1
|
Dehnavi Z, Barghchi H, Esfehani AJ, Barati M, Khorasanchi Z, Farsi F, Ostad AN, Ranjbar G, Rezvani R, Gorgani MR, Safarian M. Animal and plant-based proteins have different postprandial effects on energy expenditure, glycemia, insulinemia, and lipemia: A review of controlled clinical trials. Food Sci Nutr 2023; 11:4398-4408. [PMID: 37576026 PMCID: PMC10420774 DOI: 10.1002/fsn3.3417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 08/15/2023] Open
Abstract
Dietary proteins have been shown to stimulate thermogenesis, increase satiety, and improve insulin sensitivity in the short and long term. Animal-based proteins (AP) and plant-based proteins (PP) have different amino acid profiles, bioavailability, and digestibility, so it seems to have various short- and long-term effects on metabolic responses. This review aimed to compare the findings of controlled clinical trials on postprandial effects of dietary Aps versus PPs on energy expenditure (EE), lipemia, glycemia, and insulinemia. Data are inconclusive regarding the postprandial effects of APs and PPs. However, there is some evidence indicating that APs increase postprandial EE, DIT, and SO more than PPs. With lipemia and glycemia, most studies showed that APs reduce or delay postprandial glycemia and lipemia and increase insulinemia more than PPs. The difference in amino acid composition, digestion and absorption rate, and gastric emptying rate between APs and PPs explains this difference.
Collapse
Affiliation(s)
- Zahra Dehnavi
- Department of Nutrition, School of MedicineMashhad University of Medical SciencesMashhadIran
- Student Research Committee, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Hanieh Barghchi
- Department of Nutrition, School of MedicineMashhad University of Medical SciencesMashhadIran
- Student Research Committee, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | | | - Mehdi Barati
- Department of Pathobiology and Laboratory SciencesNorth Khorasan University of Medical SciencesBojnurdIran
| | - Zahra Khorasanchi
- Department of Nutrition, School of MedicineMashhad University of Medical SciencesMashhadIran
- Student Research Committee, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Farima Farsi
- Student Research Committee, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
- School of MedicineMashhad University of Medical Sciences (MUMS)MashhadIran
| | | | - Golnaz Ranjbar
- Department of Nutrition, School of MedicineMashhad University of Medical SciencesMashhadIran
| | - Reza Rezvani
- Department of Nutrition, School of MedicineMashhad University of Medical SciencesMashhadIran
| | - Mitra Rezaie Gorgani
- Department of Nutrition, School of MedicineMashhad University of Medical SciencesMashhadIran
| | - Mohammad Safarian
- Metabolic Syndrome Research CentreMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
2
|
Valicente VM, Peng CH, Pacheco KN, Lin L, Kielb EI, Dawoodani E, Abdollahi A, Mattes RD. Ultraprocessed Foods and Obesity Risk: A Critical Review of Reported Mechanisms. Adv Nutr 2023; 14:718-738. [PMID: 37080461 PMCID: PMC10334162 DOI: 10.1016/j.advnut.2023.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/02/2023] [Accepted: 04/14/2023] [Indexed: 04/22/2023] Open
Abstract
Epidemiologic evidence supports a positive association between ultraprocessed food (UPF) consumption and body mass index. This has led to recommendations to avoid UPFs despite very limited evidence establishing causality. Many mechanisms have been proposed, and this review critically aimed to evaluate selected possibilities for specificity, clarity, and consistency related to food choice (i.e., low cost, shelf-life, food packaging, hyperpalatability, and stimulation of hunger/suppression of fullness); food composition (i.e., macronutrients, food texture, added sugar, fat and salt, energy density, low-calorie sweeteners, and additives); and digestive processes (i.e., oral processing/eating rate, gastric emptying time, gastrointestinal transit time, and microbiome). For some purported mechanisms (e.g., fiber content, texture, gastric emptying, and intestinal transit time), data directly contrasting the effects of UPF and non-UPF intake on the indices of appetite, food intake, and adiposity are available and do not support a unique contribution of UPFs. In other instances, data are not available (e.g., microbiome and food additives) or are insufficient (e.g., packaging, food cost, shelf-life, macronutrient intake, and appetite stimulation) to judge the benefits versus the risks of UPF avoidance. There are yet other evoked mechanisms in which the preponderance of evidence indicates ingredients in UPFs actually moderate body weight (e.g., low-calorie sweetener use for weight management; beverage consumption as it dilutes energy density; and higher fat content because it reduces glycemic responses). Because avoidance of UPFs holds potential adverse effects (e.g., reduced diet quality, increased risk of food poisoning, and food wastage), it is imprudent to make recommendations regarding their role in diets before causality and plausible mechanisms have been verified.
Collapse
Affiliation(s)
- Vinicius M Valicente
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States
| | - Ching-Hsuan Peng
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN, United States
| | - Kathryn N Pacheco
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States
| | - Luotao Lin
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States
| | - Elizabeth I Kielb
- Department of Human Development and Family Studies, Purdue University, West Lafayette, IN, United States
| | - Elina Dawoodani
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States
| | - Afsoun Abdollahi
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States
| | - Richard D Mattes
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
3
|
de Souza Vilela DL, da Silva A, Pinto SL, Bressan J. Relationship between dietary macronutrient composition with weight loss after bariatric surgery: A systematic review. Obes Rev 2023; 24:e13559. [PMID: 36890787 DOI: 10.1111/obr.13559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/15/2022] [Accepted: 02/04/2023] [Indexed: 03/10/2023]
Abstract
This systematic review evaluated the relationship between macronutrient intake and weight loss after bariatric surgery (BS). The MEDLINE/Pubmed, EMBASE, COCHRANE/CENTRAL, and SCOPUS databases were accessed in August 2021 to search for eligible articles: original publications with adults undergoing BS and indicating the relationship between macronutrients and weight loss. Titles that did not meet these criteria were excluded. The review was written according to the PRISMA guide, and the risk of bias was according to the Joanna Briggs manual. Data were extracted by one reviewer and checked by another. Eight articles with 2.378 subjects were included. The studies indicated a positive relationship between weight loss and protein intake after BS. Prioritization of protein followed by carbohydrates with a lower percentage of lipids favors weight loss and increases weight stability after BS. Among the results found, a 1% increase in protein intake raises the probability of obesity remission by 6%, and high-protein diet increase 50% weight loss success. Limitations are the methods of included studies and review process. It is concluded that high-protein intake >60 g a 90 g/day may favor weight loss and maintenance after BS, but it is relevant to balance the other macronutrients.
Collapse
Affiliation(s)
- Darlene Larissa de Souza Vilela
- Laboratory of Energy Metabolism and Body Composition (LAMECC). Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Alessandra da Silva
- Laboratory of Energy Metabolism and Body Composition (LAMECC). Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Sônia Lopes Pinto
- Laboratory of Energy Metabolism and Body Composition (LAMECC). Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Brazil.,Nutrition Course, Universidade Federal de Tocantins, Palmas, Tocantins, Brazil
| | - Josefina Bressan
- Laboratory of Energy Metabolism and Body Composition (LAMECC). Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|
4
|
Lesgards JF. Benefits of Whey Proteins on Type 2 Diabetes Mellitus Parameters and Prevention of Cardiovascular Diseases. Nutrients 2023; 15:nu15051294. [PMID: 36904293 PMCID: PMC10005124 DOI: 10.3390/nu15051294] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a major cause of morbidity and mortality, and it is a major risk factor for the early onset of cardiovascular diseases (CVDs). More than genetics, food, physical activity, walkability, and air pollution are lifestyle factors, which have the greatest impact on T2DM. Certain diets have been shown to be associated with lower T2DM and cardiovascular risk. Diminishing added sugar and processed fats and increasing antioxidant-rich vegetable and fruit intake has often been highlighted, as in the Mediterranean diet. However, less is known about the interest of proteins in low-fat dairy and whey in particular, which have great potential to improve T2DM and could be used safely as a part of a multi-target strategy. This review discusses all the biochemical and clinical aspects of the benefits of high-quality whey, which is now considered a functional food, for prevention and improvement of T2DM and CVDs by insulin- and non-insulin-dependent mechanisms.
Collapse
Affiliation(s)
- Jean-François Lesgards
- Ingénierie des Peptides Thérapeutiques, Ambrilia-Cellpep, Faculté de Médecine Nord, Aix-Marseille University, Boulevard Pierre Dramard, 13015 Marseille, France
| |
Collapse
|
5
|
Effects of pre-meal whey protein consumption on acute food intake and energy balance over a 48-hour period. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
6
|
Heindel JJ, Howard S, Agay-Shay K, Arrebola JP, Audouze K, Babin PJ, Barouki R, Bansal A, Blanc E, Cave MC, Chatterjee S, Chevalier N, Choudhury M, Collier D, Connolly L, Coumoul X, Garruti G, Gilbertson M, Hoepner LA, Holloway AC, Howell G, Kassotis CD, Kay MK, Kim MJ, Lagadic-Gossmann D, Langouet S, Legrand A, Li Z, Le Mentec H, Lind L, Monica Lind P, Lustig RH, Martin-Chouly C, Munic Kos V, Podechard N, Roepke TA, Sargis RM, Starling A, Tomlinson CR, Touma C, Vondracek J, Vom Saal F, Blumberg B. Obesity II: Establishing causal links between chemical exposures and obesity. Biochem Pharmacol 2022; 199:115015. [PMID: 35395240 PMCID: PMC9124454 DOI: 10.1016/j.bcp.2022.115015] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 02/06/2023]
Abstract
Obesity is a multifactorial disease with both genetic and environmental components. The prevailing view is that obesity results from an imbalance between energy intake and expenditure caused by overeating and insufficient exercise. We describe another environmental element that can alter the balance between energy intake and energy expenditure: obesogens. Obesogens are a subset of environmental chemicals that act as endocrine disruptors affecting metabolic endpoints. The obesogen hypothesis posits that exposure to endocrine disruptors and other chemicals can alter the development and function of the adipose tissue, liver, pancreas, gastrointestinal tract, and brain, thus changing the set point for control of metabolism. Obesogens can determine how much food is needed to maintain homeostasis and thereby increase the susceptibility to obesity. The most sensitive time for obesogen action is in utero and early childhood, in part via epigenetic programming that can be transmitted to future generations. This review explores the evidence supporting the obesogen hypothesis and highlights knowledge gaps that have prevented widespread acceptance as a contributor to the obesity pandemic. Critically, the obesogen hypothesis changes the narrative from curing obesity to preventing obesity.
Collapse
Affiliation(s)
- Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, USA.
| | - Sarah Howard
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, USA
| | - Keren Agay-Shay
- Health and Environment Research (HER) Lab, The Azrieli Faculty of Medicine, Bar Ilan University, Israel
| | - Juan P Arrebola
- Department of Preventive Medicine and Public Health University of Granada, Granada, Spain
| | - Karine Audouze
- Department of Systems Biology and Bioinformatics, University of Paris, INSERM, T3S, Paris France
| | - Patrick J Babin
- Department of Life and Health Sciences, University of Bordeaux, INSERM, Pessac France
| | - Robert Barouki
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Amita Bansal
- College of Health & Medicine, Australian National University, Canberra, Australia
| | - Etienne Blanc
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Matthew C Cave
- Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, KY 40402, USA
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, University of South Carolina, Columbia, SC 29208, USA
| | - Nicolas Chevalier
- Obstetrics and Gynecology, University of Cote d'Azur, Cote d'Azur, France
| | - Mahua Choudhury
- College of Pharmacy, Texas A&M University, College Station, TX 77843, USA
| | - David Collier
- Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Lisa Connolly
- The Institute for Global Food Security, School of Biological Sciences, Queen's University, Belfast, Northern Ireland, UK
| | - Xavier Coumoul
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Gabriella Garruti
- Department of Endocrinology, University of Bari "Aldo Moro," Bari, Italy
| | - Michael Gilbertson
- Occupational and Environmental Health Research Group, University of Stirling, Stirling, Scotland
| | - Lori A Hoepner
- Department of Environmental and Occupational Health Sciences, School of Public Health, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Alison C Holloway
- McMaster University, Department of Obstetrics and Gynecology, Hamilton, Ontario, CA, USA
| | - George Howell
- Center for Environmental Health Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Christopher D Kassotis
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202, USA
| | - Mathew K Kay
- College of Pharmacy, Texas A&M University, College Station, TX 77843, USA
| | - Min Ji Kim
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | | | - Sophie Langouet
- Univ Rennes, INSERM EHESP, IRSET UMR_5S 1085, 35000 Rennes, France
| | - Antoine Legrand
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Zhuorui Li
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Helene Le Mentec
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Lars Lind
- Clinical Epidemiology, Department of Medical Sciences, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - P Monica Lind
- Occupational and Environmental Medicine, Department of Medical Sciences, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Robert H Lustig
- Division of Endocrinology, Department of Pediatrics, University of California San Francisco, CA 94143, USA
| | | | - Vesna Munic Kos
- Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
| | - Normand Podechard
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Troy A Roepke
- Department of Animal Science, School of Environmental and Biological Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Robert M Sargis
- Division of Endocrinology, Diabetes and Metabolism, The University of Illinois at Chicago, Chicago, Il 60612, USA
| | - Anne Starling
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Craig R Tomlinson
- Norris Cotton Cancer Center, Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Charbel Touma
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Jan Vondracek
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Frederick Vom Saal
- Division of Biological Sciences, The University of Missouri, Columbia, MO 65211, USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
7
|
Yunker AG, Luo S, Jones S, Dorton HM, Alves JM, Angelo B, DeFendis A, Pickering TA, Monterosso JR, Page KA. Appetite-Regulating Hormones Are Reduced After Oral Sucrose vs Glucose: Influence of Obesity, Insulin Resistance, and Sex. J Clin Endocrinol Metab 2021; 106:654-664. [PMID: 33300990 PMCID: PMC7947782 DOI: 10.1210/clinem/dgaa865] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Indexed: 11/19/2022]
Abstract
CONTEXT Fructose compared to glucose has adverse effects on metabolic function, but endocrine responses to oral sucrose vs glucose is not well understood. OBJECTIVE We investigated how oral sucrose vs glucose affected appetite-regulating hormones, and how biological factors (body mass index [BMI], insulin sensitivity, sex) influence endocrine responses to these 2 types of sugar. DESIGN Sixty-nine adults (29 men; 23.22 ± 3.74 years; BMI 27.03 ± 4.96 kg/m2) completed the study. On 2 occasions, participants consumed 300-mL drinks containing 75 g of glucose or sucrose. Blood was sampled at baseline, 10, 35, and 120 minutes post drink for plasma glucose, insulin, glucagon-like peptide (GLP-1)(7-36), peptide YY (PYY)total, and acyl-ghrelin measures. Hormone levels were compared between conditions using a linear mixed model. Interaction models were performed, and results were stratified to assess how biological factors influence endocrine responses. RESULTS Sucrose vs glucose ingestion provoked a less robust rise in glucose (P < .001), insulin (P < .001), GLP-1 (P < .001), and PYY (P = .02), whereas acyl-ghrelin suppression was similar between the sugars. We found BMI status by sugar interactions for glucose (P = .01) and PYY (P = .03); obese individuals had smaller increases in glucose and PYY levels after consuming sucrose vs glucose. There were interactions between insulin sensitivity and sugar for glucose (P = .003) and insulin (P = .04), and a sex by sugar interaction for GLP-1 (P = .01); men demonstrated smaller increases in GLP-1 in response to oral sucrose vs glucose. CONCLUSION Sucrose is less efficient at signaling postprandial satiation than glucose, and biological factors influence differential hormone responses to sucrose vs glucose consumption.
Collapse
Affiliation(s)
- Alexandra G Yunker
- Division of Endocrinology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Shan Luo
- Division of Endocrinology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Department of Psychology, University of Southern California, Los Angeles, California, USA
| | - Sabrina Jones
- Division of Endocrinology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Hilary M Dorton
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California, USA
| | - Jasmin M Alves
- Division of Endocrinology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Brendan Angelo
- Division of Endocrinology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Alexis DeFendis
- Division of Endocrinology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Trevor A Pickering
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - John R Monterosso
- Department of Psychology, University of Southern California, Los Angeles, California, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California, USA
| | - Kathleen A Page
- Division of Endocrinology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Correspondence and Reprint Requests: Kathleen A. Page, MD, USC Keck School of Medicine, Division of Endocrinology, Diabetes and Obesity Research Institute, 2250 Alcazar St, CSC 209, Los Angeles, CA 90089, USA. E-mail:
| |
Collapse
|
8
|
Khorshidian N, Shadnoush M, Zabihzadeh Khajavi M, Sohrabvandi S, Yousefi M, Mortazavian AM. Fructose and high fructose corn syrup: are they a two-edged sword? Int J Food Sci Nutr 2021; 72:592-614. [PMID: 33499690 DOI: 10.1080/09637486.2020.1862068] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
High-fructose syrups are used as sugar substitutes due to their physical and functional properties. High fructose corn syrup (HFCS) is used in bakery products, dairy products, breakfast cereals and beverages, but it has been reported that there might be a direct relationship between high fructose intake and adverse health effects such as obesity and the metabolic syndrome. Thus, fructose has recently received much attention, most of which was negative. Although studies have indicated that there might be a correlation between high fructose-rich diet and several adverse effects, however, the results of these studies cannot be certainly generalised to the effects of HFCS; because they have investigated pure fructose at very high concentrations in measurement of metabolic upsets. This review critically considered the advantages and possible disadvantages of HFCS application and consumption in food industry, as a current challenging issue between nutritionists and food technologists.
Collapse
Affiliation(s)
- Nasim Khorshidian
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran
| | - Mahdi Shadnoush
- Department of Clinical Nutrition, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Zabihzadeh Khajavi
- Student Research Committee, Department of Food Technology, Faculty of Nutrition Sciences and Food Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Sohrabvandi
- Department of Food Technology Research, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojtaba Yousefi
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran
| | - Amir M Mortazavian
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
B Keogh J, M Clifton P. Energy Intake and Satiety Responses of Eggs for Breakfast in Overweight and Obese Adults-A Crossover Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17155583. [PMID: 32756313 PMCID: PMC7432073 DOI: 10.3390/ijerph17155583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/20/2020] [Accepted: 07/30/2020] [Indexed: 11/16/2022]
Abstract
The type of food eaten for breakfast may determine the amount of food consumed at the next meal. This may be important when considering dietary advice for overweight and obese individuals who are trying to lose weight. The aim of the study was to investigate the energy intake and subjective sensations of hunger using a visual analogue scale (VAS) of a breakfast meal of eggs compared with a breakfast meal of cereal in overweight Australian adults. In a cross-over study, participants attended the University of South Australia's Clinical Trial Facility on two separate days, one week apart. On each day participants consumed one of two isoenergetic breakfasts (1800 kJ), either eggs and toast or cereal with milk and orange juice. Fifty overweight or obese participants, 44 ± 21 years, 86 ± 14 kg, with a body mass index (BMI) of 31 ± 4 kg/m2 completed both study visits. Energy intake following the egg breakfast was significantly reduced compared with the cereal breakfast (4518 vs. 5283 kJ, p = 0.001). BMI and gender were unrelated to these effects. The sensation of hunger was less after the egg breakfast (p = 0.028 for diet by time interaction) and returned more quickly after the cereal breakfast. There were no effects of gender or age. Energy intake was reduced at an ad libitum lunch meal 4 hours after a breakfast meal containing eggs. The findings suggest that satiety responses of overweight and obese are not different to non-obese participants as our study confirms findings from studies conducted in different populations. Determining which foods may help overweight and obese individuals manage their food intake is important for diet planning.
Collapse
|
10
|
Hajishafiee M, Ullrich SS, Steinert RE, Poppitt SD, Luscombe-Marsh ND, Horowitz M, Feinle-Bisset C. Effects of intragastric tryptophan on acute changes in the plasma tryptophan/large neutral amino acids ratio and relationship with subsequent energy intake in lean and obese men. Food Funct 2020; 11:7095-7103. [PMID: 32729586 DOI: 10.1039/d0fo00773k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Circulating tryptophan/large neutral amino acids (tryptophan/LNAA) ratio, an indicator of brain serotonin levels, may be important in appetite regulation, together with gastrointestinal (gastric emptying, plasma cholecystokinin) mechanisms. We have compared effects of intragastric tryptophan ('Trp') on the plasma tryptophan/LNAA ratio in lean and obese men, and the associations of the tryptophan/LNAA ratio, gastric emptying and CCK concentrations with energy intake. Lean and obese male participants (n = 16 each) received 3 g Trp or volume-matched control intragastrically, 15 min before a mixed-nutrient drink (300 mL, 400 kcal) (t = 0 min) in randomised, double-blind fashion. Plasma amino acid (for calculation of the plasma tryptophan/LNAA ratio) and CCK concentrations were measured from t = -20-60 min. Gastric emptying was assessed from t = 0-60 min, and ad-libitum energy intake from a standardised buffet-style meal from t = 60-90 min. The increase in the plasma tryptophan/LNAA ratio was less in obese, than lean, participants (P < 0.05), and greater in lean participants who reduced their energy intake (by >0 kcal) after Trp compared with those who did not (by ≤0 kcal) (P < 0.05). Moreover, in participants who reduced their energy intake, the ratio was lower in obese, than in lean (P < 0.05). There was a trend for an inverse correlation between energy intake with the plasma tryptophan/LNAA ratio in lean (r = -0.4, P = 0.08), but not in obese, participants. There was no significant difference in gastric emptying or CCK between participants who reduced their energy intake and those who did not. In conclusion, the plasma tryptophan/LNAA ratio appears to be a determinant of the suppression of energy intake in response to tryptophan in normal-weight people, but not in those with obesity. The role of the plasma tryptophan/LNAA ratio to regulate energy intake, and potential changes in obesity, warrant evaluation in prospective studies.
Collapse
Affiliation(s)
- Maryam Hajishafiee
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia.
| | | | | | | | | | | | | |
Collapse
|
11
|
The effect on satiety of ingesting isosweet and isoenergetic sucrose- and isomaltulose-sweetened beverages: a randomised crossover trial. Br J Nutr 2020; 124:225-231. [DOI: 10.1017/s0007114520000884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractGenerating feelings of satiety may be important in maintaining weight control. It has been hypothesised that the circulating concentration of glucose is a major determinant of satiety, yet the relationship between postprandial glycaemia and satiety is inconclusive. Our aim was to assess satiety following ingestion of beverages differing in glycaemic index (GI) containing either 50 g of sucrose (GI 65) or isomaltulose (PalatinoseTM) (GI 32). The beverages were matched for sweetness using a triangle sensory test. Seventy-seven participants were randomised to the order in which they received each beverage, 2 weeks apart. A standard lunch was given at 12.00 hours. Satiety was measured using 100-mm visual analogue scales (VAS) administered at 14.00 hours (baseline) and at 30, 60, 90, 120, 150 and 180 min after ingesting the beverage. Weighed diet records were kept from 17.00 to 24.00 hours. Mean differences for isomaltulose compared with sucrose AUC VAS were ‘How hungry do you feel?’ 109 (95 % CI –443, 661) mm × min; ‘How satisfied do you feel?’ 29 (95 % CI –569, 627) mm × min; ‘How full do you feel?’ −91 (95 % CI –725, 544) mm × min and ‘How much do you think you can eat?’ 300 (95 % CI –318, 919) mm × min. There was no between-treatment difference in satiety question responses or in dietary energy intake −291 (95 % CI −845, 267) kJ over the remainder of the day. In this experiment, feelings of satiety were independent of the GI of the test beverages. Any differences in satiety found between foods chosen on the basis of GI could be attributable to food properties other than the glycaemic-inducing potential of the food.
Collapse
|
12
|
Abstract
Poor post-prandial glucose control is a risk factor for multiple health conditions. The second-meal effect refers to the progressively improved glycaemic control with repeated feedings, an effect which is achievable with protein ingestion at the initial eating occasion. The most pronounced glycaemic response each day therefore typically occurs following breakfast, so the present study investigated whether ingesting protein during the night could improve glucose control at the first meal of the day. In a randomised crossover design, fifteen adults (seven males, eight females; age, 22 (sd 3) years; BMI, 24·0 (sd 2·8) kg/m2; fasting blood glucose, 4·9 (sd 0·5) mmol/l) woke at 04.00 (sd 1) hours to ingest 300 ml water with or without 63 g whey protein. Participants then completed a mixed-macronutrient meal tolerance test (1 g carbohydrate/kg body mass, 2356 (sd 435) kJ), 5 h 39 min following the nocturnal feeding. Nocturnal protein ingestion increased the glycaemic response (incremental AUC) to breakfast by 43·5 (sd 55·5) mmol × 120 min/l (P = 0·009, d = 0·94). Consistent with this effect, individual peak blood glucose concentrations were 0·6 (sd 1·0) mmol/l higher following breakfast when protein had been ingested (P = 0·049, d = 0·50). Immediately prior to breakfast, rates of lipid oxidation were 0·02 (sd 0·03) g/min higher (P = 0·045) in the protein condition, followed by an elevated post-prandial energy expenditure (0·38 (sd 0·50) kJ/min, P = 0·018). Post-prandial appetite and energy intake were similar between conditions. The present study reveals a paradoxical second-meal phenomenon whereby nocturnal whey protein feeding impaired subsequent glucose tolerance, whilst increasing post-prandial energy expenditure.
Collapse
|
13
|
Effects of biscuit fortified with whey protein isolate and wheat bran on weight loss, energy intake, appetite score, and appetite regulating hormones among overweight or obese adults. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
14
|
Ao H, Li J, Li O, Su M, Gao X. Fructose vs glucose decreased liking/wanting and subsequent intake of high-energy foods in young women. Nutr Res 2020; 78:60-71. [PMID: 32516689 DOI: 10.1016/j.nutres.2020.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 03/11/2020] [Accepted: 05/06/2020] [Indexed: 12/25/2022]
Abstract
Recent research on the health impacts of added sugar has prompted the comparison of the effects of its 2 major components: glucose and fructose. Fructose was identified as a risk factor for obesity and metabolic syndrome. However, because of the differences in metabolic responses and responsivity of reward circuitry to palatable food, it is unknown if glucose and fructose induce similar appetite-related responses in humans with varying weights. This study compared the behavioral responses to food in young women of a healthy weight (n = 31) and with excess weight (n = 28). We hypothesized that (1) the inhibitory effect of glucose (vs fructose) on food-related responses would be greater in subjects of a healthy weight than in those with overweight/obesity and (2) subjects with overweight/obesity would exhibit a stronger preference for food than subjects with a healthy weight. After an overnight fast, the subjects ingested a glucose or equienergetic fructose beverage on 2 separate days, respectively. Then, they completed liking and wanting ratings and 2 decision-making tasks followed by ad libitum food intake. The results revealed that fructose reduced both liking and wanting for food in subjects with overweight/obesity and also decreased energy intake in all subjects. Relative to the healthy-weight group, subjects with overweight/obesity preferred the immediate reward. Moreover, only in the healthy-weight group were liking and wanting scores for food positively associated with actual food consumption. Overall, fructose (vs glucose) showed an acute inhibitory effect on appetite-related responses in subjects with excess weight.
Collapse
Affiliation(s)
- Hua Ao
- Faculty of Psychology, Southwest University, Chongqing, China; Key Laboratory of Cognition and Personality, Southwest University, Chongqing, China.
| | - Jiachun Li
- Faculty of Psychology, Southwest University, Chongqing, China.
| | - Ouwen Li
- Faculty of Psychology, Southwest University, Chongqing, China.
| | - Manyi Su
- Faculty of Psychology, Southwest University, Chongqing, China.
| | - Xiao Gao
- Faculty of Psychology, Southwest University, Chongqing, China; Key Laboratory of Cognition and Personality, Southwest University, Chongqing, China.
| |
Collapse
|
15
|
Dewdney B, Roberts A, Qiao L, George J, Hebbard L. A Sweet Connection? Fructose's Role in Hepatocellular Carcinoma. Biomolecules 2020; 10:E496. [PMID: 32218179 PMCID: PMC7226025 DOI: 10.3390/biom10040496] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma is one of few cancer types that continues to grow in incidence and mortality worldwide. With the alarming increase in diabetes and obesity rates, the higher rates of hepatocellular carcinoma are a result of underlying non-alcoholic fatty liver disease. Many have attributed disease progression to an excess consumption of fructose sugar. Fructose has known toxic effects on the liver, including increased fatty acid production, increased oxidative stress, and insulin resistance. These effects have been linked to non-alcoholic fatty liver (NAFLD) disease and a progression to non-alcoholic steatohepatitis (NASH). While the literature suggests fructose may enhance liver cancer progression, the precise mechanisms in which fructose induces tumor formation remains largely unclear. In this review, we summarize the current understanding of fructose metabolism in liver disease and liver tumor development. Furthermore, we consider the latest knowledge of cancer cell metabolism and speculate on additional mechanisms of fructose metabolism in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Brittany Dewdney
- Molecular and Cell Biology, and The Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville QLD 4811, Australia; (B.D.); (A.R.)
| | - Alexandra Roberts
- Molecular and Cell Biology, and The Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville QLD 4811, Australia; (B.D.); (A.R.)
| | - Liang Qiao
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney NSW 2145, Australia; (L.Q.); (J.G.)
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney NSW 2145, Australia; (L.Q.); (J.G.)
| | - Lionel Hebbard
- Molecular and Cell Biology, and The Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville QLD 4811, Australia; (B.D.); (A.R.)
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney NSW 2145, Australia; (L.Q.); (J.G.)
| |
Collapse
|
16
|
Watson LE, Phillips LK, Wu T, Bound MJ, Checklin HL, Grivell J, Jones KL, Clifton PM, Horowitz M, Rayner CK. A whey/guar "preload" improves postprandial glycaemia and glycated haemoglobin levels in type 2 diabetes: A 12-week, single-blind, randomized, placebo-controlled trial. Diabetes Obes Metab 2019; 21:930-938. [PMID: 30520216 DOI: 10.1111/dom.13604] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/20/2018] [Accepted: 12/01/2018] [Indexed: 02/05/2023]
Abstract
AIMS To evaluate the effects of 12 weeks of treatment with a whey/guar preload on gastric emptying, postprandial glycaemia and glycated haemoglobin (HbA1c) levels in people with type 2 diabetes (T2DM). MATERIALS AND METHODS A total of 79 people with T2DM, managed on diet or metformin (HbA1c 49 ± 0.7 mmol/mol [6.6 ± 0.1%]), were randomized, in single-blind fashion, to receive 150 mL flavoured preloads, containing either 17 g whey protein plus 5 g guar (n = 37) or flavoured placebo (n = 42), 15 minutes before two meals, each day for 12 weeks. Blood glucose and gastric emptying (breath test) were measured before and after a mashed potato meal at baseline (without preload), and after the preload at the beginning (week 1) and end (week 12) of treatment. HbA1c levels, energy intake, weight and body composition were also evaluated. RESULTS Gastric emptying was slower (P < 0.01) and postprandial blood glucose levels lower (P < 0.05) with the whey/guar preload compared to placebo preload, and the magnitude of reduction in glycaemia was related to the rate of gastric emptying at both week 1 (r = -0.54, P < 0.001) and week 12 (r = -0.54, P < 0.0001). At the end of treatment, there was a 1 mmol/mol [0.1%] reduction in HbA1c in the whey/guar group compared to the placebo group (49 ± 1.0 mmol/mol [6.6 ± 0.05%] vs. 50 ± 0.8 mmol/mol [6.7 ± 0.05%]; P < 0.05). There were no differences in energy intake, body weight, or lean or fat mass between the groups. CONCLUSIONS In patients with well-controlled T2DM, 12 weeks' treatment with a low-dose whey/guar preload, taken twice daily before meals, had sustained effects of slowing gastric emptying and reducing postprandial blood glucose, which were associated with a modest reduction in HbA1c, without causing weight gain.
Collapse
Affiliation(s)
- Linda E Watson
- Discipline of Medicine, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Liza K Phillips
- Discipline of Medicine, Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Departments of Endocrinology and Gastroenterology, Royal Adelaide Hospital, Adelaide, Australia
| | - Tongzhi Wu
- Discipline of Medicine, Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Departments of Endocrinology and Gastroenterology, Royal Adelaide Hospital, Adelaide, Australia
| | - Michelle J Bound
- Discipline of Medicine, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Helen L Checklin
- Discipline of Medicine, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Jacqueline Grivell
- Discipline of Medicine, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Karen L Jones
- Discipline of Medicine, Adelaide Medical School, University of Adelaide, Adelaide, Australia
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Peter M Clifton
- Departments of Endocrinology and Gastroenterology, Royal Adelaide Hospital, Adelaide, Australia
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Michael Horowitz
- Discipline of Medicine, Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Departments of Endocrinology and Gastroenterology, Royal Adelaide Hospital, Adelaide, Australia
| | - Christopher K Rayner
- Discipline of Medicine, Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Departments of Endocrinology and Gastroenterology, Royal Adelaide Hospital, Adelaide, Australia
| |
Collapse
|
17
|
Effect of supplemental whey protein timing on postprandial glycaemia in centrally obese males. Br J Nutr 2019; 121:637-646. [PMID: 30572966 DOI: 10.1017/s0007114518003793] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Consuming whey protein before a meal may reduce postprandial glucose excursions, however, optimising timing of supplementation is important to improve its clinical utility. A total of thirteen centrally obese, insulin-resistant males (waist circumference: 121 (sem 3) cm; homeostasis model assessment for insulin resistance (HOMA-IR): 6·4 (sem 1·2)) completed four experimental conditions in a single-blind, crossover design. Participants consumed mixed-macronutrient breakfast and lunch meals on all occasions, with 20 g whey protein consumed 15 min before (PRE), alongside (DUR) or 15 min post-breakfast (POST) or omitted (CON). Capillary glucose and plasma concentrations of insulin, TAG and NEFA, in addition to subjective appetite ratings, were collected for 180 min after each meal. PRE and DUR reduced post-breakfast glucose peak by 17·0 (sem 1·9) % (P<0·001) and 9·2 (sem 2·9) % (P=0·046), respectively, compared with CON. Post-breakfast glucose AUC was lower following PRE compared with POST and CON (PRE: 982 (sem 30) v. POST: 1031 (sem 36) and CON: 1065 (sem 37) mmol/l×180 min; P≤0·042) but similar to DUR (1013 (sem 32) mmol/l×180 min; P=0·77). Insulin was lower during PRE, when compared with POST and DUR (both P≤0·042) but similar to CON. There were no between-condition differences in measures of postprandial lipaemia or appetite, and no effect of condition post-lunch. Consumption of whey protein as a preload or alongside a mixed-macronutrient breakfast reduces postprandial glucose excursions in centrally obese, insulin-resistant males. Whey consumed as a preload has superior glycaemic-lowering effects. Supplementation at breakfast does not alter glycaemic responses to subsequent meals.
Collapse
|
18
|
Proserpio C, Invitti C, Boesveldt S, Pasqualinotto L, Laureati M, Cattaneo C, Pagliarini E. Ambient Odor Exposure Affects Food Intake and Sensory Specific Appetite in Obese Women. Front Psychol 2019; 10:7. [PMID: 30697173 PMCID: PMC6340985 DOI: 10.3389/fpsyg.2019.00007] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/03/2019] [Indexed: 11/13/2022] Open
Abstract
Food odors are important in food perception not only during consumption, but also in anticipation of food. Even though it is well established that smell is involved in eating behavior, its role in affecting actual food consumption is still unclear, especially in morbidly obese subjects, who are reported to be more affected by sensory cues than lean subjects. The aim of the present study was to investigate the influence of ambient odor exposure on ad libitum food intake and on sensory specific appetite in obese women. Thirty obese women (BMI: 34.9 ± 0.8 kg m-2; age: 50.8 ± 1.8) attended two sessions in which they were exposed to a bread odor dispersed, in a detectable but mild concentration, in the test room (“scented” condition) and to a control condition (“unscented” condition). Participants filled out a questionnaire on general appetite before entering the test room and completed a sensory specific appetite questionnaire (including 12 specific products) about 10 min after entering the test room. After approximately 15 min of exposure, the ad libitum intake of a low energy dense food product (vegetable soup) was measured. The “scented” condition significantly (p < 0.01) increased the amount of soup eaten compared to the “unscented” condition (466.4 ± 33.1 g; 368.9 ± 33.2 g, respectively). Moreover, the odor exposure induced sensory specific appetite for congruent food products in term of taste and energy density, as well as a significant increase in general appetite scores (p < 0.001). In conclusion, ambient odor exposure to a food odor affected the intake of a low energy food in obese women and stimulated appetite for congruent products. This could have important implications for influencing energy intake of individuals.
Collapse
Affiliation(s)
- Cristina Proserpio
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Cecilia Invitti
- Department of Medical Sciences and Rehabilitation, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Sanne Boesveldt
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, Netherlands
| | - Lucia Pasqualinotto
- Department of Medical Sciences and Rehabilitation, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Monica Laureati
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Camilla Cattaneo
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Ella Pagliarini
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| |
Collapse
|
19
|
Does an increased intake of added sugar affect appetite in overweight or obese adults, when compared with lower intakes? A systematic review of the literature. Br J Nutr 2018; 121:232-240. [PMID: 30489234 DOI: 10.1017/s0007114518003239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Changes in added sugar intake have been associated with corresponding changes in body weight. Potential mechanisms, particularly the impact of added sugar intake on appetite, warrant exploration. A systematic literature review of randomised controlled trials investigated the association between added sugar consumption and appetite in overweight and obese adults. A systematic search of Medline, Cochrane CENTRAL, Web of Science and CINAHL included studies that examined the relationship between added sugar intake and appetite markers, in comparison with a group with lower added sugar intake. A total of twenty-one articles describing nineteen studies were included in the review. The effect of added sugar on appetite was explored separately by reported comparisons of added sugar type and their effect to three study outcomes: energy consumption (n 20 comparisons); satiety (n 18); and appetite hormones, leptin (n 4) or ghrelin (n 7). Increased added sugar consumption did not impact subsequent energy intake (n 9), nor did it influence satiety (n 12) or ghrelin levels (n 4). Differences in the total daily energy intake were comparable with the differences in energy values of tested products (n 3). Added sugar intake was reported to increase leptin levels (n 3). This review did not find a consistent relationship between added sugar intake and appetite measures, which may be partially explained by variations in study methodologies. There is a need for randomised controlled trials examining a range of added sugar sources and doses on appetite in overweight and obese adults to better understand implications for weight gain.
Collapse
|
20
|
Giezenaar C, Lange K, Hausken T, Jones KL, Horowitz M, Chapman I, Soenen S. Acute Effects of Substitution, and Addition, of Carbohydrates and Fat to Protein on Gastric Emptying, Blood Glucose, Gut Hormones, Appetite, and Energy Intake. Nutrients 2018; 10:nu10101451. [PMID: 30301241 PMCID: PMC6213197 DOI: 10.3390/nu10101451] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/10/2018] [Accepted: 09/26/2018] [Indexed: 02/07/2023] Open
Abstract
Whey protein, when ingested on its own, load-dependently slows gastric emptying and stimulates gut hormone concentrations in healthy young men. The aim of this study was to determine the effects of substitution, and addition, of carbohydrate (dextrose) and fat (olive oil) to whey protein. In randomized, double-blind order, 13 healthy young men (age: 23 ± 1 years, body mass index: 24 ± 1 kg/m²) ingested a control drink (450 mL; ~2 kcal/'control') or iso-volumetric drinks containing protein/carbohydrate/fat: (i) 14 g/28 g/12.4 g (280 kcal/'M280'), (ii) 70 g/28 g/12.4 g (504kcal/'M504'), and (iii) 70 g/0 g/0 g (280 kcal/'P280'), on 4 separate study days. Gastric emptying (n = 11, 3D-ultrasonography), blood glucose, plasma insulin, ghrelin, cholecystokinin (CCK) and glucagon-like peptide-1 (GLP-1) concentrations (0⁻180 min), appetite (visual analogue scales), and ad-libitum buffet-meal energy intake (180⁻210 min) were determined. Substitution of protein with carbohydrate and fat was associated with faster gastric emptying (lower 50% emptying time (T50)), reduced suppression of ghrelin, and stimulation of GLP-1 (all P < 0.001); while the addition of carbohydrate and fat to protein did not affect gastric emptying or gut hormone responses significantly. Total energy intake (i.e., drink plus meal) was greater after all caloric drinks than control (P < 0.001). In conclusion, substitution of whey protein with dextrose and olive oil accelerated gastric emptying. Higher protein content of a mixed macronutrient drink increased gut hormone and insulin responses.
Collapse
Affiliation(s)
- Caroline Giezenaar
- Adelaide Medical School and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia.
| | - Kylie Lange
- Adelaide Medical School and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia.
| | - Trygve Hausken
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway.
| | - Karen L Jones
- Adelaide Medical School and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia.
| | - Michael Horowitz
- Adelaide Medical School and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia.
- Royal Adelaide Hospital, Adelaide 5000, Australia.
| | - Ian Chapman
- Adelaide Medical School and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia.
- Royal Adelaide Hospital, Adelaide 5000, Australia.
| | - Stijn Soenen
- Adelaide Medical School and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia.
- Royal Adelaide Hospital, Adelaide 5000, Australia.
| |
Collapse
|
21
|
Kisioglu B, Nergiz-Unal R. Potential effect of maternal dietary sucrose or fructose syrup on CD36, leptin, and ghrelin-mediated fetal programming of obesity. Nutr Neurosci 2018; 23:210-220. [PMID: 29961406 DOI: 10.1080/1028415x.2018.1491151] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The influence of HFCS (high fructose corn syrup - free fructose) and sucrose (bound fructose) on fetal appetite signals is unknown. This study aimed to determine the effects of HFCS or sucrose on the peptide-mediated appetite regulation in fetal programming of obesity. Sprague Dawley female rats were administered feed and plain water (control) or water containing maltodextrin (vehicle), sucrose, fructose, or HFCS (20%, w/v) for 12 weeks before mating and throughout pregnancy and lactation (ndams = 31; npups = 207). Maternal chow-feed consumption in the HFCS and sucrose groups and sugar-added drink consumption in the HFCS group were higher compared to the vehicle and control groups (P < 0.05). The total body fat accumulated in sucrose, fructose, and HFCS groups in dams and pups was higher than those in the vehicle and control groups (P < 0.05). The HFCS groups showed lower plasma leptin levels and higher ghrelin levels. Soluble CD36 levels in plasma and tongue samples were high in HFCS groups of dams and pups (P < 0.05). Rather than bound fructose, the free fructose from the maternal diet contributes to the programming of obesity through the disruption of leptin, ghrelin, and CD36 expression involved in appetite regulation.
Collapse
Affiliation(s)
- Betul Kisioglu
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Sıhhiye 06100, Ankara, Turkey
| | - Reyhan Nergiz-Unal
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Sıhhiye 06100, Ankara, Turkey
| |
Collapse
|
22
|
Effect of whey protein supplementation on long and short term appetite: A meta-analysis of randomized controlled trials. Clin Nutr ESPEN 2017; 20:34-40. [PMID: 29072167 DOI: 10.1016/j.clnesp.2017.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 04/12/2017] [Indexed: 01/08/2023]
|
23
|
Zanzer YC, Plaza M, Dougkas A, Turner C, Björck I, Östman E. Polyphenol-rich spice-based beverages modulated postprandial early glycaemia, appetite and PYY after breakfast challenge in healthy subjects: A randomized, single blind, crossover study. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.06.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
24
|
Evans RA, Frese M, Romero J, Cunningham JH, Mills KE. Fructose replacement of glucose or sucrose in food or beverages lowers postprandial glucose and insulin without raising triglycerides: a systematic review and meta-analysis. Am J Clin Nutr 2017; 106:506-518. [PMID: 28592611 DOI: 10.3945/ajcn.116.145151] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 05/01/2017] [Indexed: 11/14/2022] Open
Abstract
Background: Conflicting evidence exists on the effects of fructose consumption in people with type 1 and type 2 diabetes mellitus. No systematic review has addressed the effect of isoenergetic fructose replacement of glucose or sucrose on peak postprandial glucose, insulin, and triglyceride concentrations.Objective: The objective of this study was to review the evidence for postprandial glycemic and insulinemic responses after isoenergetic replacement of either glucose or sucrose in foods or beverages with fructose.Design: We searched the Cochrane Library, MEDLINE, EMBASE, the WHO International Clinical Trials Registry Platform Search Portal, and clinicaltrials.gov The date of the last search was 26 April 2016. We included randomized controlled trials measuring peak postprandial glycemia after isoenergetic replacement of glucose, sucrose, or both with fructose in healthy adults or children with or without diabetes. The main outcomes analyzed were peak postprandial blood glucose, insulin, and triglyceride concentrations.Results: Replacement of either glucose or sucrose by fructose resulted in significantly lowered peak postprandial blood glucose, particularly in people with prediabetes and type 1 and type 2 diabetes. Similar results were obtained for insulin. Peak postprandial blood triglyceride concentrations did not significantly increase.Conclusions: Strong evidence exists that substituting fructose for glucose or sucrose in food or beverages lowers peak postprandial blood glucose and insulin concentrations. Isoenergetic replacement does not result in a substantial increase in blood triglyceride concentrations.
Collapse
Affiliation(s)
| | - Michael Frese
- Health Research Institute.,Faculty of Education, Science, Technology and Mathematics, and
| | - Julio Romero
- Department of Software Engineering and Artificial Intelligence, University of Canberra, Canberra, Australia; and
| | - Judy H Cunningham
- Formerly of Risk Assessment Chemical Safety and Nutrition, Food Standards Australia New Zealand, Canberra, Australia
| | - Kerry E Mills
- Health Research Institute, .,Faculty of Education, Science, Technology and Mathematics, and
| |
Collapse
|
25
|
Obesity and Weight Control: Is There Light at the End of the Tunnel? Curr Nutr Rep 2017. [DOI: 10.1007/s13668-017-0206-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Effects of a whey protein supplementation on oxidative stress, body composition and glucose metabolism among overweight people affected by diabetes mellitus or impaired fasting glucose: A pilot study. J Nutr Biochem 2017; 50:95-102. [PMID: 29053995 DOI: 10.1016/j.jnutbio.2017.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 04/04/2017] [Accepted: 05/06/2017] [Indexed: 12/24/2022]
Abstract
Obesity and diabetes mellitus type 2 (DM2) are characterized by chronic inflammation and oxidative stress [Donath et al. 2013] and this leads to cardiovascular diseases [Hulsmans & Holvoet 2010]. Whey proteins (WP) have antioxidant [Chitapanarux et al. 2009], anti-inflammatory [Sugawara et al. 2012] and hypoglycemic activities [Mignone et al. 2015], while data on weight, body composition [Frestedt et al. 2008; Aldrich et al. 2011] and blood pressure are conflicting [Kawase et al. 2000; Lee et al. 2007]. WP have unpleasant taste and smell [Patel 2015], but a new WP isolate (ProLYOtin®) seems to be more palatable. 40 g/die of ProLYOtin® were supplemented to overweight people (n=31) with impaired fasting glucose/DM2 for 12 weeks. Markers of antioxidant status (total antioxidant status, glutathione peroxidase, glutathione reductase, uric acid), oxidative damage (thiobarbituric acid reactive substances, advanced oxidation protein products, 8-hydroxydeoxyguanosine), inflammation (interleukin-6, high sensitive reactive protein C) and glicemic status (fasting glucose, insulin, glycated hemoglobin), anthropometric data (weight, height, waist circumference), body composition (body cell mass, fat mass), blood pressure, hand grip strength and skin autofluorescence were measured before and at the end of supplementation. Isolate palatability was evaluated. An increase in glutathione peroxidase, a decrease in uric acid and no change in glutathione reductase, total antioxidant status, oxidative damage, inflammation and glucose markers were found. Significant improvements in anthropometric parameters and fat mass were detected. There wasn't any change in blood pressure, skin autofluorescence and physical performance. Two-thirds of subjects judged the supplement positively. ProLYOtin® seems suitable for treatment of OS and overweight.
Collapse
|
27
|
The Acute Effects of Simple Sugar Ingestion on Appetite, Gut-Derived Hormone Response, and Metabolic Markers in Men. Nutrients 2017; 9:nu9020135. [PMID: 28216550 PMCID: PMC5331566 DOI: 10.3390/nu9020135] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/07/2017] [Accepted: 02/08/2017] [Indexed: 11/17/2022] Open
Abstract
This pilot study aimed to investigate the effect of simple sugar ingestion, in amounts typical of common ingestion, on appetite and the gut-derived hormone response. Seven healthy men ingested water (W) and equicaloric solutions containing 39.6 g glucose monohydrate (G), 36 g fructose (F), 36 g sucrose (S), and 19.8 g glucose monohydrate + 18 g fructose (C), in a randomised order. Serum concentrations of ghrelin, glucose dependent insulinotropic polypeptide (GIP), glucagon like peptide-1 (GLP-1), insulin, lactate, triglycerides, non-esterified fatty acids (NEFA), and d-3 hydroxybutyrate, were measured for 60 min. Appetite was measured using visual analogue scales (VAS). The ingestion of F and S resulted in a lower GIP incremental area under the curve (iAUC) compared to the ingestion of G (p < 0.05). No differences in the iAUC for GLP-1 or ghrelin were present between the trials, nor for insulin between the sugars. No differences in appetite ratings or hepatic metabolism measures were found, except for lactate, which was greater following the ingestion of F, S, and C, when compared to W and G (p < 0.05). The acute ingestion of typical amounts of fructose, in a variety of forms, results in marked differences in circulating GIP and lactate concentration, but no differences in appetite ratings, triglyceride concentration, indicative lipolysis, or NEFA metabolism, when compared to glucose.
Collapse
|
28
|
Almario RU, Buchan WM, Rocke DM, Karakas SE. Glucose-lowering effect of whey protein depends upon clinical characteristics of patients with type 2 diabetes. BMJ Open Diabetes Res Care 2017; 5:e000420. [PMID: 28761664 PMCID: PMC5530249 DOI: 10.1136/bmjdrc-2017-000420] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/28/2017] [Accepted: 05/29/2017] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE Whey protein (WP) intake has been shown to reduce postprandial glycemia. Majority of WP research in type 2 diabetes (T2DM) involved acute challenge or weight loss studies. It is not known if WP supplementation can provide sustained glucose lowering. Our goal was to investigate the effects of WP on glycemia comprehensively by using continuous glucose monitoring (CGM) while avoiding the confounding effects of variable food intake through controlled feeding. RESEARCH DESIGN AND METHODS This double-blinded and placebo (PL)-controlled study included 22 patients with T2DM patients (11 male, 11 female; age 57.1±12.6 years) on diet or metformin monotherapy. First, one serving (21 g) of WP was compared with PL in parallel-armed acute challenge studies. Next, in a crossover design, each patient underwent CGM twice, over 2 consecutive weeks, 3.5 days each week. Identical diets were provided by the study during both CGM periods. During the first CGM, one serving of either WP or PL was consumed before breakfast and another before dinner. During the second CGM, participants switched to the alternate supplement. Order of the supplements was randomized. RESULTS During acute challenge studies, WP stimulated insulin and glucagon-like peptide (GLP)-1 secretion; suppressed ghrelin (all p<0.05), while PL had no effect. During CGM, glucose response to WP varied depending on the baseline characteristics of the patients. When evaluated using linear regression, the most predictive baseline variables were body mass index (BMI) (p=0.0006), triglycerides (p=8.3×10-5) and GLP-1 (p=0.006). Lower BMI, triglyceride and GLP-1 predicted decreased glucose levels on WP. Obesity, hypertriglyceridemia and high fasting GLP-1 concentrations predicted increased glucose levels. CONCLUSIONS Effects of WP supplementation on glycemia in T2DM depend on the baseline characteristics. Lower body weight, normal triglyceride and lower GLP-1 levels predict glucose lowering. In contrast, obesity, hypertriglyceridemia and high baseline GLP-1 predict increased glucose response.
Collapse
Affiliation(s)
- Rogelio U Almario
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, The University Of California at Davis, Sacramento, California, USA
| | - Wendy M Buchan
- Department of Family and Consumer Sciences, University of Sacramento, Sacramento, California, USA
| | - David M Rocke
- Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, California, USA
- Department of Biomedical Engineering, University of California, Davis, California, USA
| | - Sidika E Karakas
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, The University Of California at Davis, Sacramento, California, USA
- Department of Veterans Affairs Northern California Health Care System, Sacramento, California, USA
| |
Collapse
|
29
|
Carreiro AL, Dhillon J, Gordon S, Jacobs AG, Higgins KA, McArthur BM, Redan BW, Rivera RL, Schmidt LR, Mattes RD. The Macronutrients, Appetite, and Energy Intake. Annu Rev Nutr 2016; 36:73-103. [PMID: 27431364 PMCID: PMC4960974 DOI: 10.1146/annurev-nutr-121415-112624] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Each of the macronutrients-carbohydrate, protein, and fat-has a unique set of properties that influences health, but all are a source of energy. The optimal balance of their contribution to the diet has been a long-standing matter of debate. Over the past half century, thinking has progressed regarding the mechanisms by which each macronutrient may contribute to energy balance. At the beginning of this period, metabolic signals that initiated eating events (i.e., determined eating frequency) were emphasized. This was followed by an orientation to gut endocrine signals that purportedly modulate the size of eating events (i.e., determined portion size). Most recently, research attention has been directed to the brain, where the reward signals elicited by the macronutrients are viewed as potentially problematic (e.g., contribute to disordered eating). At this point, the predictive power of the macronutrients for energy intake remains limited.
Collapse
Affiliation(s)
- Alicia L Carreiro
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907
| | - Jaapna Dhillon
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907
| | - Susannah Gordon
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907
| | - Ashley G Jacobs
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907
| | - Kelly A Higgins
- Department of Food Science, Purdue University, West Lafayette, IN 47907
| | | | - Benjamin W Redan
- Department of Food Science, Purdue University, West Lafayette, IN 47907
| | - Rebecca L Rivera
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907
| | - Leigh R Schmidt
- Department of Food Science, Purdue University, West Lafayette, IN 47907
| | - Richard D Mattes
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
30
|
Allerton DM, Campbell MD, Gonzalez JT, Rumbold PLS, West DJ, Stevenson EJ. Co-Ingestion of Whey Protein with a Carbohydrate-Rich Breakfast Does Not Affect Glycemia, Insulinemia or Subjective Appetite Following a Subsequent Meal in Healthy Males. Nutrients 2016; 8:116. [PMID: 26927166 PMCID: PMC4808846 DOI: 10.3390/nu8030116] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/05/2016] [Accepted: 02/16/2016] [Indexed: 12/24/2022] Open
Abstract
We aimed to assess postprandial metabolic and appetite responses to a mixed-macronutrient lunch following prior addition of whey protein to a carbohydrate-rich breakfast. Ten healthy males (age: 24 ± 1 years; body mass index (BMI): 24.5 ± 0.7 kg/m2) completed three trials in a non-isocaloric, crossover design. A carbohydrate-rich breakfast (93 g carbohydrate; 1799 kJ) was consumed with (CHO + WP) or without (CHO) 20 g whey protein isolate (373 kJ), or breakfast was omitted (NB). At 180 min, participants consumed a mixed-macronutrient lunch meal. Venous blood was sampled at 15 min intervals following each meal and every 30 min thereafter, while subjective appetite sensations were collected every 30 min throughout. Post-breakfast insulinemia was greater after CHO + WP (time-averaged area under the curve (AUC0–180 min): 193.1 ± 26.3 pmol/L), compared to CHO (154.7 ± 18.5 pmol/L) and NB (46.1 ± 8.0 pmol/L; p < 0.05), with no difference in post-breakfast (0–180 min) glycemia (CHO + WP, 3.8 ± 0.2 mmol/L; CHO, 4.2 ± 0.2 mmol/L; NB, 4.2 ± 0.1 mmol/L; p = 0.247). There were no post-lunch (0–180 min) effects of condition on glycemia (p = 0.492), insulinemia (p = 0.338) or subjective appetite (p > 0.05). Adding whey protein to a carbohydrate-rich breakfast enhanced the acute postprandial insulin response, without influencing metabolic or appetite responses following a subsequent mixed-macronutrient meal.
Collapse
Affiliation(s)
- Dean M Allerton
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK.
| | - Matthew D Campbell
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK.
- School of Sport, Carnegie Faculty, Leeds Beckett University, Leeds LS6 3QT, UK.
| | - Javier T Gonzalez
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK.
- Department for Health, University of Bath, Bath BA2 7AY, UK.
| | - Penny L S Rumbold
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK.
| | - Daniel J West
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK.
- Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Emma J Stevenson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK.
- Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
31
|
Liu AY, Silvestre MP, Poppitt SD. Prevention of type 2 diabetes through lifestyle modification: is there a role for higher-protein diets? Adv Nutr 2015; 6:665-73. [PMID: 26567192 PMCID: PMC4642418 DOI: 10.3945/an.115.008821] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Type 2 diabetes (T2D) incidence is increasing worldwide, driven by a rapidly changing environment and lifestyle and increasing rates of overweight and obesity. Prevention of diabetes is key and is most likely achieved through prevention of weight gain and/or successful long-term weight loss maintenance. Weight loss is readily achievable but there is considerable challenge in maintaining that weight loss over the long term. Lower-fat carbohydrate-based diets are widely used for T2D prevention. This is supported primarily by 3 successful long-term interventions, the US Diabetes Prevention Program, the Finnish Diabetes Prevention Study, and the Chinese Da Qing Study, but evidence is building in support of novel higher-protein (>20% of energy) diets for successful weight loss maintenance and prevention of T2D. Higher-protein diets have the advantage of having relatively low energy density, aiding longer-term appetite suppression, and preserving lean body mass, all central to successful weight loss and prevention of weight regain. Here, we review the carbohydrate-based intervention trials and present mechanistic evidence in support of increased dietary protein for weight loss maintenance and a possible novel role in prevention of dysglycemia and T2D.
Collapse
Affiliation(s)
- Amy Y Liu
- Human Nutrition Unit, Department of Medicine, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Marta P Silvestre
- Human Nutrition Unit, Department of Medicine, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Sally D Poppitt
- Human Nutrition Unit, Department of Medicine, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
32
|
Mignone LE, Wu T, Horowitz M, Rayner CK. Whey protein: The “whey” forward for treatment of type 2 diabetes? World J Diabetes 2015; 6:1274-1284. [PMID: 26516411 PMCID: PMC4620107 DOI: 10.4239/wjd.v6.i14.1274] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/11/2015] [Accepted: 10/19/2015] [Indexed: 02/05/2023] Open
Abstract
A cost-effective nutritional approach to improve postprandial glycaemia is attractive considering the rising burden of diabetes throughout the world. Whey protein, a by-product of the cheese-making process, can be used to manipulate gut function in order to slow gastric emptying and stimulate incretin hormone secretion, thereby attenuating postprandial glycaemic excursions. The function of the gastrointestinal tract plays a pivotal role in glucose homeostasis, particularly during the postprandial period, and this review will discuss the mechanisms by which whey protein slows gastric emptying and stimulates release of gut peptides, including the incretins. Whey protein is also a rich source of amino acids, and these can directly stimulate beta cells to secrete insulin, which contributes to the reduction in postprandial glycaemia. Appetite is suppressed with consumption of whey, due to its effects on the gut-brain axis and the hypothalamus. These properties of whey protein suggest its potential in the management of type 2 diabetes. However, the optimal dose and timing of whey protein ingestion are yet to be defined, and studies are required to examine the long-term benefits of whey consumption for overall glycaemic control.
Collapse
|
33
|
Protein Beverage vs. Protein Gel on Appetite Control and Subsequent Food Intake in Healthy Adults. Nutrients 2015; 7:8700-11. [PMID: 26506378 PMCID: PMC4632441 DOI: 10.3390/nu7105421] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 10/09/2015] [Accepted: 10/12/2015] [Indexed: 02/08/2023] Open
Abstract
The objective of this study was to compare the effects of food form and physicochemical properties of protein snacks on appetite and subsequent food intake in healthy adults. Twelve healthy subjects received a standardized breakfast and then 2.5 h post-breakfast consumed the following snacks, in randomized order: 0 kcal water (CON) or 96 kcal whey protein snacks as beverages with a pH of either 3.0 (Bev-3.0) or 7.0 (Bev-7.0) or gels as acid (Gel-Acid) or heated (Gel-Heated). In-vitro study showed that Bev-3.0 was more resistant to digestion than Bev-7.0, while Gel-Acid and Gel-Heated had similar digestion pattern. Appetite questionnaires were completed every 20 min until an ad libitum lunch was provided. Post-snack hunger, desire to eat, and prospective food consumption were lower following the beverages and gels vs. CON (all, p < 0.05), and post-snack fullness was greater following the snacks (except for the Bev-3.0) vs. CON (all, p < 0.05). Gel-Heated treatment led to lower prospective food consumption vs. Bev-3.0; however, no other differences were detected. Although all snacks reduced energy intake vs. CON, no differences were observed among treatments. This study suggested that whey protein in either liquid or solid form improves appetite, but the physicochemical property of protein has a minimal effect.
Collapse
|
34
|
Intestinal GLP-1 and satiation: from man to rodents and back. Int J Obes (Lond) 2015; 40:198-205. [PMID: 26315842 DOI: 10.1038/ijo.2015.172] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 08/27/2015] [Accepted: 08/12/2015] [Indexed: 02/06/2023]
Abstract
In response to luminal food stimuli during meals, enteroendocrine cells release gastrointestinal (GI) peptides that have long been known to control secretory and motor functions of the gut, pancreas and liver. Glucagon-like peptide-1 (GLP-1) has emerged as one of the most important GI peptides because of a combination of functions not previously ascribed to any other molecule. GLP-1 potentiates glucose-induced insulin secretion, suppresses glucagon release, slows gastric emptying and may serve as a satiation signal, although the physiological status of the latter function has not been fully established yet. Here we review the available evidence for intestinal GLP-1 to fulfill a number of established empirical criteria for assessing whether a hormone inhibits eating by eliciting physiological satiation in man and rodents.
Collapse
|
35
|
Poppitt SD. Beverage Consumption: Are Alcoholic and Sugary Drinks Tipping the Balance towards Overweight and Obesity? Nutrients 2015; 7:6700-18. [PMID: 26270675 PMCID: PMC4555143 DOI: 10.3390/nu7085304] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 07/21/2015] [Accepted: 07/21/2015] [Indexed: 01/03/2023] Open
Abstract
The role that energy-containing beverages may play in the development of overweight and obesity remains highly controversial, in particular the alcoholic and sugar-sweetened beverages (SSB). Both of these beverage formats have been increasing as a percentage of the westernized diet over the past 20 years, and both have contributed significantly to an increase in energy consumed in liquid form. Data from epidemiology and intervention studies however have long been contradictory, despite mechanistic evidence pointing towards poor compensation for addition of "liquid" energy from these two sources into the diet providing a strong rational for the balance to be tipped towards weight gain. Regulatory and government intervention has been increasing globally, particularly with respect to intake of SSBs in children. This narrative review presents evidence which both supports and refutes the link between alcohol and carbohydrate-containing liquids and the regulation of body weight, and investigates mechanisms which may underpin any relationship between increased beverage consumption and increased energy intake, body weight and adiposity.
Collapse
Affiliation(s)
- Sally D Poppitt
- Human Nutrition Unit, School of Biological Sciences, Department of Medicine, University of Auckland, Auckland 1024, New Zealand.
| |
Collapse
|
36
|
Tappy L, Lê KA. Health effects of fructose and fructose-containing caloric sweeteners: where do we stand 10 years after the initial whistle blowings? Curr Diab Rep 2015; 15:54. [PMID: 26104800 PMCID: PMC4477723 DOI: 10.1007/s11892-015-0627-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Suspicion that fructose-containing caloric sweeteners (FCCS) may play a causal role in the development of metabolic diseases has elicited intense basic and clinical research over the past 10 years. Prospective cohort studies converge to indicate that FCCS, and more specifically sugar-sweetened beverages (SSBs), consumption is associated with weight gain over time. Intervention studies in which FCCS or SSB consumption is altered while food intake is otherwise left ad libitum indicate that increased FCCS generally increases total energy intake and body weight, while FCCS reduction decreases body weight gain. Clinical trials assessing the effects of SSB reduction as a sole intervention however fail to observe clinically significant weight loss. Many mechanistic studies indicate that excess FCCS can cause potential adverse metabolic effects. Whether this is associated with a long-term risk remains unknown. Scientific evidence that excess FCCS intake causes more deleterious effects to health than excess of other macronutrients is presently lacking. However, the large consumption of FCCS in the population makes it one out of several targets for the treatment and prevention of metabolic diseases.
Collapse
Affiliation(s)
- Luc Tappy
- Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 7, 1005, Lausanne, Switzerland,
| | | |
Collapse
|
37
|
No evidence of enhanced satiety following whey protein- or sucrose-enriched water beverages: a dose response trial in overweight women. Eur J Clin Nutr 2015; 69:1238-43. [PMID: 26130302 DOI: 10.1038/ejcn.2015.107] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/19/2015] [Accepted: 05/22/2015] [Indexed: 01/02/2023]
Abstract
BACKGROUND/OBJECTIVES To compare the effect of low-dose whey protein-enriched and sucrose-enriched water beverages on postprandial satiety and energy intake. SUBJECTS/METHODS Sixty overweight and obese women were given water-based protein and carbohydrate (CHO) beverages or placebo on six different occasions in a double-blind, randomised cross-over study. The beverages were 2 (178 kJ) and 4% (348 kJ) protein-enriched water (Clear Protein8855), 2 (157 kJ), 4 (314 kJ) and 10% (785 kJ) sucrose-enriched water, and a sweetened water control. Beverages were matched for volume, colour, flavour and sweetness. A standardised evening meal was provided before each study day and a standardised breakfast upon arrival at the clinic at 0900 hours. The beverage preload was given midmorning at 1100 hours, and an ad libitum outcome lunch meal at 1300 hours. Subjective appetitive responses were recorded through the day until 1500 hours using visual analogue scales. RESULTS Fifty-five participants completed all six beverage conditions. Neither protein nor sucrose preloads decreased any of hunger, fullness, thoughts of food or satisfaction when compared with the sweetened water control beverage (all, P>0.05). There was also no significant effect on ad libitum energy or macronutrient intake at the outcome meal (P>0.05), with no compensation for the energy consumed within the preload beverages. CONCLUSIONS There was no evidence of increased postprandial satiety or compensation for energy content at an outcome lunch meal when a water beverage was supplemented with up to 4% (w/w) whey protein or 10% (w/w) sucrose, in a group of overweight but unrestrained young and middle-aged women.
Collapse
|
38
|
Differential effects of fructose versus glucose on brain and appetitive responses to food cues and decisions for food rewards. Proc Natl Acad Sci U S A 2015; 112:6509-14. [PMID: 25941364 DOI: 10.1073/pnas.1503358112] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Prior studies suggest that fructose compared with glucose may be a weaker suppressor of appetite, and neuroimaging research shows that food cues trigger greater brain reward responses in a fasted relative to a fed state. We sought to determine the effects of ingesting fructose versus glucose on brain, hormone, and appetitive responses to food cues and food-approach behavior. Twenty-four healthy volunteers underwent two functional magnetic resonance imaging (fMRI) sessions with ingestion of either fructose or glucose in a double-blinded, random-order cross-over design. fMRI was performed while participants viewed images of high-calorie foods and nonfood items using a block design. After each block, participants rated hunger and desire for food. Participants also performed a decision task in which they chose between immediate food rewards and delayed monetary bonuses. Hormones were measured at baseline and 30 and 60 min after drink ingestion. Ingestion of fructose relative to glucose resulted in smaller increases in plasma insulin levels and greater brain reactivity to food cues in the visual cortex (in whole-brain analysis) and left orbital frontal cortex (in region-of-interest analysis). Parallel to the neuroimaging findings, fructose versus glucose led to greater hunger and desire for food and a greater willingness to give up long-term monetary rewards to obtain immediate high-calorie foods. These findings suggest that ingestion of fructose relative to glucose results in greater activation of brain regions involved in attention and reward processing and may promote feeding behavior.
Collapse
|
39
|
Van Name M, Giannini C, Santoro N, Jastreboff A, Kubat J, Li F, Kursawe R, Savoye M, Duran E, Dziura J, Sinha R, Sherwin R, Cline G, Caprio S. Blunted suppression of acyl-ghrelin in response to fructose ingestion in obese adolescents: the role of insulin resistance. Obesity (Silver Spring) 2015; 23:653-61. [PMID: 25645909 PMCID: PMC4548801 DOI: 10.1002/oby.21019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 12/10/2014] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Fructose consumption has risen alongside obesity and diabetes. Gut hormones involved in hunger and satiety (ghrelin and PYY) may respond differently to fructose compared with glucose ingestion. This study evaluated the effects of glucose and fructose ingestion on ghrelin and PYY in lean and obese adolescents with differing insulin sensitivity. METHODS Adolescents were divided into lean (n = 14), obese insulin sensitive (n = 12) (OIS), and obese insulin resistant (n = 15) (OIR). In a double-blind, cross-over design, subjects drank 75 g of glucose or fructose in random order, serum was obtained every 10 minutes for 60 minutes. RESULTS Baseline acyl-ghrelin was highest in lean and lowest in OIR (P = 0.02). After glucose ingestion, acyl-ghrelin decreased similarly in lean and OIS but was lower in OIR (vs. lean, P = 0.03). Suppression differences were more pronounced after fructose (lean vs. OIS, P = 0.008, lean vs. OIR, P < 0.001). OIS became significantly hungrier after fructose (P = 0.015). PYY was not significantly different at baseline, varied minimally after glucose, and rose after fructose. CONCLUSIONS Compared with lean, OIS adolescents have impaired acyl-ghrelin responses to fructose but not glucose, whereas OIR adolescents have blunted responses to both. Diminished suppression of acyl-ghrelin in childhood obesity, particularly if accompanied by insulin resistance, may promote hunger and overeating.
Collapse
Affiliation(s)
- Michelle Van Name
- Department of Pediatrics, Division of Pediatric Endocrinology, 333 Cedar Street, Yale University School of Medicine, New Haven, CT 06520
| | - Cosimo Giannini
- Department of Pediatrics, Division of Pediatric Endocrinology, 333 Cedar Street, Yale University School of Medicine, New Haven, CT 06520
| | - Nicola Santoro
- Department of Pediatrics, Division of Pediatric Endocrinology, 333 Cedar Street, Yale University School of Medicine, New Haven, CT 06520
| | - Ania Jastreboff
- Department of Pediatrics, Division of Pediatric Endocrinology, 333 Cedar Street, Yale University School of Medicine, New Haven, CT 06520
- Department of Internal Medicine, Division of Endocrinology, 333 Cedar Street, Yale University School of Medicine, New Haven, CT 06520
| | - Jessica Kubat
- Department of Pediatrics, Division of Pediatric Endocrinology, 333 Cedar Street, Yale University School of Medicine, New Haven, CT 06520
| | - Fangyong Li
- Yale School of Public Health, 464 Congress Street, Yale University, New Haven, CT 06519
| | - Romy Kursawe
- Department of Pediatrics, Division of Pediatric Endocrinology, 333 Cedar Street, Yale University School of Medicine, New Haven, CT 06520
| | - Mary Savoye
- Department of Pediatrics, Division of Pediatric Endocrinology, 333 Cedar Street, Yale University School of Medicine, New Haven, CT 06520
| | - Elvira Duran
- Department of Pediatrics, Division of Pediatric Endocrinology, 333 Cedar Street, Yale University School of Medicine, New Haven, CT 06520
| | - James Dziura
- Yale School of Public Health, 464 Congress Street, Yale University, New Haven, CT 06519
| | - Rajita Sinha
- Department of Psychiatry Yale University School of Medicine, Yale Stress Center, 2 Church Street South, Suite 209, New Haven, CT 06519
- Child Study Center, Yale University School of Medicine, New Haven, CT 06520
| | - Robert Sherwin
- Department of Internal Medicine, Division of Endocrinology, 333 Cedar Street, Yale University School of Medicine, New Haven, CT 06520
| | - Gary Cline
- Department of Internal Medicine, Division of Endocrinology, 333 Cedar Street, Yale University School of Medicine, New Haven, CT 06520
| | - Sonia Caprio
- Department of Pediatrics, Division of Pediatric Endocrinology, 333 Cedar Street, Yale University School of Medicine, New Haven, CT 06520
| |
Collapse
|
40
|
Maslova E, Halldorsson TI, Astrup A, Olsen SF. Dietary protein-to-carbohydrate ratio and added sugar as determinants of excessive gestational weight gain: a prospective cohort study. BMJ Open 2015; 5:e005839. [PMID: 25670731 PMCID: PMC4325128 DOI: 10.1136/bmjopen-2014-005839] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVE To examine the relation between the protein:carbohydrate (P/C) ratio and added sugar intake in pregnancy and gestational weight gain (GWG). DESIGN A prebirth cohort including 103 119 pregnancies enrolled between 1996 and 2003. SETTING All women in Denmark were eligible to participate if they spoke Danish and were planning to carry to term.The pregnant women were recruited and enrolled during their first antenatal visit (6-10 weeks of gestation). PARTICIPANTS Participants included women with live-born singletons and complete data on dietary intake and GWG, leaving 46 262 women for the analysis. EXPOSURE Macronutrient intake was quantified using a validated food frequency questionnaire administered in the 25th week of gestation. The P/C ratio and added sugar intake were examined in quintiles. PRIMARY OUTCOME MEASURES GWG was based on self-reported weight in gestational weeks 12 and 30 and defined as gain in g/week. We used multivariable linear regression, including adjusting for pre-pregnancy body mass index, to calculate relative change in GWG and 95% CI. RESULTS Average GWG was 471(224) g/week. The adjusted weight gain was 16 g/week lower (95% CI 9 to 22, p for trend <0.001) in the highest (Q5) versus lowest (Q1) quintile of the P/C ratio (∼3% average reduction across the entire pregnancy). Weight gain for those with >20%E vs <12%E from protein was 36 g/week lower (95% CI 20 to 53, p for trend <0.0001; ∼8% average reduction). A high P/C ratio was inversely related to intake of added sugars. Added sugar consumption was strongly associated with GWG (Q5 vs Q1: 34, 95% CI 28 to 40 g/week, p for trend <0.0001). CONCLUSIONS A high P/C ratio was associated with reduced GWG. This association appeared to be partly driven by a decrease in intake of added sugar. These results are consistent with randomised trials in non-pregnant participants. A dietary intervention targeting an increased P/C ratio with emphasis on reducing added sugar can contribute to reducing excessive GWG.
Collapse
Affiliation(s)
- Ekaterina Maslova
- Centre for Fetal Programming, Department of Epidemiology Research, Statens Serum Institute, Copenhagen, Denmark
| | - Thorhallur I Halldorsson
- Centre for Fetal Programming, Department of Epidemiology Research, Statens Serum Institute, Copenhagen, Denmark
- Faculty of Food Science and Nutrition, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Unit for Nutrition Research, Landspitali University Hospital, Reykjavik, Iceland
| | - Arne Astrup
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Sjurdur F Olsen
- Centre for Fetal Programming, Department of Epidemiology Research, Statens Serum Institute, Copenhagen, Denmark
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
41
|
The effect of post-exercise drink macronutrient content on appetite and energy intake. Appetite 2014; 82:173-9. [DOI: 10.1016/j.appet.2014.07.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 07/10/2014] [Accepted: 07/14/2014] [Indexed: 01/15/2023]
|
42
|
Méric E, Lemieux S, Turgeon SL, Bazinet L. Insulin and glucose responses after ingestion of different loads and forms of vegetable or animal proteins in protein enriched fruit beverages. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.05.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
43
|
Teunissen-Beekman KFM, Dopheide J, Geleijnse JM, Bakker SJL, Brink EJ, de Leeuw PW, Serroyen J, van Baak MA. Differential effects of proteins and carbohydrates on postprandial blood pressure-related responses. Br J Nutr 2014; 112:600-8. [PMID: 24893214 DOI: 10.1017/s0007114514001251] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Diet composition may affect blood pressure (BP), but the mechanisms are unclear. The aim of the present study was to compare postprandial BP-related responses to the ingestion of pea protein, milk protein and egg-white protein. In addition, postprandial BP-related responses to the ingestion of maltodextrin were compared with those to the ingestion of sucrose and a protein mix. We hypothesised that lower postprandial total peripheral resistance (TPR) and BP levels would be accompanied by higher plasma concentrations of nitric oxide, insulin, glucagon-like peptide 1 (GLP-1) and glucagon. On separate occasions, six meals were tested in a randomised order in forty-eight overweight or obese adults with untreated elevated BP. Postprandial responses of TPR, BP and plasma concentrations of insulin, glucagon, GLP-1 and nitrite, nitroso compounds (RXNO) and S-nitrosothiols (NO(x)) were measured for 4 h. No differences were observed in TPR responses. Postprandial BP levels were higher after the ingestion of the egg-white-protein meal than after that of meals containing the other two proteins (P≤ 0·01). The ingestion of the pea-protein meal induced the highest NO(x) response (P≤ 0·006). Insulin and glucagon concentrations were lowest after the ingestion of the egg-white-protein meal (P≤ 0·009). Postprandial BP levels were lower after the ingestion of the maltodextrin meal than after that of the protein mix and sucrose meals (P≤ 0·004), while postprandial insulin concentrations were higher after the ingestion of the maltodextrin meal than after that of the sucrose and protein mix meals after 1-2 h (P≤ 0·0001). Postprandial NO(x), GLP-1 and glucagon concentrations were lower after the ingestion of the maltodextrin meal than after that of the protein mix meal (P≤ 0·008). In conclusion, different protein and carbohydrate sources induce different postprandial BP-related responses, which may be important for BP management. Lower postprandial BP levels are not necessarily accompanied by higher NO(x), insulin, glucagon or GLP-1 responses.
Collapse
Affiliation(s)
| | | | | | | | | | - Peter W de Leeuw
- Department of Medicine,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center,Maastricht,The Netherlands
| | - Jan Serroyen
- Department of Methodology & Statistics,Maastricht University,Maastricht,The Netherlands
| | | |
Collapse
|
44
|
Chungchunlam SM, Henare SJ, Ganesh S, Moughan PJ. Effect of whey protein and glycomacropeptide on measures of satiety in normal-weight adult women. Appetite 2014; 78:172-8. [DOI: 10.1016/j.appet.2014.03.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 03/24/2014] [Accepted: 03/27/2014] [Indexed: 12/30/2022]
|
45
|
Comparative effects of whey and casein proteins on satiety in overweight and obese individuals: a randomized controlled trial. Eur J Clin Nutr 2014; 68:980-6. [DOI: 10.1038/ejcn.2014.84] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 03/04/2014] [Accepted: 03/04/2014] [Indexed: 11/08/2022]
|
46
|
Short-term dietary supplementation with fructose accelerates gastric emptying of a fructose but not a glucose solution. Nutrition 2014; 30:1344-8. [PMID: 25280410 DOI: 10.1016/j.nut.2014.03.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 03/27/2014] [Accepted: 03/27/2014] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Short-term dietary glucose supplementation has been shown to accelerate the gastric emptying rate of both glucose and fructose solutions. The aim of this study was to examine gastric emptying rate responses to monosaccharide ingestion following short-term dietary fructose supplementation. METHODS The gastric emptying rate of a fructose solution containing 36 g of fructose and an equicaloric glucose solution containing 39.6 g glucose monohydrate were measured in 10 healthy non-smoking men with and without prior fructose supplementation (water control) using a randomized crossover design. Gastric emptying rate was assessed for a period of 1 h using the [(13)C]breath test with sample collections at baseline and 10-min intervals following drink ingestion. Additionally, appetite ratings of hunger, fullness, and prospective food consumption were recorded at baseline and every 10 min using visual analog scales. RESULTS Increased dietary fructose ingestion resulted in significantly accelerated half-emptying time of a fructose solution (mean = 48, SD = 6 versus 58, SD = 14 min control; P = 0.037), whereas the emptying of a glucose solution remained unchanged (mean = 85, SD = 31 versus 78, SD = 27 min control; P = 0.273). Time of maximal emptying rate of fructose was also significantly accelerated following increased dietary fructose intake (mean = 33, SD = 6 versus 38, SD = 9 min control; P = 0.042), while it remained unchanged for glucose (mean = 45, SD = 14 versus 44, SD = 14 min control; P = 0.757). No effects of supplementation were observed for appetite measures. CONCLUSION Three d of supplementation with 120 g/d of fructose resulted in an acceleration of gastric emptying rate of a fructose solution but not a glucose solution.
Collapse
|
47
|
Poppitt SD, Strik CM, McArdle BH, McGill AT, Hall RS. Evidence of enhanced serum amino acid profile but not appetite suppression by dietary glycomacropeptide (GMP): a comparison of dairy whey proteins. J Am Coll Nutr 2014; 32:177-86. [PMID: 23885991 DOI: 10.1080/07315724.2013.791186] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVE There is evidence that high-protein foods increase satiety and may aid weight loss, yet little is known of differential effects of protein composition. The aim of the study was to compare the acute effects of 4 whey proteins on satiety and food intake and to evaluate possible relationships with postprandial serum amino acid concentrations. METHODS Isoenergetic high-protein shakes (∼1 MJ) containing 25 g whey protein were given to 18 lean male participants using a crossover design. Three protein fractions identified as satiating in a rat model, glycomacropeptide (GMP), beta-lactoglobulin (ß-lac), and colostrum whey protein concentrate (WPC), were compared with a WPC control. A standardized 2.5MJ breakfast was given at 0830 hours, followed by the preload beverages at 1130 hours. Participants rated appetite sensations using visual analogue scales (VAS) prior to the beverage (baseline, 0 minutes) and then at 15, 30, 45, 60, 90, 150, and 210 minutes. Energy and macronutrient intake was measured by covert weighing of an ad libitum lunch meal at 90 minutes. Repeat blood samples were collected via venous cannulation. RESULTS Serum amino acid (a.a.) concentrations differed between whey fractions (p=0.012) and were higher following GMP compared to ß-lac (p=0.051) and colostrum WPC (p=0.044) but not the WPC control (p=0.20). There was no difference in VAS-rated hunger, satisfaction, or thoughts of food between whey fractions, but fullness did differ (p=0.032) and was highest following the ß-lac beverage. Energy intake was not suppressed relative to control by any of the 3 whey fractions. CONCLUSIONS We conclude that total serum a.a. concentration was a poor indicator of satiety, with little evidence of differential satiety between these whey proteins other than a modest enhancement of fullness by ß-lac.
Collapse
Affiliation(s)
- Sally D Poppitt
- Human Nutrition Unit, School of Biological Sciences, Department of Medicine, University of Auckland, Auckland, New Zealand.
| | | | | | | | | |
Collapse
|
48
|
Akhavan T, Luhovyy BL, Panahi S, Kubant R, Brown PH, Anderson GH. Mechanism of action of pre-meal consumption of whey protein on glycemic control in young adults. J Nutr Biochem 2013; 25:36-43. [PMID: 24314863 DOI: 10.1016/j.jnutbio.2013.08.012] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 08/27/2013] [Accepted: 08/30/2013] [Indexed: 12/13/2022]
Abstract
Whey protein (WP), when consumed in small amounts prior to a meal, improves post-meal glycemic control more than can be explained by insulin-dependent mechanisms alone. The objective of the study was to identify the mechanism of action of WP beyond insulin on the reduction of post-meal glycemia. In a randomized crossover study, healthy young men received preloads (300 ml) of WP (10 and 20 g), glucose (10 and 20 g) or water (control). Paracetamol (1.5 g) was added to the preloads to measure gastric emptying. Plasma concentrations of paracetamol, glucose, and β-cell and gastrointestinal hormones were measured before preloads (baseline) and at intervals before (0-30 min) and after (50-230 min) a preset pizza meal (12 kcal/kg). Whey protein slowed pre-meal gastric emptying rate compared to the control and 10 g glucose (P<.0001), and induced lower pre-meal insulin and C-peptide than the glucose preloads (P<.0001). Glucose, but not WP, increased pre-meal plasma glucose concentrations (P<.0001). Both WP and glucose reduced post-meal glycemia (P=.0006) and resulted in similar CCK, amylin, ghrelin and GIP responses (P<.05). However, compared with glucose, WP resulted in higher post-meal GLP-1 and peptide tyrosine-tyrosine (PYY) and lower insulin concentrations, without altering insulin secretion and extraction rates. For the total duration of this study (0-230 min), WP resulted in lower mean plasma glucose, insulin and C-peptide, but higher GLP-1 and PYY concentrations than the glucose preloads. In conclusion, pre-meal consumption of WP lowers post-meal glycemia by both insulin-dependent and insulin-independent mechanisms.
Collapse
Affiliation(s)
- Tina Akhavan
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
49
|
Acute effects of high-protein versus normal-protein isocaloric meals on satiety and ghrelin. Eur J Nutr 2013; 53:493-500. [DOI: 10.1007/s00394-013-0552-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 06/18/2013] [Indexed: 10/26/2022]
|
50
|
McGregor RA, Poppitt SD. Milk protein for improved metabolic health: a review of the evidence. Nutr Metab (Lond) 2013; 10:46. [PMID: 23822206 PMCID: PMC3703276 DOI: 10.1186/1743-7075-10-46] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 06/23/2013] [Indexed: 02/07/2023] Open
Abstract
Epidemiological evidence shows that consumption of dairy products is associated with decreased prevalence of metabolic related disorders, whilst evidence from experimental studies points towards dairy protein as a dietary component which may aid prevention of type 2 diabetes (T2DM). Poor metabolic health is a common characteristic of overweight, obesity and aging, and is the forerunner of T2DM and cardiovascular disease (CVD), and an ever increasing global health issue. Progressive loss of metabolic control is evident from a blunting of carbohydrate, fat and protein metabolism, which is commonly manifested through decreased insulin sensitivity, inadequate glucose and lipid control, accompanied by a pro-inflammatory environment and hypertension. Adverse physiological changes such as excess visceral adipose tissue deposition and expansion, lipid overspill and infiltration into liver, muscle and other organs, and sarcopaenia or degenerative loss of skeletal muscle mass and function all underpin this adverse profile. ‘Sarcobesity’ and sarcopaenic diabetes are rapidly growing health issues. As well as through direct mechanisms, dairy protein may indirectly improve metabolic health by aiding loss of body weight and fat mass through enhanced satiety, whilst promoting skeletal muscle growth and function through anabolic effects of dairy protein-derived branch chain amino acids (BCAAs). BCAAs enhance muscle protein synthesis, lean body mass and skeletal muscle metabolic function. The composition and processing of dairy protein has an impact on digestion, absorption, BCAA kinetics and function, hence the optimisation of dairy protein composition through selection and combination of specific protein components in milk may provide a way to maximize benefits for metabolic health.
Collapse
Affiliation(s)
- Robin A McGregor
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand.
| | | |
Collapse
|