1
|
Fiorin FDS, Godinho DB, Dos Santos EB, Aguiar AS, Schuch FB, de Mello MT, Radak Z, Fighera MR, Royes LFF. Relationship among depression, fatigue, and sleep after traumatic brain injury: The role of physical exercise as a non-pharmacological therapy. Exp Neurol 2025; 386:115156. [PMID: 39864790 DOI: 10.1016/j.expneurol.2025.115156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/15/2025] [Accepted: 01/21/2025] [Indexed: 01/28/2025]
Abstract
Traumatic brain injury (TBI) is a burdensome condition frequently associated with an increased risk of psychiatric disorders. Although the exact molecular signaling pathways have not yet been fully defined, the compromised integrity of functional brain networks in regions such as the prefrontal cortex and anterior cingulate cortex has been linked to persistent symptoms, including depression, fatigue, and sleep disorders. Understanding how TBI affects neural physiology enables the development of effective interventions. One such strategy may be physical exercise, which promotes neural repair and behavioral rehabilitation after TBI. However, there are caveats to consider when interpreting the effects of physical exercise on TBI-induced mental health issues. This review will highlight the main findings from the literature investigating how different physical exercise protocols affect the progression of TBI-induced depression, fatigue, and sleep disturbances. Furthermore, we aim to explore potential neurobiological pathways that explain how physical exercise influences depression, fatigue, and sleep following TBI.
Collapse
Affiliation(s)
- Fernando da Silva Fiorin
- Exercise Biochemistry Laboratory, Center of Physical Education and Sports, Federal University of Santa Maria, Santa Maria, Brazil
| | - Douglas Buchmann Godinho
- Exercise Biochemistry Laboratory, Center of Physical Education and Sports, Federal University of Santa Maria, Santa Maria, Brazil
| | | | - Aderbal S Aguiar
- Biology of Exercise Laboratory, Department of Health Sciences, Federal University of Santa Catarina, Araranguá, Brazil
| | - Felipe Barreto Schuch
- Department of Sports Methods and Techniques, Federal University of Santa Maria, Santa Maria, Brazil; Faculty of Health Sciences, Universidad Autónoma de Chile, Providencia, Chile; Institute of Psychiatry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marco Túlio de Mello
- Sports Training Centre, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Zsolt Radak
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Michele Rechia Fighera
- Exercise Biochemistry Laboratory, Center of Physical Education and Sports, Federal University of Santa Maria, Santa Maria, Brazil
| | - Luiz Fernando Freire Royes
- Exercise Biochemistry Laboratory, Center of Physical Education and Sports, Federal University of Santa Maria, Santa Maria, Brazil; Department of Sports Methods and Techniques, Federal University of Santa Maria, Santa Maria, Brazil.
| |
Collapse
|
2
|
Ng ASC, Tai ES, Chee MWL. Effects of night-to-night variations in objectively measured sleep on blood glucose in healthy university students. Sleep 2025; 48:zsae224. [PMID: 39325824 PMCID: PMC11807882 DOI: 10.1093/sleep/zsae224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/29/2024] [Indexed: 09/28/2024] Open
Abstract
STUDY OBJECTIVES We examined associations between daily variations in objectively measured sleep and blood glucose in a sample of non-diabetic young adults to complement laboratory studies on how sleep affects blood glucose levels. METHODS One hundred and nineteen university students underwent sleep measurement using an Oura Ring 2 and continuous glucose monitoring (CGM) for up to 14 days. In 69 individuals who consumed a standardized diet across the study, multilevel models examined associations between sleep duration, timing, efficiency, and daily CGM profiles. Separately, in 58 individuals, multilevel models were used to evaluate postprandial glycaemic responses to a test meal challenge on 7 days. Participants also underwent oral glucose tolerance testing once after a night of ad libitum sleep, and again following a night of sleep restriction by 1-2 hours relative to that individual's habitual sleep duration. Between-condition glucose and insulin excursions, HOMA-IR and Matsuda index were compared. RESULTS Nocturnal sleep did not significantly influence following-day CGM profiles, postprandial glucose, or nocturnal mean glucose levels (all ps > .05). Longer sleep durations were associated with lower same-night glucose variability (all ps < .001). However, the range of variation in sugar levels was small and unlikely to be of functional significance. Considering naps in the analysis did not alter the findings. Sleep restriction by an average of 1.73 hours (SD = 0.97) did not significantly impact excursions in glucose or insulin or insulin sensitivity the following morning (all ps > .05). CONCLUSIONS Glucose handling in young, healthy adults may be more resilient to real-life fluctuations in sleep patterns than previously thought. CLINICAL TRIAL INFORMATION Monitoring Sleep and Glucose Among University Students https://clinicaltrials.gov/study/NCT04880629, ID: NCT04880629.
Collapse
Affiliation(s)
- Alyssa S C Ng
- Sleep and Cognition Laboratory, Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - E Shyong Tai
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Michael W L Chee
- Sleep and Cognition Laboratory, Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
3
|
Cacciatore S, Calvani R, Mancini J, Ciciarello F, Galluzzo V, Tosato M, Marzetti E, Landi F. Poor sleep quality is associated with probable sarcopenia in community-dwelling older adults: Results from the longevity check-up (lookup) 8. Exp Gerontol 2025; 200:112666. [PMID: 39709067 DOI: 10.1016/j.exger.2024.112666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/29/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Poor sleep quality may contribute to sarcopenia, but evidence remains sparse. This retrospective cross-sectional study investigated the association between subjective sleep quality and probable sarcopenia in a cohort of community-dwelling older adults enrolled in the Longevity Check-Up 8+ study. METHODS Participants were asked about their sleep quality over the past month, with four possible options ("very good", "quite good", "quite bad", very bad"). For the analysis, participants were grouped into good or bad sleep quality categories. Probable sarcopenia was operationalized according to handgrip strength values < 27 kg for men and < 16 kg for women. Logistic regression models were used to explore the relationship between sleep quality and probable sarcopenia. RESULTS 1971 participants were included in the analysis (mean age 73.4 ± 6.2 years, 50.0 % women). Bad sleep quality was reported by 28.3 % of participants and was more prevalent among women, physically inactive individuals, and those with dyslipidemia. Probable sarcopenia was more prevalent in participants with bad sleep quality (23.8 % vs. 18.7 %, p = 0.012). Logistic regression revealed that bad sleep quality was significantly associated with increased odds of probable sarcopenia in both unadjusted (odds ratio [OR] 1.36, 95 % confidence interval [CI] 1.07-1.72, p = 0.010) and fully adjusted models (OR 1.40, 95 % CI 1.08-1.81, p = 0.011). CONCLUSIONS Poor sleep quality is associated with increased likelihood of probable sarcopenia in older adults. This finding highlights the importance of addressing sleep quality in interventions aimed at preventing sarcopenia and promoting healthy aging.
Collapse
Affiliation(s)
- Stefano Cacciatore
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy; Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy.
| | - Riccardo Calvani
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy; Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Jasmine Mancini
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy
| | - Francesca Ciciarello
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Vincenzo Galluzzo
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Matteo Tosato
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Emanuele Marzetti
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy; Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy.
| | - Francesco Landi
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy; Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| |
Collapse
|
4
|
Zhang MY, Yin C, Ding L, Cheng L, Lv Q, Wang P, Zhang SB, You QY. Mechanism of Panax notoginseng saponins in improving cognitive impairment induced by chronic sleep deprivation based on the integrative analysis of serum metabolomics and network pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118988. [PMID: 39447711 DOI: 10.1016/j.jep.2024.118988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 10/26/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax notoginseng saponin (PNS) has a variety of biological activities, such as improvement of myocardial ischemia, improvement of learning and memory, hypolipidemia, and immunomodulation. However, its protective mechanism on the central nervous system (CNS) is not clear. AIM OF THE STUDY The present study initially evaluated the possible mechanism of PNS to improve cognitive dysfunction due to chronic sleep deprivation (CSD). MATERIALS AND METHODS In the present study, we used a modified multi-platform aquatic environment sleep deprivation method to induce a cognitively impaired rat model, and explored the mechanism of action of PNS by integrating serum metabolomics and network pharmacology, which was further verified by molecular docking and experiments. RESULTS The results showed that PNS significantly shortened the escape latency, increased the target quadrant time and the number of traversing platforms, and attenuated the inflammatory damage in the hippocampal Cornu Ammonis 1 (CA1) region in CSD rats. The non-targeted metabolomics results indicated that 35 biomarkers significantly altered following PNS therapy intervention, with metabolic pathways enriched for the effects of One carbon pool by folate, Riboflavin metabolism, Glycerophospholipid metabolism, Sphingolipid metabolism, Glycerolipid metabolism, Arachidonic acid metabolism, and Tryptophan metabolism. In addition, network pharmacology identified 234 potential targets for PNS intervention in CSD with cognitive impairment. Metabolite-response-enzyme-gene network was constructed by MetaScape and matched with the network pharmacology results to identify a total of five shared targets (LPL, GPAM, HSD11B1, HSD11B2, and SULT2A1) and two metabolic pathways (Sphingolipid metabolism and Steroid hormone biosynthesis). The results of molecular docking revealed that the five active ingredients had good binding ability with the five core targets. qPCR analysis confirmed the ability of PNS to modulate the above five targets. CONCLUSIONS The combination of metabolomics and network analysis provides a scientific basis for promoting the clinical application of PNS in cognitive impairment.
Collapse
Affiliation(s)
- Mei-Ya Zhang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, 430065, China; Engineering Research Center of TCM Protection Technology and New Product Development for the Elderly Brain Health, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Chao Yin
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, 430065, China; Engineering Research Center of TCM Protection Technology and New Product Development for the Elderly Brain Health, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Li Ding
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, 430065, China; Engineering Research Center of TCM Protection Technology and New Product Development for the Elderly Brain Health, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Li Cheng
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Qing Lv
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Ping Wang
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, 430065, China; Engineering Research Center of TCM Protection Technology and New Product Development for the Elderly Brain Health, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Shun-Bo Zhang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, 430065, China; Engineering Research Center of TCM Protection Technology and New Product Development for the Elderly Brain Health, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Qiu-Yun You
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, 430065, China; Engineering Research Center of TCM Protection Technology and New Product Development for the Elderly Brain Health, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| |
Collapse
|
5
|
Jia F, Shi SY, Fei SF, Zhou M, Li JJ. Association of Insomnia, Lipid Profile, and Lipid-Lowering Medications: A Narrative Review. Rev Cardiovasc Med 2025; 26:24978. [PMID: 39867194 PMCID: PMC11759977 DOI: 10.31083/rcm24978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/17/2024] [Accepted: 09/04/2024] [Indexed: 01/28/2025] Open
Abstract
Sleep is a fundamental phenomenon that helps maintain normal physiological processes. Conversely, sleep disorders, usually presented as insomnia, are a common public health problem that can lead to multiple pathophysiological changes in humans, including lipid metabolic abnormality. Interestingly, several previous studies have examined the potential relation of insomnia to metabolic syndrome and hyperlipidemia and found that insomnia was associated with elevated plasma cholesterol and triglyceride concentrations. This review summarizes evidence regarding the linkage between insomnia and lipid abnormalities. Moreover, the underlying physiologic mechanisms linking insomnia to lipid abnormalities are systemically discussed. Finally, issues with lipid-lowering drugs and the risk of insomnia are also presented. This knowledge can improve our understanding of the pathophysiological features of insomnia, which may help to prevent and treat insomnia-induced dyslipidemia clinically.
Collapse
Affiliation(s)
- Fang Jia
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, 213003 Changzhou, Jiangsu, China
| | - Shun-Yi Shi
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, 213003 Changzhou, Jiangsu, China
| | - Si-Fan Fei
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, 213003 Changzhou, Jiangsu, China
| | - Min Zhou
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, 213003 Changzhou, Jiangsu, China
| | - Jian-Jun Li
- Cardio-Metabolic Center, Fu Wai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, 10037 Beijing, China
| |
Collapse
|
6
|
Kargl CK, Gage CR, Forse JN, Koltun KJ, Bird MB, Lovalekar M, Martin BJ, Nindl BC. Inflammatory and Oxidant Responses to Arduous Military Training: Associations with Stress, Sleep, and Performance. Med Sci Sports Exerc 2024; 56:2315-2327. [PMID: 39160702 DOI: 10.1249/mss.0000000000003525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
BACKGROUND Arduous military training frequently consists of prolonged physical activity, sleep disturbance, and stress that increases musculoskeletal injury risk and performance decrements. Inflammatory and oxidative stress responses have been reported in response to arduous training, but with inconsistencies across markers and with underrepresentation of women. The purpose of the current report was to measure circulating inflammation and oxidative stress responses to military training and to correlate biomarkers with subjective measures of stress and sleep quality as well as military fitness test performance. METHODS Candidates undergoing the 10-wk Marine Corps Officer Candidate School (OCS; 101 men, 62 women) were monitored, with demographic and questionnaire data collected, and blood drawn before and after OCS. Blood was analyzed for six markers of inflammation and three markers of oxidative stress. Associations between biomarkers and questionnaire and fitness test performance were tested. RESULTS All measured inflammatory markers as well as plasma antioxidant capacity were elevated following OCS. The inflammatory increase was higher in women for several markers. Sleep disturbance and stress perception were associated with interleukin (IL)-6, IL-10, and C-reactive protein concentrations, suggesting that low sleep disturbance and stress perception were associated with low inflammatory load. In addition, those with the highest inflammation at each time point performed worse on fitness tests than those with low inflammation. CONCLUSIONS Following arduous military training, the circulating environment in a significant portion of officer candidates resembled chronic low-grade inflammation. This circulating inflammatory environment appeared worse with poor sleep, high stress perception, and poor fitness test performance, with utility observed for C-reactive protein, IL-6, and IL-10 as biomarkers of these responses. Because inflammation may contribute to musculoskeletal injury and performance decrements, minimizing chronic inflammation during military training should be explored.
Collapse
Affiliation(s)
- Christopher K Kargl
- Neuromuscular Research Laboratory/Warrior Human Performance Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Zhu S, Wang Y, Li Y, Li N, Zheng Y, Li Q, Guo H, Sun J, Zhai Q, Zhu Y. TMAO is involved in sleep deprivation-induced cognitive dysfunction through regulating astrocytic cholesterol metabolism via SREBP2. Front Mol Neurosci 2024; 17:1499591. [PMID: 39669439 PMCID: PMC11634841 DOI: 10.3389/fnmol.2024.1499591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/12/2024] [Indexed: 12/14/2024] Open
Abstract
Sleep deprivation (SD) contributes to cognitive impairment. Astrocytic cholesterol biosynthesis is crucial for brain cholesterol homeostasis and cognitive function. However, the underlying mechanism of astrocytic cholesterol metabolism in SD-induced cognitive impairment has not been fully explored. Trimethylamine N-oxide (TMAO), a product of liver flavin-containing monooxygenase-3 (FMO3), has been shown to be increased in the urine of sleep-deprived humans and implicated with peripheral cholesterol metabolism. Nevertheless, how TMAO affects brain cholesterol metabolism remains unclear. In our study, increased FMO3 and brain TMAO levels were observed in the SD mice, and elevated levels of TMAO were confirmed to lead to SD-induced cognitive dysfunction. In addition, we found that the expression of sterol regulatory element-binding protein 2 (SREBP2) is decreased in the brain of SD mice, resulting in the reduction in brain cholesterol content, which in turn causes synaptic damage. Moreover, we demonstrated that TMAO inhibits the expression of SREBP2. In contrast, FMO3 inhibitor 3,3'-diindolylmethane (DIM) alleviates SD-induced cognitive impairment by targeting the liver-brain axis. In conclusion, our study revealed that the TMAO pathway is involved in memory impairment in SD mice through deregulating astrocytic cholesterol metabolism.
Collapse
Affiliation(s)
- Shan Zhu
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yue Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yansong Li
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Na Li
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yige Zheng
- The Second Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Qiao Li
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Hongyan Guo
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jianyu Sun
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Qian Zhai
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yaomin Zhu
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
8
|
Goodman LD, Moulton MJ, Lin G, Bellen HJ. Does glial lipid dysregulation alter sleep in Alzheimer's and Parkinson's disease? Trends Mol Med 2024; 30:913-923. [PMID: 38755043 PMCID: PMC11466711 DOI: 10.1016/j.molmed.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/28/2024] [Accepted: 04/10/2024] [Indexed: 05/18/2024]
Abstract
In this opinion article, we discuss potential connections between sleep disturbances observed in Alzheimer's disease (AD) and Parkinson's disease (PD) and the dysregulation of lipids in the brain. Research using Drosophila has highlighted the role of glial-mediated lipid metabolism in sleep and diurnal rhythms. Relevant to AD, the formation of lipid droplets in glia, which occurs in response to elevated neuronal reactive oxygen species (ROS), is required for sleep. In disease models, this process is disrupted, arguing a connection to sleep dysregulation. Relevant to PD, the degradation of neuronally synthesized glucosylceramides by glia requires glucocerebrosidase (GBA, a PD-associated risk factor) and this regulates sleep. Loss of GBA in glia causes an accumulation of glucosylceramides and neurodegeneration. Overall, research primarily using Drosophila has highlighted how dysregulation of glial lipid metabolism may underlie sleep disturbances in neurodegenerative diseases.
Collapse
Affiliation(s)
- Lindsey D Goodman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Matthew J Moulton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Guang Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
9
|
Lv Z, Ji Y, Li C, Zhao Z, Jia W, Hou J, Yan H. Self-reported sleep duration and quality and cardiovascular diseases among middle-aged and older Chinese: A 7-year longitudinal cohort study. J Clin Hypertens (Greenwich) 2024; 26:1145-1154. [PMID: 39161134 PMCID: PMC11466370 DOI: 10.1111/jch.14883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024]
Abstract
Cardiovascular disease (CVD) is a leading cause of death worldwide, and several studies have attempted to identify its risk factors. This study aimed to investigate the association between sleep duration and sleep quality, and the 7-year incidence of CVD among middle-aged and older Chinese individuals. A total of 6682 participants aged 45-90 years from the China Health and Retirement Longitudinal Study database were included in this study. The authors estimated sleep duration and quality based on self-reported data of night sleep hours and disturbance symptoms, and examined the associations between them and the composite outcome of CVD using logistic regression models. A total of 1692 participants (25.32%) reported new CVD events during follow-up. Short sleep duration (< 6 h/night) was significantly associated with a higher risk of CVD in all three models (p < .05). However, this was not observed for long sleep duration (> 8 h/night). Additionally, participants with mild sleep disturbance in all three models, and severe sleep disturbance in Models 2 and 3 had a significantly higher risk of CVD (p < .05). After stratification by age and daytime napping, we still found a significant association between short sleep duration and CVD in individuals aged 45-59 years, and between sleep disturbance and CVD in non-nappers (p < .05). However, these associations were not significant in individuals aged ≥60 years or in nappers (p > .05). In conclusion, short sleep duration and sleep disturbance are both associated with an increased risk of CVD in middle-aged and older Chinese individuals.
Collapse
Affiliation(s)
- Zhe Lv
- Department of Epidemiology and Health StatisticsSchool of Public HealthXi'an Jiaotong University Health Science CentreXi'anChina
- Xi'an Children's HospitalXi'anShaanxiChina
| | - Yuqiang Ji
- Department of Cardiovascular MedicineXi'an No.1 HospitalXi'anShaanxiChina
| | - Chao Li
- Department of Epidemiology and Health StatisticsSchool of Public HealthXi'an Jiaotong University Health Science CentreXi'anChina
| | - Zhao Zhao
- Department of Cardiovascular MedicineXi'an No.1 HospitalXi'anShaanxiChina
| | - Wanru Jia
- Xi'an Children's HospitalXi'anShaanxiChina
| | | | - Hong Yan
- Department of Epidemiology and Health StatisticsSchool of Public HealthXi'an Jiaotong University Health Science CentreXi'anChina
| |
Collapse
|
10
|
Dong B, Xue R, Li J, Ling S, Xing W, Liu Z, Yuan X, Pan J, Du R, Shen X, Zhang J, Zhang Y, Li Y, Zhong G. Ckip-1 3'UTR alleviates prolonged sleep deprivation induced cardiac dysfunction by activating CaMKK2/AMPK/cTNI pathway. MOLECULAR BIOMEDICINE 2024; 5:23. [PMID: 38871861 PMCID: PMC11176284 DOI: 10.1186/s43556-024-00186-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/14/2024] [Indexed: 06/15/2024] Open
Abstract
Sleep deprivation (SD) has emerged as a critical concern impacting human health, leading to significant damage to the cardiovascular system. However, the underlying mechanisms are still unclear, and the development of targeted drugs is lagging. Here, we used mice to explore the effects of prolonged SD on cardiac structure and function. Echocardiography analysis revealed that cardiac function was significantly decreased in mice after five weeks of SD. Real-time quantitative PCR (RT-q-PCR) and Masson staining analysis showed that cardiac remodeling marker gene Anp (atrial natriuretic peptide) and fibrosis were increased, Elisa assay of serum showed that the levels of creatine kinase (CK), creatine kinase-MB (CK-MB), ANP, brain natriuretic peptide (BNP) and cardiac troponin T (cTn-T) were increased after SD, suggesting that cardiac remodeling and injury occurred. Transcript sequencing analysis indicated that genes involved in the regulation of calcium signaling pathway, dilated cardiomyopathy, and cardiac muscle contraction were changed after SD. Accordingly, Western blotting analysis demonstrated that the cardiac-contraction associated CaMKK2/AMPK/cTNI pathway was inhibited. Since our preliminary research has confirmed the vital role of Casein Kinase-2 -Interacting Protein-1 (CKIP-1, also known as PLEKHO1) in cardiac remodeling regulation. Here, we found the levels of the 3' untranslated region of Ckip-1 (Ckip-1 3'UTR) decreased, while the coding sequence of Ckip-1 (Ckip-1 CDS) remained unchanged after SD. Significantly, adenovirus-mediated overexpression of Ckip-1 3'UTR alleviated SD-induced cardiac dysfunction and remodeling by activating CaMKK2/AMPK/cTNI pathway, which proposed the therapeutic potential of Ckip-1 3'UTR in treating SD-induced heart disease.
Collapse
Affiliation(s)
- Beilei Dong
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
- National Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, 100094, China
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China
| | - Rui Xue
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China.
| | - Jianwei Li
- National Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Shukuan Ling
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325041, China
| | - Wenjuan Xing
- National Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Zizhong Liu
- National Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Xinxin Yuan
- National Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Junjie Pan
- National Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Ruikai Du
- National Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Xinming Shen
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China
| | - Jingwen Zhang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China
| | - Youzhi Zhang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China.
| | - Yingxian Li
- National Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, 100094, China.
| | - Guohui Zhong
- National Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, 100094, China.
| |
Collapse
|
11
|
Yan H, Li G, Zhang X, Zhang C, Li M, Qiu Y, Sun W, Dong Y, Li S, Li J. Targeted metabolomics-based understanding of the sleep disturbances in drug-naïve patients with schizophrenia. BMC Psychiatry 2024; 24:355. [PMID: 38741058 PMCID: PMC11089724 DOI: 10.1186/s12888-024-05805-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/30/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Sleep disturbances are a common occurrence in patients with schizophrenia, yet the underlying pathogenesis remain poorly understood. Here, we performed a targeted metabolomics-based approach to explore the potential biological mechanisms contributing to sleep disturbances in schizophrenia. METHODS Plasma samples from 59 drug-naïve patients with schizophrenia and 36 healthy controls were subjected to liquid chromatography-mass spectrometry (LC-MS) targeted metabolomics analysis, allowing for the quantification and profiling of 271 metabolites. Sleep quality and clinical symptoms were assessed using the Pittsburgh Sleep Quality Index (PSQI) and the Positive and Negative Symptom Scale (PANSS), respectively. Partial correlation analysis and orthogonal partial least squares discriminant analysis (OPLS-DA) model were used to identify metabolites specifically associated with sleep disturbances in drug-naïve schizophrenia. RESULTS 16 characteristic metabolites were observed significantly associated with sleep disturbances in drug-naïve patients with schizophrenia. Furthermore, the glycerophospholipid metabolism (Impact: 0.138, p<0.001), the butanoate metabolism (Impact: 0.032, p=0.008), and the sphingolipid metabolism (Impact: 0.270, p=0.104) were identified as metabolic pathways associated with sleep disturbances in drug-naïve patients with schizophrenia. CONCLUSIONS Our study identified 16 characteristic metabolites (mainly lipids) and 3 metabolic pathways related to sleep disturbances in drug-naïve schizophrenia. The detection of these distinct metabolites provide valuable insights into the underlying biological mechanisms associated with sleep disturbances in schizophrenia.
Collapse
Affiliation(s)
- Huiming Yan
- Laboratory of Biological Psychiatry, Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Rd., Hexi District, Tianjin, 300222, China
| | - Gang Li
- Laboratory of Biological Psychiatry, Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Rd., Hexi District, Tianjin, 300222, China
- Chifeng Anding Hospital, NO.18 Gongger Street, Hongshan District, Chifeng City, 024000, Inner Mongolia Autonomous Region, China
| | - Xue Zhang
- Laboratory of Biological Psychiatry, Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Rd., Hexi District, Tianjin, 300222, China
- Chifeng Anding Hospital, NO.18 Gongger Street, Hongshan District, Chifeng City, 024000, Inner Mongolia Autonomous Region, China
| | - Chuhao Zhang
- Laboratory of Biological Psychiatry, Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Rd., Hexi District, Tianjin, 300222, China
| | - Meijuan Li
- Laboratory of Biological Psychiatry, Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Rd., Hexi District, Tianjin, 300222, China
| | - Yuying Qiu
- Laboratory of Biological Psychiatry, Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Rd., Hexi District, Tianjin, 300222, China
| | - Wei Sun
- Laboratory of Biological Psychiatry, Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Rd., Hexi District, Tianjin, 300222, China
| | - Yeqing Dong
- Laboratory of Biological Psychiatry, Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Rd., Hexi District, Tianjin, 300222, China
| | - Shen Li
- Laboratory of Biological Psychiatry, Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Rd., Hexi District, Tianjin, 300222, China.
| | - Jie Li
- Laboratory of Biological Psychiatry, Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, 13 Liulin Rd., Hexi District, Tianjin, 300222, China.
| |
Collapse
|
12
|
Zhang N, Gao X, Li D, Xu L, Zhou G, Xu M, Peng L, Sun G, Pan F, Li Y, Ren R, Huang R, Yang Y, Wang Z. Sleep deprivation-induced anxiety-like behaviors are associated with alterations in the gut microbiota and metabolites. Microbiol Spectr 2024; 12:e0143723. [PMID: 38421192 PMCID: PMC10986621 DOI: 10.1128/spectrum.01437-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 02/03/2024] [Indexed: 03/02/2024] Open
Abstract
The present study aimed to characterize the gut microbiota and serum metabolome changes associated with sleep deprivation (SD) as well as to explore the potential benefits of multi-probiotic supplementation in alleviating SD-related mental health disorders. Rats were subjected to 7 days of SD, followed by 14 days of multi-probiotics or saline administration. Open-field tests were conducted at baseline, end of SD (day 7), and after 14 days of saline or multi-probiotic gavage (day 21). Metagenomic sequencing was conducted on fecal samples, and serum metabolites were measured by untargeted liquid chromatography tandem-mass spectrometry. At day 7, anxiety-like behaviors, including significant decreases in total movement distance (P = 0.0002) and staying time in the central zone (P = 0.021), were observed. In addition, increased levels of lipopolysaccharide (LPS; P = 0.028) and decreased levels of uridine (P = 0.018) and tryptophan (P = 0.01) were detected in rats after 7 days of SD. After SD, the richness of the gut bacterial community increased, and the levels of Akkermansia muciniphila, Muribaculum intestinale, and Bacteroides caecimuris decreased. The changes in the host metabolism and gut microbiota composition were strongly associated with the anxiety-like behaviors caused by SD. In addition, multi-probiotic supplementation for 14 days modestly improved the anxiety-like behaviors in SD rats but significantly reduced the serum level of LPS (P = 0.045). In conclusion, SD induces changes in the gut microbiota and serum metabolites, which may contribute to the development of chronic inflammatory responses and affect the gut-brain axis, causing anxiety-like behaviors. Probiotic supplementation significantly reduces serum LPS, which may alleviate the influence of chronic inflammation. IMPORTANCE The disturbance in the gut microbiome and serum metabolome induced by SD may be involved in anxiety-like behaviors. Probiotic supplementation decreases serum levels of LPS, but this reduction may be insufficient for alleviating SD-induced anxiety-like behaviors.
Collapse
Affiliation(s)
- Nana Zhang
- Medical School of Chinese PLA, Beijing, China
- Department of Gastroenterology and Hepatology, The First Centre of Chinese PLA General Hospital, Beijing, China
| | - Xuefeng Gao
- Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Integrative Microecology Clinical Center, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
- Shenzhen Clinical Research Center for Digestive Disease, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
- The Clinical Innovation & Research Center, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Donghao Li
- Department of Gastroenterology and Hepatology, The First Centre of Chinese PLA General Hospital, Beijing, China
| | - Lijuan Xu
- Department of Gastroenterology and Hepatology, The First Centre of Chinese PLA General Hospital, Beijing, China
| | - Guanzhou Zhou
- Department of Gastroenterology and Hepatology, The First Centre of Chinese PLA General Hospital, Beijing, China
| | - Mengqi Xu
- Medical School of Chinese PLA, Beijing, China
- Department of Gastroenterology and Hepatology, The First Centre of Chinese PLA General Hospital, Beijing, China
| | - Lihua Peng
- Medical School of Chinese PLA, Beijing, China
- Department of Gastroenterology and Hepatology, The First Centre of Chinese PLA General Hospital, Beijing, China
| | - Gang Sun
- Medical School of Chinese PLA, Beijing, China
- Department of Gastroenterology and Hepatology, The First Centre of Chinese PLA General Hospital, Beijing, China
| | - Fei Pan
- Medical School of Chinese PLA, Beijing, China
- Department of Gastroenterology and Hepatology, The First Centre of Chinese PLA General Hospital, Beijing, China
| | - Yan Li
- Medical School of Chinese PLA, Beijing, China
- Department of Gastroenterology and Hepatology, The First Centre of Chinese PLA General Hospital, Beijing, China
| | - Rongrong Ren
- Medical School of Chinese PLA, Beijing, China
- Department of Gastroenterology and Hepatology, The First Centre of Chinese PLA General Hospital, Beijing, China
| | - Ruolan Huang
- Department of Neurology, Shenzhen University Clinical Research Center for Neurological Diseases, Shenzhen University General Hospital, Shenzhen, China
| | - Yunsheng Yang
- Medical School of Chinese PLA, Beijing, China
- Department of Gastroenterology and Hepatology, The First Centre of Chinese PLA General Hospital, Beijing, China
| | - Zikai Wang
- Medical School of Chinese PLA, Beijing, China
- Department of Gastroenterology and Hepatology, The First Centre of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
13
|
Addo PNO, Mundagowa PT, Zhao L, Kanyangarara M, Brown MJ, Liu J. Associations between sleep duration, sleep disturbance and cardiovascular disease biomarkers among adults in the United States. BMC Public Health 2024; 24:947. [PMID: 38566084 PMCID: PMC10985959 DOI: 10.1186/s12889-024-18381-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Sleep problems are associated with abnormal cardiovascular biomarkers and an increased risk of cardiovascular diseases (CVDs). However, studies investigating associations between sleep problems and CVD biomarkers have reported conflicting findings. This study examined the associations between sleep problems and CVD biomarkers in the United States. METHODS Data were from the National Health and Nutrition Examination Survey (NHANES) (2007-2018) and analyses were restricted to adults ≥ 20 years (n = 23,749). CVD biomarkers [C-reactive Protein (CRP), low-density lipoproteins, high-density lipoproteins (HDL), triglycerides, insulin, glycosylated hemoglobin (HbA1c), and fasting blood glucose] were categorized as abnormal or normal using standardized cut-off points. Sleep problems were assessed by sleep duration (short [≤ 6 h], long [≥ 9 h], and recommended [> 6 to < 9 h) and self-reported sleep disturbance (yes, no). Multivariable logistic regression models explored the associations between sleep duration, sleep disturbance, and CVD biomarkers adjusting for sociodemographic characteristics and lifestyle behaviors. RESULTS The mean sleep duration was 7.1 ± 1.5 h and 25.1% of participants reported sleep disturbances. Compared to participants with the recommended sleep duration, those with short sleep duration had higher odds of abnormal levels of HDL (adjusted odds ratio [aOR] = 1.20, 95% confidence interval [CI] = 1.05-1.39), CRP (aOR = 3.08, 95% CI = 1.18-8.05), HbA1c (aOR = 1.25, 95% CI = 1.05-1.49), and insulin (aOR = 1.24, 95% CI = 1.03-1.51). Long sleep duration was associated with increased odds of abnormal CRP (aOR = 6.12, 95% CI = 2.19-17.15), HbA1c (aOR = 1.54, 95% CI = 1.09-2.17), and blood glucose levels (aOR = 1.45, 95% CI = 1.07-1.95). Sleep disturbance predicted abnormal triglyceride (aOR = 1.18, 95% CI = 1.01-1.37) and blood glucose levels (aOR = 1.24, 95% CI = 1.04-1.49). CONCLUSION Short and long sleep durations were positively associated with abnormal CRP, HDL, HbA1c, blood glucose, and insulin levels, while sleep disturbance was associated with abnormal triglyceride and blood glucose levels. Since sleep is a modifiable factor, adopting healthy sleeping habits may create a balanced metabolism and reduce the risk of developing a CVD. Our study may provide insights into the relationship between sleep duration, sleep disturbance, and CVD risk.
Collapse
Affiliation(s)
- Prince Nii Ossah Addo
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 915 Greene Street, 29208, Columbia, South Carolina, USA.
| | - Paddington T Mundagowa
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 915 Greene Street, 29208, Columbia, South Carolina, USA
| | - Longgang Zhao
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 915 Greene Street, 29208, Columbia, South Carolina, USA
| | - Mufaro Kanyangarara
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 915 Greene Street, 29208, Columbia, South Carolina, USA
| | - Monique J Brown
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 915 Greene Street, 29208, Columbia, South Carolina, USA
- Arnold School of Public Health, South Carolina Smart State Center for Healthcare Quality, University of South Carolina, Columbia, South Carolina, USA
- Rural and Minority Health Research Center, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA
- Office for the Study on Aging, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA
| | - Jihong Liu
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 915 Greene Street, 29208, Columbia, South Carolina, USA
| |
Collapse
|
14
|
Gubin D. Chronotherapeutic Approaches. CHRONOBIOLOGY AND CHRONOMEDICINE 2024:536-577. [DOI: 10.1039/bk9781839167553-00536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
The chapter provides a comprehensive review of current approaches to personalized chronodiagnosis and chronotherapy. We discuss circadian clock drug targets that aim to affect cellular clock machinery, circadian mechanisms of pharmacokinetics/pharmacodynamics, and chronotherapeutic approaches aimed at increasing treatment efficacy and minimizing its side effects. We explore how chronotherapy can combat acquired and compensatory drug resistance. Non-pharmacological interventions for clock preservation and enhancement are also overviewed, including light treatment, melatonin, sleep scheduling, time-restricted feeding, physical activity, and exercise.
Collapse
Affiliation(s)
- Denis Gubin
- aTyumen State Medical University, Tyumen, Russia
- bTyumen Cardiology Research Center, Tomsk National Research Medical Center, Russian Academy of Science, Tomsk, Russia
| |
Collapse
|
15
|
Blodgett JM, Ahmadi MN, Atkin AJ, Chastin S, Chan HW, Suorsa K, Bakker EA, Hettiarcachchi P, Johansson PJ, Sherar LB, Rangul V, Pulsford RM, Mishra G, Eijsvogels TMH, Stenholm S, Hughes AD, Teixeira-Pinto AM, Ekelund U, Lee IM, Holtermann A, Koster A, Stamatakis E, Hamer M. Device-measured physical activity and cardiometabolic health: the Prospective Physical Activity, Sitting, and Sleep (ProPASS) consortium. Eur Heart J 2024; 45:458-471. [PMID: 37950859 PMCID: PMC10849343 DOI: 10.1093/eurheartj/ehad717] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/06/2023] [Accepted: 10/10/2023] [Indexed: 11/13/2023] Open
Abstract
BACKGROUND AND AIMS Physical inactivity, sedentary behaviour (SB), and inadequate sleep are key behavioural risk factors of cardiometabolic diseases. Each behaviour is mainly considered in isolation, despite clear behavioural and biological interdependencies. The aim of this study was to investigate associations of five-part movement compositions with adiposity and cardiometabolic biomarkers. METHODS Cross-sectional data from six studies (n = 15 253 participants; five countries) from the Prospective Physical Activity, Sitting and Sleep consortium were analysed. Device-measured time spent in sleep, SB, standing, light-intensity physical activity (LIPA), and moderate-vigorous physical activity (MVPA) made up the composition. Outcomes included body mass index (BMI), waist circumference, HDL cholesterol, total:HDL cholesterol ratio, triglycerides, and glycated haemoglobin (HbA1c). Compositional linear regression examined associations between compositions and outcomes, including modelling time reallocation between behaviours. RESULTS The average daily composition of the sample (age: 53.7 ± 9.7 years; 54.7% female) was 7.7 h sleeping, 10.4 h sedentary, 3.1 h standing, 1.5 h LIPA, and 1.3 h MVPA. A greater MVPA proportion and smaller SB proportion were associated with better outcomes. Reallocating time from SB, standing, LIPA, or sleep into MVPA resulted in better scores across all outcomes. For example, replacing 30 min of SB, sleep, standing, or LIPA with MVPA was associated with -0.63 (95% confidence interval -0.48, -0.79), -0.43 (-0.25, -0.59), -0.40 (-0.25, -0.56), and -0.15 (0.05, -0.34) kg/m2 lower BMI, respectively. Greater relative standing time was beneficial, whereas sleep had a detrimental association when replacing LIPA/MVPA and positive association when replacing SB. The minimal displacement of any behaviour into MVPA for improved cardiometabolic health ranged from 3.8 (HbA1c) to 12.7 (triglycerides) min/day. CONCLUSIONS Compositional data analyses revealed a distinct hierarchy of behaviours. Moderate-vigorous physical activity demonstrated the strongest, most time-efficient protective associations with cardiometabolic outcomes. Theoretical benefits from reallocating SB into sleep, standing, or LIPA required substantial changes in daily activity.
Collapse
Affiliation(s)
- Joanna M Blodgett
- Institute of Sport Exercise and Health, Division of Surgery and Interventional Sciences, University College London, London , UK
| | - Matthew N Ahmadi
- Mackenzie Wearables Research Hub, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
- School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Andrew J Atkin
- School of Health Sciences and Norwich Epidemiology Centre, University of East Anglia, Norwich, UK
| | - Sebastien Chastin
- School of Health and Life Science Glasgow Caledonian University, Glasgow, UK
- Department of Movement and Sport Sciences, Ghent University, Ghent, Belgium
| | - Hsiu-Wen Chan
- School of Public Health, The University of Queensland, Brisbane, Queensland, Australia
| | - Kristin Suorsa
- Department of Public Health, University of Turku and Turku University Hospital, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - Esmee A Bakker
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
- Department of Medical BioSciences, Exercise Physiology ResearchGroup, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Pasan Hettiarcachchi
- Occupational and Environmental Medicine, Department of Medical Sciences, Uppsala University, Sweden
| | - Peter J Johansson
- Occupational and Environmental Medicine, Department of Medical Sciences, Uppsala University, Sweden
- Occupational and Environmental Medicine, Uppsala University Hospital, Uppsala, Sweden
| | - Lauren B Sherar
- School of Sport, Exercise and Health Sciences, Loughborough University, UK
| | - Vegar Rangul
- HUNT Research Centre, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Norway
| | | | - Gita Mishra
- School of Public Health, The University of Queensland, Brisbane, Queensland, Australia
| | - Thijs M H Eijsvogels
- Department of Medical BioSciences, Exercise Physiology ResearchGroup, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sari Stenholm
- School of Public Health, The University of Queensland, Brisbane, Queensland, Australia
- Department of Public Health, University of Turku and Turku University Hospital, Turku, Finland
- Research Services, Turku University Hospital and University of Turku, Finland
| | - Alun D Hughes
- MRC Unit for Lifelong Health and Ageing, UCL Institute of Cardiovascular Science, UCL, UK
- UCL BHF Research Accelerator, University College London, London, UK
- University College London Hospitals NIHR Biomedical Research Centre, London, UK
| | | | - Ulf Ekelund
- Department of Sport Medicine, Norwegian School of Sport Sciences, Oslo, Norway
- Departmentof Chronic Diseases, Norwegian Public Health Institute, Oslo, Norway
| | - I-Min Lee
- Division of Preventive Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Andreas Holtermann
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Annemarie Koster
- Department of Social Medicine, CAPHRI Care and Public Health Research Institute, Maastricht University, Maastricht, The Netherlands
| | - Emmanuel Stamatakis
- Mackenzie Wearables Research Hub, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
- School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Mark Hamer
- Institute of Sport Exercise and Health, Division of Surgery and Interventional Sciences, University College London, London , UK
- University College London Hospitals NIHR Biomedical Research Centre, London, UK
| |
Collapse
|
16
|
Rogers EM, Banks NF, Jenkins NDM. The effects of sleep disruption on metabolism, hunger, and satiety, and the influence of psychosocial stress and exercise: A narrative review. Diabetes Metab Res Rev 2024; 40:e3667. [PMID: 37269143 DOI: 10.1002/dmrr.3667] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/27/2023] [Accepted: 05/18/2023] [Indexed: 06/04/2023]
Abstract
Sleep deficiency is a ubiquitous phenomenon among Americans. In fact, in the United States, ∼78% of teens and 35% of adults currently get less sleep than recommended for their age-group, and the quality of sleep appears to be getting worse for many. The consequences of sleep disruption manifest in a myriad of ways, including insulin resistance and disrupted nutrient metabolism, dysregulation of hunger and satiety, and potentially increased body weight and adiposity. Consequently, inadequate sleep is related to an increased risk of various cardiometabolic diseases, including obesity, diabetes, and heart disease. Exercise has the potential to be an effective therapeutic to counteract the deleterious effects of sleep disruption listed above, whereas chronic psychosocial stress may causally promote sleep disruption and cardiometabolic risk. Here, we provide a narrative review of the current evidence on the consequences of short sleep duration and poor sleep quality on substrate metabolism, circulating appetite hormones, hunger and satiety, and weight gain. Secondly, we provide a brief overview of chronic psychosocial stress and its impact on sleep and metabolic health. Finally, we summarise the current evidence regarding the ability of exercise to counteract the adverse metabolic health effects of sleep disruption. Throughout the review, we highlight areas where additional interrogation and future exploration are necessary.
Collapse
Affiliation(s)
- Emily M Rogers
- Integrative Laboratory of Applied Physiology and Lifestyle Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Nile F Banks
- Integrative Laboratory of Applied Physiology and Lifestyle Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Nathaniel D M Jenkins
- Integrative Laboratory of Applied Physiology and Lifestyle Medicine, The University of Iowa, Iowa City, Iowa, USA
- Abboud Cardiovascular Research Center, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
17
|
Si Q, Sun W, Liang B, Chen B, Meng J, Xie D, Feng L, Jiang P. Systematic Metabolic Profiling of Mice with Sleep-Deprivation. Adv Biol (Weinh) 2024; 8:e2300413. [PMID: 37880935 DOI: 10.1002/adbi.202300413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/05/2023] [Indexed: 10/27/2023]
Abstract
Adequate sleep is essential for the biological maintenance of physical energy. Lack of sleep can affect thinking, lead to emotional anxiety, reduce immunity, and interfere with endocrine and metabolic processes, leading to disease. Previous studies have focused on long-term sleep deprivation and the risk of cancer, heart disease, diabetes, and obesity. However, systematic metabolomics analyses of blood, heart, liver, spleen, kidney, brown adipose tissue, and fecal granules have not been performed. This study aims to systematically assess the metabolic changes in the target organs caused by sleep deprivation in vivo, to search for differential metabolites and the involved metabolic pathways, to further understand the impact of sleep deprivation on health, and to provide strong evidence for the need for early intervention.
Collapse
Affiliation(s)
- Qingying Si
- Department of Endocrinology, Tengzhou Central People's Hospital, Tengzhou, 277599, People's Republic of China
| | - Wenxue Sun
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, People's Republic of China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, People's Republic of China
| | - Benhui Liang
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, 410000, People's Republic of China
| | - Beibei Chen
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, People's Republic of China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, People's Republic of China
| | - Junjun Meng
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, People's Republic of China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, People's Republic of China
| | - Dadi Xie
- Department of Endocrinology, Tengzhou Central People's Hospital, Tengzhou, 277599, People's Republic of China
| | - Lei Feng
- Department of Neurosurgery, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, People's Republic of China
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, People's Republic of China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, People's Republic of China
| |
Collapse
|
18
|
Arocha Rodulfo JI, Aure Fariñez G, Carrera F. Sleep and cardiometabolic risk. Narrative revision. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ARTERIOSCLEROSIS 2024; 36:38-49. [PMID: 37696704 DOI: 10.1016/j.arteri.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/04/2023] [Accepted: 08/04/2023] [Indexed: 09/13/2023]
Abstract
OBJECTIVES Sleep disturbances, including disrupted sleep and short sleep duration, are highly prevalent and are prospectively associated with an increased risk for various chronic diseases, including cardiometabolic, neurodegenerative, and autoimmune diseases. MATERIAL AND METHODS This is a narrative review of the literature based on numerous articles published in peer-reviewed journals since the beginning of this century. RESULTS The relationship between sleep disorders and metabolic dysregulation has been clearly established, mainly in the setting of modern epidemic of cardiometabolic disease, a cluster of conditions include obesity, insulin resistance, arterial hypertension, and dyslipidaemia, all of them considered as main risk factor for atherosclerotic cardiovascular disease (ACVD) and its clinical expression such as ischemic ictus, myocardial infarction and type 2 diabetes. Clinically viable tools to measure sleep duration and quality are needed for routine screening and intervention. CONCLUSIONS In view of what has been exposed in this review, it is evident that the timing, amount, and quality of sleep are critical to reduce the burden of risk factors for several chronic disease, including ACVD and type 2 diabetes, and most relevant in young people. Future research studies should elucidate the effectiveness of multimodal interventions to counteract the risk of short sleep for optimal patient outcomes across the healthcare continuum, especially in young people.
Collapse
Affiliation(s)
| | | | - Fernando Carrera
- Fellowship en Diabetes y Metabolismo, Hospital Vargas de Caracas, Caracas, Venezuela
| |
Collapse
|
19
|
Russell KL, Rodman HR, Pak VM. Sleep insufficiency, circadian rhythms, and metabolomics: the connection between metabolic and sleep disorders. Sleep Breath 2023; 27:2139-2153. [PMID: 37147557 DOI: 10.1007/s11325-023-02828-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/06/2023] [Accepted: 04/05/2023] [Indexed: 05/07/2023]
Abstract
PURPOSE US adults who report experiencing insufficient sleep are more likely to suffer from metabolic disorders such as hyperlipidemia, diabetes, and obesity than those with sufficient sleep. Less is understood about the underlying molecular mechanisms connecting these phenomena. A systematic, qualitative review of metabolomics studies exploring metabolic changes in response to sleep insufficiency, sleep deprivation, or circadian disruption was conducted in accordance with PRISMA guidelines. METHODS An electronic literature review in the PubMed database was performed considering publications through May 2021 and screening and eligibility criteria were applied to articles retrieved. The following keywords were used: "metabolomics" and "sleep disorders" or "sleep deprivation" or "sleep disturbance" or "circadian rhythm." After screening and addition of studies included from reference lists of retrieved studies, 16 records were identified for review. RESULTS Consistent changes in metabolites were observed across studies between individuals experiencing sleep deprivation compared to non-sleep deprived controls. Significant increases in phosphatidylcholines, acylcarnitines, sphingolipids, and other lipids were consistent across studies. Increased levels of amino acids such as tryptophan and phenylalanine were also noted. However, studies were limited to small samples of young, healthy, mostly male participants conducted in short inpatient sessions, limiting generalizability. CONCLUSION Changes in lipid and amino acid metabolites accompanying sleep deprivation and/or circadian rhythms may indicate cellular membrane and protein breakdown underlying the connection between sleep disturbance, hyperlipidemia, and other metabolic disorders. Larger epidemiological studies examining changes in the human metabolome in response to chronic insufficient sleep would help elucidate this relationship.
Collapse
Affiliation(s)
| | | | - Victoria M Pak
- Emory Nell Hodgson School of Nursing, Atlanta, GA, USA.
- Emory Rollins School of Public Health, Atlanta, GA, USA.
| |
Collapse
|
20
|
Barragán R, Zuraikat FM, Cheng B, Scaccia SE, Cochran J, Aggarwal B, Jelic S, St‐Onge M. Paradoxical Effects of Prolonged Insufficient Sleep on Lipid Profile: A Pooled Analysis of 2 Randomized Trials. J Am Heart Assoc 2023; 12:e032078. [PMID: 37815115 PMCID: PMC10757551 DOI: 10.1161/jaha.123.032078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 08/15/2023] [Indexed: 10/11/2023]
Abstract
Background Insufficient sleep is associated with increased cardiovascular disease risk, but causality is unclear. We investigated the impact of prolonged mild sleep restriction (SR) on lipid and inflammatory profiles. Methods and Results Seventy-eight participants (56 women [12 postmenopausal]; age, 34.3±12.5 years; body mass index, 25.8±3.5 kg/m2) with habitual sleep duration 7 to 9 h/night (adequate sleep [AS]) underwent two 6-week conditions in a randomized crossover design: AS versus SR (AS-1.5 h/night). Total cholesterol, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol, triglycerides, and inflammatory markers (CRP [C-reactive protein], interleukin 6, and tumor necrosis factor-α) were assessed. Linear models tested effects of SR on outcomes in the full sample and by sex+menopausal status (premenopausal versus postmenopausal women+men). In the full sample, SR increased high-density lipoprotein cholesterol compared with AS (β=1.2±0.5 mg/dL; P=0.03). Sex+menopausal status influenced the effects of SR on change in total cholesterol (P-interaction=0.04), LDL-C (P-interaction=0.03), and interleukin 6 (P-interaction=0.07). Total cholesterol and LDL-C decreased in SR versus AS in premenopausal women (total cholesterol: β=-4.2±1.9 mg/dL; P=0.03; LDL-C: β=-6.3±2.0 mg/dL; P=0.002). Given paradoxical effects of SR on cholesterol concentrations, we explored associations between changes in inflammation and end point lipids under each condition. Increases in interleukin 6 and tumor necrosis factor-α during SR tended to relate to lower LDL-C in premenopausal women (interleukin 6: β=-5.3±2.6 mg/dL; P=0.051; tumor necrosis factor-α: β=-32.8±14.2 mg/dL; P=0.027). Conclusions Among healthy adults, prolonged insufficient sleep does not increase atherogenic lipids. However, increased inflammation in SR tends to predict lower LDL-C in premenopausal women, resembling the "lipid paradox" in which low cholesterol associates with increased cardiovascular disease risk in proinflammatory conditions. Registration URL: https://www.clinicaltrials.gov; Unique identifiers: NCT02835261, NCT02960776.
Collapse
Affiliation(s)
- Rocío Barragán
- Department of Preventive Medicine and Public HealthUniversity of ValenciaValenciaSpain
- Centro de Investigación Biomédica En Red Fisiopatología de la Obesidad y NutriciónInstituto de Salud Carlos IIIMadridSpain
- Department of Medicine, Center of Excellence for Sleep and Circadian ResearchColumbia University Irving Medical CenterNew YorkNY
| | - Faris M. Zuraikat
- Department of Medicine, Center of Excellence for Sleep and Circadian ResearchColumbia University Irving Medical CenterNew YorkNY
- Division of General Medicine, Department of MedicineColumbia University Irving Medical CenterNew YorkNY
- New York Nutrition Obesity Research CenterColumbia University Irving Medical CenterNew YorkNY
| | - Bin Cheng
- Department of Biostatistics, Mailman School of Public HealthColumbia University Irving Medical CenterNew YorkNY
| | - Samantha E. Scaccia
- Division of Cardiology, Department of MedicineColumbia University Irving Medical CenterNew YorkNY
| | - Justin Cochran
- Department of SurgeryColumbia University Irving Medical CenterNew YorkNY
| | - Brooke Aggarwal
- Department of Medicine, Center of Excellence for Sleep and Circadian ResearchColumbia University Irving Medical CenterNew YorkNY
- Division of Cardiology, Department of MedicineColumbia University Irving Medical CenterNew YorkNY
| | - Sanja Jelic
- Department of Medicine, Center of Excellence for Sleep and Circadian ResearchColumbia University Irving Medical CenterNew YorkNY
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of MedicineColumbia University Irving Medical CenterNew YorkNY
| | - Marie‐Pierre St‐Onge
- Department of Medicine, Center of Excellence for Sleep and Circadian ResearchColumbia University Irving Medical CenterNew YorkNY
- Division of General Medicine, Department of MedicineColumbia University Irving Medical CenterNew YorkNY
- New York Nutrition Obesity Research CenterColumbia University Irving Medical CenterNew YorkNY
| |
Collapse
|
21
|
Chernyshev OY. Sleep Deprivation and Its Consequences. Continuum (Minneap Minn) 2023; 29:1234-1252. [PMID: 37590831 DOI: 10.1212/con.0000000000001323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
OBJECTIVE This article reviews the clinical, cognitive, behavioral, and physiologic consequences of sleep deprivation in relation to general neurology practice. LATEST DEVELOPMENTS Despite being one of the most common sleep problems in modern society, the role of sleep deprivation is underrecognized and underestimated in clinical medicine and general neurology practice. The recognition, diagnosis, and management of sleep deprivation in neurologic practice have only recently received close attention. The consequences of sleep deprivation involve all aspects of general neurology practice, including individuals with neurologic disease, neurologists, communities, and health care systems. The identification and timely management of sleep deprivation symptoms may help to improve symptoms of underlying primary neurologic disorders. ESSENTIAL POINTS This article emphasizes complexities related to the identification and evaluation of sleep deprivation in general neurology practice and describes the consequences of sleep deprivation. By recognizing sleep deprivation in patients with neurologic conditions, the neurologist can provide comprehensive care and contribute to improved clinical and neurologic outcomes.
Collapse
|
22
|
Mariano V, Kanellopoulos AK, Aiello G, Lo AC, Legius E, Achsel T, Bagni C. SREBP modulates the NADP +/NADPH cycle to control night sleep in Drosophila. Nat Commun 2023; 14:763. [PMID: 36808152 PMCID: PMC9941135 DOI: 10.1038/s41467-022-35577-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 12/12/2022] [Indexed: 02/22/2023] Open
Abstract
Sleep behavior is conserved throughout evolution, and sleep disturbances are a frequent comorbidity of neuropsychiatric disorders. However, the molecular basis underlying sleep dysfunctions in neurological diseases remains elusive. Using a model for neurodevelopmental disorders (NDDs), the Drosophila Cytoplasmic FMR1 interacting protein haploinsufficiency (Cyfip85.1/+), we identify a mechanism modulating sleep homeostasis. We show that increased activity of the sterol regulatory element-binding protein (SREBP) in Cyfip85.1/+ flies induces an increase in the transcription of wakefulness-associated genes, such as the malic enzyme (Men), causing a disturbance in the daily NADP+/NADPH ratio oscillations and reducing sleep pressure at the night-time onset. Reduction in SREBP or Men activity in Cyfip85.1/+ flies enhances the NADP+/NADPH ratio and rescues the sleep deficits, indicating that SREBP and Men are causative for the sleep deficits in Cyfip heterozygous flies. This work suggests modulation of the SREBP metabolic axis as a new avenue worth exploring for its therapeutic potential in sleep disorders.
Collapse
Affiliation(s)
- Vittoria Mariano
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, 1005, Switzerland.,Department of Human Genetics, KU Leuven, Leuven, 3000, Belgium
| | | | - Giuseppe Aiello
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, 1005, Switzerland
| | - Adrian C Lo
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, 1005, Switzerland
| | - Eric Legius
- Department of Human Genetics, KU Leuven, Leuven, 3000, Belgium
| | - Tilmann Achsel
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, 1005, Switzerland
| | - Claudia Bagni
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, 1005, Switzerland. .,Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, 00133, Italy.
| |
Collapse
|
23
|
Taylor L, Von Lendenfeld F, Ashton A, Sanghani H, Di Pretoro S, Usselmann L, Veretennikova M, Dallmann R, McKeating JA, Vasudevan S, Jagannath A. Sleep and circadian rhythm disruption alters the lung transcriptome to predispose to viral infection. iScience 2023; 26:105877. [PMID: 36590897 PMCID: PMC9788990 DOI: 10.1016/j.isci.2022.105877] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 10/11/2022] [Accepted: 12/21/2022] [Indexed: 12/26/2022] Open
Abstract
Sleep and circadian rhythm disruption (SCRD), as encountered during shift work, increases the risk of respiratory viral infection including SARS-CoV-2. However, the mechanism(s) underpinning higher rates of respiratory viral infection following SCRD remain poorly characterized. To address this, we investigated the effects of acute sleep deprivation on the mouse lung transcriptome. Here we show that sleep deprivation profoundly alters the transcriptional landscape of the lung, causing the suppression of both innate and adaptive immune systems, disrupting the circadian clock, and activating genes implicated in SARS-CoV-2 replication, thereby generating a lung environment that could promote viral infection and associated disease pathogenesis. Our study provides a mechanistic explanation of how SCRD increases the risk of respiratory viral infections including SARS-CoV-2 and highlights possible therapeutic avenues for the prevention and treatment of respiratory viral infection.
Collapse
Affiliation(s)
- Lewis Taylor
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, New Biochemistry Building, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Felix Von Lendenfeld
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, New Biochemistry Building, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Anna Ashton
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, New Biochemistry Building, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Harshmeena Sanghani
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Simona Di Pretoro
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, New Biochemistry Building, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Laura Usselmann
- Division of Biomedical Sciences, Warwick Medical School, Interdisciplinary Biomedical Research Building, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK
| | - Maria Veretennikova
- Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, Department of Mathematics, Mathematical Sciences Building, University of Warwick, Coventry CV4 7AL, UK
| | - Robert Dallmann
- Division of Biomedical Sciences, Warwick Medical School, Interdisciplinary Biomedical Research Building, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK
| | - Jane A. McKeating
- Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford OX3 7BN, UK
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute (COI), University of Oxford, Old Road Campus, Oxford OX3 7BN, UK
| | - Sridhar Vasudevan
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Aarti Jagannath
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, New Biochemistry Building, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
24
|
Skogstad M, Goffeng E, Skare Ø, Zardin E. The Prolonged Effect of Shift Work and the Impact of Reducing the Number of Nightshifts on Arterial Stiffness-A 4-Year Follow-Up Study. J Cardiovasc Dev Dis 2023; 10:jcdd10020070. [PMID: 36826566 PMCID: PMC9961201 DOI: 10.3390/jcdd10020070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
AIM To assess changes in blood pressure (BP) and arterial stiffness among 84 rotating shift and 25 dayworkers (control subjects) at two industrial plants during a 4-year follow-up, and to assess changes in outcome variables among shift workers at the two plants after a reduction in the number of night shifts during the last year of follow-up in one of the plants. METHODS We collected demographic data using a questionnaire, examined systolic and diastolic blood pressure (sBP, dBP), central systolic and diastolic aorta pressure (cSP, cDP), augmentation pressure (AP), central pulse pressure (cPP), and pulse wave velocity (PWV). We registered sleep quality. The last 4-14 months of follow-up one plant implemented a 12-week shift plan reducing the total number of night shifts and consecutive night shifts from 16.8 to 14 and from 7.2 to 4. To assess differences in change of outcomes between study groups we applied linear mixed models. RESULTS The dayworkers were older, more hypertensive, reported less sleep disturbance, and smoked/snuffed less than the shift workers did. The adjusted annual increase in PWV was 0.34 m/s (95%CI, 0.22, 0.46) among shift workers and 0.09 m/s (95%CI, -0.05, 0.23) in dayworkers, yielding a significant difference of change of 0.25 m/s (95%CI, 0.06, 0.43). No significant differences were found between the two groups of shift workers in any cardiovascular disease (CVD) outcome during the last year of follow-up. CONCLUSIONS Shift work in industry is associated with arterial stiffness, reflecting an increased risk of future CVD. No significant changes in arterial stiffness were identified as a consequence of a small reduction in the number of night shifts and consecutive night shifts.
Collapse
|
25
|
Fritz J, Huang T, Depner CM, Zeleznik OA, Cespedes Feliciano EM, Li W, Stone KL, Manson JE, Clish C, Sofer T, Schernhammer E, Rexrode K, Redline S, Wright KP, Vetter C. Sleep duration, plasma metabolites, and obesity and diabetes: a metabolome-wide association study in US women. Sleep 2023; 46:zsac226. [PMID: 36130143 PMCID: PMC9832513 DOI: 10.1093/sleep/zsac226] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/08/2022] [Indexed: 01/16/2023] Open
Abstract
Short and long sleep duration are associated with adverse metabolic outcomes, such as obesity and diabetes. We evaluated cross-sectional differences in metabolite levels between women with self-reported habitual short (<7 h), medium (7-8 h), and long (≥9 h) sleep duration to delineate potential underlying biological mechanisms. In total, 210 metabolites were measured via liquid chromatography-mass spectrometry in 9207 women from the Nurses' Health Study (NHS; N = 5027), the NHSII (N = 2368), and the Women's Health Initiative (WHI; N = 2287). Twenty metabolites were consistently (i.e. praw < .05 in ≥2 cohorts) and/or strongly (pFDR < .05 in at least one cohort) associated with short sleep duration after multi-variable adjustment. Specifically, levels of two lysophosphatidylethanolamines, four lysophosphatidylcholines, hydroxyproline and phenylacetylglutamine were higher compared to medium sleep duration, while levels of one diacylglycerol and eleven triacylglycerols (TAGs; all with ≥3 double bonds) were lower. Moreover, enrichment analysis assessing associations of metabolites with short sleep based on biological categories demonstrated significantly increased acylcarnitine levels for short sleep. A metabolite score for short sleep duration based on 12 LASSO-regression selected metabolites was not significantly associated with prevalent and incident obesity and diabetes. Associations of single metabolites with long sleep duration were less robust. However, enrichment analysis demonstrated significant enrichment scores for four lipid classes, all of which (most markedly TAGs) were of opposite sign than the scores for short sleep. Habitual short sleep exhibits a signature on the human plasma metabolome which is different from medium and long sleep. However, we could not detect a direct link of this signature with obesity and diabetes risk.
Collapse
Affiliation(s)
- Josef Fritz
- Circadian and Sleep Epidemiology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
- Department of Medical Statistics, Informatics and Health Economics, Medical University of Innsbruck, Innsbruck, Austria
| | - Tianyi Huang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Christopher M Depner
- Department of Health and Kinesiology, University of Utah, Salt Lake City, UT, USA
| | - Oana A Zeleznik
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Wenjun Li
- Department of Public Health, School of Health Sciences, University of Massachusetts Lowell, Lowell, MA, USA
| | - Katie L Stone
- California Pacific Medical Center Research Institute, San Francisco, CA, USA
| | - JoAnn E Manson
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Clary Clish
- Metabolomics Platform, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Tamar Sofer
- Division of Sleep and Circadian Disorders, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
| | - Eva Schernhammer
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Center for Public Health, Medical University of Vienna, Vienna, Austria
| | - Kathryn Rexrode
- Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Division of Women’s Health, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Susan Redline
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Kenneth P Wright
- Sleep and Chronobiology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Céline Vetter
- Circadian and Sleep Epidemiology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
26
|
Baek Y, Jung K, Kim H, Lee S. Partial sleep restriction-induced changes in stress, quality of life, and lipid metabolism in relation to cold hypersensitivity: A before-and-after intervention study. Medicine (Baltimore) 2022; 101:e31933. [PMID: 36401418 PMCID: PMC9678581 DOI: 10.1097/md.0000000000031933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Sleep disturbances are associated with cold hypersensitivity (CH) and characterized by excessive cold sensation in specific body parts and cold thermal discomfort. This study investigated the effects of short-term sleep restriction followed by a recovery phase on subjective health status, inflammation, and lipid metabolism in different types of CH. A total of 118 healthy adults aged 35 to 44 years without sleep disturbances were enrolled. Participants underwent 4-hour sleep restrictions per day for 3 days at a hospital and then returned to their daily lives for 4 days of rest. CH was assessed using a structured questionnaire with eight characteristic symptoms. A questionnaire and blood tests were administered baseline, after sleep restriction, and follow-up to assess cortisol, lipid profiles, and self-reported stress and quality of life (QOL). Participants were divided into CH (44.1%) and non-CH (55.9%) groups. The CH group showed increased stress, impaired QOL, and decreased low-density lipoprotein-cholesterol (LDL-C) levels compared to the non-CH group after sleep restriction. The variance for QOL (effect size = 0.07), subjective stress (effect size = 0.053), and LDL-C (effect size = 0.029) among time points depended on the group. Short-term sleep restriction was associated with deterioration of subjective health and reduced lipid metabolism; such changes were more evident in the CH group. Our findings suggest the need to consider an individual's CH status to assess the clinical risk associated with insufficient sleep.
Collapse
Affiliation(s)
- Younghwa Baek
- KM Data Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Kyoungsik Jung
- KM Data Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Hoseok Kim
- KM Data Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Siwoo Lee
- KM Data Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
- *Correspondence: Siwoo Lee, KM Data Division, Korea Institute of Oriental Medicine, 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 34054, Republic of Korea (e-mail: )
| |
Collapse
|
27
|
Areshidze DA, Kozlova MA, Makartseva LA, Chernov IA, Sinelnikov MY, Kirillov YA. Influence of constant lightning on liver health: an experimental study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:83686-83697. [PMID: 35771326 DOI: 10.1007/s11356-022-21655-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Light pollution has become a serious problem in many urbanized areas of the world. The impact of prolonged exposure to light and consequent disruption of natural circadian rhythms has significant health implications. The current study was undertaken to evaluate the effect of prolonged exposure to light, simulating urban light pollution, on liver health. In order to evaluate the effect of prolonged exposure to light, we examined the morphofunctional state, immunohistochemical and micromorphometric parameters of rat liver in normal conditions and following prolonged lighting exposure. Our results show that nocturnal light disruption triggers a cell death in the liver within 3 weeks (necrosis and apoptosis of hepatocytes) and stimulates a change in normal cellular karyometric parameters. At the same time, intracellular regeneration takes place within the organ, which manifests through hepatocyte hypertrophy. Under the influence of constant illumination, the circadian rhythms (CRs) of the size of hepatocytes and their nuclei are restructured, and the rhythm of the nuclear-cytoplasmic ratio is destroyed. The destruction of the CR of expression of p53 and Ki-67 also occurs against the background of the rearrangement of the daily rhythmicity of Per2 and Bmal1. The revealed changes in the morphofunctional state of the liver under the influence of light pollution indicate that a violation of normal illumination regimes is a potent factor leading to significant structural changes in the liver.
Collapse
Affiliation(s)
- David A Areshidze
- A.P. Avtsyn Research Institute of Human Morphology, Moscow, Russian Federation
| | - Maria A Kozlova
- A.P. Avtsyn Research Institute of Human Morphology, Moscow, Russian Federation
| | | | - Igor A Chernov
- Tyumen State Medical University, Tyumen, Russian Federation
| | - Mikhail Y Sinelnikov
- A.P. Avtsyn Research Institute of Human Morphology, Moscow, Russian Federation.
- Sechenov University, Moscow, Russian Federation.
| | - Yuri A Kirillov
- A.P. Avtsyn Research Institute of Human Morphology, Moscow, Russian Federation
| |
Collapse
|
28
|
Wang W, Yin H, Sun G, Zhang J, Sun J, Mbabazi N, Zou L, Li B, Lin P, Pei Q, Wang X, Wang P, Ji X, Qu X, Yin D. The Role of Sleep Deprivation in Arrhythmias. CARDIOVASCULAR INNOVATIONS AND APPLICATIONS 2022. [DOI: 10.15212/cvia.2022.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Sleep is essential to the normal psychological and physiological activities of the human body. Increasing evidence indicates that sleep deprivation is associated with the occurrence, development, and poor treatment effects of various arrhythmias. Sleep deprivation affects not only the peripheral nervous system but also the central nervous system, which regulates the occurrence of arrhythmias. In addition, sleep deprivation is associated with apoptotic pathways, mitochondrial energy metabolism disorders, and immune system dysfunction. Although studies increasingly suggest that pathological sleep patterns are associated with various atrial and ventricular arrhythmias, further research is needed to identify specific mechanisms and recommend therapeutic interventions. This review summarizes the findings of sleep deprivation in animal experiments and clinical studies, current challenges, and future research directions in the field of arrhythmias.
Collapse
Affiliation(s)
- Wenlong Wang
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongpeng Yin
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ge Sun
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Junpei Zhang
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jingmei Sun
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Nadine Mbabazi
- Department of Cardiology, King Faisal Hospital, Kigali, Rwanda
| | - Lina Zou
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bin Li
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Pengqi Lin
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Quanwei Pei
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin Wang
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Penghe Wang
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuanrui Ji
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiufen Qu
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dechun Yin
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
29
|
Moore PT. Infra-low frequency neurofeedback and insomnia as a model of CNS dysregulation. Front Hum Neurosci 2022; 16:959491. [PMID: 36211128 PMCID: PMC9534730 DOI: 10.3389/fnhum.2022.959491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
This paper will review what is conventionally known of sleep homeostasis and focus on insomnia as a primary manifestation of brain dysregulation, whether as a solitary symptom or as part of a larger syndrome such as post-traumatic stress disorder, PTSD. It will discuss in brief behavioral/mindfulness treatments that have been used to treat neurologic diseases, as this is germane to the phenomenology of neurofeedback (NF). It will explore how neurofeedback may work at the subconscious level and cover the current clinical experience of the effectiveness of this technique in the treatment of insomnia. It will conclude with a case presentation.
Collapse
|
30
|
Lin J, Sun X, Dai X, Zhang S, Zhang X, Wang Q, Zheng Q, Huang M, He Y, Lin R. Integrated Proteomics and Metabolomics Analysis in Pregnant Rat Hippocampus After Circadian Rhythm Inversion. Front Physiol 2022; 13:941585. [PMID: 35936909 PMCID: PMC9355539 DOI: 10.3389/fphys.2022.941585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/07/2022] [Indexed: 11/15/2022] Open
Abstract
To investigate the changes in proteins, metabolites, and related mechanisms in the hypothalamus of pregnant rats after circadian rhythm inversion during the whole pregnancy cycle. A total of 12 Wistar female rats aged 7 weeks were randomly divided into control (six rats) and experimental (six rats) groups at the beginning of pregnancy. The control group followed a 12-h light and dark cycle (6 a.m. to 6 p.m. light, 6 p.m. to 6 a.m. dark the next day), and the experimental group followed a completely inverted circadian rhythm (6 p.m. to 6 a.m. light the next day, 6 a.m. to 6 p.m. dark). Postpartum data were collected until 7–24 h after delivery, and hypothalamus samples were collected in two groups for quantitative proteomic and metabolism analyses. The differential proteins and metabolites of the two groups were screened by univariate combined with multivariate statistical analyses, and the differential proteins and metabolites enriched pathways were annotated with relevant databases to analyze the potential mechanisms after circadian rhythm inversion. A comparison of postpartum data showed that circadian rhythm inversion can affect the number of offspring and the average weight of offspring in pregnant rats. Compared with the control group, the expression of 20 proteins and 37 metabolites was significantly changed in the experimental group. The integrated analysis between proteins and metabolites found that RGD1562758 and lysophosphatidylcholine acyltransferase 1 (LPCAT1) proteins were closely associated with carbon metabolism (choline, NAD+, L-glutamine, theobromine, D-fructose, and pyruvate) and glycerophospholipid metabolism (choline, NAD+, L-glutamine, phosphatidylcholine, theobromine, D-fructose, pyruvate, and arachidonate). Moreover, the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the differential metabolites enriched in adenosine triphosphate (ATP)–binding cassette (ABC) transporters. Our study suggested that circadian rhythm inversion in pregnant rats may affect the numbers, the average weight of offspring, and the expressions of proteins and metabolism in the hypothalamus, which may provide a comprehensive overview of the molecular profile of circadian rhythm inversion in pregnant groups.
Collapse
Affiliation(s)
- Jingjing Lin
- School of Nursing Fujian Medical University, Fuzhou City, China
| | - Xinyue Sun
- The First Affiliated Hospital of Fujian Medical University, Fuzhou City, China
| | - Xiaofeng Dai
- The First Affiliated Hospital of Fujian Medical University, Fuzhou City, China
| | | | - Xueling Zhang
- School of Nursing Fujian Medical University, Fuzhou City, China
- The First Affiliated Hospital of Fujian Medical University, Fuzhou City, China
| | - Qiaosong Wang
- School of Nursing Fujian Medical University, Fuzhou City, China
| | - Qirong Zheng
- School of Nursing Fujian Medical University, Fuzhou City, China
| | - Minfang Huang
- School of Nursing Fujian Medical University, Fuzhou City, China
- The First Affiliated Hospital of Fujian Medical University, Fuzhou City, China
| | - Yuanyuan He
- School of Nursing Fujian Medical University, Fuzhou City, China
| | - Rongjin Lin
- School of Nursing Fujian Medical University, Fuzhou City, China
- The First Affiliated Hospital of Fujian Medical University, Fuzhou City, China
- *Correspondence: Rongjin Lin,
| |
Collapse
|
31
|
Teo P, Henry BA, Moran LJ, Cowan S, Bennett C. The role of sleep in PCOS: what we know and what to consider in the future. Expert Rev Endocrinol Metab 2022; 17:305-318. [PMID: 35815469 DOI: 10.1080/17446651.2022.2082941] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 05/24/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Sleep disturbance and clinical sleep conditions disrupt endocrine signals, energy expenditure and nutritional intake. Women with polycystic ovary syndrome (PCOS) are at higher risk of sleep disturbances and clinical conditions. It is possible that sleep may contribute to the exacerbation of PCOS. This review aims to explore the relationship between sleep and chronic disease, particularly in women with PCOS. AREAS COVERED This review narratively explores what sleep is, how to measure sleep and the possible mechanisms that support the link between sleep in adipose tissue deposition, insulin resistance and the presentation of PCOS. EXPERT OPINION Research shows that disturbed sleep and clinical sleep conditions disrupt energy expenditure. This may increase adipose tissue deposition and exacerbate insulin resistance which are known to worsen the presentation of PCOS. Further, sleep disturbance in women with PCOS may ameliorate any positive lifestyle changes made after diagnosis. Cognitive behavioural therapy interventions for sleep are a successful strategy for the management of sleep disturbances in the general population. However, such interventions are yet to be trialled in women with PCOS. Given the proposed implications, interventions to improve sleep could provide additional support for women with PCOS to successfully implement lifestyle strategies and should be further investigated.
Collapse
Affiliation(s)
- Peiseah Teo
- Department of Physiology, Monash University, Melbourne, VIC, Australia
| | - Belinda A Henry
- Department of Physiology, Monash University, Melbourne, VIC, Australia
- Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Lisa J Moran
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | | | - Christie Bennett
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
32
|
Kozlova MA, Kirillov YA, Makartseva LA, Chernov I, Areshidze DA. Morphofunctional State and Circadian Rhythms of the Liver under the Influence of Chronic Alcohol Intoxication and Constant Lighting. Int J Mol Sci 2021; 22:ijms222313007. [PMID: 34884810 PMCID: PMC8657715 DOI: 10.3390/ijms222313007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 01/10/2023] Open
Abstract
A study of the influence of chronic alcohol intoxication, constant illumination and their combined effects on the morphofunctional state of the rat liver and the circadian rhythms (CR) of the studied parameters of the organism was carried out. It was found that both alcohol and constant illumination caused significant changes in the structure of the liver, as well as in the circadian rhythmicity of micromorphometric parameters of hepatocytes, ALT, and total and direct bilirubin rhythms; however, the combined effects of ethanol and constant illumination had the most significant effect on the studied parameters of the organism. These two factors caused disturbances in the circadian rhythms of the micromorphometric parameters of hepatocytes, disruption of the circadian rhythms of total protein, albumin, AST, ALT, and direct and total bilirubin, as well as disturbances in the expression and rhythmicity of the studied clock genes against a background of the development of an inflammatory process in the liver.
Collapse
Affiliation(s)
- Maria A. Kozlova
- Laboratory of Cell Pathology, A.P. Avtsyn Research Institute of Human Morphology, 117218 Moscow, Russia; (M.A.K.); (Y.A.K.); (L.A.M.)
| | - Yuri A. Kirillov
- Laboratory of Cell Pathology, A.P. Avtsyn Research Institute of Human Morphology, 117218 Moscow, Russia; (M.A.K.); (Y.A.K.); (L.A.M.)
| | - Lyudmila A. Makartseva
- Laboratory of Cell Pathology, A.P. Avtsyn Research Institute of Human Morphology, 117218 Moscow, Russia; (M.A.K.); (Y.A.K.); (L.A.M.)
| | - Igor Chernov
- Department of Pathological Anatomy, Tyumen State Medical University, 625023 Tyumen, Russia;
| | - David A. Areshidze
- Laboratory of Cell Pathology, A.P. Avtsyn Research Institute of Human Morphology, 117218 Moscow, Russia; (M.A.K.); (Y.A.K.); (L.A.M.)
- Experimental Tumor Chemotherapy Group, Center for Screening and Preclinical Testing, Institute of Problems of Chemical Physics of the Russian Academy of Science, 142432 Chernogolovka, Russia
- Correspondence: ; Tel.: +7-909-643-37-56
| |
Collapse
|
33
|
Pienaar PR, Roden LC, Boot CRL, van Mechelen W, Twisk JWR, Lambert EV, Rae DE. Association between self-reported sleep duration and cardiometabolic risk in corporate executives. Int Arch Occup Environ Health 2021; 94:1809-1821. [PMID: 34189625 DOI: 10.1007/s00420-021-01739-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/03/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE This cross-sectional study aimed to compare the association between self-reported sleep duration and cardiometabolic risk among men and women corporate executives and investigate potential lifestyle, work- and stress-related mediators thereof. METHODS Self-reported sleep duration and lifestyle, occupational, psychological and measured anthropometrical, blood pressure (BP) and blood marker variables were obtained from health risk assessment data of 3583 corporate executives. Sex-stratified regression analyses investigated the relationships between occupational and psychological variables with self-reported sleep duration, and sleep duration with individual cardiometabolic risk factors. Mediation analyses investigated the effects of work, psychological and lifestyle factors on the relationships between self-reported sleep duration and cardiometabolic risk factors, as well as a continuous cardiometabolic risk score calculated from the sum of sex-stratified z-standardized scores of negative fasting serum HDL, and positive plasma Glu, serum TG, body mass index (BMI), waist circumference, systolic and diastolic BP. RESULTS Longer work hours and work commute time, depression, anxiety and stress were associated with shorter sleep duration in both men and women (all p < 0.05). Shorter sleep duration was associated with higher BMI, larger waist circumference and greater cardiometabolic risk scores in both men and women (all p < 0.05), higher diastolic BP in men (p < 0.05) and lower HDL cholesterol in women (p < 0.05). Physical activity, working hours and stress significantly mediated the relationships between self-reported sleep duration and BMI, waist circumference, diastolic BP and cardiometabolic risk score in men only. CONCLUSION In these corporate executives, shorter self-reported sleep duration is associated with poorer psychological, occupational and cardiometabolic risk outcomes in both men and women. Given that physical activity, working hours and stress mediate this association among the men, the case for sleep health interventions in workplace health programmes is warranted.
Collapse
Affiliation(s)
- Paula R Pienaar
- Health Through Physical Activity Lifestyle and Sport Research Centre and Division of Exercise Science and Sports Medicine, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
- Amsterdam UMC, Department of Public and Occupational Health and Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands.
| | - Laura C Roden
- Health Through Physical Activity Lifestyle and Sport Research Centre and Division of Exercise Science and Sports Medicine, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- School of Life Sciences, Faculty of Health and Life Sciences, Coventry University, Coventry, CV1 2DS, UK
| | - Cécile R L Boot
- Amsterdam UMC, Department of Public and Occupational Health and Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
- Behavioural Science Institute (BSI), Radboud University, Nijmegen, The Netherlands
| | - Willem van Mechelen
- Health Through Physical Activity Lifestyle and Sport Research Centre and Division of Exercise Science and Sports Medicine, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Amsterdam UMC, Department of Public and Occupational Health and Amsterdam Public Health Research Institute, Vrije Universiteit Amsterdam, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
- Human Movement and Nutrition Sciences, Faculty of Health and Behavioural Sciences, University of Queensland, Brisbane, Australia
- School of Public Health, Physiotherapy and Population Sciences, University College Dublin, Dublin, Ireland
- Center of Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jos W R Twisk
- Department of Epidemiology and Biostatistics, Amsterdam Public Health Research Institute, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Estelle V Lambert
- Health Through Physical Activity Lifestyle and Sport Research Centre and Division of Exercise Science and Sports Medicine, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Dale E Rae
- Health Through Physical Activity Lifestyle and Sport Research Centre and Division of Exercise Science and Sports Medicine, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
34
|
Bjørkum AA, Carrasco Duran A, Frode B, Sinha Roy D, Rosendahl K, Birkeland E, Stuhr L. Human blood serum proteome changes after 6 hours of sleep deprivation at night. SLEEP SCIENCE AND PRACTICE 2021. [DOI: 10.1186/s41606-021-00066-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Abstract
Background
The aim of this study was to discover significantly changed proteins in human blood serum after loss of 6 h sleep at night. Furthermore, to reveal affected biological process- and molecular function categories that might be clinically relevant, by exploring systems biological databases.
Methods
Eight females were recruited by volunteer request. Peripheral venous whole blood was sampled at 04:00 am, after 6 h of sleep and after 6 h of sleep deprivation. We used within-subjects design (all subjects were their own control). Blood serum from each subject was depleted before protein digestion by trypsin and iTRAQ labeling. Labled peptides were analyzed by mass spectrometry (LTQ OritrapVelos Elite) connected to a LC system (Dionex Ultimate NCR-3000RS).
Results
We identified 725 proteins in human blood serum. 34 proteins were significantly differentially expressed after 6 h of sleep deprivation at night. Out of 34 proteins, 14 proteins were up-regulated, and 20 proteins were down-regulated. We emphasized the functionality of the 16 proteins commonly differentiated in all 8 subjects and the relation to pathological conditions. In addition, we discussed Histone H4 (H4) and protein S100-A6/Calcyclin (S10A6) that were upregulated more than 1.5-fold. Finally, we discussed affected biological process- and molecular function categories.
Conclusions
Overall, our study suggest that acute sleep deprivation, at least in females, affects several known biological processes- and molecular function categories and associates to proteins that also are changed under pathological conditions like impaired coagulation, oxidative stress, immune suppression, neurodegenerative related disorder, and cancer. Data are available via ProteomeXchange with identifier PXD021004.
Collapse
|
35
|
Ye H, Huang S, Song Y, Liu H, Zhao X, Zhao D, Mi F, Wang X, Zhang X, Du J, Zhu N, Zhang L, Zhao Y. Gene co-expression analysis identifies modules related to insufficient sleep in humans. Sleep Med 2021; 86:68-74. [PMID: 34464880 DOI: 10.1016/j.sleep.2021.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/12/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Insufficient sleep and circadian rhythm disruption may cause cancer, obesity, cardiovascular disease, and cognitive impairment. The underlying mechanisms need to be elucidated. METHOD Weighted gene co-expression network analysis (WGCNA) was used to identify co-expressed modules. Connectivity Map tool was used to identify candidate drugs based on top connected genes. R ptestg package was utilized to detected module rhythmicity alteration. A hypergeometric test was used to test the enrichment of insomnia SNP signals in modules. Google Scholar was used to validate the modules and hub genes by literature. RESULTS We identified a total of 45 co-expressed modules. These modules were stable and preserved. Eight modules were correlated with sleep restriction duration. Module rhythmicity was disrupted in sleep restriction subjects. Hub genes that involve in insufficient sleep also play important roles in sleep disorders. Insomnia GWAS signals were enriched in six modules. Finally, eight drugs associated with sleep disorders were identified. CONCLUSION Systems biology method was used to identify sleep-related modules, hub genes, and candidate drugs. Module rhythmicity was altered in sleep insufficient subjects. Thiamphenicol, lisuride, timolol, and piretanide are novel candidates for sleep disorders.
Collapse
Affiliation(s)
- Hua Ye
- Department of Gastroenterology, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Shiliang Huang
- Department of Gastroenterology, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Yufei Song
- Department of Gastroenterology, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Huiwei Liu
- Department of Gastroenterology, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Xiaosu Zhao
- Department of Gastroenterology, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Dan Zhao
- Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Fangxia Mi
- Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Xinxue Wang
- Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Xuesong Zhang
- Department of Gastroenterology, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Jinman Du
- Physical Examination Center, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Na Zhu
- Physical Examination Center, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Liangshun Zhang
- Physical Examination Center, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China
| | - Yibin Zhao
- Department of Anus & Intestine Surgery, Ningbo Medical Treatment Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang 315040, PR China.
| |
Collapse
|
36
|
Deep phenotyping of myalgic encephalomyelitis/chronic fatigue syndrome in Japanese population. Sci Rep 2020; 10:19933. [PMID: 33199820 PMCID: PMC7669873 DOI: 10.1038/s41598-020-77105-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/06/2020] [Indexed: 12/21/2022] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex and debilitating disease with no molecular diagnostics and no treatment options. To identify potential markers of this illness, we profiled 48 patients and 52 controls for standard laboratory tests, plasma metabolomics, blood immuno-phenotyping and transcriptomics, and fecal microbiome analysis. Here, we identified a set of 26 potential molecular markers that distinguished ME/CFS patients from healthy controls. Monocyte number, microbiome abundance, and lipoprotein profiles appeared to be the most informative markers. When we correlated these molecular changes to sleep and cognitive measurements of fatigue, we found that lipoprotein and microbiome profiles most closely correlated with sleep disruption while a different set of markers correlated with a cognitive parameter. Sleep, lipoprotein, and microbiome changes occur early during the course of illness suggesting that these markers can be examined in a larger cohort for potential biomarker application. Our study points to a cluster of sleep-related molecular changes as a prominent feature of ME/CFS in our Japanese cohort.
Collapse
|
37
|
Sokolovsky M, Guerrero F, Paisarnsrisomsuk S, Ruiz C, Alvarez SA. Deep Learning for Automated Feature Discovery and Classification of Sleep Stages. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2020; 17:1835-1845. [PMID: 31027049 DOI: 10.1109/tcbb.2019.2912955] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Convolutional neural networks (CNN) have demonstrated state-of-the-art classification results in image categorization, but have received comparatively little attention for classification of one-dimensional physiological signals. We design a deep CNN architecture for automated sleep stage classiffication of human sleep EEG and EOG signals. The CNN proposed in this paper amply outperforms recent work that uses a different CNN architecture over a single-EEG-channel version of the same dataset. We show that the performance gains achieved by our network rely mainly on network depth, and not on the use of several signal channels. Performance of our approach is on par with human expert inter-scorer agreement. By examining the internal activation levels of our CNN, we find that it spontaneously discovers signal features such as sleep spindles and slow waves that figure prominently in sleep stage categorization as performed by human experts.
Collapse
|
38
|
Humer E, Pieh C, Brandmayr G. Metabolomics in Sleep, Insomnia and Sleep Apnea. Int J Mol Sci 2020; 21:ijms21197244. [PMID: 33008070 PMCID: PMC7583860 DOI: 10.3390/ijms21197244] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 02/06/2023] Open
Abstract
Sleep-wake disorders are highly prevalent disorders, which can lead to negative effects on cognitive, emotional and interpersonal functioning, and can cause maladaptive metabolic changes. Recent studies support the notion that metabolic processes correlate with sleep. The study of metabolite biomarkers (metabolomics) in a large-scale manner offers unique opportunities to provide insights into the pathology of diseases by revealing alterations in metabolic pathways. This review aims to summarize the status of metabolomic analyses-based knowledge on sleep disorders and to present knowledge in understanding the metabolic role of sleep in psychiatric disorders. Overall, findings suggest that sleep-wake disorders lead to pronounced alterations in specific metabolic pathways, which might contribute to the association of sleep disorders with other psychiatric disorders and medical conditions. These alterations are mainly related to changes in the metabolism of branched-chain amino acids, as well as glucose and lipid metabolism. In insomnia, alterations in branched-chain amino acid and glucose metabolism were shown among studies. In obstructive sleep apnea, biomarkers related to lipid metabolism seem to be of special importance. Future studies are needed to examine severity, subtypes and treatment of sleep-wake disorders in the context of metabolite levels.
Collapse
Affiliation(s)
- Elke Humer
- Department for Psychotherapy and Biopsychosocial Health, Danube University Krems, 3500 Krems, Austria;
- Correspondence: ; Tel.: +43-273-2893-2676
| | - Christoph Pieh
- Department for Psychotherapy and Biopsychosocial Health, Danube University Krems, 3500 Krems, Austria;
| | - Georg Brandmayr
- Section for Artificial Intelligence and Decision Support, Medical University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
39
|
Liew SC, Aung T. Sleep deprivation and its association with diseases- a review. Sleep Med 2020; 77:192-204. [PMID: 32951993 DOI: 10.1016/j.sleep.2020.07.048] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/08/2020] [Accepted: 07/27/2020] [Indexed: 01/02/2023]
Abstract
Sleep deprivation, a consequence of multiple health problems or a cause of many major health risks, is a significant public health concern in this era. In the recent years, numerous reports have been added to the literature to provide explanation and to answer previously unanswered questions on this important topic but comprehensive updates and reviews in this aspect remain scarce. The present study identified 135 papers that investigated the association between sleep deprivation and health risks, including cardiovascular, respiratory, neurological, gastrointestinal, immunology, dermatology, endocrine, and reproductive health. In this review, we aimed to provide insight into the association between sleep deprivation and the development of diseases. We reviewed the latest updates available in the literature and particular attention was paid to reports that detailed all possible causal relationships involving both extrinsic and intrinsic factors that may be relevant to this topic. Various mechanisms by which sleep deprivation may affect health were presented and discussed, and this review hopes to serve as a platform for ideas generation for future research.
Collapse
Affiliation(s)
- Siaw Cheok Liew
- Department of Clinical Competence, Perdana University-Royal College of Surgeons in Ireland, Kuala Lumpur, Malaysia.
| | - Thidar Aung
- Department of Biochemistry, Perdana University-Royal College of Surgeons in Ireland, Kuala Lumpur, Malaysia
| |
Collapse
|
40
|
Depner CM, Cogswell DT, Bisesi PJ, Markwald RR, Cruickshank-Quinn C, Quinn K, Melanson EL, Reisdorph N, Wright KP. Developing preliminary blood metabolomics-based biomarkers of insufficient sleep in humans. Sleep 2020; 43:zsz321. [PMID: 31894238 PMCID: PMC7355401 DOI: 10.1093/sleep/zsz321] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/27/2019] [Indexed: 01/20/2023] Open
Abstract
STUDY OBJECTIVE Identify small molecule biomarkers of insufficient sleep using untargeted plasma metabolomics in humans undergoing experimental insufficient sleep. METHODS We conducted a crossover laboratory study where 16 normal-weight participants (eight men; age 22 ± 5 years; body mass index < 25 kg/m2) completed three baseline days (9 hours sleep opportunity per night) followed by 5-day insufficient (5 hours sleep opportunity per night) and adequate (9 hours sleep opportunity per night) sleep conditions. Energy balanced diets were provided during baseline, with ad libitum energy intake provided during the insufficient and adequate sleep conditions. Untargeted plasma metabolomics analyses were performed using blood samples collected every 4 hours across the final 24 hours of each condition. Biomarker models were developed using logistic regression and linear support vector machine (SVM) algorithms. RESULTS The top-performing biomarker model was developed by linear SVM modeling, consisted of 65 compounds, and discriminated insufficient versus adequate sleep with 74% overall accuracy and a Matthew's Correlation Coefficient of 0.39. The compounds in the top-performing biomarker model were associated with ATP Binding Cassette Transporters in Lipid Homeostasis, Phospholipid Metabolic Process, Plasma Lipoprotein Remodeling, and sphingolipid metabolism. CONCLUSION We identified potential metabolomics-based biomarkers of insufficient sleep in humans. Although our current biomarkers require further development and validation using independent cohorts, they have potential to advance our understanding of the negative consequences of insufficient sleep, improve diagnosis of poor sleep health, and could eventually help identify targets for countermeasures designed to mitigate the negative health consequences of insufficient sleep.
Collapse
Affiliation(s)
- Christopher M Depner
- Sleep and Chronobiology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO
| | - Dasha T Cogswell
- Sleep and Chronobiology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO
| | - Paul J Bisesi
- Sleep and Chronobiology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO
| | - Rachel R Markwald
- Sleep and Chronobiology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO
| | | | - Kevin Quinn
- Skaggs School of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Edward L Melanson
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO
- Division of Geriatric Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
- Eastern Colorado Veterans Affairs Geriatric Research, Education, and Clinical Center, Denver, CO
| | - Nichole Reisdorph
- Skaggs School of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Kenneth P Wright
- Sleep and Chronobiology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW This review provides a contemporary review of sleep apnea with emphasis on definitions, epidemiology, and consequences. RECENT FINDINGS Amyloid β-42 is one of the main peptides forming amyloid plaques in the brains of Alzheimer patients. Poorer sleep quality and shorter sleep duration have been associated with a higher amyloid burden. Decreased sleep time in the elderly is a precipitating factor in amyloid retention. Studies have shown that the dysregulation of the homeostatic balance of the major inhibitory and excitatory amino acid neurotransmitter systems of gamma-aminobutyric acid (GABA) and glutamate play a role in sleep disordered breathing (SDB). SUMMARY Untreated sleep disordered breathing (obstructive sleep apnea and/or central sleep apnea) are an important cause of medical mortality and morbidity. OSA is characterized by recurrent episodes of partial or complete collapse of the upper airway during sleep followed by hypoxia and sympathetic activation. Apneic events are terminated by arousal, followed by increases in pulse and blood pressure, and re-oxygenation and the release of inflammatory factors. Individuals with OSA have an increased risk of developing atrial fibrillation. Hypoxemia and poor sleep quality because of OSA increase the risk of cognitive decline in the elderly.
Collapse
|
42
|
High-Intensity Training Reduces CVD Risk Factors among Rotating Shift Workers: An Eight-Week Intervention in Industry. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17113943. [PMID: 32498373 PMCID: PMC7312909 DOI: 10.3390/ijerph17113943] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/29/2020] [Accepted: 05/30/2020] [Indexed: 01/23/2023]
Abstract
Rotating shift work is associated with risk factors for cardiovascular disease (CVD). We have studied the effect of 17 min high-intensity training three times a week over eight weeks on CVD risk factors among shift workers. Sixty-five shift workers from two plants were recruited. They were all deemed healthy at the initial health screening and in 100% work. From plant A, 42 workers, and plant B, 23 workers participated. After the intervention, 56 workers were retested. The intervention group consisted of 19 participants from plant A who had participated in at least 10 sessions. Twenty workers from plant B and 17 workers from plant A that not had taken part in the training were included in the control group. All workers reported physical activity (PA) by questionnaires before and after the training intervention. We measured blood pressure, heart rate, lipids, glycated hemoglobin (HbA1c), and C-reactive protein (CRP) and arterial stiffness. Maximal oxygen uptake (V.O2max) was assessed by bicycle ergometry. The intervention group favorably differed significantly from the control group in improvement of systolic and diastolic blood pressure and glycated hemoglobin (HbA1c). Short training sessions with 4 min of high-intensity PA, three times a week, for eight weeks among rotating shift workers reduced some CVD risk factors. PA interventions in occupational settings may thus decrease coronary heart disease and stroke incidences in this vulnerable group of workers.
Collapse
|
43
|
Eicher T, Kinnebrew G, Patt A, Spencer K, Ying K, Ma Q, Machiraju R, Mathé EA. Metabolomics and Multi-Omics Integration: A Survey of Computational Methods and Resources. Metabolites 2020; 10:E202. [PMID: 32429287 PMCID: PMC7281435 DOI: 10.3390/metabo10050202] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023] Open
Abstract
As researchers are increasingly able to collect data on a large scale from multiple clinical and omics modalities, multi-omics integration is becoming a critical component of metabolomics research. This introduces a need for increased understanding by the metabolomics researcher of computational and statistical analysis methods relevant to multi-omics studies. In this review, we discuss common types of analyses performed in multi-omics studies and the computational and statistical methods that can be used for each type of analysis. We pinpoint the caveats and considerations for analysis methods, including required parameters, sample size and data distribution requirements, sources of a priori knowledge, and techniques for the evaluation of model accuracy. Finally, for the types of analyses discussed, we provide examples of the applications of corresponding methods to clinical and basic research. We intend that our review may be used as a guide for metabolomics researchers to choose effective techniques for multi-omics analyses relevant to their field of study.
Collapse
Affiliation(s)
- Tara Eicher
- Biomedical Informatics Department, The Ohio State University College of Medicine, Columbus, OH 43210, USA; (T.E.); (G.K.); (K.S.); (Q.M.); (R.M.)
- Computer Science and Engineering Department, The Ohio State University College of Engineering, Columbus, OH 43210, USA
| | - Garrett Kinnebrew
- Biomedical Informatics Department, The Ohio State University College of Medicine, Columbus, OH 43210, USA; (T.E.); (G.K.); (K.S.); (Q.M.); (R.M.)
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH 43210, USA;
- Bioinformatics Shared Resource Group, The Ohio State University, Columbus, OH 43210, USA
| | - Andrew Patt
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, 9800 Medical Center Dr., Rockville, MD, 20892, USA;
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Kyle Spencer
- Biomedical Informatics Department, The Ohio State University College of Medicine, Columbus, OH 43210, USA; (T.E.); (G.K.); (K.S.); (Q.M.); (R.M.)
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA
- Nationwide Children’s Research Hospital, Columbus, OH 43210, USA
| | - Kevin Ying
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH 43210, USA;
- Molecular, Cellular and Developmental Biology Program, The Ohio State University, Columbus, OH 43210, USA
| | - Qin Ma
- Biomedical Informatics Department, The Ohio State University College of Medicine, Columbus, OH 43210, USA; (T.E.); (G.K.); (K.S.); (Q.M.); (R.M.)
| | - Raghu Machiraju
- Biomedical Informatics Department, The Ohio State University College of Medicine, Columbus, OH 43210, USA; (T.E.); (G.K.); (K.S.); (Q.M.); (R.M.)
- Computer Science and Engineering Department, The Ohio State University College of Engineering, Columbus, OH 43210, USA
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
- Translational Data Analytics Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Ewy A. Mathé
- Biomedical Informatics Department, The Ohio State University College of Medicine, Columbus, OH 43210, USA; (T.E.); (G.K.); (K.S.); (Q.M.); (R.M.)
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, 9800 Medical Center Dr., Rockville, MD, 20892, USA;
| |
Collapse
|
44
|
Huang T, Zeleznik OA, Poole EM, Clish CB, Deik AA, Scott JM, Vetter C, Schernhammer ES, Brunner R, Hale L, Manson JE, Hu FB, Redline S, Tworoger SS, Rexrode KM. Habitual sleep quality, plasma metabolites and risk of coronary heart disease in post-menopausal women. Int J Epidemiol 2020; 48:1262-1274. [PMID: 30371783 DOI: 10.1093/ije/dyy234] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2018] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Epidemiologic studies suggest a strong link between poor habitual sleep quality and increased cardiovascular disease risk. However, the underlying mechanisms are not entirely clear. Metabolomic profiling may elucidate systemic differences associated with sleep quality that influence cardiometabolic health. METHODS We explored cross-sectional associations between sleep quality and plasma metabolites in a nested case-control study of coronary heart disease (CHD) in the Women's Health Initiative (WHI; n = 1956) and attempted to replicate the results in an independent sample from the Nurses' Health Study II (NHSII; n = 209). A sleep-quality score (SQS) was derived from self-reported sleep problems asked in both populations. Plasma metabolomics were assayed using LC-MS with 347 known metabolites. General linear regression was used to identify individual metabolites associated with continuous SQS (false-discovery rate <0.05). Using least absolute shrinkage and selection operator (LASSO) algorithms, a metabolite score was created from replicated metabolites and evaluated with CHD risk in the WHI. RESULTS After adjusting for age, race/ethnicity, body mass index (BMI) and smoking, we identified 69 metabolites associated with SQS in the WHI (59 were lipids). Of these, 16 were replicated in NHSII (15 were lipids), including 6 triglycerides (TAGs), 4 phosphatidylethanolamines (PEs), 3 phosphatidylcholines (PCs), 1 diglyceride (DAG), 1 lysophosphatidylcholine and N6-acetyl-L-lysine (a product of histone acetylation). These metabolites were consistently higher among women with poorer sleep quality. The LASSO selection resulted in a nine-metabolite score (TAGs 45: 1, 48: 1, 50: 4; DAG 32: 1; PEs 36: 4, 38: 5; PCs 30: 1, 40: 6; N6-acetyl-L-lysine), which was positively associated with CHD risk (odds ratio per SD increase in the score: 1.16; 95% confidence interval: 1.05, 1.28; p = 0.0003) in the WHI after adjustment for matching factors and conventional CHD risk factors. CONCLUSIONS Differences in lipid metabolites may be an important pathogenic pathway linking poor habitual sleep quality and CHD risk.
Collapse
Affiliation(s)
- Tianyi Huang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Oana A Zeleznik
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Elizabeth M Poole
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Amy A Deik
- Broad Institute of MIT and Harvard, Boston, MA, USA
| | | | - Céline Vetter
- Department of Integrative Physiology, University of Colorado at Boulder, Boulder, CO, USA
| | - Eva S Schernhammer
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Department of Epidemiology, Center for Public Health, University of Vienna, Vienna, Austria
| | | | - Lauren Hale
- Program in Public Health, Department of Family, Population, and Preventive Medicine, Stony Brook Medicine, Stony Brook, NY, USA
| | - JoAnn E Manson
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Frank B Hu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Susan Redline
- Departments of Medicine, Brigham and Women's Hospital and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Shelley S Tworoger
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Kathryn M Rexrode
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Division of Women's Health, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
45
|
Sparks JR, Porter RR, Youngstedt SD, Bowyer KP, Durstine JL, Wang X. Effects of moderate sleep restriction during 8-week calorie restriction on lipoprotein particles and glucose metabolism. SLEEP ADVANCES 2020; 1:zpab001. [PMID: 33644759 PMCID: PMC7898726 DOI: 10.1093/sleepadvances/zpab001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/08/2021] [Indexed: 11/15/2022]
Abstract
Abstract
Study Objectives
This study examined how glucose, glucose regulatory hormones, insulin sensitivity, and lipoprotein subclass particle concentrations and sizes change with sleep restriction during weight loss elicited by calorie restriction.
Methods
Overweight or obese adults were randomized into an 8-week calorie restriction intervention alone (CR, n = 12; 75% female; body mass index = 31.4 ± 2.9 kg/m2) or combined with sleep restriction (CR+SR, n = 16; 75% female; body mass index = 34.5 ± 3.1 kg/m2). Participants in both groups were given the same instructions to reduce calorie intake. Those in the CR+SR group were instructed to reduce their habitual time-in-bed by 30–90 minutes 5 days each week with 2 ad libitum sleep days. Fasting venous blood samples were collected at pre- and post-intervention.
Results
Differential changes were found between the two groups (p = 0.028 for group × time interaction) in glucagon concentration, which decreased in the CR group (p = 0.016) but did not change in CR+SR group. Although changes in mean HDL particle (HDL-P) size and visfatin concentration were not statistically different between groups (p = 0.066 and 0.066 for group×time interaction, respectively), mean HDL-P size decreased only in the CR+SR group (Cohen’s d = 0.50, p = 0.022); visfatin concentrations did not change significantly in either group but appeared to decrease in the CR group (Cohen’s d = 0.67, p = 0.170) but not in the CR+SR group (Cohen’s d = 0.43, p = 0.225).
Conclusion
These results suggest that moderate sleep restriction, despite the presence of periodic ad libitum sleep, influences lipoprotein subclass particles and glucose regulation in individuals undergoing calorie restriction.
Clinical trial registration: ClinicalTrials.gov (NCT02413866, Weight Outlooks by Restriction of Diet and Sleep)
Collapse
Affiliation(s)
- Joshua R Sparks
- Department of Exercise Science, University of South Carolina, Columbia, SC
| | - Ryan R Porter
- Department of Exercise Science, University of South Carolina, Columbia, SC
| | - Shawn D Youngstedt
- Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, AZ
| | - Kimberly P Bowyer
- Department of Exercise Science, University of South Carolina, Columbia, SC
| | - J Larry Durstine
- Department of Exercise Science, University of South Carolina, Columbia, SC
| | - Xuewen Wang
- Department of Exercise Science, University of South Carolina, Columbia, SC
| |
Collapse
|
46
|
A Pilot Study on Sleep Quality, Forgiveness, Religion, Spirituality, and General Health of Women Living in a Homeless Mission. Holist Nurs Pract 2020; 34:49-56. [DOI: 10.1097/hnp.0000000000000362] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Good CH, Brager AJ, Capaldi VF, Mysliwiec V. Sleep in the United States Military. Neuropsychopharmacology 2020; 45:176-191. [PMID: 31185484 PMCID: PMC6879759 DOI: 10.1038/s41386-019-0431-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/23/2019] [Accepted: 05/31/2019] [Indexed: 02/07/2023]
Abstract
The military lifestyle often includes continuous operations whether in training or deployed environments. These stressful environments present unique challenges for service members attempting to achieve consolidated, restorative sleep. The significant mental and physical derangements caused by degraded metabolic, cardiovascular, skeletomuscular, and cognitive health often result from insufficient sleep and/or circadian misalignment. Insufficient sleep and resulting fatigue compromises personal safety, mission success, and even national security. In the long-term, chronic insufficient sleep and circadian rhythm disorders have been associated with other sleep disorders (e.g., insomnia, obstructive sleep apnea, and parasomnias). Other physiologic and psychologic diagnoses such as post-traumatic stress disorder, cardiovascular disease, and dementia have also been associated with chronic, insufficient sleep. Increased co-morbidity and mortality are compounded by traumatic brain injury resulting from blunt trauma, blast exposure, and highly physically demanding tasks under load. We present the current state of science in human and animal models specific to service members during- and post-military career. We focus on mission requirements of night shift work, sustained operations, and rapid re-entrainment to time zones. We then propose targeted pharmacological and non-pharmacological countermeasures to optimize performance that are mission- and symptom-specific. We recognize a critical gap in research involving service members, but provide tailored interventions for military health care providers based on the large body of research in health care and public service workers.
Collapse
Affiliation(s)
- Cameron H. Good
- 0000 0001 2151 958Xgrid.420282.ePhysical Scientist, US Army Research Laboratory, Aberdeen Proving Ground, MD, 21005 USA
| | - Allison J. Brager
- 0000 0001 0036 4726grid.420210.5Sleep Research Center, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD 20910 USA
| | - Vincent F. Capaldi
- 0000 0001 0036 4726grid.420210.5Department of Behavioral Biology Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Silver Spring, MD 20910 USA
| | - Vincent Mysliwiec
- 0000 0004 0467 8038grid.461685.8San Antonio Military Health System, Department of Sleep Medicine, JBSA, Lackland, TX 78234 USA
| |
Collapse
|
48
|
Honma A, Revell VL, Gunn PJ, Davies SK, Middleton B, Raynaud FI, Skene DJ. Effect of acute total sleep deprivation on plasma melatonin, cortisol and metabolite rhythms in females. Eur J Neurosci 2020; 51:366-378. [PMID: 30929284 PMCID: PMC7027445 DOI: 10.1111/ejn.14411] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/21/2019] [Accepted: 03/11/2019] [Indexed: 12/23/2022]
Abstract
Disruption to sleep and circadian rhythms can impact on metabolism. The study aimed to investigate the effect of acute sleep deprivation on plasma melatonin, cortisol and metabolites, to increase understanding of the metabolic pathways involved in sleep/wake regulation processes. Twelve healthy young female participants remained in controlled laboratory conditions for ~92 hr with respect to posture, meals and environmental light (18:00-23:00 hr and 07:00-09:00 hr <8 lux; 23:00-07:00 hr 0 lux (sleep opportunity) or <8 lux (continuous wakefulness); 09:00-18:00 hr ~90 lux). Regular blood samples were collected for 70 hr for plasma melatonin and cortisol, and targeted liquid chromatography-mass spectrometry metabolomics. Timepoints between 00:00 and 06:00 hr for day 1 (baseline sleep), day 2 (sleep deprivation) and day 3 (recovery sleep) were analysed. Cosinor analysis and MetaCycle analysis were performed for detection of rhythmicity. Night-time melatonin levels were significantly increased during sleep deprivation and returned to baseline levels during recovery sleep. No significant differences were observed in cortisol levels. Of 130 plasma metabolites quantified, 41 metabolites were significantly altered across the study nights, with the majority decreasing during sleep deprivation, most notably phosphatidylcholines. In cosinor analysis, 58 metabolites maintained their rhythmicity across the study days, with the majority showing a phase advance during acute sleep deprivation. This observation differs to that previously reported for males. Our study is the first of metabolic profiling in females during sleep deprivation and recovery sleep, and offers a novel view of human sleep/wake regulation and sex differences.
Collapse
Affiliation(s)
- Aya Honma
- ChronobiologyFaculty of Health and Medical SciencesUniversity of SurreyGuildfordUK
| | | | - Pippa J. Gunn
- ChronobiologyFaculty of Health and Medical SciencesUniversity of SurreyGuildfordUK
- Radcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - Sarah K. Davies
- ChronobiologyFaculty of Health and Medical SciencesUniversity of SurreyGuildfordUK
- Department of Surgery and CancerImperial College LondonLondonUK
| | - Benita Middleton
- ChronobiologyFaculty of Health and Medical SciencesUniversity of SurreyGuildfordUK
| | - Florence I. Raynaud
- Cancer Research UK Cancer Therapeutics UnitDivision of Cancer TherapeuticsThe Institute of Cancer ResearchLondonUK
| | - Debra J. Skene
- ChronobiologyFaculty of Health and Medical SciencesUniversity of SurreyGuildfordUK
| |
Collapse
|
49
|
Sengupta A, Weljie AM. Metabolism of sleep and aging: Bridging the gap using metabolomics. NUTRITION AND HEALTHY AGING 2019; 5:167-184. [PMID: 31984245 PMCID: PMC6971829 DOI: 10.3233/nha-180043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sleep is a conserved behavior across the evolutionary timescale. Almost all known animal species demonstrate sleep or sleep like states. Despite extensive study, the mechanistic aspects of sleep need are not very well characterized. Sleep appears to be needed to generate resources that are utilized during the active stage/wakefulness as well as clearance of waste products that accumulate during wakefulness. From a metabolic perspective, this means sleep is crucial for anabolic activities. Decrease in anabolism and build-up of harmful catabolic waste products is also a hallmark of aging processes. Through this lens, sleep and aging processes are remarkably parallel- for example behavioral studies demonstrate an interaction between sleep and aging. Changes in sleep behavior affect neurocognitive phenotypes important in aging such as learning and memory, although the underlying connections are largely unknown. Here we draw inspiration from the similar metabolic effects of sleep and aging and posit that large scale metabolic phenotyping, commonly known as metabolomics, can shed light to interleaving effects of sleep, aging and progression of diseases related to aging. In this review, data from recent sleep and aging literature using metabolomics as principal molecular phenotyping methods is collated and compared. The present data suggests that metabolic effects of aging and sleep also demonstrate similarities, particularly in lipid metabolism and amino acid metabolism. Some of these changes also overlap with metabolomic data available from clinical studies of Alzheimer's disease. Together, metabolomic technologies show promise in elucidating interleaving effects of sleep, aging and progression of aging disorders at a molecular level.
Collapse
Affiliation(s)
- Arjun Sengupta
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, Philadelphia, PA, USA
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Aalim M. Weljie
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, Philadelphia, PA, USA
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
50
|
Noordam R, Bos MM, Wang H, Winkler TW, Bentley AR, Kilpeläinen TO, de Vries PS, Sung YJ, Schwander K, Cade BE, Manning A, Aschard H, Brown MR, Chen H, Franceschini N, Musani SK, Richard M, Vojinovic D, Aslibekyan S, Bartz TM, de las Fuentes L, Feitosa M, Horimoto AR, Ilkov M, Kho M, Kraja A, Li C, Lim E, Liu Y, Mook-Kanamori DO, Rankinen T, Tajuddin SM, van der Spek A, Wang Z, Marten J, Laville V, Alver M, Evangelou E, Graff ME, He M, Kühnel B, Lyytikäinen LP, Marques-Vidal P, Nolte IM, Palmer ND, Rauramaa R, Shu XO, Snieder H, Weiss S, Wen W, Yanek LR, Adolfo C, Ballantyne C, Bielak L, Biermasz NR, Boerwinkle E, Dimou N, Eiriksdottir G, Gao C, Gharib SA, Gottlieb DJ, Haba-Rubio J, Harris TB, Heikkinen S, Heinzer R, Hixson JE, Homuth G, Ikram MA, Komulainen P, Krieger JE, Lee J, Liu J, Lohman KK, Luik AI, Mägi R, Martin LW, Meitinger T, Metspalu A, Milaneschi Y, Nalls MA, O'Connell J, Peters A, Peyser P, Raitakari OT, Reiner AP, Rensen PCN, Rice TK, Rich SS, Roenneberg T, Rotter JI, Schreiner PJ, Shikany J, Sidney SS, Sims M, Sitlani CM, Sofer T, Strauch K, Swertz MA, Taylor KD, Uitterlinden AG, van Duijn CM, Völzke H, Waldenberger M, Wallance RB, van Dijk KW, Yu C, Zonderman AB, Becker DM, Elliott P, Esko T, Gieger C, Grabe HJ, Lakka TA, Lehtimäki T, North KE, Penninx BWJH, Vollenweider P, Wagenknecht LE, Wu T, Xiang YB, Zheng W, Arnett DK, Bouchard C, Evans MK, Gudnason V, Kardia S, Kelly TN, Kritchevsky SB, Loos RJF, Pereira AC, Province M, Psaty BM, Rotimi C, Zhu X, Amin N, Cupples LA, Fornage M, Fox EF, Guo X, Gauderman WJ, Rice K, Kooperberg C, Munroe PB, Liu CT, Morrison AC, Rao DC, van Heemst D, Redline S. Multi-ancestry sleep-by-SNP interaction analysis in 126,926 individuals reveals lipid loci stratified by sleep duration. Nat Commun 2019; 10:5121. [PMID: 31719535 PMCID: PMC6851116 DOI: 10.1038/s41467-019-12958-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 10/04/2019] [Indexed: 12/12/2022] Open
Abstract
Both short and long sleep are associated with an adverse lipid profile, likely through different biological pathways. To elucidate the biology of sleep-associated adverse lipid profile, we conduct multi-ancestry genome-wide sleep-SNP interaction analyses on three lipid traits (HDL-c, LDL-c and triglycerides). In the total study sample (discovery + replication) of 126,926 individuals from 5 different ancestry groups, when considering either long or short total sleep time interactions in joint analyses, we identify 49 previously unreported lipid loci, and 10 additional previously unreported lipid loci in a restricted sample of European-ancestry cohorts. In addition, we identify new gene-sleep interactions for known lipid loci such as LPL and PCSK9. The previously unreported lipid loci have a modest explained variance in lipid levels: most notable, gene-short-sleep interactions explain 4.25% of the variance in triglyceride level. Collectively, these findings contribute to our understanding of the biological mechanisms involved in sleep-associated adverse lipid profiles.
Collapse
Affiliation(s)
- Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands.
| | - Maxime M Bos
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Heming Wang
- Division of Sleep and Circadian Disorders, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Thomas W Winkler
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Amy R Bentley
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tuomas O Kilpeläinen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2200, Denmark
- Department of Environmental Medicine and Public Health, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yun Ju Sung
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Karen Schwander
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Brian E Cade
- Division of Sleep and Circadian Disorders, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Alisa Manning
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Hugues Aschard
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
- Centre de Bioinformatique, Biostatistique et Biologie Intégrative (C3BI), Institut Pasteur, Paris, France
| | - Michael R Brown
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Han Chen
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Precision Health, School of Public Health & School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Nora Franceschini
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Solomon K Musani
- Jackson Heart Study, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Melissa Richard
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Dina Vojinovic
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Stella Aslibekyan
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Traci M Bartz
- Cardiovascular Health Research Unit, Biostatistics and Medicine, University of Washington, Seattle, WA, USA
| | - Lisa de las Fuentes
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Mary Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrea R Horimoto
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, SP, Brazil
| | | | - Minjung Kho
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Aldi Kraja
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Changwei Li
- Epidemiology and Biostatistics, University of Georgia at Athens College of Public Health, Athens, GA, USA
| | - Elise Lim
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Yongmei Liu
- Public Health Sciences, Epidemiology and Prevention, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, Netherlands
| | - Tuomo Rankinen
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Salman M Tajuddin
- Health Disparities Research Section, Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Ashley van der Spek
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Zhe Wang
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jonathan Marten
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Vincent Laville
- Centre de Bioinformatique, Biostatistique et Biologie Intégrative (C3BI), Institut Pasteur, Paris, France
| | - Maris Alver
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
- Department of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Evangelos Evangelou
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Maria E Graff
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Meian He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Brigitte Kühnel
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Pedro Marques-Vidal
- Medicine, Internal Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Ilja M Nolte
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, The Netherlands
| | | | - Rainer Rauramaa
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Harold Snieder
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, The Netherlands
| | - Stefan Weiss
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Wanqing Wen
- Division of Epidemiology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Lisa R Yanek
- Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Correa Adolfo
- Jackson Heart Study, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Christie Ballantyne
- Section of Cardiovascular Research, Baylor College of Medicine, Houston, TX, USA
- Houston Methodist Debakey Heart and Vascular Center, Houston, TX, USA
| | - Larry Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Nienke R Biermasz
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden, The Netherlands
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Niki Dimou
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | | | - Chuan Gao
- Molecular Genetics and Genomics Program, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Sina A Gharib
- Computational Medicine Core, Center for Lung Biology, UW Medicine Sleep Center, Medicine, University of Washington, Seattle, WA, USA
| | - Daniel J Gottlieb
- Division of Sleep and Circadian Disorders, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
| | - José Haba-Rubio
- Medicine, Sleep Laboratory, Lausanne University Hospital, Lausanne, Switzerland
| | - Tamara B Harris
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Sami Heikkinen
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio Campus, Finland
| | - Raphaël Heinzer
- Medicine, Sleep Laboratory, Lausanne University Hospital, Lausanne, Switzerland
| | - James E Hixson
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Pirjo Komulainen
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - Jose E Krieger
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Jiwon Lee
- Division of Sleep and Circadian Disorders, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Jingmin Liu
- Fred Hutchinson Cancer Research Center, University of Washington School of Public Health, Seattle, WA, USA
| | - Kurt K Lohman
- Public Health Sciences, Biostatistical Sciences, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Annemarie I Luik
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Reedik Mägi
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Lisa W Martin
- Cardiology, School of Medicine and Health Sciences, George Washington University, Washington, D.C., USA
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Andres Metspalu
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
- Department of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Yuri Milaneschi
- Cardiology, School of Medicine and Health Sciences, George Washington University, Washington, D.C., USA
| | - Mike A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
- Data Tecnica International, Glen Echo, MD, USA
| | - Jeff O'Connell
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA
- Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Neuherberg, Germany
| | - Patricia Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Olli T Raitakari
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
- University of Turku, Turku, Finland
| | - Alex P Reiner
- Fred Hutchinson Cancer Research Center, University of Washington School of Public Health, Seattle, WA, USA
| | - Patrick C N Rensen
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden, The Netherlands
| | - Treva K Rice
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Till Roenneberg
- Institute of Medical Psychology, Ludwig-Maximilians-Universitat Munchen, Munich, Germany
| | - Jerome I Rotter
- Genomic Outcomes, Department of Pediatrics, Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, CC, USA
| | - Pamela J Schreiner
- Division of Epidemiology & Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - James Shikany
- Division of Preventive Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Stephen S Sidney
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Mario Sims
- Jackson Heart Study, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Colleen M Sitlani
- Cardiovascular Health Research Unit, Medicine, University of Washington, Seattle, WA, USA
| | - Tamar Sofer
- Division of Sleep and Circadian Disorders, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
- Institute of Human Genetics, Technische Universität München, Munich, Germany
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute for Medical Informatics Biometry and Epidemiology, Ludwig-Maximilians-Universitat Munchen, Munich, Germany
| | - Morris A Swertz
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Kent D Taylor
- Genomic Outcomes, Department of Pediatrics, Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, CC, USA
| | - André G Uitterlinden
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Neuherberg, Germany
| | - Robert B Wallance
- Department of Epidemiology, University of Iowa College of Public Health, Iowa City, IA, USA
| | - Ko Willems van Dijk
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Caizheng Yu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Alan B Zonderman
- Behavioral Epidemiology Section, Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Diane M Becker
- Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Paul Elliott
- Department of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
- MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- National Institute of Health Research Imperial College London Biomedical Research Centre, London, UK
- UK-DRI Dementia Research Institute at Imperial College London, London, UK
| | - Tõnu Esko
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Boston, MA, USA
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Hans J Grabe
- Department Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Timo A Lakka
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio Campus, Finland
- Department of Clinical Phsiology and Nuclear Medicine, Kuopia University Hospital, Kuopio, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Kari E North
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Brenda W J H Penninx
- Department of Psychiatry, Amsterdam Neuroscience and Amsterdam Public Health Research Institute, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Peter Vollenweider
- Medicine, Internal Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Lynne E Wagenknecht
- Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Tangchun Wu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong-Bing Xiang
- SKLORG & Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P. R. China
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Donna K Arnett
- Dean's Office, University of Kentucky College of Public Health, Lexington, KS, USA
| | - Claude Bouchard
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Michele K Evans
- Health Disparities Research Section, Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Sharon Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Tanika N Kelly
- Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Stephen B Kritchevsky
- Sticht Center for Healthy Aging and Rehabilitation, Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health Development Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexandre C Pereira
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Mike Province
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Epidemiology, Medicine and Health Services, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington, Health Research Institute, Seattle, WA, USA
| | - Charles Rotimi
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xiaofeng Zhu
- Department of Population Quantitative and Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Najaf Amin
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - L Adrienne Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- NHLBI Framingham Heart Study, Framingham, MA, USA
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ervin F Fox
- Cardiology, Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Xiuqing Guo
- Genomic Outcomes, Department of Pediatrics, Institute for Translational Genomics and Population Sciences, LABioMed at Harbor-UCLA Medical Center, Torrance, CC, USA
| | - W James Gauderman
- Biostatistics, Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kenneth Rice
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Charles Kooperberg
- Fred Hutchinson Cancer Research Center, University of Washington School of Public Health, Seattle, WA, USA
| | - Patricia B Munroe
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Centre, Queen Mary University of London, London, London, UK
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Dabeeru C Rao
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Diana van Heemst
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA.
- Division of Pulmonary Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|