1
|
Sawada R, Sakajiri Y, Shibata T, Yamanishi Y. Predicting therapeutic and side effects from drug binding affinities to human proteome structures. iScience 2024; 27:110032. [PMID: 38868195 PMCID: PMC11167438 DOI: 10.1016/j.isci.2024.110032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/08/2024] [Accepted: 05/16/2024] [Indexed: 06/14/2024] Open
Abstract
Evaluation of the binding affinities of drugs to proteins is a crucial process for identifying drug pharmacological actions, but it requires three dimensional structures of proteins. Herein, we propose novel computational methods to predict the therapeutic indications and side effects of drug candidate compounds from the binding affinities to human protein structures on a proteome-wide scale. Large-scale docking simulations were performed for 7,582 drugs with 19,135 protein structures revealed by AlphaFold (including experimentally unresolved proteins), and machine learning models on the proteome-wide binding affinity score (PBAS) profiles were constructed. We demonstrated the usefulness of the method for predicting the therapeutic indications for 559 diseases and side effects for 285 toxicities. The method enabled to predict drug indications for which the related protein structures had not been experimentally determined and to successfully extract proteins eliciting the side effects. The proposed method will be useful in various applications in drug discovery.
Collapse
Affiliation(s)
- Ryusuke Sawada
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Japan
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yuko Sakajiri
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Japan
- Graduate School of Informatics, Nagoya University, Chikusa, Nagoya, Japan
| | - Tomokazu Shibata
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Japan
| | - Yoshihiro Yamanishi
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Japan
- Graduate School of Informatics, Nagoya University, Chikusa, Nagoya, Japan
| |
Collapse
|
2
|
Lin C, Zhang S, Yang P, Zhang B, Guo W, Wu R, Liu Y, Wang J, Wu H, Cai H. Combination of UGT1A1 polymorphism and baseline plasma bilirubin levels in predicting the risk of antipsychotic-induced dyslipidemia in schizophrenia patients. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:52. [PMID: 38760414 PMCID: PMC11101411 DOI: 10.1038/s41537-024-00473-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/04/2024] [Indexed: 05/19/2024]
Abstract
The prolonged usage of atypical antipsychotic drugs (AAPD) among individuals with schizophrenia often leads to metabolic side effects such as dyslipidemia. These effects not only limit one's selection of AAPD but also significantly reduce compliance and quality of life of patients. Recent studies suggest that bilirubin plays a crucial role in maintaining lipid homeostasis and may be a potential pre-treatment biomarker for individuals with dyslipidemia. The present study included 644 schizophrenia patients from two centers. Demographic and clinical characteristics were collected at baseline and 4 weeks after admission to investigate the correlation between metabolites, episodes, usage of AAPDs, and occurrence of dyslipidemia. Besides, we explored the combined predictive value of genotypes and baseline bilirubin for dyslipidemia by employing multiple PCR targeted capture techniques to sequence two pathways: bilirubin metabolism-related genes and lipid metabolism-related genes. Our results indicated that there existed a negative correlation between the changes in bilirubin levels and triglyceride (TG) levels in patients with schizophrenia. Among three types of bilirubin, direct bilirubin in the baseline (DBIL-bl) proved to be the most effective in predicting dyslipidemia in the ROC analysis (AUC = 0.627, p < 0.001). Furthermore, the odds ratio from multinomial logistic regression analysis showed that UGT1A1*6 was a protective factor for dyslipidemia (ß = -12.868, p < 0.001). The combination of baseline DBIL and UGT1A1*6 significantly improved the performance in predicting dyslipidemia (AUC = 0.939, p < 0.001). Schizophrenia patients with UGT1A1*6 mutation and a certain level of baseline bilirubin may be more resistant to dyslipidemia and have more selections for AAPD than other patients.
Collapse
Affiliation(s)
- Chenquan Lin
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Shuangyang Zhang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Ping Yang
- Department of Psychiatry, Hunan Brain Hospital, Changsha, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Wenbin Guo
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center on Mental Disorders, Changsha, China
| | - Renrong Wu
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center on Mental Disorders, Changsha, China
| | - Yong Liu
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center on Mental Disorders, Changsha, China
| | - Jianjian Wang
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center on Mental Disorders, Changsha, China
| | - Haishan Wu
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center on Mental Disorders, Changsha, China
| | - Hualin Cai
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China.
- Institute of Clinical Pharmacy, Central South University, Changsha, China.
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China.
- National Clinical Research Center on Mental Disorders, Changsha, China.
| |
Collapse
|
3
|
Zeng C, Chen H, Cao T, Wang L, Jiao S, Lin C, Zhang B, Cai H. B-GOS alleviates olanzapine-induced lipid disturbances in mice by enriching Akkermansia and upregulation of PGRMC1-Wnt signaling. Food Chem Toxicol 2024; 185:114490. [PMID: 38325638 DOI: 10.1016/j.fct.2024.114490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/24/2023] [Accepted: 01/26/2024] [Indexed: 02/09/2024]
Abstract
Although olanzapine (OLZ) remains one of the most efficacious antipsychotic medications for the treatment of schizophrenia, there are significant tolerability issues related to its metabolic profile such as weight gain and dyslipidemia. Our previous studies have demonstrated that progesterone receptor membrane component 1 (PGRMC1) plays a key role in antipsychotic-induced metabolic side effects. Prebiotics showed positive effects on lipid metabolism, however, limited studies focused on their therapeutic potential and mechanisms in treating antipsychotic-induced lipid metabolic disorders. Herein, our study aims to explore the effects of the prebiotic B-GOS on lipid disturbances induced by OLZ and elucidate its underlying mechanisms via PGRMC1 pathway. In an 8-week study, long-term intraperitoneal administration of OLZ at a dosage of 8 mg/kg/day in mice induced lipid disturbances as manifested by significantly increased lipid indexes in plasma and liver. B-GOS effectively alleviated the OLZ-induced abnormal lipid metabolism by enhancing the diversity of the gut microbiota, with a 100-fold increase in Akkermansia abundance and a 10-fold decrease in Faecalibaculum abundance. Followed by the B-GOS related changes of gut microbiota, OLZ-induced substantial hepatic inhibition of PGRMC1, and associated protein factors of Wnt signaling pathway (Wnt3a, β-catenin, and PPAR-γ) were reversed without affecting plasma levels of short-chain fatty acids. Taken together, prebiotics like B-GOS enriching Akkermansia offer a promising novel approach to alleviate antipsychotic-induced lipid disturbances by modulating the PGRMC1-Wnt signaling pathway.
Collapse
Affiliation(s)
- Cuirong Zeng
- Department of Pharmacy and Institute of Clinical Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Hui Chen
- Department of Pharmacy and Institute of Clinical Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Ting Cao
- Department of Pharmacy and Institute of Clinical Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Liwei Wang
- Department of Pharmacy and Institute of Clinical Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Shimeng Jiao
- Department of Pharmacy and Institute of Clinical Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Chenquan Lin
- Department of Pharmacy and Institute of Clinical Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Bikui Zhang
- Department of Pharmacy and Institute of Clinical Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Hualin Cai
- Department of Pharmacy and Institute of Clinical Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China.
| |
Collapse
|
4
|
Biswas M, Vanwong N, Sukasem C. Pharmacogenomics and non-genetic factors affecting drug response in autism spectrum disorder in Thai and other populations: current evidence and future implications. Front Pharmacol 2024; 14:1285967. [PMID: 38375208 PMCID: PMC10875059 DOI: 10.3389/fphar.2023.1285967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/26/2023] [Indexed: 02/21/2024] Open
Abstract
Autism spectrum disorder (ASD) may affect family and social life profoundly. Although there is no selective pharmacotherapy for ASD, the Food and Drug Administration (FDA) has recommended risperidone/aripiprazole to treat the associated symptoms of ASD, such as agitation/irritability. Strong associations of some pharmacokinetic/pharmacodynamic gene variants, e.g., CYP2D6 and DRD2, with risperidone-induced hyperprolactinemia have been found in children with ASD, but such strong genetic associations have not been found directly for aripiprazole in ASD. In addition to pharmacogenomic (PGx) factors, drug-drug interactions (DDIs) and possibly cumulative effects of DDIs and PGx may affect the safety or effectiveness of risperidone/aripiprazole, which should be assessed in future clinical studies in children with ASD. Reimbursement, knowledge, and education of healthcare professionals are the key obstacles preventing the successful implementation of ASD pharmacogenomics into routine clinical practice. The preparation of national and international PGx-based dosing guidelines for risperidone/aripiprazole based on robust evidence may advance precision medicine for ASD.
Collapse
Affiliation(s)
- Mohitosh Biswas
- Department of Pharmacy, University of Rajshahi, Rajshahi, Bangladesh
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Ramathibodi Hospital, Somdech Phra Debaratana Medical Center SDMC, Bangkok, Thailand
| | - Natchaya Vanwong
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
- Cardiovascular Precision Medicine Research Group, Special Task Force of Activating Research (STAR), Chulalongkorn University, Bangkok, Thailand
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Ramathibodi Hospital, Somdech Phra Debaratana Medical Center SDMC, Bangkok, Thailand
- Pharmacogenomics and Precision Medicine Clinic, Bumrungrad Genomic Medicine Institute (BGMI), Bumrungrad International Hospital, Bangkok, Thailand
- Faculty of Pharmaceutical Sciences, Burapha University, Mueang, Thailand
- Department of Pharmacology and Therapeutics, MRC Centre for Drug Safety Science, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
5
|
Zorkina Y, Ushakova V, Ochneva A, Tsurina A, Abramova O, Savenkova V, Goncharova A, Alekseenko I, Morozova I, Riabinina D, Kostyuk G, Morozova A. Lipids in Psychiatric Disorders: Functional and Potential Diagnostic Role as Blood Biomarkers. Metabolites 2024; 14:80. [PMID: 38392971 PMCID: PMC10890164 DOI: 10.3390/metabo14020080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 02/25/2024] Open
Abstract
Lipids are a crucial component of the human brain, serving important structural and functional roles. They are involved in cell function, myelination of neuronal projections, neurotransmission, neural plasticity, energy metabolism, and neuroinflammation. Despite their significance, the role of lipids in the development of mental disorders has not been well understood. This review focused on the potential use of lipids as blood biomarkers for common mental illnesses, such as major depressive disorder, anxiety disorders, bipolar disorder, and schizophrenia. This review also discussed the impact of commonly used psychiatric medications, such as neuroleptics and antidepressants, on lipid metabolism. The obtained data suggested that lipid biomarkers could be useful for diagnosing psychiatric diseases, but further research is needed to better understand the associations between blood lipids and mental disorders and to identify specific biomarker combinations for each disease.
Collapse
Affiliation(s)
- Yana Zorkina
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Valeria Ushakova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Aleksandra Ochneva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Anna Tsurina
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
| | - Olga Abramova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Valeria Savenkova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
| | - Anna Goncharova
- Moscow Center for Healthcare Innovations, 123473 Moscow, Russia;
| | - Irina Alekseenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academi of Science, 142290 Moscow, Russia
- Russia Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, 2, Kurchatov Square, 123182 Moscow, Russia
| | - Irina Morozova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
| | - Daria Riabinina
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
| | - Georgy Kostyuk
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
| | - Anna Morozova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| |
Collapse
|
6
|
Prajapat SK, Mishra L, Khera S, Owusu SD, Ahuja K, Sharma P, Choudhary E, Chhabra S, Kumar N, Singh R, Kaushal PS, Mahajan D, Banerjee A, Motiani RK, Vrati S, Kalia M. Methotrimeprazine is a neuroprotective antiviral in JEV infection via adaptive ER stress and autophagy. EMBO Mol Med 2024; 16:185-217. [PMID: 38177535 PMCID: PMC10897192 DOI: 10.1038/s44321-023-00014-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 01/06/2024] Open
Abstract
Japanese encephalitis virus (JEV) pathogenesis is driven by a combination of neuronal death and neuroinflammation. We tested 42 FDA-approved drugs that were shown to induce autophagy for antiviral effects. Four drugs were tested in the JE mouse model based on in vitro protective effects on neuronal cell death, inhibition of viral replication, and anti-inflammatory effects. The antipsychotic phenothiazines Methotrimeprazine (MTP) & Trifluoperazine showed a significant survival benefit with reduced virus titers in the brain, prevention of BBB breach, and inhibition of neuroinflammation. Both drugs were potent mTOR-independent autophagy flux inducers. MTP inhibited SERCA channel functioning, and induced an adaptive ER stress response in diverse cell types. Pharmacological rescue of ER stress blocked autophagy and antiviral effect. MTP did not alter translation of viral RNA, but exerted autophagy-dependent antiviral effect by inhibiting JEV replication complexes. Drug-induced autophagy resulted in reduced NLRP3 protein levels, and attenuation of inflammatory cytokine/chemokine release from infected microglial cells. Our study suggests that MTP exerts a combined antiviral and anti-inflammatory effect in JEV infection, and has therapeutic potential for JE treatment.
Collapse
Affiliation(s)
- Surendra K Prajapat
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Laxmi Mishra
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Sakshi Khera
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Shadrack D Owusu
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
- Institut de Biologie Moléculaire et Cellulaire (IBMC), Université de Strasbourg, 67000, Strasbourg, France
| | - Kriti Ahuja
- Laboratory of Calciomics and Systemic Pathophysiology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Puja Sharma
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Eira Choudhary
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Simran Chhabra
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Niraj Kumar
- Structural Biology & Translation Regulation Laboratory, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Rajan Singh
- Advanced Technology Platform Centre, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
- Department of Life Sciences, Shiv Nadar University, Greater Noida, 201314, India
| | - Prem S Kaushal
- Structural Biology & Translation Regulation Laboratory, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Dinesh Mahajan
- Chemistry and Pharmacology Lab, Centre for Drug Design and Discovery, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Arup Banerjee
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Rajender K Motiani
- Laboratory of Calciomics and Systemic Pathophysiology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Sudhanshu Vrati
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Manjula Kalia
- Virology Research Group, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121001, India.
| |
Collapse
|
7
|
Burghardt KJ, Kajy M, Ward KM, Burghardt PR. Metabolomics, Lipidomics, and Antipsychotics: A Systematic Review. Biomedicines 2023; 11:3295. [PMID: 38137517 PMCID: PMC10741000 DOI: 10.3390/biomedicines11123295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/06/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Antipsychotics are an important pharmacotherapy option for the treatment of many mental illnesses. Unfortunately, selecting antipsychotics is often a trial-and-error process due to a lack of understanding as to which medications an individual patient will find most effective and best tolerated. Metabolomics, or the study of small molecules in a biosample, is an increasingly used omics platform that has the potential to identify biomarkers for medication efficacy and toxicity. This systematic review was conducted to identify metabolites and metabolomic pathways associated with antipsychotic use in humans. Ultimately, 42 studies were identified for inclusion in this review, with all but three studies being performed in blood sources such as plasma or serum. A total of 14 metabolite classes and 12 lipid classes were assessed across studies. Although the studies were highly heterogeneous in approach and mixed in their findings, increases in phosphatidylcholines, decreases in carboxylic acids, and decreases in acylcarnitines were most consistently noted as perturbed in patients exposed to antipsychotics. Furthermore, for the targeted metabolomic and lipidomic studies, seven metabolites and three lipid species had findings that were replicated. The most consistent finding for targeted studies was an identification of a decrease in aspartate with antipsychotic treatment. Studies varied in depth of detail provided for their study participants and in study design. For example, in some cases, there was a lack of detail on specific antipsychotics used or concomitant medications, and the depth of detail on sample handling and analysis varied widely. The conclusions here demonstrate that there is a large foundation of metabolomic work with antipsychotics that requires more complete reporting so that an objective synthesis such as a meta-analysis can take place. This will then allow for validation and clinical application of the most robust findings to move the field forward. Future studies should be carefully controlled to take advantage of the sensitivity of metabolomics while limiting potential confounders that may result from participant heterogeneity and varied analysis approaches.
Collapse
Affiliation(s)
- Kyle J. Burghardt
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University Detroit, Detroit, MI 48201, USA;
| | - Megan Kajy
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University Detroit, Detroit, MI 48201, USA;
| | - Kristen M. Ward
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan Ann Arbor, Detroit, MI 48109, USA;
| | - Paul R. Burghardt
- Department of Nutrition and Food Science, Wayne State University Detroit, Detroit, MI 48201, USA;
| |
Collapse
|
8
|
Dang R, Wang J, Tang M, Han W, Jiang P. Vitamin D Receptor Activation Attenuates Olanzapine-Induced Dyslipidemia in Mice Through Alleviating Hepatic Endoplasmic Reticulum Stress. Adv Biol (Weinh) 2023; 7:e2300228. [PMID: 37565702 DOI: 10.1002/adbi.202300228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/02/2023] [Indexed: 08/12/2023]
Abstract
The involvement of vitamin D (VD) signaling in atypical antipsychotics (AAPs)-induced metabolic disturbances has been previously established. This study aims to elucidate the role of VD in maintaining endoplasmic reticulum (ER) homeostasis and its impact on AAPs-induced metabolic adverse effects. Female C57BL/6 mice receive either calcitriol or vehicle one week prior to co-treatment with olanzapine (OLZ) for an additional four weeks. Metabolic parameters, hepatic ER homeostasis, and the SREBPs pathway are assessed through biochemical assays and protein expression profiling. HepG2 cells are transfected with vitamin D receptor (VDR) siRNA for VDR knockdown. OLZ-treated HepG2 cells are exposed to calcitriol to examine its effects on SREBPs and the unfolded protein response (UPR) pathways. VDR activation by calcitriol reduces OLZ-induced hepatic ER stress, leading to decreased SREBPs activity and lipid accumulation. Conversely, the knockdown of VDR in HepG2 cells diminishes the protective effects of calcitriol against OLZ-induced ER stress and SREBPs activation. This resulted in sustained UPR activation, elevated cleaved SREBPs levels, and increased lipid accumulation. These findings highlight an essential role of VDR signaling in the beneficial effects of VD on OLZ-induced metabolic side effects. Targeting VDR to resolve ER stress is likely an applicable therapeutic strategy for AAPs-induced metabolic disturbances.
Collapse
Affiliation(s)
- Ruili Dang
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, China
| | - Jing Wang
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, China
| | - Mimi Tang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wenxiu Han
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, China
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining, 272000, China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, 272000, China
| |
Collapse
|
9
|
Fonseca M, Carmo F, Martel F. Metabolic effects of atypical antipsychotics: Molecular targets. J Neuroendocrinol 2023; 35:e13347. [PMID: 37866818 DOI: 10.1111/jne.13347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/11/2023] [Accepted: 10/02/2023] [Indexed: 10/24/2023]
Abstract
Atypical antipsychotics (AAPs) are commonly prescribed drugs in the treatment of schizophrenia, bipolar disorder and other mental diseases with psychotic traits. Although the use of AAPs is associated with beneficial effects in these patients, they are also associated with undesired metabolic side effects, including metabolic syndrome (MetS). MeS is defined by the presence of metabolic abnormalities such as large waist circumference, dyslipidemia, fasting hyperglycemia and elevated blood pressure, which predispose to type 2 diabetes (T2D) and cardiovascular disease. In this review, the molecular and cellular mechanisms involved in these undesired metabolic abnormalities induced by AAPs are described. These mechanisms are complex as AAPs have multiple cellular targets which significantly affect the activities of several hormones and neuromodulators. Additionally, AAPs affect all the relevant metabolic organs, namely the liver, pancreas, adipose tissue, skeletal muscle and intestine, and the central and peripheral nervous system as well. A better understanding of the molecular targets linking AAPs with MetS and of the mechanisms responsible for clinically different side effects of distinct AAPs is needed. This knowledge will help in the development of novel AAPs with less adverse effects as well as of adjuvant therapies to patients receiving AAPs.
Collapse
Affiliation(s)
- Maria Fonseca
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - Francisca Carmo
- Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Fátima Martel
- Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal
- I3S -Institute of Research and innovation in Health University of Porto, Porto, Portugal
| |
Collapse
|
10
|
Cao T, Zhang S, Chen Q, Zeng C, Wang L, Jiao S, Chen H, Zhang B, Cai H. Long non-coding RNAs in schizophrenia: Genetic variations, treatment markers and potential targeted signaling pathways. Schizophr Res 2023; 260:12-22. [PMID: 37543007 DOI: 10.1016/j.schres.2023.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/19/2023] [Accepted: 07/23/2023] [Indexed: 08/07/2023]
Abstract
Schizophrenia (SZ), a complex and debilitating spectrum of psychiatric disorders, is now mainly attributed to multifactorial etiology that includes genetic and environmental factors. Long non-coding RNAs (lncRNAs) are gaining popularity as a way to better understand the comprehensive mechanisms beneath the clinical manifestation of SZ. Only in recent years has it been elucidated that mammalian genomes encode thousands of lncRNAs. Strikingly, roughly 30-40% of these lncRNAs are extensively expressed in different regions across the brain, which may be closely associated with SZ. The therapeutic and adverse effects of atypical antipsychotic drugs (AAPDs) are partially reflected by their role in the regulation of lncRNAs. This begs the question directly, do any lncRNAs exist as biomarkers for AAPDs treatment? Furthermore, we comprehend a range of mechanistic investigations that have revealed the regulatory roles for lncRNAs both involved in the brain and the periphery of SZ. More crucially, we also combine insights from a variety of signaling pathways to argue that lncRNAs probably play critical roles in SZ via their interactive downstream factors. This review provides a thorough understanding regarding dysregulation of lncRNAs, corresponding genetic alternations, as well as their potential regulatory roles in the pathology of SZ, which might help reveal useful therapeutic targets in SZ.
Collapse
Affiliation(s)
- Ting Cao
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - ShuangYang Zhang
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Chen
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - CuiRong Zeng
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - LiWei Wang
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - ShiMeng Jiao
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Chen
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - BiKui Zhang
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - HuaLin Cai
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
11
|
Cao T, Wang L, Jiao S, Chen H, Lin C, Zhang B, Cai H. The Involvement of PGRMC1 Signaling in Cognitive Impairment Induced by Long-Term Clozapine Treatment in Rats. Neuropsychobiology 2023; 82:346-358. [PMID: 37673050 DOI: 10.1159/000533148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 07/09/2023] [Indexed: 09/08/2023]
Abstract
INTRODUCTION Progesterone receptor component 1 (PGRMC1) has been identified as a potential target in atypical antipsychotic drug-induced metabolic disturbances as well as neuroprotection in the central nervous system. In our study, we aimed to figure out the essential role of PGRMC1 signaling pathway underlying clozapine-induced cognitive impairment. METHODS In male SD rats, we utilized recombinant adeno-associated viruses (BBB 2.0) and the specific inhibitor of PGRMC1 (AG205) to regulate the expression of PGRMC1 in the brain, with a special focus on the hippocampus. Treatments of clozapine and AG205 were conducted for 28 days, and subsequent behavioral tests including modified elevated plus maze and Morris water maze were conducted to evaluate the cognitive performance. Hippocampal protein expressions were measured by Western blotting. RESULTS Our study showed that long-term clozapine administration led to cognitive impairment as confirmed by behavioral tests as well as histopathological examination in the hippocampus. Clozapine inhibited neural survival through the PGRMC1/EGFR/GLP1R-PI3K-Akt signaling pathway, leading to a decrease in the downstream survival factor, brain-derived neurotrophic factor (BDNF), and simultaneously promoted neural apoptosis in the rat hippocampus. Intriguingly, by targeting at the hippocampal PGRMC1, we found that inhibiting PGRMC1 mimics, while its upregulation notably mitigates clozapine-induced cognitive impairment through PGRMC1 and its downstream signaling pathways. CONCLUSION PGRMC1-overexpression could protect hippocampus-dependent cognitive impairment induced by clozapine. This effect appears to arise, in part, from the upregulated expression of PGRMC1/EGFR/GLP1R and the activation of downstream PI3K-Akt-BDNF and caspase-3 signaling pathways.
Collapse
Affiliation(s)
- Ting Cao
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - LiWei Wang
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| | - ShiMeng Jiao
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| | - Hui Chen
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| | - ChenQuan Lin
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| | - BiKui Zhang
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - HuaLin Cai
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| |
Collapse
|
12
|
Wang L, Chen Q, Ma R, Zhang B, Yang P, Cao T, Jiao S, Chen H, Lin C, Cai H. Insight into mitochondrial dysfunction mediated by clozapine-induced inhibition of PGRMC1 in PC12 cells. Toxicology 2023; 491:153515. [PMID: 37087062 DOI: 10.1016/j.tox.2023.153515] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 04/24/2023]
Abstract
Clozapine is usually considered as the last resort for treatment-resistant schizophrenia (TRS). However, it shows limited efficacy in cognition improvement. Moreover, the metabolic side effects induced by clozapine can aggravate cognitive impairment, which is closely related to its neurotoxicity. Nevertheless, the mechanisms underlying clozapine's neurotoxicity remain largely elusive. In this study, PC12 cells were simultaneously treated with different concentrations (0μM, 10μM, 20μM, 40μM and 80μM) of clozapine and AG205 which functions as a blocking reagent of progesterone receptor membrane component 1 (PGRMC1). In addition, we examined the effect of PGRMC1 in clozapine-induced neurotoxicity through overexpressing or downregulating PGRMC1. Molecular docking and surface plasmon resonance (SPR) analysis indicated that clozapine and AG205 inhibited the binding of endogenous progesterone to PGRMC1. The results showed that high concentration of clozapine and AG205 induced a significant increase in cytotoxicity, reactive oxygen species (ROS) accumulation and mitochondrial membrane potential (MMP) collapse, all of which were worsened as concentration increases, while overexpression of PGRMC1 reverted the above toxic effect of clozapine on PC12 cells. Furthermore, clozapine and AG205 also downregulated the expression of PGRMC1, glucagon-like peptide-1 receptor (GLP-1R) and mitofusin2 (Mfn2). Interestingly, overexpression of PGRMC1 could revert these effects. Our data suggest that overexpression of PGRMC1 in PC12 cells prevents and restores clozapine-induced oxidative and mitochondrial damage. We propose PGRMC1 activation as a promising therapeutic strategy for clozapine-induced neurotoxicity to facilitate the relief of neuronal damage.
Collapse
Affiliation(s)
- Liwei Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China
| | - Qian Chen
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China
| | - Rui Ma
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China
| | - Ping Yang
- Department of Psychiatry, Hunan Brain Hospital, 427# Furong Road, Changsha, Hunan 410000, China
| | - Ting Cao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China
| | - Shimeng Jiao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China
| | - Hui Chen
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China
| | - Chenquan Lin
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China
| | - Hualin Cai
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China.
| |
Collapse
|
13
|
Soares MA, Costa ALA, Silva NLC, Martins AF, Matias DO, Araujo OMO, Lopes RT, Takiya CM, Miranda ALP, Miranda-Alves L, Tributino JLM. Atypical antipsychotics olanzapine and clozapine increase bone loss in female rats with experimental periodontitis. J Periodontal Res 2023; 58:283-295. [PMID: 36575324 DOI: 10.1111/jre.13090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/01/2022] [Accepted: 12/12/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND OBJECTIVES Periodontitis is a highly prevalent disease in psychiatric patients, including those undergoing symptomatic treatment with second-generation antipsychotics. Some of these drugs, such as clozapine (CLO) and olanzapine (OLA), have prominent metabolic effects such as weight gain, hyperglycemia, and dyslipidemia, which are risk factors for periodontitis. In addition to the metabolic effects, there are reports of changes in salivary flow, gingival bleeding, and caries. In this context, we aimed to evaluate if the metabolic effects of OLA and CLO alter periodontal parameters in an animal model of periodontitis without the environmental and psychosocial biases inherent to human diseases. METHODS In the first set of experiments, male and female adult Wistar rats received oral administration of CLO, OLA, or vehicle for 45 days. They were evaluated for body mass composition and weight gain, blood glucose parameters (fasting and glucose tolerance and insulin resistance tests), and lipid profile (HDL, total cholesterol, and triglycerides). In a second set of experiments, the same measurements were performed in female rats exposed to the antipsychotics for 45 days and ligature-induced periodontitis on the 30th day of treatment. Macroscopic measurements of exposed roots, microtomography in the furcation region of the first molar, and histological evaluation of the region between the first and second molars were evaluated to assess bone loss. Additionally, gingival measurements of myeloperoxidase activity and pro-inflammatory cytokine TNF-α were made. RESULTS Only females exposed to OLA had more significant weight gain than controls. They also exhibited differences in glucose metabolism. Ligature-induced periodontitis produced intense bone retraction without changing the density of the remaining structures. The bone loss was even higher in rats with periodontitis treated with OLA or CLO and was accompanied by a local increase in TNF-α caused by CLO. These animals, however, did not exhibit the same metabolic impairments observed for animals without periodontitis. CONCLUSION The use of clozapine and olanzapine may be a risk factor for periodontal disease, independent of systemic metabolic alterations.
Collapse
Affiliation(s)
- Mariana Alves Soares
- Laboratório de Estudos em Farmacologia Experimental (LEFEx), Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - André Luiz A Costa
- Laboratório de Estudos em Farmacologia Experimental (LEFEx), Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Natália L C Silva
- Laboratório de Estudos em Farmacologia Experimental (LEFEx), Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Aline França Martins
- Laboratório de Estudos em Farmacologia Experimental (LEFEx), Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daiane Oliveira Matias
- Laboratório de Estudos em Farmacologia Experimental (LEFEx), Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Olga M O Araujo
- Laboratório de Instrumentação Nuclear (LIN), Programa de Engenharia Nuclear (PEN), Instituto Alberto Luiz de Coimbra de Pós-Graduação e Pesquisa de Engenharia (COPPE-UFRJ), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ricardo Tadeu Lopes
- Laboratório de Instrumentação Nuclear (LIN), Programa de Engenharia Nuclear (PEN), Instituto Alberto Luiz de Coimbra de Pós-Graduação e Pesquisa de Engenharia (COPPE-UFRJ), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Christina Maeda Takiya
- Laboratório de Patologia Celular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Luisa P Miranda
- Laboratório de Estudos em Farmacologia Experimental (LEFEx), Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leandro Miranda-Alves
- Laboratório de Endocrinologia Experimental (LEEx), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jorge L M Tributino
- Laboratório de Farmacologia Molecular (LFM), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Zhu Z, Cao T, Chen H, Zhang B, Lin C, Cai H. Olanzapine-induced nonalcoholic fatty liver disease: The effects of differential food pattern and the involvement of PGRMC1 signaling. Food Chem Toxicol 2023; 176:113757. [PMID: 37019375 DOI: 10.1016/j.fct.2023.113757] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/14/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023]
Abstract
Detrimental dietary habits with high-fat food are common in the psychiatric population, leading to higher obesity rate. Olanzapine (OLZ), as one of the mainstream antipsychotic drugs, shows superior efficacy in treating schizophrenia but limited by adverse effects such as obesity, dyslipidemia and liver injury, which are risk factors for the development of nonalcoholic fatty liver disease (NAFLD). Progesterone receptor component 1 (PGRMC1) is a key regulator associated with antipsychotic drug-induced metabolic disorders. Our study aims to investigate whether high-fat supplementation worsens OLZ-induced NAFLD and to validate the potential role of PGRMC1 pathway. In vivo, eight-week OLZ treatment successfully induced hepatic steatosis in female C57BL/6 mice fed with either a high-fat or normal diet, which is independent of body weight gain. Likewise, in vitro, OLZ markedly led to hepatocyte steatosis along with enhanced oxidative stress, which was aggravated by free fatty acids. Moreover, in vivo and in vitro, high-fat supplementation aggravated OLZ-induced hepatic lipid accumulation and oxidative stress via inhibition of hepatic PGRMC1-AMPK-mTORC1/Nrf2 pathways. Inspiringly, PGRMC1 overexpression effectively reversed OLZ-induced hepatocyte steatosis in vitro. Hence, hepatic PGRMC1 is attributable to OLZ-induced NAFLD especially with high-fat supplementation and potentially serves as a novel therapeutic target.
Collapse
Affiliation(s)
- ZhenYu Zhu
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Ting Cao
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Hui Chen
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - BiKui Zhang
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China.
| | - ChenQuan Lin
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - HuaLin Cai
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China.
| |
Collapse
|
15
|
Lizama BN, Kahle J, Catalano SM, Caggiano AO, Grundman M, Hamby ME. Sigma-2 Receptors—From Basic Biology to Therapeutic Target: A Focus on Age-Related Degenerative Diseases. Int J Mol Sci 2023; 24:ijms24076251. [PMID: 37047224 PMCID: PMC10093856 DOI: 10.3390/ijms24076251] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
There is a large unmet medical need to develop disease-modifying treatment options for individuals with age-related degenerative diseases of the central nervous system. The sigma-2 receptor (S2R), encoded by TMEM97, is expressed in brain and retinal cells, and regulates cell functions via its co-receptor progesterone receptor membrane component 1 (PGRMC1), and through other protein–protein interactions. Studies describing functions of S2R involve the manipulation of expression or pharmacological modulation using exogenous small-molecule ligands. These studies demonstrate that S2R modulates key pathways involved in age-related diseases including autophagy, trafficking, oxidative stress, and amyloid-β and α-synuclein toxicity. Furthermore, S2R modulation can ameliorate functional deficits in cell-based and animal models of disease. This review summarizes the current evidence-based understanding of S2R biology and function, and its potential as a therapeutic target for age-related degenerative diseases of the central nervous system, including Alzheimer’s disease, α-synucleinopathies, and dry age-related macular degeneration.
Collapse
Affiliation(s)
| | | | | | | | - Michael Grundman
- Global R&D Partners, LLC., San Diego, CA 92130, USA
- Department of Neurosciences, University of California, San Diego, CA 92093, USA
| | - Mary E. Hamby
- Cognition Therapeutics, Inc., Pittsburgh, PA 15203, USA
- Correspondence:
| |
Collapse
|
16
|
Horska K, Ruda-Kucerova J, Skrede S. GLP-1 agonists: superior for mind and body in antipsychotic-treated patients? Trends Endocrinol Metab 2022; 33:628-638. [PMID: 35902330 DOI: 10.1016/j.tem.2022.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/28/2022] [Indexed: 11/25/2022]
Abstract
Antipsychotics (APDs) represent a core treatment for severe mental disorders (SMEs). Providing symptomatic relief, APDs do not exert therapeutic effects on another clinically significant domain of serious mental disorders, cognitive impairment. Moreover, adverse metabolic effects (diabetes, weight gain, dyslipidemia, and increased cardiovascular risk) are common during treatment with APDs. Among pharmacological candidates reversing APD-induced metabolic adverse effects, glucagon-like peptide-1 (GLP-1) receptor agonists (GLP-1 RAs), approved for both diabetes and recently for obesity treatment, stand out due to their favorable effects on peripheral metabolic parameters. Interestingly, GLP-1 RAs are also proposed to have pro-cognitive effects. Particularly in terms of dual therapeutic mechanisms potentially improving both central nervous system (CNS) deficits and metabolic burden, GLP-1 RAs open a new perspective and assume a clinically advantageous position.
Collapse
Affiliation(s)
- Katerina Horska
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Masaryk University, Brno, Czech Republic; Department of Clinical Pharmacy, Hospital Pharmacy, University Hospital Brno, Brno, Czech Republic
| | - Jana Ruda-Kucerova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Silje Skrede
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway; Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway; Section of Clinical Pharmacology, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
17
|
Zhu Z, Gu Y, Zeng C, Yang M, Yu H, Chen H, Zhang B, Cai H. Olanzapine-induced lipid disturbances: A potential mechanism through the gut microbiota-brain axis. Front Pharmacol 2022; 13:897926. [PMID: 35991866 PMCID: PMC9388751 DOI: 10.3389/fphar.2022.897926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: Long-term use of olanzapine can induce various side effects such as lipid metabolic disorders, but the mechanism remains to be elucidated. The gut microbiota-brain axis plays an important role in lipid metabolism, and may be related to the metabolic side effects of olanzapine. Therefore, we explored the mechanism by which olanzapine-induced lipid disturbances through the gut microbiota-brain axis. Methods: Sprague Dawley rats were randomly divided into two groups, which underwent subphrenic vagotomy and sham surgery. Then the two groups were further randomly divided into two subgroups, one was administered olanzapine (10 mg/kg/day) by intragastric administration, and the other was administered normal saline by intragastric administration (4 ml/kg/day) for 2 weeks. The final changes in lipid parameters, gut microbes and their metabolites, and orexin-related neuropeptides in the hypothalamus were investigated among the different groups. Results: Olanzapine induced lipid disturbances as indicated by increased weight gain, elevated ratio of white adipose tissue to brown adipose tissue, as well as increased triglyceride and total cholesterol. Olanzapine also increased the Firmicutes/Bacteroides (F/B) ratio in the gut, which was even aggravated by subphrenic vagotomy. In addition, olanzapine reduced the abundance of short-chain fatty acids (SCFAs) metabolism related microbiome and 5-hydroxytryptamine (5-HT) levels in the rat cecum, and increased the gene and protein expression of the appetite-related neuropeptide Y/agouti-related peptide (NPY/AgRP) in the hypothalamus. Conclusion: The abnormal lipid metabolism caused by olanzapine may be closely related to the vagus nerve-mediated gut microbiota-brain axis.
Collapse
Affiliation(s)
- Zhenyu Zhu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Yuxiu Gu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Cuirong Zeng
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Man Yang
- School of Pharmacy, Changsha Medical University, Changsha, China
| | - Hao Yu
- School of Pharmacy, Hunan University of Medicine, Changsha, China
| | - Hui Chen
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
- *Correspondence: Bikui Zhang, ; Hualin Cai,
| | - Hualin Cai
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
- *Correspondence: Bikui Zhang, ; Hualin Cai,
| |
Collapse
|
18
|
Karpale M, Hukkanen J, Hakkola J. Nuclear Receptor PXR in Drug-Induced Hypercholesterolemia. Cells 2022; 11:cells11030313. [PMID: 35159123 PMCID: PMC8833906 DOI: 10.3390/cells11030313] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/13/2022] Open
Abstract
Atherosclerosis is a major global health concern. The central modifiable risk factors and causative agents of the disease are high total and low-density lipoprotein (LDL) cholesterol. To reduce morbidity and mortality, a thorough understanding of the factors that influence an individual’s cholesterol status during the decades when the arteria-narrowing arteriosclerotic plaques are forming is critical. Several drugs are known to increase cholesterol levels; however, the mechanisms are poorly understood. Activation of pregnane X receptor (PXR), the major regulator of drug metabolism and molecular mediator of clinically significant drug–drug interactions, has been shown to induce hypercholesterolemia. As a major sensor of the chemical environment, PXR may in part mediate hypercholesterolemic effects of drug treatment. This review compiles the current knowledge of PXR in cholesterol homeostasis and discusses the role of PXR in drug-induced hypercholesterolemia.
Collapse
Affiliation(s)
- Mikko Karpale
- Research Unit of Biomedicine, Biocenter Oulu, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, P.O. Box 5000, FI-90014 Oulu, Finland;
| | - Janne Hukkanen
- Research Unit of Internal Medicine, Biocenter Oulu, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, P.O. Box 5000, FI-90014 Oulu, Finland;
| | - Jukka Hakkola
- Research Unit of Biomedicine, Biocenter Oulu, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, P.O. Box 5000, FI-90014 Oulu, Finland;
- Correspondence:
| |
Collapse
|
19
|
Chen CC, Nakano T, Hsu LW, Chu CY, Huang KT. Early Lipid Metabolic Effects of the Anti-Psychotic Drug Olanzapine on Weight Gain and the Associated Gene Expression. Neuropsychiatr Dis Treat 2022; 18:645-657. [PMID: 35355504 PMCID: PMC8958728 DOI: 10.2147/ndt.s345046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/09/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Atypical antipsychotics such as olanzapine often cause metabolic side effects such as obesity and diabetes, leading to an increased risk of nonalcoholic fatty liver disease. The aim of the present study was to investigate the effects of olanzapine treatment on hepatic lipid metabolism and its possible relationship with adipose tissue status. METHODS Using a female rat model, we investigated the effects of chronic olanzapine administration on the regulation of carbohydrate and lipid metabolism including lipid biosynthesis, oxidation, efflux, and lipolysis in liver and adipose tissue. RESULTS The body weight, liver mass and visceral adiposity after olanzapine treatment (2 mg/kg) for five weeks were not significantly different compared with vehicle controls. The serum level of triglycerides was higher in the vehicle controls than in olanzapine-treated rats. Unexpectedly, olanzapine treatment did not reduce glucose tolerance in our model. The expression of functional thermogenic protein uncoupling protein 1 (UCP1) was increased in brown adipose tissue (BAT) of the olanzapine group. Additionally, olanzapine treatment also reduced adipose inflammation in white adipose tissue (WAT). The transcription factor sterol regulatory element-binding protein (SREBP)-1c, a key early regulator of lipogenesis, was downregulated following olanzapine treatment. The expression of genes related to the triglycerides synthesis apparatus in the liver was upregulated in the olanzapine group. Olanzapine treatment induced genes involved in PPAR-α signaling and mitochondrial fatty acid oxidation in response to increased ATGL-mediated lipolysis in the liver. CONCLUSION Together, our findings suggest a complicated link between olanzapine therapy and metabolic disturbance and may garner interest in assessing the action of antipsychotic-induced metabolic disturbances.
Collapse
Affiliation(s)
- Chien-Chih Chen
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Toshiaki Nakano
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Liver Transplantation Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Li-Wen Hsu
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Liver Transplantation Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chia Yi Chu
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kuang-Tzu Huang
- Liver Transplantation Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| |
Collapse
|
20
|
Galal A, El-Bakly WM, El-Kilany SS, Ali AA, El-Demerdash E. Fenofibrate ameliorates olanzapine's side effects without altering its central effect: emphasis on FGF-21-adiponectin axis. Behav Pharmacol 2021; 32:615-629. [PMID: 34637209 DOI: 10.1097/fbp.0000000000000656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The present work was designed to investigate whether fenofibrate could ameliorate olanzapine deleterious effect on insulin resistance via its effect on fibroblast growth factor-21 (FGF-21)-adiponectin axis without affecting olanzapine antipsychotic effect in postweaning socially isolated reared female rats. Treatment with olanzapine (6 mg/kg, intraperitoneally) or fenofibrate (100 mg/kg, orally) have been started 5 weeks after isolation, then behavioral tests, hippocampal content of neurotransmitters, and brain-derived neurotrophic factor (BDNF) were assessed. Moreover, insulin resistance, lipid profile, FGF-21, adiponectin, inflammatory, and oxidative stress markers of adipose tissue were assessed. Treatment of isolated-reared animals with olanzapine, or fenofibrate significantly ameliorated the behavioral and biochemical changes induced by postweaning social isolation. Co-treatment showed additive effects in improving hippocampal BDNF level. Besides, fenofibrate reduced the elevation in weight gain, adiposity index, insulin resistance, lipid profile, and FGF-21 level induced by olanzapine treatment. Also, fenofibrate increased adiponectin level which was reduced upon olanzapine treatment. Moreover, fenofibrate improved both adipose tissue oxidative stress and inflammatory markers elevation as a result of olanzapine treatment. Fenofibrate could ameliorate olanzapine-induced insulin resistance without affecting its central effect in isolated reared rats via its action on FGF-21-adiponectin axis.
Collapse
Affiliation(s)
- Aya Galal
- Cardiac Surgery Hospital, Ain Shams University
| | | | - Sara S El-Kilany
- Department of Anatomy, Faculty of Medicine, Ain Shams University
| | - Azza A Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar university (Girls Branch)
| | - Ebtehal El-Demerdash
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Abbasia, Cairo, Egypt
| |
Collapse
|
21
|
SREBP-1c and lipogenesis in the liver: an update1. Biochem J 2021; 478:3723-3739. [PMID: 34673919 DOI: 10.1042/bcj20210071] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 12/13/2022]
Abstract
Sterol Regulatory Element Binding Protein-1c is a transcription factor that controls the synthesis of lipids from glucose in the liver, a process which is of utmost importance for the storage of energy. Discovered in the early nineties by B. Spiegelman and by M. Brown and J. Goldstein, it has generated more than 5000 studies in order to elucidate its mechanism of activation and its role in physiology and pathology. Synthetized as a precursor found in the membranes of the endoplasmic reticulum, it has to be exported to the Golgi and cleaved by a mechanism called regulated intramembrane proteolysis. We reviewed in 2002 its main characteristics, its activation process and its role in the regulation of hepatic glycolytic and lipogenic genes. We particularly emphasized that Sterol Regulatory Element Binding Protein-1c is the mediator of insulin effects on these genes. In the present review, we would like to update these informations and focus on the response to insulin and to another actor in Sterol Regulatory Element Binding Protein-1c activation, the endoplasmic reticulum stress.
Collapse
|
22
|
Vanwong N, Sukasem C, Unaharassamee W, Jiratjintana N, Na Nakorn C, Hongkaew Y, Puangpetch A. Associations of the SREBF2 Gene and INSIG2 Polymorphisms with Obesity and Dyslipidemia in Thai Psychotic Disorder Patients Treated with Risperidone. J Pers Med 2021; 11:jpm11100943. [PMID: 34683084 PMCID: PMC8541118 DOI: 10.3390/jpm11100943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/09/2021] [Accepted: 09/17/2021] [Indexed: 11/24/2022] Open
Abstract
Background: Patients with psychotic disorders who receive atypical antipsychotic drugs often develop metabolic abnormalities. The sterol regulatory element-binding factor 2 (SREBF2) gene and insulin-induced gene (INSIG) have important roles in lipid metabolism. A previous study indicated that risperidone stimulated both lipogenesis and cholesterogenesis through activation of SREBP2 expression and inhibition of INSIG2. The SREBF2 gene and INSIG2 polymorphisms have been reported to be associated with metabolic abnormalities. Objective: To investigate the association of the SREBF2 gene (rs1052717, rs2267439, and rs2267443) and INSIG2 (rs7566605, rs11123469, and rs17587100) polymorphisms and the presence of obesity and dyslipidemia in Thai psychotic disorder patients treated with risperidone. Methods: All 113 psychiatric patients using risperidone were evaluated for their lipid profile and screened for obesity criteria. We genotyped the SREBF2 gene and INSIG2 polymorphisms using TaqMan real-time polymerase chain reaction. Results: None of the studied SREBF2 gene and INSIG2 SNPs were associated with obesity in Thai psychotic disorder patients receiving risperidone. Nonetheless, the SREBF2 rs2267443 (G/A) A-allele carriers were at a higher risk for hypertriglyceridemia, whereas the INSIG2 rs11123469 (T/C) C-allele carriers had a lower risk for hypertriglyceridemia, after being adjusted for clinical characteristics using multiple logistic regression. Conclusions: Our findings suggest that the SREBF2 gene rs2267443 (G/A) and the INSIG2 rs11123469 (T/C) polymorphisms are associated with dyslipidemia in Thai psychotic disorder patients treated with risperidone. Further studies with prospective designs and larger patient groups are needed.
Collapse
Affiliation(s)
- Natchaya Vanwong
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
- Cardiovascular Precision Medicine Research Group, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok 10400, Thailand
- Pharmacogenomics and Precision Medicine, The Preventive Genomics & Family Check-Up Services Center, Bumrungrad International Hospital, Bangkok 10110, Thailand
| | - Weerapon Unaharassamee
- Department of Psychiatry, Somdet Chaopraya Institute of Psychiatry, Bangkok 10600, Thailand; (W.U.); (N.J.)
| | - Napa Jiratjintana
- Department of Psychiatry, Somdet Chaopraya Institute of Psychiatry, Bangkok 10600, Thailand; (W.U.); (N.J.)
| | - Chalitpon Na Nakorn
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla 90110, Thailand;
| | - Yaowaluck Hongkaew
- Advance Research and Development Laboratory, Bumrungrad International Hospital, Bangkok 10110, Thailand;
| | - Apichaya Puangpetch
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok 10400, Thailand
- Correspondence: ; Tel.: +66-2-200-4331; Fax: +66-2-200-4332
| |
Collapse
|
23
|
Ma X, Zhao T, Yan H, Guo K, Liu Z, Wei L, Lu W, Qiu C, Jiang J. Fatostatin reverses progesterone resistance by inhibiting the SREBP1-NF-κB pathway in endometrial carcinoma. Cell Death Dis 2021; 12:544. [PMID: 34039951 PMCID: PMC8155186 DOI: 10.1038/s41419-021-03762-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022]
Abstract
Progesterone resistance can significantly restrict the efficacy of conservative treatment for patients with endometrial cancer who wish to preserve their fertility or those who suffer from advanced and recurrent cancer. SREBP1 is known to be involved in the occurrence and progression of endometrial cancer, although the precise mechanism involved remains unclear. In the present study, we carried out microarray analysis in progesterone-sensitive and progesterone-resistant cell lines and demonstrated that SREBP1 is related to progesterone resistance. Furthermore, we verified that SREBP1 is over-expressed in both drug-resistant tissues and cells. Functional studies further demonstrated that the inhibition of SREBP1 restored the sensitivity of endometrial cancer to progesterone both in vitro and in vivo, and that the over-expression of SREBP1 promoted resistance to progesterone. With regards to the mechanism involved, we found that SREBP1 promoted the proliferation of endometrial cancer cells and inhibited their apoptosis by activating the NF-κB pathway. To solve the problem of clinical application, we found that Fatostatin, an inhibitor of SREBP1, could increase the sensitivity of endometrial cancer to progesterone and reverse progesterone resistance by inhibiting SREBP1 both in vitro and in vivo. Our results highlight the important role of SREBP1 in progesterone resistance and suggest that the use of Fatostatin to target SREBP1 may represent a new method to solve progesterone resistance in patients with endometrial cancer.
Collapse
Affiliation(s)
- Xiaohong Ma
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 250012, Jinan, China.,Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, 250012, Jinan, China
| | - Tianyi Zhao
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 250012, Jinan, China.,Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, 250012, Jinan, China
| | - Hong Yan
- Department of Obstetrics and Gynecology, Women and Children's Hospital, Decheng district Dezhou, Shandong, 253017, P.R. China
| | - Kui Guo
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 250012, Jinan, China.,Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, 250012, Jinan, China
| | - Zhiming Liu
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 250012, Jinan, China
| | - Lina Wei
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 250012, Jinan, China.,Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, 250012, Jinan, China
| | - Wei Lu
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 250012, Jinan, China.,Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, 250012, Jinan, China
| | - Chunping Qiu
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 250012, Jinan, China.
| | - Jie Jiang
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 250012, Jinan, China.
| |
Collapse
|
24
|
Cataldi M, Citro V, Resnati C, Manco F, Tarantino G. New Avenues for Treatment and Prevention of Drug-Induced Steatosis and Steatohepatitis: Much More Than Antioxidants. Adv Ther 2021; 38:2094-2113. [PMID: 33761100 PMCID: PMC8107075 DOI: 10.1007/s12325-021-01669-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/11/2021] [Indexed: 12/12/2022]
Abstract
Drug-induced lipid accumulation in the liver may induce two clinically relevant conditions, drug-induced steatosis (DIS) and drug-induced steatohepatitis (DISH). The list of drugs that may cause DIS or DISH is long and heterogeneous and includes therapeutically relevant molecules that cannot be easily replaced by less hepatotoxic medicines, therefore making specific strategies necessary for DIS/DISH prevention or treatment. For years, the only available tools to achieve these goals have been antioxidant drugs and free radical scavengers, which counteract drug-induced mitochondrial dysfunction but, unfortunately, have only limited efficacy. In the present review we illustrate how in vitro preclinical research unraveled new key players in the pathogenesis of specific forms of DISH, and how, in a few cases, proof of concept of the beneficial effects of their pharmacological modulation has been obtained in vivo in animal models of this condition. The key issue emerging from these studies is that, in selected cases, liver toxicity depends on mechanisms unrelated to those responsible for the desired, primary pharmacological effects of the toxic drug and, therefore, specific strategies can be designed to overcome steatogenicity without making the drug ineffective. In particular, the hepatotoxic drug could be given in combination with a second molecule intended to selectively antagonize its liver toxicity whilst, ideally, potentiating its desired pharmacological activity. Although most of the evidence that we discuss is from in vitro or animal models and will need to be further explored and validated in humans, it highlights new avenues to be pursued in order to improve the safety of steatogenic drugs.
Collapse
|
25
|
Cao T, Tang M, Jiang P, Zhang B, Wu X, Chen Q, Zeng C, Li N, Zhang S, Cai H. A Potential Mechanism Underlying the Therapeutic Effects of Progesterone and Allopregnanolone on Ketamine-Induced Cognitive Deficits. Front Pharmacol 2021; 12:612083. [PMID: 33767621 PMCID: PMC7985688 DOI: 10.3389/fphar.2021.612083] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/29/2021] [Indexed: 11/13/2022] Open
Abstract
Ketamine exposure can model cognitive deficits associated with schizophrenia. Progesterone (PROG) and its active metabolite allopregnanolone (ALLO) have neuroprotective effects and the pathway involving progesterone receptor membrane component 1 (PGRMC1), epidermal growth factor receptor (EGFR), glucagon-like peptide-1 receptor (GLP-1R), phosphatidylinositol 3 kinase (PI3K), and protein kinase B (Akt) appears to play a key role in their neuroprotection. The present study aimed to investigate the effects of PROG (8,16 mg kg−1) and ALLO (8,16 mg kg−1) on the reversal of cognitive deficits induced by ketamine (30 mg kg−1) via the PGRMC1 pathway in rat brains, including hippocampus and prefrontal cortex (PFC). Cognitive performance was evaluated by Morris water maze (MWM) test. Western blot and real-time quantitative polymerase chain reaction were utilized to assess the expression changes of protein and mRNA. Additionally, concentrations of PROG and ALLO in plasma, hippocampus and PFC were measured by a liquid chromatography-tandem mass spectrometry method. We demonstrated that PROG or ALLO could reverse the impaired spatial learning and memory abilities induced by ketamine, accompanied with the upregulation of PGRMC1/EGFR/GLP-1R/PI3K/Akt pathway. Additionally, the coadministration of AG205 abolished their neuroprotective effects and induced cognitive deficits similar with ketamine. More importantly, PROG concentrations were markedly elevated in PROG-treated groups in hippocampus, PFC and plasma, so as for ALLO concentrations in ALLO-treated groups. Interestingly, ALLO (16 mg kg−1) significantly increased the levels of PROG. These findings suggest that PROG can exert its neuroprotective effects via activating the PGRMC1/EGFR/GLP-1R/PI3K/Akt pathway in the brain, whereas ALLO also restores cognitive deficits partially via increasing the level of PROG in the brain to activate the PGRMC1 pathway.
Collapse
Affiliation(s)
- Ting Cao
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| | - MiMi Tang
- Department of Pharmacy, Xiangya Hospital of Central South University, Changsha, China.,Institute of Hospital Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Pei Jiang
- Institute of Clinical Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, China
| | - BiKui Zhang
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| | - XiangXin Wu
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| | - Qian Chen
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| | - CuiRong Zeng
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| | - NaNa Li
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| | - ShuangYang Zhang
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| | - HuaLin Cai
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
26
|
Carli M, Kolachalam S, Longoni B, Pintaudi A, Baldini M, Aringhieri S, Fasciani I, Annibale P, Maggio R, Scarselli M. Atypical Antipsychotics and Metabolic Syndrome: From Molecular Mechanisms to Clinical Differences. Pharmaceuticals (Basel) 2021; 14:238. [PMID: 33800403 PMCID: PMC8001502 DOI: 10.3390/ph14030238] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/15/2022] Open
Abstract
Atypical antipsychotics (AAPs) are commonly prescribed medications to treat schizophrenia, bipolar disorders and other psychotic disorders. However, they might cause metabolic syndrome (MetS) in terms of weight gain, dyslipidemia, type 2 diabetes (T2D), and high blood pressure, which are responsible for reduced life expectancy and poor adherence. Importantly, there is clear evidence that early metabolic disturbances can precede weight gain, even if the latter still remains the hallmark of AAPs use. In fact, AAPs interfere profoundly with glucose and lipid homeostasis acting mostly on hypothalamus, liver, pancreatic β-cells, adipose tissue, and skeletal muscle. Their actions on hypothalamic centers via dopamine, serotonin, acetylcholine, and histamine receptors affect neuropeptides and 5'AMP-activated protein kinase (AMPK) activity, thus producing a supraphysiological sympathetic outflow augmenting levels of glucagon and hepatic glucose production. In addition, altered insulin secretion, dyslipidemia, fat deposition in the liver and adipose tissues, and insulin resistance become aggravating factors for MetS. In clinical practice, among AAPs, olanzapine and clozapine are associated with the highest risk of MetS, whereas quetiapine, risperidone, asenapine and amisulpride cause moderate alterations. The new AAPs such as ziprasidone, lurasidone and the partial agonist aripiprazole seem more tolerable on the metabolic profile. However, these aspects must be considered together with the differences among AAPs in terms of their efficacy, where clozapine still remains the most effective. Intriguingly, there seems to be a correlation between AAP's higher clinical efficacy and increase risk of metabolic alterations. Finally, a multidisciplinary approach combining psychoeducation and therapeutic drug monitoring (TDM) is proposed as a first-line strategy to avoid the MetS. In addition, pharmacological treatments are discussed as well.
Collapse
Affiliation(s)
- Marco Carli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (S.K.); (B.L.); (A.P.); (M.B.); (S.A.)
| | - Shivakumar Kolachalam
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (S.K.); (B.L.); (A.P.); (M.B.); (S.A.)
| | - Biancamaria Longoni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (S.K.); (B.L.); (A.P.); (M.B.); (S.A.)
| | - Anna Pintaudi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (S.K.); (B.L.); (A.P.); (M.B.); (S.A.)
| | - Marco Baldini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (S.K.); (B.L.); (A.P.); (M.B.); (S.A.)
| | - Stefano Aringhieri
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (S.K.); (B.L.); (A.P.); (M.B.); (S.A.)
| | - Irene Fasciani
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (I.F.); (R.M.)
| | - Paolo Annibale
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany;
| | - Roberto Maggio
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (I.F.); (R.M.)
| | - Marco Scarselli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (S.K.); (B.L.); (A.P.); (M.B.); (S.A.)
| |
Collapse
|
27
|
Ma Q, Yang F, Ma B, Jing W, Liu J, Guo M, Li J, Wang Z, Liu M. Risk of dyslipidaemia with antipsychotic drug treatment in Chinese inpatients with mental illness: a hospital-based cohort study. BMJ Open 2021; 11:e043259. [PMID: 33518524 PMCID: PMC7853033 DOI: 10.1136/bmjopen-2020-043259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVES To determine the association of long-term use of antipsychotics with the risk of dyslipidaemia. DESIGN A hospital-based cohort study. SETTING Electronic health record data of adult mental health inpatients in all 19 specialised psychiatric hospitals in Beijing from 1 January 2005 to 31 December 2018 was obtained. PARTICIPANTS Participants were inpatients aged 18 years or older with at least two admissions, excluding those with diagnosed dyslipidaemia and fatty liver at the first admission. We included 22 329 adult inpatients with no dyslipidaemia and fatty liver at baseline. The exposure was antipsychotics use, defined as antipsychotics prescription in the treatment procedures of medical record preceding dyslipidaemia diagnosis during the follow-up period. 15 930 (71.34%) had antipsychotics use, and 6399 (28.66%) never had antipsychotics use. We used the length of follow-up as proxy for the duration of antipsychotics exposure. PRIMARY OUTCOME MEASURES The primary outcome was newly recorded dyslipidaemia defined by International Classification of Diseases, 10th Revision codes. RESULTS 4069 inpatients had newly recorded dyslipidaemia during 73 418.07 person-years, the incidence rate was 5.54 per 100 person-years. The incidence rate was 7.22 per 100 person-years in the exposed group and 3.43 per 100 person-years in the unexposed group. Results of multivariate analysis showed that antipsychotics use was associated with higher risk of dyslipidaemia (adjusted HR, aHR 2.41, 95% CI 2.24 to 2.59, p<0.001), regardless of the duration of antipsychotics use. Inpatients aged 18-29 years had higher risk of dyslipidaemia (aHR 3.38, 95% CI 2.77 to 4.12, p=0.004) than those in other age groups. Inpatients without hypertension had substantially higher risk of dyslipidaemia after antipsychotic exposure. CONCLUSIONS Both short-term and long-term antipsychotics use was associated with higher risk of dyslipidaemia among Chinese inpatients with mental illness. Dyslipidaemia was especially prominent in young patients and those without hypertension.
Collapse
Affiliation(s)
- Qiuyue Ma
- Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing, China
| | - Fude Yang
- Peking University Huilonguan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Botao Ma
- Peking University Huilonguan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Wenzhan Jing
- Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing, China
| | - Jue Liu
- Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing, China
| | - Moning Guo
- Beijing Municipal Commission of Health and Family Planning Policy Research Center, Beijing Municipal Commission of Health and Family Planning Information Center, Beijing, China
| | - Juan Li
- Beijing Geriatric Hospital, Beijing, China
| | - Zhiren Wang
- Peking University Huilonguan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Min Liu
- Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing, China
| |
Collapse
|
28
|
Cahill MA, Neubauer H. PGRMC Proteins Are Coming of Age: A Special Issue on the Role of PGRMC1 and PGRMC2 in Metabolism and Cancer Biology. Cancers (Basel) 2021; 13:512. [PMID: 33572771 PMCID: PMC7866220 DOI: 10.3390/cancers13030512] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
This is a preface by the guest editors of the special issue of Cancers featuring the biology of progesterone (P4) receptor membrane component (PGRMC) proteins as it relates to metabolism and cancer [...].
Collapse
Affiliation(s)
- Michael A. Cahill
- School of Biomedical Sciences, Charles Sturt University, WaggaWagga, NSW 2678, Australia
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Canberra, ACT 2601, Australia
| | - Hans Neubauer
- Department of Gynecology and Obstetrics, University Women’s Hospital of Dusseldorf, 40225 Duesseldorf, Germany
| |
Collapse
|
29
|
Fan L, You Y, Fan Y, Shen C, Xue Y. Association Between ApoA1 Gene Polymorphisms and Antipsychotic Drug-Induced Dyslipidemia in Schizophrenia. Neuropsychiatr Dis Treat 2021; 17:1289-1297. [PMID: 33958870 PMCID: PMC8096449 DOI: 10.2147/ndt.s305200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/09/2021] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Dyslipidemia frequently occurs in schizophrenia patients treated with antipsychotic drugs (APDs), especially atypical APDs. Apolipoprotein A1 (ApoA1) plays a key role in lipid metabolism. The aim of this study was to investigate whether ApoA1 gene polymorphisms are associated with APD-induced dyslipidemia in schizophrenia patients. PATIENTS AND METHODS A total of 1987 patients with schizophrenia were enrolled in this study. Serum lipid profiles were determined with a biochemistry analyzer. Genotyping for the rs5072 polymorphism of ApoA1 was performed with TaqMan assay. Logistic regression analysis was carried out to evaluate the relationship between ApoA1 gene polymorphisms and APD-induced dyslipidemia. The effects of drug classification (typical vs atypical APD) and drug regimen (monotherapy vs combination therapy) on serum lipid levels were also analyzed. RESULTS A significant association was found between rs5072 and triglyceride (TG) levels in the recessive model of the logistic regression analysis (adjusted odds ratio [OR]=1.50, 95% confidence interval [CI]: 1.03, 2.17; P<0.05). TG level was significantly higher in patients treated with combination therapy (1.03 (0.71, 1.51) mmol/l) compared to monotherapy (0.93 (0.67, 1.43) mmol/l) and was also associated with sex. There were significant differences in TG levels among the three genotypes of ApoA1 rs5072 (GG, GA, and AA) in the whole study population and in patients treated with atypical APDs. CONCLUSION The ApoA1 rs5072 variant is associated with dysregulated TG metabolism in schizophrenia patients treated with APDs, which may increase susceptibility to dyslipidemia.
Collapse
Affiliation(s)
- Lin Fan
- Department of Pharmacy, Huai'an Third People's Hospital, Huai'an, People's Republic of China
| | - Yiwen You
- Department of Pharmacy, Huai'an Third People's Hospital, Huai'an, People's Republic of China
| | - Yao Fan
- Division of Clinical Epidemiology, Affiliated Geriatric Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Chong Shen
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yong Xue
- Department of Medical Laboratory, Huai'an Third People's Hospital, Huai'an, People's Republic of China
| |
Collapse
|
30
|
Cao T, Chen Q, Zhang B, Wu X, Zeng C, Zhang S, Cai H. Clozapine Induced Disturbances in Hepatic Glucose Metabolism: The Potential Role of PGRMC1 Signaling. Front Endocrinol (Lausanne) 2021; 12:727371. [PMID: 34970218 PMCID: PMC8712644 DOI: 10.3389/fendo.2021.727371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Newly emerging evidence has implicated that progesterone receptor component 1 (PGRMC1) plays a novel role not only in the lipid disturbance induced by atypical antipsychotic drugs (AAPD) but also in the deterioration of glucose homoeostasis induced by clozapine (CLZ) treatment. The present study aimed to investigate the role of PGRMC1 signaling on hepatic gluconeogenesis and glycogenesis in male rats following CLZ treatment (20 mg/kg daily for 4 weeks). Recombinant adeno-associated viruses (AAV) were constructed for the knockdown or overexpression of hepatic PGRMC1. Meanwhile, AG205, the specific inhibitor of PGRMC1 was also used for functional validation of PGRMC1. Hepatic protein expressions were measured by western blotting. Meanwhile, plasma glucose, insulin and glucagon, HbA1c and hepatic glycogen were also determined by assay kits. Additionally, concentrations of progesterone (PROG) in plasma, liver and adrenal gland were measured by a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. Our study demonstrated that CLZ promoted the process of gluconeogenesis and repressed glycogenesis, respectively mediated by PI3K-Akt-FOXO1 and GSK3β signaling via inhibition of PGRMC1-EGFR/GLP1R in rat liver, along with an increase in fasting blood glucose, HbA1c levels and a decrease in insulin and hepatic glycogen levels. Furthermore, through PGRMC1-EGFR/GLP1R-PI3K-Akt pathway, knockdown or inhibition (by AG205) of PGRMC1 mimics, whereas its overexpression moderately alleviates CLZ-induced glucose disturbances. Potentially, the PGRMC1 target may be regarded as a novel therapeutic strategy for AAPD-induced hepatic glucose metabolism disorder.
Collapse
Affiliation(s)
- Ting Cao
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| | - Qian Chen
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| | - BiKui Zhang
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| | - XiangXin Wu
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| | - CuiRong Zeng
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| | - ShuangYang Zhang
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
| | - HuaLin Cai
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: HuaLin Cai,
| |
Collapse
|
31
|
Sylvester E, Yi W, Han M, Deng C. Exercise intervention for preventing risperidone-induced dyslipidemia and gluco-metabolic disorders in female juvenile rats. Pharmacol Biochem Behav 2020; 199:173064. [PMID: 33127383 DOI: 10.1016/j.pbb.2020.173064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/30/2020] [Accepted: 10/23/2020] [Indexed: 01/02/2023]
Abstract
Risperidone use in children and adolescents is associated with the development of metabolic disorders including increased accumulation of body fat, dyslipidemia, and glucose and insulin metabolism dysregulation. As pharmacological interventions are often limited in their ability to treat a range of side-effects, this study aimed to evaluate the effectiveness of daily voluntary exercise intervention to prevent metabolic side-effects induced by risperidone in juveniles. Thirty-two juvenile female Sprague Dawley rats were treated with risperidone (0.9 mg/kg; b.i.d; n = 16) or vehicle (0.3 g cookie dough pellet; n = 16). These rats were then assigned to a sedentary or voluntary exercise intervention (three hours daily access to running wheels) group (n = 8/group) for a period of four weeks. An intra-peritoneal glucose tolerance test was performed after three weeks of risperidone treatment and exercise intervention to assess glucose tolerance. During the exercise intervention, risperidone-treated rats ran significantly less than vehicle-treated rats. Risperidone treatment of sedentary rats resulted in significantly increased white adipose tissue, fasting triglyceride and fasting insulin compared to vehicle-treated sedentary rats. Exercise intervention of risperidone-treated rats prevented significant increases in these metabolic parameters compared to risperidone-treated sedentary rats. These results support voluntary exercise as an effective mitigator of metabolic side-effects associated with risperidone treatment in juvenile rats. Dyslipidemia and dysregulation of glucose and insulin metabolism are significant risk factors for morbidities and mortality later in life, therefore a focus on strategies to mitigate these adverse effects is critical. Our findings support clinical trials in exercise intervention to prevent metabolic disorders associated with antipsychotic medication in children and adolescents.
Collapse
Affiliation(s)
- Emma Sylvester
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; School of Medicine and Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Weijie Yi
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; School of Medicine and Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia; Department of Nutrition and Food Hygiene, School of Public Health and Management, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Mei Han
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; School of Medicine and Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Chao Deng
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; School of Medicine and Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia.
| |
Collapse
|
32
|
Effect on Body Weight and Adipose Tissue by Cariprazine: A Head-to-Head Comparison Study to Olanzapine and Aripiprazole in Rats. Sci Pharm 2020. [DOI: 10.3390/scipharm88040050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cariprazine (Car) is a recently approved second generation antipsychotic (SGA) with unique pharmacodynamic profile, being a partial agonist at both dopamine D2/3 receptor subtypes, with almost 10 times greater affinity towards D3. SGAs are known to increase body weight, alter serum lipids, and stimulate adipogenesis but so far, limited information about the adverse effects is available with this drug. In order to study this new SGA with such a unique mechanism of action, we compared Car to substances that are considered references and are well characterized: olanzapine (Ola) and aripiprazole (Ari). We studied the effects on body weight and also assessed the adipogenesis in rats. The drugs were self-administered in two different doses to female, adult, Wistar rats for six weeks. Weekly body weight change, vacuole size of adipocytes, Sterol Regulatory Element Binding Protein-1 (SREBP-1) and Uncoupling Protein-1 (UCP-1) expression were measured from the visceral adipose tissue (AT). The adipocyte’s vacuole size, and UCP-1 expression were increased while body weight gain was diminished by Car. by increasing UCP-1 might stimulate the thermogenesis, that could potentially explain the weight gain lowering effect through enhanced lipolysis.
Collapse
|
33
|
Horska K, Kotolova H, Karpisek M, Babinska Z, Hammer T, Prochazka J, Stark T, Micale V, Ruda-Kucerova J. Metabolic profile of methylazoxymethanol model of schizophrenia in rats and effects of three antipsychotics in long-acting formulation. Toxicol Appl Pharmacol 2020; 406:115214. [PMID: 32866524 DOI: 10.1016/j.taap.2020.115214] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 12/15/2022]
Abstract
Mortality in psychiatric patients with severe mental illnesses reaches a 2-3 times higher mortality rate compared to the general population, primarily due to somatic comorbidities. A high prevalence of cardiovascular morbidity can be attributed to the adverse metabolic effects of atypical antipsychotics (atypical APs), but also to metabolic dysregulation present in drug-naïve patients. The metabolic aspects of neurodevelopmental schizophrenia-like models are understudied. This study evaluated the metabolic phenotype of a methylazoxymethanol (MAM) schizophrenia-like model together with the metabolic effects of three APs [olanzapine (OLA), risperidone (RIS) and haloperidol (HAL)] administered via long-acting formulations for 8 weeks in female rats. Body weight, feed efficiency, serum lipid profile, gastrointestinal and adipose tissue-derived hormones (leptin, ghrelin, glucagon and glucagon-like peptide 1) were determined. The lipid profile was assessed in APs-naïve MAM and control cohorts of both sexes. Body weight was not altered by the MAM model, though cumulative food intake and feed efficiency was lowered in the MAM compared to CTR animals. The effect of the APs was also present; body weight gain was increased by OLA and RIS, while OLA induced lower weight gain in the MAM rats. Further, the MAM model showed lower abdominal adiposity, while OLA increased it. Serum lipid profile revealed MAM model-induced alterations in both sexes; total, HDL and LDL cholesterol levels were increased. The MAM model did not exert significant alterations in hormonal parameters except for elevation in leptin level. The results support intrinsic metabolic dysregulation in the MAM model in both sexes, but the MAM model did not manifest higher sensitivity to metabolic effects induced by antipsychotic treatment.
Collapse
Affiliation(s)
- Katerina Horska
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackeho trida 1946/1, 612 00 Brno, Czech Republic; Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, Masaryk University, Palackeho trida 1946/1, 612 00 Brno, Czech Republic
| | - Hana Kotolova
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackeho trida 1946/1, 612 00 Brno, Czech Republic; Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, Masaryk University, Palackeho trida 1946/1, 612 00 Brno, Czech Republic
| | - Michal Karpisek
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackeho trida 1946/1, 612 00 Brno, Czech Republic; Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, Masaryk University, Palackeho trida 1946/1, 612 00 Brno, Czech Republic; R&D Department, Biovendor - Laboratorni Medicina, Karasek 1, 621 00 Brno, Czech Republic
| | - Zuzana Babinska
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Tomas Hammer
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackeho trida 1946/1, 612 00 Brno, Czech Republic; Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, Masaryk University, Palackeho trida 1946/1, 612 00 Brno, Czech Republic
| | - Jiri Prochazka
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackeho trida 1946/1, 612 00 Brno, Czech Republic; Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, Masaryk University, Palackeho trida 1946/1, 612 00 Brno, Czech Republic
| | - Tibor Stark
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; Department of Stress Neurobiology and Neurogenetics, Neuronal Plasticity Group, Max Planck Institute of Psychiatry, Kraepelinstrasse 2-10, 80804 Munich, Germany
| | - Vincenzo Micale
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Via Santa Sofia 97, I-95123 Catania, Italy; National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic
| | - Jana Ruda-Kucerova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic.
| |
Collapse
|
34
|
Luo C, Wang X, Mao X, Huang H, Liu Y, Zhao J, Zhou H, Liu Z, Li X. Metformin attenuates antipsychotic-induced metabolic dysfunctions in MK801-induced schizophrenia-like rats. Psychopharmacology (Berl) 2020; 237:2257-2277. [PMID: 32588080 DOI: 10.1007/s00213-020-05524-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 04/08/2020] [Indexed: 12/14/2022]
Abstract
RATIONALE Second-generation antipsychotics are the first-line medications prescribed for schizophrenic patients; however, some of them, such as olanzapine and risperidone, may induce metabolic dysfunctions during short-term treatment. Metformin is an effective adjuvant that attenuates antipsychotic-induced metabolic dysfunctions (AIMD) in clinical practice. Whether metformin can reverse AIMD and whether metformin affects the therapeutic effects of antipsychotics in animal models of schizophrenia are questions that still need to be investigated. METHODS In this study, an animal model of schizophrenia was established by consecutive injections of MK801 during the neurodevelopmental period. In adulthood, different dosages of olanzapine or risperidone treatment were administered to the schizophrenia model animals for 14 days. Both therapeutic effects and metabolic adverse effects were measured by behavioral tests, histopathological tests, and biochemical tests. The coadministration of different doses of metformin with olanzapine or risperidone was used to evaluate the effects of metformin on both AIMD and the therapeutic effect of those antipsychotics. RESULTS The MK801-treated rats showed schizophrenia-like behavior and variations in the shape and volume of the hippocampus. Both olanzapine and risperidone reversed the MK801-induced behavioral abnormalities as the dosage increased; however, they degenerated the hepatocytes in the liver and influenced the blood lipid levels and blood glucose levels. The coadministration of metformin did not affect the therapeutic effects of olanzapine or risperidone on behavioral abnormalities but attenuated the metabolic dysfunctions induced by those antipsychotics. CONCLUSION Metformin attenuated the olanzapine- and risperidone-induced metabolic dysfunctions in MK801-induced schizophrenia-like rats without reducing the therapeutic effects of the antipsychotics.
Collapse
Affiliation(s)
- Chao Luo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, China
- School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Xu Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, China
| | - Xiaoyuan Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, China
| | - Hanxue Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, China
| | - Yong Liu
- Mental Health Institute of the Second Xiangya Hospital, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, No. 139, Renmin Middle Road, Changsha, 410011, China
| | - Jingping Zhao
- Mental Health Institute of the Second Xiangya Hospital, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, No. 139, Renmin Middle Road, Changsha, 410011, China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, China
| | - Zhaoqian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, China.
| | - Xiangping Li
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
35
|
Akyol O, Chowdhury I, Akyol HR, Tessier K, Vural H, Akyol S. Why are cardiovascular diseases more common among patients with severe mental illness? The potential involvement of electronegative low-density lipoprotein (LDL) L5. Med Hypotheses 2020; 142:109821. [PMID: 32417641 DOI: 10.1016/j.mehy.2020.109821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/22/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023]
Abstract
Despite tremendous efforts of experimental and clinical studies and knowledge, the pathophysiology of severe mental illness (SMI), including bipolar disorder (BD), unipolar depression (mood disorders, MD), and schizophrenia (SCZ), remains poorly understood. Besides their chronic course and high prevalence in society, mental and somatic comorbidities are really serious problems; patients with these disorders have increased risk of cardiovascular (CV) diseases (CVD) including coronary artery diseases (CAD, i.e. myocardial infarction and angina), stroke, sudden cardiac death, hypertension, cardiomyopathy, arrhythmia, and thromboembolic disease. Although it is determined that triglycerides, cholesterol, glucose, and low-density lipoprotein (LDL) levels are increased in MD and SCZ, the underlying reason remains unknown. Considering this, we propose that electronegative LDL (L5) is probably the main crucial element to understanding CVD induced by SMI and to discovering novel remedial approaches for these diseases. When it is hypothesized that L5 is greatly presupposed in CV system abnormalities, it follows that the anti-L5 therapies and even antioxidant treatment options may open new therapeutic opportunities to prevent CVD diseases secondary to SMI. In this review article, we tried to bring a very original subject to the attention of readers who are interested in lipoprotein metabolism in terms of experimental, clinical, and cell culture studies that corroborate the involvement of L5 in physiopathology of CVD secondary to SMI and also the new therapeutic approaches for these disorders.
Collapse
Affiliation(s)
- Omer Akyol
- Michigan Math & Science Academy, Department of Science, Warren, MI, USA.
| | - Imtihan Chowdhury
- Michigan Math & Science Academy, High School, 11th grade, Warren, MI, USA
| | - Hafsa Rana Akyol
- Illinois Institute of Technology, Biology, Sophomore, Chicago, IL, USA
| | - Kylie Tessier
- Michigan Math & Science Academy, High School, 11th grade, Warren, MI, USA
| | - Huseyin Vural
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany
| | - Sumeyya Akyol
- Beaumont Health, Beaumont Research Institute, Royal Oak, MI, USA
| |
Collapse
|
36
|
Li N, Cao T, Wu X, Tang M, Xiang D, Cai H. Progress in Genetic Polymorphisms Related to Lipid Disturbances Induced by Atypical Antipsychotic Drugs. Front Pharmacol 2020; 10:1669. [PMID: 32116676 PMCID: PMC7011106 DOI: 10.3389/fphar.2019.01669] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 12/20/2019] [Indexed: 12/11/2022] Open
Abstract
Metabolic side effects such as weight gain and disturbed lipid metabolism are often observed in the treatment of atypical antipsychotic drugs (AAPDs), which contribute to an excessive prevalence of metabolic syndrome among schizophrenic patients. Great individual differences are observed but the underlying mechanisms are still uncertain. Research on pharmacogenomics indicates that gene polymorphisms involved in the pathways controlling food intake and lipid metabolism may play a significant role. In this review, relevant genes (HTR2C, DRD2, LEP, NPY, MC4R, BDNF, MC4R, CNR1, INSIG2, ADRA2A) and genetic polymorphisms related to metabolic side effects of AAPDs especially dyslipidemia were summarized. Apart from clinical studies, in vitro and in vivo evidence is also analyzed to support related theories. The association of central and peripheral mechanisms is emphasized, enabling the possibility of using peripheral gene expression to predict the central status. Novel methodological development of pharmacogenomics is in urgent need, so as to provide references for individualized medication and further to shed some light on the mechanisms underlying AAPD-induced lipid disturbances.
Collapse
Affiliation(s)
- Nana Li
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Ting Cao
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Xiangxin Wu
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Mimi Tang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,Institute of Hospital Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Daxiong Xiang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Hualin Cai
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
37
|
Bába LI, Kolcsár M, Kun IZ, Ulakcsai Z, Bagaméry F, Szökő É, Tábi T, Gáll Z. Effects of Cariprazine, Aripiprazole, and Olanzapine on Mouse Fibroblast Culture: Changes in Adiponectin Contents in Supernatants, Triglyceride Accumulation, and Peroxisome Proliferator-Activated Receptor-γ Expression. ACTA ACUST UNITED AC 2019; 55:medicina55050160. [PMID: 31108997 PMCID: PMC6571602 DOI: 10.3390/medicina55050160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/05/2019] [Accepted: 05/14/2019] [Indexed: 02/01/2023]
Abstract
Background and Objectives: The use of the dopamine-partial agonist subclass (also termed dopamine stabilizers) of atypical antipsychotics for the treatment of negative schizophrenia symptoms and some mood disorders has increased recently. Similar to other second-generation antipsychotics (SGAs), aripiprazole (ARI) and cariprazine (CAR) also influence food intake, but the peripheral effects of these drugs on adipose–tissue homeostasis, including adipokine secretion as well as lipo- and adipogenesis, are not fully elucidated. In this study, we explored the adipocyte-related mechanisms induced by second-generation antipsychotics (SGAs), leading to changes in peripheral signals involved in energy homeostasis. Materials and Methods: CAR, a new SGA, was compared with ARI and olanzapine (OLA), using cell cultures to study adipogenesis, and the expression levels of peroxisome proliferator-activated receptor-γ (PPAR-γ) was measured in adipocytes derived from mouse fibroblasts, by western blotting on days 7, 14, and 21 postinduction. The triglyceride (TG) content of the cells was also evaluated on day 15 using Oil Red O staining, and the adiponectin (AN) content in the cell culture supernatants was quantified on days 7 and 15 by enzyme-linked immunosorbent assay. Cells were treated with two concentrations of ARI (0.5 and 20 µg/mL), OLA (1 and 20 µg/mL), and CAR (0.1 and 2 µg/mL). Results: Both concentrations of ARI and OLA, as well as the lower concentration of CAR, significantly increased the TG contents. The AN levels in the supernatants were significantly increased by the higher concentration of ARI on days 7 and 15 (p < 0.05). Although PPAR-γ levels were not significantly affected by ARI and OLA, the lower concentration of CAR induced a significant time-dependent decrease in PPAR-γ expression (p < 0.05). Conclusions: The in vitro adipogenesis considered from TG accumulation, AN secretion, and PPAR-γ expression was differently influenced by ARI, CAR, and OLA. Understanding the adipocyte-related mechanisms of antipsychotics could contribute to understanding their weight-influencing effect.
Collapse
Affiliation(s)
- László-István Bába
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, University of Medicine, Pharmacy, Sciences and Technology of Tîrgu Mureș, 540139 Tîrgu Mureș, Romania.
| | - Melinda Kolcsár
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, University of Medicine, Pharmacy, Sciences and Technology of Tîrgu Mureș, 540139 Tîrgu Mureș, Romania.
| | - Imre Zoltán Kun
- Doctoral School, Faculty of Medicine, University of Medicine, Pharmacy, Sciences and Technology of Tîrgu Mureș, 540139 Tîrgu Mureș, Romania.
| | - Zsófia Ulakcsai
- Department of Pharmacodynamics, Semmelweis University, 1089 Budapest, Hungary.
| | - Fruzsina Bagaméry
- Department of Pharmacodynamics, Semmelweis University, 1089 Budapest, Hungary.
| | - Éva Szökő
- Department of Pharmacodynamics, Semmelweis University, 1089 Budapest, Hungary.
| | - Tamás Tábi
- Department of Pharmacodynamics, Semmelweis University, 1089 Budapest, Hungary.
| | - Zsolt Gáll
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, University of Medicine, Pharmacy, Sciences and Technology of Tîrgu Mureș, 540139 Tîrgu Mureș, Romania.
| |
Collapse
|
38
|
Mantere O, Trontti K, García-González J, Balcells I, Saarnio S, Mäntylä T, Lindgren M, Kieseppä T, Raij T, Honkanen JK, Vaarala O, Hovatta I, Suvisaari J. Immunomodulatory effects of antipsychotic treatment on gene expression in first-episode psychosis. J Psychiatr Res 2019; 109:18-26. [PMID: 30463035 DOI: 10.1016/j.jpsychires.2018.11.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/25/2018] [Accepted: 11/05/2018] [Indexed: 12/27/2022]
Abstract
Previous studies suggest immunological alterations in patients with first-episode psychosis (FEP). Some studies show that antipsychotic compounds may cause immunomodulatory effects. To evaluate the immunological changes and the possible immunomodulatory effects in FEP, we recruited patients with FEP (n = 67) and matched controls (n = 38), aged 18-40 years, from the catchment area of the Helsinki University Hospital and the City of Helsinki, Finland. Fasting peripheral blood samples were collected between 8 and 10 a.m. in 10 ml PAXgene tubes. We applied the NanoString nCounter in-solution hybridization technology to determine gene expression levels of 147 candidate genes reflecting activation of the immune system. Cases had higher gene expression levels of BDKRB1 and SPP1/osteopontin compared with controls. Of the individual medications used as monotherapy, risperidone was associated with a statistically significant upregulation of 11 immune system genes, including cytokines and cytokine receptors (SPP1, IL1R1, IL1R2), pattern recognition molecules (TLR1, TLR2 and TLR6, dectin-1/CLEC7A), molecules involved in apoptosis (FAS), and some other molecules with functions in immune activation (BDKRB1, IGF1R, CR1). In conclusion, risperidone possessed strong immunomodulatory properties affecting mainly innate immune response in FEP patients, whereas the observed effects of quetiapine and olanzapine were only marginal. Our results further emphasize the importance of understanding the immunomodulatory mechanisms of antipsychotic treatment, especially in terms of specific compounds, doses and duration of medication in patients with severe mental illness. Future studies should evaluate the response pre- and post-treatment, and the possible role of this inflammatory activation for the progression of psychiatric and metabolic symptoms.
Collapse
Affiliation(s)
- Outi Mantere
- Department of Psychiatry, McGill University, Montréal, QC, Canada; Bipolar Disorders Clinic, Douglas Mental Health University Institute, 6875, LaSalle Boulevard Montreal, Quebec, H4H 1R3, Montréal, QC, Canada.
| | - Kalevi Trontti
- Molecular and Integrative Biosciences Research Program, P.O. Box 56, FI-00014, University of Helsinki, Finland
| | - Judit García-González
- Molecular and Integrative Biosciences Research Program, P.O. Box 56, FI-00014, University of Helsinki, Finland
| | - Ingrid Balcells
- Molecular and Integrative Biosciences Research Program, P.O. Box 56, FI-00014, University of Helsinki, Finland
| | - Suvi Saarnio
- Molecular and Integrative Biosciences Research Program, P.O. Box 56, FI-00014, University of Helsinki, Finland
| | - Teemu Mäntylä
- Department of Neuroscience and Biomedical Engineering, and Advanced Magnetic Imaging Center, Aalto NeuroImaging, P.O. Box 12200, FI-00076, Aalto University School of Science, Finland; Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland; Mental Health Unit, National Institute for Health and Welfare, P.O. Box 30, FI-00271, Helsinki, Finland
| | - Maija Lindgren
- Mental Health Unit, National Institute for Health and Welfare, P.O. Box 30, FI-00271, Helsinki, Finland
| | - Tuula Kieseppä
- Department of Psychiatry, Helsinki University and Helsinki University Hospital, P.O. Box 590, FI-00029 HUS, Finland
| | - Tuukka Raij
- Department of Neuroscience and Biomedical Engineering, and Advanced Magnetic Imaging Center, Aalto NeuroImaging, P.O. Box 12200, FI-00076, Aalto University School of Science, Finland; Department of Psychiatry, Helsinki University and Helsinki University Hospital, P.O. Box 590, FI-00029 HUS, Finland
| | - Jarno K Honkanen
- Clinicum, P.O. Box 21, FI-00014, University of Helsinki, Finland
| | - Outi Vaarala
- Clinicum, P.O. Box 21, FI-00014, University of Helsinki, Finland
| | - Iiris Hovatta
- Molecular and Integrative Biosciences Research Program, P.O. Box 56, FI-00014, University of Helsinki, Finland
| | - Jaana Suvisaari
- Mental Health Unit, National Institute for Health and Welfare, P.O. Box 30, FI-00271, Helsinki, Finland
| |
Collapse
|
39
|
Xu H, Zhuang X. Atypical antipsychotics-induced metabolic syndrome and nonalcoholic fatty liver disease: a critical review. Neuropsychiatr Dis Treat 2019; 15:2087-2099. [PMID: 31413575 PMCID: PMC6659786 DOI: 10.2147/ndt.s208061] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/02/2019] [Indexed: 02/05/2023] Open
Abstract
The atypical antipsychotics (AAPs) have been used as first-line drugs in psychiatric practice for a wide range of psychotic disorders, including schizophrenia and bipolar mania. While effectively exerting therapeutic effects on positive and negative symptoms, as well as cognitive impairments in schizophrenia patients, these drugs are less likely to induce extrapyramidal symptoms compared to typical antipsychotics. However, the increasing application of them has raised questions on their tolerability and adverse effects over the endocrine, metabolic, and cardiovascular axes. Specifically, AAPs are associated to different extents, with weight gain, metabolic syndrome (MetS), and nonalcoholic fatty liver disease (NAFLD). This article summarized clinical evidence showing the metabolic side effects of AAPs in patients with schizophrenia, and experimental evidence of AAPs-induced metabolic side effects observed in animals and cell culture studies. In addition, it discussed potential mechanisms involved in the APPs-induced MetS and NAFLD.
Collapse
Affiliation(s)
- Haiyun Xu
- The Mental Health Center, Shantou University Medical College, Shantou, People’s Republic of China
- Correspondence: Haiyun XuThe Mental Health Center, Shantou University Medical College, Shantou 515041, People’s Republic of ChinaEmail
| | - Xiaoyin Zhuang
- The Mental Health Center, Shantou University Medical College, Shantou, People’s Republic of China
| |
Collapse
|
40
|
Kim DD, Barr AM, Fredrikson DH, Honer WG, Procyshyn RM. Association between Serum Lipids and Antipsychotic Response in Schizophrenia. Curr Neuropharmacol 2019; 17:852-860. [PMID: 30819084 PMCID: PMC7052836 DOI: 10.2174/1570159x17666190228113348] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/14/2019] [Accepted: 02/14/2019] [Indexed: 12/14/2022] Open
Abstract
Metabolic abnormalities are serious health problems in individuals with schizophrenia. Paradoxically, studies have noted an association where individuals who gained body weight or who have increased their serum lipids demonstrated a better antipsychotic response. As serum lipids serve as more specific physiological markers than body weight, the objective of this study was to review studies that examined the association between changes in serum lipids and changes in symptoms during antipsychotic treatment in individuals with schizophrenia. A Medline® literature search was performed. Fourteen studies were included and analyzed. Evidence suggests that increases in serum lipids may be associated with decreases in symptoms during antipsychotic treatment. This inverse association may be independent of confounding variables, such as weight gain, and may be most evident during treatment with clozapine. Also, according to recent randomized controlled trials, lipid-lowering agents do not appear to worsen symptoms although this needs to be further investigated in clozapine-treated patients. Future studies should investigate the association in question in a larger population and identify underlying mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Ric M. Procyshyn
- Address correspondence to this author at the Department of Psychiatry, University of British Columbia, Room A3-111, 938 West 28 Avenue, Vancouver, BC, Canada V5Z 4H4; Tel: 604-875-2000 (4722); Fax: 604-875-3871; E-mail:
| |
Collapse
|
41
|
Lee SR, Kwon SW, Kaya P, Lee YH, Lee JG, Kim G, Lee GS, Baek IJ, Hong EJ. Loss of progesterone receptor membrane component 1 promotes hepatic steatosis via the induced de novo lipogenesis. Sci Rep 2018; 8:15711. [PMID: 30356113 PMCID: PMC6200820 DOI: 10.1038/s41598-018-34148-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 08/01/2018] [Indexed: 12/18/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) results from triglyceride accumulation within the liver and some of them advances to non-alcoholic steatohepatitis (NASH). It is important to note that in NAFLD development, hepatic de novo lipogenesis (DNL) derives from excess carbohydrates and fats under a condition of excess energy through β-oxidation. As a main regulator for DNL, sterol regulatory element-binding protein 1 (Srebp-1) forms complex with progesterone receptor membrane component 1 (Pgrmc1). To investigate whether Pgrmc1 may have a notable effect on DNL via SREBP-1 activation, we generated Pgrmc1 knockout (KO) mice and fed a high fat diet for one month. High-fat-fed Pgrmc1 KO mice showed a substantial increase in levels of hepatic TG accumulation, and they were predisposed to NAFLD when compared to WT mice. Loss of Pgrmc1 increased mature SREBP-1 protein level, suggesting that induction of hepatic steatosis in Pgrmc1 KO mice might be triggered by de novo lipogenesis. Moreover, Pgrmc1 KO mice were also more vulnerable to early stage of NASH, showing high levels of alanine aminotransferase, obesity-linked pro-inflammatory cytokines, and fibrosis markers. This is interesting because Pgrmc1 involves with the first step in regulating the hepatic de novo lipogenesis under an excess energy condition.
Collapse
Affiliation(s)
- Sang R Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Sun Woo Kwon
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Pelin Kaya
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Young Ho Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jong Geol Lee
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Globinna Kim
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Geun-Shik Lee
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - In-Jeoung Baek
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea.
| | - Eui-Ju Hong
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
42
|
Gjerde PB, Dieset I, Simonsen C, Hoseth EZ, Iversen T, Lagerberg TV, Lyngstad SH, Mørch RH, Skrede S, Andreassen OA, Melle I, Steen VM. Increase in serum HDL level is associated with less negative symptoms after one year of antipsychotic treatment in first-episode psychosis. Schizophr Res 2018; 197:253-260. [PMID: 29129510 DOI: 10.1016/j.schres.2017.10.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 10/16/2017] [Accepted: 10/29/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND A potential link between increase in total cholesterol and triglycerides and clinical improvement has been observed during antipsychotic drug treatment in chronic schizophrenia patients, possibly due to drug related effects on lipid biosynthesis. We examined whether changes in serum lipids are associated with alleviation of psychosis symptoms after one year of antipsychotic drug treatment in a cohort of first-episode psychosis (FEP) patients. METHODS A total of 132 non-affective antipsychotic-treated FEP patients were included through the Norwegian Thematically Organized Psychosis (TOP) project. Data on antipsychotic usage, serum lipids (total cholesterol, high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol and triglycerides (TG)), body mass index (BMI) and clinical state were obtained at baseline and after 12months. The Positive and Negative Syndrome Scale (PANSS) was used to assess psychotic symptoms. Mixed-effects models were employed to examine the relationship between serum lipids and psychotic symptoms while controlling for potential confounders including BMI. RESULTS An increase in HDL during one year of antipsychotic treatment was associated with reduction in PANSS negative subscores (B=-0.48, p=0.03). This relationship was not affected by concurrent change in BMI (adjusted HDL: B=-0.54, p=0.02). No significant associations were found between serum lipids, BMI and PANSS positive subscores. CONCLUSION We found that an increase in HDL level during antipsychotic treatment is associated with improvement in negative symptoms in FEP. These findings warrant further investigation to clarify the interaction between lipid pathways and psychosis.
Collapse
Affiliation(s)
- Priyanthi B Gjerde
- NORMENT, K.G. Jebsen Center for Psychosis Research, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, 5021 Bergen, Norway.
| | - Ingrid Dieset
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Oslo University Hospital, 0424 Oslo, Norway.
| | - Carmen Simonsen
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Oslo University Hospital, 0424 Oslo, Norway.
| | - Eva Z Hoseth
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Oslo University Hospital, 0424 Oslo, Norway; Division of Mental Health and Addiction, Møre and Romsdal Health Trust, Kristiansund, Norway.
| | - Trude Iversen
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Oslo University Hospital, 0424 Oslo, Norway.
| | - Trine V Lagerberg
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Oslo University Hospital, 0424 Oslo, Norway.
| | - Siv Hege Lyngstad
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Oslo University Hospital, 0424 Oslo, Norway.
| | - Ragni H Mørch
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Oslo University Hospital, 0424 Oslo, Norway.
| | - Silje Skrede
- NORMENT, K.G. Jebsen Center for Psychosis Research, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, 5021 Bergen, Norway.
| | - Ole A Andreassen
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Oslo University Hospital, 0424 Oslo, Norway; Department of Clinical Medicine, University of Oslo, 0424 Oslo, Norway.
| | - Ingrid Melle
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Oslo University Hospital, 0424 Oslo, Norway.
| | - Vidar M Steen
- NORMENT, K.G. Jebsen Center for Psychosis Research, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway; Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, 5021 Bergen, Norway.
| |
Collapse
|
43
|
Horska K, Ruda-Kucerova J, Drazanova E, Karpisek M, Demlova R, Kasparek T, Kotolova H. Aripiprazole-induced adverse metabolic alterations in polyI:C neurodevelopmental model of schizophrenia in rats. Neuropharmacology 2018; 123:148-158. [PMID: 28595931 DOI: 10.1016/j.neuropharm.2017.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/16/2017] [Accepted: 06/03/2017] [Indexed: 12/16/2022]
Abstract
Schizophrenia appears to be linked to higher incidence of metabolic syndrome even in the absence of antipsychotic treatment. Atypical antipsychotics substantially differ in their propensity to induce metabolic alterations. Aripiprazole is considered to represent an antipsychotic drug with low risk of metabolic syndrome development. The aim of this study was to evaluate metabolic phenotype of neurodevelopmental polyI:C rat model and assess metabolic effects of chronic aripiprazole treatment with regard to complex neuroendocrine regulations of energy homeostasis. Polyinosinic:polycytidylic acid (polyI:C) was administered subcutaneously at a dose of 8 mg/kg in 10 ml on gestational day 15 to female Wistar rats. For this study 20 polyI:C and 20 control adult male offspring were used, randomly divided into 2 groups per 10 animals for chronic aripiprazole treatment and vehicle. Aripiprazole (5 mg/kg, dissolved tablets, ABILIFY®) was administered once daily via oral gavage for a month. Altered lipid profile in polyI:C model was observed and a trend towards different dynamics of weight gain in polyI:C rats was noted in the absence of significant antipsychotic treatment effect. PolyI:C model was not associated with changes in other parameters i.e. adipokines, gastrointestinal hormones and cytokines levels. Aripiprazole did not influence body weight but it induced alterations in neurohumoral regulations. Leptin and GLP-1 serum levels were significantly reduced, while ghrelin level was elevated. Furthermore aripiprazole decreased serum levels of pro-inflammatory cytokines. Our data indicate dysregulation of adipokines and gastrointestinal hormones present after chronic treatment with aripiprazole which is considered metabolically neutral in the polyI:C model of schizophrenia.
Collapse
Affiliation(s)
- Katerina Horska
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Jana Ruda-Kucerova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| | - Eva Drazanova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Institute of Scientific Instruments, ASCR, Brno, Czech Republic
| | - Michal Karpisek
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic; R&D Department, Biovendor - Laboratorni Medicina, Brno, Czech Republic
| | - Regina Demlova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Tomas Kasparek
- Department of Psychiatry, University Hospital and Masaryk University, Brno, Czech Republic
| | - Hana Kotolova
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| |
Collapse
|
44
|
Sagud M, Vlatkovic S, Svob Strac D, Sviben M, Zivkovic M, Vilibic M, Vuksan-Cusa B, Mihaljevic-Peles A, Pivac N. Latent Toxoplasma gondii infection is associated with decreased serum triglyceride to high-density lipoprotein cholesterol ratio in male patients with schizophrenia. Compr Psychiatry 2018; 82:115-120. [PMID: 29477703 DOI: 10.1016/j.comppsych.2018.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/21/2018] [Accepted: 02/02/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Previous studies suggested a complex association between Toxoplasma gondii (TG) infection and host lipid metabolism. Both TG infection and metabolic disturbances are very common in patients with schizophrenia, but this relationship is not clear. METHODS In this cross-sectional study, we evaluated the association between TG seropositivity, serum lipid levels, body mass index (BMI) and metabolic syndrome (MetS) in 210 male inpatients with schizophrenia. RESULTS In our sample of schizophrenia patients, with the mean age of 43.90 ± 12.70 years, the rate of TG seropositivity was 52.38% and the prevalence of MetS was 17%. Patients with the TG antibodies had lower serum triglyceride levels and body weight compared to TG seronegative patients, despite having more frequently received antipsychotics (clozapine, olanzapine risperidone and quetiapine), which are well known to induce weight gain and metabolic abnormalities. However, the only significant change in metabolic parameters, observed in TG seropositive patients with schizophrenia, was decreased serum triglyceride to high-density lipoprotein cholesterol (HDL-C) ratio. No associations were observed between TG seropositivity and serum total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and glucose levels, waist circumference, BMI and the rate of MetS. CONCLUSION This is the first report of the association between TG infection and decreased serum triglyceride to HDL-C ratio in a sample of carefully selected men with chronic schizophrenia.
Collapse
Affiliation(s)
- Marina Sagud
- School of Medicine, University of Zagreb, Zagreb, Croatia; Clinical Hospital Centre Zagreb, Department of Psychiatry, Zagreb, Croatia
| | | | | | - Mario Sviben
- School of Medicine, University of Zagreb, Zagreb, Croatia; Microbiology Service, Croatian National Institute of Public Health, Zagreb, Croatia
| | | | - Maja Vilibic
- University Hospital Centre "Sisters of Mercy", Zagreb, Croatia
| | - Bjanka Vuksan-Cusa
- Clinical Hospital Centre Zagreb, Department of Psychiatry, Zagreb, Croatia; School of Medicine, University of Osijek, Osijek, Croatia; School of Medicine, University of Mostar, Mostar, Bosnia and Herzegovina
| | - Alma Mihaljevic-Peles
- School of Medicine, University of Zagreb, Zagreb, Croatia; Clinical Hospital Centre Zagreb, Department of Psychiatry, Zagreb, Croatia
| | - Nela Pivac
- Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| |
Collapse
|
45
|
Influence of polygenic risk scores on lipid levels and dyslipidemia in a psychiatric population receiving weight gain-inducing psychotropic drugs. Pharmacogenet Genomics 2018; 27:464-472. [PMID: 28945215 DOI: 10.1097/fpc.0000000000000313] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Dyslipidemia represents a major health issue in psychiatry. We determined whether weighted polygenic risk scores (wPRSs) combining multiple single-nucleotide polymorphisms (SNPs) associated with lipid levels in the general population are associated with lipid levels [high-density lipoprotein (HDL), low-density lipoprotein (LDL), total cholesterol (TC), and triglycerides] and/or dyslipidemia in patients receiving weight gain-inducing psychotropic drugs. We also determined whether genetics improve the predictive power of dyslipidemia. PATIENTS AND METHODS The influence of wPRS on lipid levels was firstly assessed in a discovery psychiatric sample (n=332) and was then tested for replication in an independent psychiatric sample (n=140). The contribution of genetic markers to predict dyslipidemia was evaluated in the combined psychiatric sample. RESULTS wPRSs were significantly associated with the four lipid traits in the discovery (P≤0.02) and in the replication sample (P≤0.03). Patients whose wPRS was higher than the median wPRS had significantly higher LDL, TC, and triglyceride levels (0.20, 0.32 and 0.26 mmol/l, respectively; P≤0.004) and significantly lower HDL levels (0.13 mmol/l; P<0.0001) compared with others. Adding wPRS to clinical data significantly improved dyslipidemia prediction of HDL (P=0.03) and a trend for improvement was observed for the prediction of TC dyslipidemia (P=0.08). CONCLUSION Population-based wPRSs have thus significant effects on lipid levels in the psychiatric population. As genetics improved the predictive power of dyslipidemia development, only 24 patients need to be genotyped to prevent the development of one case of HDL hypocholesterolemia. If confirmed by further prospective investigations, the present results could be used for individualizing psychotropic treatment.
Collapse
|
46
|
van den Brink WJ, Palic S, Köhler I, de Lange ECM. Access to the CNS: Biomarker Strategies for Dopaminergic Treatments. Pharm Res 2018; 35:64. [PMID: 29450650 PMCID: PMC5814527 DOI: 10.1007/s11095-017-2333-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/18/2017] [Indexed: 12/26/2022]
Abstract
Despite substantial research carried out over the last decades, it remains difficult to understand the wide range of pharmacological effects of dopaminergic agents. The dopaminergic system is involved in several neurological disorders, such as Parkinson's disease and schizophrenia. This complex system features multiple pathways implicated in emotion and cognition, psychomotor functions and endocrine control through activation of G protein-coupled dopamine receptors. This review focuses on the system-wide effects of dopaminergic agents on the multiple biochemical and endocrine pathways, in particular the biomarkers (i.e., indicators of a pharmacological process) that reflect these effects. Dopaminergic treatments developed over the last decades were found to be associated with numerous biochemical pathways in the brain, including the norepinephrine and the kynurenine pathway. Additionally, they have shown to affect peripheral systems, for example the hypothalamus-pituitary-adrenal (HPA) axis. Dopaminergic agents thus have a complex and broad pharmacological profile, rendering drug development challenging. Considering the complex system-wide pharmacological profile of dopaminergic agents, this review underlines the needs for systems pharmacology studies that include: i) proteomics and metabolomics analysis; ii) longitudinal data evaluation and mathematical modeling; iii) pharmacokinetics-based interpretation of drug effects; iv) simultaneous biomarker evaluation in the brain, the cerebrospinal fluid (CSF) and plasma; and v) specific attention to condition-dependent (e.g., disease) pharmacology. Such approach is considered essential to increase our understanding of central nervous system (CNS) drug effects and substantially improve CNS drug development.
Collapse
Affiliation(s)
- Willem Johan van den Brink
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Semra Palic
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Isabelle Köhler
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Elizabeth Cunera Maria de Lange
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| |
Collapse
|
47
|
Long-Acting Injectable Second-Generation Antipsychotics Improve Negative Symptoms and Suicidal Ideation in Recent Diagnosed Schizophrenia Patients: A 1-Year Follow-up Pilot Study. SCHIZOPHRENIA RESEARCH AND TREATMENT 2018; 2018:4834135. [PMID: 30245878 PMCID: PMC6136552 DOI: 10.1155/2018/4834135] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/31/2018] [Accepted: 08/14/2018] [Indexed: 12/18/2022]
Abstract
Long-acting injectable second-generation antipsychotics (LAI-SGA) are typically used to maintain treatment adherence in patients with chronic schizophrenia. Recent research suggests that they may also provide an effective treatment strategy for patients with early-phase disease. The aim of this study is to evaluate clinical and psychosocial outcomes among recent and long-term diagnosed schizophrenia outpatients treated with LAI-SGA during a follow-up period of 12 months. Stable schizophrenia patients receiving LAI-SGA with 5 or less years of illness duration (n = 10) were compared to those with more than 5 years of illness duration (n = 15). Clinical data was assessed through the Positive and Negative Syndrome Scale (PANSS), the Global Assessment of Functioning (GAF), the Columbia Suicide Severity Rating Scale (C-SSRS), the Recovery Style Questionnaire (RSQ), and the Mayer-Salovey-Caruso Emotional Intelligence Test (MSCEIT) Managing Emotion branch. Recently diagnosed patients showed greater improvement versus patients diagnosed for more than 5 years in adjusted mean GAF score, in PANSS factor score for negative and depressive symptoms, and in severity and intensity of suicidal ideation. Our preliminary findings support the hypothesis that LAI-SGA may influence the course of the illness if administered at the early phase of the illness. However, replicate studies are needed, possibly with larger samples.
Collapse
|
48
|
Hulvershorn L, Parkhurst S, Jones S, Dauss K, Adams C. Improved Metabolic and Psychiatric Outcomes with Discontinuation of Atypical Antipsychotics in Youth Hospitalized in a State Psychiatric Facility. J Child Adolesc Psychopharmacol 2017; 27:897-907. [PMID: 28880609 DOI: 10.1089/cap.2017.0040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES To assess the impact of antipsychotic tapering and discontinuation on measures of metabolic functioning and psychiatric symptom severity in severely impaired youth hospitalized in a psychiatric state hospital. METHODS The study examined psychiatric and metabolic measures in 67 hospitalized children and adolescents (mean age 11.9; 56 with discontinued use of antipsychotics, 10 with continued use of antipsychotics, and 1 started on an antipsychotic) from admission to discharge. RESULTS Upon admission, 56 youth were tapered off of antipsychotic medications, started on other forms of pharmacotherapy (92.9% were started on medications used to treat attention-deficit/hyperactivity disorder), and received evidence-based behavioral programming and were ultimately discharged from the hospital. The mean duration of treatment was 228 days for the discontinuation group and 204 days for the continuation group. Significant decreases in body mass index [BMI; t(53) = 7.12, p = 0.0001] and BMI percentile [t(53) = 6.73, p = 0.0001] were found from admission to discharge in the antipsychotic discontinuation group. Changes in BMI, BMI percentile, or systolic blood pressure were not found in the group (n = 10) who were maintained on antipsychotics. Both groups experienced a significant increase in their Global Assessment of Functioning score [t(52) = 19.98, p = 0.0001 for discontinued; t(8) = 5.092, p = 0.001 for maintained]. Psychiatric symptom severity scores significantly improved in many subscales relevant to disruptive behaviors and mood disorders for those who were removed from the medications. For those maintained on the antipsychotics, there were fewer changes in psychiatric symptom scores. CONCLUSION Discontinuation of atypical antipsychotic medications in conjunction with tailoring treatment to presenting diagnoses resulted in metabolic and psychiatric symptom improvement among severely impaired state hospital inpatient youth. These results serve as a feasibility demonstration that discontinuation of antipsychotics does not provoke psychiatric destabilization, particularly among disruptive behavior disordered youth.
Collapse
Affiliation(s)
- Leslie Hulvershorn
- 1 Department of Psychiatry, Indiana University School of Medicine , Indianapolis, Indiana
| | - Samantha Parkhurst
- 1 Department of Psychiatry, Indiana University School of Medicine , Indianapolis, Indiana
| | - Shannon Jones
- 2 Evansville Psychiatric Children's Center , Indiana Family and Social Services Agency, Evansville, Indiana
| | - Kristin Dauss
- 1 Department of Psychiatry, Indiana University School of Medicine , Indianapolis, Indiana
| | - Caitlin Adams
- 1 Department of Psychiatry, Indiana University School of Medicine , Indianapolis, Indiana
| |
Collapse
|
49
|
Abstract
Cellular lipid metabolism and homeostasis are controlled by sterol regulatory-element binding proteins (SREBPs). In addition to performing canonical functions in the transcriptional regulation of genes involved in the biosynthesis and uptake of lipids, genome-wide system analyses have revealed that these versatile transcription factors act as important nodes of convergence and divergence within biological signalling networks. Thus, they are involved in myriad physiological and pathophysiological processes, highlighting the importance of lipid metabolism in biology. Changes in cell metabolism and growth are reciprocally linked through SREBPs. Anabolic and growth signalling pathways branch off and connect to multiple steps of SREBP activation and form complex regulatory networks. In addition, SREBPs are implicated in numerous pathogenic processes such as endoplasmic reticulum stress, inflammation, autophagy and apoptosis, and in this way, they contribute to obesity, dyslipidaemia, diabetes mellitus, nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, chronic kidney disease, neurodegenerative diseases and cancers. This Review aims to provide a comprehensive understanding of the role of SREBPs in physiology and pathophysiology at the cell, organ and organism levels.
Collapse
Affiliation(s)
- Hitoshi Shimano
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Life Science Center, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Ryuichiro Sato
- AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo 100-0004, Japan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| |
Collapse
|
50
|
Delacrétaz A, Vandenberghe F, Gholam-Rezaee M, Saigi Morgui N, Glatard A, Thonney J, Solida-Tozzi A, Kolly S, Gallo SF, Baumann P, Berney S, Zulauff SV, Aubry JM, Hasler R, Ebbing K, von Gunten A, Conus P, Eap CB. Early changes of blood lipid levels during psychotropic drug treatment as predictors of long-term lipid changes and of new onset dyslipidemia. J Clin Lipidol 2017; 12:219-229. [PMID: 29128242 DOI: 10.1016/j.jacl.2017.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/03/2017] [Accepted: 10/03/2017] [Indexed: 01/09/2023]
Abstract
BACKGROUND Cardiovascular diseases and dyslipidemia represent a major health issue in psychiatry. Many psychotropic drugs can induce a rapid and substantial increase of blood lipid levels. OBJECTIVE This study aimed to determine the potential predictive power of an early change of blood lipid levels during psychotropic treatment on long-term change and on dyslipidemia development. METHODS Data were obtained from a prospective study including 181 psychiatric patients with metabolic parameters monitored during the first year of treatment and with adherence ascertained. Blood lipid levels (ie, total cholesterol [TC], low-density lipoprotein cholesterol [LDL-C], high-density lipoprotein cholesterol [HDL-C], non-high-density lipoprotein cholesterol [non-HDL-C], and fasting triglycerides [TGs]) were measured at baseline and after 1, 3, and/or 12 months of treatment. RESULTS Receiver-operating characteristic analyses indicated that early (ie, after 1 month of psychotropic treatment) increases (≥5%) for TC, LDL-C, TG, and non-HDL-C and decrease (≥5%) for HDL-C were the best predictors for clinically relevant modifications of blood lipid levels after 3 months of treatment (≥30% TC, ≥40% LDL-C, ≥45% TG, ≥55% non-HDL-C increase, and ≥20% HDL-C decrease; sensitivity 70%-100%, specificity 53%-72%). Predictive powers of these models were confirmed by fitting longitudinal multivariate models in the same cohort (P ≤ .03) as well as in a replication cohort (n = 79; P ≤ .003). Survival models showed significantly higher incidences of new onset dyslipidemia (TC, LDL-C, and non-HDL-C hypercholesterolemia, HDL-C hypocholesterolemia, and hypertriglyceridemia) for patients with early changes of blood lipid levels compared to others (P ≤ .01). CONCLUSION Early modifications of blood lipid levels following prescription of psychotropic drugs inducing dyslipidemia should therefore raise questions on clinical strategies to control long-term dyslipidemia.
Collapse
Affiliation(s)
- Aurélie Delacrétaz
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Prilly, Switzerland
| | - Frederik Vandenberghe
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Prilly, Switzerland
| | - Mehdi Gholam-Rezaee
- Centre of Psychiatric Epidemiology and Psychopathology, Department of Psychiatry, Lausanne University Hospital, Prilly, Switzerland
| | - Nuria Saigi Morgui
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Prilly, Switzerland
| | - Anaïs Glatard
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Prilly, Switzerland
| | - Jacques Thonney
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital, Prilly, Switzerland
| | - Alessandra Solida-Tozzi
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital, Prilly, Switzerland
| | - Stéphane Kolly
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital, Prilly, Switzerland
| | - Sylfa Fassassi Gallo
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital, Prilly, Switzerland
| | - Philipp Baumann
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital, Prilly, Switzerland
| | - Sylvie Berney
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital, Prilly, Switzerland
| | - Sandrine Valloton Zulauff
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital, Prilly, Switzerland
| | - Jean-Michel Aubry
- Division of Psychiatric Specialties, University Hospital of Geneva, Geneva, Switzerland
| | - Roland Hasler
- Division of Psychiatric Specialties, University Hospital of Geneva, Geneva, Switzerland
| | - Karsten Ebbing
- Service of Old Age Psychiatry, Department of Psychiatry, Lausanne University Hospital, Prilly, Switzerland
| | - Armin von Gunten
- Service of Old Age Psychiatry, Department of Psychiatry, Lausanne University Hospital, Prilly, Switzerland
| | - Philippe Conus
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital, Prilly, Switzerland
| | - Chin B Eap
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Prilly, Switzerland; School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland.
| |
Collapse
|