interspecific relationships and large-scale biogeographic patterns; and a phylogeographic study focused on the history of colonization across the Canary Islands. For the phylogenetic study, we sequenced the ITS region for E. canariensis and related species of Euphorbia sect. Euphorbia. For the phylogeographic study, we sequenced two cpDNA regions for 28 populations representing the distribution range of E. canariensis. The number of inter-island colonization events was explored using PAICE, a recently developed method that includes a sample size correction. Additionally, we used species distribution modelling (SDM) to evaluate environmental suitability for E. canariensis through time. Phylogenetic results supported a close relationship between E. canariensis and certain Southeast Asian species (E. epiphylloides, E. lacei, E. sessiliflora). In the Canaries, E. canariensis displayed a west-to-east colonization pattern, not conforming to the "progression rule", i.e. the concordance between phylogeographic patterns and island emergence times. We estimated between 20 and 50 inter-island colonization events, all of them in the Quaternary, and SDM suggested a late Quaternary increase in environmental suitability for E. canariensis. The extreme biogeographic disjunction between Macaronesia and Southeast Asia (ca. 11,000 km) parallels that found in a few other genera (Pinus, Dracaena). We hypothesize that these disjunctions are better explained by extinction across north Africa and southwest Asia rather than long-distance dispersal. The relatively low number of inter-island colonization events across the Canaries is congruent with the low dispersal capabilities of E. canariensis.
Collapse
Affiliation(s)
- A J Coello
- Departamento de Biología (Botánica), Universidad Autónoma de Madrid, Madrid, Spain
- Real Jardín Botánico (RJB), CSIC, Madrid, Spain
| | - P Vargas
- Real Jardín Botánico (RJB), CSIC, Madrid, Spain
| | - E Cano
- Real Jardín Botánico (RJB), CSIC, Madrid, Spain
| | - R Riina
- Real Jardín Botánico (RJB), CSIC, Madrid, Spain
| | - M Fernández-Mazuecos
- Departamento de Biología (Botánica), Universidad Autónoma de Madrid, Madrid, Spain
- Real Jardín Botánico (RJB), CSIC, Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
23
|
Jablonski D, Mebert K, Masroor R, Simonov E, Kukushkin O, Abduraupov T, Hofmann S. The Silk roads: phylogeography of Central Asian dice snakes (Serpentes: Natricidae) shaped by rivers in deserts and mountain valleys. Curr Zool 2024; 70:150-162. [PMID: 38726254 PMCID: PMC11078056 DOI: 10.1093/cz/zoad008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 03/02/2023] [Indexed: 05/12/2024] Open
Abstract
Influenced by rapid changes in climate and landscape features since the Miocene, widely distributed species provide suitable models to study the environmental impact on their evolution and current genetic diversity. The dice snake Natrix tessellata, widely distributed in the Western Palearctic is one such species. We aimed to resolve a detailed phylogeography of N. tessellata with a focus on the Central Asian clade with 4 and the Anatolia clade with 3 mitochondrial lineages, trace their origin, and correlate the environmental changes that affected their distribution through time. The expected time of divergence of both clades began at 3.7 Mya in the Pliocene, reaching lineage differentiation approximately 1 million years later. The genetic diversity in both clades is rich, suggesting different ancestral areas, glacial refugia, demographic changes, and colonization routes. The Caspian lineage is the most widespread lineage in Central Asia, distributed around the Caspian Sea and reaching the foothills of the Hindu Kush Mountains in Afghanistan, and Eastern European lowlands in the west. Its distribution is limited by deserts, mountains, and cold steppe environments. Similarly, Kazakhstan and Uzbekistan lineages followed the Amu Darya and the Syr Darya water systems in Central Asia, with ranges delimited by the large Kyzylkum and Karakum deserts. On the western side, there are several lineages within the Anatolia clade that converged in the central part of the peninsula with 2 being endemic to Western Asia. The distribution of both main clades was affected by expansion from their Pleistocene glacial refugia around the Caspian Sea and in the valleys of Central Asia as well as by environmental changes, mostly through aridification.
Collapse
Affiliation(s)
- Daniel Jablonski
- Department of Zoology, Comenius University in Bratislava, Bratislava, Slovakia
| | | | - Rafaqat Masroor
- Pakistan Museum of Natural History, Shakarparian, Islamabad, Pakistan
| | - Evgeniy Simonov
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Oleg Kukushkin
- T. I. Vyazemski Karadag Scientific Station—Nature Reserve—Branch of A.O. Kovalevsky Institute of Biology of the Southern Seas, Theodosia, Crimea
- Zoological Institute of the RAS, Saint Petersbourg, Russia
| | - Timur Abduraupov
- Institute of Zoology, Academy of Sciences of the Republic of Uzbekistan, Yunusabad, Tashkent, Uzbekistan
| | - Sylvia Hofmann
- Museum Koenig Bonn, LIB—Leibniz Institute for the Analysis of Biodiversity Change, Bonn, Germany
- UFZ – Helmholtz Centre for Environmental Research, Department of Conservation Biology, Permoserstrasse 15, 04318 Leipzig, Germany
| |
Collapse
|
24
|
Maki T, Sannomiya N, Hirao T, Fukui D. Scale-dependent influences of environmental, historical, and spatial processes on taxonomic and functional beta diversity of Japanese bat assemblages. Ecol Evol 2024; 14:e11277. [PMID: 38628917 PMCID: PMC11019122 DOI: 10.1002/ece3.11277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/14/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024] Open
Abstract
This study investigated the relative influences of environmental, spatial, and historical factors, including the island-specific history of land connectivity, on bat assemblages in the Japanese Archipelago. We collected bat distribution data from 1408 studies and assigned them to Japan's First Standard Grid (approximately 6400 km2). Japanese bat assemblages were analyzed at two scales: the entire Japanese Archipelago comprised 16 islands and exclusively the four main islands. At first, we calculated taxonomic and functional total beta diversity (β total) by Jaccard pairwise dissimilarity and then divided this into turnover (β repl) and richness-difference (β rich) components. We conducted hierarchical clustering of taxonomic beta diversity to examine the influence of the two representative sea straits, Tsugaru and Tokara, which are considered biogeographical borders. Variation partitioning was conducted to evaluate the relative effects of the three factors on the beta diversity. Clustering revealed that the Tokara Strait bordered the two major clades; however, the Tsugaru Strait did not act as a biogeographical border for bats. In the variation partitioning, shared fraction between spatial and historical factors significantly explained taxonomic and functional β total and taxonomic β repl at the entire archipelago scale, but not at the four main islands scale extending only Tsugaru Strait but not Tokara Strait. Pure environmental factors significantly explained functional β total at both scales and taxonomic β total only at the four main islands scale. These results suggest that spatial and historical factors are more pronounced in biogeographical borders, primarily structuring assemblage composition at the entire archipelago scale, especially in taxonomic dimension. However, current environmental factors primarily shape the assemblage composition of Japanese bats at the main island scale. The difference in results between the two scales highlights that the primary processes governing assemblages of both dimensions depend on the quality of the dispersal barriers between terrestrial and aquatic barriers for bats.
Collapse
Affiliation(s)
- Takahiro Maki
- Amami Station, International Center for Island StudiesKagoshima UniversityKagoshimaJapan
- The University of Tokyo Forests, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Nozomi Sannomiya
- The University of Tokyo Forests, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Toshihide Hirao
- The University of Tokyo Chichibu Forest, Graduate School of Agricultural and Life SciencesThe University of TokyoSaitamaJapan
| | - Dai Fukui
- Fuji Iyashinomori Woodland Study Center, Graduate School of Agricultural and Life SciencesThe University of TokyoYamanashiJapan
| |
Collapse
|
25
|
Xiang KL, Wu SD, Lian L, He WC, Peng D, Peng HW, Zhang XN, Li HL, Xue JY, Shan HY, Xu GX, Liu Y, Wu ZQ, Wang W. Genomic data and ecological niche modeling reveal an unusually slow rate of molecular evolution in the Cretaceous Eupteleaceae. SCIENCE CHINA. LIFE SCIENCES 2024; 67:803-816. [PMID: 38087029 DOI: 10.1007/s11427-023-2448-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/11/2023] [Indexed: 04/06/2024]
Abstract
Living fossils are evidence of long-term sustained ecological success. However, whether living fossils have little molecular changes remains poorly known, particularly in plants. Here, we have introduced a novel method that integrates phylogenomic, comparative genomic, and ecological niche modeling analyses to investigate the rate of molecular evolution of Eupteleaceae, a Cretaceous relict angiosperm family endemic to East Asia. We assembled a high-quality chromosome-level nuclear genome, and the chloroplast and mitochondrial genomes of a member of Eupteleaceae (Euptelea pleiosperma). Our results show that Eupteleaceae is most basal in Ranunculales, the earliest-diverging order in eudicots, and shares an ancient whole-genome duplication event with the other Ranunculales. We document that Eupteleaceae has the slowest rate of molecular changes in the observed angiosperms. The unusually low rate of molecular evolution of Eupteleaceae across all three independent inherited genomes and genes within each of the three genomes is in association with its conserved genome architecture, ancestral woody habit, and conserved niche requirements. Our findings reveal the evolution and adaptation of living fossil plants through large-scale environmental change and also provide new insights into early eudicot diversification.
Collapse
Affiliation(s)
- Kun-Li Xiang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- China National Botanical Garden, Beijing, 100093, China
| | - Sheng-Dan Wu
- State Key Laboratory of Grassland Agro-Ecosystems and College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Lian Lian
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Wen-Chuang He
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Dan Peng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Huan-Wen Peng
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Ni Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Hong-Lei Li
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Jia-Yu Xue
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hong-Yan Shan
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Gui-Xia Xu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Yang Liu
- Fairylake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, 518004, China
| | - Zhi-Qiang Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| | - Wei Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
26
|
Marques V, Hinojosa JC, Dapporto L, Talavera G, Stefanescu C, Gutiérrez D, Vila R. The opposed forces of differentiation and admixture across glacial cycles in the butterfly Aglais urticae. Mol Ecol 2024; 33:e17304. [PMID: 38421113 DOI: 10.1111/mec.17304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024]
Abstract
Glacial cycles lead to periodic population interbreeding and isolation in warm-adapted species, which impact genetic structure and evolution. However, the effects of these processes on highly mobile and more cold-tolerant species are not well understood. This study aims to shed light on the phylogeographic history of Aglais urticae, a butterfly species with considerable dispersal ability, and a wide Palearctic distribution reaching the Arctic. Through the analysis of genomic data, four main genetic lineages are identified: European, Sierra Nevada, Sicily/Calabria/Peloponnese, and Eastern. The results indicate that the Sardo-Corsican endemic taxon ichnusa is a distinct species. The split between the relict lineages in southern Europe and the main European lineage is estimated to have happened 400-450 thousand years ago, with admixture observed during the Quaternary glacial cycles, and still ongoing, albeit to a much smaller extent. These results suggest that these lineages may be better treated as subspecific parapatric taxa. Ecological niche modelling supported the existence of both Mediterranean and extra-Mediterranean refugia during the glacial periods, with the main one located on the Atlantic coast. Nevertheless, gene flow between populations was possible, indicating that both differentiation and admixture have acted continuously across glacial cycles in this cold-tolerant butterfly, generally balancing each other but producing differentiated lineages in the southern peninsulas. We conclude that the population dynamics and the processes shaping the population genetic structure of cold-adapted species during the Quaternary ice ages may be different than those classically accepted for warm-adapted species.
Collapse
Affiliation(s)
- Valéria Marques
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Joan Carles Hinojosa
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Leonardo Dapporto
- Dipartimento di Biologia, Università degli Studi di Firenze, Sesto Fiorentino, Italy
| | - Gerard Talavera
- Institut Botànic de Barcelona (IBB), CSIC-CMCNB, Barcelona, Spain
| | - Constantí Stefanescu
- Natural Sciences Museum of Granollers, Granollers, Spain
- CREAF, Cerdanyola del Vallès, Spain
| | - David Gutiérrez
- Instituto de Investigación en Cambio Global (IICG), Universidad Rey Juan Carlos, Madrid, Spain
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, Madrid, Spain
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| |
Collapse
|
27
|
Sánchez KI, Recknagel H, Elmer KR, Avila LJ, Morando M. Tracing evolutionary trajectories in the presence of gene flow in South American temperate lizards (Squamata: Liolaemus kingii group). Evolution 2024; 78:716-733. [PMID: 38262697 DOI: 10.1093/evolut/qpae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/20/2023] [Accepted: 01/17/2024] [Indexed: 01/25/2024]
Abstract
Evolutionary processes behind lineage divergence often involve multidimensional differentiation. However, in the context of recent divergences, the signals exhibited by each dimension may not converge. In such scenarios, incomplete lineage sorting, gene flow, and scarce phenotypic differentiation are pervasive. Here, we integrated genomic (RAD loci of 90 individuals), phenotypic (linear and geometric traits of 823 and 411 individuals, respectively), spatial, and climatic data to reconstruct the evolutionary history of a speciation continuum of liolaemid lizards (Liolaemus kingii group). Specifically, we (a) inferred the population structure of the group and contrasted it with the phenotypic variability; (b) assessed the role of postdivergence gene flow in shaping phylogeographic and phenotypic patterns; and (c) explored ecogeographic drivers of diversification across time and space. We inferred eight genomic clusters exhibiting leaky genetic borders coincident with geographic transitions. We also found evidence of postdivergence gene flow resulting in transgressive phenotypic evolution in one species. Predicted ancestral niches unveiled suitable areas in southern and eastern Patagonia during glacial and interglacial periods. Our study underscores integrating different data and model-based approaches to determine the underlying causes of diversification, a challenge faced in the study of recently diverged groups. We also highlight Liolaemus as a model system for phylogeographic and broader evolutionary studies.
Collapse
Affiliation(s)
- Kevin I Sánchez
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales, Consejo Nacional de Investigaciones Científicas y Técnicas (IPEEC-CONICET), Puerto Madryn, Chubut, Argentina
| | - Hans Recknagel
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Kathryn R Elmer
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Luciano J Avila
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales, Consejo Nacional de Investigaciones Científicas y Técnicas (IPEEC-CONICET), Puerto Madryn, Chubut, Argentina
| | - Mariana Morando
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales, Consejo Nacional de Investigaciones Científicas y Técnicas (IPEEC-CONICET), Puerto Madryn, Chubut, Argentina
- Departamento de Biología y Ambiente, Universidad Nacional de la Patagonia San Juan Bosco, Sede Puerto Madryn, Puerto Madryn, Chubut, Argentina
| |
Collapse
|
28
|
Karin BR, Lough-Stevens M, Lin TE, Reilly SB, Barley AJ, Das I, Iskandar DT, Arida E, Jackman TR, McGuire JA, Bauer AM. The natural and human-mediated expansion of a human-commensal lizard into the fringes of Southeast Asia. BMC Ecol Evol 2024; 24:25. [PMID: 38378475 PMCID: PMC10880348 DOI: 10.1186/s12862-024-02212-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 02/09/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Human-commensal species often display deep ancestral genetic structure within their native range and founder-effects and/or evidence of multiple introductions and admixture in newly established areas. We investigated the phylogeography of Eutropis multifasciata, an abundant human-commensal scincid lizard that occurs across Southeast Asia, to determine the extent of its native range and to assess the sources and signatures of human introduction outside of the native range. We sequenced over 350 samples of E. multifasciata for the mitochondrial ND2 gene and reanalyzed a previous RADseq population genetic dataset in a phylogenetic framework. RESULTS Nuclear and mitochondrial trees are concordant and show that E. multifasciata has retained high levels of genetic structure across Southeast Asia despite being frequently moved by humans. Lineage boundaries in the native range roughly correspond to several major biogeographic barriers, including Wallace's Line and the Isthmus of Kra. Islands at the outer fringe of the range show evidence of founder-effects and multiple introductions. CONCLUSIONS Most of enormous range of E. multifasciata across Southeast Asia is native and it only displays signs of human-introduction or recent expansion along the eastern and northern fringe of its range. There were at least three events of human-introductions to Taiwan and offshore islands, and several oceanic islands in eastern Indonesia show a similar pattern. In Myanmar and Hainan, there is a founder-effect consistent with post-warming expansion after the last glacial maxima or human introduction.
Collapse
Affiliation(s)
- Benjamin R Karin
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA.
- Department of Biology, Villanova University, Villanova, PA, 19085, USA.
| | - Michael Lough-Stevens
- Department of Biology, Villanova University, Villanova, PA, 19085, USA
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Te-En Lin
- Endemic Species Research Institute, 1, Minsheng E Rd., Jiji Township, Nantou County, 55244, Taiwan
| | - Sean B Reilly
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, 95060, USA
| | - Anthony J Barley
- Department of Evolution and Ecology, University of California, 2320 Storer Hall, Davis, CA, 95616, USA
| | - Indraneil Das
- Institute of Biodiversity and Environmental Conservation, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Djoko T Iskandar
- School of Life Sciences and Technology, Bandung Institute of Technology, 10 Jalan Ganesa, Bandung, 40132, Indonesia
- Basic Sciences Commission, Indonesian Academy of Sciences, 11 Jalan Medan Merdeka Selatan, Jakarta, 10110, Indonesia
| | - Evy Arida
- Research Center for Ecology and Ethnobiology, Badan Riset dan Inovasi Nasional (BRIN), Cibinong Science Center, Jalan Raya Jakarta-Bogor km 46, Cibinong, 16911, Indonesia
| | - Todd R Jackman
- Department of Biology, Villanova University, Villanova, PA, 19085, USA
| | - Jimmy A McGuire
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA
| | - Aaron M Bauer
- Department of Biology, Villanova University, Villanova, PA, 19085, USA
| |
Collapse
|
29
|
Srikanthan P, Burg TM. Environmental drivers behind the genetic differentiation in mountain chickadees ( Poecile gambeli). Genome 2024; 67:53-63. [PMID: 37922513 DOI: 10.1139/gen-2023-0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Anthropogenic climate change has a large impact on wildlife populations and the scale of the impacts has been increasing. In this study, we utilised 3dRAD sequence data to investigate genetic divergence and identify the environmental drivers of genetic differentiation between 12 populations of mountain chickadees, family Paridae, sampled across North America. To examine patterns of genetic variation across the range, we conducted a discriminant analysis of principal components (DAPC), admixture analysis, and calculated pairwise Fst values. The DAPC revealed four clusters: southern California, eastern Rocky Mountains, northwestern Rocky Mountains, and Oregon/northern California. We then used BayeScEnv to highlight significant outlier SNPs associated with the five environmental variables. We identified over 150 genes linked to outlier SNPs associated with more than 15 pathways, including stress response and circadian rhythm. We also found a strong signal of isolation by distance and local temperature was highly correlated with genetic distance. Maxent simulations showed a northward range shift over the next 50 years and a decrease in suitable habitat, highlighting the need for immediate conservation action.
Collapse
Affiliation(s)
- P Srikanthan
- Department of Biology, University of Lethbridge, 4401 University Dr., Lethbridge, AB T1K 3M4, Canada
| | - T M Burg
- Department of Biology, University of Lethbridge, 4401 University Dr., Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
30
|
Yousefi M, Jouladeh‐Roudbar A, Kafash A. Mapping endemic freshwater fish richness to identify high-priority areas for conservation: An ecoregion approach. Ecol Evol 2024; 14:e10970. [PMID: 38371871 PMCID: PMC10870328 DOI: 10.1002/ece3.10970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/23/2023] [Accepted: 12/06/2023] [Indexed: 02/20/2024] Open
Abstract
Freshwater ecosystems are experiencing accelerating global biodiversity loss. Thus, knowing where these unique ecosystems' species richness reaches a peak can facilitate their conservation planning. By hosting more than 290 freshwater fishes, Iran is a major freshwater fish hotspot in the Middle East. Considering the accelerating rate of biodiversity loss, there is an urgent need to identify species-rich areas and understand the mechanisms driving biodiversity distribution. In this study, we gathered distribution records of all endemic freshwater fishes of Iran (85 species) to develop their richness map and determine the most critical drivers of their richness patterns from an ecoregion approach. We performed a generalized linear model (GLM) with quasi-Poisson distribution to identify contemporary and historical determinants of endemic freshwater fish richness. We also quantified endemic fish similarity among the 15 freshwater ecoregions of Iran. Results showed that endemic freshwater fish richness is highest in the Zagros Mountains while a moderate level of richness was observed between Zagros and Alborz Mountains. High, moderate, and low richness of endemic freshwater fish match with Upper Tigris & Euphrates, Namak, and Kavir & Lut Deserts ecoregions respectively. Kura - South Caspian Drainages and Caspian Highlands were the most similar ecoregions and Orumiyeh was the most unique ecoregion according to endemic fish presence. Precipitation and precipitation change velocity since the Last Glacial Maximum were the most important predictors of endemic freshwater fish richness. Areas identified to have the highest species richness have high priority for the conservation of freshwater fish in Iran, therefore, should be considered in future protected areas development.
Collapse
Affiliation(s)
- Masoud Yousefi
- Stiftung Neanderthal MuseumMettmannGermany
- Leibniz Institute for the Analysis of Biodiversity Change (LIB)Museum KoenigBonnGermany
| | | | - Anooshe Kafash
- School of Culture and SocietyAarhus UniversityAarhus CDenmark
| |
Collapse
|
31
|
Batalha-Filho H, Barreto SB, Silveira MHB, Miyaki CY, Afonso S, Ferrand N, Carneiro M, Sequeira F. Disentangling the contemporary and historical effects of landscape on the population genomic variation of two bird species restricted to the highland forest enclaves of northeastern Brazil. Heredity (Edinb) 2024; 132:77-88. [PMID: 37985738 PMCID: PMC10844224 DOI: 10.1038/s41437-023-00662-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023] Open
Abstract
Investigating the impact of landscape features on patterns of genetic variation is crucial to understand spatially dependent evolutionary processes. Here, we assess the population genomic variation of two bird species (Conopophaga cearae and Sclerurus cearensis) through the Caatinga moist forest enclaves in northeastern Brazil. To infer the evolutionary dynamics of bird populations through the Late Quaternary, we used genome-wide polymorphism data obtained from double-digestion restriction-site-associated DNA sequencing (ddRADseq), and integrated population structure analyses, historical demography models, paleodistribution modeling, and landscape genetics analyses. We found the population differentiation among enclaves to be significantly related to the geographic distance and historical resistance across the rugged landscape. The climate changes at the end of the Pleistocene to the Holocene likely triggered synchronic population decline in all enclaves for both species. Our findings revealed that both geographic distance and historical connectivity through highlands are important factors that can explain the current patterns of genetic variation. Our results further suggest that levels of population differentiation and connectivity cannot be explained purely on the basis of contemporary environmental conditions. By combining historical demographic analyses and niche modeling predictions in a historical framework, we provide strong evidence that climate fluctuations of the Quaternary promoted population differentiation and a high degree of temporal synchrony among population size changes in both species.
Collapse
Affiliation(s)
- Henrique Batalha-Filho
- National Institute of Science and Technology in Interdisciplinary and Transdisciplinary Studies in Ecology and Evolution (INCT IN-TREE), Institute of Biology, Federal University of Bahia, Salvador, BA, Brazil.
| | - Silvia Britto Barreto
- National Institute of Science and Technology in Interdisciplinary and Transdisciplinary Studies in Ecology and Evolution (INCT IN-TREE), Institute of Biology, Federal University of Bahia, Salvador, BA, Brazil
| | - Mario Henrique Barros Silveira
- National Institute of Science and Technology in Interdisciplinary and Transdisciplinary Studies in Ecology and Evolution (INCT IN-TREE), Institute of Biology, Federal University of Bahia, Salvador, BA, Brazil
| | - Cristina Yumi Miyaki
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Sandra Afonso
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, BIOPOLIS Program in Genomics, Biodiversity and Land Planning, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal
| | - Nuno Ferrand
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, BIOPOLIS Program in Genomics, Biodiversity and Land Planning, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Miguel Carneiro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, BIOPOLIS Program in Genomics, Biodiversity and Land Planning, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal
| | - Fernando Sequeira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, BIOPOLIS Program in Genomics, Biodiversity and Land Planning, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| |
Collapse
|
32
|
Magalhães RF, K S Ramos E, Bandeira LN, Ferreira JS, Werneck FP, Anciães M, Bruschi DP. Integrative species delimitation uncovers hidden diversity within the Pithecopus hypochondrialis species complex (Hylidae, Phyllomedusinae) and its phylogeography reveals Plio-Pleistocene connectivity among Neotropical savannas. Mol Phylogenet Evol 2024; 190:107959. [PMID: 37918682 DOI: 10.1016/j.ympev.2023.107959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/04/2023]
Abstract
Despite their limited vagility and pronounced habitat heterogeneity in the tropics, many anuran species have unexpectedly extensive geographic ranges. One prominent example of this phenomenon is Pithecopus hypochondrialis, which is found in the Cerrado, Guianan savanna, and Llanos domains, as well as isolated tracts of savanna and open habitat within the Amazon Forest. The present study employs an integrative species delimitation approach to test the hypothesis that P. hypochondrialis is in fact a species complex. We also reconstruct the relationships among the lineages delimited here and other Pithecopus species. In this study, we employ Ecological Niche Modelling (ENM) and spatiotemporal phylogeographic reconstruction approaches to evaluate a multitude of scenarios of connectivity across the Neotropical savannas. We identified three divergent lineages, two of which have been described previously. The lineages were allocated to a lowland Pithecopus clade, although the relationships among these lineages are weakly supported. Both the ENM and the phylogeographic reconstruction highlight the occurrence of periods of connectivity among the Neotropical savannas over the course of the Pliocene and Pleistocene epochs. These processes extended from eastern Amazonia to the northern coast of Brazil. The findings of the present study highlight the presence of hidden diversity within P. hypochondrialis, and reinforce the need for a comprehensive taxonomic review. These findings also indicate intricate and highly dynamic patterns of connectivity across the Neotropical savannas that date back to the Pliocene.
Collapse
Affiliation(s)
- Rafael F Magalhães
- Department of Natural Sciences, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio, 70, São João del-Rei, MG 36301-160, Brazil; Postgraduate Programme in Zoology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Belo Horizonte, MG 31270-010, Brazil.
| | - Elisa K S Ramos
- Faculty of Philosophy and Natural Sciences, Department of Environmental Sciences, University of Basel, Bernoullistrasse 30, Basel 4056, Switzerland.
| | - Lucas N Bandeira
- Postgraduate Programme in Ecology, Instituto Nacional de Pesquisas da Amazônia, Avenida André Araújo, 2936, Manaus, AM 69067-375, Brazil.
| | - Johnny S Ferreira
- Postgraduate Programme in Genetics, Department of Genetics, Biological Sciences Sector, Universidade Federal do Paraná, Caixa Postal 19071, Curitiba, PR 81531-980, Brazil.
| | - Fernanda P Werneck
- Postgraduate Programme in Ecology, Instituto Nacional de Pesquisas da Amazônia, Avenida André Araújo, 2936, Manaus, AM 69067-375, Brazil; Scientific Biological Collections Program, Biodiversity Coordination, Instituto Nacional de Pesquisas da Amazônia, Avenida André Araújo, 2936, Manaus, AM 69067-375, Brazil.
| | - Marina Anciães
- Postgraduate Programme in Ecology, Instituto Nacional de Pesquisas da Amazônia, Avenida André Araújo, 2936, Manaus, AM 69067-375, Brazil; Scientific Biological Collections Program, Biodiversity Coordination, Instituto Nacional de Pesquisas da Amazônia, Avenida André Araújo, 2936, Manaus, AM 69067-375, Brazil.
| | - Daniel P Bruschi
- Postgraduate Programme in Genetics, Department of Genetics, Biological Sciences Sector, Universidade Federal do Paraná, Caixa Postal 19071, Curitiba, PR 81531-980, Brazil.
| |
Collapse
|
33
|
Liu L, Galbrun E, Tang H, Kaakinen A, Zhang Z, Zhang Z, Žliobaitė I. The emergence of modern zoogeographic regions in Asia examined through climate-dental trait association patterns. Nat Commun 2023; 14:8194. [PMID: 38081824 PMCID: PMC10713550 DOI: 10.1038/s41467-023-43807-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
The complex and contrasted distribution of terrestrial biota in Asia has been linked to active tectonics and dramatic climatic changes during the Neogene. However, the timings of the emergence of these distributional patterns and the underlying climatic and tectonic mechanisms remain disputed. Here, we apply a computational data analysis technique, called redescription mining, to track these spatiotemporal phenomena by studying the associations between the prevailing herbivore dental traits of mammalian communities and climatic conditions during the Neogene. Our results indicate that the modern latitudinal zoogeographic division emerged after the Middle Miocene climatic transition, and that the modern monsoonal zoogeographic pattern emerged during the late Late Miocene. Furthermore, the presence of a montane forest biodiversity hotspot in the Hengduan Mountains alongside Alpine fauna on the Tibetan Plateau suggests that the modern distribution patterns may have already existed since the Pliocene.
Collapse
Affiliation(s)
- Liping Liu
- Department of Geosciences and Geography, University of Helsinki, P.O. Box 64, Helsinki, FI-00014, Finland.
- Department of Palaeobiology, The Swedish Museum of Natural History, P.O. Box 50007, Stockholm, SE-104 05, Sweden.
| | - Esther Galbrun
- School of Computing, University of Eastern Finland, Technopolis, Microkatu 1, Kuopio, FI-70210, Finland.
| | - Hui Tang
- Department of Geosciences and Geography, University of Helsinki, P.O. Box 64, Helsinki, FI-00014, Finland
- Climate System Research Unit, Finnish Meteorological Institute, P.O. Box 503, Helsinki, FI-00101, Finland
- Department of Geosciences, University of Oslo, P.O. Box 1022, Oslo, NO-0315, Norway
| | - Anu Kaakinen
- Department of Geosciences and Geography, University of Helsinki, P.O. Box 64, Helsinki, FI-00014, Finland
| | - Zhongshi Zhang
- Department of Atmospheric Science, School of Environmental Studies, China University of Geosciences, 388 Lumo Road, 430074, Wuhan, China
| | - Zijian Zhang
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, 19, Beitucheng Western Road, Chaoyang District, 100029, Beijing, China
| | - Indrė Žliobaitė
- Department of Geosciences and Geography, University of Helsinki, P.O. Box 64, Helsinki, FI-00014, Finland
- Department of Computer Science, University of Helsinki, P.O. Box 68, University of Helsinki, FI-00014, Finland
| |
Collapse
|
34
|
Herrando-Moraira S, Roquet C, Calleja JA, Chen YS, Fujikawa K, Galbany-Casals M, Garcia-Jacas N, Liu JQ, López-Alvarado J, López-Pujol J, Mandel JR, Mehregan I, Sáez L, Sennikov AN, Susanna A, Vilatersana R, Xu LS. Impact of the climatic changes in the Pliocene-Pleistocene transition on Irano-Turanian species. The radiation of genus Jurinea (Compositae). Mol Phylogenet Evol 2023; 189:107928. [PMID: 37714444 DOI: 10.1016/j.ympev.2023.107928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
The Irano-Turanian region is one of the world's richest floristic regions and the centre of diversity for numerous xerophytic plant lineages. However, we still have limited knowledge on the timing of evolution and biogeographic history of its flora, and potential drivers of diversification remain underexplored. To fill this knowledge gap, we focus on the Eurasian genus Jurinea (ca. 200 species), one of the largest plant radiations that diversified in the region. We applied a macroevolutionary integrative approach to explicitly test diversification hypotheses and investigate the relative roles of geography vs. ecology and niche conservatism vs. niche lability in speciation processes. To do so, we gathered a sample comprising 77% of total genus richness and obtained data about (1) its phylogenetic history, recovering 502 nuclear loci sequences; (2) growth forms; (3) ecological niche, compiling data of 21 variables for more than 2500 occurrences; and (4) paleoclimatic conditions, to estimate climatic stability. Our results revealed that climate was a key factor in the evolutionary dynamics of Jurinea. The main diversification and biogeographic events that occurred during past climate changes, which led to colder and drier conditions, are the following: (1) the origin of the genus (10.7 Ma); (2) long-distance dispersals from the Iranian Plateau to adjacent regions (∼7-4 Ma); and (3) the diversification shift during Pliocene-Pleistocene Transition (ca. 3 Ma), when net diversification rate almost doubled. Our results supported the pre-adaptation hypothesis, i.e., the evolutionary success of Jurinea was linked to the retention of the ancestral niche adapted to aridity. Interestingly, the paleoclimatic analyses revealed that in the Iranian Plateau long-term climatic stability favoured old-lineage persistence, resulting in current high species richness of semi-arid and cold adapted clades; whereas moderate climate oscillations stimulated allopatric diversification in the lineages distributed in the Circumboreal region. In contrast, growth form lability and high niche disparity among closely related species in the Central Asian clade suggest adaptive radiation to mountain habitats. In sum, the radiation of Jurinea is the result of both adaptive and non-adaptive processes influenced by climatic, orogenic and ecological factors.
Collapse
Affiliation(s)
- Sonia Herrando-Moraira
- Botanic Institute of Barcelona (IBB, CSIC-Ajuntament de Barcelona), Pg. del Migdia, s.n., 08038 Barcelona, Spain
| | - Cristina Roquet
- Systematics and Evolution of Vascular Plants (UAB) - Associated Unit to CSIC, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Juan-Antonio Calleja
- Departament of Biology (Botany), Faculty of Sciences, Research Centre on Biodiversity and Global Change (CIBC-UAM), 28049 Madrid, Spain
| | - You-Sheng Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Kazumi Fujikawa
- Kochi Prefectural Makino Botanical Garden, 4200-6, Godaisan, Kochi 781-8125, Japan
| | - Mercè Galbany-Casals
- Systematics and Evolution of Vascular Plants (UAB) - Associated Unit to CSIC, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Núria Garcia-Jacas
- Botanic Institute of Barcelona (IBB, CSIC-Ajuntament de Barcelona), Pg. del Migdia, s.n., 08038 Barcelona, Spain
| | - Jian-Quan Liu
- Key Laboratory for Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, Chengdu, China
| | - Javier López-Alvarado
- Systematics and Evolution of Vascular Plants (UAB) - Associated Unit to CSIC, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Jordi López-Pujol
- Botanic Institute of Barcelona (IBB, CSIC-Ajuntament de Barcelona), Pg. del Migdia, s.n., 08038 Barcelona, Spain; Escuela de Ciencias Ambientales, Universidad Espíritu Santo (UEES), Samborondón 091650, Ecuador
| | - Jennifer R Mandel
- Department of Biological Sciences, Center for Biodiversity, University of Memphis, Memphis, TN 38152, USA
| | - Iraj Mehregan
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Llorenç Sáez
- Systematics and Evolution of Vascular Plants (UAB) - Associated Unit to CSIC, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Alexander N Sennikov
- Botanical Museum, Finnish Museum of Natural History, P.O. Box 7, 00014 University of Helsinki, Finland
| | - Alfonso Susanna
- Botanic Institute of Barcelona (IBB, CSIC-Ajuntament de Barcelona), Pg. del Migdia, s.n., 08038 Barcelona, Spain
| | - Roser Vilatersana
- Botanic Institute of Barcelona (IBB, CSIC-Ajuntament de Barcelona), Pg. del Migdia, s.n., 08038 Barcelona, Spain
| | - Lian-Sheng Xu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
35
|
Silva GC, Solís Neffa VG, Zuquim G, Balslev H. Biogeography and environmental preferences of Butia yatay (Mart.) Becc. Ecol Evol 2023; 13:e10749. [PMID: 38034334 PMCID: PMC10682568 DOI: 10.1002/ece3.10749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 10/26/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023] Open
Abstract
During the Quaternary, Chaco Phytogeographic Domain (Chaco) flora in subtropical South America experienced temperature and humidity fluctuations, primarily driven by wind dynamics, leading to significant shifts in species distribution. The palm Butia yatay is endemic to the Chaco and thrives in areas characterized by a warm-rainy climate and mostly restricted to sandy soils. To investigate the current geographic distribution of suitable habitat for B. yatay while assessing the significance of soil variables, we employed two distinct algorithms in species distribution modeling (SDM). We also determined whether the distribution of B. yatay has changed since the Pleistocene and whether these changes align with previously proposed Pleistocene refugia. In the present SDMs, we considered two separate sets of predictors, one set with bioclimatic variables only and the other set with bioclimatic topographic and soil variables. Additionally, we reconstructed the historical geographic distribution of suitable habitats using bioclimatic data. Our results suggested that the primary determinants of B. yatay's current distribution include precipitation and temperature of the driest month and soil cation exchange capacity. Incorporating soil variables affected the estimated size and range of suitable areas. Projections into the past indicated similar suitable habitat distributions during interglacial periods compared with the present. During the Last Glacial Maximum, climatically suitable habitat may have shifted northward, partially overlapping with previously suggested Pleistocene refugia located between the Paraná and Uruguay Rivers. These findings indicate the main factors driving the distribution and ecology of B. yatay and enhance understanding of subtropical flora shifts during the Quaternary. The approach also may prove valuable for other studies within the Chaco.
Collapse
Affiliation(s)
- G. Carolina Silva
- Laboratorio de Citogenética y Evolución VegetalInstituto de Botánica del Nordeste (UNNE‐CONICET)CorrientesArgentina
| | - Viviana Griselda Solís Neffa
- Laboratorio de Citogenética y Evolución VegetalInstituto de Botánica del Nordeste (UNNE‐CONICET)CorrientesArgentina
- Facultad de Ciencias Exactas y Naturales y AgrimensuraUniversidad Nacional del NordesteCorrientesArgentina
| | - Gabriela Zuquim
- Department of BiologyUniversity of TurkuTurkuFinland
- Department of Biology‐Ecoinformatics and BiodiversityUniversity of AarhusAarhus CDenmark
| | - Henrik Balslev
- Department of Biology‐Ecoinformatics and BiodiversityUniversity of AarhusAarhus CDenmark
| |
Collapse
|
36
|
Guo WY, Serra-Diaz JM, Eiserhardt WL, Maitner BS, Merow C, Violle C, Pound MJ, Sun M, Slik F, Blach-Overgaard A, Enquist BJ, Svenning JC. Climate change and land use threaten global hotspots of phylogenetic endemism for trees. Nat Commun 2023; 14:6950. [PMID: 37907453 PMCID: PMC10618213 DOI: 10.1038/s41467-023-42671-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 10/18/2023] [Indexed: 11/02/2023] Open
Abstract
Across the globe, tree species are under high anthropogenic pressure. Risks of extinction are notably more severe for species with restricted ranges and distinct evolutionary histories. Here, we use a global dataset covering 41,835 species (65.1% of known tree species) to assess the spatial pattern of tree species' phylogenetic endemism, its macroecological drivers, and how future pressures may affect the conservation status of the identified hotspots. We found that low-to-mid latitudes host most endemism hotspots, with current climate being the strongest driver, and climatic stability across thousands to millions of years back in time as a major co-determinant. These hotspots are mostly located outside of protected areas and face relatively high land-use change and future climate change pressure. Our study highlights the risk from climate change for tree diversity and the necessity to strengthen conservation and restoration actions in global hotspots of phylogenetic endemism for trees to avoid major future losses of tree diversity.
Collapse
Affiliation(s)
- Wen-Yong Guo
- Research Center for Global Change and Complex Ecosystems & Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, 200241, Shanghai, P. R. China.
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) & Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, 8000, Aarhus C, Denmark.
- Section for Ecoinformatics & Biodiversity, Department of Biology, Aarhus University, 8000, Aarhus C, Denmark.
| | - Josep M Serra-Diaz
- Eversource Energy Center and Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
- Université de Lorraine, AgroParisTech, INRAE, Silva, Nancy, France
| | - Wolf L Eiserhardt
- Section for Ecoinformatics & Biodiversity, Department of Biology, Aarhus University, 8000, Aarhus C, Denmark
| | - Brian S Maitner
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Cory Merow
- Eversource Energy Center and Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Cyrille Violle
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Matthew J Pound
- Department of Geography and Environmental Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, United Kingdom
| | - Miao Sun
- Section for Ecoinformatics & Biodiversity, Department of Biology, Aarhus University, 8000, Aarhus C, Denmark
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Ferry Slik
- Environmental and Life Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, BE1410, Gadong, Brunei Darussalam
| | - Anne Blach-Overgaard
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) & Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, 8000, Aarhus C, Denmark
- Section for Ecoinformatics & Biodiversity, Department of Biology, Aarhus University, 8000, Aarhus C, Denmark
| | - Brian J Enquist
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
- The Santa Fe Institute, 1399 Hyde Park Rd, Santa Fe, NM, 87501, USA
| | - Jens-Christian Svenning
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) & Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, 8000, Aarhus C, Denmark
- Section for Ecoinformatics & Biodiversity, Department of Biology, Aarhus University, 8000, Aarhus C, Denmark
| |
Collapse
|
37
|
Beridze B, Sękiewicz K, Walas Ł, Thomas PA, Danelia I, Kvartskhava G, Farzaliyev V, Bruch AA, Dering M. Evolutionary history of Castanea sativa in the Caucasus driven by Middle and Late Pleistocene paleoenvironmental changes. AOB PLANTS 2023; 15:plad059. [PMID: 37899977 PMCID: PMC10601393 DOI: 10.1093/aobpla/plad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/28/2023] [Indexed: 10/31/2023]
Abstract
Due to global climate cooling and aridification since the Paleogene, members of the Neogene flora were extirpated from the Northern Hemisphere or were confined to a few refugial areas. For some species, the final reduction/extinction came in the Pleistocene, but some others have survived climatic transformations up to the present. This has occurred in Castanea sativa, a species of high commercial value in Europe and a significant component of the Caucasian forests' biodiversity. In contrast to the European range, neither the historical biogeography nor the population genetic structure of the species in its isolated Caucasian range has been clarified. Here, based on a survey of 21 natural populations from the Caucasus and a single one from Europe, we provide a likely biogeographic reconstruction and genetic diversity details. By applying Bayesian inference, species distribution modelling and fossil pollen data, we estimated (i) the time of the Caucasian-European divergence during the Middle Pleistocene, (ii) the time of divergence among Caucasian lineages and (iii) outlined the glacial refugia for species. The climate changes related to the Early-Middle Pleistocene Transition are proposed as the major drivers of the intraspecific divergence and European-Caucasian disjunction for the species, while the impact of the last glacial cycle was of marginal importance.
Collapse
Affiliation(s)
- Berika Beridze
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| | - Katarzyna Sękiewicz
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| | - Łukasz Walas
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| | - Peter A Thomas
- School of Life Sciences, Keele University, Keele, Staffordshire ST5 5BG, UK
| | - Irina Danelia
- National Botanical Garden of Georgia, Botanikuri Street 1, Tbilisi, Georgia
- Faculty of Agricultural Science and Bio-System Engineering, Georgian Technical University, Guramishvili Str. 17, Tbilisi, Georgia
| | - Giorgi Kvartskhava
- Faculty of Agricultural Science and Bio-System Engineering, Georgian Technical University, Guramishvili Str. 17, Tbilisi, Georgia
| | - Vahid Farzaliyev
- Forest Development Service, Ministry of Ecology and Natural Resources, B. Agayev Str, 100 A, Baku, AZ1000, Azerbaijan
| | - Angela A Bruch
- The Role of Culture in Early Expansions of Humans (ROCEEH) Research Centre, Heidelberg Academy of Sciences, Senckenberg Research Institute, Senckenberganlage 2560325 Frankfurt/M, Germany
| | - Monika Dering
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
- Department of Silviculture, Poznań University of Life Sciences, Wojska Polskiego 71c, 61-625, Poznań, Poland
| |
Collapse
|
38
|
Preckler-Quisquater S, Kierepka EM, Reding DM, Piaggio AJ, Sacks BN. Can demographic histories explain long-term isolation and recent pulses of asymmetric gene flow between highly divergent grey fox lineages? Mol Ecol 2023; 32:5323-5337. [PMID: 37632719 DOI: 10.1111/mec.17105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 08/28/2023]
Abstract
Secondary contact zones between deeply divergent, yet interfertile, lineages provide windows into the speciation process. North American grey foxes (Urocyon cinereoargenteus) are divided into western and eastern lineages that diverged approximately 1 million years ago. These ancient lineages currently hybridize in a relatively narrow zone of contact in the southern Great Plains, a pattern more commonly observed in smaller-bodied taxa, which suggests relatively recent contact after a long period of allopatry. Based on local ancestry inference with whole-genome sequencing (n = 43), we identified two distinct Holocene pulses of admixture. The older pulse (500-3500 YBP) reflected unidirectional gene flow from east to west, whereas the more recent pulse (70-200 YBP) of admixture was bi-directional. Augmented with genotyping-by-sequencing data from 216 additional foxes, demographic analyses indicated that the eastern lineage declined precipitously after divergence, remaining small throughout most of the late Pleistocene, and expanding only during the Holocene. Genetic diversity in the eastern lineage was highest in the southeast and lowest near the contact zone, consistent with a westward expansion. Concordantly, distribution modelling indicated that during their isolation, the most suitable habitat occurred far east of today's contact zone or west of the Great Plains. Thus, long-term isolation was likely caused by the small, distant location of the eastern refugium, with recent contact reflecting a large increase in suitable habitat and corresponding demographic expansion from the eastern refugium. Ultimately, long-term isolation in grey foxes may reflect their specialized bio-climatic niche. This system presents an opportunity for future investigation of potential pre- and post-zygotic isolating mechanisms.
Collapse
Affiliation(s)
- Sophie Preckler-Quisquater
- Mammalian Ecology and Conservation Unit, Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Elizabeth M Kierepka
- North Carolina Museum of Natural Sciences, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina, USA
| | - Dawn M Reding
- Department of Biology, Luther College, Decorah, Iowa, USA
| | - Antoinette J Piaggio
- USDA, Wildlife Services, National Wildlife Research Center, Wildlife Genetics Lab, Fort Collins, Colorado, USA
| | - Benjamin N Sacks
- Mammalian Ecology and Conservation Unit, Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, California, USA
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, California, USA
| |
Collapse
|
39
|
García-Andrade AB, Tedesco PA, Carvajal-Quintero JD, Arango A, Villalobos F. Same process, different patterns: pervasive effect of evolutionary time on species richness in freshwater fishes. Proc Biol Sci 2023; 290:20231066. [PMID: 37700646 PMCID: PMC10498035 DOI: 10.1098/rspb.2023.1066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/18/2023] [Indexed: 09/14/2023] Open
Abstract
Tropical lands harbour the highest number of species, resulting in the ubiquitous latitudinal diversity gradient (LDG). However, exceptions to this pattern have been observed in some taxa, explained by the interaction between the evolutionary histories and environmental factors that constrain species' physiological and ecological requirements. Here, we applied a deconstruction approach to map the detailed species richness patterns of Actinopterygian freshwater fishes at the class and order levels and to disentangle their drivers using geographical ranges and a phylogeny, comprising 77% (12 557) of all described species. We jointly evaluated seven evolutionary and ecological hypotheses posited to explain the LDG: diversification rate, time for speciation, species-area relationship, environmental heterogeneity, energy, temperature seasonality and past temperature stability. We found distinct diversity gradients across orders, including expected, bimodal and inverse LDGs. Despite these differences, the positive effect of evolutionary time explained patterns for all orders, where species-rich regions are inhabited by older species compared to species-poor regions. Overall, the LDG of each order has been shaped by a unique combination of factors, highlighting the importance of performing a joint evaluation of evolutionary, historical and ecological factors at different taxonomic levels to reach a comprehensive understanding on the causes driving global species richness patterns.
Collapse
Affiliation(s)
- Ana Berenice García-Andrade
- Laboratorio de Macroecología Evolutiva, Red de Biología Evolutiva, Instituto de Ecología, A.C. Carretera antigua a Coatepec 351, El Haya, 91070 Xalapa, Veracruz, México
| | - Pablo A. Tedesco
- UMR 5174 EDB—Evolution & Diversité Biologique, Institut de Recherche pour le Développement, Université Paul Sabatier - Bat. 4R1, 118 route de Narbonne, 31062 Toulouse cedex 4, France
| | - Juan D. Carvajal-Quintero
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, D-04103 Leipzig, Germany
| | - Axel Arango
- Laboratorio de Macroecología Evolutiva, Red de Biología Evolutiva, Instituto de Ecología, A.C. Carretera antigua a Coatepec 351, El Haya, 91070 Xalapa, Veracruz, México
| | - Fabricio Villalobos
- Laboratorio de Macroecología Evolutiva, Red de Biología Evolutiva, Instituto de Ecología, A.C. Carretera antigua a Coatepec 351, El Haya, 91070 Xalapa, Veracruz, México
| |
Collapse
|
40
|
French CM, Bertola LD, Carnaval AC, Economo EP, Kass JM, Lohman DJ, Marske KA, Meier R, Overcast I, Rominger AJ, Staniczenko PPA, Hickerson MJ. Global determinants of insect mitochondrial genetic diversity. Nat Commun 2023; 14:5276. [PMID: 37644003 PMCID: PMC10465557 DOI: 10.1038/s41467-023-40936-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 08/15/2023] [Indexed: 08/31/2023] Open
Abstract
Understanding global patterns of genetic diversity is essential for describing, monitoring, and preserving life on Earth. To date, efforts to map macrogenetic patterns have been restricted to vertebrates, which comprise only a small fraction of Earth's biodiversity. Here, we construct a global map of predicted insect mitochondrial genetic diversity from cytochrome c oxidase subunit 1 sequences, derived from open data. We calculate the mitochondrial genetic diversity mean and genetic diversity evenness of insect assemblages across the globe, identify their environmental correlates, and make predictions of mitochondrial genetic diversity levels in unsampled areas based on environmental data. Using a large single-locus genetic dataset of over 2 million globally distributed and georeferenced mtDNA sequences, we find that mitochondrial genetic diversity evenness follows a quadratic latitudinal gradient peaking in the subtropics. Both mitochondrial genetic diversity mean and evenness positively correlate with seasonally hot temperatures, as well as climate stability since the last glacial maximum. Our models explain 27.9% and 24.0% of the observed variation in mitochondrial genetic diversity mean and evenness in insects, respectively, making an important step towards understanding global biodiversity patterns in the most diverse animal taxon.
Collapse
Affiliation(s)
- Connor M French
- Biology Department, City College of New York, New York, NY, USA.
- Biology Ph.D. Program, Graduate Center, City University of New York, New York, NY, USA.
| | - Laura D Bertola
- Biology Department, City College of New York, New York, NY, USA
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, N 2200, Denmark
| | - Ana C Carnaval
- Biology Department, City College of New York, New York, NY, USA
- Biology Ph.D. Program, Graduate Center, City University of New York, New York, NY, USA
| | - Evan P Economo
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Jamie M Kass
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
- Macroecology Laboratory, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - David J Lohman
- Biology Department, City College of New York, New York, NY, USA
- Biology Ph.D. Program, Graduate Center, City University of New York, New York, NY, USA
- Entomology Section, National Museum of Natural History, Manila, Philippines
| | | | - Rudolf Meier
- Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
- Center for Integrative Biodiversity Discovery, Leibniz Institute for Evolution and Biodiversity Science, Museum für Naturkunde Berlin, Berlin, Germany
| | - Isaac Overcast
- Biology Ph.D. Program, Graduate Center, City University of New York, New York, NY, USA
- Institut de Biologie de l'Ecole Normale Superieure, Paris, France
- Department of Vertebrate Zoology, American Museum of Natural History, New York, NY, USA
| | - Andrew J Rominger
- School of Biology and Ecology, University of Maine, Orono, ME, USA
- Maine Center for Genetics in the Environment, University of Maine, Orono, ME, USA
| | | | - Michael J Hickerson
- Biology Department, City College of New York, New York, NY, USA
- Biology Ph.D. Program, Graduate Center, City University of New York, New York, NY, USA
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, USA
| |
Collapse
|
41
|
Qi Y, Xian X, Zhao H, Yang M, Zhang Y, Yu W, Liu W. World Spread of Tropical Soda Apple ( Solanum viarum) under Global Change: Historical Reconstruction, Niche Shift, and Potential Geographic Distribution. BIOLOGY 2023; 12:1179. [PMID: 37759579 PMCID: PMC10525411 DOI: 10.3390/biology12091179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023]
Abstract
Solanum viarum has become extensively invasive owing to international trade, climate change, and land-use change. As it is classified as a quarantine weed by countries such as the U.S. and Mexico, it is critical to understand the prevailing historical dispersal, ecological niche dynamics, and distribution patterns. We reconstructed the historical invasion countries and analyzed the ecological niche shift of S. viarum. Using MaxEnt based on the conservativeness of ecological niches, we studied variations in the potential geographical distributions (PGDs) of S. viarum in ecosystems and variations in suitability probabilities along latitudinal gradients. The invasion history in six continents involved three phases: lag (before 1980), spread (1980-2010), and equilibrium (2010-present). The ecological niche remains conserved. The area of S. viarum PGDs had increased by 259 km2; the PGDs will expand to reach a maximum in the 2050s, SSP5-8.5. The PGDs of S. viarum will migrate to higher latitudes under the same future climate scenarios. The latitudes subject to high threats range from 20° to 30° in forest and cropland ecosystems, 15.5° to 27.5° (northern hemisphere) and 33.1° to 42.8° (southern hemisphere) in grassland ecosystems, and 20° to 35° in urban ecosystems. Global change has led to an increased threat of S. viarum at high latitudes. These findings provide a theoretical basis to monitor and control S. viarum.
Collapse
Affiliation(s)
- Yuhan Qi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Q.); (X.X.); (H.Z.); (M.Y.); (Y.Z.)
| | - Xiaoqing Xian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Q.); (X.X.); (H.Z.); (M.Y.); (Y.Z.)
| | - Haoxiang Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Q.); (X.X.); (H.Z.); (M.Y.); (Y.Z.)
| | - Ming Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Q.); (X.X.); (H.Z.); (M.Y.); (Y.Z.)
| | - Yu Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Q.); (X.X.); (H.Z.); (M.Y.); (Y.Z.)
| | - Wentao Yu
- Fujian Key Laboratory for Technology Research of Inspection and Quarantine, Technology Centre of Fuzhou Customs, Fuzhou 350001, China
| | - Wanxue Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.Q.); (X.X.); (H.Z.); (M.Y.); (Y.Z.)
| |
Collapse
|
42
|
Folk RA, Gaynor ML, Engle-Wrye NJ, O’Meara BC, Soltis PS, Soltis DE, Guralnick RP, Smith SA, Grady CJ, Okuyama Y. Identifying Climatic Drivers of Hybridization with a New Ancestral Niche Reconstruction Method. Syst Biol 2023; 72:856-873. [PMID: 37073863 PMCID: PMC10405357 DOI: 10.1093/sysbio/syad018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 03/23/2023] [Accepted: 04/17/2023] [Indexed: 04/20/2023] Open
Abstract
Applications of molecular phylogenetic approaches have uncovered evidence of hybridization across numerous clades of life, yet the environmental factors responsible for driving opportunities for hybridization remain obscure. Verbal models implicating geographic range shifts that brought species together during the Pleistocene have often been invoked, but quantitative tests using paleoclimatic data are needed to validate these models. Here, we produce a phylogeny for Heuchereae, a clade of 15 genera and 83 species in Saxifragaceae, with complete sampling of recognized species, using 277 nuclear loci and nearly complete chloroplast genomes. We then employ an improved framework with a coalescent simulation approach to test and confirm previous hybridization hypotheses and identify one new intergeneric hybridization event. Focusing on the North American distribution of Heuchereae, we introduce and implement a newly developed approach to reconstruct potential past distributions for ancestral lineages across all species in the clade and across a paleoclimatic record extending from the late Pliocene. Time calibration based on both nuclear and chloroplast trees recovers a mid- to late-Pleistocene date for most inferred hybridization events, a timeframe concomitant with repeated geographic range restriction into overlapping refugia. Our results indicate an important role for past episodes of climate change, and the contrasting responses of species with differing ecological strategies, in generating novel patterns of range contact among plant communities and therefore new opportunities for hybridization. The new ancestral niche method flexibly models the shape of niche while incorporating diverse sources of uncertainty and will be an important addition to the current comparative methods toolkit. [Ancestral niche reconstruction; hybridization; paleoclimate; pleistocene.].
Collapse
Affiliation(s)
- Ryan A Folk
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Michelle L Gaynor
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Nicholas J Engle-Wrye
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Brian C O’Meara
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Genetics Institute, University of Florida, Gainesville, FL, USA
- Biodiversity Institute, University of Florida, Gainesville, FL, USA
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Department of Biology, University of Florida, Gainesville, FL, USA
- Genetics Institute, University of Florida, Gainesville, FL, USA
- Biodiversity Institute, University of Florida, Gainesville, FL, USA
| | - Robert P Guralnick
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Biodiversity Institute, University of Florida, Gainesville, FL, USA
| | - Stephen A Smith
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Charles J Grady
- Biodiversity Institute, University of Kansas, Lawrence, KS, 66045, USA
| | - Yudai Okuyama
- Tsukuba Botanical Garden, National Museum of Nature and Science, Tsukuba, Japan
| |
Collapse
|
43
|
Xia C, Zuo Y, Xue T, Kang M, Zhang H, Zhang X, Wang B, Zhang J, Deng H. The genetic structure and demographic history revealed by whole-genome resequencing provide insights into conservation of critically endangered Artocarpus nanchuanensis. FRONTIERS IN PLANT SCIENCE 2023; 14:1224308. [PMID: 37575939 PMCID: PMC10415164 DOI: 10.3389/fpls.2023.1224308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023]
Abstract
Introduction Whole-genome resequencing technology covers almost all nucleotide variations in the genome, which makes it possible to carry out conservation genomics research on endangered species at the whole-genome level. Methods In this study, based on the whole-genome resequencing data of 101 critically endangered Artocarpus nanchuanensis individuals, we evaluated the genetic diversity and population structure, inferred the demographic history and genetic load, predicted the potential distributions in the past, present and future, and classified conservation units to propose targeted suggestions for the conservation of this critically endangered species. Results Whole-genome resequencing for A. nanchuanensis generated approximately 2 Tb of data. Based on abundant mutation sites (25,312,571 single nucleotide polymorphisms sites), we revealed that the average genetic diversity (nucleotide diversity, π) of different populations of A. nanchuanensis was relatively low compared with other trees that have been studied. And we also revealed that the NHZ and QJT populations harboured unique genetic backgrounds and were significantly separated from the other five populations. In addition, positive genetic selective signals, significantly enriched in biological processes related to terpene synthesis, were identified in the NHZ population. The analysis of demographic history of A. nanchuanensis revealed the existence of three genetic bottleneck events. Moreover, abundant genetic loads (48.56% protein-coding genes) were identified in Artocarpus nanchuanensis, especially in genes related to early development and immune function of plants. The predication analysis of suitable habitat areas indicated that the past suitable habitat areas shifted from the north to the south due to global temperature decline. However, in the future, the actual distribution area of A. nanchuanensis will still maintain high suitability. Discussion Based on total analyses, we divided the populations of A. nanchuanensis into four conservation units and proposed a number of practical management suggestions for each conservation unit. Overall, our study provides meaningful guidance for the protection of A. nanchuanensis and important insight into conservation genomics research.
Collapse
Affiliation(s)
- Changying Xia
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
| | - Youwei Zuo
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
| | - Tiantian Xue
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Ming Kang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Huan Zhang
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
| | - Xiaoxia Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Binru Wang
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
| | - Jiabin Zhang
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
| | - Hongping Deng
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
- Low Carbon and Ecological Environment Protection Research Center, Chongqing Academy of Science and Technology, Chongqing, China
| |
Collapse
|
44
|
Cai L, Kreft H, Taylor A, Schrader J, Dawson W, Essl F, van Kleunen M, Pergl J, Pyšek P, Winter M, Weigelt P. Climatic stability and geological history shape global centers of neo- and paleoendemism in seed plants. Proc Natl Acad Sci U S A 2023; 120:e2300981120. [PMID: 37459510 PMCID: PMC10372566 DOI: 10.1073/pnas.2300981120] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/16/2023] [Indexed: 07/20/2023] Open
Abstract
Assessing the distribution of geographically restricted and evolutionarily unique species and their underlying drivers is key to understanding biogeographical processes and critical for global conservation prioritization. Here, we quantified the geographic distribution and drivers of phylogenetic endemism for ~320,000 seed plants worldwide and identified centers and drivers of evolutionarily young (neoendemism) and evolutionarily old endemism (paleoendemism). Tropical and subtropical islands as well as tropical mountain regions displayed the world's highest phylogenetic endemism. Most tropical rainforest regions emerged as centers of paleoendemism, while most Mediterranean-climate regions showed high neoendemism. Centers where high neo- and paleoendemism coincide emerged on some oceanic and continental fragment islands, in Mediterranean-climate regions and parts of the Irano-Turanian floristic region. Global variation in phylogenetic endemism was well explained by a combination of past and present environmental factors (79.8 to 87.7% of variance explained) and most strongly related to environmental heterogeneity. Also, warm and wet climates, geographic isolation, and long-term climatic stability emerged as key drivers of phylogenetic endemism. Neo- and paleoendemism were jointly explained by climatic and geological history. Long-term climatic stability promoted the persistence of paleoendemics, while the isolation of oceanic islands and their unique geological histories promoted neoendemism. Mountainous regions promoted both neo- and paleoendemism, reflecting both diversification and persistence over time. Our study provides insights into the evolutionary underpinnings of biogeographical patterns in seed plants and identifies the areas on Earth with the highest evolutionary and biogeographical uniqueness-key information for setting global conservation priorities.
Collapse
Affiliation(s)
- Lirong Cai
- Biodiversity, Macroecology and Biogeography, University of Göttingen, Göttingen37077, Germany
| | - Holger Kreft
- Biodiversity, Macroecology and Biogeography, University of Göttingen, Göttingen37077, Germany
- Centre of Biodiversity and Sustainable Land Use, University of Göttingen, Göttingen37077, Germany
- Campus-Institute Data Science, Göttingen37077, Germany
| | - Amanda Taylor
- Biodiversity, Macroecology and Biogeography, University of Göttingen, Göttingen37077, Germany
| | - Julian Schrader
- Biodiversity, Macroecology and Biogeography, University of Göttingen, Göttingen37077, Germany
- School of Natural Sciences, Macquarie University, Sydney, NSW2109, Australia
| | - Wayne Dawson
- Department of Biosciences, Durham University, DurhamDH1 3LE, United Kingdom
| | - Franz Essl
- Division of Bioinvasions, Global Change & Macroecology, University Vienna, Vienna1030, Austria
| | - Mark van Kleunen
- Ecology, Department of Biology, University of Konstanz, Konstanz78464, Germany
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou318000, China
| | - Jan Pergl
- Czech Academy of Sciences, Institute of Botany, Department of Invasion Ecology, Průhonice252 43, Czech Republic
| | - Petr Pyšek
- Czech Academy of Sciences, Institute of Botany, Department of Invasion Ecology, Průhonice252 43, Czech Republic
- Department of Ecology, Faculty of Science, Charles University, Prague128 44, Czech Republic
| | - Marten Winter
- German Centre for Integrative Biodiversity Research Halle-Jena-Leipzig, Leipzig04103, Germany
| | - Patrick Weigelt
- Biodiversity, Macroecology and Biogeography, University of Göttingen, Göttingen37077, Germany
- Centre of Biodiversity and Sustainable Land Use, University of Göttingen, Göttingen37077, Germany
- Campus-Institute Data Science, Göttingen37077, Germany
| |
Collapse
|
45
|
Alipour S, Walas Ł. The influence of climate and population density on Buxus hyrcana potential distribution and habitat connectivity. JOURNAL OF PLANT RESEARCH 2023; 136:501-514. [PMID: 37115338 DOI: 10.1007/s10265-023-01457-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/29/2023] [Indexed: 06/09/2023]
Abstract
Changes in environmental factors, human impact, and interactions between them accelerate the extinction of woody species. Therefore, conservation programs are needed to protect endangered taxa. However, the relationship between climate, habitat fragmentation, and anthropogenic activities and their consequences are still not well understood. In this work, we aimed to evaluate the impact of climate change and human population density on the Buxus hyrcana Pojark distribution range, as well as the phenomenon of habitat fragmentation. Based on species occurrence data throughout the Hyrcanian Forests (north of Iran), the MAXENT model was employed to estimate the potential distribution and suitability changes. Morphological-spatial analysis (MSPA) and CIRCUITSCAPE were used to assess habitat fragmentation and its connectivity. According to the main results obtained from future scenarios, the potential range will significantly decrease due to the lack of suitable climatic conditions. Meanwhile, B. hyrcana may not be able to shift in potentially suitable areas because of human influence and geographic barriers. Under RCP scenarios the extent of the core area would be reduced and the edge/core ratio significantly increased. Altogether, we found negative effects of the environmental change and the human population density on the continuity of habitats of B. hyrcana. The results of the presented work may improve our knowledge connected with in situ and ex situ protection strategies.
Collapse
Affiliation(s)
- Shirin Alipour
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland.
| | - Łukasz Walas
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland.
| |
Collapse
|
46
|
Buonincontri MP, Bosso L, Smeraldo S, Chiusano ML, Pasta S, Di Pasquale G. Shedding light on the effects of climate and anthropogenic pressures on the disappearance of Fagus sylvatica in the Italian lowlands: evidence from archaeo-anthracology and spatial analyses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162893. [PMID: 36933734 DOI: 10.1016/j.scitotenv.2023.162893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/11/2023] [Accepted: 03/12/2023] [Indexed: 05/06/2023]
Abstract
Fagus sylvatica is one of the most representative trees of the European deciduous broadleaved forests, yet the impact of changing climatic conditions and anthropogenic pressures (anthromes) on its presence and distribution in the coastal and lowland areas of the Mediterranean Basin has long been overlooked. Here, we first analysed the local forest composition in two different time intervals (350-300 Before Current Era, BCE and 150-100 BCE) using charred wood remains from the Etruscan site of Cetamura (Tuscany, central Italy). Additionally, we reviewed all the relevant publications and the wood/charcoal data obtained from anthracological analysis in F. sylvatica, focusing on samples that date back to 4000 years before present, to better understand the drivers of beech presence and distribution during the Late Holocene (LH) in the Italian Peninsula. Then, we combined charcoal and spatial analyses to test the distribution of beech woodland at low elevation during LH in Italy and to evaluate the effect of climate change and/or anthrome on the disappearance of F. sylvatica from the lowlands. We collected 1383 charcoal fragments in Cetamura belonging to 21 woody taxa, with F. sylvatica being the most abundant species (28 %), followed by other broadleaved trees. We identified 25 sites in the Italian Peninsula with beech charcoals in the last 4000 years. Our spatial analyses showed a marked decrease in habitat suitability of F. sylvatica from LH to the present (ca. 48 %), particularly in the lowlands (0-300 m above sea level, a.s.l.) and in areas included between 300-600 m a.s.l. with a subsequent shift upwards of the beech woodland of ca. 200 m from the past to the present. In the lowland areas, where F. sylvatica has disappeared, anthrome alone and climate + anthorme had a main effect on beech distribution whitin 0-50 m a.s.l., while the climate from 50 to 300 m a.s.l. Furthermore, climate affect also the beech distrinution in the areas >300 m a.s.l., while climate + anthrome and antrhome alone were mainly focused on the lowland areas. Our results highlight the advantage of combining different approaches, such as charcoal analysis and spatial analyses, to explore biogeographic questions about the past and current distribution of F. sylvatica, with important implications for today's forest management and conservation policies.
Collapse
Affiliation(s)
- Mauro Paolo Buonincontri
- Department of History and Cultural Heritage, University of Siena, via Roma 47, Siena 53100, Italy; Department of Agricultural Sciences, University of Naples "Federico II", via Università 100, Napoli 80055, Italy
| | - Luciano Bosso
- Department of Agricultural Sciences, University of Naples "Federico II", via Università 100, Napoli 80055, Italy.
| | - Sonia Smeraldo
- Department of Agricultural Sciences, University of Naples "Federico II", via Università 100, Napoli 80055, Italy
| | - Maria Luisa Chiusano
- Department of Agricultural Sciences, University of Naples "Federico II", via Università 100, Napoli 80055, Italy
| | - Salvatore Pasta
- Institute of Biosciences and BioResources, Italian National Research Council, Corso Calatafimi 414, 90129 Palermo, Italy
| | - Gaetano Di Pasquale
- Department of Agricultural Sciences, University of Naples "Federico II", via Università 100, Napoli 80055, Italy.
| |
Collapse
|
47
|
Velasco N, Andrade N, Smit C, Bustamante R. Climatic niche convergence through space and time for a potential archaeophyte (Acacia caven) in South America. Sci Rep 2023; 13:9340. [PMID: 37291243 PMCID: PMC10250544 DOI: 10.1038/s41598-023-35658-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 05/22/2023] [Indexed: 06/10/2023] Open
Abstract
Based on the niche conservatism hypothesis, i.e. the idea that niches remain unchanged over space and time, climatic niche modelling (CNM) is a useful tool for predicting the spread of introduced taxa. Recent advances have extended such predictions deeper in time for plant species dispersed by humans before the modern era. The latest CNMs successfully evaluate niche differentiation and estimate potential source areas for intriguing taxa such as archaeophytes (i.e., species introduced before 1492 AD). Here, we performed CNMs for Acacia caven, a common Fabaceae tree in South America, considered an archaeophyte west of the Andes, in Central Chile. Accounting for the infraspecific delimitation of the species, our results showed that even when climates are different, climatic spaces used by the species overlap largely between the eastern and western ranges. Despite slight variation, results were consistent when considering one, two, or even three-environmental dimensions, and in accordance with the niche conservatism hypothesis. Specific distribution models calibrated for each region (east vs west) and projected to the past, indicate a common area of occupancy available in southern Bolivia-northwest Argentina since the late Pleistocene, which could have acted as a source-area, and this signal becomes stronger through the Holocene. Then, in accordance with a taxon introduced in the past, and comparing regional vs continental distribution models calibrated at the infraspecific or species level, the western populations showed their spread status to be mostly in equilibrium with the environment. Our study thus indicates how niche and species distribution models are useful to improve our knowledge related to taxa introduced before the modern era.
Collapse
Affiliation(s)
- Nicolás Velasco
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Instituto de Ecología y Biodiversidad, Universidad de Chile, Santiago, Chile.
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.
| | - Nicolás Andrade
- Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile
| | - Christian Smit
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Ramiro Bustamante
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Instituto de Ecología y Biodiversidad, Universidad de Chile, Santiago, Chile
- Cape Horn International Centre, Cape Horn County, Chilean Antarctic Province, Chile
| |
Collapse
|
48
|
Lee JL, Yushchenko PV, Milto KD, Rajabizadeh M, Rastegar Pouyani E, Jablonski D, Masroor R, Karunarathna S, Mallik AK, Dsouza P, Orlov N, Nazarov R, Poyarkov NA. Kukri snakes Oligodon Fitzinger, 1826 of the Western Palearctic with the resurrection of Contia transcaspica Nikolsky, 1902 (Reptilia, Squamata, Colubridae). PeerJ 2023; 11:e15185. [PMID: 37220522 PMCID: PMC10200101 DOI: 10.7717/peerj.15185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/15/2023] [Indexed: 05/25/2023] Open
Abstract
The kukri snakes of the genus Oligodon Fitzinger, 1826 reach the westernmost limits of their distribution in Middle and Southwest Asia (Afghanistan, Iran, and Turkmenistan), and the Palearctic portions of Pakistan. In this article, we review the systematics and distribution of the two species native to this region, Oligodon arnensis (Shaw, 1802) and Oligodon taeniolatus (Jerdon, 1853) based on an integrative approach combining morphological, molecular, and species distribution modeling (SDM) data. Phylogenetic analyses recover O. taeniolatus populations from Iran and Turkmenistan in a clade with the O. arnensis species complex, rendering the former species paraphyletic relative to O. taeniolatus sensu stricto on the Indian subcontinent. To correct this, we resurrect the name Contia transcaspica Nikolsky, 1902 from the synonymy of O. taeniolatus and assign it to populations in Middle-Southwest Asia. So far, Oligodon transcaspicus comb. et stat. nov. is known only from the Köpet-Dag Mountain Range of northeast Iran and southern Turkmenistan, but SDM mapping suggests it may have a wider range. Genetic samples of O. "arnensis" from northern Pakistan are nested in a clade sister to the recently described Oligodon churahensis Mirza, Bhardwaj & Patel, 2021, and are phylogenetically separate from O. arnensis sensu stricto in south India and Sri Lanka. Based on morphological similarity, the Afghanistan and Pakistan populations are assigned to Oligodon russelius (Daudin, 1803) and we synonymize O. churahensis with this species. Our investigation leads us to remove O. taeniolatus from the snake fauna of Afghanistan, Iran, and Turkmenistan, with the consequence that only Oligodon transcaspicus comb. et stat. nov. and O. russelius are present in these countries. Additional studies are needed to resolve the taxonomy of the O. taeniolatus and O. arnensis species complexes on the Indian subcontinent, and an updated key for both groups is provided.
Collapse
Affiliation(s)
- Justin L. Lee
- Department of Biology and Center for Biodiversity and Ecosystem Stewardship, Villanova University, Villanova, United States
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
| | - Platon V. Yushchenko
- Faculty of Biology, Department of Vertebrate Zoology, Moscow State University, Moscow, Russia
- Joint Russian-Vietnamese Tropical Research and Technological Center, Hanoi, Vietnam
| | | | - Mahdi Rajabizadeh
- Department of Biodiversity, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | | | - Daniel Jablonski
- Department of Zoology, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Rafaqat Masroor
- Zoological Sciences Division, Pakistan Museum of Natural History, Islamabad, Pakistan
| | | | - Ashok Kumar Mallik
- Center for Ecological Sciences, Indian Institute of Science, Bangalore, Karnataka, India
- Department of Wildlife and Biodiversity Conservation, Maharaja Sriram Chandra Bhanja Deo University, Baripada, Odisha, India
| | - Princia Dsouza
- Center for Ecological Sciences, Indian Institute of Science, Bangalore, Karnataka, India
| | - Nikolai Orlov
- Zoological Institute, Russian Academy of Sciences, St. Petersburg, Russia
| | - Roman Nazarov
- Zoological Museum, Moscow State University, Moscow, Russia
| | - Nikolay A. Poyarkov
- Faculty of Biology, Department of Vertebrate Zoology, Moscow State University, Moscow, Russia
- Joint Russian-Vietnamese Tropical Research and Technological Center, Hanoi, Vietnam
| |
Collapse
|
49
|
Farhat P, Mandáková T, Divíšek J, Kudoh H, German DA, Lysak MA. The evolution of the hypotetraploid Catolobus pendulus genome - the poorly known sister species of Capsella. FRONTIERS IN PLANT SCIENCE 2023; 14:1165140. [PMID: 37223809 PMCID: PMC10200890 DOI: 10.3389/fpls.2023.1165140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/04/2023] [Indexed: 05/25/2023]
Abstract
The establishment of Arabidopsis as the most important plant model has also brought other crucifer species into the spotlight of comparative research. While the genus Capsella has become a prominent crucifer model system, its closest relative has been overlooked. The unispecific genus Catolobus is native to temperate Eurasian woodlands, from eastern Europe to the Russian Far East. Here, we analyzed chromosome number, genome structure, intraspecific genetic variation, and habitat suitability of Catolobus pendulus throughout its range. Unexpectedly, all analyzed populations were hypotetraploid (2n = 30, ~330 Mb). Comparative cytogenomic analysis revealed that the Catolobus genome arose by a whole-genome duplication in a diploid genome resembling Ancestral Crucifer Karyotype (ACK, n = 8). In contrast to the much younger Capsella allotetraploid genomes, the presumably autotetraploid Catolobus genome (2n = 32) arose early after the Catolobus/Capsella divergence. Since its origin, the tetraploid Catolobus genome has undergone chromosomal rediploidization, including a reduction in chromosome number from 2n = 32 to 2n = 30. Diploidization occurred through end-to-end chromosome fusion and other chromosomal rearrangements affecting a total of six of 16 ancestral chromosomes. The hypotetraploid Catolobus cytotype expanded toward its present range, accompanied by some longitudinal genetic differentiation. The sister relationship between Catolobus and Capsella allows comparative studies of tetraploid genomes of contrasting ages and different degrees of genome diploidization.
Collapse
Affiliation(s)
- Perla Farhat
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czechia
| | - Terezie Mandáková
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Jan Divíšek
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Hiroshi Kudoh
- Center for Ecological Research, Kyoto University, Otsu, Japan
| | - Dmitry A. German
- South-Siberian Botanical Garden, Altai State University, Barnaul, Russia
| | - Martin A. Lysak
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czechia
- National Centre for Biomolecular Research (NCBR), Faculty of Science, Masaryk University, Brno, Czechia
| |
Collapse
|
50
|
Shipley BR, McGuire JL. Disentangling the drivers of continental mammalian endemism. GLOBAL CHANGE BIOLOGY 2023; 29:2421-2435. [PMID: 36749035 DOI: 10.1111/gcb.16628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 05/28/2023]
Abstract
Endemic species and species with small ranges are ecologically and evolutionarily distinct and are vulnerable to extinction. Determining which abiotic and biotic factors structure patterns of endemism on continents can advance our understanding of global biogeographic processes, but spatial patterns of mammalian endemism have not yet been effectively predicted and reconstructed. Using novel null model techniques, we reconstruct trends in mammalian endemism and describe the isolated and combined effects of physiographic, ecological, and evolutionary factors on endemism. We calculated weighted endemism for global continental ecoregions and compared the spatial distribution of endemism to niche-based, geographic null models of endemism. These null models distribute species randomly across continents, simulating their range sizes from their degree of climatic specialization. They isolate the effects of physiography (topography and climate) and species richness on endemism. We then ran linear and structural models to determine how topography and historical climate stability influence endemism. The highest rates of mammalian endemism were found in topographically rough, climatically stable ecoregions with many species. The null model that isolated physiography did not closely approximate the observed distribution of endemism (r2 = .09), whereas the null model that incorporated both physiography and species richness did (r2 = .59). The linear models demonstrate that topography and climatic stability both influenced endemism values, but that average climatic niche breadth was not highly correlated with endemism. Climate stability and topography both influence weighted endemism in mammals, but the spatial distribution of mammalian endemism is driven by a combination of physiography and species richness. Despite its relationship to individual range size, average climate niche breadth has only a weak influence on endemism. The results highlight the importance of historical biogeographic processes (e.g. centers of speciation) and geography in driving endemism patterns, and disentangle the mechanisms structuring species ranges worldwide.
Collapse
Affiliation(s)
- Benjamin R Shipley
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Jenny L McGuire
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|