1
|
Peteláková M, Neprašová B, Šmotková Z, Myšková A, Holá L, Petelák A, Áčová A, Cantel S, Fehrentz JA, Sýkora D, Kuneš J, Železná B, Maletínská L. Simultaneous treatment with palm-LEAP2(1-14) and feeding high-fat diet attenuates liver lipid metabolism but not obesity: Sign of selective resistance to palm-LEAP2(1-14). Mol Cell Endocrinol 2025; 597:112442. [PMID: 39689753 DOI: 10.1016/j.mce.2024.112442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/01/2024] [Accepted: 12/14/2024] [Indexed: 12/19/2024]
Abstract
Liver-enriched antimicrobial peptide 2 (LEAP2) is a natural antagonist/inverse agonist of ghrelin receptor GHSR. Its truncated palmitoylated analog palm-LEAP2(1-14) promised anti-obesity properties because it exhibited favourable stability and an acute anorexigenic effect in our previous studies. Here we demonstrate desirable palm-LEAP2(1-14) pharmacokinetics, with significant levels of the peptide persisting in mouse blood 3 h after its subcutaneous administration. Palm-LEAP2 (1-14) reduced ghrelin-induced c-Fos immunoreactivity in arcuate nucleus and area postrema, in line with previously described silencing of ghrelin orexigenic effect. In spite of this, anti-obesity effect was not reached by two-week palm-LEAP2(1-14) treatment in mice with diet-induced obesity. Similarly, palm-LEAP2(1-14) administered simultaneously with high-fat diet feeding for 8 weeks did not protect mice from development of obesity and related biochemical changes. However, palm-LEAP2(1-14) kept its ability to attenuate liver de novo lipogenesis, and prominently lowered liver gene expression of nuclear receptors PPARG, SREBF1 and PPARA, and also expression of lipogenic and lipolytic enzymes. In our recent study, we described a high-fat diet-induced ghrelin resistance, reversible by switch to standard diet, followed by resistance to the acute anorexigenic effects of palm-LEAP2(1-14). Here we conclude that this resistance to palm-LEAP2(1-14) in obesity is probably selective and does not concern its ability to inhibit liver lipid metabolism.
Collapse
Affiliation(s)
- Martina Peteláková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Barbora Neprašová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Zuzana Šmotková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic; Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Aneta Myšková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic; University of Chemistry and Technology, Prague, Czech Republic
| | - Lucie Holá
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Aleš Petelák
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Andrea Áčová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Sonia Cantel
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | | | - David Sýkora
- University of Chemistry and Technology, Prague, Czech Republic
| | - Jaroslav Kuneš
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic; Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Blanka Železná
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Lenka Maletínská
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
2
|
Perelló M. Critical Insights Into LEAP2 Biology and Physiological Functions: Potential Roles Beyond Ghrelin Antagonism. Endocrinology 2025; 166:bqaf011. [PMID: 39823403 DOI: 10.1210/endocr/bqaf011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/07/2025] [Accepted: 01/16/2025] [Indexed: 01/19/2025]
Abstract
Liver-expressed antimicrobial peptide 2 (LEAP2) has recently emerged as a novel hormone that reduces food intake and glycemia by acting through the growth hormone secretagogue receptor (GHSR), also known as the ghrelin receptor. This discovery has led to a fundamental reconceptualization of GHSR's functional dynamics, now understood to be under a dual and opposing regulation. LEAP2 exhibits several distinctive features. LEAP2 is released by hepatocytes and enterocytes, 2 cell types that lack classical regulatory secretory mechanisms and may respond differently to nutrient signals. LEAP2 is also found in higher concentrations in plasma than ghrelin, even under energy deficit conditions, and modulates GHSR by inhibiting both ghrelin-dependent and ghrelin-independent activities. Given these characteristics, LEAP2 appears to play a major role in regulating GHSR activity in vivo, extending beyond simple ghrelin antagonism and being crucial for the long-term regulation of energy balance. A deeper understanding of how LEAP2 functions may clarify the functional implications of GHSR in different physiological contexts and unlock new therapeutic strategies for treating obesity, diabetes, and other metabolic disorders.
Collapse
Affiliation(s)
- Mario Perelló
- Grupo de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE) (Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de La Plata, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires), La Plata, Buenos Aires 1900, Argentina
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, 751 24 Uppsala, Sweden
| |
Collapse
|
3
|
Holá L, Tureckiuová T, Kuneš J, Železná B, Maletínská L. High-Fat Diet Induces Resistance to Ghrelin and LEAP2 Peptide Analogs in Mice. Physiol Res 2023; 72:607-619. [PMID: 38015760 PMCID: PMC10751049 DOI: 10.33549/physiolres.935189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/01/2023] [Indexed: 01/05/2024] Open
Abstract
Recent data suggest that the orexigenic peptide ghrelin and liver-expressed antimicrobial peptide 2 (LEAP2) have opposing effects on food intake regulation. Although circulating ghrelin is decreased in obesity, peripheral ghrelin administration does not induce food intake in obese mice. Limited information is available on ghrelin resistance in relation to LEAP2. In this study, the interplay between ghrelin and LEAP2 in obesity induced by a high-fat (HF) diet in mice was studied. First, the progression of obesity and intolerance to glucose together with plasma levels of active and total ghrelin, leptin, as well as liver LEAP2 mRNA expression at different time points of HF diet feeding was examined. In addition, the impact of switch from a HF diet to a standard diet on plasma ghrelin and LEAP2 production was studied. Second, sensitivity to the stable ghrelin analogue [Dpr3]Ghrelin or our novel LEAP2 analogue palm-LEAP2(1-14) during the progression of HF diet-induced obesity and after the switch for standard diet was investigated. Food intake was monitored after acute subcutaneous administration. HF diet feeding decreased both active and total plasma ghrelin and increased liver LEAP2 mRNA expression along with intolerance to glucose and the switch to a standard diet normalized liver LEAP2 mRNA expression and plasma level of active ghrelin, but not of total ghrelin. Additionally, our study demonstrates that a HF diet causes resistance to [Dpr3]Ghrelin, reversible by switch to St diet, followed by resistance to palm-LEAP2(1-14). Further studies are needed to determine the long-term effects of LEAP2 analogues on obesity-related ghrelin resistance.
Collapse
Affiliation(s)
- L Holá
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Praha 6, Czech Republic.
| | | | | | | | | |
Collapse
|
4
|
Custers E, Franco A, Kiliaan AJ. Bariatric Surgery and Gut-Brain-Axis Driven Alterations in Cognition and Inflammation. J Inflamm Res 2023; 16:5495-5514. [PMID: 38026245 PMCID: PMC10676679 DOI: 10.2147/jir.s437156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Obesity is associated with systemic inflammation, comorbidities like diabetes, cardiovascular disease and several cancers, cognitive decline and structural and functional brain changes. To treat, or potentially prevent these related comorbidities, individuals with obesity must achieve long-term sustainable weight loss. Often life style interventions, such as dieting and increased physical activity are not successful in achieving long-term weight loss. Meanwhile bariatric surgery has emerged as a safe and effective procedure to treat obesity. Bariatric surgery causes changes in physiological processes, but it is still not fully understood which exact mechanisms are involved. The successful weight loss after bariatric surgery might depend on changes in various energy regulating hormones, such as ghrelin, glucagon-like peptide-1 and peptide YY. Moreover, changes in microbiota composition and white adipose tissue functionality might play a role. Here, we review the effect of obesity on neuroendocrine effects, microbiota composition and adipose tissue and how these may affect inflammation, brain structure and cognition. Finally, we will discuss how these obesity-related changes may improve after bariatric surgery.
Collapse
Affiliation(s)
- Emma Custers
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Nijmegen, the Netherlands
| | - Ayla Franco
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Nijmegen, the Netherlands
| | - Amanda Johanne Kiliaan
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Nijmegen, the Netherlands
| |
Collapse
|
5
|
Smolensky I, Zajac-Bakri K, Odermatt TS, Brégère C, Cryan JF, Guzman R, Timper K, Inta D. Sex-specific differences in metabolic hormone and adipose tissue dynamics induced by moderate low-carbohydrate and ketogenic diet. Sci Rep 2023; 13:16465. [PMID: 37777528 PMCID: PMC10542803 DOI: 10.1038/s41598-023-43587-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/26/2023] [Indexed: 10/02/2023] Open
Abstract
Low-carbohydrates diets are increasingly used to treat obesity and metabolic disorders. A very low-carbohydrate, ketogenic diet is hard to follow and, due to the very high fat content, linked to severe side effects, like hyperlipidemia and atherogenesis. Therefore, a less restrictive, unsaturated fat-based low-carbohydrate diet appears as a promising alternative. Since neither sex differences, nor their effect on specific metabolic hormones and adipose tissue compartments have been investigated thoroughly in these diets, we aimed to analyze their dynamics and metabolic factors in mice. We found a significant sexual dimorphism with decreased body weight and subcutaneous fat only in males on ketogenic diet, while diminished insulin, elevated ghrelin and FGF-21 were present with a differential time course in both sexes. The non-ketogenic moderate low-carbohydrate diet increased body weight and perigonadal fat in females, but induced leptin elevation in males. Both diets enhanced transiently TNFɑ only in males and had no impact on behavior. Altogether, these results reveal complex sex-dependent effect of dietary interventions, indicating unexpectedly females as more prone to unfavorable metabolic effects of low-carbohydrate diets.
Collapse
Affiliation(s)
- Ilya Smolensky
- Department of Community Health, University of Fribourg, 1700, Fribourg, Switzerland.
- Department of Biomedicine, University of Basel, 4056, Basel, Switzerland.
| | - Kilian Zajac-Bakri
- Department of Community Health, University of Fribourg, 1700, Fribourg, Switzerland
- Department of Biomedicine, University of Basel, 4056, Basel, Switzerland
| | | | - Catherine Brégère
- Department of Biomedicine, University of Basel, 4056, Basel, Switzerland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, T12TP07, Ireland
- APC Microbiome Ireland, University College Cork, Cork, T12TP07, Ireland
| | - Raphael Guzman
- Department of Biomedicine, University of Basel, 4056, Basel, Switzerland
- Department of Neurosurgery, University Hospital Basel, 4056, Basel, Switzerland
| | - Katharina Timper
- Department of Biomedicine, University of Basel, 4056, Basel, Switzerland
- Department of Endocrinology, Diabetes and Metabolism Clinic, University Hospital Basel, 4056, Basel, Switzerland
| | - Dragos Inta
- Department of Community Health, University of Fribourg, 1700, Fribourg, Switzerland
- Department of Biomedicine, University of Basel, 4056, Basel, Switzerland
| |
Collapse
|
6
|
Hajipoor S, Hekmatdoost A, Pasdar Y, Mohammadi R, Alipour M, Rezaie M, Nachvak SM, Balthazar CF, Sobhiyeh MR, Mortazavian AM, Cruz AG. Consumption of probiotic yogurt and vitamin D-fortified yogurt increases fasting level of GLP-1 in obese adults undergoing low-calorie diet: A double-blind randomized controlled trial. Food Sci Nutr 2022; 10:3259-3271. [PMID: 36249978 PMCID: PMC9548356 DOI: 10.1002/fsn3.2816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/27/2021] [Accepted: 11/21/2021] [Indexed: 11/22/2022] Open
Abstract
Energy restriction and manipulation of macronutrient composition of the diet are the main approaches that are used by people who aim to lose weight. When such strategies are employed, appetite and endocrine regulators of satiety, such as gut peptides, all are deeply affected. The gut microbiota-brain axis controls energy homeostasis in humans by affecting central satiety and gut peptides. The purpose of this study was to evaluate if the synergistic effect of probiotics and vitamin D in yogurt matrix can modulate this effect. In the double-blind, randomized, placebo-controlled trial, 140 obese adults were randomly allocated into four groups: 1) regular yogurt plus low-calorie diet; 2) PY plus low-calorie diet; 3) vitamin D-fortified yogurt plus low-calorie diet, and 4) probiotic and vitamin D co-fortified yogurt plus low-calorie diet. All groups were encouraged to increase their physical activity. Glucagon-like peptide-1 (GLP-1), peptide Tyrosin-Tysrosin (PYY), ghrelin, anthropometric variables, insulin, fasting blood sugar (FBS), insulin resistance/sensitivity, 1,25(OH)2 D3, dietary intake, and physical activity were measured before and after 10 weeks. The difference between groups for GLP-1 after 10 weeks was significant after adjusting for baseline GLP-1 and protein intake as confounders. PY showed the largest effect size (ES) on GLP-1 (p = 14.2) and FBS (p = 14) compared with others. Pairwise comparison of yogurts effect sizes on GLP-1 showed a significant difference in group 1 vs. group 2 (p = .001), group 1 vs. group 3 (p = .003), and group 1 vs. group 4 (p = .048). Vitamin D-fortified yogurt had the largest effect size on the serum level of vitamin D and it showed a significant difference with RY (p = .018) and PY (p = .002). Consumption of vitamin D-fortified yogurt and PY could be regarded as a promising approach during calorie restriction.
Collapse
Affiliation(s)
- Shima Hajipoor
- Student Research CommitteeDepartment of Nutritional SciencesSchool of Nutritional Sciences and Food Technology Kermanshah University of Medical SciencesKermanshahIran
| | - Azita Hekmatdoost
- Department of Nutrition and Food ScienceBeheshti University of Medical ScienceTehranIran
| | - Yahya Pasdar
- Department of Nutritional SciencesSchool of Nutritional Sciences and Food Technology Kermanshah University of Medical SciencesKermanshahIran
| | - Reza Mohammadi
- Department of Food Science and Technology, School of Nutrition Sciences and Food TechnologyKermanshah University of Medical SciencesKermanshahIran
| | - Meysam Alipour
- Department of NutritionShoushtar Faculty of Medical SciencesShoushtarIran
| | - Mansour Rezaie
- Research Centre for Environmental Determinacies of HealthHealth InstituteSchool of Public HealthKermanshah University of Medical SciencesKermanshahIran
| | - Seyed Mostafa Nachvak
- Department of Nutritional SciencesSchool of Nutritional Sciences and Food Technology Kermanshah University of Medical SciencesKermanshahIran
| | - Celso Fasura Balthazar
- Department of Food TechnologyVeterinary CollegeFederal Fluminense UniversityRio de JaneiroBrazil
| | - Mohammad Reza Sobhiyeh
- Vascular and Endovascular SurgeonDepartment of SurgeryImam Reza HospitalKermanshah University of Medical ScienceKermanshahIran
| | - Amir Mohammad Mortazavian
- Department of Food Science and TechnologyNational Nutrition and Food Technology Research InstituteFaculty of Nutrition SciencesFood Science and TechnologyShahid Beheshti University of Medical SciencesTehranIran
| | - Adriano G. Cruz
- Instituto Federal de EducaçãoCiência e Tecnologia do Rio de Janeiro (IFRJ)Departamento de AlimentosRio de JaneiroBrazil
| |
Collapse
|
7
|
Standart diyet ile beslenen ratlarda aralıklı beslenmenin büyüme ve ghrelin hormonu üzerine etkisi. JOURNAL OF CONTEMPORARY MEDICINE 2022. [DOI: 10.16899/jcm.1123443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aim: In this study, the effect of intermittent fasting on growth hormone (GH) and ghrelin was examined in rats that fed on a standard diet without any application that may cause the values to decrease or increase in order to see the net effect of intermittent fasting.
Materials and Methods: 12 Wistar albino male rats were divided into the 1st group as Control (standard diet 2.8% crude fat. 23.1% crude protein. 5% crude fiber. 7.1% crude ash and 12.8% moisture) and the 2nd group as the intermittent fasting together with the diet group (with a 24-hour break from the non-consecutive diet for 2 days a week and all food restricted except water).
Results: As a result of the analysis, it was found that the growth hormone in the intermittent fasting together with the standard diet group tended to increase compared to the control group, and while this value difference was not statistically significant, the ghrelin level was found to be statistically lower than the control group.
Conclusion: As a result, it was found that intermittent fasting tends to increase the level of growth hormone, and to have a decreasing effect on ghrelin level, and it was concluded that it can be considered among the methods to be used to treat obesity and prevent its occurrence.
Collapse
|
8
|
Ghosh-Swaby OR, Reichelt AC, Sheppard PAS, Davies J, Bussey TJ, Saksida LM. Metabolic hormones mediate cognition. Front Neuroendocrinol 2022; 66:101009. [PMID: 35679900 DOI: 10.1016/j.yfrne.2022.101009] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/18/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022]
Abstract
Recent biochemical and behavioural evidence indicates that metabolic hormones not only regulate energy intake and nutrient content, but also modulate plasticity and cognition in the central nervous system. Disruptions in metabolic hormone signalling may provide a link between metabolic syndromes like obesity and diabetes, and cognitive impairment. For example, altered metabolic homeostasis in obesity is a strong determinant of the severity of age-related cognitive decline and neurodegenerative disease. Here we review the evidence that eating behaviours and metabolic hormones-particularly ghrelin, leptin, and insulin-are key players in the delicate regulation of neural plasticity and cognition. Caloric restriction and antidiabetic therapies, both of which affect metabolic hormone levels can restore metabolic homeostasis and enhance cognitive function. Thus, metabolic hormone pathways provide a promising target for the treatment of cognitive decline.
Collapse
Affiliation(s)
- Olivia R Ghosh-Swaby
- Schulich School of Medicine and Dentistry, Neuroscience Program, Western University, London, ON, Canada
| | - Amy C Reichelt
- Faculty of Health and Medical Sciences, Adelaide Medical School, Adelaide, Australia
| | - Paul A S Sheppard
- Schulich School of Medicine and Dentistry, Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Jeffrey Davies
- Swansea University Medical School, Swansea University, Swansea, UK
| | - Timothy J Bussey
- Schulich School of Medicine and Dentistry, Neuroscience Program, Western University, London, ON, Canada; Schulich School of Medicine and Dentistry, Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Lisa M Saksida
- Schulich School of Medicine and Dentistry, Neuroscience Program, Western University, London, ON, Canada; Schulich School of Medicine and Dentistry, Department of Physiology and Pharmacology, Western University, London, ON, Canada.
| |
Collapse
|
9
|
Malesza IJ, Malesza M, Walkowiak J, Mussin N, Walkowiak D, Aringazina R, Bartkowiak-Wieczorek J, Mądry E. High-Fat, Western-Style Diet, Systemic Inflammation, and Gut Microbiota: A Narrative Review. Cells 2021; 10:cells10113164. [PMID: 34831387 PMCID: PMC8619527 DOI: 10.3390/cells10113164] [Citation(s) in RCA: 337] [Impact Index Per Article: 84.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/07/2021] [Accepted: 11/12/2021] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota is responsible for recovering energy from food, providing hosts with vitamins, and providing a barrier function against exogenous pathogens. In addition, it is involved in maintaining the integrity of the intestinal epithelial barrier, crucial for the functional maturation of the gut immune system. The Western diet (WD)—an unhealthy diet with high consumption of fats—can be broadly characterized by overeating, frequent snacking, and a prolonged postprandial state. The term WD is commonly known and intuitively understood. However, the strict digital expression of nutrient ratios is not precisely defined. Based on the US data for 1908–1989, the calory intake available from fats increased from 32% to 45%. Besides the metabolic aspects (hyperinsulinemia, insulin resistance, dyslipidemia, sympathetic nervous system and renin-angiotensin system overstimulation, and oxidative stress), the consequences of excessive fat consumption (high-fat diet—HFD) comprise dysbiosis, gut barrier dysfunction, increased intestinal permeability, and leakage of toxic bacterial metabolites into the circulation. These can strongly contribute to the development of low-grade systemic inflammation. This narrative review highlights the most important recent advances linking HFD-driven dysbiosis and HFD-related inflammation, presents the pathomechanisms for these phenomena, and examines the possible causative relationship between pro-inflammatory status and gut microbiota changes.
Collapse
Affiliation(s)
- Ida Judyta Malesza
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, 61-701 Poznań, Poland; (I.J.M.); (J.W.)
| | - Michał Malesza
- Department of Physiology, Poznan University of Medical Sciences, 61-701 Poznań, Poland; (M.M.); (J.B.-W.)
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, 61-701 Poznań, Poland; (I.J.M.); (J.W.)
| | - Nadiar Mussin
- Department of General Surgery, West Kazakhstan Marat Ospanov Medical University, Aktobe 030012, Kazakhstan;
| | - Dariusz Walkowiak
- Department of Organization and Management in Health Care, Poznan University of Medical Sciences, 61-701 Poznań, Poland;
| | - Raisa Aringazina
- Department of Internal Diseases No. 1, West Kazakhstan Marat Ospanov Medical University, Aktobe 030012, Kazakhstan;
| | | | - Edyta Mądry
- Department of Physiology, Poznan University of Medical Sciences, 61-701 Poznań, Poland; (M.M.); (J.B.-W.)
- Correspondence:
| |
Collapse
|
10
|
Shankar K, Takemi S, Gupta D, Varshney S, Mani BK, Osborne-Lawrence S, Metzger NP, Richard CP, Berglund ED, Zigman JM. Ghrelin cell-expressed insulin receptors mediate meal- and obesity-induced declines in plasma ghrelin. JCI Insight 2021; 6:e146983. [PMID: 34473648 PMCID: PMC8492315 DOI: 10.1172/jci.insight.146983] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 08/04/2021] [Indexed: 01/20/2023] Open
Abstract
Mechanisms underlying postprandial and obesity-associated plasma ghrelin reductions are incompletely understood. Here, using ghrelin cell-selective insulin receptor-KO (GhIRKO) mice, we tested the impact of insulin, acting via ghrelin cell-expressed insulin receptors (IRs), to suppress ghrelin secretion. Insulin reduced ghrelin secretion from cultured gastric mucosal cells of control mice but not from those of GhIRKO mice. Acute insulin challenge and insulin infusion during both hyperinsulinemic-hypoglycemic clamps and hyperinsulinemic-euglycemic clamps lowered plasma ghrelin in control mice but not GhIRKO mice. Thus, ghrelin cell-expressed IRs are required for insulin-mediated reductions in plasma ghrelin. Furthermore, interventions that naturally raise insulin (glucose gavage, refeeding following fasting, and chronic high-fat diet) also lowered plasma ghrelin only in control mice - not GhIRKO mice. Thus, meal- and obesity-associated increases in insulin, acting via ghrelin cell-expressed IRs, represent a major, direct negative modulator of ghrelin secretion in vivo, as opposed to ingested or metabolized macronutrients. Refed GhIRKO mice exhibited reduced plasma insulin, highlighting ghrelin's actions to inhibit insulin release via a feedback loop. Moreover, GhIRKO mice required reduced glucose infusion rates during hyperinsulinemic-hypoglycemic clamps, suggesting that suppressed ghrelin release resulting from direct insulin action on ghrelin cells usually limits ghrelin's full potential to protect against insulin-induced hypoglycemia.
Collapse
Affiliation(s)
- Kripa Shankar
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Shota Takemi
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, Sakuraku, Saitama, Japan
| | - Deepali Gupta
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Salil Varshney
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Bharath K. Mani
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Sherri Osborne-Lawrence
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Nathan P. Metzger
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Corine P. Richard
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Eric D. Berglund
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Jeffrey M. Zigman
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
- Division of Endocrinology, Department of Internal Medicine, and
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
11
|
Shankar K, Metzger NP, Singh O, Mani BK, Osborne-Lawrence S, Varshney S, Gupta D, Ogden SB, Takemi S, Richard CP, Nandy K, Liu C, Zigman JM. LEAP2 deletion in mice enhances ghrelin's actions as an orexigen and growth hormone secretagogue. Mol Metab 2021; 53:101327. [PMID: 34428557 PMCID: PMC8452786 DOI: 10.1016/j.molmet.2021.101327] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 02/03/2023] Open
Abstract
Objective The hormone liver-expressed antimicrobial peptide-2 (LEAP2) is a recently identified antagonist and an inverse agonist of the growth hormone secretagogue receptor (GHSR). GHSR's other well-known endogenous ligand, acyl-ghrelin, increases food intake, body weight, and GH secretion and is lowered in obesity but elevated upon fasting. In contrast, LEAP2 reduces acyl-ghrelin-induced food intake and GH secretion and is found elevated in obesity but lowered upon fasting. Thus, the plasma LEAP2/acyl-ghrelin molar ratio could be a key determinant modulating GHSR signaling in response to changes in body mass and feeding status. In particular, LEAP2 may serve to dampen acyl-ghrelin action in the setting of obesity, which is associated with ghrelin resistance. Here, we sought to determine the metabolic effects of genetic LEAP2 deletion. Methods We generated the first known LEAP2-KO mouse line. Food intake, GH secretion, and cellular activation (c-fos induction) in different brain regions following s.c. acyl-ghrelin administration in LEAP2-KO mice and wild-type littermates were determined. LEAP2-KO mice and wild-type littermates were submitted to a battery of tests (such as measurements of body weight, food intake, and body composition; indirect calorimetry, determination of locomotor activity, and meal patterning while housed in metabolic cages) over the course of 16 weeks of high-fat diet and/or standard chow feeding. Fat accumulation was assessed in hematoxylin & eosin-stained and oil red O-stained liver sections from these mice. Results LEAP2-KO mice were more sensitive to s.c. ghrelin. In particular, acyl-ghrelin acutely stimulated food intake at a dose of 0.5 mg/kg BW in standard chow-fed LEAP2-KO mice while a 2× higher dose was required by wild-type littermates. Also, acyl-ghrelin stimulated food intake at a dose of 1 mg/kg BW in high-fat diet-fed LEAP2-KO mice while not even a 10× higher dose was effective in wild-type littermates. Acyl-ghrelin induced a 90.9% higher plasma GH level and 77.2–119.7% higher numbers of c-fos-immunoreactive cells in the arcuate nucleus and olfactory bulb, respectively, in LEAP2-KO mice than in wild-type littermates. LEAP2 deletion raised body weight (by 15.0%), food intake (by 18.4%), lean mass (by 6.1%), hepatic fat (by 42.1%), and body length (by 1.7%) in females on long-term high-fat diet as compared to wild-type littermates. After only 4 weeks on the high-fat diet, female LEAP2-KO mice exhibited lower O2 consumption (by 13%), heat production (by 9.5%), and locomotor activity (by 49%) than by wild-type littermates during the first part of the dark period. These genotype-dependent differences were not observed in high-fat diet-exposed males or female and male mice exposed for long term to standard chow diet. Conclusions LEAP2 deletion sensitizes lean and obese mice to the acute effects of administered acyl-ghrelin on food intake and GH secretion. LEAP2 deletion increases body weight in females chronically fed a high-fat diet as a result of lowered energy expenditure, reduced locomotor activity, and increased food intake. Furthermore, in female mice, LEAP2 deletion increases body length and exaggerates the hepatic fat accumulation normally associated with chronic high-fat diet feeding. A novel line of LEAP2-knockout mice was generated. LEAP2 deletion sensitizes mice to the GH secretory effects of administered ghrelin. LEAP2 deletion reduces ghrelin resistance in diet-induced obese mice. HFD-fed female LEAP2-KO mice eat more and gain more body weight and hepatic fat. HFD-fed female LEAP2-KO mice exhibit lowered energy expenditure and activity.
Collapse
Affiliation(s)
- Kripa Shankar
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Nathan P Metzger
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Omprakash Singh
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Bharath K Mani
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Sherri Osborne-Lawrence
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Salil Varshney
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Deepali Gupta
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Sean B Ogden
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Shota Takemi
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Corine P Richard
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Karabi Nandy
- Division of Biostatistics, Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, TX, USA
| | - Chen Liu
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA; Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey M Zigman
- Center for Hypothalamic Research, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA; Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA; Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
12
|
Bintoro DA, Nareswari I. The Role of Electroacupuncture in the Regulation of Appetite-Controlling Hormone and Inflammatory Response in Obesity. Med Acupunct 2021; 33:264-268. [PMID: 34471444 PMCID: PMC8403175 DOI: 10.1089/acu.2020.1500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Objective: Obesity, a condition with serious complications, needs special attention. It is a complex and multifactorial problem and regulation of calorie balance involving various humoral and central factors is the main key for managing obesity. In addition, there is an increase in various proinflammatory cytokines and an increase in oxidative stress. There is a need to discover a useful therapy for obesity management. The goal of this review was to examine the literature on electroacupuncture (EA) as a potential therapy. Methods: This review explores the literature on EA, which has proven to be effective for inducing weight loss in experimental human and animal studies. Both continuous and dense-disperse EA waves have their own roles in hormone regulation of obesity using ST 25, CV 9, CV 12, CV 4, SP 6, ST 36, and ST 44; this is discussed the associated mechanism related to this is through suppression of various orexigenic peptides, enhancement of anorexigenic peptides, suppression of inflammatory factors, and improvement in the balance of pro-oxidants and antioxidants. Conclusions: The absence of another definitive therapy for obesity and EA's minimal side-effects make it a potential therapy for managing obesity.
Collapse
Affiliation(s)
- Dinda Aniela Bintoro
- Department of Medical Acupuncture, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo National Central Public Hospital, Central Jakarta, Jakarta, Indonesia
| | - Irma Nareswari
- Department of Medical Acupuncture, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo National Central Public Hospital, Central Jakarta, Jakarta, Indonesia
| |
Collapse
|
13
|
Fatty acids role on obesity induced hypothalamus inflammation: From problem to solution – A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Nunez‐Salces M, Li H, Feinle‐Bisset C, Young RL, Page AJ. The regulation of gastric ghrelin secretion. Acta Physiol (Oxf) 2021; 231:e13588. [PMID: 33249751 DOI: 10.1111/apha.13588] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022]
Abstract
Ghrelin is a gastric hormone with multiple physiological functions, including the stimulation of food intake and adiposity. It is well established that circulating ghrelin levels are closely associated with feeding patterns, rising strongly before a meal and lowering upon food intake. However, the mechanisms underlying the modulation of ghrelin secretion are not fully understood. The purpose of this review is to discuss current knowledge on the circadian oscillation of circulating ghrelin levels, the neural mechanisms stimulating fasting ghrelin levels and peripheral mechanisms modulating postprandial ghrelin levels. Furthermore, the therapeutic potential of targeting the ghrelin pathway is discussed in the context of the treatment of various metabolic disorders, including obesity, type 2 diabetes, diabetic gastroparesis and Prader-Willi syndrome. Moreover, eating disorders including anorexia nervosa, bulimia nervosa and binge-eating disorder are also discussed.
Collapse
Affiliation(s)
- Maria Nunez‐Salces
- Vagal Afferent Research Group Adelaide Medical School The University of Adelaide Adelaide SA Australia
- Centre of Research Excellence in Translating Nutritional Science to Good Health Adelaide Medical School The University of Adelaide Adelaide SA Australia
- Nutrition, Diabetes & Gut Health, Lifelong Health Theme South Australian Health & Medical Research Institute (SAHMRI) Adelaide SA Australia
| | - Hui Li
- Vagal Afferent Research Group Adelaide Medical School The University of Adelaide Adelaide SA Australia
- Centre of Research Excellence in Translating Nutritional Science to Good Health Adelaide Medical School The University of Adelaide Adelaide SA Australia
- Nutrition, Diabetes & Gut Health, Lifelong Health Theme South Australian Health & Medical Research Institute (SAHMRI) Adelaide SA Australia
| | - Christine Feinle‐Bisset
- Centre of Research Excellence in Translating Nutritional Science to Good Health Adelaide Medical School The University of Adelaide Adelaide SA Australia
| | - Richard L. Young
- Centre of Research Excellence in Translating Nutritional Science to Good Health Adelaide Medical School The University of Adelaide Adelaide SA Australia
- Nutrition, Diabetes & Gut Health, Lifelong Health Theme South Australian Health & Medical Research Institute (SAHMRI) Adelaide SA Australia
- Intestinal Nutrient Sensing Group Adelaide Medical School The University of Adelaide Adelaide SA Australia
| | - Amanda J. Page
- Vagal Afferent Research Group Adelaide Medical School The University of Adelaide Adelaide SA Australia
- Centre of Research Excellence in Translating Nutritional Science to Good Health Adelaide Medical School The University of Adelaide Adelaide SA Australia
- Nutrition, Diabetes & Gut Health, Lifelong Health Theme South Australian Health & Medical Research Institute (SAHMRI) Adelaide SA Australia
| |
Collapse
|
15
|
Wang L, Yu CC, Li J, Tian Q, Du YJ. Mechanism of Action of Acupuncture in Obesity: A Perspective From the Hypothalamus. Front Endocrinol (Lausanne) 2021; 12:632324. [PMID: 33868169 PMCID: PMC8050351 DOI: 10.3389/fendo.2021.632324] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/16/2021] [Indexed: 01/22/2023] Open
Abstract
Obesity is a prevalent metabolic disease caused by an imbalance in food intake and energy expenditure. Although acupuncture is widely used in the treatment of obesity in a clinical setting, its mechanism has not been adequately elucidated. As the key pivot of appetite signals, the hypothalamus receives afferent and efferent signals from the brainstem and peripheral tissue, leading to the formation of a complex appetite regulation circuit, thereby effectively regulating food intake and energy homeostasis. This review mainly discusses the relationship between the hypothalamic nuclei, related neuropeptides, brainstem, peripheral signals, and obesity, as well as mechanisms of acupuncture on obesity from the perspective of the hypothalamus, exploring the current evidence and therapeutic targets for mechanism of action of acupuncture in obesity.
Collapse
Affiliation(s)
- Li Wang
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Chao-Chao Yu
- Department of Tuina, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
- The Fourth Clinical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jia Li
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Qing Tian
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan-Jun Du
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
- *Correspondence: Yan-Jun Du,
| |
Collapse
|
16
|
Reich N, Hölscher C. Acylated Ghrelin as a Multi-Targeted Therapy for Alzheimer's and Parkinson's Disease. Front Neurosci 2020; 14:614828. [PMID: 33381011 PMCID: PMC7767977 DOI: 10.3389/fnins.2020.614828] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/27/2020] [Indexed: 12/13/2022] Open
Abstract
Much thought has been given to the impact of Amyloid Beta, Tau and Alpha-Synuclein in the development of Alzheimer's disease (AD) and Parkinson's disease (PD), yet the clinical failures of the recent decades indicate that there are further pathological mechanisms at work. Indeed, besides amyloids, AD and PD are characterized by the culminative interplay of oxidative stress, mitochondrial dysfunction and hyperfission, defective autophagy and mitophagy, systemic inflammation, BBB and vascular damage, demyelination, cerebral insulin resistance, the loss of dopamine production in PD, impaired neurogenesis and, of course, widespread axonal, synaptic and neuronal degeneration that leads to cognitive and motor impediments. Interestingly, the acylated form of the hormone ghrelin has shown the potential to ameliorate the latter pathologic changes, although some studies indicate a few complications that need to be considered in the long-term administration of the hormone. As such, this review will illustrate the wide-ranging neuroprotective properties of acylated ghrelin and critically evaluate the hormone's therapeutic benefits for the treatment of AD and PD.
Collapse
Affiliation(s)
- Niklas Reich
- Biomedical & Life Sciences Division, Lancaster University, Lancaster, United Kingdom
| | - Christian Hölscher
- Neurology Department, A Second Hospital, Shanxi Medical University, Taiyuan, China.,Research and Experimental Center, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
17
|
"A LEAP 2 conclusions? Targeting the ghrelin system to treat obesity and diabetes". Mol Metab 2020; 46:101128. [PMID: 33246141 PMCID: PMC8085568 DOI: 10.1016/j.molmet.2020.101128] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/15/2020] [Accepted: 11/20/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The hormone ghrelin stimulates food intake, promotes adiposity, increases body weight, and elevates blood glucose. Consequently, alterations in plasma ghrelin levels and the functioning of other components of the broader ghrelin system have been proposed as potential contributors to obesity and diabetes. Furthermore, targeting the ghrelin system has been proposed as a novel therapeutic strategy for obesity and diabetes. SCOPE OF REVIEW The current review focuses on the potential for targeting ghrelin and other proteins comprising the ghrelin system as a treatment for obesity and diabetes. The main components of the ghrelin system are introduced. Data supporting a role for the endogenous ghrelin system in the development of obesity and diabetes along with data that seemingly refute such a role are outlined. An argument for further research into the development of ghrelin system-targeted therapeutic agents is delineated. Also, an evidence-based discussion of potential factors and contexts that might influence the efficacy of this class of therapeutics is provided. MAJOR CONCLUSIONS It would not be a "leap to" conclusions to suggest that agents which target the ghrelin system - including those that lower acyl-ghrelin levels, raise LEAP2 levels, block GHSR activity, and/or raise desacyl-ghrelin signaling - could represent efficacious novel treatments for obesity and diabetes.
Collapse
|
18
|
The Effect of High-Fat Diet-Induced Obesity on the Expression of Nutrient Chemosensors in the Mouse Stomach and the Gastric Ghrelin Cell. Nutrients 2020; 12:nu12092493. [PMID: 32824949 PMCID: PMC7551456 DOI: 10.3390/nu12092493] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 12/25/2022] Open
Abstract
The stomach is the primary source of the orexigenic and adiposity-promoting hormone, ghrelin. There is emerging evidence on the nutrient-mediated modulation of gastric ghrelin secretion. However, limited information is available on gastric nutrient-sensing mechanisms in high-fat diet (HFD)-induced obesity. This study investigated the impact of HFD-induced obesity on the expression of nutrient chemosensors in mouse stomach, particularly ghrelin cells. Male C57BL/6 mice were fed either a standard laboratory diet (SLD) or HFD for 12 weeks. The expression of ghrelin, enzymes involved in ghrelin production (PC1/3, GOAT) and nutrient chemosensors (CD36, FFAR2&4, GPR93, CaSR, mGluR4 and T1R3) was determined by quantitative RT-PCR in the mouse corpus and antrum. Immunohistochemistry assessed the protein expression of CaSR and ghrelin in the corpus and antrum. Antral mRNA levels of CaSR and PC1/3 were increased in HFD compared to SLD mice, while mRNA levels of all other nutrient chemosensors examined remained unchanged. CaSR immunolabelling was observed in the gastric antrum only. Nearly 80% of antral ghrelin cells expressed CaSR, with a similar cell density and co-expression in SLD and HFD mice. In conclusion, HFD-induced obesity increased CaSR mRNA expression in mouse antrum. However, the high antral co-expression of CaSR and ghrelin was unaltered in HFD compared to SLD mice.
Collapse
|
19
|
Beutler LR, Corpuz TV, Ahn JS, Kosar S, Song W, Chen Y, Knight ZA. Obesity causes selective and long-lasting desensitization of AgRP neurons to dietary fat. eLife 2020; 9:e55909. [PMID: 32720646 PMCID: PMC7398661 DOI: 10.7554/elife.55909] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022] Open
Abstract
Body weight is regulated by interoceptive neural circuits that track energy need, but how the activity of these circuits is altered in obesity remains poorly understood. Here we describe the in vivo dynamics of hunger-promoting AgRP neurons during the development of diet-induced obesity in mice. We show that high-fat diet attenuates the response of AgRP neurons to an array of nutritionally-relevant stimuli including food cues, intragastric nutrients, cholecystokinin and ghrelin. These alterations are specific to dietary fat but not carbohydrate or protein. Subsequent weight loss restores the responsiveness of AgRP neurons to exterosensory cues but fails to rescue their sensitivity to gastrointestinal hormones or nutrients. These findings reveal that obesity triggers broad dysregulation of hypothalamic hunger neurons that is incompletely reversed by weight loss and may contribute to the difficulty of maintaining a reduced weight.
Collapse
Affiliation(s)
| | | | - Jamie S Ahn
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Seher Kosar
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Weimin Song
- Northwestern University Feinberg School of Medicine, Comprehensive Metabolic CoreChicagoUnited States
| | - Yiming Chen
- UCSF Department of PhysiologySan FranciscoUnited States
- UCSF Neuroscience Graduate ProgramSan FranciscoUnited States
| | - Zachary A Knight
- Howard Hughes Medical InstituteChevy ChaseUnited States
- UCSF Department of PhysiologySan FranciscoUnited States
- UCSF Neuroscience Graduate ProgramSan FranciscoUnited States
- Kavli Institute for Fundamental NeuroscienceSan FranciscoUnited States
| |
Collapse
|
20
|
Mani BK, Puzziferri N, He Z, Rodriguez JA, Osborne-Lawrence S, Metzger NP, Chhina N, Gaylinn B, Thorner MO, Thomas EL, Bell JD, Williams KW, Goldstone AP, Zigman JM. LEAP2 changes with body mass and food intake in humans and mice. J Clin Invest 2020; 129:3909-3923. [PMID: 31424424 DOI: 10.1172/jci125332] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 06/11/2019] [Indexed: 12/11/2022] Open
Abstract
Acyl-ghrelin administration increases food intake, body weight, and blood glucose. In contrast, mice lacking ghrelin or ghrelin receptors (GHSRs) exhibit life-threatening hypoglycemia during starvation-like conditions, but do not consistently exhibit overt metabolic phenotypes when given ad libitum food access. These results, and findings of ghrelin resistance in obese states, imply nutritional state dependence of ghrelin's metabolic actions. Here, we hypothesized that liver-enriched antimicrobial peptide-2 (LEAP2), a recently characterized endogenous GHSR antagonist, blunts ghrelin action during obese states and postprandially. To test this hypothesis, we determined changes in plasma LEAP2 and acyl-ghrelin due to fasting, eating, obesity, Roux-en-Y gastric bypass (RYGB), vertical sleeve gastrectomy (VSG), oral glucose administration, and type 1 diabetes mellitus (T1DM) using humans and/or mice. Our results suggest that plasma LEAP2 is regulated by metabolic status: its levels increased with body mass and blood glucose and decreased with fasting, RYGB, and in postprandial states following VSG. These changes were mostly opposite of those of acyl-ghrelin. Furthermore, using electrophysiology, we showed that LEAP2 both hyperpolarizes and prevents acyl-ghrelin from activating arcuate NPY neurons. We predict that the plasma LEAP2/acyl-ghrelin molar ratio may be a key determinant modulating acyl-ghrelin activity in response to body mass, feeding status, and blood glucose.
Collapse
Affiliation(s)
- Bharath K Mani
- Division of Hypothalamic Research.,Division of Endocrinology & Metabolism, Department of Internal Medicine.,Department of Psychiatry, and
| | - Nancy Puzziferri
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA.,Department of Surgery, Veterans Administration North Texas Heath Care System, Dallas, Texas, USA
| | | | - Juan A Rodriguez
- Division of Hypothalamic Research.,Division of Endocrinology & Metabolism, Department of Internal Medicine.,Department of Psychiatry, and
| | - Sherri Osborne-Lawrence
- Division of Hypothalamic Research.,Division of Endocrinology & Metabolism, Department of Internal Medicine.,Department of Psychiatry, and
| | - Nathan P Metzger
- Division of Hypothalamic Research.,Division of Endocrinology & Metabolism, Department of Internal Medicine.,Department of Psychiatry, and
| | - Navpreet Chhina
- PsychoNeuroEndocrinology Research Group, Neuropsychopharmacology Unit, Centre for Psychiatry, and.,Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Bruce Gaylinn
- Department of Endocrinology, University of Virginia, Charlottesville, Virginia, USA
| | - Michael O Thorner
- Department of Endocrinology, University of Virginia, Charlottesville, Virginia, USA
| | - E Louise Thomas
- Research Centre for Optimal Health, University of Westminster, London, United Kingdom
| | - Jimmy D Bell
- Research Centre for Optimal Health, University of Westminster, London, United Kingdom
| | | | - Anthony P Goldstone
- PsychoNeuroEndocrinology Research Group, Neuropsychopharmacology Unit, Centre for Psychiatry, and.,Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Jeffrey M Zigman
- Division of Hypothalamic Research.,Division of Endocrinology & Metabolism, Department of Internal Medicine.,Department of Psychiatry, and
| |
Collapse
|
21
|
Hernández Morante JJ, Díaz Soler I, Muñoz JSG, Sánchez HP, Barberá Ortega MDC, Martínez CM, Morillas Ruiz JM. Moderate Weight Loss Modifies Leptin and Ghrelin Synthesis Rhythms but Not the Subjective Sensations of Appetite in Obesity Patients. Nutrients 2020; 12:E916. [PMID: 32230732 PMCID: PMC7230904 DOI: 10.3390/nu12040916] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/21/2020] [Accepted: 03/25/2020] [Indexed: 12/13/2022] Open
Abstract
Obesity is characterized by a resistance to appetite-regulating hormones, leading to a misalignment between the physiological signals and the perceived hunger/satiety signal. A disruption of the synthesis rhythm may explain this situation. The aim of this study was to evaluate the effect of dietary-induced weight loss on the daily rhythms of leptin and ghrelin and its influence on the daily variability of the appetite sensations of patients with obesity. Twenty subjects with obesity underwent a hypocaloric dietary intervention for 12 weeks. Plasma leptin and ghrelin were analyzed at baseline and at the end of the intervention and in 13 normal-weight controls. Appetite ratings were analyzed. Weight loss decreased leptin synthesis (pauc < 0.001) but not the rhythm characteristics, except the mean variability value (pmesor = 0.020). By contrast, the mean ghrelin level increased after weight loss. The rhythm characteristics were also modified until a rhythm similar to the normal-weight subjects was reached. The amount of variability of leptin and ghrelin was correlated with the effectiveness of the dietary intervention (p < 0.020 and p < 0.001, respectively). Losing weight partially restores the daily rhythms of leptin and modifies the ghrelin rhythms, but appetite sensations are barely modified, thus confirming that these hormones cannot exercise their physiological function properly.
Collapse
Affiliation(s)
- Juan José Hernández Morante
- Eating Disorders Research Unit, Catholic University of Murcia (UCAM), 30107 Murcia, Spain; (I.D.S.); (M.d.C.B.O.)
| | - Inmaculada Díaz Soler
- Eating Disorders Research Unit, Catholic University of Murcia (UCAM), 30107 Murcia, Spain; (I.D.S.); (M.d.C.B.O.)
| | | | - Horacio Pérez Sánchez
- Bioinformatics and High Performance Computing Research Group (BIO-HPC), Computer Engineering Department, Catholic University of Murcia (UCAM), 30107 Murcia, Spain;
| | - Mª del Carmen Barberá Ortega
- Eating Disorders Research Unit, Catholic University of Murcia (UCAM), 30107 Murcia, Spain; (I.D.S.); (M.d.C.B.O.)
| | | | - Juana Mª Morillas Ruiz
- Food Technology & Nutrition Dept., Catholic University of Murcia (UCAM), 30107 Murcia, Spain;
| |
Collapse
|
22
|
Suarez AN, Noble EE, Kanoski SE. Regulation of Memory Function by Feeding-Relevant Biological Systems: Following the Breadcrumbs to the Hippocampus. Front Mol Neurosci 2019; 12:101. [PMID: 31057368 PMCID: PMC6482164 DOI: 10.3389/fnmol.2019.00101] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/03/2019] [Indexed: 12/15/2022] Open
Abstract
The hippocampus (HPC) controls fundamental learning and memory processes, including memory for visuospatial navigation (spatial memory) and flexible memory for facts and autobiographical events (declarative memory). Emerging evidence reveals that hippocampal-dependent memory function is regulated by various peripheral biological systems that are traditionally known for their roles in appetite and body weight regulation. Here, we argue that these effects are consistent with a framework that it is evolutionarily advantageous to encode and recall critical features surrounding feeding behavior, including the spatial location of a food source, social factors, post-absorptive processing, and other episodic elements of a meal. We review evidence that gut-to-brain communication from the vagus nerve and from feeding-relevant endocrine systems, including ghrelin, insulin, leptin, and glucagon-like peptide-1 (GLP-1), promote hippocampal-dependent spatial and declarative memory via neurotrophic and neurogenic mechanisms. The collective literature reviewed herein supports a model in which various stages of feeding behavior and hippocampal-dependent memory function are closely linked.
Collapse
Affiliation(s)
| | | | - Scott E. Kanoski
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
23
|
Abstract
The hypothalamus is the brain region responsible for the maintenance of energetic homeostasis. The regulation of this process arises from the ability of the hypothalamus to orchestrate complex physiological responses such as food intake and energy expenditure, circadian rhythm, stress response, and fertility. Metabolic alterations such as obesity can compromise these hypothalamic regulatory functions. Alterations in circadian rhythm, stress response, and fertility further contribute to aggravate the metabolic dysfunction of obesity and contribute to the development of chronic disorders such as depression and infertility.At cellular level, obesity caused by overnutrition can damage the hypothalamus promoting inflammation and impairing hypothalamic neurogenesis. Furthermore, hypothalamic neurons suffer apoptosis and impairment in synaptic plasticity that can compromise the proper functioning of the hypothalamus. Several factors contribute to these phenomena such as ER stress, oxidative stress, and impairments in autophagy. All these observations occur at the same time and it is still difficult to discern whether inflammatory processes are the main drivers of these cellular dysfunctions or if the hypothalamic hormone resistance (insulin, leptin, and ghrelin) can be pinpointed as the source of several of these events.Understanding the mechanisms that underlie the pathophysiology of obesity in the hypothalamus is crucial for the development of strategies that can prevent or attenuate the deleterious effects of obesity.
Collapse
|
24
|
Galic S, Loh K, Murray-Segal L, Steinberg GR, Andrews ZB, Kemp BE. AMPK signaling to acetyl-CoA carboxylase is required for fasting- and cold-induced appetite but not thermogenesis. eLife 2018; 7:32656. [PMID: 29433631 PMCID: PMC5811211 DOI: 10.7554/elife.32656] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/26/2018] [Indexed: 12/27/2022] Open
Abstract
AMP-activated protein kinase (AMPK) is a known regulator of whole-body energy homeostasis, but the downstream AMPK substrates mediating these effects are not entirely clear. AMPK inhibits fatty acid synthesis and promotes fatty acid oxidation by phosphorylation of acetyl-CoA carboxylase (ACC) 1 at Ser79 and ACC2 at Ser212. Using mice with Ser79Ala/Ser212Ala knock-in mutations (ACC DKI) we find that inhibition of ACC phosphorylation leads to reduced appetite in response to fasting or cold exposure. At sub-thermoneutral temperatures, ACC DKI mice maintain normal energy expenditure and thermogenesis, but fail to increase appetite and lose weight. We demonstrate that the ACC DKI phenotype can be mimicked in wild type mice using a ghrelin receptor antagonist and that ACC DKI mice have impaired orexigenic responses to ghrelin, indicating ACC DKI mice have a ghrelin signaling defect. These data suggest that therapeutic strategies aimed at inhibiting ACC phosphorylation may suppress appetite following metabolic stress.
Collapse
Affiliation(s)
- Sandra Galic
- Department of Medicine, University of Melbourne, Fitzroy, Australia.,St. Vincent's Institute of Medical Research, Melbourne, Australia
| | - Kim Loh
- Department of Medicine, University of Melbourne, Fitzroy, Australia.,St. Vincent's Institute of Medical Research, Melbourne, Australia
| | - Lisa Murray-Segal
- Department of Medicine, University of Melbourne, Fitzroy, Australia.,St. Vincent's Institute of Medical Research, Melbourne, Australia
| | - Gregory R Steinberg
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Zane B Andrews
- Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Australia.,Department of Physiology, Monash University, Clayton, Australia.,Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Bruce E Kemp
- Department of Medicine, University of Melbourne, Fitzroy, Australia.,St. Vincent's Institute of Medical Research, Melbourne, Australia.,Mary MacKillop Institute for Health Research, Australian Catholic University, Fitzroy, Australia
| |
Collapse
|
25
|
Naznin F, Toshinai K, Waise TMZ, Okada T, Sakoda H, Nakazato M. Restoration of metabolic inflammation-related ghrelin resistance by weight loss. J Mol Endocrinol 2018; 60:109-118. [PMID: 29233861 PMCID: PMC5793712 DOI: 10.1530/jme-17-0192] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 12/12/2017] [Indexed: 12/24/2022]
Abstract
High-fat diet (HFD)-induced metabolic inflammation in the central and peripheral organs contributes to the pathogenesis of obesity. Long-term HFD blunts signaling by ghrelin, a gastric-derived orexigenic peptide, in the vagal afferent nerve via a mechanism involving in situ activation of inflammation. This study was undertaken to investigate whether ghrelin resistance is associated with progressive development of metabolic inflammation. In mice, ghrelin's orexigenic activity was abolished 2-4 weeks after the commencement of HFD (60% of energy from fat), consistent with the timing of accumulation and activation of macrophages and microglia in the nodose ganglion and hypothalamus. Calorie-restricted weight loss after 12-week HFD feeding restored ghrelin responsiveness and alleviated the upregulation of macrophage/microglia activation markers and inflammatory cytokines. HSP72, a chaperone protein, was upregulated in the hypothalamus of HFD-fed mice, potentially contributing to prevention of irreversible neuron damage. These results demonstrate that ghrelin resistance is reversible following reversal of the HFD-induced inflammation and obesity phenotypes.
Collapse
Affiliation(s)
- Farhana Naznin
- Division of NeurologyRespirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Koji Toshinai
- Division of NeurologyRespirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
- Department of Sports and FitnessFaculty of Wellness, Shigakkan University, Obu, Japan
| | - T M Zaved Waise
- Division of NeurologyRespirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Tadashi Okada
- Division of NeurologyRespirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Hideyuki Sakoda
- Division of NeurologyRespirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Masamitsu Nakazato
- Division of NeurologyRespirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
- Agency for Medical Research and Development-Core Research for Evolutional Medical Science and Technology (AMED-CREST)Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
26
|
Luna-Moreno D, Pérez-Mendoza M, Carmona-Castro A, Miranda-Anaya M. Daily profile in ghrelin and hypothalamic ghrelin receptors in obese and lean mice Neotomodon alstoni. BIOL RHYTHM RES 2017. [DOI: 10.1080/09291016.2017.1385979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Dalia Luna-Moreno
- Unidad Multidisciplinaria de Docencia e Investigación (UMDI), Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM) Campus Juriquilla, Querétaro, México
| | - Moisés Pérez-Mendoza
- Unidad Multidisciplinaria de Docencia e Investigación (UMDI), Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM) Campus Juriquilla, Querétaro, México
| | - Agustín Carmona-Castro
- Unidad Multidisciplinaria de Docencia e Investigación (UMDI), Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM) Campus Juriquilla, Querétaro, México
| | - Manuel Miranda-Anaya
- Unidad Multidisciplinaria de Docencia e Investigación (UMDI), Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM) Campus Juriquilla, Querétaro, México
| |
Collapse
|
27
|
Pouchain Ribeiro Neto R, Clarke IJ, Conductier G. Alteration in the relationship between tanycytes and gonadotrophin-releasing hormone neurosecretory terminals following long-term metabolic manipulation in the sheep. J Neuroendocrinol 2017; 29. [PMID: 28722251 DOI: 10.1111/jne.12509] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 12/30/2022]
Abstract
The activity of the hypothalamic-pituitary gonadal axis is influenced by energy reserves, such that an increase or a decrease in adiposity may perturb the secretion and action of gonadotrophin-releasing hormone (GnRH). This is considered to be a result of the signalling of hormones such as leptin, which act upon neuronal systems controlling GnRH secretion. Other work shows plasticity in the relationship between tanycytes and GnRH neurosecretory terminals in the median eminence across the oestrous cycle and we hypothesised that a similar plasticity may occur with altered metabolic status. We studied Lean, Normal and Fat ovariectomised ewes, which displayed differences in gonadotrophin status, and investigated the relationship between tanycytes and GnRH neuroterminals. Under both Lean and Fat conditions, an altered anatomical arrangement between these two elements was observed in the vicinity of the blood vessels of the primary plexus of the hypophysial portal blood system. These data suggest that such plasticity is an important determinant of the rate of secretion of GnRH in animals of differing metabolic status and that this also contributes to the relative hypogonadotrophic condition prevailing with metabolic extremes.
Collapse
Affiliation(s)
- R Pouchain Ribeiro Neto
- Department of Physiology, Monash University, Melbourne, Victoria, Australia
- Neuroscience Program, Monash Biomedicine Discovery Institute, Department of Physiology, Monash University, Melbourne, Victoria, Australia
| | - I J Clarke
- Department of Physiology, Monash University, Melbourne, Victoria, Australia
- Neuroscience Program, Monash Biomedicine Discovery Institute, Department of Physiology, Monash University, Melbourne, Victoria, Australia
| | - G Conductier
- Department of Physiology, Monash University, Melbourne, Victoria, Australia
- Neuroscience Program, Monash Biomedicine Discovery Institute, Department of Physiology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
28
|
Abstract
Obesity, a major risk factor for the development of diabetes mellitus, cardiovascular diseases and certain types of cancer, arises from a chronic positive energy balance that is often due to unlimited access to food and an increasingly sedentary lifestyle on the background of a genetic and epigenetic vulnerability. Our understanding of the humoral and neuronal systems that mediate the control of energy homeostasis has improved dramatically in the past few decades. However, our ability to develop effective strategies to slow the current epidemic of obesity has been hampered, largely owing to the limited knowledge of the mechanisms underlying resistance to the action of metabolic hormones such as leptin and ghrelin. The development of resistance to leptin and ghrelin, hormones that are crucial for the neuroendocrine control of energy homeostasis, is a hallmark of obesity. Intensive research over the past several years has yielded tremendous progress in our understanding of the cellular pathways that disrupt the action of leptin and ghrelin. In this Review, we discuss the molecular mechanisms underpinning resistance to leptin and ghrelin and how they can be exploited as targets for pharmacological management of obesity.
Collapse
Affiliation(s)
- Huxing Cui
- Department of Pharmacology, University of Iowa, Iowa City, Iowa 52246, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242, USA
| | - Miguel López
- Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain
- Centro de Investigación Biomédica en Red-Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela 15706, Spain
| | - Kamal Rahmouni
- Department of Pharmacology, University of Iowa, Iowa City, Iowa 52246, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
29
|
Luna-Illades C, Morales T, Miranda-Anaya M. Decreased food anticipatory activity of obese mice relates to hypothalamic c-Fos expression. Physiol Behav 2017; 179:9-15. [PMID: 28527681 DOI: 10.1016/j.physbeh.2017.05.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/04/2017] [Accepted: 05/16/2017] [Indexed: 12/17/2022]
Abstract
During daily Food Restriction (FR), obese Neotomodon alstoni mice present decreased Food Anticipatory Activity (FAA) compared to lean mice. Here, we investigated whether FOS expression in hypothalamic nuclei involved in food synchronization and anticipation parallels decreased FAA during daily FR of obese N. alstoni. Locomotor activity of lean and obese mice in ad libitum feeding conditions was monitored for at least two weeks. Then, a gradual restriction of food access was followed to establish a 5h period of daily food access. FR was maintained during at least two weeks before sacrifice of mice at the starting point of the feeding period. Obese mice subjected to FR displayed an overall reduction of FOS-positive (FOS+) hypothalamic neurons, while lean mice in a similar protocol exhibited an increase in FOS+ neurons within the arcuate and dorsomedial hypothalamic nuclei. These results are consistent with decreased FAA displayed by obese mice in comparison to lean mice. Furthermore, limbic system areas of lean mice, such as the cingulate cortex and the hippocampus, showed an increase in FOS during FR, while no responses were observed in obese mice. The daily food intake of obese mice was severely reduced during FR, compared to the ad libitum condition, whereas food intake in lean mice was not affected by FR. Current data suggests that decreased hypothalamic and limbic neuronal activation may contribute to the reduction of FAA in obese N. alstoni mice.
Collapse
Affiliation(s)
- C Luna-Illades
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Querétaro, Mexico; Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - T Morales
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México.
| | - M Miranda-Anaya
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Querétaro, Mexico
| |
Collapse
|
30
|
Colldén G, Tschöp MH, Müller TD. Therapeutic Potential of Targeting the Ghrelin Pathway. Int J Mol Sci 2017; 18:ijms18040798. [PMID: 28398233 PMCID: PMC5412382 DOI: 10.3390/ijms18040798] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 02/07/2023] Open
Abstract
Ghrelin was discovered in 1999 as the endogenous ligand of the growth-hormone secretagogue receptor 1a (GHSR1a). Since then, ghrelin has been found to exert a plethora of physiological effects that go far beyond its initial characterization as a growth hormone (GH) secretagogue. Among the numerous well-established effects of ghrelin are the stimulation of appetite and lipid accumulation, the modulation of immunity and inflammation, the stimulation of gastric motility, the improvement of cardiac performance, the modulation of stress, anxiety, taste sensation and reward-seeking behavior, as well as the regulation of glucose metabolism and thermogenesis. Due to a variety of beneficial effects on systems’ metabolism, pharmacological targeting of the endogenous ghrelin system is widely considered a valuable approach to treat metabolic complications, such as chronic inflammation, gastroparesis or cancer-associated anorexia and cachexia. The aim of this review is to discuss and highlight the broad pharmacological potential of ghrelin pathway modulation for the treatment of anorexia, cachexia, sarcopenia, cardiopathy, neurodegenerative disorders, renal and pulmonary disease, gastrointestinal (GI) disorders, inflammatory disorders and metabolic syndrome.
Collapse
Affiliation(s)
- Gustav Colldén
- Institute for Diabetes and Obesity & Helmholtz Diabetes Center, Helmholtz Zentrum München German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany.
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity & Helmholtz Diabetes Center, Helmholtz Zentrum München German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany.
- Division of Metabolic Diseases, Department of Medicine, Technische Universität München, 80333 Munich, Germany.
| | - Timo D Müller
- Institute for Diabetes and Obesity & Helmholtz Diabetes Center, Helmholtz Zentrum München German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany.
- Institute for Diabetes and Obesity (IDO), Business Campus Garching-Hochbrück, Parkring 13, 85748 Garching, Germany.
| |
Collapse
|
31
|
Al Massadi O, López M, Tschöp M, Diéguez C, Nogueiras R. Current Understanding of the Hypothalamic Ghrelin Pathways Inducing Appetite and Adiposity. Trends Neurosci 2017; 40:167-180. [PMID: 28108113 DOI: 10.1016/j.tins.2016.12.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/13/2016] [Accepted: 12/15/2016] [Indexed: 12/21/2022]
Abstract
Ghrelin is a multifaceted regulator of metabolism. Ghrelin regulates energy balance in the short term via induction of appetite and in the long term via increased body weight and adiposity. Recently, several central pathways modulating the metabolic actions of ghrelin were unmasked, and it was shown to act through different hypothalamic nuclei to induce feeding. Ghrelin also modulates glucose homeostasis, but the central mechanisms responsible for this action have not been studied in detail. Although ghrelin also acts through extrahypothalamic areas to promote feeding, this review specifically dissects hypothalamic control of ghrelin's orexigenic and adipogenic actions and presents current understanding of the intracellular ghrelin orexigenic pathways, including their dependence on other relevant systems implicated in energy balance.
Collapse
Affiliation(s)
- Omar Al Massadi
- Department of Physiology, School of Medicine-CiMUS, Instituto de Investigación Sanitaria (IDIS), University of Santiago de Compostela, Av de Barcelona s/n Santiago de Compostela (A Coruña), 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Spain.
| | - Miguel López
- Department of Physiology, School of Medicine-CiMUS, Instituto de Investigación Sanitaria (IDIS), University of Santiago de Compostela, Av de Barcelona s/n Santiago de Compostela (A Coruña), 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Spain
| | - Matthias Tschöp
- Helmholtz Diabetes Center, Helmholtz Zentrum München and German Center for Diabetes Research (DZD), Neuherberg, Germany; Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - Carlos Diéguez
- Department of Physiology, School of Medicine-CiMUS, Instituto de Investigación Sanitaria (IDIS), University of Santiago de Compostela, Av de Barcelona s/n Santiago de Compostela (A Coruña), 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Spain
| | - Ruben Nogueiras
- Department of Physiology, School of Medicine-CiMUS, Instituto de Investigación Sanitaria (IDIS), University of Santiago de Compostela, Av de Barcelona s/n Santiago de Compostela (A Coruña), 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Spain.
| |
Collapse
|
32
|
Wang L, Goebel-Stengel M, Yuan PQ, Stengel A, Taché Y. Corticotropin-releasing factor overexpression in mice abrogates sex differences in body weight, visceral fat, and food intake response to a fast and alters levels of feeding regulatory hormones. Biol Sex Differ 2017; 8:2. [PMID: 28101317 PMCID: PMC5237138 DOI: 10.1186/s13293-016-0122-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 12/14/2016] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Corticotropin-releasing factor overexpressing (CRF-OE) male mice showed an inhibited feeding response to a fast, and lower plasma acyl ghrelin and Fos expression in the arcuate nucleus compared to wild-type (WT) mice. We investigated whether hormones and hypothalamic feeding signals are impaired in CRF-OE mice and the influence of sex. METHODS Male and female CRF-OE mice and WT littermates (4-6 months old) fed ad libitum or overnight fasted were assessed for body, adrenal glands and perigonadal fat weights, food intake, plasma hormones, blood glucose, and mRNA hypothalamic signals. RESULTS Under fed conditions, compared to WT, CRF-OE mice have increased adrenal glands and perigonadal fat weight, plasma corticosterone, leptin and insulin, and hypothalamic leptin receptor and decreased plasma acyl ghrelin. Compared to male, female WT mice have lower body and perigonadal fat and plasma leptin but higher adrenal glands weights. CRF-OE mice lost these sex differences except for the adrenals. Male CRF-OE and WT mice did not differ in hypothalamic expression of neuropeptide Y (NPY) and proopiomelanocortin (POMC), while female CRF-OE compared to female WT and male CRF-OE had higher NPY mRNA levels. After fasting, female WT mice lost more body weight and ate more food than male WT, while CRF-OE mice had reduced body weight loss and inhibited food intake without sex difference. In male WT mice, fasting reduced plasma insulin and leptin and increased acyl ghrelin and corticosterone while female WT showed only a rise in corticosterone. In CRF-OE mice, fasting reduced insulin while leptin, acyl ghrelin and corticosterone were unchanged with no sex difference. Fasting blood glucose was higher in CRF-OE with female > male. In WT mice, fasting increased hypothalamic NPY expression in both sexes and decreased POMC only in males, while in CRF-OE mice, NPY did not change, and POMC decreased in males and increased in females. CONCLUSIONS These data indicate that CRF-OE mice have abnormal basal and fasting circulating hormones and hypothalamic feeding-related signals. CRF-OE also abolishes the sex difference in body weight, abdominal fat, and fasting-induced feeding and changes in plasma levels of leptin and acyl ghrelin.
Collapse
Affiliation(s)
- Lixin Wang
- CURE/Digestive Diseases Research Center and Center for Neurobiology of Stress, Department of Medicine, Digestive Diseases Division, David Geffen School of Medicine, University of California at Los Angeles and Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California USA
| | - Miriam Goebel-Stengel
- CURE/Digestive Diseases Research Center and Center for Neurobiology of Stress, Department of Medicine, Digestive Diseases Division, David Geffen School of Medicine, University of California at Los Angeles and Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California USA ; Present address: Department for Internal Medicine, Martin-Luther-Krankenhaus, Caspar-Theyß-Str. 27-31, 14193 Berlin, Germany
| | - Pu-Qing Yuan
- CURE/Digestive Diseases Research Center and Center for Neurobiology of Stress, Department of Medicine, Digestive Diseases Division, David Geffen School of Medicine, University of California at Los Angeles and Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California USA
| | - Andreas Stengel
- CURE/Digestive Diseases Research Center and Center for Neurobiology of Stress, Department of Medicine, Digestive Diseases Division, David Geffen School of Medicine, University of California at Los Angeles and Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California USA ; Present address: Department for Psychosomatic Medicine, Charité Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Yvette Taché
- CURE/Digestive Diseases Research Center and Center for Neurobiology of Stress, Department of Medicine, Digestive Diseases Division, David Geffen School of Medicine, University of California at Los Angeles and Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California USA
| |
Collapse
|
33
|
Mamounis KJ, Yasrebi A, Roepke TA. Linoleic acid causes greater weight gain than saturated fat without hypothalamic inflammation in the male mouse. J Nutr Biochem 2016; 40:122-131. [PMID: 27886622 DOI: 10.1016/j.jnutbio.2016.10.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/27/2016] [Accepted: 10/27/2016] [Indexed: 01/22/2023]
Abstract
A significant change in the Western diet, concurrent with the obesity epidemic, was a substitution of saturated fatty acids with polyunsaturated, specifically linoleic acid (LA). Despite increasing investigation on type as well as amount of fat, it is unclear which fatty acids are most obesogenic. The objective of this study was to determine the obesogenic potency of LA vs. saturated fatty acids and the involvement of hypothalamic inflammation. Forty-eight mice were divided into four groups: low-fat or three high-fat diets (HFDs, 45% kcals from fat) with LA comprising 1%, 15% and 22.5% of kilocalories, the balance being saturated fatty acids. Over 12 weeks, bodyweight, body composition, food intake, calorimetry, and glycemia assays were performed. Arcuate nucleus and blood were collected for mRNA and protein analysis. All HFD-fed mice were heavier and less glucose tolerant than control. The diet with 22.5% LA caused greater bodyweight gain, decreased activity, and insulin resistance compared to control and 1% LA. All HFDs elevated leptin and decreased ghrelin in plasma. Neuropeptides gene expression was higher in 22.5% HFD. The inflammatory gene Ikk was suppressed in 1% and 22.5% LA. No consistent pattern of inflammatory gene expression was observed, with suppression and augmentation of genes by one or all of the HFDs relative to control. These data indicate that, in male mice, LA induces obesity and insulin resistance and reduces activity more than saturated fat, supporting the hypothesis that increased LA intake may be a contributor to the obesity epidemic.
Collapse
Affiliation(s)
- Kyle J Mamounis
- Department of Animal Sciences, School of Environmental & Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA; Nutritional Sciences Graduate Program, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Ali Yasrebi
- Department of Animal Sciences, School of Environmental & Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Troy A Roepke
- Department of Animal Sciences, School of Environmental & Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA; Nutritional Sciences Graduate Program, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA; New Jersey Institute for Food, Nutrition, and Health, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
34
|
François M, Barde S, Legrand R, Lucas N, Azhar S, el Dhaybi M, Guerin C, Hökfelt T, Déchelotte P, Coëffier M, Fetissov SO. High-fat diet increases ghrelin-expressing cells in stomach, contributing to obesity. Nutrition 2016; 32:709-15. [DOI: 10.1016/j.nut.2015.12.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 12/11/2015] [Accepted: 12/14/2015] [Indexed: 12/31/2022]
|
35
|
Hsu TM, Suarez AN, Kanoski SE. Ghrelin: A link between memory and ingestive behavior. Physiol Behav 2016; 162:10-7. [PMID: 27072509 DOI: 10.1016/j.physbeh.2016.03.039] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/29/2016] [Accepted: 03/31/2016] [Indexed: 01/25/2023]
Abstract
Feeding is a highly complex behavior that is influenced by learned associations between external and internal cues. The type of excessive feeding behavior contributing to obesity onset and metabolic deficit may be based, in part, on conditioned appetitive and ingestive behaviors that occur in response to environmental and/or interoceptive cues associated with palatable food. Therefore, there is a critical need to understand the neurobiology underlying learned aspects of feeding behavior. The stomach-derived "hunger" hormone, ghrelin, stimulates appetite and food intake and may function as an important biological substrate linking mnemonic processes with feeding control. The current review highlights data supporting a role for ghrelin in mediating the cognitive and neurobiological mechanisms that underlie conditioned feeding behavior. We discuss the role of learning and memory on food intake control (with a particular focus on hippocampal-dependent memory processes) and provide an overview of conditioned cephalic endocrine responses. A neurobiological framework is provided through which conditioned cephalic ghrelin secretion signals in neurons in the hippocampus, which then engage orexigenic neural circuitry in the lateral hypothalamus to express learned feeding behavior.
Collapse
Affiliation(s)
- Ted M Hsu
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA; Neuroscience Program, University of Southern California, Los Angeles, CA, USA
| | - Andrea N Suarez
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Scott E Kanoski
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA; Neuroscience Program, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
36
|
Yasrebi A, Hsieh A, Mamounis KJ, Krumm EA, Yang JA, Magby J, Hu P, Roepke TA. Differential gene regulation of GHSR signaling pathway in the arcuate nucleus and NPY neurons by fasting, diet-induced obesity, and 17β-estradiol. Mol Cell Endocrinol 2016; 422:42-56. [PMID: 26577678 PMCID: PMC4742417 DOI: 10.1016/j.mce.2015.11.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/04/2015] [Accepted: 11/05/2015] [Indexed: 12/20/2022]
Abstract
Ghrelin's receptor, growth hormone secretagogue receptor (GHSR), is highly expressed in the arcuate nucleus (ARC) and in neuropeptide Y (NPY) neurons. Fasting, diet-induced obesity (DIO), and 17β-estradiol (E2) influence ARC Ghsr expression. It is unknown if these effects occur in NPY neurons. Therefore, we examined the expression of Npy, Agrp, and GHSR signaling pathway genes after fasting, DIO, and E2 replacement in ARC and pools of NPY neurons. In males, fasting increased ARC Ghsr and NPY Foxo1 but decreased NPY Ucp2. In males, DIO decreased ARC and NPY Ghsr and Cpt1c. In fed females, E2 increased Agrp, Ghsr, Cpt1c, and Foxo1 in ARC. In NPY pools, E2 decreased Foxo1 in fed females but increased Foxo1 in fasted females. DIO in females suppressed Agrp and augmented Cpt1c in NPY neurons. In summary, genes involved in GHSR signaling are differentially regulated between the ARC and NPY neurons in a sex-dependent manner.
Collapse
Affiliation(s)
- Ali Yasrebi
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Anna Hsieh
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Kyle J Mamounis
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA; Nutritional Sciences Graduate Program, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Elizabeth A Krumm
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA; Graduate Program in Endocrinology and Animal Biosciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Jennifer A Yang
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA; Graduate Program in Endocrinology and Animal Biosciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Jason Magby
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Pu Hu
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Troy A Roepke
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA; Nutritional Sciences Graduate Program, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA; Graduate Program in Endocrinology and Animal Biosciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA; New Jersey Institute for Food, Nutrition, and Health, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
37
|
Sun X, Veldhuizen MG, Babbs AE, Sinha R, Small DM. Perceptual and Brain Response to Odors Is Associated with Body Mass Index and Postprandial Total Ghrelin Reactivity to a Meal. Chem Senses 2016; 41:233-48. [PMID: 26826114 DOI: 10.1093/chemse/bjv081] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2015] [Indexed: 12/11/2022] Open
Abstract
Animal studies have shown that olfactory sensitivity is greater when fasted than when fed. However, human research has generated inconsistent results. One possible explanation for these conflicting findings is metabolic health. Many metabolic peptides, including ghrelin, are moderated by adiposity and influence olfaction and olfactory-guided behaviors. We tested whether the effect of a meal on the perceived intensity of suprathreshold chemosensory stimuli is influenced by body mass index and/or metabolic response to a meal. We found that overweight or obese (n = 13), but not healthy weight (n = 20) subjects perceived odors, but not flavored solutions, as more intense when hungry than when sated. This effect was correlated with reduced postprandial total ghrelin suppression (n = 23) and differential brain response to odors in the cerebellum, as measured with functional magnetic resonance imaging. In contrast, it was unrelated to circulating leptin, glucose, insulin, triglycerides, or free fatty acids; or to odor pleasantness or sniffing (n = 24). These findings demonstrate that the effect of a meal on suprathreshold odor intensity perception is associated with metabolic measures such as body weight and total ghrelin reactivity, supporting endocrine influences on olfactory perception.
Collapse
Affiliation(s)
- Xue Sun
- Yale Interdepartmental Neuroscience Program, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA, The John B. Pierce Laboratory, 290 Congress Avenue, New Haven, CT 06519, USA,
| | - Maria G Veldhuizen
- The John B. Pierce Laboratory, 290 Congress Avenue, New Haven, CT 06519, USA, Department of Psychiatry, Yale School of Medicine, 300 George Street, New Haven, CT 06511, USA and
| | - Amanda E Babbs
- The John B. Pierce Laboratory, 290 Congress Avenue, New Haven, CT 06519, USA
| | - Rajita Sinha
- Department of Psychiatry, Yale School of Medicine, 300 George Street, New Haven, CT 06511, USA and
| | - Dana M Small
- Yale Interdepartmental Neuroscience Program, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA, The John B. Pierce Laboratory, 290 Congress Avenue, New Haven, CT 06519, USA, Department of Psychiatry, Yale School of Medicine, 300 George Street, New Haven, CT 06511, USA and Department of Psychology, Yale University, 2 Hillhouse Avenue, New Haven, CT 06520, USA
| |
Collapse
|
38
|
Zigman JM, Bouret SG, Andrews ZB. Obesity Impairs the Action of the Neuroendocrine Ghrelin System. Trends Endocrinol Metab 2016; 27:54-63. [PMID: 26542050 PMCID: PMC4814209 DOI: 10.1016/j.tem.2015.09.010] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 09/22/2015] [Accepted: 09/28/2015] [Indexed: 01/08/2023]
Abstract
Ghrelin is a metabolic hormone that promotes energy conservation by regulating appetite and energy expenditure. Although some studies suggest that antagonizing ghrelin function attenuates body weight gain and glucose intolerance on a high calorie diet, there is little information about the metabolic actions of ghrelin in the obese state. In this review, we discuss the novel concept of obesity-induced central ghrelin resistance in neural circuits regulating behavior, and impaired ghrelin secretion from the stomach. Interestingly, weight loss restores ghrelin secretion and function, and we hypothesize that ghrelin resistance is a mechanism designed to protect a higher body weight set-point established during times of food availability, to maximize energy reserves during a time of food scarcity.
Collapse
Affiliation(s)
- Jeffrey M Zigman
- Departments of Internal Medicine (Divisions of Hypothalamic Research and Endocrinology and Metabolism) and Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, 75390-9077, USA.
| | - Sebastien G Bouret
- The Saban Research Institute, Developmental Neuroscience Program, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA 90027, USA; Inserm, Jean-Pierre Aubert Research Center, U1172, University Lille 2, Lille, 59045, France
| | - Zane B Andrews
- Metabolic Disease and Obesity Theme, Biomedicine Discovery Institute, Department of Physiology, Monash University, Clayton, Victoria 3183, Australia
| |
Collapse
|
39
|
Abstract
Obesity has reached epidemic prevalence, and much research has focused on homeostatic and nonhomeostatic mechanisms underlying overconsumption of food. Mesocorticolimbic circuitry, including dopamine neurons of the ventral tegmental area (VTA), is a key substrate for nonhomeostatic feeding. The goal of the present review is to compare changes in mesolimbic dopamine function in human obesity with diet-induced obesity in rodents. Additionally, we will review the literature to determine if dopamine signaling is altered with binge eating disorder in humans or binge eating modeled in rodents. Finally, we assess modulation of dopamine neurons by neuropeptides and peripheral peptidergic signals that occur with obesity or binge eating. We find that while decreased dopamine concentration is observed with obesity, there is inconsistency outside the human literature on the relationship between striatal D2 receptor expression and obesity. Finally, few studies have explored how orexigenic or anorexigenic peptides modulate dopamine neuronal activity or striatal dopamine in obese models. However, ghrelin modulation of dopamine neurons may be an important factor for driving binge feeding in rodents.
Collapse
|
40
|
Bleau C, Karelis AD, St-Pierre DH, Lamontagne L. Crosstalk between intestinal microbiota, adipose tissue and skeletal muscle as an early event in systemic low-grade inflammation and the development of obesity and diabetes. Diabetes Metab Res Rev 2015; 31:545-61. [PMID: 25352002 DOI: 10.1002/dmrr.2617] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 10/01/2014] [Accepted: 10/13/2014] [Indexed: 02/06/2023]
Abstract
Obesity is associated with a systemic chronic low-grade inflammation that contributes to the development of metabolic disorders such as cardiovascular diseases and type 2 diabetes. However, the etiology of this obesity-related pro-inflammatory process remains unclear. Most studies have focused on adipose tissue dysfunctions and/or insulin resistance in skeletal muscle cells as well as changes in adipokine profile and macrophage recruitment as potential sources of inflammation. However, low-grade systemic inflammation probably involves a complex network of signals interconnecting several organs. Recent evidences have suggested that disturbances in the composition of the gut microbial flora and alterations in levels of gut peptides following the ingestion of a high-fat diet may be a cause of low-grade systemic inflammation that may even precede and predispose to obesity, metabolic disorders or type 2 diabetes. This hypothesis is appealing because the gastrointestinal system is first exposed to nutrients and may thereby represent the first link in the chain of events leading to the development of obesity-associated systemic inflammation. Therefore, the present review will summarize the latest advances interconnecting intestinal mucosal bacteria-mediated inflammation, adipose tissue and skeletal muscle in a coordinated circuitry favouring the onset of a high-fat diet-related systemic low-grade inflammation preceding obesity and predisposing to metabolic disorders and/or type 2 diabetes. A particular emphasis will be given to high-fat diet-induced alterations of gut homeostasis as an early initiator event of mucosal inflammation and adverse consequences contributing to the promotion of extended systemic inflammation, especially in adipose and muscular tissues.
Collapse
MESH Headings
- Adipose Tissue, White/immunology
- Adipose Tissue, White/metabolism
- Animals
- Diabetes Mellitus, Type 2/etiology
- Diabetes Mellitus, Type 2/immunology
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/microbiology
- Diet, High-Fat/adverse effects
- Enteritis/etiology
- Enteritis/immunology
- Enteritis/microbiology
- Enteritis/physiopathology
- Gastrointestinal Hormones/metabolism
- Gastrointestinal Microbiome
- Humans
- Immunity, Mucosal
- Intestinal Mucosa/immunology
- Intestinal Mucosa/metabolism
- Intestinal Mucosa/microbiology
- Models, Biological
- Muscle, Skeletal/immunology
- Muscle, Skeletal/metabolism
- Myositis/etiology
- Myositis/immunology
- Myositis/microbiology
- Myositis/physiopathology
- Obesity/etiology
- Obesity/immunology
- Obesity/metabolism
- Obesity/microbiology
- Panniculitis/etiology
- Panniculitis/immunology
- Panniculitis/microbiology
- Panniculitis/physiopathology
- Systemic Vasculitis/etiology
- Systemic Vasculitis/immunology
- Systemic Vasculitis/microbiology
- Systemic Vasculitis/physiopathology
Collapse
Affiliation(s)
- Christian Bleau
- Department of Biological Sciences, Université du Québec à Montréal, Montreal, Canada, H3C 3P8
| | - Antony D Karelis
- Department of Kinanthropology, Université du Québec à Montréal, Montreal, Canada, H3C 3P8
| | - David H St-Pierre
- Department of Kinanthropology, Université du Québec à Montréal, Montreal, Canada, H3C 3P8
| | - Lucie Lamontagne
- Department of Biological Sciences, Université du Québec à Montréal, Montreal, Canada, H3C 3P8
| |
Collapse
|
41
|
Naznin F, Toshinai K, Waise TMZ, NamKoong C, Md Moin AS, Sakoda H, Nakazato M. Diet-induced obesity causes peripheral and central ghrelin resistance by promoting inflammation. J Endocrinol 2015; 226:81-92. [PMID: 26016745 PMCID: PMC4485401 DOI: 10.1530/joe-15-0139] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/26/2015] [Indexed: 12/30/2022]
Abstract
Ghrelin, a stomach-derived orexigenic peptide, transmits starvation signals to the hypothalamus via the vagus afferent nerve. Peripheral administration of ghrelin does not induce food intake in high fat diet (HFD)-induced obese mice. We investigated whether this ghrelin resistance was caused by dysfunction of the vagus afferent pathway. Administration (s.c.) of ghrelin did not induce food intake, suppression of oxygen consumption, electrical activity of the vagal afferent nerve, phosphorylation of ERK2 and AMP-activated protein kinase alpha in the nodose ganglion, or Fos expression in hypothalamic arcuate nucleus of mice fed a HFD for 12 weeks. Administration of anti-ghrelin IgG did not induce suppression of food intake in HFD-fed mice. Expression levels of ghrelin receptor mRNA in the nodose ganglion and hypothalamus of HFD-fed mice were reduced. Inflammatory responses, including upregulation of macrophage/microglia markers and inflammatory cytokines, occurred in the nodose ganglion and hypothalamus of HFD-fed mice. A HFD blunted ghrelin signaling in the nodose ganglion via a mechanism involving in situ activation of inflammation. These results indicate that ghrelin resistance in the obese state may be caused by dysregulation of ghrelin signaling via the vagal afferent.
Collapse
Affiliation(s)
- Farhana Naznin
- Division of NeurologyRespirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, JapanDepartment of Sports and FitnessFaculty of Wellness, Shigakkan University, 55 Nakoyama, Yokone, Obu 474-8651, JapanAMED-CRESTAgency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Koji Toshinai
- Division of NeurologyRespirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, JapanDepartment of Sports and FitnessFaculty of Wellness, Shigakkan University, 55 Nakoyama, Yokone, Obu 474-8651, JapanAMED-CRESTAgency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan Division of NeurologyRespirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, JapanDepartment of Sports and FitnessFaculty of Wellness, Shigakkan University, 55 Nakoyama, Yokone, Obu 474-8651, JapanAMED-CRESTAgency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - T M Zaved Waise
- Division of NeurologyRespirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, JapanDepartment of Sports and FitnessFaculty of Wellness, Shigakkan University, 55 Nakoyama, Yokone, Obu 474-8651, JapanAMED-CRESTAgency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Cherl NamKoong
- Division of NeurologyRespirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, JapanDepartment of Sports and FitnessFaculty of Wellness, Shigakkan University, 55 Nakoyama, Yokone, Obu 474-8651, JapanAMED-CRESTAgency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Abu Saleh Md Moin
- Division of NeurologyRespirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, JapanDepartment of Sports and FitnessFaculty of Wellness, Shigakkan University, 55 Nakoyama, Yokone, Obu 474-8651, JapanAMED-CRESTAgency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Hideyuki Sakoda
- Division of NeurologyRespirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, JapanDepartment of Sports and FitnessFaculty of Wellness, Shigakkan University, 55 Nakoyama, Yokone, Obu 474-8651, JapanAMED-CRESTAgency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Masamitsu Nakazato
- Division of NeurologyRespirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, JapanDepartment of Sports and FitnessFaculty of Wellness, Shigakkan University, 55 Nakoyama, Yokone, Obu 474-8651, JapanAMED-CRESTAgency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan Division of NeurologyRespirology, Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, JapanDepartment of Sports and FitnessFaculty of Wellness, Shigakkan University, 55 Nakoyama, Yokone, Obu 474-8651, JapanAMED-CRESTAgency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
42
|
Ratner C, Madsen AN, Kristensen LV, Skov LJ, Pedersen KS, Mortensen OH, Knudsen GM, Raun K, Holst B. Impaired oxidative capacity due to decreased CPT1b levels as a contributing factor to fat accumulation in obesity. Am J Physiol Regul Integr Comp Physiol 2015; 308:R973-82. [DOI: 10.1152/ajpregu.00219.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 03/09/2015] [Indexed: 02/05/2023]
Abstract
To characterize mechanisms responsible for fat accumulation we used a selectively bred obesity-prone (OP) and obesity-resistant (OR) rat model where the rats were fed a Western diet for 76 days. Body composition was assessed by magnetic resonance imaging scans, and as expected, the OP rats developed a higher degree of fat accumulation compared with OR rats. Indirect calorimetry showed that the OP rats had higher respiratory exchange ratio (RER) compared with OR rats, indicating an impaired ability to oxidize fat. The OP rats had lower expression of carnitine palmitoyltransferase 1b in intra-abdominal fat, and higher expression of stearoyl-CoA desaturase 1 in subcutaneous fat compared with OR rats, which could explain the higher fat accumulation and RER values. Basal metabolic parameters were also examined in juvenile OP and OR rats before and during the introduction of the Western diet. Juvenile OP rats likewise had higher RER values, indicating that this trait may be a primary and contributing factor to their obese phenotype. When the adult obese rats were exposed to the orexigenic and adipogenic hormone ghrelin, we observed increased RER values in both OP and OR rats, while OR rats were more sensitive to the orexigenic effects of ghrelin as well as ghrelin-induced attenuation of activity and energy expenditure. Thus increased fat accumulation characterizing obesity may be caused by impaired oxidative capacity due to decreased carnitine palmitoyltransferase 1b levels in the white adipose tissue, whereas ghrelin sensitivity did not seem to be a contributing factor.
Collapse
Affiliation(s)
- Cecilia Ratner
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Section for Metabolic Receptology and Enteroendocrinology, The Novo Nordisk Foundation Center for basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Nygaard Madsen
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Section for Metabolic Receptology and Enteroendocrinology, The Novo Nordisk Foundation Center for basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Line Vildbrad Kristensen
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Section for Metabolic Receptology and Enteroendocrinology, The Novo Nordisk Foundation Center for basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Louise Julie Skov
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Section for Metabolic Receptology and Enteroendocrinology, The Novo Nordisk Foundation Center for basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Katrine Seide Pedersen
- Department of Biomedical Sciences, Cellular and Metabolic Research Section, Symbion, Copenhagen, Denmark
| | - Ole Hartvig Mortensen
- Department of Biomedical Sciences, Cellular and Metabolic Research Section, Symbion, Copenhagen, Denmark
| | - Gitte Moos Knudsen
- Neurobiology Research Unit and Center for Integrated Molecular Brain Imaging, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; and
| | - Kirsten Raun
- Novo Nordisk Diabetes Research Unit, Novo Nordisk A/S, Maaloev, Denmark
| | - Birgitte Holst
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Section for Metabolic Receptology and Enteroendocrinology, The Novo Nordisk Foundation Center for basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
43
|
Stark R, Reichenbach A, Lockie SH, Pracht C, Wu Q, Tups A, Andrews ZB. Acyl ghrelin acts in the brain to control liver function and peripheral glucose homeostasis in male mice. Endocrinology 2015; 156:858-68. [PMID: 25535832 DOI: 10.1210/en.2014-1733] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent evidence suggests that peripheral ghrelin regulates glucose metabolism. Here, we designed experiments to examine how central acyl ghrelin infusion affects peripheral glucose metabolism under pair-fed or ad libitum feeding conditions. Mice received intracerebroventricular (icv) infusion of artificial cerebrospinal fluid (aCSF), ghrelin, and allowed to eat ad libitum (icv ghrelin ad lib) or ghrelin and pair-fed to the aCSF group (icv ghrelin pf). Minipumps delivered acyl ghrelin at a dose of 0.25 μg/h at 0.5 μL/h for 7 days. There was no difference in daily blood glucose, insulin, glucagon, triglycerides, or nonesterified fatty acids. Body weight gain and food intake was significantly higher in icv ghrelin ad lib mice. However, both icv ghrelin ad lib and icv ghrelin pf groups exhibited heavier white adipose mass. Icv ghrelin pf mice exhibited better glucose tolerance than aCSF or icv ghrelin ad lib mice during a glucose tolerance test, although both icv ghrelin ad lib and icv ghrelin pf increased insulin release during the glucose tolerance test. Central acyl ghrelin infusion and pair feeding also increased breakdown of liver glycogen and triglyceride, and regulated genes involved in hepatic lipid and glucose metabolism. Icv ghrelin pf mice had an increase in plasma blood glucose during a pyruvate tolerance test relative to icv ghrelin ad lib or aCSF mice. Our results suggest that under conditions of negative energy (icv ghrelin pf), central acyl ghrelin engages a neural circuit that influences hepatic glucose function. Metabolic status affects the ability of central acyl ghrelin to regulate peripheral glucose homeostasis.
Collapse
Affiliation(s)
- Romana Stark
- Department of Physiology (R.S., A.R., S.H.L., Q.W., Z.B.A.), Monash University, Clayton, Victoria 3800, Australia; Traditional Chinese Medicine Department (Q.W.), Peking Union Medical College Hospital, Dongcheng District, Beijing 100730, China; Department of Animal Physiology (C.P., A.T.), Faculty of Biology, Phillips University, D-35043 Marburg, Germany; and Department of Physiology (A.T.), Otago School of Medical Sciences, University of Otago, Dunedin 9054, New Zealand
| | | | | | | | | | | | | |
Collapse
|
44
|
Bless EP, Reddy T, Acharya KD, Beltz BS, Tetel MJ. Oestradiol and diet modulate energy homeostasis and hypothalamic neurogenesis in the adult female mouse. J Neuroendocrinol 2014; 26:805-16. [PMID: 25182179 PMCID: PMC4476296 DOI: 10.1111/jne.12206] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/27/2014] [Accepted: 08/27/2014] [Indexed: 12/19/2022]
Abstract
Leptin and oestradiol have overlapping functions in energy homeostasis and fertility, and receptors for these hormones are localised in the same hypothalamic regions. Although, historically, it was assumed that mammalian adult neurogenesis was confined to the olfactory bulbs and the hippocampus, recent research has found new neurones in the male rodent hypothalamus. Furthermore, some of these new neurones are leptin-sensitive and affected by diet. In the present study, we tested the hypothesis that diet and hormonal status modulate hypothalamic neurogenesis in the adult female mouse. Adult mice were ovariectomised and implanted with capsules containing oestradiol (E2 ) or oil. Within each group, mice were fed a high-fat diet (HFD) or maintained on standard chow (STND). All animals were administered i.c.v. 5-bromo-2'-deoxyuridine (BrdU) for 9 days and sacrificed 34 days later after an injection of leptin to induce phosphorylation of signal transducer of activation and transcription 3 (pSTAT3). Brain tissue was immunohistochemically labelled for BrdU (newly born cells), Hu (neuronal marker) and pSTAT3 (leptin sensitive). Although mice on a HFD became obese, oestradiol protected against obesity. There was a strong interaction between diet and hormone on new cells (BrdU+) in the arcuate, ventromedial hypothalamus and dorsomedial hypothalamus. HFD increased the number of new cells, whereas E2 inhibited this effect. Conversely, E2 increased the number of new cells in mice on a STND diet in all hypothalamic regions studied. Although the total number of new leptin-sensitive neurones (BrdU-Hu-pSTAT3) found in the hypothalamus was low, HFD increased these new cells in the arcuate, whereas E2 attenuated this induction. These results suggest that adult neurogenesis in the hypothalamic neurogenic niche is modulated by diet and hormonal status and is related to energy homeostasis in female mice.
Collapse
Affiliation(s)
- E P Bless
- Neuroscience Program, Wellesley College, Wellesley, MA, USA
| | | | | | | | | |
Collapse
|
45
|
Cabral A, Valdivia S, Fernandez G, Reynaldo M, Perello M. Divergent neuronal circuitries underlying acute orexigenic effects of peripheral or central ghrelin: critical role of brain accessibility. J Neuroendocrinol 2014; 26:542-54. [PMID: 24888783 PMCID: PMC4108543 DOI: 10.1111/jne.12168] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 05/15/2014] [Accepted: 05/23/2014] [Indexed: 11/27/2022]
Abstract
Ghrelin is an octanoylated peptide hormone that potently and rapidly increases food intake. The orexigenic action of ghrelin involves the hypothalamic arcuate nucleus (ARC), which is accessible to plasma ghrelin and expresses high levels of the ghrelin receptor. Local administration of ghrelin in a variety of other brain nuclei also increases food intake. It is currently unclear, however, whether these non-ARC ghrelin brain targets are impacted by physiological increases of plasma ghrelin. Thus, the present study aimed to clarify which ghrelin brain targets participate in the short-term orexigenic actions of ghrelin. First, c-Fos induction into mouse brains centrally or peripherally treated with ghrelin was analysed. It was confirmed that peripherally administered ghrelin dose-dependently increases food intake and mainly activates c-Fos in ARC neurones. By contrast, centrally administered ghrelin activates c-Fos in a larger number of brain nuclei. To determine which nuclei are directly accessible to ghrelin, mice were centrally or peripherally injected with a fluorescent ghrelin tracer. It was found that peripherally injected tracer mainly accesses the ARC, whereas centrally injected tracer reaches most brain areas known to express ghrelin receptors. Subsequently, the effects of ghrelin were tested in ARC-ablated mice and it was found that these mice failed to increase food intake in response to peripherally administered ghrelin but fully responded to centrally administered ghrelin. ARC-ablated mice showed patterns of ghrelin-induced c-Fos expression similar to those seen in control mice with the exception of the ARC, where no c-Fos was found. Thus, peripheral ghrelin mainly accesses the ARC, which is required for the orexigenic effects of the hormone. Central ghrelin accesses a variety of nuclei, which can mediate the orexigenic effects of the hormone, even in the absence of an intact ARC.
Collapse
Affiliation(s)
- Agustina Cabral
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA)], La Plata, Buenos Aires, Argentina
| | - Spring Valdivia
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA)], La Plata, Buenos Aires, Argentina
| | - Gimena Fernandez
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA)], La Plata, Buenos Aires, Argentina
| | - Mirta Reynaldo
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA)], La Plata, Buenos Aires, Argentina
| | - Mario Perello
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA)], La Plata, Buenos Aires, Argentina
| |
Collapse
|
46
|
Liu R, Ma D, Li Y, Hu R, Peng Y, Wang Q. The anorexic effect of Ex4/Fc through GLP-1 receptor activation in high-fat diet fed mice. Acta Biochim Biophys Sin (Shanghai) 2014; 46:675-81. [PMID: 24951724 DOI: 10.1093/abbs/gmu044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Exendin-4 (Ex4), a peptide initially found in the saliva of the Gila monster, can activate the signaling pathway of the incretin hormone glucagon-like peptide-1 (GLP-1) through the GLP-1 receptor (GLP-1R). We previously reported that a chimera protein consisting of Ex4 and mouse IgG heavy chain constant regions (Ex4/Fc) can exert biological effects of GLP-1, such as improving glycemic control and ameliorating manifestations in diabetic mice. The aim of this study was to determine whether Ex4/Fc is effective in modulating energy homeostasis in mice. Our results showed that in vivo expression of Ex4/Fc by intramuscular injection of the plasmid encoding Ex4/Fc followed by local electroporation effectively decreased food intake in the mice on high-fat diet (HFD) feeding. In addition, the reduced energy intake was associated with the decreased excrements from the Ex4/Fc-treated HFD mice but not the Fc control mice. Remarkably, the Ex4/Fctreated HFD mice displayed significantly lower triglyceride (TG) levels when compared with the control mice. Interestingly, while the leptin levels were not changed, the circulating ghrelin levels were higher in Ex4/Fc mice than those in the Fc control mice. These results suggested that Ex4/Fc can improve energy metabolism and lipid metabolism through GLP-1R in mice under excessive nutrition conditions.
Collapse
|
47
|
Briggs DI, Lockie SH, Benzler J, Wu Q, Stark R, Reichenbach A, Hoy AJ, Lemus MB, Coleman HA, Parkington HC, Tups A, Andrews ZB. Evidence that diet-induced hyperleptinemia, but not hypothalamic gliosis, causes ghrelin resistance in NPY/AgRP neurons of male mice. Endocrinology 2014; 155:2411-22. [PMID: 24742194 DOI: 10.1210/en.2013-1861] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
High-fat diet (HFD) feeding causes ghrelin resistance in arcuate neuropeptide Y (NPY)/Agouti-related peptide neurons. In the current study, we investigated the time course over which this occurs and the mechanisms responsible for ghrelin resistance. After 3 weeks of HFD feeding, neither peripheral nor central ghrelin increased food intake and or activated NPY neurons as demonstrated by a lack of Fos immunoreactivity or whole-cell patch-clamp electrophysiology. Pair-feeding studies that matched HFD calorie intake with chow calorie intake show that HFD exposure does not cause ghrelin resistance independent of body weight gain. We observed increased plasma leptin in mice fed a HFD for 3 weeks and show that leptin-deficient obese ob/ob mice are still ghrelin sensitive but become ghrelin resistant when central leptin is coadministered. Moreover, ob/ob mice fed a HFD for 3 weeks remain ghrelin sensitive, and the ability of ghrelin to induce action potential firing in NPY neurons was blocked by leptin. We also examined hypothalamic gliosis in mice fed a chow diet or HFD, as well as in ob/ob mice fed a chow diet or HFD and lean controls. HFD-fed mice exhibited increased glial fibrillary acidic protein-positive cells compared with chow-fed mice, suggesting that hypothalamic gliosis may underlie ghrelin resistance. However, we also observed an increase in hypothalamic gliosis in ob/ob mice fed a HFD compared with chow-fed ob/ob and lean control mice. Because ob/ob mice fed a HFD remain ghrelin sensitive, our results suggest that hypothalamic gliosis does not underlie ghrelin resistance. Further, pair-feeding a HFD to match the calorie intake of chow-fed controls did not increase body weight gain or cause central ghrelin resistance; thus, our evidence suggests that diet-induced hyperleptinemia, rather than diet-induced hypothalamic gliosis or HFD exposure, causes ghrelin resistance.
Collapse
Affiliation(s)
- Dana I Briggs
- Department of Physiology (D.I.B., S.H.L., Q.W., R.S., A.R., M.B.L., H.A.C., H.C.P., Z.B.A.), Monash University, Clayton, Victoria 3800, Australia; Traditional Chinese Medicine Department (Q.W.), Peking Union Medical College Hospital, Beijing, China 100730; Department of Physiology (J.B., A.J.H.), Bosch Institute, The University of Sydney, New South Wales 2006, Australia; and Department of Animal Physiology (A.T.), Faculty of Biology, Philipps University, Marburg, D-35043 Marburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Novelle MG, Vázquez MJ, Martinello KD, Sanchez-Garrido MA, Tena-Sempere M, Diéguez C. Neonatal events, such as androgenization and postnatal overfeeding, modify the response to ghrelin. Sci Rep 2014; 4:4855. [PMID: 24798184 PMCID: PMC4010967 DOI: 10.1038/srep04855] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 04/15/2014] [Indexed: 02/03/2023] Open
Abstract
It is currently accepted that ambient, non-genetic factors influence perinatal development and evoke structural and functional changes that may persist throughout life. Overfeeding and androgenization after birth are two of these key factors that could result in “metabolic imprinting” of neuronal circuits early in life and, thereby, increase the body weight homeostatic “set point”, stimulate appetite, and result in obesity. Our aim was to determine the influence of these obesogenic factors on the response to ghrelin. We observed the expected orexigenic effect of ghrelin regardless of the nutritional or hormonal manipulations to which the animals were subjected to at early postnatal development and this effect remained intact at later stages of development. In fact, ghrelin responses increased significantly when the animals were subjected to one of the two manipulations, but not when both were combined. An increased response to ghrelin could explain the obese phenotype displayed by individuals with modified perinatal environment.
Collapse
Affiliation(s)
- Marta G Novelle
- 1] Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria (IDIS), 15782 Santiago de Compostela, Spain [2] CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Instituto de Salud Carlos III, Santiago de Compostela, Spain
| | - María J Vázquez
- 1] Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria (IDIS), 15782 Santiago de Compostela, Spain [2] CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Instituto de Salud Carlos III, Santiago de Compostela, Spain
| | - Kátia D Martinello
- 1] Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria (IDIS), 15782 Santiago de Compostela, Spain [2] CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Instituto de Salud Carlos III, Santiago de Compostela, Spain
| | - Miguel A Sanchez-Garrido
- 1] CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Instituto de Salud Carlos III, Santiago de Compostela, Spain [2] Department of Cell Biology, Physiology and Immunology, School of Medicine, University of Córdoba - Instituto Maimónides de Investigación Biomédica (IMIBIC)/Hospital Universitario Reina Sofia, Córdoba, Spain
| | - Manuel Tena-Sempere
- 1] CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Instituto de Salud Carlos III, Santiago de Compostela, Spain [2] Department of Cell Biology, Physiology and Immunology, School of Medicine, University of Córdoba - Instituto Maimónides de Investigación Biomédica (IMIBIC)/Hospital Universitario Reina Sofia, Córdoba, Spain
| | - Carlos Diéguez
- 1] Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria (IDIS), 15782 Santiago de Compostela, Spain [2] CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Instituto de Salud Carlos III, Santiago de Compostela, Spain
| |
Collapse
|
49
|
Prodam F, Monzani A, Ricotti R, Marolda A, Bellone S, Aimaretti G, Roccio M, Bona G. Systematic review of ghrelin response to food intake in pediatric age, from neonates to adolescents. J Clin Endocrinol Metab 2014; 99:1556-68. [PMID: 24601727 DOI: 10.1210/jc.2013-4010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Food intake and energy balance are regulated during the lifespan with critical changes in each specific period (infancy, adulthood, aging). Some of ghrelin's changes may contribute to the regulation of food intake and weight in children. We aimed to analyze the ghrelin response to feeding in lean or obese subjects from birth to adolescence. METHODS We searched PubMed, Scopus, Google Scholar, Cochrane, and EMBASE (December 1999 to February 2013) and identified 62 relevant articles, of which 29 were suitable to be included. RESULTS AND CONCLUSIONS Total ghrelin response to meals is particular, with refractoriness in neonates and lean children and an inhibition that starts from puberty. Total ghrelin levels are decreased after meals, irrespective of pubertal stages in obese children and adolescents. Conversely, total ghrelin is decreased after an oral glucose tolerance test in all ages, with the exception of neonates. Data on unacylated ghrelin response are scant but resemble those of total ghrelin. The acylated ghrelin response to meals or oral glucose tolerance test is discordant, although a precocious inhibition followed by a rise back is present in both lean and obese children. The post-feeding profile in children with Prader-Willi syndrome is also peculiar, with a conserved and deeper inhibition of all ghrelin forms.
Collapse
Affiliation(s)
- Flavia Prodam
- Division of Pediatrics, Department of Health Sciences (F.P., A.M., R.R., A.M., S.B., M.R., G.B.); Endocrinology, Department of Translational Medicine (F.P., G.A.); and Interdisciplinary Center for Obesity Study (F.P., S.B., G.B.), Università del Piemonte Orientale "A. Avogadro," Novara, 28100, Italy
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Kentish SJ, Wittert GA, Blackshaw LA, Page AJ. A chronic high fat diet alters the homologous and heterologous control of appetite regulating peptide receptor expression. Peptides 2013; 46:150-8. [PMID: 23792934 DOI: 10.1016/j.peptides.2013.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 06/04/2013] [Accepted: 06/04/2013] [Indexed: 10/26/2022]
Abstract
Leptin, ghrelin and neuropeptide W (NPW) modulate vagal afferent activity, which may underlie their appetite regulatory actions. High fat diet (HFD)-induced obesity induces changes in the plasma levels of these peptides and alters the expression of receptors on vagal afferents. We investigated homologous and heterologous receptor regulation by leptin, ghrelin and NPW. Mice were fed (12 weeks) a standard laboratory diet (SLD) or HFD. Nodose ganglia were cultured overnight in the presence or absence of each peptide. Leptin (LepR), ghrelin (GHS-R), NPW (GPR7) and cholecystokinin type-1 (CCK1R) receptor mRNA, and the plasma leptin, ghrelin and NPW levels were measured. SLD: leptin reduced LepR, GPR7, increased GHS-R and CCK1R mRNA; ghrelin increased LepR, GPR7, CCK1R, and decreased GHS-R. HFD: leptin decreased GHS-R and GPR7, ghrelin increased GHS-R and GPR7. NPW decreased all receptors except GPR7 which increased with HFD. Plasma leptin was higher and NPW lower in HFD. Thus, HFD-induced obesity disrupts inter-regulation of appetite regulatory receptors in vagal afferents.
Collapse
MESH Headings
- Animals
- Appetite/physiology
- Appetite Regulation/physiology
- Cells, Cultured
- Diet, High-Fat
- Female
- Ghrelin/blood
- Ghrelin/metabolism
- Leptin/blood
- Leptin/metabolism
- Mice
- Mice, Inbred C57BL
- Neuropeptides/blood
- Neuropeptides/metabolism
- Nodose Ganglion/cytology
- Nodose Ganglion/drug effects
- Obesity/blood
- RNA, Messenger
- Receptor, Cholecystokinin A/genetics
- Receptors, G-Protein-Coupled/biosynthesis
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Ghrelin/metabolism
- Receptors, Leptin/metabolism
- Receptors, Neuropeptide/biosynthesis
- Receptors, Neuropeptide/metabolism
- Vagus Nerve/metabolism
Collapse
Affiliation(s)
- Stephen J Kentish
- Nerve Gut Research Laboratory, Department of Medicine, University of Adelaide, Frome Road, Adelaide, SA 5005, Australia
| | | | | | | |
Collapse
|