1
|
Lin J, Hou X, Liu Y, Cai Y, Pan J, Liao J. Elevated peripheral glutamate and upregulated expression of NMDA receptor NR1 subunit in insomnia disorder. Front Psychiatry 2024; 15:1436024. [PMID: 39435127 PMCID: PMC11491378 DOI: 10.3389/fpsyt.2024.1436024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/18/2024] [Indexed: 10/23/2024] Open
Abstract
Background The present study explored the serum glutamate (Glu), glutamine (Gln), glutamic acid dehydrogenase (GAD) concentrations and the mRNA expression levels of the N-methyl-D-aspartate receptor (NMDAR) NR1 subunit in the peripheral blood of patients with insomnia disorder (ID). To our knowledge, this is the first study showing an increase in the mRNA expression levels of the NMDAR NR1 subunit in patients with ID. Methods This study included 30 ID patients and 30 matched healthy controls. We investigated the demographic and illness information and assessed subjective sleep quality using the Pittsburgh Sleep Quality Index. The Hamilton Depression Scale-17 and Hamilton Anxiety Scale were used to evaluate the patients' symptoms of depression and anxiety, respectively. The quantifications of Glu, Gln and GAD concentrations were performed by Enzyme-linked immunosorbent assay (ELISA). Real-time PCR was used to detect the mRNA expression levels of the NMDAR NR1 subunit in peripheral blood. Results Compared with the healthy control group, the serum Glu concentrations and the mRNA expression levels of the NMDAR NR1 subunit in the ID group were significantly higher. However, there was no significant difference in Gln and GAD between the two groups. The receiver operating characteristic (ROC) analysis showed that the mRNA expression levels of the NMDAR NR1 subunit could distinguish ID patients from healthy individuals (area under the curve: 0.758; sensitivity: 73.3%; specificity: 76.7%). A negative correlation was found between the mRNA expression levels of the NMDAR NR1 subunit for age, total duration of illness, and age of first onset in the ID group, whereas a positive correlation was detected for daytime dysfunction. Conclusion Glutamatergic neurotransmission was abnormal in ID patients. Additionally, the mRNA expression levels of the NMDAR NR1 subunit appeared to have potential as a clinical biomarker for ID. However, the sample size of our study was limited, and future studies with larger sample sizes are needed to further validate and explore the mechanisms involved and to assess the reliability of the biomarker.
Collapse
Affiliation(s)
- Jingjing Lin
- Department of Psychiatry, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- Department of Psychiatry, Sleep Medicine Centre, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Xiaohui Hou
- Department of Psychiatry, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Yaxi Liu
- Department of Psychiatry, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- Department of Psychiatry, Sleep Medicine Centre, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Yixian Cai
- Department of Psychiatry, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- Department of Psychiatry, Sleep Medicine Centre, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Jiyang Pan
- Department of Psychiatry, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
- Department of Psychiatry, Sleep Medicine Centre, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Jiwu Liao
- Department of Psychiatry, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Grebosz-Haring K, Thun-Hohenstein L. Psychobiological responses to choir singing and creative arts activities in children and adolescents with mental disorders: results of a pilot study. NEUROPSYCHIATRIE : KLINIK, DIAGNOSTIK, THERAPIE UND REHABILITATION : ORGAN DER GESELLSCHAFT OSTERREICHISCHER NERVENARZTE UND PSYCHIATER 2024; 38:145-155. [PMID: 39052208 PMCID: PMC11379771 DOI: 10.1007/s40211-024-00502-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/05/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Children and adolescents living with mental health problems often experience stress and poor mood states, which may influence their quality of life and well-being. Arts interventions may improve mood and well-being and reduce physiological stress in this vulnerable population. METHODS A cohort of patients in child and adolescent psychiatry (N = 42; age range: 12-18 years) participated in one of four arts activities including choir singing (n = 11), textile design (n = 9), drama (n = 16), and clownery (n = 6). They were led by professional artists and delivered through five consecutive 90-min daily afternoon sessions over the course of 1 week. Questionnaires of mood and saliva samples before and after each session served to assess short-term psychobiological changes. In addition, patients reported their quality of life and well-being at the beginning and at the end of the 1‑week program. RESULTS Results showed that alertness was significantly enhanced after textile design (∆post-pre = 4.08, 95% CI [0.77, 7.39]) and after singing (∆post-pre = 2.20, 95% CI [-0.55, 4.94]). Moreover, mood tended to be positively affected by textile design (∆post-pre = 2.89, 95% CI [-0.39, 6.18]). Quality of life increased significantly after singing (∆post-pre = 5.49, 95% CI [1.05, 9.92]). Arts participation except singing was associated with significant reductions in salivary cortisol (sCort) (textile design ∆post-pre = -0.81 ng/mL, 95% CI [-1.48, -0.14]; drama ∆post-pre = -0.76 ng/mL, 95% CI [-1.28, -0.24]; clownery ∆post-pre = -0.74 ng/mL, 95% CI [-1.47, -0.01]). No significant changes were observed for well-being over the whole program and salivary immunoglobulin A (sIgA) after any of the arts activities. DISCUSSION These results suggest that arts participation can improve mood state and reduce stress in young people with mental disorders, but there is a need for further studies.
Collapse
Affiliation(s)
- Katarzyna Grebosz-Haring
- Interuniversity Organisation Science & Arts, Paris Lodron University Salzburg, Mozarteum University Salzburg, Salzburg, Austria.
- Department of Art History, Musicology and Dance Studies, Paris Lodron University Salzburg, Salzburg, Austria.
- Salzburg Institute for Arts and Medicine (SIAM), Salzburg, Austria.
| | - Leonhard Thun-Hohenstein
- Salzburg Institute for Arts and Medicine (SIAM), Salzburg, Austria
- Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
3
|
Ibrahim W, An J, Yang Y, Cosgrove KP, Matuskey D. Does seasonal variation affect the neuroimmune system? A retrospective [ 11C]PBR28 PET study in healthy individuals. Neurosci Lett 2024; 828:137766. [PMID: 38583505 PMCID: PMC11073647 DOI: 10.1016/j.neulet.2024.137766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/31/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
INTRODUCTION The neuroimmune system performs a wide range of functions in the brain and the central nervous system. The microglial translocator protein (TSPO) has an established role as a cell marker in identification of the neuroimmune system. Previously, human studies have shown TSPO differences in neuropsychiatric disorders. Seasonal variability has also been demonstrated in multiple systems of healthy individuals. Therefore, in this study, we attempt to understand whether seasonal changes affect brain TSPO levels using [11C]PBR28 positron emission tomography (PET) imaging. METHODS 46 healthy subjects (mean age ± SD = 32.5 ± 10); sex (M/F) = 32/14)) underwent PET imaging with [11C]PBR28 in a retrospectively conducted analysis. All PET scans were performed on the HRRT scanner. Volume of distribution (VT) values were generated for cortical and subcortical regions and the cerebellum. Spring/summer months were defined as March to August while fall/winter months were defined as September to February and were compared through 2-tailed t-tests (SciPy library v.1.10.1 and Pinguoin library on Python v.3.8.8). Average daylight hours and temperature in New Haven, CT were obtained online (www.wunderground.com) and compared to VT with Spearman's correlations. RESULTS There were no significant differences observed between the TSPO levels of spring/summer and fall/winter months in the brain (t = 0.52, p = 0.61). Additional analysis on all individual brain regions also indicated non-significance. Likewise, no significant correlations were found between TSPO levels in the whole brain and brain regions against daylight hours (ρ= 0.05, p = 0.74), temperature (ρ = 0.04, p = 0.81), or month (ρ = 0.08, p = 0.60). Controlling TSPO gene polymorphisms and other variables had no significant effect on the outcome. CONCLUSION To the best of our knowledge, this is the first human study to investigate seasonal changes in TSPO expression. Our results can be interpreted as the lack of seasonal variability in the neuroimmune system, but important limitations include high interindividual variability, test-retest variability, specificity of the tracer, and a limited sample size. Limitations notwithstanding, our results conclude that TSPO levels in the brain are not impacted by light and temperature changes in different seasons.
Collapse
Affiliation(s)
- Waleed Ibrahim
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut
| | - Jeonghyun An
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut
| | - Yanghong Yang
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut
| | - Kelly P. Cosgrove
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - David Matuskey
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
4
|
Weng JY, Chen XX, Wang XH, Ye HE, Wu YP, Sun WY, Liang L, Duan WJ, Kurihara H, Huang F, Sun XX, Ou-Yang SH, He RR, Li YF. Reducing lipid peroxidation attenuates stress-induced susceptibility to herpes simplex virus type 1. Acta Pharmacol Sin 2023; 44:1856-1866. [PMID: 37193755 PMCID: PMC10186316 DOI: 10.1038/s41401-023-01095-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/19/2023] [Indexed: 05/18/2023] Open
Abstract
Psychological stress increases the susceptibility to herpes simplex virus type 1 (HSV-1) infection. There is no effective intervention due to the unknown pathogenesis mechanisms. In this study we explored the molecular mechanisms underlying stress-induced HSV-1 susceptibility and the antiviral effect of a natural compound rosmarinic acid (RA) in vivo and in vitro. Mice were administered RA (11.7, 23.4 mg·kg-1·d-1, i.g.) or acyclovir (ACV, 206 mg·kg-1·d-1, i.g.) for 23 days. The mice were subjected to restraint stress for 7 days followed by intranasal infection with HSV-1 on D7. At the end of RA or ACV treatment, mouse plasma samples and brain tissues were collected for analysis. We showed that both RA and ACV treatment significantly decreased stress-augmented mortality and alleviated eye swelling and neurological symptoms in HSV-1-infected mice. In SH-SY5Y cells and PC12 cells exposed to the stress hormone corticosterone (CORT) plus HSV-1, RA (100 μM) significantly increased the cell viability, and inhibited CORT-induced elevation in the expression of viral proteins and genes. We demonstrated that CORT (50 μM) triggered lipoxygenase 15 (ALOX15)-mediated redox imbalance in the neuronal cells, increasing the level of 4-HNE-conjugated STING, which impaired STING translocation from the endoplasmic reticulum to Golgi; the abnormality of STING-mediated innate immunity led to HSV-1 susceptibility. We revealed that RA was an inhibitor of lipid peroxidation by directly targeting ALOX15, thus RA could rescue stress-weakened neuronal innate immune response, thereby reducing HSV-1 susceptibility in vivo and in vitro. This study illustrates the critical role of lipid peroxidation in stress-induced HSV-1 susceptibility and reveals the potential for developing RA as an effective intervention in anti-HSV-1 therapy.
Collapse
Affiliation(s)
- Jing-Yu Weng
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Xin-Xing Chen
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Xiao-Hua Wang
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Hui-Er Ye
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Yan-Ping Wu
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Wan-Yang Sun
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Lei Liang
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Wen-Jun Duan
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Hiroshi Kurihara
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Feng Huang
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Xin-Xin Sun
- Jiujiang Maternal and Child Health Hospital, Jiujiang, 332000, China
| | - Shu-Hua Ou-Yang
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China.
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| | - Rong-Rong He
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China.
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China.
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, China.
| | - Yi-Fang Li
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China.
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
5
|
Koutentaki E, Basta M, Antypa D, Zaganas I, Panagiotakis S, Simos P, Vgontzas AN. IL-6 Enhances the Negative Impact of Cortisol on Cognition among Community-Dwelling Older People without Dementia. Healthcare (Basel) 2023; 11:healthcare11070951. [PMID: 37046878 PMCID: PMC10094120 DOI: 10.3390/healthcare11070951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/19/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
There is growing evidence that high basal cortisol levels and systemic inflammation independently contribute to cognitive decline among older people without dementia. The present cross-sectional study examined (a) the potential synergistic effect of cortisol levels and systemic inflammation on executive function and (b) whether this effect is more prominent among older people with mild cognitive impairment (MCI). A sub-sample of 99 patients with MCI and 84 older people without cognitive impairment (CNI) (aged 73.8 ± 7.0 years) were recruited from a large population-based cohort in Crete, Greece, and underwent comprehensive neuropsychiatric and neuropsychological evaluation and a single morning measurement of cortisol and IL-6 plasma levels. Using moderated regression models, we found that the relation between cortisol and executive function in the total sample was moderated by IL-6 levels (b = −0.994, p = 0.044) and diagnostic group separately (b = −0.632, p < 0.001). Moreover, the interaction between cortisol and IL-6 levels was significant only among persons with MCI (b = −0.562, p < 0.001). The synergistic effect of stress hormones and systemic inflammation on cognitive status appears to be stronger among older people who already display signs of cognitive decline. Targeting hypercortisolemia and inflammation may be a promising strategy toward improving the course of cognitive decline.
Collapse
|
6
|
Paz JEG, da Costa FVA, Nunes LN, Monteiro ER, Jung J. Evaluation of music therapy to reduce stress in hospitalized cats. J Feline Med Surg 2022; 24:1046-1052. [PMID: 34930057 PMCID: PMC10812302 DOI: 10.1177/1098612x211066484] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVES This study aimed to evaluate the use of two different types of music - cat-specific music and classical music - compared with no music, to reduce stress in cats during hospitalization. METHODS Thirty-five hospitalized cats were randomly divided into three groups and each group received a different stimulus - cat-specific music, classical music or no music (control) - throughout their hospitalization. Respiratory rate, salivary cortisol and social interaction were documented. A blinded researcher performed the Cat Stress Score (CSS) during the video analysis of recordings at five specific times over 31 h of hospitalization. RESULTS There was no difference in the mean CSS between cats listening to cat-specific music, classical music and control throughout the five evaluations. Cat-specific music had a higher percentage of positive social interactions than the other groups on the first evaluation (P <0.05). The average respiratory rate was significantly lower in the classical music group vs control on the fourth evaluation (P <0.05). Although statistically insignificant, the average respiratory rate decreased only in the classical music group during the five evaluations. Cortisol quantification did not seem to follow the CSS results. However, owing to the low and unrepresentative number of samples, it was not possible to perform statistical analysis on these results or a group sample comparison. CONCLUSIONS AND RELEVANCE Both cat-specific music and classical music seem to have some benefit to hospitalized cats. The salivary cortisol analysis was not adequate nor useful to measure stress in hospitalized cats in our study.
Collapse
Affiliation(s)
- Juliane EG Paz
- Veterinary Science Post Graduation Program, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernanda VA da Costa
- Department of Animal Medicine, Faculty of Veterinary Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Luciana N Nunes
- Department of Statistics, Institute of Mathematics and Statistics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Eduardo R Monteiro
- Department of Animal Medicine, Faculty of Veterinary Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Jenifer Jung
- Veterinary Clinics Hospital, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
7
|
Wang S, Qi X. The Putative Role of Astaxanthin in Neuroinflammation Modulation: Mechanisms and Therapeutic Potential. Front Pharmacol 2022; 13:916653. [PMID: 35814201 PMCID: PMC9263351 DOI: 10.3389/fphar.2022.916653] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/07/2022] [Indexed: 12/03/2022] Open
Abstract
Neuroinflammation is a protective mechanism against insults from exogenous pathogens and endogenous cellular debris and is essential for reestablishing homeostasis in the brain. However, excessive prolonged neuroinflammation inevitably leads to lesions and disease. The use of natural compounds targeting pathways involved in neuroinflammation remains a promising strategy for treating different neurological and neurodegenerative diseases. Astaxanthin, a natural xanthophyll carotenoid, is a well known antioxidant. Mounting evidence has revealed that astaxanthin is neuroprotective and has therapeutic potential by inhibiting neuroinflammation, however, its functional roles and underlying mechanisms in modulating neuroinflammation have not been systematically summarized. Hence, this review summarizes recent progress in this field and provides an update on the medical value of astaxanthin. Astaxanthin modulates neuroinflammation by alleviating oxidative stress, reducing the production of neuroinflammatory factors, inhibiting peripheral inflammation and maintaining the integrity of the blood-brain barrier. Mechanistically, astaxanthin scavenges radicals, triggers the Nrf2-induced activation of the antioxidant system, and suppresses the activation of the NF-κB and mitogen-activated protein kinase pathways. With its good biosafety and high bioavailability, astaxanthin has strong potential for modulating neuroinflammation, although some outstanding issues still require further investigation.
Collapse
|
8
|
Parperis K, Kyriakou A, Voskarides K, Chatzittofis A. Suicidal behavior in patients with systematic lupus erythematosus: systematic literature review and genetic linkage disequilibrium analysis. Semin Arthritis Rheum 2022; 54:151997. [DOI: 10.1016/j.semarthrit.2022.151997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/09/2022] [Accepted: 03/17/2022] [Indexed: 10/18/2022]
|
9
|
Ning Q, Wu D, Wang X, Xi D, Chen T, Chen G, Wang H, Lu H, Wang M, Zhu L, Hu J, Liu T, Ma K, Han M, Luo X. The mechanism underlying extrapulmonary complications of the coronavirus disease 2019 and its therapeutic implication. Signal Transduct Target Ther 2022; 7:57. [PMID: 35197452 PMCID: PMC8863906 DOI: 10.1038/s41392-022-00907-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) is a highly transmissible disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that poses a major threat to global public health. Although COVID-19 primarily affects the respiratory system, causing severe pneumonia and acute respiratory distress syndrome in severe cases, it can also result in multiple extrapulmonary complications. The pathogenesis of extrapulmonary damage in patients with COVID-19 is probably multifactorial, involving both the direct effects of SARS-CoV-2 and the indirect mechanisms associated with the host inflammatory response. Recognition of features and pathogenesis of extrapulmonary complications has clinical implications for identifying disease progression and designing therapeutic strategies. This review provides an overview of the extrapulmonary complications of COVID-19 from immunological and pathophysiologic perspectives and focuses on the pathogenesis and potential therapeutic targets for the management of COVID-19.
Collapse
Affiliation(s)
- Qin Ning
- National Medical Center for Major Public Health Events, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Di Wu
- National Medical Center for Major Public Health Events, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojing Wang
- National Medical Center for Major Public Health Events, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Xi
- National Medical Center for Major Public Health Events, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Chen
- National Medical Center for Major Public Health Events, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guang Chen
- National Medical Center for Major Public Health Events, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongwu Wang
- National Medical Center for Major Public Health Events, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiling Lu
- National Medical Center for Major Public Health Events, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Wang
- National Medical Center for Major Public Health Events, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Zhu
- National Medical Center for Major Public Health Events, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junjian Hu
- National Medical Center for Major Public Health Events, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Liu
- National Medical Center for Major Public Health Events, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Ma
- National Medical Center for Major Public Health Events, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meifang Han
- National Medical Center for Major Public Health Events, Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiaoping Luo
- National Medical Center for Major Public Health Events, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
10
|
Suda Y, Nakashima T, Matsumoto H, Sato D, Nagano S, Mikata H, Yoshida S, Tanaka K, Hamada Y, Kuzumaki N, Narita M. Normal aging induces PD-1-enriched exhausted microglia and A1-like reactive astrocytes in the hypothalamus. Biochem Biophys Res Commun 2021; 541:22-29. [PMID: 33461064 DOI: 10.1016/j.bbrc.2020.12.086] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/25/2020] [Indexed: 01/30/2023]
Abstract
Hypothalamic aging is considered to be critical for systemic aging, and the accumulation of "exhausted glial cells" in the hypothalamus may contribute to brain dysfunction. In this study, we used normal aging mice and investigated aging-specific transcriptional identities of microglia and astrocytes in the hypothalamus. We confirmed that normal aging promoted anxiety, induced impairment of motor coordination and reduced physical strength of muscle in mice. To investigate the senescence of hypothalamic glial cells, we isolated CD11b-positive microglia and ACSA-2-positive astrocytes from the hypothalamus of aged mice using magnetic-activated cell sorting (MACS). The mRNA level of p16INK4A was dramatically increased in the hypothalamic microglia of aged mice compared to young mice. Furthermore, the expression of programmed cell death 1 (PD-1) as well as A1-like astrocyte mediators in the hypothalamic microglia was dramatically induced by aging, indicating that normal aging may produce PD-1-enriched "exhausted microglia" in the hypothalamus. Furthermore, neuroinflammatory A1-like reactive astrocytes with a p16INK4A-positive senescent state were predominantly detected in the hypothalamus of aged mice. Exhausted microglia were also detected in the prefrontal cortex of aged mice, whereas astrocytic neuroinflammation was milder than that observed in the hypothalamus, even with p16INK4A-positive senescence. These results suggest that the production of PD-1-enriched exhausted and senescent microglia and neuroinflammatory A1-like reactive astrocytes in the hypothalamus may partly contribute to aging-related emotional and physical dyscoordination.
Collapse
Affiliation(s)
- Yukari Suda
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara Shinagawa-ku, Tokyo, 142-8501, Japan; Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Toshihisa Nakashima
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara Shinagawa-ku, Tokyo, 142-8501, Japan; Department of Pharmacy, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Hiroaki Matsumoto
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Daisuke Sato
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara Shinagawa-ku, Tokyo, 142-8501, Japan; Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Satoshi Nagano
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Haruka Mikata
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Sara Yoshida
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara Shinagawa-ku, Tokyo, 142-8501, Japan; Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Kenichi Tanaka
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara Shinagawa-ku, Tokyo, 142-8501, Japan; Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yusuke Hamada
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara Shinagawa-ku, Tokyo, 142-8501, Japan; Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Naoko Kuzumaki
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara Shinagawa-ku, Tokyo, 142-8501, Japan.
| | - Minoru Narita
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara Shinagawa-ku, Tokyo, 142-8501, Japan; Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
11
|
Alschuler L, Chiasson AM, Horwitz R, Sternberg E, Crocker R, Weil A, Maizes V. Integrative medicine considerations for convalescence from mild-to-moderate COVID-19 disease. Explore (NY) 2020; 18:140-148. [PMID: 33358750 PMCID: PMC7756157 DOI: 10.1016/j.explore.2020.12.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/15/2020] [Accepted: 12/20/2020] [Indexed: 12/13/2022]
Abstract
The majority of individuals infected with SARS-CoV-2 have mild-to-moderate COVID-19 disease. Convalescence from mild-to-moderate (MtoM) COVID-19 disease may be supported by integrative medicine strategies. Integrative Medicine (IM) is defined as healing-oriented medicine that takes account of the whole person, including all aspects of lifestyle. Integrative medicine strategies that may support recovery from MtoM COVID-19 are proposed given their clinically studied effects in related conditions. Adoption of an anti-inflammatory diet, supplementation with vitamin D, glutathione, melatonin, Cordyceps, Astragalus and garlic have potential utility. Osteopathic manipulation, Qigong, breathing exercises and aerobic exercise may support pulmonary recovery. Stress reduction, environmental optimization, creative expression and aromatherapy can provide healing support and minimize enduring trauma. These modalities would benefit from clinical trials in people recovering from COVID-19 infection.
Collapse
Affiliation(s)
- Lise Alschuler
- University of Arizona, College of Medicine, United States; Andrew Weil Center for Integrative Medicine, United States.
| | - Ann Marie Chiasson
- University of Arizona, College of Medicine, United States; Andrew Weil Center for Integrative Medicine, United States
| | - Randy Horwitz
- University of Arizona, College of Medicine, United States; Andrew Weil Center for Integrative Medicine, United States
| | - Esther Sternberg
- University of Arizona, College of Medicine, United States; Andrew Weil Center for Integrative Medicine, United States
| | - Robert Crocker
- University of Arizona, College of Medicine, United States; Andrew Weil Center for Integrative Medicine, United States
| | - Andrew Weil
- Andrew Weil Center for Integrative Medicine, United States; University of Arizona, United States
| | - Victoria Maizes
- University of Arizona, College of Medicine, United States; Andrew Weil Center for Integrative Medicine, United States
| |
Collapse
|
12
|
miR-19b is elevated in peripheral blood of schizophrenic patients and attenuates proliferation of hippocampal neural progenitor cells. J Psychiatr Res 2020; 131:102-107. [PMID: 32950706 DOI: 10.1016/j.jpsychires.2020.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 11/22/2022]
Abstract
MicroRNAs (miRNAs) have been investigated in neurodevelopmental and psychiatric disorders including schizophrenia (SZ). Previous studies showed miRNAs dysregulation in postmortem brain tissues and peripheral blood of SZ patients. These suggest that miRNAs may play a role in the pathophysiology of SZ and be a potential biomarker of SZ. Previous studies also showed that miRNAs regulated neurogenesis and that neurogenesis was involved in the pathophysiology of SZ. In addition, a recent study showed that miR-19a and 19b, enriched in neural progenitor cells (NPC) in adult hippocampus, were increased in human NPC derived from induced pluripotent stem cell derived from SZ patients. However, it remains unclear whether the levels of miR-19a and 19b are altered in peripheral blood of SZ patients and how miR-19a and 19b affects neurogenesis. To elucidate them, first we examined the levels of miR-19a and 19b in peripheral blood of SZ patients with quantitative RT-PCR and showed that the level of miR-19b, but not miR-19a, was significantly higher (miR-19a: p = 0.5733, miR-19b: p = 0.0038) in peripheral blood of SZ patients (N = 22) than that of healthy controls (N = 19). Next, we examined the involvement of miR-19b in proliferation and survival of mouse neonatal mice hippocampus-derived NPC with BrdU assay and TUNEL assay. The silencing of miR-19b significantly increased proliferation (N = 5, p = 0.0139), but not survival (N = 5, p = 0.9571), of neonatal mice hippocampus-derived NPC. These results suggest that the level of miR-19b in peripheral blood is a potential biomarker of schizophrenia and that the higher level of miR-19b may increase the vulnerability of SZ via attenuating proliferation of hippocampal NPC.
Collapse
|
13
|
Candidate metabolic biomarkers for schizophrenia in CNS and periphery: Do any possible associations exist? Schizophr Res 2020; 226:95-110. [PMID: 30935700 DOI: 10.1016/j.schres.2019.03.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 02/07/2023]
Abstract
Due to the limitations of analytical techniques and the complicity of schizophrenia, nowadays it is still a challenge to diagnose and stratify schizophrenia patients accurately. Many attempts have been made to identify and validate available biomarkers for schizophrenia from CSF and/or peripheral blood in clinical studies with consideration to disease stages, antipsychotic effects and even gender differences. However, conflicting results handicap the validation and application of biomarkers for schizophrenia. In view of availability and feasibility, peripheral biomarkers have superior advantages over biomarkers in CNS. Meanwhile, schizophrenia is considered to be a devastating neuropsychiatric disease mainly taking place in CNS featured by widespread defects in multiple metabolic pathways whose dynamic interactions, until recently, have been difficult to difficult to investigate. Evidence for these alterations has been collected piecemeal, limiting the potential to inform our understanding of the interactions among relevant biochemical pathways. Taken these points together, it will be interesting to investigate possible associations of biomarkers between CNS and periphery. Numerous studies have suggested putative correlations within peripheral and CNS systems especially for dopaminergic and glutamatergic metabolic biomarkers. In addition, it has been demonstrated that blood concentrations of BDNF protein can also reflect its changes in the nervous system. In turn, BDNF also interacts with glutamatergic, dopaminergic and serotonergic systems. Therefore, this review will summarize metabolic biomarkers identified both in the CNS (brain tissues and CSF) and peripheral blood. Further, more attentions will be paid to discussing possible physical and functional associations between CNS and periphery, especially with respect to BDNF.
Collapse
|
14
|
Verma K, Amitabh, Prasad DN, Kumar B, Kohli E. Brain and COVID-19 Crosstalk: Pathophysiological and Psychological Manifestations. ACS Chem Neurosci 2020; 11:3194-3203. [PMID: 33006881 DOI: 10.1021/acschemneuro.0c00446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The world is experiencing one of the major viral outbreaks of this millennium, caused by a plus sense single-stranded RNA virus belonging to the Coronaviridae family, COVID-19, declared as pandemic by WHO. The clinical manifestations vary from asymptomatic to mild symptoms like fever, dry cough, and diarrhea, with further increase in severity leading to the development of acute respiratory distress syndrome. Though primary manifestations are respiratory and cardiac, various studies have shown the neuroinvasive capability of this virus resulting in neurological complications, which sometimes can precede common typical symptoms like fever and cough. Common neurological symptoms are headache, dizziness, anosmia, dysgeusia, confusion, and muscle weakening, progressing toward severe complications like cerebrovascular disease, seizures, or paralysis. Older adults and critically ill people are in the high risk group and have shown severe neurological symptoms upon infection. COVID-19 also has a profound impact on the mental health of people across the world. In this review, we briefly discuss the neurological pathologies and psychological impact due to COVID-19, which has not only stressed the physical health of people but has also created social and economic problems resulting in mental health issues.
Collapse
Affiliation(s)
- Kalyani Verma
- Neurobiology Division, Defence Institute of Physiology and Allied Sciences, Delhi 110054, India
| | - Amitabh
- Neurobiology Division, Defence Institute of Physiology and Allied Sciences, Delhi 110054, India
| | - Dipti N. Prasad
- Neurobiology Division, Defence Institute of Physiology and Allied Sciences, Delhi 110054, India
| | - Bhuvnesh Kumar
- Defence Institute of Physiology and Allied Sciences, Delhi 110054, India
| | - Ekta Kohli
- Neurobiology Division, Defence Institute of Physiology and Allied SciencesDefence Research and Development Organization, Ministry of Defence, Lucknow Road, Timarpur, Delhi 110054, India
| |
Collapse
|
15
|
You X, Zhang Y, Long Q, Liu Z, Ma X, Lu Z, Yang W, Feng Z, Zhang W, Teng Z, Zeng Y. Investigating aberrantly expressed microRNAs in peripheral blood mononuclear cells from patients with treatment‑resistant schizophrenia using miRNA sequencing and integrated bioinformatics. Mol Med Rep 2020; 22:4340-4350. [PMID: 33000265 PMCID: PMC7533444 DOI: 10.3892/mmr.2020.11513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022] Open
Abstract
Treatment-resistant schizophrenia (TRS) is a common phenotype of schizophrenia that places a considerable burden on patients as well as on society. TRS is known for its tendency to relapse and uncontrollable nature, with a poor response to antipsychotics other than clozapine. Therefore, it is urgent to identify objective biological markers, so as to guide its treatment and associated clinical work. In the present study, the peripheral blood mononuclear cells (PBMCs) of patients with TRS and a healthy control group, which were gender-, age- and ethnicity-matched, were subjected to microRNA (miRNA/miR) sequencing to screen out the top three miRNAs with the highest fold change values. These were then validated in the TRS (n=34) and healthy control (n=31) groups by reverse transcription-quantitative PCR. For two of the top three miRNAs, the PCR results were in accordance with the sequencing result (P<0.01), while the third miRNA exhibited the opposite trend (P<0.01). To elucidate the functions of these two miRNAs, Homo sapiens (hsa)-miR-218-5p and hsa-miR-1262 and their regulatory network, target gene prediction was first performed using online TargetScan and Diana-micro T software. Bioinformatics analysis was then performed using functional enrichment analysis to determine the Gene Ontology terms in the category biological process and the Kyoto Encyclopedia of Genes and Genomes pathways. It was revealed that these target genes were markedly associated with the nervous system and brain function, and it was obvious that the differentially expressed miRNAs most likely participated in the pathogenesis of TRS. A receiver operating characteristic curve was generated to confirm the distinct diagnostic value of these two miRNAs. It was concluded that aberrantly expressed miRNAs in PMBCs may be implicated in the pathogenesis of TRS and may serve as specific peripheral blood-based biomarkers for the early diagnosis of TRS.
Collapse
Affiliation(s)
- Xu You
- Research Management Department, The Sixth Affiliated Hospital, Kunming Medical University, Yuxi, Yunnan 653100, P.R. China
| | - Yunqiao Zhang
- Research Management Department, The Sixth Affiliated Hospital, Kunming Medical University, Yuxi, Yunnan 653100, P.R. China
| | - Qing Long
- Research Management Department, The Sixth Affiliated Hospital, Kunming Medical University, Yuxi, Yunnan 653100, P.R. China
| | - Zijun Liu
- Research Management Department, The Sixth Affiliated Hospital, Kunming Medical University, Yuxi, Yunnan 653100, P.R. China
| | - Xiao Ma
- Research Management Department, The Sixth Affiliated Hospital, Kunming Medical University, Yuxi, Yunnan 653100, P.R. China
| | - Zixiang Lu
- Psychiatric Ward, Honghe Second People's Hospital, Honghe, Yunnan 654399, P.R. China
| | - Wei Yang
- Psychiatric Ward, Yuxi Second People's Hospital, Yuxi, Yunnan 653100, P.R. China
| | - Ziqiao Feng
- Research Management Department, The Sixth Affiliated Hospital, Kunming Medical University, Yuxi, Yunnan 653100, P.R. China
| | - Wengyu Zhang
- Research Management Department, The Sixth Affiliated Hospital, Kunming Medical University, Yuxi, Yunnan 653100, P.R. China
| | - Zhaowei Teng
- Research Management Department, The Sixth Affiliated Hospital, Kunming Medical University, Yuxi, Yunnan 653100, P.R. China
| | - Yong Zeng
- Research Management Department, The Sixth Affiliated Hospital, Kunming Medical University, Yuxi, Yunnan 653100, P.R. China
| |
Collapse
|
16
|
Guo Q, Zheng Y, Shi J, Wang J, Li G, Li C, Fromson JA, Xu Y, Liu X, Xu H, Zhang T, Lu Y, Chen X, Hu H, Tang Y, Yang S, Zhou H, Wang X, Chen H, Wang Z, Yang Z. Immediate psychological distress in quarantined patients with COVID-19 and its association with peripheral inflammation: A mixed-method study. Brain Behav Immun 2020; 88:17-27. [PMID: 32416290 PMCID: PMC7235603 DOI: 10.1016/j.bbi.2020.05.038] [Citation(s) in RCA: 240] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 02/08/2023] Open
Abstract
Since the end of 2019, Corona Virus Disease 2019 (COVID-19) has been the cause of a worldwide pandemic. The mental status of patients with COVID-19 who have been quarantined and the interactions between their psychological distress and physiological levels of inflammation have yet to be analyzed. Using a mixed-method triangulation design (QUAN + QUAL), this study investigated and compared the mental status and inflammatory markers of 103 patients who, while hospitalized with mild symptoms, tested positive with COVID-19 and 103 matched controls that were COVID-19 negative. The severity of depression, anxiety, and post-traumatic stress symptoms (PTSS) was measured via an on-line survey. Using a convenience sampling technique, qualitative data were collected until the point of data saturation. In addition, a semi-structured interview was conducted among five patients with COVID-19. Peripheral inflammatory markers were also collected in patients, both at baseline and within ± three days of completing the on-line survey. Results revealed that COVID-19 patients, when compared to non-COVID controls, manifested higher levels of depression (P < 0.001), anxiety (P < 0.001), and post-traumatic stress symptoms (P < 0.001). A gender effect was observed in the score of "Perceived Helplessness", the subscale of PSS-10, with female patients showing higher scores compared to male patients (Z = 2.56, P = 0.010), female (Z = 2.37, P = 0.018) and male controls (Z = 2.87, P = 0.004). Levels of CRP, a peripheral inflammatory indicator, correlated positively with the PHQ-9 total score (R = 0.37, P = 0.003, Spearman's correlation) of patients who presented symptoms of depression. Moreover, the change of CRP level from baseline inversely correlated with the PHQ-9 total score (R = -0.31, P = 0.002), indicative of improvement of depression symptoms. Qualitative analysis revealed similar results with respect to patient reports of negative feelings, including fear, guilt, and helplessness. Stigma and uncertainty of viral disease progression were two main concerns expressed by COVID-19 patients. Our results indicate that significant psychological distress was experienced by hospitalized COVID-19 patients and that levels of depressive features may be related to the inflammation markers in these patients. Thus, we recommend that necessary measures should be provided to address depression and other psychiatric symptoms for COVID-19 patients and attention should be paid to patient perceived stigma and coping strategies when delivering psychological interventions.
Collapse
Affiliation(s)
- Qian Guo
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yuchen Zheng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Jia Shi
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China; Graduate School, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Jijun Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Guanjun Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Chunbo Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - John A Fromson
- Department of Psychiatry, Brigham & Women's Hospital, and Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Yong Xu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Xiaohua Liu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Hua Xu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Tianhong Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yunfei Lu
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Xiaorong Chen
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Hao Hu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yingying Tang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Shuwen Yang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Han Zhou
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Xiaoliang Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Haiying Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China.
| | - Zhen Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China.
| | - Zongguo Yang
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China.
| |
Collapse
|
17
|
Qi X, Zhong X, Xu S, Zeng B, Chen J, Zang G, Zeng L, Bai S, Zhou C, Wei H, Xie P. Extracellular Matrix and Oxidative Phosphorylation: Important Role in the Regulation of Hypothalamic Function by Gut Microbiota. Front Genet 2020; 11:520. [PMID: 32670347 PMCID: PMC7330020 DOI: 10.3389/fgene.2020.00520] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 04/28/2020] [Indexed: 12/21/2022] Open
Abstract
Background In previous studies, our team examined the gut microbiota of healthy individuals and depressed patients using fecal microbiota transplantation of germ-free (GF) mice. Our results showed that depression-like and anxiety-like behavioral phenotypes of host mice were increased, but the molecular mechanism by which gut microbiota regulate host behavioral phenotypes is still unclear. Methods To investigate the molecular mechanism by which gut microbiota regulate host brain function, adult GF mice were colonized with fecal samples derived from healthy control (HC) individuals or patients with major depressive disorder (MDD). Transcriptomic profiling of hypothalamus samples was performed to detect differentially expressed genes (DEGs). qRT-PCR was used for validation experiments. Results Colonization germ-free (CGF) mice had 243 DEGs compared with GF mice. The most enriched KEGG pathways associated with upregulated genes were "protein digestion and absorption," "extracellular matrix (ECM)-receptor interaction," and "focal adhesion." MDD mice had 642 DEGs compared with HC mice. The most enriched KEGG pathways associated with upregulated genes in MDD mice were also "protein digestion and absorption," "ECM-receptor interaction," and "focal adhesion." Meanwhile, the most enriched KEGG pathway associated with downregulated genes in these mice was "oxidative phosphorylation," and genes related to this pathway were found to be highly correlated in PPI network analysis. Conclusion In summary, our findings suggested that regulation of ECM is a key mechanism shared by different gut microbiota and that inhibition of energy metabolism in the hypothalamus by gut microbiota derived from MDD patients is a potential mechanism of behavioral regulation and depression.
Collapse
Affiliation(s)
- Xunzhong Qi
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Institute of Neuroscience, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
| | - Xiaogang Zhong
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China.,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China.,School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Shaohua Xu
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China.,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China.,Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Benhua Zeng
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Jianjun Chen
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Guangchao Zang
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China.,Pathogen Biology and Immunology Laboratory, and Laboratory of Tissue and Cell Biology, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, China
| | - Li Zeng
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shunjie Bai
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chanjuan Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Institute of Neuroscience, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
| | - Hong Wei
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Institute of Neuroscience, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China.,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China.,Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
18
|
Rahman SU, Hao Q, He K, Li Y, Yang X, Ye T, Ali T, Zhou Q, Li S. Proteomic Study Reveals the Involvement of Energy Metabolism in the Fast Antidepressant Effect of (2R, 6R)-Hydroxy Norketamine. Proteomics Clin Appl 2020; 14:e1900094. [PMID: 32080978 DOI: 10.1002/prca.201900094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 01/31/2020] [Indexed: 12/31/2022]
Abstract
PURPOSE Depression is a major disabling psychiatric disorder which causes severe financial burden and social consequences worldwide. Recently, (2R, 6R)-hydroxynorketamine (HNK), a metabolite of ketamine, showed strong antidepressant effect through N-methyl-D-aspartate (NMDA) antagonizing independent mechanism. In the current study the goal is to identify the potential intracellular molecules and pathways that might be involved in different therapeutic effects underlying HNK as compared to NMDA antagonist MK-801. EXPERIMENTAL DESIGN Forced-swim behavioral test, 2D fluorescence difference gel electrophoresis, and MALDI-TOF-MS/MS proteomics are used. RESULTS Compared to saline group, 14 differential proteins are identified in MK-801 treated group, with six proteins significantly up-regulated, while in HNK treated group 18 distinct proteins are identified with 11 proteins significantly up-regulated. Likewise, two proteins are significantly upregulated in HNK treated group when compared to MK-801 treated group. Among these differentially expressed proteins, phosphoglycerate mutase 1, malate dehydrogenase/ cytoplasmic, and triosephosphate isomerase are co-affected by MK-801 and HNK treatment. Representative protein expression changes are quantified by western blot, showing consistent results as determined by MALDI-TOF-MS/MS. CONCLUSION AND CLINICAL RELEVANCE The core protection mechanisms of HNK observed herein involves improving the abnormal ATP synthesis, impaired glycolysis, and the defense system therefore provides mechanistic insight and molecular targets for novel antidepressants.
Collapse
Affiliation(s)
- Shafiq Ur Rahman
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.,Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal, Dir, 18000, Pakistan
| | - Qiang Hao
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Kaiwu He
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Yumeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen, 518055, P. R. China
| | - Tao Ye
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Tahir Ali
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Qiang Zhou
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| |
Collapse
|
19
|
Health-Related Quality of Life and Medical Resource Use in Patients with Osteoporosis and Depression: A Cross-Sectional Analysis from the National Health and Nutrition Examination Survey. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17031124. [PMID: 32050694 PMCID: PMC7037867 DOI: 10.3390/ijerph17031124] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 12/27/2022]
Abstract
Background: Patients with either osteoporosis or depression are prone to develop other diseases and require more medical resources than do the general population. However, there are no studies on health-related quality of life (HRQoL) and medical resource use by osteoporosis patients with comorbid depression. We conducted this study for clarifying it. Methods: This cross-sectional study from 2005 to 2010 (6 years) analyzed 9776 National Health and Nutrition Examination Survey (NHANES) patients > 40 years old. Each patient was assigned to one of four groups: osteoporosis-positive(+) and depression-positive(+) (O+/D+); O+/D−; O−/D+; O−/D−. We used multivariate linear and logistic regression model to analyze the HRQoL and medical resource use between groups. Results: The O+/D+ group reported more unhealthy days of physical health, more unhealthy days of mental health, and more inactive days during a specified 30 days. The adjusted odds ratios (AORs) of O+/D+ patients who had poor general health (7.40, 95% CI = 4.80–11.40), who needed healthcare (3.25, 95% CI = 2.12–5.00), and who had been hospitalized overnight (2.71, 95% CI = 1.89–3.90) were significantly highest. Conclusions: Low HRQoL was significantly more prevalent in D+/O+ patients. We found that depression severity more significantly affected HRQoL than did osteoporosis. However, both diseases significantly increased the risk of high medical resource use.
Collapse
|
20
|
Lee SH, Lee M, Yang H, Cho Y, Hong S, Park TH. Bioelectronic sensor mimicking the human neuroendocrine system for the detection of hypothalamic-pituitary-adrenal axis hormones in human blood. Biosens Bioelectron 2020; 154:112071. [PMID: 32056965 DOI: 10.1016/j.bios.2020.112071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/27/2020] [Accepted: 02/01/2020] [Indexed: 12/15/2022]
Abstract
In the neuroendocrine system, corticotropin-releasing hormone (CRH) and adrenocorticotropic hormone (ACTH) play important roles in the regulation of the hypothalamic-pituitary-adrenal (HPA) system. Disorders of the HPA system lead to physiological problems, such as Addison's disease and Cushing's syndrome. Therefore, detection of CRH and ACTH is essential for diagnosing disorders related to the HPA system. Herein, receptors of the HPA axis were used to construct a bioelectronic sensor system for the detection of CRH and ACTH. The CRH receptor, corticotropin-releasing hormone receptor 1 (CRHR1), and the ACTH receptor, melanocortin 2 receptor (MC2R), were produced using an Escherichia coli expression system, and were reconstituted using nanodisc (ND) technology. The receptor-embedded NDs were immobilized on a floating electrode of a carbon nanotube field-effect transistor (CNT-FET). The constructed sensors sensitively detected CRH and ACTH to a concentration of 1 fM with high selectivity in real time. Furthermore, the reliable detection of CRH and ACTH in human plasma by the developed sensors demonstrated their potential in clinical and practical applications. These results indicate that CRHR1 and MC2R-based bioelectronic sensors can be applied for rapid and efficient detection of CRH and ACTH.
Collapse
Affiliation(s)
- Seung Hwan Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea; Department of Bionano Engineering and Bionanotechnology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Minju Lee
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Heehong Yang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea; Protein Engineering Laboratory, Discovery Unit, MOGAM Institute for Biomedical Research, Yongin, 16924, Republic of Korea
| | - Youngtak Cho
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seunghun Hong
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Tai Hyun Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
21
|
Hadamitzky M, Lückemann L, Pacheco-López G, Schedlowski M. Pavlovian Conditioning of Immunological and Neuroendocrine Functions. Physiol Rev 2020; 100:357-405. [DOI: 10.1152/physrev.00033.2018] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The phenomenon of behaviorally conditioned immunological and neuroendocrine functions has been investigated for the past 100 yr. The observation that associative learning processes can modify peripheral immune functions was first reported and investigated by Ivan Petrovic Pavlov and his co-workers. Their work later fell into oblivion, also because so little was known about the immune system’s function and even less about the underlying mechanisms of how learning, a central nervous system activity, could affect peripheral immune responses. With the employment of a taste-avoidance paradigm in rats, this phenomenon was rediscovered 45 yr ago as one of the most fascinating examples of the reciprocal functional interaction between behavior, the brain, and peripheral immune functions, and it established psychoneuroimmunology as a new research field. Relying on growing knowledge about efferent and afferent communication pathways between the brain, neuroendocrine system, primary and secondary immune organs, and immunocompetent cells, experimental animal studies demonstrate that cellular and humoral immune and neuroendocrine functions can be modulated via associative learning protocols. These (from the classical perspective) learned immune responses are clinically relevant, since they affect the development and progression of immune-related diseases and, more importantly, are also inducible in humans. The increased knowledge about the neuropsychological machinery steering learning and memory processes together with recent insight into the mechanisms mediating placebo responses provide fascinating perspectives to exploit these learned immune and neuroendocrine responses as supportive therapies, the aim being to reduce the amount of medication required, diminishing unwanted drug side effects while maximizing the therapeutic effect for the patient’s benefit.
Collapse
Affiliation(s)
- Martin Hadamitzky
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Essen, Germany; Health Sciences Department, Metropolitan Autonomous University (UAM), Campus Lerma, Mexico; and Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Laura Lückemann
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Essen, Germany; Health Sciences Department, Metropolitan Autonomous University (UAM), Campus Lerma, Mexico; and Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gustavo Pacheco-López
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Essen, Germany; Health Sciences Department, Metropolitan Autonomous University (UAM), Campus Lerma, Mexico; and Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Manfred Schedlowski
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Essen, Germany; Health Sciences Department, Metropolitan Autonomous University (UAM), Campus Lerma, Mexico; and Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
22
|
Ho MF, Zhang C, Zhang L, Li H, Weinshilboum RM. Ketamine and Active Ketamine Metabolites Regulate STAT3 and the Type I Interferon Pathway in Human Microglia: Molecular Mechanisms Linked to the Antidepressant Effects of Ketamine. Front Pharmacol 2019; 10:1302. [PMID: 31827434 PMCID: PMC6848891 DOI: 10.3389/fphar.2019.01302] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/11/2019] [Indexed: 11/13/2022] Open
Abstract
Inflammation is an important biological process which contributes to risk for depression, in part as a result of the production of proinflammatory cytokines and of alterations in glutamatergic neurotransmission. Ketamine has anti-inflammatory properties which might contribute to its antidepressant effects. This study was designed to clarify mechanisms of action for ketamine and its active metabolites, (2R,6R;2S,6S)-hydroxynorketamine (HNK), which also appear to play a major role in ketamine's rapid antidepressant effects. An HMC3 human microglial cell line was used as a model system to test a possible role for ketamine in immune response regulation that might contribute to its antidepressant effects. Our results highlight the fact that ketamine and its two active metabolites can regulate the type I interferon pathway mediated, at least partially, through signal transducer and activation of transcription 3 (STAT3) which plays a major role in the immune response. Specifically, STAT3 downstream genes that were modulated by either ketamine or its active metabolites were enriched in the "response to type I interferon" pathway. Our data also suggest that STAT3 might play a role in ketamine's antidepressant effects, mediated, at least in part, through eukaryotic elongation factor 2 (EEF2), resulting in the augmentation of brain-derived neurotropic factor (BDNF) expression and promoting the synthesis of synaptic proteins postsynaptic density protein 95 (PSD95) and synapsin I (SYN1).
Collapse
Affiliation(s)
- Ming-Fen Ho
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Cheng Zhang
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Lingxin Zhang
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Hu Li
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Richard M Weinshilboum
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
23
|
Gilabert-Juan J, López-Campos G, Sebastiá-Ortega N, Guara-Ciurana S, Ruso-Julve F, Prieto C, Crespo-Facorro B, Sanjuán J, Moltó MD. Time dependent expression of the blood biomarkers EIF2D and TOX in patients with schizophrenia. Brain Behav Immun 2019; 80:909-915. [PMID: 31078689 DOI: 10.1016/j.bbi.2019.05.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/05/2019] [Accepted: 05/08/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND During last years, there has been an intensive search for blood biomarkers in schizophrenia to assist in diagnosis, prognosis and clinical management of the disease. METHODS In this study, we first conducted a weighted gene coexpression network analysis to address differentially expressed genes in peripheral blood from patients with chronic schizophrenia (n = 30) and healthy controls (n = 15). The discriminating performance of the candidate genes was further tested in an independent cohort of patients with first-episode schizophrenia (n = 124) and healthy controls (n = 54), and in postmortem brain samples (cingulate and prefrontal cortices) from patients with schizophrenia (n = 34) and healthy controls (n = 35). RESULTS The expression of the Eukaryotic Translation Initiation Factor 2D (EIF2D) gene, which is involved in protein synthesis regulation, was increased in the chronic patients of schizophrenia. On the contrary, the expression of the Thymocyte Selection-Associated High Mobility Group Box (TOX) gene, involved in immune function, was reduced. EIF2D expression was also altered in first-episode schizophrenia patients, but showing reduced levels. Any of the postmortem brain areas studied did not show differences of expression of both genes. CONCLUSIONS EIF2D and TOX are putative blood markers of chronic patients of schizophrenia, which expression change from the onset to the chronic disease, unraveling new biological pathways that can be used for the development of new intervention strategies in the diagnosis and prognosis of schizophrenia disease.
Collapse
Affiliation(s)
- Javier Gilabert-Juan
- Department of Genetics, Universitat de València, Valencia, Spain; Neurobiology Unit, Cell Biology Department, Interdisciplinary Research Structure for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Valencia, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; INCLIVA, Valencia, Spain.
| | | | - Noelia Sebastiá-Ortega
- Department of Genetics, Universitat de València, Valencia, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; INCLIVA, Valencia, Spain
| | | | - Fulgencio Ruso-Julve
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; University Hospital Marqués de Valdecilla, IDIVAL, Department of Psychiatry, School of Medicine, University of Cantabria, Santander, Spain
| | - Carlos Prieto
- Servicio de Bioinformática, Nucleus, Universidad de Salamanca, Salamanca, Spain
| | - Benedicto Crespo-Facorro
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; University Hospital Marqués de Valdecilla, IDIVAL, Department of Psychiatry, School of Medicine, University of Cantabria, Santander, Spain
| | - Julio Sanjuán
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; INCLIVA, Valencia, Spain; Unit of Psychiatry, Universitat de València, Valencia, Spain
| | - María Dolores Moltó
- Department of Genetics, Universitat de València, Valencia, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; INCLIVA, Valencia, Spain
| |
Collapse
|
24
|
Milenkovic VM, Stanton EH, Nothdurfter C, Rupprecht R, Wetzel CH. The Role of Chemokines in the Pathophysiology of Major Depressive Disorder. Int J Mol Sci 2019; 20:E2283. [PMID: 31075818 PMCID: PMC6539240 DOI: 10.3390/ijms20092283] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 12/19/2022] Open
Abstract
Major depressive disorder (MDD) is a debilitating condition, whose high prevalence and multisymptomatic nature set its standing as a leading contributor to global disability. To better understand this psychiatric disease, various pathophysiological mechanisms have been proposed, including changes in monoaminergic neurotransmission, imbalance of excitatory and inhibitory signaling in the brain, hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis, and abnormalities in normal neurogenesis. While previous findings led to a deeper understanding of the disease, the pathogenesis of MDD has not yet been elucidated. Accumulating evidence has confirmed the association between chronic inflammation and MDD, which is manifested by increased levels of the C-reactive protein, as well as pro-inflammatory cytokines, such as Interleukin 1 beta, Interleukin 6, and the Tumor necrosis factor alpha. Furthermore, recent findings have implicated a related family of cytokines with chemotactic properties, known collectively as chemokines, in many neuroimmune processes relevant to psychiatric disorders. Chemokines are small (8-12 kDa) chemotactic cytokines, which are known to play roles in direct chemotaxis induction, leukocyte and macrophage migration, and inflammatory response propagation. The inflammatory chemokines possess the ability to induce migration of immune cells to the infection site, whereas their homeostatic chemokine counterparts are responsible for recruiting cells for their repair and maintenance. To further support the role of chemokines as central elements to healthy bodily function, recent studies suggest that these proteins demonstrate novel, brain-specific mechanisms including the modulation of neuroendocrine functions, chemotaxis, cell adhesion, and neuroinflammation. Elevated levels of chemokines in patient-derived serum have been detected in individuals diagnosed with major depressive disorder, bipolar disorder, and schizophrenia. Furthermore, despite the considerable heterogeneity of experimental samples and methodologies, existing biomarker studies have clearly demonstrated the important role of chemokines in the pathophysiology of psychiatric disorders. The purpose of this review is to summarize the data from contemporary experimental and clinical studies, and to evaluate available evidence for the role of chemokines in the central nervous system (CNS) under physiological and pathophysiological conditions. In light of recent results, chemokines could be considered as possible peripheral markers of psychiatric disorders, and/or targets for treating depressive disorders.
Collapse
Affiliation(s)
- Vladimir M Milenkovic
- Department of Psychiatry and Psychotherapy, Molecular Neurosciences, University of Regensburg, D-93053 Regensburg, Germany.
| | - Evan H Stanton
- Department of Psychiatry and Psychotherapy, Molecular Neurosciences, University of Regensburg, D-93053 Regensburg, Germany.
| | - Caroline Nothdurfter
- Department of Psychiatry and Psychotherapy, Molecular Neurosciences, University of Regensburg, D-93053 Regensburg, Germany.
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, Molecular Neurosciences, University of Regensburg, D-93053 Regensburg, Germany.
| | - Christian H Wetzel
- Department of Psychiatry and Psychotherapy, Molecular Neurosciences, University of Regensburg, D-93053 Regensburg, Germany.
| |
Collapse
|
25
|
Lopez RB, Denny BT, Fagundes CP. Neural mechanisms of emotion regulation and their role in endocrine and immune functioning: A review with implications for treatment of affective disorders. Neurosci Biobehav Rev 2018; 95:508-514. [DOI: 10.1016/j.neubiorev.2018.10.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 10/15/2018] [Accepted: 10/25/2018] [Indexed: 12/31/2022]
|
26
|
Loureiro CM, Shuhama R, Fachim HA, Menezes PR, Del-Ben CM, Louzada-Junior P. Low plasma concentrations of N-methyl-d-aspartate receptor subunits as a possible biomarker for psychosis. Schizophr Res 2018; 202:55-63. [PMID: 29935886 DOI: 10.1016/j.schres.2018.06.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 03/11/2018] [Accepted: 06/13/2018] [Indexed: 01/03/2023]
Abstract
BACKGROUND N-methyl-d-aspartate receptor (NMDAR) has been largely implicated in the neurobiology of schizophrenia and other psychosis. Aiming to evaluate their potential as peripheral biomarkers for psychosis, we quantified the plasma concentrations of NR1 and NR2 NMDAR subunits of first-episode psychosis patients in their first contact with mental health services due to psychotic symptoms, compared with siblings and matched community-based controls. METHODS The quantifications of NR1 and NR2 plasma concentrations were performed by ELISA. Data were analysed by nonparametric tests and Receiver Operating Curve (ROC) analysis. RESULTS We included 166 first-episode psychosis patients (mean age = 30.3 ± 12.2 years; 64% men), with the diagnosis of schizophrenia spectrum (n = 84), bipolar disorder (n = 51) and psychotic depression (n = 31), 76 siblings (mean age = 31.5 ± 11.0 years; 30.3% men) and 166 healthy community-based controls (mean age = 31.4 ± 12.0 years; 63.9% men). NMDAR subunits were significantly lower in patients compared with siblings and controls (p < 0.001), except by NR1 plasma concentrations of bipolar patients compared with siblings and controls. NR1 plasma concentrations lower than 17.65 pg/ml (AUC = 0.621) showed sensitivity of 42.8%, specificity of 84.3%, positive predictive value (PPV) of 73.2% and negative predictive value (NPV) of 59.6%. Individuals with NR2 plasma concentrations lower than 2.92 ng/ml (AUC = 0.801) presented a 10.61-fold increased risk of psychosis, with a sensibility of 71.9%, specificity of 80.6%, PPV of 79.0% and NPV of 73.9%. CONCLUSIONS This is the first study reporting the measurement and the reduction of NR1 and NR2 NMDAR subunits plasma concentrations in psychiatric disorders. In particular, the NR2 subunit may be a possible plasma biomarker for psychosis.
Collapse
Affiliation(s)
- C M Loureiro
- Department of Internal Medicine, Division of Clinical Immunology, Ribeirão Preto Medical School, University of São Paulo, Brazil.
| | - R Shuhama
- Department of Neuroscience and Behavior, Division of Psychiatry, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - H A Fachim
- Department of Neuroscience and Behavior, Division of Psychiatry, Ribeirão Preto Medical School, University of São Paulo, Brazil; Institute of Neuroscience and Behaviour- INeC, Ribeirão Preto, São Paulo, Brazil
| | - P R Menezes
- Department of Preventive Medicine, Faculty of Medicine, University of São Paulo, Brazil
| | - C M Del-Ben
- Department of Neuroscience and Behavior, Division of Psychiatry, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - P Louzada-Junior
- Department of Internal Medicine, Division of Clinical Immunology, Ribeirão Preto Medical School, University of São Paulo, Brazil
| |
Collapse
|
27
|
Winter G, Hart RA, Charlesworth RP, Sharpley CF. Gut microbiome and depression: what we know and what we need to know. Rev Neurosci 2018; 29:629-643. [DOI: 10.1515/revneuro-2017-0072] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 12/08/2017] [Indexed: 02/07/2023]
Abstract
Abstract
Gut microbiome diversity has been strongly associated with mood-relating behaviours, including major depressive disorder (MDD). This association stems from the recently characterised bi-directional communication system between the gut and the brain, mediated by neuroimmune, neuroendocrine and sensory neural pathways. While the link between gut microbiome and depression is well supported by research, a major question needing to be addressed is the causality in the connection between the two, which will support the understanding of the role that the gut microbiota play in depression. In this article, we address this question by examining a theoretical ‘chronology’, reviewing the evidence supporting two possible sequences of events. First, we discuss that alterations in the gut microbiota populations of specific species might contribute to depression, and secondly, that depressive states might induce modification of specific gut microbiota species and eventually contribute to more severe depression. The feasibility of both sequences is supported by pre-clinical trials. For instance, research in rodents has shown an onset of depressive behaviour following faecal transplantations from patients with MDD. On the other hand, mental induction of stress and depressive behaviour in rodents resulted in reduced gut microbiota richness and diversity. Synthesis of these chronology dynamics raises important research directions to further understand the role that gut microbiota play in mood-relating behaviours, which holds substantial potential clinical outcomes for persons who experience MDD or related depressive disorders.
Collapse
|
28
|
Allergic Rhinitis in Rats Is Associated with an Inflammatory Response of the Hippocampus. Behav Neurol 2018; 2018:8750464. [PMID: 29849816 PMCID: PMC5926495 DOI: 10.1155/2018/8750464] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/20/2018] [Indexed: 12/21/2022] Open
Abstract
Allergic rhinitis (AR) is a major concern in personal and public health, which negatively affects emotions and behavior, leading to cognitive deficits, memory decline, poor school performance, anxiety, and depression. Several cellular and molecular mediators are released in the inflammatory process of AR and activate common neuroimmune mechanisms, involving emotionally relevant circuits and the induction of anxiety. Responsiveness of the hypothalamic-pituitary-adrenal (HPA) axis to allergic processes have been reported, which may also include responsiveness of the hippocampus, cortex, and other brain regions. Here, we have used an optimized rat model of AR to explore whether the disease has a relationship with inflammatory responses in the hippocampus. AR was established in adult rats by ovalbumin sensitization, and the expression of various inflammatory substances in the hippocampus was measured by specific assays. Comparison between experimental and various control groups of animals revealed an association of AR with significant upregulation of substance P, microglia surface antigen (CD11b), glial fibrillary acid protein (GFAP), tumor necrosis factor-α (TNF-α), and interleukin 6 (IL-6) in the hippocampus. Thus, we hypothesize that the AR challenge may activate these inflammatory mediators in the hippocampus, which in turn contribute to the abnormal behavior and neurological deficits associated with AR.
Collapse
|
29
|
Takahashi A, Flanigan ME, McEwen BS, Russo SJ. Aggression, Social Stress, and the Immune System in Humans and Animal Models. Front Behav Neurosci 2018; 12:56. [PMID: 29623033 PMCID: PMC5874490 DOI: 10.3389/fnbeh.2018.00056] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/06/2018] [Indexed: 01/25/2023] Open
Abstract
Social stress can lead to the development of psychological problems ranging from exaggerated anxiety and depression to antisocial and violence-related behaviors. Increasing evidence suggests that the immune system is involved in responses to social stress in adulthood. For example, human studies show that individuals with high aggression traits display heightened inflammatory cytokine levels and dysregulated immune responses such as slower wound healing. Similar findings have been observed in patients with depression, and comorbidity of depression and aggression was correlated with stronger immune dysregulation. Therefore, dysregulation of the immune system may be one of the mediators of social stress that produces aggression and/or depression. Similar to humans, aggressive animals also show increased levels of several proinflammatory cytokines, however, unlike humans these animals are more protected from infectious organisms and have faster wound healing than animals with low aggression. On the other hand, subordinate animals that receive repeated social defeat stress have been shown to develop escalated and dysregulated immune responses such as glucocorticoid insensitivity in monocytes. In this review we synthesize the current evidence in humans, non-human primates, and rodents to show a role for the immune system in responses to social stress leading to psychiatric problems such as aggression or depression. We argue that while depression and aggression represent two fundamentally different behavioral and physiological responses to social stress, it is possible that some overlapped, as well as distinct, pattern of immune signaling may underlie both of them. We also argue the necessity of studying animal models of maladaptive aggression induced by social stress (i.e., social isolation) for understanding neuro-immune mechanism of aggression, which may be relevant to human aggression.
Collapse
Affiliation(s)
- Aki Takahashi
- Laboratory of Behavioral Neuroendocrinology, University of Tsukuba, Tsukuba, Japan.,Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, United States
| | - Meghan E Flanigan
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Bruce S McEwen
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, United States
| | - Scott J Russo
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
30
|
Parmentier T, Sienaert P. The use of triiodothyronine (T3) in the treatment of bipolar depression: A review of the literature. J Affect Disord 2018; 229:410-414. [PMID: 29331701 DOI: 10.1016/j.jad.2017.12.071] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/18/2017] [Accepted: 12/31/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND There is a paucity of treatment options for bipolar depression. The use of triiodothyronine (T3) has been suggested as adjunctive treatment. METHODS A search on Medline, Limo and ScienceDirect was performed using the search terms bipolar disorder, bipolar depression, treatment resistant, treatment refractory, thyroid hormones, triiodothyronine, T3, acceleration and augmentation. RESULTS We retrieved three open studies, one comparative study, two double blind and one retrospective chart review. The three open studies observed improvement in respectively 56%, 75% and 79% of patients, the retrospective chart review noted improvement in 89% of cases and the mirror design showed improvement in 66%. In the comparative study T3 performed significantly better than placebo. The only randomized double blind study could not prove any substantial difference between T3 and placebo. LIMITATIONS Available studies are scarce and flawed. All have (very) low number of subjects: overall, only 353 subjects and only 194 of which in prospective trials. In only two of the prospective trials bipolar patients were analyzed separately. Comparing the studies is hampered by a high variability in assessment tools, baseline medication and degree of treatment-resistance. CONCLUSIONS The few available studies are small and flawed. They do show promising results. We found many clues suggesting that T3 could augment and accelerate treatment response not only with antidepressants, but also with lithium and perhaps with other treatment options, that it might protect against rapid cycling bipolar disorder, as well as against relapse during the first few years of treatment.
Collapse
Affiliation(s)
- T Parmentier
- KU Leuven, University of Leuven, University Psychiatric Center KU Leuven, Leuvensesteenweg 517, 3070 Kortenberg, Belgium
| | - P Sienaert
- KU Leuven, University of Leuven, University Psychiatric Center KU Leuven, Leuvensesteenweg 517, 3070 Kortenberg, Belgium; KU Leuven, Department of Neurosciences, Psychiatry, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
31
|
Abstract
Purpose of Review Traumatic stress has profound impacts on many domains of life, yet the mechanisms that confer risk for or resilience to the development of traumatic stress-related psychopathologies are still very much under investigation. The current review highlights recent developments in the field of traumatic stress epigenetics in humans. Recent Findings Recent results reveal traumatic stress-related epigenetic dysregulation in neural, endocrine, and immune system genes and associated networks. Emerging work combining imaging with epigenetic measures holds promise for addressing the correspondence between peripheral and central effects of traumatic stress. A growing literature is also documenting the transgenerational effects of prenatal stress exposures in humans. Summary Moving forward, increasing focus on epigenetic marks of traumatic stress in CNS tissue will create a clearer picture of the relevance of peripheral measures; PTSD brain banks will help in this regard. Similarly, leveraging multigenerational birth cohort data will do much to clarify the extent of transgenerational epigenetic effects of traumatic stress. Greater efforts should be made towards developing prospective studies with longitudinal design.
Collapse
Affiliation(s)
- John R Pfeiffer
- Department of Psychology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Carl R. Woese Institute for Genomic Biology, Urbana, IL, USA
| | - Leon Mutesa
- Center for Human Genetics, College of Medicine & Health Sciences, University of Rwanda, Kigali, Rwanda
| | - Monica Uddin
- Department of Psychology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Carl R. Woese Institute for Genomic Biology, Urbana, IL, USA.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
32
|
Ayling K, Fairclough L, Tighe P, Todd I, Halliday V, Garibaldi J, Royal S, Hamed A, Buchanan H, Vedhara K. Positive mood on the day of influenza vaccination predicts vaccine effectiveness: A prospective observational cohort study. Brain Behav Immun 2018; 67:314-323. [PMID: 28923405 DOI: 10.1016/j.bbi.2017.09.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/31/2017] [Accepted: 09/14/2017] [Indexed: 11/28/2022] Open
Abstract
Influenza vaccination is estimated to only be effective in 17-53% of older adults. Multiple patient behaviors and psychological factors have been shown to act as 'immune modulators' sufficient to influence vaccination outcomes. However, the relative importance of such factors is unknown as they have typically been examined in isolation. The objective of the present study was to explore the effects of multiple behavioral (physical activity, nutrition, sleep) and psychological influences (stress, positive mood, negative mood) on the effectiveness of the immune response to influenza vaccination in the elderly. A prospective, diary-based longitudinal observational cohort study was conducted. One hundred and thirty-eight community-dwelling older adults (65-85years) who received the 2014/15 influenza vaccination completed repeated psycho-behavioral measures over the two weeks prior, and four weeks following influenza vaccination. IgG responses to vaccination were measured via antigen microarray and seroprotection via hemagglutination inhibition assays at 4 and 16weeks post-vaccination. High pre-vaccination seroprotection levels were observed for H3N2 and B viral strains. Positive mood on the day of vaccination was a significant predictor of H1N1 seroprotection at 16weeks post-vaccination and IgG responses to vaccination at 4 and 16weeks post-vaccination, controlling for age and gender. Positive mood across the 6-week observation period was also significantly associated with post-vaccination H1N1 seroprotection and IgG responses to vaccination at 16weeks post-vaccination, but in regression models the proportion of variance explained was lower than for positive mood on the day of vaccination alone. No other factors were found to significantly predict antibody responses to vaccination. Greater positive mood in older adults, particularly on the day of vaccination, is associated with enhanced responses to vaccination.
Collapse
Affiliation(s)
- Kieran Ayling
- Division of Primary Care, School of Medicine, Tower Building, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Lucy Fairclough
- School of Life Sciences, Life Sciences Building, University of Nottingham, Nottingham NG7 2RD, UK
| | - Paddy Tighe
- School of Life Sciences, Life Sciences Building, University of Nottingham, Nottingham NG7 2RD, UK
| | - Ian Todd
- School of Life Sciences, Life Sciences Building, University of Nottingham, Nottingham NG7 2RD, UK
| | - Vanessa Halliday
- Section of Public Health, School of Health and Related Research (ScHARR), University of Sheffield, Sheffield S1 4DA, UK
| | - Jon Garibaldi
- School of Computer Science, University of Nottingham, NG8 1BB, UK
| | - Simon Royal
- Cripps Health Centre University of Nottingham, Nottingham NG7 2QW, UK
| | - Aljali Hamed
- School of Life Sciences, Life Sciences Building, University of Nottingham, Nottingham NG7 2RD, UK
| | - Heather Buchanan
- Division of Rehabilitation & Aging, School of Medicine, University of Nottingham, Queen's Medical Centre, NG7 2UH, UK
| | - Kavita Vedhara
- Division of Primary Care, School of Medicine, Tower Building, University of Nottingham, Nottingham NG7 2RD, UK.
| |
Collapse
|
33
|
Notter T, Coughlin JM, Sawa A, Meyer U. Reconceptualization of translocator protein as a biomarker of neuroinflammation in psychiatry. Mol Psychiatry 2018; 23:36-47. [PMID: 29203847 DOI: 10.1038/mp.2017.232] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/05/2017] [Accepted: 10/02/2017] [Indexed: 02/06/2023]
Abstract
A great deal of interest in psychiatric research is currently centered upon the pathogenic role of inflammatory processes. Positron emission tomography (PET) using radiolabeled ligands selective for the 18 kDa translocator protein (TSPO) has become the most widely used technique to assess putative neuroimmune abnormalities in vivo. Originally used to detect discrete neurotoxic damages, TSPO has generally turned into a biomarker of 'neuroinflammation' or 'microglial activation'. Psychiatric research has mostly accepted these denotations of TSPO, even if they may be inadequate and misleading under many pathological conditions. A reliable and neurobiologically meaningful diagnosis of 'neuroinflammation' or 'microglial activation' is unlikely to be achieved by the sole use of TSPO PET imaging. It is also very likely that the pathological meanings of altered TSPO binding or expression are disease-specific, and therefore, not easily generalizable across different neuropathologies or inflammatory conditions. This difficulty is intricately linked to the varying (and still ill-defined) physiological functions and cellular expression patterns of TSPO in health and disease. While altered TSPO binding or expression may indeed mirror ongoing neuroinflammatory processes in some cases, it may reflect other pathophysiological processes such as abnormalities in cell metabolism, energy production and oxidative stress in others. Hence, the increasing popularity of TSPO PET imaging has paradoxically introduced substantial uncertainty regarding the nature and meaning of neuroinflammatory processes and microglial activation in psychiatry, and likely in other neuropathological conditions as well. The ambiguity of conceiving TSPO simply as a biomarker of 'neuroinflammation' or 'microglial activation' calls for alternative interpretations and complimentary approaches. Without the latter, the ongoing scientific efforts and excitement surrounding the role of the neuroimmune system in psychiatry may not turn into therapeutic hope for affected individuals.
Collapse
Affiliation(s)
- T Notter
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - J M Coughlin
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medical Institutions, Baltimore, MD, USA.,Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - A Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - U Meyer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
34
|
Geuter S, Koban L, Wager TD. The Cognitive Neuroscience of Placebo Effects: Concepts, Predictions, and Physiology. Annu Rev Neurosci 2017; 40:167-188. [PMID: 28399689 DOI: 10.1146/annurev-neuro-072116-031132] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Placebos have been used ubiquitously throughout the history of medicine. Expectations and associative learning processes are important psychological determinants of placebo effects, but their underlying brain mechanisms are only beginning to be understood. We examine the brain systems underlying placebo effects on pain, autonomic, and immune responses. The ventromedial prefrontal cortex (vmPFC), insula, amygdala, hypothalamus, and periaqueductal gray emerge as central brain structures underlying placebo effects. We argue that the vmPFC is a core element of a network that represents structured relationships among concepts, providing a substrate for expectations and a conception of the situation-the self in context-that is crucial for placebo effects. Such situational representations enable multidimensional predictions, or priors, that are combined with incoming sensory information to construct percepts and shape motivated behavior. They influence experience and physiology via descending pathways to physiological effector systems, including the spinal cord and other peripheral organs.
Collapse
Affiliation(s)
- Stephan Geuter
- Institute of Cognitive Science, University of Colorado, Boulder, Colorado 80309; , , .,Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado 80309
| | - Leonie Koban
- Institute of Cognitive Science, University of Colorado, Boulder, Colorado 80309; , , .,Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado 80309
| | - Tor D Wager
- Institute of Cognitive Science, University of Colorado, Boulder, Colorado 80309; , , .,Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado 80309
| |
Collapse
|
35
|
The early growth response protein 1-miR-30a-5p-neurogenic differentiation factor 1 axis as a novel biomarker for schizophrenia diagnosis and treatment monitoring. Transl Psychiatry 2017; 7:e998. [PMID: 28072411 PMCID: PMC5545732 DOI: 10.1038/tp.2016.268] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/22/2016] [Accepted: 11/13/2016] [Indexed: 01/09/2023] Open
Abstract
To date, diagnosis of schizophrenia is still based on clinical interviews and careful observations, which is subjective and variable, and can lead to misdiagnosis and/or delay in diagnosis. As early intervention in schizophrenia is important in improving outcomes, objective tests that can be used for schizophrenia diagnosis or treatment monitoring are thus in great need. MicroRNAs (miRNAs) negatively regulate target gene expression and their biogenesis is tightly controlled by various factors including transcription factors (TFs). Dysregulation of miRNAs in brain tissue and peripheral blood mononuclear cells (PBMNCs) from patients with schizophrenia has been well documented, but analysis of the sensitivity and specificity for potential diagnostic utility of these alternations is limited. In this study, we explored the TF-miRNA-30-target gene axis as a novel biomarker for schizophrenia diagnosis and treatment monitoring. Using bioinformatics analysis, we retrieved all TFs that control the biogenesis of miRNA 30 members as well as all target genes that are regulated by miRNA-30 members. Further, reverse transcription-quantitative PCR analysis revealed that the early growth response protein 1 (EGR1) and miR-30a-5p were remarkably downregulated, whereas neurogenic differentiation factor 1 (NEUROD1) was significantly upregulated in PBMNCs from patients in acute psychotic state. Antipsychotics treatment resulted in the elevation of EGR1 and miR-30a-5p but the reduction of NEUROD1. Receiver operating characteristic analysis showed that the EGR1-miR-30a-5p-NEUROD1 axis possessed significantly greater diagnostic value than miR-30a-5p alone. Our data suggest the EGR1-miR-30a-5p-NEUROD1 axis might serve as a promising biomarker for diagnosis and treatment monitoring for those patients in acute psychotic state.
Collapse
|
36
|
Lai CY, Scarr E, Udawela M, Everall I, Chen WJ, Dean B. Biomarkers in schizophrenia: A focus on blood based diagnostics and theranostics. World J Psychiatry 2016; 6:102-17. [PMID: 27014601 PMCID: PMC4804259 DOI: 10.5498/wjp.v6.i1.102] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/20/2015] [Accepted: 12/17/2015] [Indexed: 02/05/2023] Open
Abstract
Identifying biomarkers that can be used as diagnostics or predictors of treatment response (theranostics) in people with schizophrenia (Sz) will be an important step towards being able to provide personalized treatment. Findings from the studies in brain tissue have not yet been translated into biomarkers that are practical in clinical use because brain biopsies are not acceptable and neuroimaging techniques are expensive and the results are inconclusive. Thus, in recent years, there has been search for blood-based biomarkers for Sz as a valid alternative. Although there are some encouraging preliminary data to support the notion of peripheral biomarkers for Sz, it must be acknowledged that Sz is a complex and heterogeneous disorder which needs to be further dissected into subtype using biological based and clinical markers. The scope of this review is to critically examine published blood-based biomarker of Sz, focusing on possible uses for diagnosis, treatment response, or their relationship with schizophrenia-associated phenotype. We sorted the studies into six categories which include: (1) brain-derived neurotrophic factor; (2) inflammation and immune function; (3) neurochemistry; (4) oxidative stress response and metabolism; (5) epigenetics and microRNA; and (6) transcriptome and proteome studies. This review also summarized the molecules which have been conclusively reported as potential blood-based biomarkers for Sz in different blood cell types. Finally, we further discusses the pitfall of current blood-based studies and suggest that a prediction model-based, Sz specific, blood oriented study design as well as standardize blood collection conditions would be useful for Sz biomarker development.
Collapse
|
37
|
Kumar A, Kardkal A, Debnath S, Lakshminarayan J. Association of periodontal health indicators and major depressive disorder in hospital outpatients. J Indian Soc Periodontol 2015; 19:507-11. [PMID: 26644715 PMCID: PMC4645535 DOI: 10.4103/0972-124x.167161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Background: Major depressive disorder (MDD) has been associated with changes in behavioral, neurophysiological, and neuroendocrinological factors and thought to be one of the leading causes of disability worldwide. There are various evidences that depression and periodontitis may also be related. Aim: The aim was to evaluate the association between MDD and periodontitis in a convenience sample of hospital outpatients. Materials and Methods: Sixty individuals (30 subjects with MDD and 30 subjects without MDD) of age 26–67 years were included in the study. Depression was assessed by means of structured clinical interview for diagnostic and statistical manual of mental disorders. The periodontal clinical examination included the number of missing teeth, plaque index, gingival index (GI), probing pocket depth, and clinical attachment level (CAL). Results: Mean number of missing teeth per patient was 1.14 (±1.2 standard deviation [SD]) in the control group and 2.58 (±1.64 SD) in case group (P < 0.001). The amount of plaque was significantly higher in cases compared with control (P = 0.001). The patients had an average GI of 1.82 (±0.65 SD) compared to 1.14 (±0.81 SD) for the controls (P < 0.001). Mean probing depth and CAL were 4.67 (±0.8 SD) mm and 4.96 (±0.2 SD) mm in the case group and 2.6 (±2.2 SD) mm and 2.7 (±0.43 SD) mm in the control group, respectively (P < 0.05). Conclusion: Our study confirms the significant association between depression and periodontitis and depression can be considered one of the important risk factors for periodontal diseases.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Periodontology, Navodaya Dental College, Raichur, Karnataka India
| | - Asif Kardkal
- Department of Periodontology, Navodaya Dental College, Raichur, Karnataka India
| | - Surangama Debnath
- Department of Periodontology, Navodaya Dental College, Raichur, Karnataka India
| | | |
Collapse
|
38
|
Malek H, Ebadzadeh MM, Safabakhsh R, Razavi A, Zaringhalam J. Dynamics of the HPA axis and inflammatory cytokines: Insights from mathematical modeling. Comput Biol Med 2015; 67:1-12. [PMID: 26476562 DOI: 10.1016/j.compbiomed.2015.09.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/03/2015] [Accepted: 09/22/2015] [Indexed: 10/23/2022]
Abstract
In the work presented here, a novel mathematical model was developed to explore the bi-directional communication between the hypothalamic-pituitary-adrenal (HPA) axis and inflammatory cytokines in acute inflammation. The dynamic model consists of five delay differential equations 5D for two main pro-inflammatory cytokines (TNF-α and IL-6) and two hormones of the HPA axis (ACTH and cortisol) and LPS endotoxin. The model is an attempt to increase the understanding of the role of primary hormones and cytokines in this complex relationship by demonstrating the influence of different organs and hormones in the regulation of the inflammatory response. The model captures the main qualitative features of cytokine and hormone dynamics when a toxic challenge is introduced. Moreover, in this work a new simple delayed model of the HPA axis is introduced which supports the understanding of the ultradian rhythm of HPA hormones both in normal and infection conditions. Through simulations using the model, the role of key inflammatory cytokines and cortisol in transition from acute to persistent inflammation through stability analysis is investigated. Also, by employing a Markov chain Monte Carlo (MCMC) method, parameter uncertainty and the effects of parameter variations on each other are analyzed. This model confirms the important role of the HPA axis in acute and prolonged inflammation and can be a useful tool in further investigation of the role of stress on the immune response to infectious diseases.
Collapse
Affiliation(s)
- Hamed Malek
- Biocomputing Laboratory, Computer and Information Technology Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | - Mohammad Mehdi Ebadzadeh
- Biocomputing Laboratory, Computer and Information Technology Engineering Department, Amirkabir University of Technology, Tehran, Iran.
| | - Reza Safabakhsh
- Biocomputing Laboratory, Computer and Information Technology Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | - Alireza Razavi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Jalal Zaringhalam
- Neurophysiology Research Center, Department of Physiology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
39
|
Kim HJ, Park JB, Lee JH, Kim IH. How stress triggers itch: a preliminary study of the mechanism of stress-induced pruritus using fMRI. Int J Dermatol 2015; 55:434-42. [DOI: 10.1111/ijd.12864] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 07/25/2014] [Accepted: 09/09/2014] [Indexed: 01/26/2023]
Affiliation(s)
- Hee Joo Kim
- Department of Dermatology; Korea University Ansan Hospital; Korea University College of Medicine; Ansan South Korea
- Department of Dermatology; Severance Hospital; Yonsei University College of Medicine; Seoul South Korea
| | - Jae Beom Park
- Department of Dermatology; Korea University Ansan Hospital; Korea University College of Medicine; Ansan South Korea
| | - Jong Hwan Lee
- Department of Brain and Cognitive Engineering; Korea University; Seoul South Korea
| | - Il-Hwan Kim
- Department of Dermatology; Korea University Ansan Hospital; Korea University College of Medicine; Ansan South Korea
| |
Collapse
|
40
|
Höllig A, Thiel M, Stoffel-Wagner B, Coburn M, Clusmann H. Neuroprotective properties of dehydroepiandrosterone-sulfate and its relationship to interleukin 6 after aneurysmal subarachnoid hemorrhage: a prospective cohort study. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2015; 19:231. [PMID: 25993987 PMCID: PMC4462180 DOI: 10.1186/s13054-015-0954-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 05/15/2015] [Indexed: 11/10/2022]
Abstract
INTRODUCTION The established neuroprotective property of the sex steroid precursor dehydroepiandrosterone-sulfate (DHEAS) has not yet been investigated in the context of aneurysmal subarachnoid hemorrhage (aSAH). The influence of DHEAS on inflammatory response resulting in modulation of interleukin 6 (IL-6) synthesis has been shown. Here, we evaluate DHEAS serum levels after aSAH (day 0-14) and levels of IL-6 related to functional outcome at discharge and at six months. METHODS A complete data set (DHEAS and IL-6 serum levels for days 0, 1, 4, 7, 10 and 14 after aSAH) and outcome assessment at discharge according to modified Rankin Scale score (mRS) was available for 53 patients of the initially screened cohort (n = 109). Outcome assessment six months after aSAH was obtained from 41 patients. Logarithmized levels of DHEAS and IL-6 were related to dichotomized functional outcome either assessed at discharge or at six months. A mixed between-within subjects ANOVA was applied for statistical analysis (SPSS 21.0). RESULTS DHEAS and IL-6 levels across time were related to functional outcome. Regarding outcome assessment at discharge and at six months after aSAH, DHEAS levels (transformed to square root for statistical purposes) were considerably higher in patients with favorable outcome (mRS 0-2) (p = .001; p = .020). Inversely, in patients with favorable outcome either at discharge or six months after aSAH, lower IL-6 levels (logarithmized for statistical purposes) were observed across time (both p < .001). CONCLUSION We provide new evidence that DHEAS is associated with protective properties resulting in improvement of functional outcome after aSAH, possibly by influencing the inflammatory response after aSAH shown in the decreasing IL-6 serum levels. But the results for outcome six months after SAH are limited due to a high drop-out rate.
Collapse
Affiliation(s)
- Anke Höllig
- Department of Neurosurgery, RWTH Aachen University, Pauwelsstr. 30, D-52074, Aachen, Germany. .,Department of Anesthesiology, RWTH Aachen University, Aachen, Germany.
| | - Miriam Thiel
- Department of Pediatrics, GFO Kliniken Bonn Zweigstelle St. Marien-Hospital, Bonn, Germany.
| | - Birgit Stoffel-Wagner
- Institute of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany.
| | - Mark Coburn
- Department of Anesthesiology, RWTH Aachen University, Aachen, Germany.
| | - Hans Clusmann
- Department of Neurosurgery, RWTH Aachen University, Pauwelsstr. 30, D-52074, Aachen, Germany.
| |
Collapse
|
41
|
Cao BB, Huang Y, Jiang YY, Qiu YH, Peng YP. Cerebellar fastigial nuclear glutamatergic neurons regulate immune function via hypothalamic and sympathetic pathways. J Neuroimmune Pharmacol 2015; 10:162-78. [PMID: 25649846 DOI: 10.1007/s11481-014-9572-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 11/18/2014] [Indexed: 10/24/2022]
Abstract
We previously have shown that cerebellar fastigial nucleus (FN) modulates immune function, but pathways or mechanisms underlying this immunomodulation require clarification. Herein, an anterograde and retrograde tracing of nerve tracts between the cerebellar FN and hypothalamus/thalamus was performed in rats. After demonstrating a direct cerebellar FN-hypothalamic/thalamic glutamatergic projection, 6-diazo-5-oxo-L-norleucine (DON), an inhibitor of glutaminase that catalyzes glutamate synthesis, was injected bilaterally in the cerebellar FN and simultaneously, D,L-threo-β-hydroxyaspartic acid (THA), an inhibitor of glutamate transporters on cell membrane, was bilaterally injected in the lateral hypothalamic area (LHA) or the ventrolateral (VL) thalamic nucleus. DON treatment in the FN alone decreased number of glutamatergic neurons that projected axons to the LHA and also diminished glutamate content in both the hypothalamus and the thalamus. These effects of DON were reduced by combined treatment with THA in the LHA or in the VL. Importantly, DON treatment in the FN alone attenuated percentage and cytotoxicity of natural killer (NK) cells and also lowered percentage and cytokine production of T lymphocytes. These DON-caused immune effects were reduced or abolished by combined treatment with THA in the LHA, but not in the VL. Simultaneously, DON treatment elevated level of norepinephrine (NE) in the spleen and mesenteric lymphoid nodes, and THA treatment in the LHA, rather than in the VL, antagonized the DON-caused NE elevation. These findings suggest that glutamatergic neurons in the cerebellar FN regulate innate and adaptive immune functions and the immunomodulation is conveyed by FN-hypothalamic glutamatergic projections and sympathetic nerves that innervate lymphoid tissues.
Collapse
Affiliation(s)
- Bei-Bei Cao
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | | | | | | | | |
Collapse
|
42
|
The antidepressant bupropion exerts alleviating properties in an ovariectomized osteoporotic rat model. Acta Pharmacol Sin 2015; 36:209-20. [PMID: 25544359 DOI: 10.1038/aps.2014.111] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 08/20/2014] [Indexed: 02/06/2023] Open
Abstract
AIM Depression is a risk factor for impaired bone mass and micro-architecture, but several antidepressants were found to increase the incidence of osteoporotic fractures. In the present study we used ovariectomized (OVX) rats as a model of osteoporosis to investigate the effects of the antidepressant bupropion on the femoral bones. METHODS OVX animals were treated with bupropion (30, 60 mg·kg(-1)·d(-1)) for six weeks. Bone turnover biomarkers (urinary DPD/Cr ratio, serum BALP, OC, TRAcP 5b, CTX and sRANKL levels) and inflammatory cytokines (TNF-α, IL-1β and IL-6) were determined using ELISA. Inductively coupled plasma mass spectroscopy (ICP-MS) was used to determine the femoral bone mineral concentrations. The cortical and trabecular morphometric parameters of femoral bones were determined using micro-CT scan and histopathology. RESULTS In OVX rats, the levels of bone turnover biomarkers and inflammatory cytokines were significantly elevated and femoral bone Ca(2+) and PO4(3-) concentrations were significantly reduced. Moreover, cortical and trabecular morphometric parameters and histopathology of femoral bones were severely altered by ovariectomy. Bupropion dose-dependently inhibited the increases in bone turnover biomarkers and inflammatory cytokines. OVX rats treated with the high dose of bupropion showed normal mineral concentrations in femoral bones. The altered morphometric parameters and histopathology of femoral bones were markedly attenuated by the treatment. CONCLUSION Bupropion exerts osteo-protective action in OVX rats through suppressing osteoclastogenesis-inducing factors and inflammation, which stabilize the osteoclasts and decrease bone matrix degradation or resorption.
Collapse
|
43
|
Marques AH, Bjørke-Monsen AL, Teixeira AL, Silverman MN. Maternal stress, nutrition and physical activity: Impact on immune function, CNS development and psychopathology. Brain Res 2014; 1617:28-46. [PMID: 25451133 DOI: 10.1016/j.brainres.2014.10.051] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 10/20/2014] [Accepted: 10/25/2014] [Indexed: 12/14/2022]
Abstract
Evidence suggests that maternal and fetal immune dysfunction may impact fetal brain development and could play a role in neurodevelopmental disorders, although the definitive pathophysiological mechanisms are still not completely understood. Stress, malnutrition and physical inactivity are three maternal behavioral lifestyle factors that can influence immune and central nervous system (CNS) functions in both the mother and fetus, and may therefore, increase risk for neurodevelopmental/psychiatric disorders. First, we will briefly review some aspects of maternal-fetal immune system interactions and development of immune tolerance. Second, we will discuss the bidirectional communication between the immune system and CNS and the pathways by which immune dysfunction could contribute to neurodevelopmental disorders. Third, we will discuss the effects of prenatal stress and malnutrition (over and undernutrition) on perinatal programming of the CNS and immune system, and how this might influence neurodevelopment. Finally, we will discuss the beneficial impact of physical fitness during pregnancy on the maternal-fetal unit and infant and how regular physical activity and exercise can be an effective buffer against stress- and inflammatory-related disorders. Although regular physical activity has been shown to promote neuroplasticity and an anti-inflammatory state in the adult, there is a paucity of studies evaluating its impact on CNS and immune function during pregnancy. Implementing stress reduction, proper nutrition and ample physical activity during pregnancy and the childbearing period may be an efficient strategy to counteract the impact of maternal stress and malnutrition/obesity on the developing fetus. Such behavioral interventions could have an impact on early development of the CNS and immune system and contribute to the prevention of neurodevelopmental and psychiatric disorders. Further research is needed to elucidate this relationship and the underlying mechanisms of protection. This article is part of a Special Issue entitled SI: Neuroimmunology in Health And Disease.
Collapse
Affiliation(s)
- Andrea Horvath Marques
- Obsessive--Compulsive Spectrum Disorders Program, Department & Institute of Psychiatry, University of São Paulo, Medical School, São Paulo, Brazil.
| | | | - Antônio L Teixeira
- School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marni N Silverman
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
44
|
Sudheimer KD, O'Hara R, Spiegel D, Powers B, Kraemer HC, Neri E, Weiner M, Hardan A, Hallmayer J, Dhabhar FS. Cortisol, cytokines, and hippocampal volume interactions in the elderly. Front Aging Neurosci 2014; 6:153. [PMID: 25071562 PMCID: PMC4079951 DOI: 10.3389/fnagi.2014.00153] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 06/17/2014] [Indexed: 01/01/2023] Open
Abstract
Separate bodies of literature report that elevated pro-inflammatory cytokines and cortisol negatively affect hippocampal structure and cognitive functioning, particularly in older adults. Although interactions between cytokines and cortisol occur through a variety of known mechanisms, few studies consider how their interactions affect brain structure. In this preliminary study, we assess the impact of interactions between circulating levels of IL-1Beta, IL-6, IL-8, IL-10, IL-12, TNF-alpha, and waking cortisol on hippocampal volume. Twenty-eight community-dwelling older adults underwent blood draws for quantification of circulating cytokines and saliva collections to quantify the cortisol awakening response. Hippocampal volume measurements were made using structural magnetic resonance imaging. Elevated levels of waking cortisol in conjunction with higher concentrations of IL-6 and TNF-alpha were associated with smaller hippocampal volumes. In addition, independent of cortisol, higher levels of IL-1beta and TNF-alpha were also associated with smaller hippocampal volumes. These data provide preliminary evidence that higher cortisol, in conjunction with higher IL-6 and TNF-alpha, are associated with smaller hippocampal volume in older adults. We suggest that the dynamic balance between the hypothalamic-pituitary adrenal axis and inflammation processes may explain hippocampal volume reductions in older adults better than either set of measures do in isolation.
Collapse
Affiliation(s)
- Keith D Sudheimer
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford University Stanford, CA, USA
| | - Ruth O'Hara
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford University Stanford, CA, USA
| | - David Spiegel
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford University Stanford, CA, USA
| | - Bevin Powers
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford University Stanford, CA, USA
| | - Helena C Kraemer
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford University Stanford, CA, USA
| | - Eric Neri
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford University Stanford, CA, USA
| | - Michael Weiner
- Department of Radiology, University of California San Francisco, CA, USA ; Department of Veterans Affairs Medical Center, Center for Imaging of Neurodegenerative Diseases San Francisco, CA, USA
| | - Antonio Hardan
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford University Stanford, CA, USA
| | - Joachim Hallmayer
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford University Stanford, CA, USA
| | - Firdaus S Dhabhar
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford University Stanford, CA, USA ; Institute for Immunity, Transplantation, and Infection, Stanford University Stanford, CA, USA
| |
Collapse
|
45
|
Ciriaco M, Ventrice P, Russo G, Scicchitano M, Mazzitello G, Scicchitano F, Russo E. Corticosteroid-related central nervous system side effects. J Pharmacol Pharmacother 2013; 4:S94-8. [PMID: 24347992 PMCID: PMC3853679 DOI: 10.4103/0976-500x.120975] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Corticosteroids have been used since the 50s as anti-inflammatory and immunosuppressive drugs for the treatment of several pathologies such as asthma, allergy, rheumatoid arthritis, and dermatological disorders. Corticosteroids have three principal mechanisms of action: 1) inhibit the synthesis of inflammatory proteins blocking NF-kB, 2) induce the expression of anti-inflammatory proteins by IkB and MAPK phosphatase I, and 3) inhibit 5-lipoxygenase and cyclooxygenase-2. The efficacy of glucocorticoids in alleviating inflammatory disorders results from the pleiotropic effects of the glucocorticoid receptors on multiple signaling pathways. However, they have adverse effects: Growth retardation in children, immunosuppression, hypertension, hyperglycemia, inhibition of wound repair, osteoporosis, metabolic disturbances, glaucoma, and cataracts. Less is known about psychiatric or side effects on central nervous system, as catatonia, decreased concentration, agitation, insomnia, and abnormal behaviors, which are also often underestimated in clinical practice. The aim of this review is to highlight the correlation between the administration of corticosteroids and CNS adverse effects, giving a useful guide for prescribers including a more careful assessment of risk factors and encourage the use of safer doses of this class of drugs.
Collapse
Affiliation(s)
- Miriam Ciriaco
- Department of Science of Health, School of Medicine, University of Catanzaro and Pharmacovigilance's Centre Calabria Region, University Hospital Mater Domini, Italy
| | - Pasquale Ventrice
- Department of Science of Health, School of Medicine, University of Catanzaro and Pharmacovigilance's Centre Calabria Region, University Hospital Mater Domini, Italy
| | - Gaetano Russo
- Geriatry Unit, General Hospital Pugliese-Ciaccio, Catanzaro, Italy
| | | | | | - Francesca Scicchitano
- Department of Science of Health, School of Medicine, University of Catanzaro and Pharmacovigilance's Centre Calabria Region, University Hospital Mater Domini, Italy
| | - Emilio Russo
- Department of Science of Health, School of Medicine, University of Catanzaro and Pharmacovigilance's Centre Calabria Region, University Hospital Mater Domini, Italy
| |
Collapse
|
46
|
Maldonado JR. Neuropathogenesis of delirium: review of current etiologic theories and common pathways. Am J Geriatr Psychiatry 2013; 21:1190-222. [PMID: 24206937 DOI: 10.1016/j.jagp.2013.09.005] [Citation(s) in RCA: 416] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 09/10/2013] [Accepted: 09/13/2013] [Indexed: 12/20/2022]
Abstract
Delirium is a neurobehavioral syndrome caused by dysregulation of neuronal activity secondary to systemic disturbances. Over time, a number of theories have been proposed in an attempt to explain the processes leading to the development of delirium. Each proposed theory has focused on a specific mechanism or pathologic process (e.g., dopamine excess or acetylcholine deficiency theories), observational and experiential evidence (e.g., sleep deprivation, aging), or empirical data (e.g., specific pharmacologic agents' association with postoperative delirium, intraoperative hypoxia). This article represents a review of published literature and summarizes the top seven proposed theories and their interrelation. This review includes the "neuroinflammatory," "neuronal aging," "oxidative stress," "neurotransmitter deficiency," "neuroendocrine," "diurnal dysregulation," and "network disconnectivity" hypotheses. Most of these theories are complementary, rather than competing, with many areas of intersection and reciprocal influence. The literature suggests that many factors or mechanisms included in these theories lead to a final common outcome associated with an alteration in neurotransmitter synthesis, function, and/or availability that mediates the complex behavioral and cognitive changes observed in delirium. In general, the most commonly described neurotransmitter changes associated with delirium include deficiencies in acetylcholine and/or melatonin availability; excess in dopamine, norepinephrine, and/or glutamate release; and variable alterations (e.g., either a decreased or increased activity, depending on delirium presentation and cause) in serotonin, histamine, and/or γ-aminobutyric acid. In the end, it is unlikely that any one of these theories is fully capable of explaining the etiology or phenomenologic manifestations of delirium but rather that two or more of these, if not all, act together to lead to the biochemical derangement and, ultimately, to the complex cognitive and behavioral changes characteristic of delirium.
Collapse
Affiliation(s)
- José R Maldonado
- Departments of Psychiatry, Internal Medicine & Surgery and the Psychosomatic Medicine Service, Stanford University School of Medicine, and Board of Directors, American Delirium Society, Stanford, CA.
| |
Collapse
|
47
|
The influence of perceived stress on the onset of arthritis in women: findings from the Australian Longitudinal Study on women's health. Ann Behav Med 2013; 46:9-18. [PMID: 23436274 DOI: 10.1007/s12160-013-9478-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Psychosocial factors are considered as risk factors for some chronic diseases. A paucity of research exists surrounding the role of perceived stress in arthritis onset. PURPOSE Perceived stress as a risk factor for arthritis development was explored in an ageing cohort of Australian women. METHODS This study focused on 12,202 women from the 1946-1951 cohort who completed the Australian Longitudinal Study on Women's Health surveys in 2001, 2004 and 2007. Longitudinal associations were modelled, with and without a time lag. RESULTS Findings from the multivariate time lag modelling, excluding women with persistent joint pain, revealed that perceived stress predicted the onset of arthritis, with women experiencing minimal and moderate/high stress levels having a 1.7 and 2.4 times greater odds of developing arthritis 3 years later, respectively (p's < 0.001). CONCLUSION Chronically perceiving life as stressful is detrimental to future health. The findings provide support for perceived stress to be considered alongside other modifiable risk factors.
Collapse
|
48
|
Marques AH, O'Connor TG, Roth C, Susser E, Bjørke-Monsen AL. The influence of maternal prenatal and early childhood nutrition and maternal prenatal stress on offspring immune system development and neurodevelopmental disorders. Front Neurosci 2013; 7:120. [PMID: 23914151 PMCID: PMC3728489 DOI: 10.3389/fnins.2013.00120] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 06/25/2013] [Indexed: 12/17/2022] Open
Abstract
The developing immune system and central nervous system in the fetus and child are extremely sensitive to both exogenous and endogenous signals. Early immune system programming, leading to changes that can persist over the life course, has been suggested, and other evidence suggests that immune dysregulation in the early developing brain may play a role in neurodevelopmental disorders such as autism spectrum disorder and schizophrenia. The timing of immune dysregulation with respect to gestational age and neurologic development of the fetus may shape the elicited response. This creates a possible sensitive window of programming or vulnerability. This review will explore the effects of maternal prenatal and infant nutritional status (from conception until early childhood) as well as maternal prenatal stress and anxiety on early programming of immune function, and how this might influence neurodevelopment. We will describe fetal immune system development and maternal-fetal immune interactions to provide a better context for understanding the influence of nutrition and stress on the immune system. Finally, we will discuss the implications for prevention of neurodevelopmental disorders, with a focus on nutrition. Although certain micronutrient supplements have shown to both reduce the risk of neurodevelopmental disorders and enhance fetal immune development, we do not know whether their impact on immune development contributes to the preventive effect on neurodevelopmental disorders. Future studies are needed to elucidate this relationship, which may contribute to a better understanding of preventative mechanisms. Integrating studies of neurodevelopmental disorders and prenatal exposures with the simultaneous evaluation of neural and immune systems will shed light on mechanisms that underlie individual vulnerability or resilience to neurodevelopmental disorders and ultimately contribute to the development of primary preventions and early interventions.
Collapse
Affiliation(s)
- Andrea Horvath Marques
- Department of Epidemiology, Mailman School of Public Health, Columbia University New York, NY, USA ; Institute of Human Nutrition, Columbia University New York, NY, USA
| | | | | | | | | |
Collapse
|
49
|
Malik P, Gasser RW, Moncayo RC, Kandler C, Koudouovoh-Tripp P, Giesinger J, Sperner-Unterweger B. Bone mineral density and bone metabolism in patients with major depressive disorder without somatic comorbidities. Prog Neuropsychopharmacol Biol Psychiatry 2013; 44:58-63. [PMID: 23380173 DOI: 10.1016/j.pnpbp.2013.01.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 01/25/2013] [Accepted: 01/27/2013] [Indexed: 10/27/2022]
Abstract
BACKGROUND Major depressive disorder (MDD) has been linked with accelerated bone loss leading to the development of low bone mineral density (BMD). Several mechanisms have been discussed as causative factors, e.g. lifestyle, selective serotonin reuptake inhibitor (SSRI) intake, or the influence of proinflammatory cytokines. METHODS In a cross-sectional study of in-patients with a current episode of MDD, without somatic comorbidities, we determined various parameters of bone metabolism, inflammatory parameters and parameters of depression. BMD was measured by dual x-ray absorptiometry. RESULTS Of 50 patients, only one had low BMD in any of the measure sites. Body mass index (BMI) correlated positively with Z-scores. 83.3% of the examined patients had elevated osteoprotegerin (OPG) levels. SSRI intake did not have an effect on BMD. BMD in the femoral neck was significantly lower in smokers. We also found a positive correlation between the level of physical activity and osteocalcin levels. CONCLUSIONS In our sample, young to middle-aged, somatically healthy, and acutely depressed patients with a history of MDD showed no reduction of BMD. This could be due to compensatory mechanisms, as suggested by elevated OPG levels. Physical activity and high BMI could also have served as protective factors. Still, as patients with MDD often suffer from comorbidities or take medication with a negative effect on bone, this population should be appreciated as a high-risk group for the development of osteopenia and osteoporosis.
Collapse
Affiliation(s)
- P Malik
- Department of Biological Psychiatry, Medical University, Anichstrasse 35, 6020 Innsbruck, Austria.
| | | | | | | | | | | | | |
Collapse
|
50
|
Solis ACO, Marques AH, Pannuti CM, Lotufo RFM, Lotufo-Neto F. Evaluation of periodontitis in hospital outpatients with major depressive disorder. J Periodontal Res 2013; 49:77-84. [PMID: 23586804 DOI: 10.1111/jre.12082] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVE Major depressive disorder (MDD) has been associated with alterations in the neuroendocrine system and immune function and may be associated with an increased susceptibility to cardiovascular disease, cancer and autoimmune/inflammatory disease. This study was conducted to investigate the relationship between periodontitis and MDD in a convenience sample of hospital outpatients. MATERIAL AND METHODS The sample consisted of 72 physically healthy subjects (36 outpatients with MDD and 36 age-matched controls [± 3 years]). Patients with bipolar disorder, eating disorders and psychotic disorders were excluded. Probing pocket depth and clinical attachment level were recorded at six sites per tooth. Depression was assessed by means of Structured Clinical Interview for DSM-IV. RESULTS Extent of clinical attachment level and probing pocket depth were not different between controls and subjects with depression for the following thresholds: ≥ 3 mm (Mann-Whitney, p = 0.927 and 0.756); ≥ 4 mm (Mann-Whitney, p = 0.656 and 0.373); ≥ 5 mm (Mann-Whitney, p = 0.518 and 0.870);, and ≥ 6 mm (Mann-Whitney, p = 0.994 and 0.879). Depression parameters were not associated with clinical attachment level ≥ 5 mm in this sample. Smoking was associated with loss of attachment ≥ 5 mm in the multivariable logistic regression model (odds ratio = 6.99, 95% confidence interval = 2.00-24.43). CONCLUSIONS In this sample, periodontal clinical parameters were not different between patients with MDD and control subjects. There was no association between depression and periodontitis.
Collapse
Affiliation(s)
- A C O Solis
- Department of Stomatology, Discipline of Periodontics, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | | | | | | | | |
Collapse
|