1
|
Sabri M, Kazim H, Tawalbeh M, Al-Othman A, Almomani F. A review of advancements in humic acid removal: Insights into adsorption techniques and hybrid solutions. CHEMOSPHERE 2024; 365:143373. [PMID: 39306101 DOI: 10.1016/j.chemosphere.2024.143373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/06/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
Humic acid (HA) is a prominent contaminant in wastewater, and its elimination is crucial to ensure purified drinking water. A variety of sources of HA in wastewater exist, ranging from agricultural runoff, industrial discharges, and natural decomposition. Adsorption is a technique that has been heavily investigated in this direction. The process complexities, technological advancements, and sustainable approaches are discussed in this review. A range of adsorbents can be employed for HA removal, including modified membranes, carbon nanotubes (CNTs), clay nanoparticles, and acid-modified natural materials. This work compares the effectiveness of the preceding adsorbents along with their advantages and limitations. This review also discusses the optimization of various process parameters, such as pH, ionic strength, and temperature, with an emphasis on response surface methodology for process optimization. Furthermore, the challenges and limitations associated with each removal technique are discussed, along with the potential areas for improvement and future directions in the field of wastewater treatment.
Collapse
Affiliation(s)
- Moin Sabri
- Department of Computer Science and Engineering, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates
| | - Hisham Kazim
- Department of Computer Science and Engineering, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates
| | - Muhammad Tawalbeh
- Sustainable and Renewable Energy Engineering Department, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates; Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Amani Al-Othman
- Department of Chemical Engineering, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates; Energy, Water and Sustainable Environment Research Center, College of Engineering, American University of Sharjah, PO. Box 26666, Sharjah, United Arab Emirates
| | - Fares Almomani
- Department of Chemical Engineering, Qatar University, Qatar.
| |
Collapse
|
2
|
Zha K, Hu W, Xiong Y, Zhang S, Tan M, Bu P, Zhao Y, Zhang W, Lin Z, Hu Y, Shahbazi MA, Feng Q, Liu G, Mi B. Nanoarchitecture-Integrated Hydrogel Boosts Angiogenesis-Osteogenesis-Neurogenesis Tripling for Infected Bone Fracture Healing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2406439. [PMID: 39234844 DOI: 10.1002/advs.202406439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/23/2024] [Indexed: 09/06/2024]
Abstract
Infected fracture healing is a complicated process that includes intricate interactions at the cellular and molecular levels. In addition to angiogenesis and osteogenesis, the significance of neurogenesis in fracture healing has also been recognized in recent years. Here, a nanocomposite hydrogel containing pH-responsive zinc-gallium-humic acids (HAs) nanoparticles is developed. Through the timed release of Zn2+, Ga3+, and HAs, the hydrogel exhibits potent antibacterial effects and promotes angiogenesis, osteogenesis, and neurogenesis. The enhanced neurogenesis further promotes angiogenesis and osteogenesis, forming a mutually supportive angiogenesis-osteogenesis-neurogenesis cycle at the fracture site. The hydrogel achieves rapid infected fracture healing and improves tissue regeneration in mice. This study proposes a comprehensive treatment approach that combines antibacterial effects with the regulation of tissue regeneration to improve infected fracture healing.
Collapse
Affiliation(s)
- Kangkang Zha
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Weixian Hu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuan Xiong
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shengming Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Meijun Tan
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Pengzhen Bu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yanzhi Zhao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wenqian Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ze Lin
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yiqiang Hu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Mohammad-Ali Shahbazi
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Qian Feng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bobin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
3
|
Chang H, Sun X, Zhang H, Tan Z, Xi B, Xing M, Dong B, Zhu H. The evolution of structural characteristics and redox properties of humin during the composting of sludge and corn straw. ENVIRONMENTAL TECHNOLOGY 2024:1-12. [PMID: 39221761 DOI: 10.1080/09593330.2024.2397589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Humins (HMs), the insoluble faction of humic substances (HSs), play a pivotal role in the bioremediation of pollutants by acting as electron shuttles that modulate the interactions between microorganisms and pollutants. This crucial function is intricately linked to their structural composition and electron transfer capabilities. However, the dynamics of the electron transfer capacity (ETC) of HM extracted during the composting process and its determinants have yet to be fully elucidated. This study undertakes a comprehensive analysis of the ETC of HM derived from composting, employing electrochemical techniques alongside spectroscopic methods and elemental analysis to explore the influencing factors, including the electron accepting capacity (EAC), electron donating capacity (EDC), and electron reversible rate (ERR). Our findings reveal substantial variations in the EAC and EDC of HM throughout the composting process, with EAC values ranging from 133.03-220.98 μmol e- gC-1 and EDC values from 111.17-229.33 μmol e- gC-1. Notably, the composting process enhances the ERR and EDC of HM while diminishing their EAC. This shift is accompanied by an augmented presence of aromatic structures, polar functional groups, quinones, and nitrogen - and sulfur-containing moieties, thereby boosting the HM's EDC. Conversely, the reduction in EAC is associated with a decline in lignin carbon content and the abundance of oxygen-containing moieties, as well as the diminishment of visible fulvic-like and protein-like substances within HM. Importantly, humic-like substances and nitrogen-containing moieties within HM demonstrated the capacity for repeated electron transfer, underscoring their significance in the context of environmental remediation.
Collapse
Affiliation(s)
- Haoyu Chang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, People's Republic of China
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, People's Republic of China
| | - Xiaojie Sun
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, People's Republic of China
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, People's Republic of China
| | - Hongxia Zhang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, People's Republic of China
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, People's Republic of China
| | - Zhihan Tan
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, People's Republic of China
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, People's Republic of China
| | - Beidou Xi
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, People's Republic of China
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, People's Republic of China
| | - Meiyan Xing
- School of Environmental Science and Engineering, Tongji University, Shanghai, People's Republic of China
| | - Bin Dong
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, People's Republic of China
- School of Environmental Science and Engineering, Tongji University, Shanghai, People's Republic of China
| | - Hongxiang Zhu
- Modern Industry College of Ecology and Environmental Protection, Guilin University of Technology, Guilin, People's Republic of China
| |
Collapse
|
4
|
Lei T, Su J, Chang L, He R, Shan G, Jiang X, Lei Y, Guo X. Artificial humic acid produced from wet distillers grains in a microwave-assisted hydrothermal process: Physicochemical characteristics and stimulation to plant growth. CHEMOSPHERE 2024; 364:142979. [PMID: 39098348 DOI: 10.1016/j.chemosphere.2024.142979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 08/06/2024]
Abstract
Wet distillers grains, as a waste biomass with a large annual output, pose a threat to the environment and food industry. Herein, artificial humic acid (AHA) was first produced from wet distillers grains in a dual-stage microwave-assisted hydrothermal process. The influence of temperature on AHA's characteristics was investigated and compared with natural humic acid (NHA) and standard humic acid (SHA). A high yield of AHA at 20.6% was obtained at 200 °C with a total reaction time of 1 h, which is 1.8-3.1 times that obtained in traditional single-stage hydrothermal process. Increasing the reaction temperature induced the formation of phenolic hydroxyl in AHA. AHA was rich in aromaticity and carboxylic acid structure, showing similar spectral characteristics to NHA. The distribution of molecular weight of AHA was mostly 5797 Da, which decreased by 15% compared to SHA. The optimal concentration of AHA to promote seedling growth was 0.2 g/L, and the root length was 2.0 times that of the control. The microwave hydrothermal process is a facile and efficient approach to preparing AHA from waste biomass with high moisture content.
Collapse
Affiliation(s)
- Tianlong Lei
- Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, China; Research Center for Rural Energy and Ecology, Chinese Academy of Agricultural Science, Chengdu, 610041, China
| | - Jie Su
- Tarim Oilfield Company, PetroChina, Korla, 841000, China
| | - Luyi Chang
- Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, China; Research Center for Rural Energy and Ecology, Chinese Academy of Agricultural Science, Chengdu, 610041, China
| | - Rui He
- Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, China; Research Center for Rural Energy and Ecology, Chinese Academy of Agricultural Science, Chengdu, 610041, China
| | - Guangchun Shan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xiaomei Jiang
- Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, China; Research Center for Rural Energy and Ecology, Chinese Academy of Agricultural Science, Chengdu, 610041, China
| | - Yunhui Lei
- Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, China; Research Center for Rural Energy and Ecology, Chinese Academy of Agricultural Science, Chengdu, 610041, China
| | - Xiaobo Guo
- Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, China; Research Center for Rural Energy and Ecology, Chinese Academy of Agricultural Science, Chengdu, 610041, China.
| |
Collapse
|
5
|
Abd Manan F, Yeoh YK, Chai TT, Wong FC. Unlocking the potential of black soldier fly frass as a sustainable organic fertilizer: A review of recent studies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:121997. [PMID: 39111002 DOI: 10.1016/j.jenvman.2024.121997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/24/2024] [Accepted: 07/24/2024] [Indexed: 08/15/2024]
Abstract
Using Hermetia illucens, or Black Soldier Fly (BSF) frass as an organic fertilizer is becoming increasingly popular in many countries. As a byproduct derived from BSF larvae that feed on organic waste, BSF frass has tremendous potential for preserving the environment and promoting the circular economy. Since it has diverse biochemical properties influenced by various production and environmental factors, further research is needed to evaluate its potential for extensive use in crop production and agriculture. Our review summarizes recent findings in BSF frass research by describing its composition and biochemical properties derived from various studies, including nutrient contents, biostimulant compounds, and microbial profiles. We also discuss BSF frass fertilizers' effectiveness on plant growth and contribution to environmental sustainability. Great compositions of BSF frass increase the quality of plants/crops by establishing healthy soil and improving the plants' immune systems. Special emphasis is given to potentially replacing conventional fertilizer to create a more sustainable cropping system via organic farming. Besides, we discuss the capability of BSF bioconversion to reduce greenhouse gas emissions and improve the socioeconomic aspect. The prospects of BSF frass in promoting a healthy environment by reducing greenhouse gas emissions and improving the socioeconomic aspects of communities have also been highlighted. Overall, BSF frass offers an alternative approach that can be integrated with conventional fertilizers to optimize the cropping system. Further studies are needed to fully explore its potential in establishing sustainable system that can enhance socioeconomic benefits in the future.
Collapse
Affiliation(s)
- Fazilah Abd Manan
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai, 81310, Johor, Malaysia.
| | - Yao-Kai Yeoh
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar, 31900, Perak, Malaysia
| | - Tsun-Thai Chai
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar, 31900, Perak, Malaysia; Center for Agriculture and Food Research, Universiti Tunku Abdul Rahman, Kampar, 31900, Perak, Malaysia
| | - Fai-Chu Wong
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar, 31900, Perak, Malaysia; Center for Agriculture and Food Research, Universiti Tunku Abdul Rahman, Kampar, 31900, Perak, Malaysia
| |
Collapse
|
6
|
Ding Y, Yang G, Zheng S, Gao X, Xiang Z, Gao M, Wang C, Liu M, Zhong J. Advanced photocatalytic disinfection mechanisms and their challenges. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121875. [PMID: 39018863 DOI: 10.1016/j.jenvman.2024.121875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/19/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Currently, microbial contamination issues have globally brought out a huge health threat to human beings and animals. To be specific, microorganisms including bacteria and viruses display durable ecological toxicity and various diseases to aquatic organisms. In the past decade, the photocatalytic microorganism inactivation technique has attracted more and more concern owing to its green, low-cost, and sustainable process. A variety kinds of photocatalysts have been employed for killing microorganisms in the natural environment. However, two predominant shortcomings including low activity of photocatalysts and diverse impacts of water characteristics are still displayed in the current photocatalytic disinfection system. So far, various strategies to improve the inherent activity of photocatalysts. Other than the modification of photocatalysts, the optimization of environments of water bodies has been also conducted to enhance microorganisms inactivation. In this mini-review, we outlined the recent progress in photocatalytic sterilization of microorganisms. Meanwhile, the relevant methods of photocatalyst modification and the influences of water body characteristics on disinfection ability were thoroughly elaborated. More importantly, the relationships between strategies for constructing advanced photocatalytic microorganism inactivation systems and improved performance were correlated. Finally, the perspectives on the prospects and challenges of photocatalytic disinfection were presented. We sincerely hope that this critical mini-review can inspire some new concepts and ideas in designing advanced photocatalytic disinfection systems.
Collapse
Affiliation(s)
- Yang Ding
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, Zhejiang, China
| | - Guoxiang Yang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China.
| | - Sirui Zheng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Xing Gao
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Zhuomin Xiang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Mengyang Gao
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Chunhua Wang
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, 99077, China
| | - Meijiao Liu
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Jiasong Zhong
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, Zhejiang, China
| |
Collapse
|
7
|
Li Y, Zhang M, Wang X, Ai S, Meng X, Liu Z, Yang F, Cheng K. Synergistic enhancement of cadmium immobilization and soil fertility through biochar and artificial humic acid-assisted microbial-induced calcium carbonate precipitation. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135140. [PMID: 39002486 DOI: 10.1016/j.jhazmat.2024.135140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/17/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
Microbially induced carbonate precipitation (MICP) is emerging as a favorable alternative to traditional soil remediation techniques for heavy metals, primarily due to its environmental friendliness. However, a significant challenge in using MICP for farmland is not only to immobilize heavy metals but also to concurrently enhance soil fertility. This study explores the innovative combination of artificial humic acid (A-HA), biochar (BC), and Sporosarcina pasteurii (S. pasteurii) to mitigate the bioavailability of cadmium (Cd) in contaminated agricultural soils through MICP. X-ray diffraction (XRD) and scanning electron microscope (SEM) analyses revealed that the integration of BC and A-HA significantly enhances Cd immobilization efficiency by co-precipitating with CaCO3. Moreover, this treatment also improved soil fertility and ecological functions, as evidenced by increases in total nitrogen (TN, 9.0-78.2 %), alkaline hydrolysis nitrogen (AN, 259.7-635.5 %), soil organic matter (SOM, 18.1-27.9 %), total organic carbon (TOC, 43.8-48.8 %), dissolved organic carbon (DOC, 36.0-88.4 %) and available potassium (AK, 176.2-193.3 %). Additionally, the relative abundance of dominant phyla such as Proteobacteria and Firmicutes significantly increased with the introduction of BC and A-HA in MICP. Consequently, the integration of BC and A-HA with MICP offers a promising solution for remediating Cd-contaminated agricultural soil and synergistically enhancing soil fertility.
Collapse
Affiliation(s)
- Yu Li
- College of Engineering, Northeast Agricultural University, Harbin, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, China
| | - Meiling Zhang
- College of Engineering, Northeast Agricultural University, Harbin, China
| | - Xiaobin Wang
- College of Engineering, Northeast Agricultural University, Harbin, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, China
| | - Shuang Ai
- College of Engineering, Northeast Agricultural University, Harbin, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, China
| | - Xianghui Meng
- College of Engineering, Northeast Agricultural University, Harbin, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, China
| | - Zhuqing Liu
- International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, China; School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, China.
| | - Fan Yang
- International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, China; School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, China.
| | - Kui Cheng
- College of Engineering, Northeast Agricultural University, Harbin, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, China.
| |
Collapse
|
8
|
Shan G, Li W, Liu J, Bao S, Li Z, Wang S, Zhu L, Xi B, Tan W. Co-hydrothermal carbonization of municipal sludge and agricultural waste to reduce plant growth inhibition by aqueous phase products: Molecular level analysis of organic matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:173073. [PMID: 38734103 DOI: 10.1016/j.scitotenv.2024.173073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/15/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
The organic matter molecular mechanism by which combined hydrothermal carbonization (co-HTC) of municipal sludge (MS) and agricultural wastes (rice husk, spent mushroom substrate, and wheat straw) reduces the inhibitory effects of aqueous phase (AP) products on pak choi (Brassica campestris L.) growth compared to HTC of MS alone is not clear. Fourier-transform ion cyclotron resonance mass spectrometry was used to characterize the differences in organic matter at the molecular level between AP from MS HTC alone (AP-MS) and AP from co-HTC of MS and agricultural waste (co-Aps). The results showed that N-bearing molecules of AP-MS and co-Aps account for 70.6 % and 54.2 %-64.1 % of all molecules, respectively. Lignins were present in the highest proportion (56.3 %-78.5 %) in all APs, followed by proteins and lipids. The dry weight of co-APs hydroponically grown pak choi was 31.6 %-47.6 % higher than that of the AP-MS. Molecules that were poorly saturated and with low aromaticity were preferentially consumed during hydroponic treatment. Molecules present before and after hydroponics were defined as resistant molecules; molecules present before hydroponics but absent after hydroponics were defined as removed molecules; and molecules absent before hydroponics but present after hydroponics were defined as produced molecules. Large lignin molecules were broken down into more unsaturated molecules, but lignins were the most commonly resistant, removed, and produced molecules. Correlation analysis revealed that N- or S-bearing molecules were phytotoxic in the AP. Tannins positively influenced the growth of pak choi. These results provide new insights into potential implementation strategies for liquid fertilizers produced from AP arising from HTC of MS and agricultural wastes.
Collapse
Affiliation(s)
- Guangchun Shan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Weiguang Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Jie Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shanshan Bao
- Key Laboratory of Water Management and Water Security for Yellow River Basin, Ministry of Water Resources, Yellow River Engineering Consulting Co. Ltd., Zhengzhou 450003, China
| | - Zhenling Li
- Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China
| | - Shuncai Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lin Zhu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
9
|
Shen X, He J, Zhang N, Li Y, Lei X, Sun C, Muhammad A, Shao Y. Assessing the quality and eco-beneficial microbes in the use of silkworm excrement compost. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 183:163-173. [PMID: 38759274 DOI: 10.1016/j.wasman.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 05/19/2024]
Abstract
Sericulture has become widespread globally, and the utilization of artificial diets produces a substantial quantity of silkworm excrement. Although silkworm excrement can be composted for environmentally friendly disposal, the potential utility of the resulting compost remains underexplored. The aim of this study was to assess the quality of this unique compost and screen for eco-beneficial microbes, providing a new perspective on microbial research in waste management, especially in sustainable agriculture. The low-concentration compost application exhibited a greater plant growth-promoting effect, which was attributed to an appropriate nutritional value (N, P, K, and dissolved organic matter) and the presence of plant growth-promoting bacteria (PGPB) within the compost. Encouraged by the "One Health" concept, the eco-benefits of potent PGPB, namely, Klebsiella pneumoniae and Bacillus licheniformis, in sericulture were further evaluated. For plants, K. pneumoniae and B. licheniformis increased plant weight by 152.44 % and 130.91 %, respectively. We also found that even a simple synthetic community composed of the two bacteria performed better than any single bacterium. For animals, K. pneumoniae significantly increased the silkworm (Qiufeng × Baiyu strain) cocoon shell weight by 111.94 %, which could increase sericulture profitability. We also elucidated the mechanism by which K. pneumoniae assisted silkworms in degrading tannic acid, a common plant-derived antifeedant, thereby increasing silkworm feed efficiency. Overall, these findings provide the first data revealing multiple beneficial interactions among silkworm excrement-derived microbes, plants, and animals, highlighting the importance of focusing on microbes in sustainable agriculture.
Collapse
Affiliation(s)
- Xiaoqiang Shen
- Max Planck Partner Group, Institute of Sericulture and Apiculture, Faculty of Agriculture, Life and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Jintao He
- Max Planck Partner Group, Institute of Sericulture and Apiculture, Faculty of Agriculture, Life and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Nan Zhang
- Max Planck Partner Group, Institute of Sericulture and Apiculture, Faculty of Agriculture, Life and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Yu Li
- Max Planck Partner Group, Institute of Sericulture and Apiculture, Faculty of Agriculture, Life and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Xiaoyu Lei
- Max Planck Partner Group, Institute of Sericulture and Apiculture, Faculty of Agriculture, Life and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Chao Sun
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Abrar Muhammad
- Max Planck Partner Group, Institute of Sericulture and Apiculture, Faculty of Agriculture, Life and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Yongqi Shao
- Max Planck Partner Group, Institute of Sericulture and Apiculture, Faculty of Agriculture, Life and Environmental Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, China; Key Laboratory for Molecular Animal Nutrition, Ministry of Education, Hangzhou, China.
| |
Collapse
|
10
|
Xie J, Wu Q, Feng L, Li J, Zhou Y, Wu GZ, Men Y. Super-Transparent Soil for In Situ Observation of Root Phenotypes. Molecules 2024; 29:2677. [PMID: 38893550 PMCID: PMC11173578 DOI: 10.3390/molecules29112677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/06/2024] [Accepted: 05/12/2024] [Indexed: 06/21/2024] Open
Abstract
Transparent soil (TS) presents immense potential for root phenotyping due to its ability to facilitate high-resolution imaging. However, challenges related to transparency, mechanical properties, and cost hinder its development. Herein, we introduce super-transparent soil (s-TS) prepared via the droplet method using low acyl gellan gum and hydroxyethyl cellulose crosslinked with magnesium ions. The refractive index of the hydroxyethyl cellulose solution (1.345) closely aligns with that of water (1.333) and the low acyl gellan gum solution (1.340), thereby significantly enhancing the transmittance of hydrogel-based transparent soil. Optimal transmittance (98.45%) is achieved with polymer concentrations ranging from 0.8 to 1.6 wt.% and ion concentrations between 0.01 and 0.09 mol·L-1. After 60 days of plant cultivation, s-TS maintains a transmittance exceeding 89.5%, enabling the detailed visualization of root growth dynamics. Furthermore, s-TS exhibits remarkable mechanical properties, withstanding a maximum compressive stress of 477 kPa and supporting a maximum load-bearing depth of 186 cm. This innovative approach holds promising implications for advanced root phenotyping studies, fostering the investigation of root heterogeneity and the development of selective expression under controlled conditions.
Collapse
Affiliation(s)
- Jinchun Xie
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China; (J.X.); (Q.W.); (J.L.); (Y.Z.)
| | - Qiye Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China; (J.X.); (Q.W.); (J.L.); (Y.Z.)
| | - Liping Feng
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China;
| | - Junfu Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China; (J.X.); (Q.W.); (J.L.); (Y.Z.)
| | - Yingjie Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China; (J.X.); (Q.W.); (J.L.); (Y.Z.)
| | - Guo-Zhang Wu
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China;
| | - Yongjun Men
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China; (J.X.); (Q.W.); (J.L.); (Y.Z.)
| |
Collapse
|
11
|
Constantino IC, Bento LR, Santos VS, da Silva LS, Tadini AM, Mounier S, Piccolo A, Spaccini R, Cornélio ML, Paschoal FMM, Junior ÉS, Moreira AB, Bisinoti MC. Seasonal studies of aquatic humic substances from Amazon rivers: characterization and interaction with Cu (II), Fe (II), and Al (III) using EEM-PARAFAC and 2D FTIR correlation analyses. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:595. [PMID: 38833198 DOI: 10.1007/s10661-024-12729-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/17/2024] [Indexed: 06/06/2024]
Abstract
Aquatic humic substances (AHS) are defined as an important components of organic matter, being composed as small molecules in a supramolecular structure and can interact with metallic ions, thereby altering the bioavailability of these species. To better understand this behavior, AHS were extracted and characterized from Negro River, located near Manaus city and Carú River, that is situated in Itacoatiara city, an area experiencing increasing anthropogenic actions; both were characterized as blackwater rivers. The AHS were characterized by 13C nuclear magnetic ressonance and thermochemolysis GC-MS to obtain structural characteristics. Interaction studies with Cu (II), Al (III), and Fe (III) were investigated using fluorescence spectroscopy applied to parallel factor analysis (PARAFAC) and two-dimensional correlation spectroscopy with Fourier transform infrared spectroscopy (2D-COS FTIR). The AHS from dry season had more aromatic fractions not derived from lignin and had higher content of alkyls moities from microbial sources and vegetal tissues of autochthonous origin, while AHS isolated in the rainy season showed more metals in its molecular architecture, lignin units, and polysacharide structures. The study showed that AHS composition from rainy season were able to interact with Al (III), Fe (III), and Cu (II). Two fluorescent components were identified as responsible for interaction: C1 (blue-shifted) and C2 (red-shifted). C1 showed higher complexation capacities but with lower complexation stability constants (KML ranged from 0.3 to 7.9 × 105) than C2 (KML ranged from 3.1 to 10.0 × 105). 2D-COS FTIR showed that the COO- and C-O in phenolic were the most important functional groups for interaction with studied metallic ions.
Collapse
Affiliation(s)
- Isabela Carreira Constantino
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences (IBILCE), São Paulo State University (UNESP), São José Do Rio Preto, São Paulo, Brazil
| | - Lucas Raimundo Bento
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences (IBILCE), São Paulo State University (UNESP), São José Do Rio Preto, São Paulo, Brazil
- The Interdepartmental Research Centre On Nuclear Magnetic Resonance for the Environment, Agroo-Food and New Materials (CERMANU), University of Naples Federico II, Portici, Naples, Italy
| | - Vinicius Sarracini Santos
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences (IBILCE), São Paulo State University (UNESP), São José Do Rio Preto, São Paulo, Brazil
| | - Leila Soares da Silva
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences (IBILCE), São Paulo State University (UNESP), São José Do Rio Preto, São Paulo, Brazil
| | | | - Stéphane Mounier
- Mediterranean Institute of Oceanography (MIO), University Toulon, Toulon, France
| | - Alessandro Piccolo
- The Interdepartmental Research Centre On Nuclear Magnetic Resonance for the Environment, Agroo-Food and New Materials (CERMANU), University of Naples Federico II, Portici, Naples, Italy
| | - Riccardo Spaccini
- The Interdepartmental Research Centre On Nuclear Magnetic Resonance for the Environment, Agroo-Food and New Materials (CERMANU), University of Naples Federico II, Portici, Naples, Italy
| | - Marinônio Lopes Cornélio
- Department of Physics, Institute of Biosciences, Humanities and Exact Sciences (IBILCE), São Paulo State University (UNESP), São José Do Rio Preto, São Paulo, Brazil
| | | | | | - Altair Benedito Moreira
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences (IBILCE), São Paulo State University (UNESP), São José Do Rio Preto, São Paulo, Brazil
| | - Márcia Cristina Bisinoti
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences (IBILCE), São Paulo State University (UNESP), São José Do Rio Preto, São Paulo, Brazil.
| |
Collapse
|
12
|
Pitann B, Khan K, Mühling KH. Does humic acid foliar application affect growth and nutrient status of water-stressed maize? PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2024; 5:e10156. [PMID: 38882244 PMCID: PMC11176913 DOI: 10.1002/pei3.10156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024]
Abstract
Maize (Zea mays L.) is one of the world's most important crops, but its productivity is at high risk as climate change increases the risk of water stress. Therefore, the development of mitigation strategies to combat water stress in agriculture is fundamental to ensure food security. Humic acids are known to have a positive effect on drought tolerance, but data on their efficacy under waterlogging are lacking. This study aimed to elucidate the effect of a new humic acid product, a by-product of Ukrainian bentonite mining, on maize growth and nutrient status under waterlogging. Maize was grown for 9 weeks and three water stress treatments, which were applied for 14 days: waterlogging, alternating waterlogging and drought, and drought. On the day of stress application, the humic acid product (1% v/v) was applied to the leaves. Soil Plant Analysis Development (SPAD) values were recorded during the stress treatments. Plants were harvested after stressing ceased and fresh weight and P and Zn status were analyzed. Drought reduced shoot fresh weight, while it was unaffected under waterlogging. This is in contrast to SPAD readings, which showed a significant decrease over time under submergence, but not under drought. Under alternating stress, although SPAD values declined under waterlogging but stabilized when switched to drought, no growth reduction was apparent. Application of the humic acid product was ineffective in all cases. Although anthocyanin discoloration occurred under waterlogging stress, P deficiency, which is usually the main factor driving anthocyanin formation, was not the reason. Interestingly, Zn concentration decreased under waterlogging but not under the other stresses, which was alleviated by humic acid application. However, no effect of foliar-applied humic acids was observed under alternating and drought stress. It can be concluded that the tested humic acid product has the potential to improve the Zn status of maize under waterlogging.
Collapse
Affiliation(s)
- Britta Pitann
- Institute of Plant Nutrition and Soil Science Kiel University Kiel Germany
| | - Kamran Khan
- Institute of Plant Nutrition and Soil Science Kiel University Kiel Germany
| | - Karl H Mühling
- Institute of Plant Nutrition and Soil Science Kiel University Kiel Germany
| |
Collapse
|
13
|
Yang Q, Liao W, Wei Z, Qiu R, Zheng Q, Wu Q, Chen Y. Degradation and humification of steroidal estrogens in the soil environment: A review. CHEMOSPHERE 2024; 357:142043. [PMID: 38626810 DOI: 10.1016/j.chemosphere.2024.142043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/10/2024] [Accepted: 04/04/2024] [Indexed: 04/21/2024]
Abstract
Emerging pollutants are toxic and harmful chemical substances characterized by environmental persistence, bioaccumulation and biotoxicity, which can harm the ecological environment and even threaten human health. There are four categories of emerging pollutants that are causing widespread concern, namely, persistent organic pollutants, endocrine disruptors, antibiotics, and microplastics. The distribution of emerging pollutants has spatial and temporal heterogeneity, which is influenced by factors such as geographical location, climatic conditions, population density, emission amount, etc. Steroidal estrogens (SEs) discussed in this paper belong to the category of endocrine disruptors. There are generally three types of fate for SEs in the soil environment: sorption, degradation and humification. Humification is a promising pathway for the removal of SEs, especially for those that are difficult to degrade. Through humification, these difficult-to-degrade SEs can be effectively transferred or fixed, thus reducing their impact on the environment and organisms. Contrary to the well-studied process of sorption and degradation, the role and promise of the humification process for the removal of SEs has been underestimated. Based on the existing research, this paper reviews the sources, classification, properties, hazards and environmental behaviors of SEs in soil, and focuses on the degradation and humification processes of SEs and the environmental factors affecting their processes, such as temperature, pH, etc. It aims to provide references for the follow-up research of SEs, and advocates further research on the humification of organic pollutants in future studies.
Collapse
Affiliation(s)
- Qianhui Yang
- College of Natural Resources and Environment, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou, 510642, China
| | - Weishan Liao
- College of Natural Resources and Environment, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou, 510642, China
| | - Zebin Wei
- College of Natural Resources and Environment, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou, 510642, China
| | - Rongliang Qiu
- College of Natural Resources and Environment, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou, 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China
| | - Qian Zheng
- College of Natural Resources and Environment, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou, 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China
| | - Qitang Wu
- College of Natural Resources and Environment, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou, 510642, China
| | - Yangmei Chen
- College of Natural Resources and Environment, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou, 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China.
| |
Collapse
|
14
|
Bui VKH, Nguyen XC, Truong HB, Hur J. Using CuMgFe layered double oxide to replace laccase as a catalyst for abiotic humification. CHEMOSPHERE 2024; 353:141647. [PMID: 38460843 DOI: 10.1016/j.chemosphere.2024.141647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/03/2024] [Accepted: 03/03/2024] [Indexed: 03/11/2024]
Abstract
Humification offers a promising avenue for sequestering dissolved organic carbon while facilitating environmental cleanup. In this study, CuMgFe layered double oxides (LDO) were applied as a catalyst to replace conventional enzymes, such as laccase, thereby enhancing the in vitro polyphenol-Maillard humification reaction. CuMgFe LDO was synthesized through calcination of CuMgFe layered double hydroxides (LDH) at 500 °C for 5 h. A suite of characterization methods confirmed the successful formation into mixed oxides (Cu2O, CuO, MgO, FeO, and Fe2O3) after thermal treatment. A rapid humification reaction was observed with CuMgFe LDO, occurring within a two-week span, likely due to a distinct synergy between copper and iron elements. Subsequent analyses identified that MgO in CuMgFe LDO also played a pivotal role in humification by stabilizing the pH of the reaction. In the absence of magnesium, LDO's humification activity was more pronounced in the early stages of the reaction, but it rapidly diminished as the reaction progressed. The efficiency of CuMgFe LDO was heightened at elevated temperatures (35 °C), while light conditions manifested a discernible effect, with a modest decrease in humification efficacy under indoor light exposure. CuMgFe LDO surpassed both laccase and MgFe LDH in performance, boasting a superior humification efficiency relative to its precursor, CuMgFe LDH. The catalysts' humification activity was modulated by their crystallinity and valence dynamics. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) results suggested that introducing the amino acid, glycine, expedited the CuMgFe LDO-fueled humification, enhancing the formation of C-N and C-C bonds in the resultant products. The humic-like substances derived from the catalyst-enhanced reaction displayed an elevated presence of aromatic configurations and a richer array of oxygen functional groups in comparison to a typical commercial humic material.
Collapse
Affiliation(s)
- Vu Khac Hoang Bui
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea
| | - Xuan Cuong Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Environmental Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam
| | - Hai Bang Truong
- Optical Materials Research Group, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City, Viet Nam; Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Viet Nam
| | - Jin Hur
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea.
| |
Collapse
|
15
|
Zhi Y, Li X, Wang X, Jia M, Wang Z. Photosynthesis promotion mechanisms of artificial humic acid depend on plant types: A hydroponic study on C3 and C4 plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170404. [PMID: 38281646 DOI: 10.1016/j.scitotenv.2024.170404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 01/30/2024]
Abstract
It is feasible to improve plant photosynthesis to address the global climate goals of carbon neutrality. The application of artificial humic acid (AHA) is a promising approach to promote plant photosynthesis, however, the associated mechanisms for C3 and C4 plants are still unclear. In this study, the real-time chlorophyll synthesis and microscopic physiological changes in plant leave cells with the application of AHA were first revealed using the real-time chlorophyll fluorescence parameters and Non-invasive Micro-test Technique. The transcriptomics suggested that the AHA application up-regulated the genes in photosynthesis, especially related to chlorophyll synthesis and light energy capture, in maize and the genes in photosynthetic vitality and carbohydrate metabolic process in lettuce. Structural equation model suggested that the photodegradable substances and growth hormones in AHA directly contributes to photosynthesis of C4 plants (0.37). AHA indirectly promotes the photosynthesis in the C4 plants by upregulating functional genes (e.g., Mg-CHLI and Chlorophyllase) involved in light capture and transformation (0.96). In contrast, AHA mainly indirectly promotes C3 plants photosynthesis by increasing chlorophyll synthesis, and the Rubisco activity and the ZmRbcS expression in the dark reaction of lettuce (0.55). In addition, Mg2+ transfer and flux in C3 plant leaves was significantly improved by AHA, indirectly contributes to plant photosynthesis (0.24). Finally, the AHA increased the net photosynthetic rate of maize by 46.50 % and that of lettuce by 88.00 %. Application of the nutrients- and hormone-rich AHA improves plant growth and photosynthesis even better than traditional Hoagland solution. The revelation of the different photosynthetic promotion mechanisms on C3 and C4 plant in this work guides the synthesis and efficient application of AHA in green agriculture and will propose the development of AHA technology to against climate change resulting from CO2 emissions in near future.
Collapse
Affiliation(s)
- Yancai Zhi
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaona Li
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Xiaowei Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Minghao Jia
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| |
Collapse
|
16
|
de Sousa TR, de Carvalho AM, Ramos MLG, de Oliveira AD, de Jesus DR, da Fonseca ACP, da Costa Silva FR, Delvico FMDS, Junior FBDR, Marchão RL. Dynamics of Carbon and Soil Enzyme Activities under Arabica Coffee Intercropped with Brachiaria decumbens in the Brazilian Cerrado. PLANTS (BASEL, SWITZERLAND) 2024; 13:835. [PMID: 38592872 PMCID: PMC10974931 DOI: 10.3390/plants13060835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/09/2024] [Accepted: 03/10/2024] [Indexed: 04/11/2024]
Abstract
The change in land use in the Brazilian Cerrado modifies the dynamics of soil organic matter (SOM) and, consequently, carbon (C) stocks and their fractions and soil enzyme activities. This study evaluated the effect of brachiaria (Brachiaria decumbens Stapf.) intercropped with Arabica coffee (Coffea arabica L.) on the stock and fractions of soil carbon and enzyme activities. The experiment was arranged in a completely randomized block design with three replications and treatments in a factorial design. The first factor consisted of coffee with or without intercropped brachiaria, the second of Arabica coffee cultivars ('I.P.R.103' and 'I.P.R.99') and the third factor of the point of soil sampling (under the canopy (UC) and in inter-rows (I)). Soil was sampled in layers of 0-10, 10-20, 20-30, 30-40, 40-60 and 60-80 cm. Soil from the 0-10 cm layer was also used to analyze enzymatic activity. Significant effects of coffee intercropped with brachiaria were confirmed for particulate organic carbon (POC), with highest contents in the 0-10 and 20-30 cm layers (9.62 and 6.48 g kg-1, respectively), and for soil enzymes (280.83 and 180.3 μg p-nitrophenol g-1 for arylsulfatase and β-glucosidase, respectively).
Collapse
Affiliation(s)
- Thais Rodrigues de Sousa
- Faculty of Agronomy and Veterinary Medicine, University of Brasilia, Campus Darcy Ribeiro, Brasilia 70910-970, DF, Brazil; (D.R.d.J.); (A.C.P.d.F.); (F.R.d.C.S.)
| | - Arminda Moreira de Carvalho
- Embrapa Cerrados, BR-020, Km 18, Planaltina 73310-970, DF, Brazil; (A.D.d.O.); (F.M.d.S.D.); (F.B.d.R.J.); (R.L.M.)
| | - Maria Lucrécia Gerosa Ramos
- Faculty of Agronomy and Veterinary Medicine, University of Brasilia, Campus Darcy Ribeiro, Brasilia 70910-970, DF, Brazil; (D.R.d.J.); (A.C.P.d.F.); (F.R.d.C.S.)
| | | | - Douglas Rodrigues de Jesus
- Faculty of Agronomy and Veterinary Medicine, University of Brasilia, Campus Darcy Ribeiro, Brasilia 70910-970, DF, Brazil; (D.R.d.J.); (A.C.P.d.F.); (F.R.d.C.S.)
| | - Ana Caroline Pereira da Fonseca
- Faculty of Agronomy and Veterinary Medicine, University of Brasilia, Campus Darcy Ribeiro, Brasilia 70910-970, DF, Brazil; (D.R.d.J.); (A.C.P.d.F.); (F.R.d.C.S.)
| | - Fernanda Rodrigues da Costa Silva
- Faculty of Agronomy and Veterinary Medicine, University of Brasilia, Campus Darcy Ribeiro, Brasilia 70910-970, DF, Brazil; (D.R.d.J.); (A.C.P.d.F.); (F.R.d.C.S.)
| | | | - Fábio Bueno dos Reis Junior
- Embrapa Cerrados, BR-020, Km 18, Planaltina 73310-970, DF, Brazil; (A.D.d.O.); (F.M.d.S.D.); (F.B.d.R.J.); (R.L.M.)
| | - Robélio Leandro Marchão
- Embrapa Cerrados, BR-020, Km 18, Planaltina 73310-970, DF, Brazil; (A.D.d.O.); (F.M.d.S.D.); (F.B.d.R.J.); (R.L.M.)
| |
Collapse
|
17
|
Gai S, Liu B, Lan Y, Han L, Hu Y, Dongye G, Cheng K, Liu Z, Yang F. Artificial humic acid coated ferrihydrite strengthens the adsorption of phosphate and increases soil phosphate retention. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169870. [PMID: 38218478 DOI: 10.1016/j.scitotenv.2024.169870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/01/2024] [Accepted: 01/01/2024] [Indexed: 01/15/2024]
Abstract
Phosphorus (P) leaching loss from farmland soils is one of the main causes of water eutrophication. Thus, effective methods must be developed to maintain sustainability in agricultural soils. Herein, we design artificial humic acid (A-HA) coated ferrihydrite (Fh) particles for fixing P in soil. The experiments in water and soil are successively conducted to explore the phosphate adsorption mechanism and soil P retention performance of A-HA coated ferrihydrite particles (A-Fh). Compared with unmodified ferrihydrite (Fh), the phosphate adsorption capacity of A-Fh is increased by 15 %, the phosphate adsorption speed and selectivity are also significantly improved. The ligand exchange, electrostatic attraction and hydrogen bonding are the dominant mechanisms of phosphate adsorption by A-Fh. In soil experiments, the addition of 2 % A-Fh increases the soil P retention performance from 0.15 to 0.7 mg/kg, and A-Fh are able to convert more phosphate adsorbed by itself into soil available P to improve soil fertility. Overall, this work highlights the importance of this a highly effective amendment for improving poor soils.
Collapse
Affiliation(s)
- Shuang Gai
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, Harbin 150030, China
| | - Bing Liu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, Harbin 150030, China
| | - Yibo Lan
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, Harbin 150030, China
| | - Lin Han
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, Harbin 150030, China
| | - Yixiong Hu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, Harbin 150030, China
| | - Guanghao Dongye
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, Harbin 150030, China
| | - Kui Cheng
- College of Engineering, Northeast Agricultural University, Harbin 150030, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, Harbin 150030, China
| | - Zhuqing Liu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, Harbin 150030, China.
| | - Fan Yang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, Harbin 150030, China.
| |
Collapse
|
18
|
Agunbiade VF, Babalola OO. Drought Stress Amelioration Attributes of Plant-Associated Microbiome on Agricultural Plants. Bioinform Biol Insights 2024; 18:11779322241233442. [PMID: 38464334 PMCID: PMC10924568 DOI: 10.1177/11779322241233442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 02/01/2024] [Indexed: 03/12/2024] Open
Abstract
The future global food security depends on the availability of water for agriculture. Yet, the ongoing rise in nonagricultural uses for water, such as urban and industrial uses, and growing environmental quality concerns have increased pressure of irrigation water demand and posed danger to food security. Nevertheless, its severity and duration are predicted to rise shortly. Drought pressure causes stunted growth, severe damage to photosynthesis activity, loss in crop yield, reduced seed germination, and reduced nutrient intake by plants. To overcome the effects of a devastating drought on plants, it is essential to think about the causes, mechanisms of action, and long-term agronomy management and genetics. As a result, there is an urgent need for long-term medication to deal with the harmful effects of drought pressure. The review focuses on the adverse impact of drought on the plant, physiological, and biochemical aspects, and management measures to control the severity of drought conditions. This article reviews the role of genome editing (GE) technologies such as CRISPR 9 (CRISPR-Cas9) related spaces and short palindromic relapse between proteins in reducing the effects of phytohormones, osmolytes, external compounds, proteins, microbes (plant growth-promoting microorganism [PGPM]), approach omics, and drought on plants that support plant growth. This research is to examine the potential of using the microbiome associated with plants for drought resistance and sustainable agriculture. Researchers also advocate using a mix of biotechnology, agronomic, and advanced GE technologies to create drought-tolerant plant varieties.
Collapse
Affiliation(s)
- Victor Funso Agunbiade
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| |
Collapse
|
19
|
Gu W, Bai J, Chen J. Application of thermally treated sludge residues on an e-waste contaminated soil: effects on PTE bioavailability, soil physicochemical and biological properties, and L. perenne growth. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:21962-21972. [PMID: 38400963 DOI: 10.1007/s11356-024-32179-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/21/2024] [Indexed: 02/26/2024]
Abstract
In the context of sustainable development, potentially toxic element (PTE) contamination of soil and large-scale disposal of sludge are two major environmental issues that need to be addressed urgently. It is of great significance to develop efficient and green technologies to solve these problems simultaneously. This study investigated the effects of a 5% addition of thermally treated sludge residues (fermentation and pyrolysis residues) in synergy with L. perenne on soil organic matter, mineral nutrients, PTE speciation, and PTE uptake and transport by L. perenne in an e-waste-contaminated soil through pot experiments. The results showed that the thermally treated sludge residues significantly increased soil electrical conductivity, cation exchange capacity, organic matter, available phosphorus, and exchangeable potassium contents. New PTE-containing crystalline phases were detected, and dissolved humic substances were found. Sludge fermentation residue significantly increased dissolved organic matter content, whereas sludge pyrolysis residue showed no significant effect. The combination of thermally treated sludge residues and L. perenne increased the residual fractions of Cu, Zn, Pb, and Cd. The thermally treated sludge residues promoted L. perenne growth, increasing fresh weight, plant height, and phosphorus and potassium uptake. The uptake of Cu, Zn, Pb, and Cd by L. perenne was significantly reduced. This approach has the potential for applications in the ecological restoration of e-waste-contaminated soils.
Collapse
Affiliation(s)
- Weihua Gu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai, 201209, China
| | - Jianfeng Bai
- School of Resources and Environmental Engineering, Shanghai Polytechnic University, Shanghai, 201209, China
| | - Jianmeng Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
20
|
Peng XX, Gai S, Liu Z, Cheng K, Yang F. Effects of Fe 3+ on Hydrothermal Humification of Agricultural Biomass. CHEMSUSCHEM 2024; 17:e202301227. [PMID: 37833827 DOI: 10.1002/cssc.202301227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/15/2023] [Accepted: 10/13/2023] [Indexed: 10/15/2023]
Abstract
Hydrothermal humification technology for the preparation of artificial humic matters provides a new strategy, greatly promoting the natural maturation process. Iron, as a common metal, is widely used in the conversion of waste biomass; however, the influence of Fe3+ on hydrothermal humification remains unknown. In this study, FeCl3 is used to catalyze the hydrothermal humification of corn straw, and the influence of Fe3+ on the hydrothermal humification is explored by a series of characterization techniques. Results show that Fe3+ as the catalyst can promote the decomposition of corn straw, shorten the reaction time from 24 h to 6 h, and increase the yield from 6.77 % to 14.08 %. However, artificial humic acid (A-HA) obtained from Fe3+ -catalysis hydrothermal humification contains more unstable carbon and low amount of aromatics, resulting in a significantly decreased stability of the artificial humic acid. These results provide theoretical guidance for regulating the structure and properties of artificial humic acid to meet various maintenance needs.
Collapse
Affiliation(s)
- Xiong-Xin Peng
- School of Water Conservancy and Civil Engineering Department, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Provincial International Joint Laboratory of Smart Soil, Harbin, 150030, China
| | - Shuang Gai
- School of Water Conservancy and Civil Engineering Department, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Provincial International Joint Laboratory of Smart Soil, Harbin, 150030, China
| | - Zhuqing Liu
- School of Water Conservancy and Civil Engineering Department, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Provincial International Joint Laboratory of Smart Soil, Harbin, 150030, China
| | - Kui Cheng
- Heilongjiang Provincial International Joint Laboratory of Smart Soil, Harbin, 150030, China
- College of Engineering, Northeast Agricultural University, Harbin, 150030, China
| | - Fan Yang
- School of Water Conservancy and Civil Engineering Department, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Provincial International Joint Laboratory of Smart Soil, Harbin, 150030, China
| |
Collapse
|
21
|
Ibrahim EA, Ebrahim NES, Mohamed GZ. Mitigation of water stress in broccoli by soil application of humic acid. Sci Rep 2024; 14:2765. [PMID: 38307891 PMCID: PMC10837118 DOI: 10.1038/s41598-024-53012-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/25/2024] [Indexed: 02/04/2024] Open
Abstract
The main challenge to plant productivity is water scarcity, which is predicted to get worse with climate change, particularly in arid and semi-arid areas. Humic acid could improve plant tolerance to mitigate drought damage, which is an effective strategy to improve crop production and agriculture sustainability under limited water conditions in these regions, but its effective application rates should also be established. Thus, two field experiments were carried out at the Qaha Vegetable Research Farm in Qalubia Governorate, Egypt, during the two seasons of 2020-21 and 2021-22 on clay soil. The present study investigated the effect of three rates of humic acid application (0, 4.8, and 9.6 kg ha-1) on growth, yield, and quality of broccoli cv. Montop F1 hybrid under well-watered and drought conditions. Drought was induced by missing alternate irrigation. Soluble humic acid as potassium-humate was applied three times with irrigation water at the time of the first three irrigations of drought treatment. Water-stressed plants had a decrease in growth, yield, leaf chlorophyll, and nutrient content, while they showed an increase in the contents of leaf proline and curd dry matter and total soluble solids as well as water use efficiency, in both seasons. Soil application of humic acid was effective in mitigating the adverse effects of water deficit stress on the growth and yield of broccoli. Water-stressed plants had the highest WUE value (9.32 and 9.36 kg m3-1 in the first and second seasons, respectively) when the maximal humic acid rate was applied. Humic acid at a high level (9.6 kg ha-1) had the most promising results and represents an opportunity that must be applied to improve broccoli yield and its production sustainability in arid and semiarid regions.
Collapse
Affiliation(s)
- Ehab A Ibrahim
- Vegetables Research Department, Horticulture Research Institute, Agricultural Research Center, 9 Cairo University St., Orman, Giza, Egypt.
| | - Noura E S Ebrahim
- Vegetables Research Department, Horticulture Research Institute, Agricultural Research Center, 9 Cairo University St., Orman, Giza, Egypt
| | - Gehan Z Mohamed
- Vegetables Research Department, Horticulture Research Institute, Agricultural Research Center, 9 Cairo University St., Orman, Giza, Egypt
| |
Collapse
|
22
|
Jin Y, Yuan Y, Liu Z, Gai S, Cheng K, Yang F. Effect of humic substances on nitrogen cycling in soil-plant ecosystems: Advances, issues, and future perspectives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119738. [PMID: 38061102 DOI: 10.1016/j.jenvman.2023.119738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/18/2023] [Accepted: 11/27/2023] [Indexed: 01/14/2024]
Abstract
Nitrogen (N) cycle is one of the most significant biogeochemical cycles driven by soil microorganisms on the earth. Exogenous humic substances (HS), which include composted-HS and artificial-HS, as a new soil additive, can improve the water retention capacity, cation exchange capacity and soil nutrient utilization, compensating for the decrease of soil HS content caused by soil overutilization. This paper systematically reviewed the contribution of three different sources of HS in the soil-plant system and explained the mechanisms of N transformation through physiological and biochemical pathways. HS convert the living space and living environment of microorganisms by changing the structure and condition of soil. Generally, HS can fix atmospheric and soil N through biotic and abiotic mechanisms, which improved the availability of N. Besides, HS transform the root structure of plants through physiological and biochemical pathways to promote the absorption of inorganic N by plants. The redox properties of HS participate in soil N transformation by altering the electron gain and loss of microorganisms. Moreover, to alleviate the energy crisis and environmental problems caused by N pollution, we also illustrated the mechanisms reducing soil N2O emissions by HS and the application prospects of artificial-HS. Eventually, a combination of indoor simulation and field test, molecular biology and stable isotope techniques are needed to systematically analyze the potential mechanisms of soil N transformation, representing an important step forward for understanding the relevance between remediation of environmental pollution and improvement of the N utilization in soil-plant system.
Collapse
Affiliation(s)
- Yongxu Jin
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, China
| | - Yue Yuan
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, China
| | - Zhuqing Liu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, China
| | - Shuang Gai
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, China
| | - Kui Cheng
- International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, China; College of Engineering, Northeast Agricultural University, Harbin, 150030, China.
| | - Fan Yang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, China.
| |
Collapse
|
23
|
Yoo SB, Song YS, Seo S, Kim BG. Effects of Supplemental Benzoic Acid, Bromelain, Adipic Acid, and Humic Substances on Nitrogen Utilization, Urine pH, Slurry pH, and Manure Odorous Compounds in Pigs. Animals (Basel) 2023; 14:82. [PMID: 38200813 PMCID: PMC10778150 DOI: 10.3390/ani14010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
The objective was to evaluate the effects of benzoic acid, bromelain, adipic acid, and humic substance supplementation on nitrogen balance, urinary pH, slurry pH, and manure odorous compounds in pigs. Fifteen castrated male pigs with an initial body weight of 37.9 kg (standard deviation = 4.1) were individually housed in metabolism crates. The animals were allocated to a triplicated 5 × 2 incomplete Latin square design with 15 animals, 5 experimental diets, and 2 periods. The basal diet mainly consisted of corn, soybean meal, and rapeseed meal. Four experimental diets were prepared by supplementing each additive at a concentration of 10 g/kg at the expense of corn starch to the basal diet. Each period consisted of a 4-day adaptation period, a 24 h collection period for slurry sampling, and a 4-day collection period for feces and urine. The feces and urine collected for 24 h on day 5 were mixed at a ratio of fecal weight and urine weight to obtain slurry samples. The apparent total tract digestibility N in pigs fed the humic substance diet was the least (p < 0.05) compared to the other groups. The daily retained N and N retention as % ingested tended (p < 0.10) to be the lowest in the adipic acid group among the treatments. The urinary pH in pigs fed the adipic acid diet was less (p < 0.05) than that in other groups except the benzoic acid group. The slurry pH tended to differ among the treatment groups (p = 0.074) with the lowest value in the pigs fed the adipic acid diet. The concentrations of indole in slurry (p = 0.084) and isovalerate in feces (p = 0.062) tended to differ among the groups with the lowest values in the pigs fed the humic substance diet. In conclusion, adipic acid supplementation in pig diets can decrease urinary pH and slurry pH. Although benzoic acid and adipic acid have limited effects in reducing odorous compounds, humic substances have the potential to reduce some odorous compounds.
Collapse
Affiliation(s)
- Seung Bin Yoo
- Department of Animal Science, Konkuk University, Seoul 05029, Republic of Korea; (S.B.Y.); (Y.S.S.)
| | - Yoon Soo Song
- Department of Animal Science, Konkuk University, Seoul 05029, Republic of Korea; (S.B.Y.); (Y.S.S.)
| | - Siyoung Seo
- Animal Environmental Division, National Institute of Animal Science, Wanju 55365, Republic of Korea;
| | - Beob Gyun Kim
- Department of Animal Science, Konkuk University, Seoul 05029, Republic of Korea; (S.B.Y.); (Y.S.S.)
| |
Collapse
|
24
|
Efremenko E, Stepanov N, Senko O, Lyagin I, Maslova O, Aslanli A. Artificial Humic Substances as Biomimetics of Natural Analogues: Production, Characteristics and Preferences Regarding Their Use. Biomimetics (Basel) 2023; 8:613. [PMID: 38132553 PMCID: PMC10742262 DOI: 10.3390/biomimetics8080613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
Various processes designed for the humification (HF) of animal husbandry wastes, primarily bird droppings, reduce their volumes, solve environmental problems, and make it possible to obtain products with artificially formed humic substances (HSs) as analogues of natural HSs, usually extracted from fossil sources (coal and peat). This review studies the main characteristics of various biological and physicochemical methods of the HF of animal wastes (composting, anaerobic digestion, pyrolysis, hydrothermal carbonation, acid or alkaline hydrolysis, and subcritical water extraction). A comparative analysis of the HF rates and HS yields in these processes, the characteristics of the resulting artificial HSs (humification index, polymerization index, degree of aromaticity, etc.) was carried out. The main factors (additives, process conditions, waste pretreatment, etc.) that can increase the efficiency of HF and affect the properties of HSs are highlighted. Based on the results of chemical composition analysis, the main trends and preferences with regard to the use of HF products as complex biomimetics are discussed.
Collapse
Affiliation(s)
- Elena Efremenko
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, Moscow 119991, Russia; (N.S.); (O.S.)
| | | | | | | | | | | |
Collapse
|
25
|
Li S, Hong D, Sun K. Lignin precursors enhance exolaccase-started humification of bisphenol A to form functional polymers. ECO-ENVIRONMENT & HEALTH (ONLINE) 2023; 2:219-226. [PMID: 38435360 PMCID: PMC10902508 DOI: 10.1016/j.eehl.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 03/05/2024]
Abstract
Humification plays a significant role in converting phenolic pollutants and forming heterogeneous polymers, but few studies have been performed to investigate exolaccase-started humification (ESH). Herein, the influences of lignin precursors (LPs) on exolaccase-induced bisphenol A (BPA) removal and humification were explored. In particular, the architectural features and botanical effects of the formed humification products were also tested. ESH was extremely beneficial in boosting BPA removal in the presence of LPs. Compared with LP-free (58.49%), 100% of BPA was eliminated after the reaction with ESH for 72 h. Such a process was controlled by an exolaccase-caused random assembly of radicals, which generated a large number of hydrophobic polymers through nonspecific covalent binding of C-C and/or C-O. These humified polymers were extremely stable at pH 2.0-10.0 and -20 °C to 80 °C and displayed unique functions, i.e., scavenged 2,2-diphenyl-1-picrylhydrazyl/2,2'-azino-bis3-ethylbenzothiazoline-6-sulphonic acid radicals and exerted antioxidant capacities. More importantly, the functional polymers could act as auxin analogs to increase the germination index (>100%), plant biomass, and salt tolerance of radish seedlings. Our findings disclosed that ESH could not only be optimized to mitigate the ecological risks of phenolic pollutants and sequester organic carbon in environmental bioremediation, but the resulting abundant auxin analogs also contributed to agricultural productivity.
Collapse
Affiliation(s)
- Shunyao Li
- Laboratory of Wetland Protection and Ecological Restoration, Anhui University, Hefei 230601, China
| | - Dan Hong
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Kai Sun
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
26
|
Hamza YI, Bream AS, Mahmoud MA, El-Tabakh MAM. Environmental impacts of industrial activities on floral coverage with special emphasis on detoxification enzyme activities in Cataglyphis savignyi as pollution biomarker. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:113758-113773. [PMID: 37851257 PMCID: PMC10663209 DOI: 10.1007/s11356-023-30367-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 10/05/2023] [Indexed: 10/19/2023]
Abstract
The present study investigates the environmental impact of industrial activities on floral coverage within the major industrial district of Borg El-Arab City, Egypt. Additionally, it aims to evaluate the detoxification enzymatic activity of Cataglyphis savignyi as a pollution biomarker. To achieve this objective, seasonal soil samples were collected from the studied sites to determine soil properties and heavy metal concentrations. Furthermore, a seasonal specimen of C. savignyi was collected to study the enzymatic activity of acetylcholinesterase (AChE) and glutathione-S-transferase (GST). Heavy metal contamination pollution indices were calculated, and fourteen plant species were identified at the investigated sites for four successive seasons from 2020 to 2021. The soil physicochemical parameters significantly varied in the industrial sites compared to the control site. The accumulation of heavy metal contamination in soil for investigated sites followed the order Ni > As > Pb > Hg. Calculated Cdeg and PLI for industrial 3 revealed a very high degree of contamination, attributed to increased industrial activity from the chemical and silicate factories that characterize this region. The current results highlight the inhibition of GST levels in C. savignyi at the industrial site compared to the control site. In contrast, AChE increases, which might be due to heavy metals enhancing acetylcholine activity at synapses. Consequently, the antioxidant enzymatic activities are useful as biomarkers for assessing and monitoring environmental contamination. In conclusion, this study underscores insects as potent biomarkers for heavy metal contamination, marking a significant advancement in environmental monitoring. These bioindicators offer crucial insights into the impacts of climate change and industrial pollution. The research reveals distinct plant diversity variations and higher heavy metal content in industrial sites, indicating pronounced contamination. Additionally, the study highlights altered enzyme activities in insects, emphasizing their utility as biomarkers for assessing environmental contamination. This work represents a substantial leap forward in comprehending the complex dynamics between contamination and ecological balance.
Collapse
Affiliation(s)
- Yasser I Hamza
- Zoology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Ahmed S Bream
- Zoology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Mohammed A Mahmoud
- Zoology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | | |
Collapse
|
27
|
Sammar Raza M, Shah AN, Shahid MA, Nawaz M, Ibrahim MA, Iqbal R, Aslam MU, Ercisli S, Ali Q. Nano-Biochar Enhances Wheat Crop Productivity by Vindicating the Effects of Drought: In Relation to Physiological and Phenological Stages. ACS OMEGA 2023; 8:37808-37819. [PMID: 37867668 PMCID: PMC10586281 DOI: 10.1021/acsomega.3c01629] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/07/2023] [Indexed: 10/24/2023]
Abstract
Climatic changes are major hindrances to crop productivity. Likewise, water scarcity is the major obstacle during different physiological and phenological stages, which ultimately reduces the wheat crop yield. So, there is a dire need to adopt modern approaches such as soil amendments, i.e., using nano-biochar (NBC) to boost soil health and wheat crop productivity. Therefore, a case study was performed in the wire house of the Agronomy Department, Faculty of Agriculture and Environmental Sciences, Islamia University of Bahawalpur. CRD (completely randomized design) with four treatments of NBC, i.e., NBC0 (control), NBC1 (0.5%), NBC2 (1.00%), NBC3 (1.5%), and four drought levels D0 = control, D1 = drought at tillering, D2 = drought at flowering, and D3 = drought at grain filling was used. The hypothesis for the case study was to investigate if the NBC increases crop productivity by boosting physiological and chemical attributes under different drought conditions at different phenological stages. Results showed that among NBC treatments, NBC2 (1.00%) showed 37.10% increase in peroxidase activity, 28.60% in superoxide dismutase, 63.33% in catalase, 22.03% in ascorbate peroxidase, and 6.66% in plant height as compared to other NBC treatments, whereas among drought treatments, D0 = control stood out in comparison to water deficit treatments at critical growth and development stages, statistically analyzed data revealed that D0 was able to generate plant height 6.17 times more, 12.76% in the number of grains per spike, 4.60% in osmotic potential, and 2.96% in stomatal conductance activities of wheat crop. D3 and NBC0 were identified as treatment levels with the statistically lowest growth and yield returns, respectively. It showed a decrease of 4.69% in leaf relative water contents, 12.33% in water potential, and 23.64% in fertile tillers. It was recommended that drought is avoided at any critical growth, particularly at the grain-filling stage. The use of organic substances (fertilizers) must be promoted as they possess soil and crop health-promoting properties and also reduce different management expenses (fertilizer cost). Using NBC helps boost crop growth in the presence of a limited water supply. However, extensive research is needed to find out the impact of these organic substances (humic acid, farmyard manure, and NBC) on different crops, particularly on wheat, under stress conditions.
Collapse
Affiliation(s)
- Muhammad
Aown Sammar Raza
- Department
of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Adnan Noor Shah
- Department
of Agricultural Engineering, Khwaja Fareed
University of Engineering and Information Technology, Rahim Yar Khan 64200, Punjab, Pakistan
| | - Muhammad Asghar Shahid
- Department
of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Nawaz
- Department
of Agricultural Engineering, Khwaja Fareed
University of Engineering and Information Technology, Rahim Yar Khan 64200, Punjab, Pakistan
| | - Muhammad Arif Ibrahim
- Department
of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Rashid Iqbal
- Department
of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Usman Aslam
- Department
of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Sezai Ercisli
- Department
of Horticulture, Faculty of Agriculture, Erzurum 25240, Turkey
| | - Qurban Ali
- Department
of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan
| |
Collapse
|
28
|
Jin Y, Zhang X, Yuan Y, Lan Y, Cheng K, Yang F. Synthesis of artificial humic acid-urea complex improves nitrogen utilization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118377. [PMID: 37348301 DOI: 10.1016/j.jenvman.2023.118377] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/27/2023] [Accepted: 06/10/2023] [Indexed: 06/24/2023]
Abstract
The inefficient use of conventional nitrogen (N) fertilizers leads to N enrichment in the soil, resulting in N loss via runoff, volatilization and leaching. While using artificial humic acid to prepare novel N fertilizer is a good choice to improve its efficiency, the high heterogeneity of artificial humic acid limits its structural analysis and utilization efficiency. To solve above problems, this work mainly carried out the fractionation experiments, melt penetration experiments and soil incubation experiments. The results revealed that four fractions with different aromatization degree and molecular weights were obtained by the newly proposed continuous dissolution method, particular in the extraction solution of pH = 3-4, which were extracted with the highest aromatization degree. Furthermore, artificial humic acid urea complex fertilizers prepared at pH = 3-4 significantly improved the release of NH4+-N by 38.32% on days 7 and NO3--N by 10.30% on days 14, compared to urea application. The highly aromatic complex fertilizer with loading of urea-N was able to supply more inorganic N to the soil on days 3-14 (low molecular weight N) and to maintain a higher N content on days 70 (highly aromatized N). This can partially offset the mineralization of readily available organic N, buffering the immobilization of inorganic N from the soil when unstable organic compounds (e.g. conventional urea) were incorporated. A-HAU3-4 addition on days 70, Proteobacteria and Actinobacteriota were found to be the dominant phylum in the soil and the relative abundance of Endophytic bacteria was increased, which was conducive to the improvement of soil N utilization efficiency and soil N sequestration. Therefore, the preparation of artificial humic urea fertilizer with high aromatization degree or low molecular weight were an effective way to improve N utilization efficiency in the initial stages of soil incubation and maintain N fixation in the later stages of soil incubation. The future application of the strategy presented by this study would have an important ecological significance for alleviating agricultural N pollution.
Collapse
Affiliation(s)
- Yongxu Jin
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Provincial International Joint Laboratory of Smart Soil, Harbin, 150030, China
| | - Xi Zhang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Provincial International Joint Laboratory of Smart Soil, Harbin, 150030, China
| | - Yue Yuan
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Provincial International Joint Laboratory of Smart Soil, Harbin, 150030, China
| | - Yibo Lan
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Provincial International Joint Laboratory of Smart Soil, Harbin, 150030, China
| | - Kui Cheng
- Heilongjiang Provincial International Joint Laboratory of Smart Soil, Harbin, 150030, China; College of Engineering, Northeast Agricultural University, Harbin, 150030, China.
| | - Fan Yang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Provincial International Joint Laboratory of Smart Soil, Harbin, 150030, China.
| |
Collapse
|
29
|
Choi HJ, Kim JH, Le VQA, Kim BN, Cho BK, Kim YH, Min J. Yeast vacuolar enzymes as novel hatching inhibitors for aquatic organisms, Daphnia magna and Danio rerio eggs. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115446. [PMID: 37688866 DOI: 10.1016/j.ecoenv.2023.115446] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023]
Abstract
Concerns over the spread of non-native species in aquatic environments have led to the need for effective methods to prevent and control their spread while protecting native species. This study investigated the potential of yeast vacuolar enzymes as a natural hatching inhibitor for controlling aquatic organisms. Hatching experiments with Daphnia magna eggs demonstrated that exposure to yeast vacuole enzymes inhibited hatching in a concentration-dependent manner, suggesting their potential as an effective inhibitor of egg hatching in aquatic organisms. Interestingly, the protease used for comparative purposes did not inhibit hatching, but instead increased the mortality of hatched D. magna. Additionally, chorionic changes were observed in non-hatched D. magna eggs and zebrafish eggs exposed to yeast vacuole enzymes, suggesting that the enzyme can alter the chorion and interfere with hatching. These findings suggest that yeast vacuolar enzymes may be a promising and natural management tool for controlling the spread of harmful aquatic organisms, and further research is warranted to explore their potential for species-specific control.
Collapse
Affiliation(s)
- Hyo Jin Choi
- School of Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, South Korea
| | - Ji Hun Kim
- Department of Biological Sciences, Korea Advanced institute of Science and Technology, 291 Daehak-ro, Yuseong-Gu, Daejeon 34141, South Korea
| | - Vu Quynh Anh Le
- School of Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, South Korea
| | - Bit-Na Kim
- School of Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, South Korea.
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced institute of Science and Technology, 291 Daehak-ro, Yuseong-Gu, Daejeon 34141, South Korea.
| | - Yang-Hoon Kim
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644, South Korea.
| | - Jiho Min
- School of Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, South Korea.
| |
Collapse
|
30
|
Zha K, Xiong Y, Zhang W, Tan M, Hu W, Lin Z, Cheng P, Lu L, Cai K, Mi B, Feng Q, Zhao Y, Liu G. Waste to Wealth: Near-Infrared/pH Dual-Responsive Copper-Humic Acid Hydrogel Films for Bacteria-Infected Cutaneous Wound Healing. ACS NANO 2023; 17:17199-17216. [PMID: 37624642 DOI: 10.1021/acsnano.3c05075] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
The clinical applications of currently used photosensitizers are limited by high costs, inconvenient preparation, suboptimal biodegradability, and a lack of biological activity. Humic acids (HAs) show photothermal activity and can be used as a photosensitizer for photothermal therapy. In the presence of various functional groups, HAs are endowed with anti-inflammatory and antioxidant activities. The solubility of HAs is dependent on the pH value, which is soluble in neutral to alkaline conditions and undergoes a conformational change to a coiled and compact structure in acidic conditions. Additionally, Cu2+ is an emerging therapeutic agent for cutaneous wounds and can be chelated by HAs to form complexes. In this study, we explore the ability of HAs to modulate the inflammatory response, particularly macrophage polarization, and the potential underlying mechanism. We fabricate a near-infrared (NIR)/pH dual-responsive Cu-HAs nanoparticle (NP)-based poly(vinyl alcohol) (PVA) hydrogel film loaded with SEW2871 (SEW), a macrophage recruitment agent, to treat bacteria-infected cutaneous wounds. The results show that HAs could promote M2 macrophage polarization in a dose-dependent manner. The Cu-HAs NPs successfully eradicated bacterial infection through NIR-induced local hyperthermia. This PVA@Cu-HAs NPs@SEW hydrogel film improves tissue regeneration by promoting M2 macrophage polarization, alleviating oxidative stress, enhancing angiogenesis, and facilitating collagen deposition. These findings highlight the therapeutic potential of PVA@Cu-HAs NPs@SEW hydrogel film for the treatment of bacterially infected cutaneous wound healing.
Collapse
Affiliation(s)
- Kangkang Zha
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Yuan Xiong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637371, Singapore
| | - Wenqian Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Meijun Tan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Weixian Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Ze Lin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Peng Cheng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Li Lu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637371, Singapore
| | - Qian Feng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637371, Singapore
| | - Guohui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| |
Collapse
|
31
|
Symanczik S, Lipp C, Mäder P, Thonar C, Kundel D. Limited effectiveness of selected bioeffectors combined with recycling phosphorus fertilizers for maize cultivation under Swiss farming conditions. FRONTIERS IN PLANT SCIENCE 2023; 14:1239393. [PMID: 37719227 PMCID: PMC10501308 DOI: 10.3389/fpls.2023.1239393] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/10/2023] [Indexed: 09/19/2023]
Abstract
The use of plant biostimulants, also known as bioeffectors (BEs), has attracted increasing attention as an environmentally friendly strategy for more sustainable crop production. BEs are substances or microorganisms that are applied to plants or the surrounding soil to stimulate natural processes to enhance nutrient uptake, stress tolerance, and plant growth. Here, we tested the effectiveness of five BEs to enhance maize growth and phosphorus (P) uptake from various recycled P fertilizers in a series of pot and field experiments. First, the impact of two bacterial BEs and one soil-specific plant-based BE on crop performance was assessed in a 4-week screening experiment conducted in two arable, P-deficient soils of differing soil pH (a silty clay loam of pH 7.1 and a silty loam of pH 7.8) amended with recycled P-fertilizers (rock phosphate, biogas digestate, green waste compost, composted dairy manure, and chicken manure pellets). Then, for each soil type, the plant growth-promoting effect of the most promising BE-fertilizer combinations was re-assessed in an 8-week experiment. In addition, over a period of up to 3 years, three field experiments were conducted with maize in which up to two bacterial BEs were used either alone or in combination with a plant-based BE. Our experiments show that while BEs in combination with specific P-fertilizers can promote maize growth within the first weeks of growth under controlled conditions, the observed effects vanished in the long term, both in pots and under field conditions. In a tracing experiment, in which we tested the persistence of one bacterial BE over a period of 5 weeks, we observed a drastic decrease in colony-forming units already 2 weeks after inoculation. As previously shown in other studies, our data indicate that the plant growth-promoting effects of BEs found under controlled conditions are not directly transferable to field conditions. It is suggested that the drastic decline in inoculated bacterial strains in the tracing experiment is the reason for the decline in plant growth effect.
Collapse
Affiliation(s)
- Sarah Symanczik
- Department of Soil Sciences, Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
| | - Carina Lipp
- Department of Soil Sciences, Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
| | - Paul Mäder
- Department of Soil Sciences, Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
| | - Cécile Thonar
- Plant Genetics and Rhizosphere Processes Laboratory, TERRA Teaching and Research Center, University of Liège, Gembloux Agro-Bio Tech, Gembloux, Belgium
- Agroecology Lab, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Dominika Kundel
- Department of Soil Sciences, Research Institute of Organic Agriculture (FiBL), Frick, Switzerland
| |
Collapse
|
32
|
Luo L, Wang J, Lv J, Liu Z, Sun T, Yang Y, Zhu YG. Carbon Sequestration Strategies in Soil Using Biochar: Advances, Challenges, and Opportunities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11357-11372. [PMID: 37493521 DOI: 10.1021/acs.est.3c02620] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Biochar, a carbon (C)-rich material obtained from the thermochemical conversion of biomass under oxygen-limited environments, has been proposed as one of the most promising materials for C sequestration and climate mitigation in soil. The C sequestration contribution of biochar hinges not only on its fused aromatic structure but also on its abiotic and biotic reactions with soil components across its entire life cycle in the environment. For instance, minerals and microorganisms can deeply participate in the mineralization or complexation of the labile (soluble and easily decomposable) and even recalcitrant fractions of biochar, thereby profoundly affecting C cycling and sequestration in soil. Here we identify five key issues closely related to the application of biochar for C sequestration in soil and review its outstanding advances. Specifically, the terms use of biochar, pyrochar, and hydrochar, the stability of biochar in soil, the effect of biochar on the flux and speciation changes of C in soil, the emission of nitrogen-containing greenhouse gases induced by biochar production and soil application, and the application barriers of biochar in soil are expounded. By elaborating on these critical issues, we discuss the challenges and knowledge gaps that hinder our understanding and application of biochar for C sequestration in soil and provide outlooks for future research directions. We suggest that combining the mechanistic understanding of biochar-to-soil interactions and long-term field studies, while considering the influence of multiple factors and processes, is essential to bridge these knowledge gaps. Further, the standards for biochar production and soil application should be widely implemented, and the threshold values of biochar application in soil should be urgently developed. Also needed are comprehensive and prospective life cycle assessments that are not restricted to soil C sequestration and account for the contributions of contamination remediation, soil quality improvement, and vegetation C sequestration to accurately reflect the total benefits of biochar on C sequestration in soil.
Collapse
Affiliation(s)
- Lei Luo
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Jiaxiao Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jitao Lv
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Zhengang Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Tianran Sun
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yi Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, People's Republic of China
| | - Yong-Guan Zhu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
33
|
Yang F, Tarakina N, Antonietti M. A Stunt of Sustainability: Artificial Humic Substances Can Generate and Stabilize Single Fe 0 Species on Mineral Surfaces. CHEMSUSCHEM 2023; 16:e202300385. [PMID: 37010131 DOI: 10.1002/cssc.202300385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 03/31/2023] [Indexed: 06/17/2023]
Abstract
Iron species are omnipresent in fertile soils and contribute to biological and geological redox processes. Here, we show by advanced electron microscopy techniques that an important, but previously not considered iron species, single atom Fe0 stabilized on clay mineral surfaces, is contained in soils when humic substances are present. As the concentration of neutral iron atoms is highest under frost logged soil conditions, their formation can be attributed to the action of a then reductive microbiome. The Fe0 /Fe2+ couple is with -0.04 V standard potential highly suited for natural environmental remediation and detoxification, and its occurrence can help to explain the sustained auto-detoxification of black soils.
Collapse
Affiliation(s)
- Fan Yang
- Joint laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin, 150030, P. R. China
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Nadezda Tarakina
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Markus Antonietti
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| |
Collapse
|
34
|
Benito P, Bellón J, Porcel R, Yenush L, Mulet JM. The Biostimulant, Potassium Humate Ameliorates Abiotic Stress in Arabidopsis thaliana by Increasing Starch Availability. Int J Mol Sci 2023; 24:12140. [PMID: 37569516 PMCID: PMC10418871 DOI: 10.3390/ijms241512140] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Potassium humate is a widely used biostimulant known for its ability to enhance growth and improve tolerance to abiotic stress. However, the molecular mechanisms explaining its effects remain poorly understood. In this study, we investigated the mechanism of action of potassium humate using the model plant Arabidopsis thaliana. We demonstrated that a formulation of potassium humate effectively increased the fresh weight accumulation of Arabidopsis plants under normal conditions, salt stress (sodium or lithium chloride), and particularly under osmotic stress (mannitol). Interestingly, plants treated with potassium humate exhibited a reduced antioxidant response and lower proline accumulation, while maintaining photosynthetic activity under stress conditions. The observed sodium and osmotic tolerance induced by humate was not accompanied by increased potassium accumulation. Additionally, metabolomic analysis revealed that potassium humate increased maltose levels under control conditions but decreased levels of fructose. However, under stress, both maltose and glucose levels decreased, suggesting changes in starch utilization and an increase in glycolysis. Starch concentration measurements in leaves showed that plants treated with potassium humate accumulated less starch under control conditions, while under stress, they accumulated starch to levels similar to or higher than control plants. Taken together, our findings suggest that the molecular mechanism underlying the abiotic stress tolerance conferred by potassium humate involves its ability to alter starch content under normal growth conditions and under salt or osmotic stress.
Collapse
Affiliation(s)
- Patricia Benito
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain; (P.B.); (R.P.); (L.Y.)
- Caldic Ibérica, S. L. U. Llobateras 23-25, pol.ind. Santiga, Barberà del Vallés, 08210 Barcelona, Spain;
| | - Javier Bellón
- Caldic Ibérica, S. L. U. Llobateras 23-25, pol.ind. Santiga, Barberà del Vallés, 08210 Barcelona, Spain;
| | - Rosa Porcel
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain; (P.B.); (R.P.); (L.Y.)
| | - Lynne Yenush
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain; (P.B.); (R.P.); (L.Y.)
| | - José M. Mulet
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain; (P.B.); (R.P.); (L.Y.)
| |
Collapse
|
35
|
Li S, Sheng Y, Xiao S, Liu Q, Sun K. Exolaccase Propels Humification to Decontaminate Bisphenol A and Create Humic-like Biostimulants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37470251 DOI: 10.1021/acs.jafc.3c02958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Exolaccase-propelled humification (E-PH) helps eliminate phenolic pollutants and produce macromolecular precipitates. Herein, we investigated the influencing mechanism of 12 humic precursors (HPs) on exolaccase-enabled bisphenol A (BPA) decontamination and humification. Catechol, vanillic acid, caffeic acid, and gentian acid not only expedited BPA removal but also created large amounts of copolymeric precipitates. These precipitates had rich functional groups similar to natural humic substances, which presented great aromatic and acidic characteristics. The releasing amounts of BPA monomer from four precipitates were 0.08-12.87% at pH 2.0-11.0, suggesting that BPA-HP copolymers had pH stability. More excitingly, certain copolymeric precipitates could stimulate the growth and development of radish seedlings. The radish growth-promotion mechanisms of copolymers were involved in two aspects: (1) Copolymers interacted with root exudates to accelerate nutrient uptake; (2) Copolymers released auxins to provoke radish growth. These results may provide an innovative strategy for decontaminating phenolic pollutants and yielding humic-like biostimulants in E-PH.
Collapse
Affiliation(s)
- Shunyao Li
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei 230601, Anhui, China
| | - Yuehui Sheng
- Suzhou Zhongsheng Environmental Remediation Co., Ltd., Suzhou 215104, Jiangsu, China
| | - Shenghua Xiao
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Qingzhu Liu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Kai Sun
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, Anhui, China
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| |
Collapse
|
36
|
Lan T, Wu P, Yin X, Zhao Y, Liao J, Wang D, Liu N. Rigidity and Flexibility: Unraveling the Role of Fulvic Acid in Uranyl Sorption on Graphene Oxide Using Molecular Dynamics Simulations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37399448 DOI: 10.1021/acs.est.3c01026] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Using molecular dynamics simulations, this work targets a molecular understanding on the rigidity and flexibility of fulvic acid (FA) in uranyl sorption on graphene oxide (GO). The simulations demonstrated that both rigid Wang's FA (WFA) and flexible Suwannee River FA (SRFA) can provide multiple sites to cooperate with GO for uranyl sorption and act as "bridges" to connect uranyl and GO to form GO-FA-U (type B) ternary surface complexes. The presence of flexible SRFA was more beneficial to uranyl sorption on GO. The interactions of WFA and SRFA with uranyl were primarily driven by electrostatics, and the electrostatic interaction of SRFA-uranyl was significantly stronger owing to the formation of more complexes. The flexible SRFA could markedly enhance the bonding strength of uranyl with GO by folding itself to provide more sites to coordinate with uranyl. The rigid WFAs tended to be adsorbed on the GO surface in parallel due to π-π interactions, whereas the flexible SRFAs took more slant configurations resulting from intermolecular hydrogen bonds. This work provides new insights into the sorption dynamics, structure, and mechanism and addresses the effect of molecular rigidity and flexibility, with great significance for FA-based remediation strategies of uranium-contaminated sites.
Collapse
Affiliation(s)
- Tu Lan
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, People's Republic of China
| | - Peng Wu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, People's Republic of China
| | - Xiaoyu Yin
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, People's Republic of China
| | - Yufan Zhao
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, People's Republic of China
| | - Jiali Liao
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, People's Republic of China
| | - Dongqi Wang
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Ning Liu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, People's Republic of China
| |
Collapse
|
37
|
Yu Y, Zhang Y, Liu Y, Lv M, Wang Z, Wen LL, Li A. In situ reductive dehalogenation of groundwater driven by innovative organic carbon source materials: Insights into the organohalide-respiratory electron transport chain. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131243. [PMID: 36989787 DOI: 10.1016/j.jhazmat.2023.131243] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 02/24/2023] [Accepted: 03/17/2023] [Indexed: 05/03/2023]
Abstract
In situ bioremediation using organohalide-respiring bacteria (OHRB) is a prospective method for the removal of persistent halogenated organic pollutants from groundwater, as OHRB can utilize H2 or organic compounds produced by carbon source materials as electron donors for cell growth through organohalide respiration. However, few previous studies have determined the suitability of different carbon source materials to the metabolic mechanism of reductive dehalogenation from the perspective of electron transfer. The focus of this critical review was to reveal the interactions and relationships between carbon source materials and functional microbes, in terms of the electron transfer mechanism. Furthermore, this review illustrates some innovative strategies that have used the physiological characteristics of OHRB to guide the optimization of carbon source materials, improving the abundance of indigenous dehalogenated bacteria and enhancing electron transfer efficiency. Finally, it is proposed that future research should combine multi-omics analysis with machine learning (ML) to guide the design of effective carbon source materials and optimize current dehalogenation bioremediation strategies to reduce the cost and footprint of practical groundwater bioremediation applications.
Collapse
Affiliation(s)
- Yang Yu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yueyan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yuqing Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Mengran Lv
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zeyi Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Li-Lian Wen
- College of Resource and Environmental Science, Hubei University, Wuhan 430062, China.
| | - Ang Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
38
|
Yang F, Yuan Y, Liu Q, Zhang X, Gai S, Jin Y, Cheng K. Artificial humic acid promotes growth of maize seedling under alkali conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121588. [PMID: 37028787 DOI: 10.1016/j.envpol.2023.121588] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/02/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Salinization of cropland is one of the major abiotic stresses affecting global agricultural sustainability, posing a serious threat to agricultural productivity and food security. Application of artificial humic acid (A-HA) as plant biostimulants has been increasingly attracting farmers and researchers. However, its regulation of seed germination and growth under alkali stress has rarely received attention. The purpose of this study was to investigate the response of maize (Zea mays L.) seed germination and seedling growth after the addition of A-HA. The effects of A-HA on seed germination, seedling growth, chlorophyll contents and osmoregulation substance under black and saline soil conditions were studied by soaking maize in solutions with and without various concentrations of A-HA. Artificial humic acid treatments significantly increased the seed germination index and dry weight of seedlings. The effects of maize root in absence and presence of A-HA under alkali stress were also evaluated using transcriptome sequencing. GO and KEGG analyzes were performed on differentially expressed genes, and the reliability of transcriptome data was verified by qPCR analysis. Results showed that A-HA significantly activated phenylpropanoid biosynthesis, oxidative phosphorylation pathways and plant hormone signal transduction. Moreover, Transcription factor analysis revealed that A-HA induced the expression of several transcription factors under alkali stress which had a regulatory effect on the alleviation of alkali damage in the root system. Overall, our results suggested that soaking seeds with A-HA can alleviate alkali accumulation and toxicity in maize, constituting a simple and effective strategy to mitigate saline toxicity. These results will provide new insights for the application of A-HA in management to reduce alkali-caused crop loss.
Collapse
Affiliation(s)
- Fan Yang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin, 150030, China.
| | - Yue Yuan
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin, 150030, China
| | - Qingyu Liu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin, 150030, China
| | - Xi Zhang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin, 150030, China
| | - Shuang Gai
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin, 150030, China
| | - Yongxu Jin
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin, 150030, China
| | - Kui Cheng
- Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin, 150030, China; College of Engineering, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
39
|
Wang Y, Zhang C, Zhao Y, Wei Z, Li J, Song C, Chen X, Zhao M. Lignite drove phenol precursors to participate in the formation of humic acid during chicken manure composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162609. [PMID: 36871714 DOI: 10.1016/j.scitotenv.2023.162609] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/14/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
This study set out to explore the impact of lignite on preserving organic matter and promoting the formation of humic acid (HA) during chicken manure composting. Composting test was carried out for control (CK), 5 % lignite addition treatment (L1), 10 % addition treatment (L2) and 15 % addition treatment (L3). The results demonstrated that lignite addition effectively reduced the loss of organic matter. The HA content of all lignite-added groups was higher than that of CK, and the highest was 45.44 %. L1 and L2 increased the richness of bacterial community. Network analysis showed higher diversity of HA-associated bacteria in L2 and L3 treatments. Structural equation models revealed that reducing sugar and amino acid contributed to the formation of HA during CK and L1 composting, while polyphenol contributed more to the HA formation during L2 and L3 composting. Furthermore, lignite addition also could promote the direct effect of microorganisms on HA formation. Therefore, the addition of lignite had practical significance to enhance compost quality.
Collapse
Affiliation(s)
- Yumeng Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China,; College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Chunhao Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Yue Zhao
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China,.
| | - Jie Li
- College of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Caihong Song
- College of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Xiaomeng Chen
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Meiyang Zhao
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
40
|
Ai S, Meng X, Zhang Z, Li R, Teng W, Cheng K, Yang F. Artificial humic acid regulates the impact of fungal community on soil macroaggregates formation. CHEMOSPHERE 2023; 332:138822. [PMID: 37150458 DOI: 10.1016/j.chemosphere.2023.138822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/09/2023]
Abstract
Artificial humic acid (A-HA), which is synthesized from agricultural wastes and has high similarity to a natural humic substance (HS) extracted from soil, has been proven by our group to have potential for biological carbon sequestration in black soils. However, the mechanism involves in the application of A-HA on soil aggregation processes resulting from microbial activity stimulation and modifications to microbial communities remains unclear. This study investigates the correlation between the formation and stability of soil aggregates and fungal communities with various amounts of A-HA added to the rhizosphere and non-rhizosphere soil. A-HA can increase the total organic carbon (TOC) and dissolved organic carbon (DOC) concentrations in soil, promoting macroaggregate formation and increasing the mean weight diameter (MWD). In addition, soil aggregate binding agents such as polysaccharides, protein, extracellular polymeric substances (EPS), and glomalin-related soil protein (GRSP) are significantly increased by the addition of A-HA. A-HA can drive microaggregate to assemble into macroaggregate by increasing the abundance of beneficial fungi (e.g., Trichoderma and Mortierella). The co-occurrence network supports that A-HA shifted the key species and increased interactions of fungal taxa. This study will lay a solid foundation for sustainable agricultural development of A-HA application for soil fertility restoration in the future.
Collapse
Affiliation(s)
- Shuang Ai
- College of Engineering, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Provincial International Joint Laboratory of Smart Soil, Harbin, 150030, China
| | - Xianghui Meng
- College of Engineering, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Provincial International Joint Laboratory of Smart Soil, Harbin, 150030, China
| | - Zhouxiong Zhang
- College of Engineering, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Provincial International Joint Laboratory of Smart Soil, Harbin, 150030, China
| | - Ronghui Li
- Heilongjiang Provincial International Joint Laboratory of Smart Soil, Harbin, 150030, China; School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China
| | - Wenhao Teng
- Heilongjiang Provincial International Joint Laboratory of Smart Soil, Harbin, 150030, China; School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China
| | - Kui Cheng
- College of Engineering, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Provincial International Joint Laboratory of Smart Soil, Harbin, 150030, China.
| | - Fan Yang
- Heilongjiang Provincial International Joint Laboratory of Smart Soil, Harbin, 150030, China; School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
41
|
Ore OT, Adeola AO, Fapohunda O, Adedipe DT, Bayode AA, Adebiyi FM. Humic substances derived from unconventional resources: extraction, properties, environmental impacts, and prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:59106-59127. [PMID: 37022547 DOI: 10.1007/s11356-023-26809-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/30/2023] [Indexed: 05/10/2023]
Abstract
Humic substances comprise up to 70% of the total organic matter in soils, between 50 and 80% of the dissolved organic matter in water, and about 25% of dissolved organic matter in groundwater. Elucidation of the complex structure and properties of humic substances requires advanced analytical tools; however, they are of fundamental importance in medicine, agriculture, technology, and the environment, at large. Although they are naturally occurring, significant efforts are now being directed into their extraction owing to their relevance in improving soil properties and other environmental applications. In the present review, the different fractions of humic substances were elucidated, underlying the mechanisms by which they function in soils. Furthermore, the extraction processes of humic substances from various feedstock were illustrated, with the alkali extraction technique being the most widely used. In addition, the functional group and elemental composition of humic substances were discussed. The similarities and/or variations in the properties of humic substances as influenced by the source and origin of feedstock were highlighted. Finally, the environmental impacts of humic substances were discussed while highlighting prospects of humic acid production. This review offers enormous potential in identifying these knowledge gaps while recommending the need for inter- and multidisciplinary studies in making extensive efforts toward the sustainable production of humic substances.
Collapse
Affiliation(s)
- Odunayo T Ore
- Department of Chemistry, Obafemi Awolowo University, 220005, Ile-Ife, Nigeria.
| | - Adedapo O Adeola
- Department of Chemical Sciences, Adekunle Ajasin University, Akungba Akoko, 001, Ondo State, Nigeria
| | - Oluwaseun Fapohunda
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, 85721, USA
| | - Demilade T Adedipe
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Ajibola A Bayode
- Department of Chemical Science, Faculty of Natural Sciences, Redeemer's University, Ede, PMB 230, Osun State, Nigeria
| | - Festus M Adebiyi
- Department of Chemistry, Obafemi Awolowo University, 220005, Ile-Ife, Nigeria
- Management and Toxicology Unit, Department of Biological Sciences, Elizade University, Ilara-Mokin, 002, Nigeria
| |
Collapse
|
42
|
Shan G, Li W, Zhou Y, Bao S, Zhu L, Tan W. Effects of persulfate-assisted hydrothermal treatment of municipal sludge on aqueous phase characteristics and phytotoxicity. J Environ Sci (China) 2023; 126:163-173. [PMID: 36503745 DOI: 10.1016/j.jes.2022.04.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 06/17/2023]
Abstract
Hydrothermal technology (HT) has received much attention in recent years as a process to convert wet organic waste into hydrochar. The aqueous phase (HTAP) produced by this process is still a burden and has become a bottleneck issue for HT process development. In this study, we provide the first investigation of the HTAP characteristics, phytotoxicity, and their correlation with persulfate (PS) (PS, 2.0 mmol/g TS)-assisted municipal sludge HT. The results showed that PS accelerated the hydrolysis of protein substances and increased the concentration of NH4+ by 13.4% to 190.5% and that of PO43- by 24.2% to 1103.7% in HTAP at hydrothermal temperatures of 120 to 240 °C. PS can reduce the phytotoxicity of HTAP by reducing aldehydes, ketones, N heterocyclic compounds, and particle size and by increasing its humification index. The maximum values of the root length and biomass of pakchoi (Brassica chinensis L.) seedlings occurred when electrical conductivity was 0.2 mS/cm of HTAP. This work provided a new strategy for the selection and design of HTAP management strategies.
Collapse
Affiliation(s)
- Guangchun Shan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Weiguang Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yujie Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shanshan Bao
- Key Laboratory of Water Management and Water Security for Yellow River Basin of Ministry of Water Resources (Under Construction), Yellow River Engineering Consulting Co. Ltd, Zhengzhou 450003, China
| | - Lin Zhu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
43
|
Sadeq BM, Tan Kee Zuan A, Kasim S, Mui Yun W, Othman NMI, Alkooranee JT, Chompa SS, Akter A, Rahman ME. Humic Acid-Amended Formulation Improves Shelf-Life of Plant Growth-Promoting Rhizobacteria (PGPR) Under Laboratory Conditions. PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY 2023. [DOI: 10.47836/pjst.31.3.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Plant growth-promoting rhizobacteria (PGPR) is a soil bacterium that positively impacts soil and crops. These microbes invade plant roots, promote plant growth, and improve crop yield production. Bacillus subtilis is a type of PGPR with a short shelf-life due to its structural and cellular components, with a non-producing resistance structure (spores). Therefore, optimum formulations must be developed to prolong the bacterial shelf-life by adding humic acid (HA) as an amendment that could benefit the microbes by providing shelter and carbon sources for bacteria. Thus, a study was undertaken to develop a biofertilizer formulation from locally isolated PGPR, using HA as an amendment. Four doses of HA (0, 0.01, 0.05, and 0.1%) were added to tryptic soy broth (TSB) media and inoculated with B. subtilis (UPMB10), Bacillus tequilensis (UPMRB9) and the combination of both strains. The shelf-life was recorded, and viable cells count and optical density were used to determine the bacterial population and growth trend at monthly intervals and endospores detection using the malachite green staining method. After 12 months of incubation, TSB amended with 0.1% HA recorded the highest bacterial population significantly with inoculation of UPMRB9, followed by mixed strains and UPMB10 at 1.8x107 CFUmL-1, 2.8x107 CFUmL-1and 8.9x106 CFUmL-1, respectively. Results showed that a higher concentration of HA has successfully prolonged the bacterial shelf-life with minimal cell loss. Thus, this study has shown that the optimum concentration of humic acid can extend the bacterial shelf-life and improve the quality of a biofertilizer.
Collapse
|
44
|
Hriciková S, Kožárová I, Hudáková N, Reitznerová A, Nagy J, Marcinčák S. Humic Substances as a Versatile Intermediary. Life (Basel) 2023; 13:life13040858. [PMID: 37109387 PMCID: PMC10142745 DOI: 10.3390/life13040858] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/03/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Humic substances are organic ubiquitous components arising in the process of chemical and microbiological oxidation, generally called humification, the second largest process of the carbon cycle. The beneficial properties of these various substances can be observed in many fields of life and health, whether it is the impact on the human organism, as prophylactic as well as the therapeutic effects; animal physiology and welfare, which is widely used in livestock farming; or the impact of humic substances on the environment and ecosystem in the context of renewal, fertilization and detoxification. Since animal health, human health and environmental health are interconnected and mutually influencing, this work brings insight into the excellence of the use of humic substances as a versatile mediator contributing to the promotion of One Health.
Collapse
Affiliation(s)
- Simona Hriciková
- Department of Food Hygiene, Technology and Safety, University of Veterinary Medicine and Pharmacy, 04181 Košice, Slovakia
| | - Ivona Kožárová
- Department of Food Hygiene, Technology and Safety, University of Veterinary Medicine and Pharmacy, 04181 Košice, Slovakia
| | - Nikola Hudáková
- Centre for Experimental and Clinical Regenerative Medicine, University of Veterinary Medicine and Pharmacy, 04181 Košice, Slovakia
| | - Anna Reitznerová
- Department of Food Hygiene, Technology and Safety, University of Veterinary Medicine and Pharmacy, 04181 Košice, Slovakia
| | - Jozef Nagy
- Department of Food Hygiene, Technology and Safety, University of Veterinary Medicine and Pharmacy, 04181 Košice, Slovakia
| | - Slavomír Marcinčák
- Department of Food Hygiene, Technology and Safety, University of Veterinary Medicine and Pharmacy, 04181 Košice, Slovakia
| |
Collapse
|
45
|
Wang C, Cheng T, Zhang D, Pan X. Electrochemical properties of humic acid and its novel applications: A tip of the iceberg. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160755. [PMID: 36513238 DOI: 10.1016/j.scitotenv.2022.160755] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/11/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
The widely existed humic acid (HA) with abundant redox-active groups has been considered to play an important role in biogeochemistry in sediments and soils. Recent studies reported that HA showed great performance in terms of electron transfer capacity (up to HAEDC = 94 mmol e-/mol C, HAEAC = 42 mmol e-/mol C). Since HA is widely available, inexpensive and environmentally friendly, the electrochemistry of HA has been explored to apply in many fields, such as environmental remediation, detection sensor and energy storage. Whereas, these prospective applications of HA and their electrochemical principles were lack of a comprehensive summary. In this review, the electrochemical properties and the prospective electrochemical applications of HA were summarized. Simultaneously, the existing problems like shortages of traditional electrochemical characterization of HA, and future research directions about HA electrochemistry were prospected. This review provides a deeper understanding of HA electrochemistry, and also inspires ideas for environmental remediation, detection sensor and energy storage by exploring the potential application values of HA.
Collapse
Affiliation(s)
- Caiqin Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Hangzhou 310014, China
| | - Tingfeng Cheng
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Daoyong Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Hangzhou 310014, China
| | - Xiangliang Pan
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Hangzhou 310014, China.
| |
Collapse
|
46
|
Yang F, Fu Q, Antonietti M. Anthropogenic, Carbon-Reinforced Soil as a Living Engineered Material. Chem Rev 2023; 123:2420-2435. [PMID: 36633446 PMCID: PMC9999422 DOI: 10.1021/acs.chemrev.2c00399] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In recent years, the simple synthesis of artificial humic substances (A-HS) by alkaline hydrothermal processing of waste biomass was described. This A-HS was shown to support water and mineral binding, to change soil structure, to avoid fertilizer mineralization, and to support plant growth. Many of the observed macroscopic effects could, however, not be directly related to the minute amounts of A-HS which have been added, and an A-HS stimulated microbiome was found to be the key for understanding. In this review, we describe such anthropogenic soil in the language of the modern concept of living engineered materials and identify natural and artificial HS as the enabler to set up the interactive microbial system along the interfaces of the mineral grains. In that, old chemical concepts as surface activity, redox mediation, and pH buffering are the base of the system structure build-up and the complex self-adaptability of biological systems. The resulting chemical/biological hybrid system has the potential to address world problems as soil fertility, nutrition of a growing world population, and climate change.
Collapse
Affiliation(s)
- Fan Yang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China.,Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China
| | - Qiang Fu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Markus Antonietti
- Department of Colloid Chemistry,Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| |
Collapse
|
47
|
Sutradhar S, Fatehi P. Latest development in the fabrication and use of lignin-derived humic acid. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:38. [PMID: 36882875 PMCID: PMC9989592 DOI: 10.1186/s13068-023-02278-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/07/2023] [Indexed: 03/09/2023]
Abstract
Humic substances (HS) are originated from naturally decaying biomass. The main products of HS are humic acids, fulvic acids, and humins. HS are extracted from natural origins (e.g., coals, lignite, forest, and river sediments). However, the production of HS from these resources is not environmentally friendly, potentially impacting ecological systems. Earlier theories claimed that the HS might be transformed from lignin by enzymatic or aerobic oxidation. On the other hand, lignin is a by-product of pulp and paper production processes and is available commercially. However, it is still under-utilized. To address the challenges of producing environmentally friendly HS and accommodating lignin in valorized processes, the production of lignin-derived HS has attracted attention. Currently, several chemical modification pathways can be followed to convert lignin into HS-like materials, such as alkaline aerobic oxidation, alkaline oxidative digestion, and oxidative ammonolysis of lignin. This review paper discusses the fundamental aspects of lignin transformation to HS comprehensively. The applications of natural HS and lignin-derived HS in various fields, such as soil enrichment, fertilizers, wastewater treatment, water decontamination, and medicines, were comprehensively discussed. Furthermore, the current challenges associated with the production and use of HS from lignin were described.
Collapse
Affiliation(s)
- Shrikanta Sutradhar
- Biorefining Research Institute, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada
| | - Pedram Fatehi
- Biorefining Research Institute, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada.
| |
Collapse
|
48
|
Wei J, Tu C, Xia F, Yang L, Chen Q, Chen Y, Deng S, Yuan G, Wang H, Jeyakumar P, Bhatnagar A. Enhanced removal of arsenic and cadmium from contaminated soils using a soluble humic substance coupled with chemical reductant. ENVIRONMENTAL RESEARCH 2023; 220:115120. [PMID: 36563980 DOI: 10.1016/j.envres.2022.115120] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/14/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Soil washing is an efficient, economical, and green remediation technology for removing several heavy metal (loid)s from contaminated industrial sites. The extraction of green and efficient washing agents from low-cost feedback is crucially important. In this study, a soluble humic substance (HS) extracted from leonardite was first tested to wash soils (red soil, fluvo-aquic soil, and black soil) heavily contaminated with arsenic (As) and cadmium (Cd). A D-optimal mixture design was investigated to optimize the washing parameters. The optimum removal efficiencies of As and Cd by single HS washing were found to be 52.58%-60.20% and 58.52%-86.69%, respectively. Furthermore, a two-step sequential washing with chemical reductant NH2OH•HCl coupled with HS (NH2OH•HCl + HS) was performed to improve the removal efficiency of As and Cd. The two-step sequential washing significantly enhanced the removal of As and Cd to 75.25%-81.53% and 64.53%-97.64%, which makes the residual As and Cd in soil below the risk control standards for construction land. The two-step sequential washing also effectively controlled the mobility and bioavailability of residual As and Cd. However, the activities of soil catalase and urease significantly decreased after the NH2OH•HCl + HS washing. Follow-up measures such as soil neutralization could be applied to relieve and restore the soil enzyme activity. In general, the two-step sequential soil washing with NH2OH•HCl + HS is a fast and efficient method for simultaneously removing high content of As and Cd from contaminated soils.
Collapse
Affiliation(s)
- Jing Wei
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, Jiangsu, China; Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Guangdong Technology and Equipment Research Center for Soil and Water Pollution Control, Zhaoqing University, Zhaoqing, 526061, Guangdong, China
| | - Chen Tu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences (CAS), Nanjing, 210008, China
| | - Feiyang Xia
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, Jiangsu, China
| | - Lu Yang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, Jiangsu, China
| | - Qiang Chen
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, Jiangsu, China
| | - Yun Chen
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, Jiangsu, China
| | - Shaopo Deng
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, Jiangsu, China.
| | - Guodong Yuan
- Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Guangdong Technology and Equipment Research Center for Soil and Water Pollution Control, Zhaoqing University, Zhaoqing, 526061, Guangdong, China
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environment and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China
| | - Paramsothy Jeyakumar
- Environmental Science Group, School of Agriculture and Environment, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, Mikkeli, FI-50130, Finland
| |
Collapse
|
49
|
Shan G, Li W, Liu J, Zhu L, Hu X, Yang W, Tan W, Xi B. Nitrogen loss, nitrogen functional genes, and humification as affected by hydrochar addition during chicken manure composting. BIORESOURCE TECHNOLOGY 2023; 369:128512. [PMID: 36538962 DOI: 10.1016/j.biortech.2022.128512] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
This study investigated the effect of hydrochar addition on nitrogen (N) transformation, N functional genes, and humification during chicken manure composting. The addition of 10 % hydrochar reduced cumulative ammonia (NH3) and nitrous oxide emissions by 55.24 % and 45.30 %, respectively, and N losses by 32.07 %. Further, it increased the relative abundance of amoA while decreasing that of nirK, nirS, and nosZ in compost. Hydrochar reduces NH3 emissions during composting owing to its acid-carbon properties that lower the pH of the composting pile and promote ammonia oxidation. Moreover, hydrochar addition enhances the humification of the composting pile and significantly increases the content of humic substances. Moreover, after hydrochar addition, the germination index of the compost product reached >80 % 10 days earlier. The results demonstrate that hydrochar is a suitable composting additive for reducing N loss and shortening the composting time.
Collapse
Affiliation(s)
- Guangchun Shan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Weiguang Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jie Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lin Zhu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xinhao Hu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei Yang
- China Land Surveying and Planning Institute, Beijing 100035, China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
50
|
Lian T, Wang Y, Wu B, Yang F, Tarakina NV, Antonietti M. 'Green-to-Green': Iron oxides embedded in lignin-based carbon scaffolds for water remediation via oxidation excluding free-radical pathways. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130070. [PMID: 36183515 DOI: 10.1016/j.jhazmat.2022.130070] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/10/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Advanced oxidation processes (AOP) are a common tool to remove organic compounds from the water cycle. The process is mostly relied on free radicals (i.e., SO4•- and HO•) with high oxidation power in solution. Surface-mediated mechanism could improve this process to prevent undesired quenching of aqueous radicals that widely exists in free radical pathways and alleviate metal leaching through direct electron transfer. In this work, a facile low-temperature pre-treatment combined with pyrolytic strategy was employed to construct a green catalyst with iron oxides embedded in Kraft-lignin derived bio-char (γ-Fe2O3 @KC), upon which radicals stay surface mediated and the activity-stability trade-off is achieved for pollutant degradation. The γ-Fe2O3 @KC is capable of activating PMS to generate non-radical species which are more stable (1O2 and Fe(V)=O) and of enhancing electron transfer efficiency. A surface-bound reactive complex (Catalyst-PMS*) was identified by electrochemical characterization and was discussed with primary surface-bound radical pairs to explain the contradictions between quenching and EPR detection results. We analyzed the γ-Fe2O3 @KC as a PMS-activating catalyst for a wider range of oxidation targets, such as Rhodamine B (∼100%), p-nitrophenol (∼85%), and Ciprofloxacin (∼63%), and found competitive removal efficiencies. The system also shows an encouraging reusability for at least 5 times and high stability at pH 3-9, and the low concentration of iron in γ-Fe2O3 @KC/PMS system implies the carbon scaffold of biochar alleviate the leakage process. The combined findings highlight the applicability in 'green (source) to green (application)' processes using cost-effective and bio-friendly iron@carbon catalysts, where alternative oxidation pathways are activated to play a dominant role for water purification.
Collapse
Affiliation(s)
- Tingting Lian
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.
| | - Yang Wang
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Baile Wu
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Fan Yang
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Nadezda V Tarakina
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Markus Antonietti
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|