1
|
Safdar B, Liu S, Cao J, Zhang T, Li H, Pang Z, Liu X. Plant-based fascia tissues: Exploring materials and techniques for realistic simulation. Food Chem 2024; 459:140464. [PMID: 39024867 DOI: 10.1016/j.foodchem.2024.140464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/02/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
The growing demand for sustainable and ethical food options has led to significant advancements in plant-based meat substitutes (PBMS). PBMS have made considerable progress in simulating the taste, texture, and sensory properties of animal meat. Connective tissue is a fundamental component of animal meat that significantly influences tenderness, texture, and sensory properties. However, the imitation of realistic connective tissues has received relatively less attention in the PBMS industry. The current work focuses on exploring materials and techniques for the replication of plant-based connective tissues (PBCT). By understanding the structural and functional characteristics of animal connective tissues (ACT), it is possible to replicate these characteristics in PBCT. Hydrogels, with their ability to simulate certain properties of ACT, present a viable material for the creation of PBCT. To achieve the desired simulation, their mechanical and structural properties need to be enhanced by using several materials and several physical techniques.
Collapse
Affiliation(s)
- Bushra Safdar
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China; Puluting (Hebei) Protein Biotechnology Research Limited Company, Handan, China
| | - Shuqi Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China; National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing, China
| | - Jinnuo Cao
- Puluting (Hebei) Protein Biotechnology Research Limited Company, Handan, China
| | - Tianyu Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China; National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing, China
| | - He Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China.
| | - Zhihua Pang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China.
| | - Xinqi Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China; National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing, China.
| |
Collapse
|
2
|
Hu Y, Chen H, Li H, Wang Y, Zheng X, Liu Q, Wen Q, Shen X, Wang F, Qi Y, Shen J. Exogenous Salicylic Acid Regulates Fruiting Body Development, Secondary Metabolite Accumulation, Cell Wall Integrity, and Endogenous Salicylic Acid Content under Heat Stress in Pleurotus ostreatus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39496504 DOI: 10.1021/acs.jafc.4c04199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
High-temperature or heat stress (HS) represents a significant environmental challenge that adversely affects crop growth and poses a substantial threat to agricultural production. Pleurotus ostreatus, recognized as the second most widely cultivated edible fungus worldwide, is particularly susceptible to the detrimental effects of HS. Enhancing the HS resistance of P. ostreatus is crucial for increasing its yield. In a prior investigation, we discovered that salicylic acid (SA) enhanced the resistance of P. ostreatus mycelia to HS through a metabolic rearrangement. The present study further investigated the effects of SA on P. ostreatus under HS. Cultivation experiments revealed that exogenous SA improved the mycelium recovery growth rate, yield, and fruiting body quality after HS. Further experiments revealed that exogenous SA mitigated the damage to the MAPK-Slt2 signal produced by HS while maintaining cell wall integrity. Furthermore, we hypothesized that the phenylalanine ammonia-lyase pathway might serve as a source for SA. In this context, we identified two salicylic hydroxylases, Po1102164 and Po1104438. Both HS and exogenous SA were found to elevate intracellular SA levels, thereby enhancing the resistance of P. ostreatus to HS.
Collapse
Affiliation(s)
- Yanru Hu
- Key Laboratory of Agricultural Microbial Enzyme Engineering, Ministry of Agriculture, Rural Department, College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou 450002, People's Republic of China
| | - Haolan Chen
- Key Laboratory of Agricultural Microbial Enzyme Engineering, Ministry of Agriculture, Rural Department, College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou 450002, People's Republic of China
| | - Huihui Li
- Key Laboratory of Agricultural Microbial Enzyme Engineering, Ministry of Agriculture, Rural Department, College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou 450002, People's Republic of China
| | - Yue Wang
- Key Laboratory of Agricultural Microbial Enzyme Engineering, Ministry of Agriculture, Rural Department, College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou 450002, People's Republic of China
| | - Xiukun Zheng
- Key Laboratory of Agricultural Microbial Enzyme Engineering, Ministry of Agriculture, Rural Department, College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou 450002, People's Republic of China
| | - Qing Liu
- Key Laboratory of Agricultural Microbial Enzyme Engineering, Ministry of Agriculture, Rural Department, College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou 450002, People's Republic of China
| | - Qing Wen
- Key Laboratory of Agricultural Microbial Enzyme Engineering, Ministry of Agriculture, Rural Department, College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou 450002, People's Republic of China
| | - Xiaoye Shen
- College of Food Science and Technology, Henan Agricultural University, Henan, Zhengzhou 450002, People's Republic of China
| | - Fengqin Wang
- Key Laboratory of Agricultural Microbial Enzyme Engineering, Ministry of Agriculture, Rural Department, College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou 450002, People's Republic of China
| | - Yuancheng Qi
- Key Laboratory of Agricultural Microbial Enzyme Engineering, Ministry of Agriculture, Rural Department, College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou 450002, People's Republic of China
| | - Jinwen Shen
- Key Laboratory of Agricultural Microbial Enzyme Engineering, Ministry of Agriculture, Rural Department, College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou 450002, People's Republic of China
| |
Collapse
|
3
|
Sangeeta, Sharma D, Ramniwas S, Mugabi R, Uddin J, Nayik GA. Revolutionizing Mushroom processing: Innovative techniques and technologies. Food Chem X 2024; 23:101774. [PMID: 39280230 PMCID: PMC11402429 DOI: 10.1016/j.fochx.2024.101774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/11/2024] [Accepted: 08/24/2024] [Indexed: 09/18/2024] Open
Abstract
In recent years, the global mushroom industry has seen remarkable growth due to its nutritional benefits, increasing market value, and rising consumer demand. Mushrooms are valued for their unique flavor, low sugar and salt, and rich Vitamin D content. In India as well as across the globe, mushroom cultivation is becoming increasingly popular among new entrepreneurs, leveraging the diverse agro-climatic conditions and substantial agricultural waste. Various government policies are also fostering research and development in this sector. To extend shelf life and preserve quality, various preservation techniques are employed, including drying, freezing, canning, high-pressure processing and modified atmosphere packaging. Furthermore, cutting-edge technologies such as nuclear magnetic resonance and spectroscopy are improving post-harvest processing, helping to maintain sensory properties and nutritional content. Automation is also transforming mushroom processing by enhancing efficiency and scalability. This review examines the innovative methods and technologies driving advancements in mushroom production and quality worldwide.
Collapse
Affiliation(s)
- Sangeeta
- Department of Agriculture & Food Processing, Guru Nanak College, Budhlada, Mansa, Punjab, India
| | - Dhriti Sharma
- Department of Agriculture & Food Processing, Guru Nanak College, Budhlada, Mansa, Punjab, India
| | - Seema Ramniwas
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali 140413, Punjab, India
| | - Robert Mugabi
- Department of Food Technology and Nutrition, Makerere University, Kampala, Uganda
| | - Jalal Uddin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Gulzar Ahmad Nayik
- Marwadi University Research Centre, Department of Microbiology, Marwadi University, Rajkot, Gujarat 360003, India
| |
Collapse
|
4
|
Li H, Chai Q, Zheng X, Wen Q, Liu Q, Qi YC, Wang F, Shen J, Hu Y. SIRT2-mediated deacetylation of glutathione transferase alleviates oxidative damage and increases the heat tolerance of Pleurotus ostreatus. ENVIRONMENTAL RESEARCH 2024; 263:120147. [PMID: 39406286 DOI: 10.1016/j.envres.2024.120147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/13/2024] [Accepted: 10/12/2024] [Indexed: 10/19/2024]
Abstract
High-temperature stress (HS) severely threatens agricultural production. Pleurotus ostreatus is cultivated in many parts of the world, and its growth is strongly affected by HS. We previously reported that metabolic rearrangement occurred in HS, but the gene expression levels of several key enzymes remained unchanged. Therefore, in this study, we investigated the contribution of posttranslational modifications of proteins to HS resistance in P. ostreatus. We found that the level of acetylation of P. ostreatus decreased under short-term HS treatment and increased as the duration of HS treatment increased. Acetylation omics revealed that almost all metabolic enzymes were acetylated. We found that deacetylation under HS can improve the growth recovery ability of mycelia, the activity of matrix-degrading enzyme, and the contents of antioxidants, such as nicotinamide adenine dinucleotide phosphate (NADPH) and glutathione (GSH), but can decreased H2O2 levels. In vitro acetylation experiments and point mutations revealed that the deacetylase SIRT2 increased the activity of glutathione transferases (GSTs) by deacetylating GST1 66K, GST2 206K, and GST2 233K. Together, SIRT2 is activated by short-term HS and improves its antioxidant activity by deacetylating GSTs, thereby improving the resistance of P. ostreatus to HS. In this study, we identified new non-histone substrate proteins and new lysine acetylation sites of SIRT2 under HS. We also discovered the role of non-histone acetylation in the adaptation of organisms to HS.
Collapse
Affiliation(s)
- Huihui Li
- Key Laboratory of Agricultural Microbial Enzyme Engineering, Ministry of Agriculture, Rural Department, College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou, 450002, People's Republic of China
| | - Qianqian Chai
- Key Laboratory of Agricultural Microbial Enzyme Engineering, Ministry of Agriculture, Rural Department, College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou, 450002, People's Republic of China
| | - Xiukun Zheng
- Key Laboratory of Agricultural Microbial Enzyme Engineering, Ministry of Agriculture, Rural Department, College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou, 450002, People's Republic of China
| | - Qing Wen
- Key Laboratory of Agricultural Microbial Enzyme Engineering, Ministry of Agriculture, Rural Department, College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou, 450002, People's Republic of China
| | - Qing Liu
- Key Laboratory of Agricultural Microbial Enzyme Engineering, Ministry of Agriculture, Rural Department, College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou, 450002, People's Republic of China
| | - Yuan Cheng Qi
- Key Laboratory of Agricultural Microbial Enzyme Engineering, Ministry of Agriculture, Rural Department, College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou, 450002, People's Republic of China
| | - Fengqin Wang
- Key Laboratory of Agricultural Microbial Enzyme Engineering, Ministry of Agriculture, Rural Department, College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou, 450002, People's Republic of China
| | - Jinwen Shen
- Key Laboratory of Agricultural Microbial Enzyme Engineering, Ministry of Agriculture, Rural Department, College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou, 450002, People's Republic of China
| | - Yanru Hu
- Key Laboratory of Agricultural Microbial Enzyme Engineering, Ministry of Agriculture, Rural Department, College of Life Sciences, Henan Agricultural University, Henan, Zhengzhou, 450002, People's Republic of China.
| |
Collapse
|
5
|
de Medeiros FGM, You SW, Hoskin RT, Moncada M. Spray dried protein concentrates from white button and oyster mushrooms produced by ultrasound-assisted alkaline extraction and isoelectric precipitation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39367715 DOI: 10.1002/jsfa.13940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/22/2024] [Accepted: 09/19/2024] [Indexed: 10/06/2024]
Abstract
BACKGROUND In the present study, the optimization of ultrasound-assisted alkaline extraction (UAAE) and isoelectric precipitation (IEP) was applied to white button (WBM) and oyster (OYM) mushroom flours to produce functional spray dried mushroom protein concentrates. Solid-to-liquid ratio (5-15% w/v), ultrasound power (0-900 W) and type of acid [HCl or acetic acid (AcOH)] were evaluated for their effect on the extraction and protein yields from mushroom flours submitted to UAAE-IEP protein extraction. RESULTS Prioritized conditions with maximized protein yield (5% w/v, 900 W, AcOH, for WBM; 5% w/v, 900 W, HCl for OYM) were used to produce spray dried protein concentrates from white button (WBM-PC) and oyster (OYM-PC) mushrooms with high solids recovery (62.3-65.8%). WBM-PC and OYM-PC had high protein content (5.19-5.81 g kg-1), in addition to remarkable foaming capacity (82.5-235.0%) and foam stability (7.0-162.5%), as well as antioxidant phenolics. Highly pH-dependent behavior was observed for solubility (> 90%, at pH 10) and emulsifying properties (emulsification activity index: > 50 m2 g-1, emulsion stability index: > 65%, at pH 10). UAAE-IEP followed by spray drying increased surface hydrophobicity and free sulfhydryl groups by up to 196.5% and 117.5%, respectively, which improved oil holding capacity (359.9-421.0%) and least gelation concentration (6.0-8.0%) of spray dried mushroom protein concentrates. CONCLUSION Overall, the present study showed that optimized UAAE-IEP coupled with spray drying is an efficient strategy to produce novel mushroom protein concentrates with enhanced functional attributes for multiple food applications. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Fábio Gonçalves Macêdo de Medeiros
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC, USA
| | - Seung Woon You
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC, USA
| | - Roberta Targino Hoskin
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC, USA
| | - Marvin Moncada
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC, USA
| |
Collapse
|
6
|
Xie G, Chen M, Yang Y, Xie Y, Deng K, Xie L. Comprehensive untargeted lipidomics study of black morel (Morchella sextelata) at different growth stages. Food Chem 2024; 451:139431. [PMID: 38663248 DOI: 10.1016/j.foodchem.2024.139431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/07/2024] [Accepted: 04/19/2024] [Indexed: 05/26/2024]
Abstract
The black morel (Morchella sextelata) is a valuable edible and medicinal mushroom appreciated worldwide. Here, lipidomic profiles and lipid dynamic changes during the growth of M. sexletata were analyzed using ultra-performance liquid chromatography coupled with mass spectrometry. 203 lipid molecules, including four categories and fourteen subclasses, were identified in mature fruiting bodies, with triacylglycerol being the most abundant (37.00 %). Fatty acid composition analysis revealed that linoleic acid was the major fatty acid among the free fatty acids, glycerolipids and glycerophospholipids. The relative concentration of lipids in M. sextelata changed significantly during its growth, from which 12 and 29 differential lipid molecules were screened out, respectively. Pathway analysis based on these differential lipids showed that glycerophospholipid metabolism was the major pathway involved in the growth of M. sextelata. Our study provides a comprehensive understanding of the lipids in M. sextelata and will facilitate the development and utilization of M. sextelata.
Collapse
Affiliation(s)
- Guangbo Xie
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China; Innovation Center of Electronic Information & Traditional Chinese Medicine, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| | - Maoyuan Chen
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Yanran Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Yu Xie
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Kejun Deng
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Liyuan Xie
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610066, PR China
| |
Collapse
|
7
|
Chen X, Xu B. Insights into chemical components, health-promoting effects, and processing impact of golden chanterelle mushroom Cantharellus cibarius. Food Funct 2024; 15:7696-7732. [PMID: 38967456 DOI: 10.1039/d4fo00891j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Cantharellus cibarius (CC) is a culinary mushroom with significant commercial potential due to its diverse components and bioactive functions. CC is rich in carbohydrates, proteins, minerals, vitamins, and aroma compounds while being low in fat and calories. Moreover, CC contains an abundance of bioactive substances including phenolic compounds, vitamin precursors, and indole derivatives. Numerous studies have claimed that CC has diverse functions such as antioxidant, antimicrobial, immunoregulation, anti-inflammatory, antitumor, neuroprotective, antidiabetic, and prebiotic effects in in vivo or in vitro settings. In addition, a variety of thermal, physical, chemical, and biological treatment methods have been investigated for the processing and preservation of CC. Consequently, this study aims to present a comprehensive review of the chemical composition, health benefits, and processing techniques of CC. Furthermore, the issue of heavy metal accumulation in CC has been indicated and discussed. The study highlights the potential of CC as a functional food in the future while providing valuable insights for future research and identifying areas requiring further investigation.
Collapse
Affiliation(s)
- Xinlei Chen
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China.
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China.
| |
Collapse
|
8
|
Li Z, Pan F, Huang W, Gao S, Feng X, Chang M, Chen L, Bian Y, Tian W, Liu Y. Transcriptome Reveals the Key Genes Related to the Metabolism of Volatile Sulfur-Containing Compounds in Lentinula edodes Mycelium. Foods 2024; 13:2179. [PMID: 39063263 PMCID: PMC11275275 DOI: 10.3390/foods13142179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Lentinula edodes (L. edodes) is a globally popular edible mushroom because of its characteristic sulfur-containing flavor compounds. However, the formation of the volatile sulfur-containing compounds in the mycelium of L. edodes has not been studied. We found that there were also sulfur-containing aroma compounds in the mycelium of L. edodes, and the content and composition varied at different stages of mycelial growth and development. The γ-glutamyl-transpeptidase (GGT) and cysteine sulfoxide lyase (C-S lyase) related to the generation of sulfur compounds showed the highest activities in the 15-day sample. Candidate genes for the metabolism of volatile sulfur compounds in mycelium were screened using transcriptome analysis, including encoding the GGT enzyme, C-S lyase, fatty acid oxidase, HSP20, and P450 genes. The expression patterns of Leggt3 and Leccsl3 genes were consistent with the measured activities of GGT and C-S lyase during the cultivation of mycelium and molecular dynamics simulations showed that they could stably bind to the substrate. Our findings provide insights into the formation of sulfur-containing flavor compounds in L. edodes. The mycelium of L. edodes is suggested for use as material for the production of sulfur-containing flavor compounds.
Collapse
Affiliation(s)
- Zheng Li
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (Z.L.); (W.H.); (S.G.); (M.C.)
| | - Fei Pan
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (F.P.); (W.T.)
| | - Wen Huang
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (Z.L.); (W.H.); (S.G.); (M.C.)
| | - Shuangshuang Gao
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (Z.L.); (W.H.); (S.G.); (M.C.)
| | - Xi Feng
- Department of Nutrition, Food Science and Packaging, San Jose State University, San Jose, CA 95192, USA
| | - Meijie Chang
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (Z.L.); (W.H.); (S.G.); (M.C.)
| | - Lianfu Chen
- Institute of Applied Mycology, Huazhong Agricultural University, Wuhan 430070, China; (L.C.); (Y.B.)
| | - Yinbing Bian
- Institute of Applied Mycology, Huazhong Agricultural University, Wuhan 430070, China; (L.C.); (Y.B.)
| | - Wenli Tian
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (F.P.); (W.T.)
| | - Ying Liu
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (Z.L.); (W.H.); (S.G.); (M.C.)
| |
Collapse
|
9
|
Silva M, Ramos AC, Lidon FJ, Reboredo FH, Gonçalves EM. Pre- and Postharvest Strategies for Pleurotus ostreatus Mushroom in a Circular Economy Approach. Foods 2024; 13:1464. [PMID: 38790763 PMCID: PMC11120248 DOI: 10.3390/foods13101464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Mushroom cultivation presents a viable solution for utilizing agro-industrial byproducts as substrates for growth. This process enables the transformation of low-economic-value waste into nutritional foods. Enhancing the yield and quality of preharvest edible mushrooms, along with effectively preserving postharvest mushrooms, stands as a significant challenge in advancing the industry. Implementing pre- and postharvest strategies for Pleurotus ostreatus (Jacq.) P. Kumm (oyster mushroom) within a circular economy framework involves optimizing resource use, minimizing waste, and creating a sustainable and environmentally friendly production system. This review aimed to analyze the development and innovation of the different themes and trends by bibliometric analysis with a critical literature review. Furthermore, this review outlines the cultivation techniques for Pleurotus ostreatus, encompassing preharvest steps such as spawn production, substrate preparation, and the entire mushroom growth process, which includes substrate colonization, fruiting, harvesting, and, finally, the postharvest. While novel methodologies are being explored for maintaining quality and extending shelf-life, the evaluation of the environmental impact of the entire mushroom production to identify areas for improvement is needed. By integrating this knowledge, strategies can be developed for a more sustainable and circular approach to Pleurotus ostreatus mushroom cultivation, promoting environmental stewardship and long-term viability in this industry.
Collapse
Affiliation(s)
- Mafalda Silva
- INIAV—Instituto Nacional de Investigação Agrária e Veterinária, Unidade de Tecnologia e Inovação, 2780-157 Oeiras, Portugal; (M.S.)
- Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 1600-560 Caparica, Portugal
| | - Ana Cristina Ramos
- INIAV—Instituto Nacional de Investigação Agrária e Veterinária, Unidade de Tecnologia e Inovação, 2780-157 Oeiras, Portugal; (M.S.)
- GeoBioTec—Geobiociências, Geoengenharias e Geotecnologias, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Fernando J. Lidon
- Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 1600-560 Caparica, Portugal
- GeoBioTec—Geobiociências, Geoengenharias e Geotecnologias, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Fernando H. Reboredo
- Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 1600-560 Caparica, Portugal
- GeoBioTec—Geobiociências, Geoengenharias e Geotecnologias, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Elsa M. Gonçalves
- INIAV—Instituto Nacional de Investigação Agrária e Veterinária, Unidade de Tecnologia e Inovação, 2780-157 Oeiras, Portugal; (M.S.)
- GeoBioTec—Geobiociências, Geoengenharias e Geotecnologias, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
10
|
Zhang X, Zhang T, Zhao Y, Jiang L, Sui X. Structural, extraction and safety aspects of novel alternative proteins from different sources. Food Chem 2024; 436:137712. [PMID: 37852073 DOI: 10.1016/j.foodchem.2023.137712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/25/2023] [Accepted: 10/08/2023] [Indexed: 10/20/2023]
Abstract
With rapid population growth and continued environmental degradation, it is no longer sustainable to rely on conventional proteins to meet human requirements. This has prompted the search for novel alternative protein sources of greater sustainability. Currently, proteins of non-conventional origin have been developed, with such alternative protein sources including plants, insects, algae, and even bacteria and fungi. Most of these protein sources have a high protein content, along with a balanced amino acid composition, and are regarded as healthy and nutritious sources of protein. While these novel alternative proteins have excellent nutritional, research on their structure are still at a preliminary stage, particularly so for insects, algae, bacteria, and fungi. Therefore, this review provides a comprehensive overview of promising novel alternative proteins developed in recent years with a focus on their nutrition, sustainability, classification, and structure. In addition, methods of extraction and potential safety factors for these proteins are summarized.
Collapse
Affiliation(s)
- Xin Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Tianyi Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yu Zhao
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
11
|
Effiong ME, Umeokwochi CP, Afolabi IS, Chinedu SN. Assessing the nutritional quality of Pleurotus ostreatus (oyster mushroom). Front Nutr 2024; 10:1279208. [PMID: 38292699 PMCID: PMC10824988 DOI: 10.3389/fnut.2023.1279208] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/22/2023] [Indexed: 02/01/2024] Open
Abstract
There is a huge gap between food production and the exploding population demands in various parts of the world, especially developing countries. This increases the chances of malnutrition, leading to increased disease incidence and the need for functional foods to reduce mortality. Pleurotus ostreatus are edible mushrooms that are cheaply sourced and rich in nutrient with the potential to be harnessed toward addressing the present and future food crisis while serving as functional foods for disease prevention and treatment. This study evaluated the nutritional, proximate, vitamins and amino acids contents of Pleurotus ostreatus. The proximate composition of Pleurotus ostreatus in this study revealed that it contains 43.42% carbohydrate, 23.63% crude fiber, 17.06% crude protein, 8.22% ash, 1.21% lipid and a moisture content of 91.01 and 6.46% for fresh and dry samples of Pleurotus ostreatus, respectively. The monosaccharide and disaccharide profile of Pleurotus ostreatus revealed the presence of glucose (55.08 g/100 g), xylose (7.19 g/100 g), fructose (19.70 g/100 g), galactose (17.47 g/100 g), trehalose (7.37 g/100 g), chitobiose (11.79 g/100 g), maltose (29.21 g/100 g), sucrose (51.60 g/100 g) and lower amounts of cellobiose (0.01 g/100 g), erythrose (0.48 g/100 g) and other unidentified sugars. Potassium, Iron and Magnesium were the highest minerals present with 12.25 mg, 9.66 mg and 7.00 mg amounts, respectively. The vitamin profile revealed the presence of vitamin A (2.93 IU/100 g), C (16.46 mg/100 g), E (21.50 mg/100 g) and B vitamins with vitamin B2 having the highest concentration of 92.97 mg/kg. The amino acid scores showed that Pleurotus ostreatus had more non-essential amino acids (564.17 mg/100 g) than essential amino acids (67.83 mg/100 g) with a ratio of 0.11. Lysine (23.18 mg/100 g) was the highest essential amino acid while aspartic acid (492.12 mg/kg) was the highest non-essential amino acid present in Pleurotus ostreatus. It had a higher concentration of acidic amino acids, 492.12 mg/100 g (77.87%), followed by neutral amino acids, 106.66 mg/100 g (16.88%) and least were the basic amino acids, 23.18 mg/100 g (3.67%). Based on the nutritional assessment of the Pleurotus ostreatus analyzed in this study, it can be concluded that it can serve as an important functional food source that can be exploited to meet the increasing food demands and reduce micronutrient deficiencies in many parts of the world, especially developing countries.
Collapse
Affiliation(s)
- Magdalene Eno Effiong
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Nigeria
- Covenant Applied Informatics and Communication Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Ogun, Nigeria
| | | | - Israel Sunmola Afolabi
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Nigeria
- Covenant University Public Health and Wellbeing Research Cluster (CUPHWERC), Covenant University, Ota, Nigeria
| | - Shalom Nwodo Chinedu
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Nigeria
- Covenant University Public Health and Wellbeing Research Cluster (CUPHWERC), Covenant University, Ota, Nigeria
| |
Collapse
|
12
|
Shi R, He Y, Wang Q, Cai J, Gantumur MA, Jiang Z. Insight into the physicochemical characteristics, functionalities and digestion behavior of protein isolate derived from Lactarius volemus (L.volemus): Impacts of microwave-assisted extraction. Food Chem 2024; 431:137070. [PMID: 37579611 DOI: 10.1016/j.foodchem.2023.137070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/23/2023] [Accepted: 07/30/2023] [Indexed: 08/16/2023]
Abstract
The impacts of microwave assisted-extraction (MAE) on the physicochemical characteristics, functionalities, and digestion behavior of Lactarius volemus (L. volemus) protein isolate (LPIs) was investigated. Compared with the conventional water bath assisted-extraction method (WAE), MAE significantly enhanced the extraction rate of LPIs by 30.00% and 47.98% at 20 and 60 min, respectively. Also, MAE unfolded the spatial structure of LPIs, promoting the transformation from ordered structure to disordered structure, exposing its hydrophobic groups and increasing free sulfhydryl content. In addition, LPIs obtained by MAE showed better solubility, emulsifying and foaming characteristics than that by WAE. MAE method can improve the digestibility and the degree of hydrolysis of LPIs compared to WAE, which were increased by 6.06% and 19.78% after 20 min extraction in the small intestine digestion, respectively. This study can provide a potential strategy to produce L. volemus protein isolate with high efficiency and quality.
Collapse
Affiliation(s)
- Ruijie Shi
- Institute of BioPharmceutical Research, Liaocheng University, Liaocheng 252059, PR China; Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Yanting He
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Qingpeng Wang
- Institute of BioPharmceutical Research, Liaocheng University, Liaocheng 252059, PR China
| | - Jinyi Cai
- Institute of BioPharmceutical Research, Liaocheng University, Liaocheng 252059, PR China
| | - Munkh-Amgalan Gantumur
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Zhanmei Jiang
- Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
13
|
Pérez-Bassart Z, Bäuerl C, Fabra MJ, Martínez-Abad A, Collado MC, López-Rubio A. Composition, structural properties and immunomodulatory activity of several aqueous Pleurotus β-glucan-rich extracts. Int J Biol Macromol 2023; 253:127255. [PMID: 37827398 DOI: 10.1016/j.ijbiomac.2023.127255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023]
Abstract
In this work, aqueous extracts from six different Pleurotus species were obtained and their yield, gross composition, β-glucan content, monosaccharide profile, thermal stability, molecular weight distribution, and FT-IR were analyzed before and after purification through ethanol precipitation of the carbohydrate-rich fractions. The bioactivity (anti-inflammatory and immunomodulatory activity) of the various fractions obtained was also analyzed in three different cell cultures and compared with a lentinan control. The trend observed after purification of the aqueous fractions was an increase in the concentration of polysaccharides (especially β-glucans), a decrease in ash, glucosamine and protein content and the elimination of low molecular weight (Mw) compounds, thus leaving in the purified samples high Mw populations with increased thermal stability. Interestingly, all these purified fractions displayed immunomodulatory capacity when tested in THP-1 macrophages and most of them also showed significant activity in HEK-hTLR4 cells, highlighting the bioactivity observed for Pleurotus ostreatus (both the extracts obtained from the whole mushroom and from the stipes). This specific species was richer in heteropolysaccharides, having moderate β-glucan content and being enriched upon purification in a high Mw fraction with good thermal stability.
Collapse
Affiliation(s)
- Zaida Pérez-Bassart
- Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology-Spanish National Research Council (IATA-CSIC), Agustin Escardino 7, 46980 Paterna, Valencia, Spain
| | - Christine Bäuerl
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-Spanish National Research Council (IATA-CSIC), Agustin Escardino 7, 46980 Paterna, Valencia, Spain
| | - Maria Jose Fabra
- Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology-Spanish National Research Council (IATA-CSIC), Agustin Escardino 7, 46980 Paterna, Valencia, Spain
| | - Antonio Martínez-Abad
- Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology-Spanish National Research Council (IATA-CSIC), Agustin Escardino 7, 46980 Paterna, Valencia, Spain
| | - Maria Carmen Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-Spanish National Research Council (IATA-CSIC), Agustin Escardino 7, 46980 Paterna, Valencia, Spain
| | - Amparo López-Rubio
- Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology-Spanish National Research Council (IATA-CSIC), Agustin Escardino 7, 46980 Paterna, Valencia, Spain.
| |
Collapse
|
14
|
Wu J, Nong Y, Chen B, Jiang Y, Chen Y, Wei C, Tao Y, Xie B. Flammutoxin, a Degradation Product of Transepithelial Electrical Resistance-Decreasing Protein, Induces Reactive Oxygen Species and Apoptosis in HepG2 Cells. Foods 2023; 13:66. [PMID: 38201094 PMCID: PMC10778570 DOI: 10.3390/foods13010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Proteins from Flammulina filiformis were prepared by sodium chloride extraction and fractionated by ammonium sulfate precipitation with increasing saturation degrees to obtain the protein fractions Ffsp-30, Ffsp-50, Ffsp-70, Ffsp-90, and Ffp-90. Among these protein fractions, Ffsp-50 possessed the most significant cytotoxic effect against three human gastrointestinal cancer cell lines, viz. HT-29, SGC-7901, and HepG2. SDS-PAGE and MALDI-TOF/TOF MS/MS analyses revealed that flammutoxin (FTX) was present as a dominating protein in Ffsp-50, which was further evidenced by HPLC-MS/MS determination. Furthermore, native FTX was purified from Ffsp-50 with a molecular weight of 26.78 kDa, exhibiting notable cytotoxicity against gastrointestinal cancer cell lines. Both Ffsp-50 and FTX exposure could enhance intercellular reactive oxygen species (ROS) generation and induce significant apoptosis in HepG2 cells. FTX was identified to be relatively conserved in basidiomycetes according to phylogenetic analysis, and its expression was highly upregulated in the primordium as well as the pileus of the fruiting body from the elongation and maturation stages, as compared with that in mycelium. Taken together, FTX could remarkably inhibit cell growth and induce ROS and apoptosis in HepG2 cells, potentially participating in the growth and development of the fruiting body. These findings from our investigation provided insight into the antigastrointestinal cancer activity of FTX, which could serve as a biological source of health-promoting and biomedical applications.
Collapse
Affiliation(s)
- Jianguo Wu
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.W.); (Y.N.); (Y.C.); (C.W.); (Y.T.)
| | - Yu Nong
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.W.); (Y.N.); (Y.C.); (C.W.); (Y.T.)
| | - Bingzhi Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.C.); (Y.J.)
| | - Yuji Jiang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.C.); (Y.J.)
| | - Yuanhao Chen
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.W.); (Y.N.); (Y.C.); (C.W.); (Y.T.)
| | - Chuanzheng Wei
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.W.); (Y.N.); (Y.C.); (C.W.); (Y.T.)
| | - Yongxin Tao
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.W.); (Y.N.); (Y.C.); (C.W.); (Y.T.)
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baogui Xie
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.W.); (Y.N.); (Y.C.); (C.W.); (Y.T.)
| |
Collapse
|
15
|
Li K, Qiao K, Xiong J, Guo H, Zhang Y. Nutritional Values and Bio-Functional Properties of Fungal Proteins: Applications in Foods as a Sustainable Source. Foods 2023; 12:4388. [PMID: 38137192 PMCID: PMC10742821 DOI: 10.3390/foods12244388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
From the preparation of bread, cheese, beer, and condiments to vegetarian meat products, fungi play a leading role in the food fermentation industry. With the shortage of global protein resources and the decrease in cultivated land, fungal protein has received much attention for its sustainability. Fungi are high in protein, rich in amino acids, low in fat, and almost cholesterol-free. These properties mean they could be used as a promising supplement for animal and plant proteins. The selection of strains and the fermentation process dominate the flavor and quality of fungal-protein-based products. In terms of function, fungal proteins exhibit better digestive properties, can regulate blood lipid and cholesterol levels, improve immunity, and promote gut health. However, consumer acceptance of fungal proteins is low due to their flavor and safety. Thus, this review puts forward prospects in terms of these issues.
Collapse
Affiliation(s)
- Ku Li
- Hubei Provincial Key Laboratory of Yeast Function, Angel Yeast Co., Ltd., 168 Chengdu Road, Yichang 443003, China
| | - Kaina Qiao
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
| | - Jian Xiong
- Hubei Provincial Key Laboratory of Yeast Function, Angel Yeast Co., Ltd., 168 Chengdu Road, Yichang 443003, China
| | - Hui Guo
- Hubei Provincial Key Laboratory of Yeast Function, Angel Yeast Co., Ltd., 168 Chengdu Road, Yichang 443003, China
| | - Yuyu Zhang
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
| |
Collapse
|
16
|
Li Y, He Y, Zhang H, Ma X. Effects of ultrasonic-enzymatic-assisted ethanol precipitation method on the physicochemical characteristics, antioxidant and hypoglycemic activities of Tremella fuciformis polysaccharides. ULTRASONICS SONOCHEMISTRY 2023; 101:106682. [PMID: 37952470 PMCID: PMC10665963 DOI: 10.1016/j.ultsonch.2023.106682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/26/2023] [Accepted: 11/04/2023] [Indexed: 11/14/2023]
Abstract
This investigation involved the extraction of a novel polysaccharide from the spore fermentation broth of Tremella fuciformis using a method that combined ultrasonic and enzymatic assistance with ethanol precipitation. It was then compared with enzymatic and ultrasonic extraction methods. The objective of this research is to offer a reference point for expanding the application of ultrasonic-assisted enzymatic extraction technology in T. fuciformis polysaccharides (TFPs). Based on single-factor experiments, Box-Behnken was used to optimize the extraction conditions of TFPs by ultrasonic-enzymatic-assisted ethanol precipitation extraction. The results revealed an optimal combination of enzymes, with a cellulase-to-papain ratio of 2:1, an enzyme addition of 4000U/100 mL, an enzymolysis temperature of 49 °C, ultrasonicpower at 3 W/mL and an ultrasonictime of 20 min. The extraction rate of TFPs and α- amylase inhibition rates were 23.94 % and 61.44 %, respectively. Comparing the physicochemical properties, structural characterization and in vitro activity of TFPs extracted through different methods, the results showed that ultrasonic treatment significantly influences the apparent morphology of polysaccharide and could enhance its in vitro biological activity. However, different extraction techniques exhibit insubstantial impact on the chemical composition, glycosidic bonds or glycosidic ring configurations within the polysaccharides. Among them, ultrasonic-enzymatic-assisted ethanol precipitation extraction of polysaccharide has the highest extraction rate and the lowest viscosity. It has significant effects on ABTS+ scavenging activity, α- amylase inhibition rate and glucose dialysis retardation index, polysaccharide treated with ultrasonic-enzymatic showed the best performance. These findings suggest that ultrasonic-enzymatic-assisted ethanol precipitation extraction can enhance the activities of TFPs, thereby providing a valuable insight for their future development and application.
Collapse
Affiliation(s)
- Yixuan Li
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, PR China.
| | - Yan He
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, PR China.
| | - Hua Zhang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, PR China.
| | - Xia Ma
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, PR China.
| |
Collapse
|
17
|
Castorina G, Cappa C, Negrini N, Criscuoli F, Casiraghi MC, Marti A, Rollini M, Consonni G, Erba D. Characterization and nutritional valorization of agricultural waste corncobs from Italian maize landraces through the growth of medicinal mushrooms. Sci Rep 2023; 13:21148. [PMID: 38036649 PMCID: PMC10689450 DOI: 10.1038/s41598-023-48252-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023] Open
Abstract
The research investigates the potential use of maize cobs (or corncobs) from five genotypes, including the B73 inbred line and four locally cultivated landraces from Northern Italy, as substrate for implementing Solid State fermentation processes with four Medicinal Mushrooms (MMs). The corncobs were characterized based on their proximate composition, lignin, phenolics content (both free and bound), and total antioxidant capacity. Among the MMs tested, Pleurotus ostreatus and Ganoderma annularis demonstrated the most robust performance. Their growth was parametrized using Image Analysis technique, and chemical composition of culture samples was characterized compared to that of corncobs alone. In all culture samples, the growth of MMs led to a significant reduction (averaging 40%) in the total phenolics contents compared to that measured in corncobs alone. However, the high content of free phenolics in the cobs negatively impacted the growth of P. ostreatus. The final MM-corncob matrix exhibited reduced levels of free sugars and starch (≤ 2.2% DW, as a sum) and increased levels of proteins (up to 5.9% DW) and soluble dietary fiber (up to 5.0% DW), with a notable trend toward higher levels of β-glucan compared to corncobs alone. This research paves the way for the use of this matrix as an active ingredient to enhance the nutritional value of food preparations.
Collapse
Affiliation(s)
- G Castorina
- DiSAA, Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy
| | - C Cappa
- DeFENS, Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy
| | - N Negrini
- DiSAA, Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy
| | - F Criscuoli
- DeFENS, Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy
| | - M C Casiraghi
- DeFENS, Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy
| | - A Marti
- DeFENS, Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy
| | - M Rollini
- DeFENS, Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy.
| | - G Consonni
- DiSAA, Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy.
| | - D Erba
- DeFENS, Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy
| |
Collapse
|
18
|
Lian L, Qiao J, Guo X, Xing Z, Ren A, Zhao M, Zhu J. The transcription factor GCN4 contributes to maintaining intracellular amino acid contents under nitrogen-limiting conditions in the mushroom Ganoderma lucidum. Microb Cell Fact 2023; 22:205. [PMID: 37817159 PMCID: PMC10563202 DOI: 10.1186/s12934-023-02213-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/26/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Edible mushrooms are delicious in flavour and rich in high-quality protein and amino acids required by humans. A transcription factor, general control nonderepressible 4 (GCN4), can regulate the expression of genes involved in amino acid metabolism in yeast and mammals. A previous study revealed that GCN4 plays a pivotal role in nitrogen utilization and growth in Ganoderma lucidum. However, its regulation is nearly unknown in mushrooms. RESULTS In this study, we found that the amino acid contents reached 120.51 mg per gram of mycelia in the WT strain under 60 mM asparagine (Asn) conditions, but decreased by 62.96% under 3 mM Asn conditions. Second, silencing of gcn4 resulted in a 54.2% decrease in amino acid contents under 60 mM Asn, especially for the essential and monosodium glutamate-like flavour amino acids. However, these effects were more pronounced under 3 mM Asn. Third, silencing of gcn4 markedly inhibited the expression of amino acid biosynthesis and transport genes. In addition, GCN4 enhanced the tricarboxylic acid cycle (TCA) and glycolytic pathway and inhibited the activity of target of rapamycin complex 1 (TORC1), thus being beneficial for maintaining amino acid homeostasis. CONCLUSION This study confirmed that GCN4 contributes to maintaining the amino acid contents in mushrooms under low concentrations of nitrogen. In conclusion, our study provides a research basis for GCN4 to regulate amino acid synthesis and improve the nutrient contents of edible mushrooms.
Collapse
Affiliation(s)
- Lingdan Lian
- Key Laboratory of Agricultural Environmental Microbiology, Microbiology Department, College of Life Sciences, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Jiangsu, Nanjing, 210095, PR China
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou, 510642, PR China
| | - Jinjin Qiao
- Key Laboratory of Agricultural Environmental Microbiology, Microbiology Department, College of Life Sciences, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Jiangsu, Nanjing, 210095, PR China
| | - Xiaoyu Guo
- Key Laboratory of Agricultural Environmental Microbiology, Microbiology Department, College of Life Sciences, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Jiangsu, Nanjing, 210095, PR China
| | - Zhenzhen Xing
- Key Laboratory of Agricultural Environmental Microbiology, Microbiology Department, College of Life Sciences, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Jiangsu, Nanjing, 210095, PR China
| | - Ang Ren
- Key Laboratory of Agricultural Environmental Microbiology, Microbiology Department, College of Life Sciences, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Jiangsu, Nanjing, 210095, PR China
| | - Mingwen Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Microbiology Department, College of Life Sciences, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Jiangsu, Nanjing, 210095, PR China
| | - Jing Zhu
- Key Laboratory of Agricultural Environmental Microbiology, Microbiology Department, College of Life Sciences, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Jiangsu, Nanjing, 210095, PR China.
- College of Life Sciences, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu, 210095, PR China.
| |
Collapse
|
19
|
Botella-Martínez C, Muñoz-Tebar N, Lucas-González R, Pérez-Álvarez JA, Fernández-López J, Viuda-Martos M. Assessment of Chemical, Physico-Chemical and Sensory Properties of Low-Sodium Beef Burgers Formulated with Flours from Different Mushroom Types. Foods 2023; 12:3591. [PMID: 37835245 PMCID: PMC10572391 DOI: 10.3390/foods12193591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
It is now widely demonstrated that excessive salt consumption can cause various health problems, and meat products are among the foods most consumed with a high salt content. For that, the aim of this work was to assess the effects of the utilization of flours obtained from oyster mushrooms (Pleurotus ostreatus), button mushrooms (Agaricus bisporus), and portobello mushrooms (Agaricus brunnescen) as salt replacers on chemical, physicochemical, and sensory properties of beef burgers. The fat and protein content was not affected by the inclusion of mushroom flour, while the sodium content was reduced by 55-61% compared to the control sample. The control sample had the lowest values for cooking loss and shrinkage (12.29 and 18.69%, respectively) whilst the reformulated samples had higher values ranging between 16.08 and 18.88% for cooking loss, respectively, and between 19.55 and 28.25% for shrinkage, respectively. The reformulated samples showed higher lipid oxidation values (ranging from 0.18 and 0.20 mg malondialdehyde/kg sample) than the control sample. Sensorially, all parameters analyzed were not affected by the replacement of sodium chloride by the different mushroom flours. The use of flours obtained from different mushroom flours is a viable alternative to be used as sodium chloride replacers in the preparation of beef burgers.
Collapse
Affiliation(s)
| | | | | | | | | | - Manuel Viuda-Martos
- IPOA Research Group, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO), Miguel Hernández University, 03312 Alicante, Spain; (C.B.-M.); (N.M.-T.); (R.L.-G.); (J.A.P.-Á.); (J.F.-L.)
| |
Collapse
|
20
|
De Cianni R, Varese GC, Mancuso T. A Further Step toward Sustainable Development: The Case of the Edible Mushroom Supply Chain. Foods 2023; 12:3433. [PMID: 37761142 PMCID: PMC10528148 DOI: 10.3390/foods12183433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
This study provides an accurate economic characterization of the supply of edible mushrooms throughout Italy within the European context to fill the relevant research gap and highlight barriers and opportunities that are consistent with the Sustainable Development Goals. Italian companies operating in this field were identified and economically characterized using the Chamber of Commerce's Register of Companies. A qualitative web content analysis was then conducted to extract information about the marketed products, mushroom species, and retail channels, as well as the adopted certifications. The obtained data were quantitatively analyzed through descriptive statistics and multiple correspondence analysis. The Italian market is concentrated in northern areas of the country, and the limited company size indicates fragmentation at the production level, which led to Italy not being competitive enough and, thus, heavily rely on imports. Production is limited to less than 10 species, and innovative mushroom-based products, such as burgers, have shown a limited presence on the market, although they are gaining market share online. The novelty of growing kits highlights the potential to use food production waste to create fungal substrates. Investments in training new mushroom growers and studying new formulations and new fungal species are needed; these investments could allow greater market differentiation and be a good opportunity to promote local economies and create new job opportunities, thus meeting the requirements for sustainable development.
Collapse
Affiliation(s)
- Rachele De Cianni
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Largo Paolo Braccini, 2, 10095 Grugliasco, Italy;
| | - Giovanna Cristina Varese
- Department of Life Sciences and Systems Biology (DBIOS), University of Turin, Viale Pier Andrea Mattioli, 25, 10125 Torino, Italy;
| | - Teresina Mancuso
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Largo Paolo Braccini, 2, 10095 Grugliasco, Italy;
| |
Collapse
|
21
|
Uffelman CN, Doenges KA, Armstrong ML, Quinn K, Reisdorph RM, Tang M, Krebs NF, Reisdorph NA, Campbell WW. Metabolomics Profiling of White Button, Crimini, Portabella, Lion's Mane, Maitake, Oyster, and Shiitake Mushrooms Using Untargeted Metabolomics and Targeted Amino Acid Analysis. Foods 2023; 12:2985. [PMID: 37627983 PMCID: PMC10453450 DOI: 10.3390/foods12162985] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/24/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Mushrooms contain multiple essential nutrients and health-promoting bioactive compounds, including the amino acid L-ergothioneine. Knowledge of the chemical composition of different mushroom varieties will aid research on their health-promoting properties. We compared the metabolomes of fresh raw white button, crimini, portabella, lion's mane, maitake, oyster, and shiitake mushrooms using untargeted liquid chromatography mass spectrometry (LC/MS)-based metabolomics. We also quantified amino acid concentrations, including L-ergothioneine, a potential antioxidant which is not synthesized by plants or animals. Among the seven mushroom varieties, more than 10,000 compounds were detected. Principal Component Analysis indicated mushrooms of the same species, Agaricus Bisporus (white button, portabella, crimini), group similarly. The other varieties formed individual, distinct clusters. A total of 1344 (520 annotated) compounds were detected in all seven mushroom varieties. Each variety had tens-to-hundreds of unique-to-mushroom-variety compounds. These ranged from 29 for crimini to 854 for lion's mane. All three Agaricus bisporus varieties had similar amino acid profiles (including detection of all nine essential amino acids), while other varieties had less methionine and tryptophan. Lion's mane and oyster mushrooms had the highest concentrations of L-ergothioneine. The detection of hundreds of unique-to-mushroom-variety compounds emphasizes the differences in chemical composition of these varieties of edible fungi.
Collapse
Affiliation(s)
- Cassi N. Uffelman
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA;
| | - Katrina A. Doenges
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (K.A.D.); (M.L.A.); (K.Q.); (R.M.R.); (N.A.R.)
| | - Michael L. Armstrong
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (K.A.D.); (M.L.A.); (K.Q.); (R.M.R.); (N.A.R.)
| | - Kevin Quinn
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (K.A.D.); (M.L.A.); (K.Q.); (R.M.R.); (N.A.R.)
| | - Richard M. Reisdorph
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (K.A.D.); (M.L.A.); (K.Q.); (R.M.R.); (N.A.R.)
| | - Minghua Tang
- School of Medicine, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.T.); (N.F.K.)
| | - Nancy F. Krebs
- School of Medicine, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.T.); (N.F.K.)
| | - Nichole A. Reisdorph
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (K.A.D.); (M.L.A.); (K.Q.); (R.M.R.); (N.A.R.)
| | - Wayne W. Campbell
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA;
| |
Collapse
|
22
|
Xu L, Wang X, Xu Y, Meng J, Feng C, Geng X, Cheng Y, Chang M. Effects of Freeze-Thaw Cycles on the Structures and Functional Properties of Clitocybe squamulosa Protein Isolates. Foods 2023; 12:2948. [PMID: 37569217 PMCID: PMC10418645 DOI: 10.3390/foods12152948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Changes in the functional properties and structures of Clitocybe squamulosa protein isolate (CSPI) in the process of freeze-thaw (F-T) cycles were explored. Remarkable alterations and the reduced content of protein ordered structure were revealed through structural analysis of CSPI after F-T treatments. The surface hydrophobicity and free sulfhydryl content of CSPI first increased and then decreased. However, after the F-T treatments, the carbonyl content of CSPI continued to increase. Similarly, the water holding capacity (WHC), oil holding capacity (OHC), and solubility of CSPI all declined as the number of F-T cycles increased. The foaming properties and emulsifying properties of CSPI were significantly improved and reached maximum values after three F-T cycles. CSPI undergoing two F-T cycles showed the highest digestibility, maximum polypeptide content, and highest DPPH and ·OH-radical-scavenging activities. The ·OH-radical-scavenging activities and reducing power of the gastrointestinally digested CSPI had the highest value after one F-T cycle. Therefore, it has been demonstrated that F-T treatments could be a residue-free and cost-effective tool for improving mushroom protein functional properties.
Collapse
Affiliation(s)
- Lijing Xu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu 030801, China
| | - Xin Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Yaping Xu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Junlong Meng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
- Shanxi Engineering Research Center of Edible Fungi, Taigu 030801, China
| | - Cuiping Feng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
- Shanxi Engineering Research Center of Edible Fungi, Taigu 030801, China
| | - Xueran Geng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu 030801, China
| | - Yanfen Cheng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
- Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu 030801, China
| | - Mingchang Chang
- Shanxi Engineering Research Center of Edible Fungi, Taigu 030801, China
| |
Collapse
|
23
|
Mayirnao HS, Gupta S, Thokchom SD, Sharma K, Mehmood T, Kaur S, Sharma YP, Kapoor R. Nutritional Assessment of Lactarius drassinus and L. controversus from the Cold Desert Region of the Northwest Himalayas for Their Potential as Food Supplements. J Fungi (Basel) 2023; 9:763. [PMID: 37504751 PMCID: PMC10381459 DOI: 10.3390/jof9070763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/01/2023] [Accepted: 07/13/2023] [Indexed: 07/29/2023] Open
Abstract
Kargil is a cold desert with hostile ecological conditions such as low temperature and precipitation, as well as difficult terrains. However, several wild mushrooms thrive well under such an extreme environment. Despite their abundance, the chemical composition of indigenous mushrooms has not been explored. This study aimed to assess the potential of two wild edible mushrooms from Kargil, Lactarius drassinus and Lactarius controversus, as food supplements by evaluating their nutritional and nutraceutical properties. Nutritional attributes such as total protein, available carbohydrates, soluble sugars, and vitamins were found to be high in the mushroom species. Furthermore, high mineral accumulation and relatively lower antinutrient concentrations resulted in higher bioavailabilities of Zn, Fe, Ca, and Mg. Gas-chromatography-mass-spectrometry-based metabolite profiling revealed that although the two mushroom species showed similar metabolite compositions, their relative concentrations differed. Sugars were the predominant compounds identified in both the species, with sugar alcohols being the major contributor. The second most abundant class of compound in L. drassinus was amino acids, with 5-oxoproline as the major contributor. On the other hand, fatty acids were the second most abundant compounds in L. controversus, with high oleic and linoleic acid concentrations. In the ultra-performance-liquid-chromatography-based quantification of phenolic compounds, chlorogenic acid was found to be highest in in terms of its concentration in both the mushrooms studied, followed by quercetin dihydrate and gallic acid in L. drassinus and L. controversus, respectively. Moreover, high antioxidant activities attributable to their high phenol, flavonoid, and carotenoid concentrations were observed. Overall, the two mushrooms offer well-balanced sources of nutritional and nutraceutical compounds, making them healthy foods.
Collapse
Affiliation(s)
| | - Samta Gupta
- Department of Botany, University of Delhi, Delhi 110007, India
| | | | - Karuna Sharma
- Department of Botany, University of Delhi, Delhi 110007, India
| | - Tahir Mehmood
- Department of Botany, University of Jammu, Jammu 180016, India
| | - Surinder Kaur
- SGTB Khalsa College, University of Delhi, Delhi 110007, India
| | - Yash Pal Sharma
- Department of Botany, University of Jammu, Jammu 180016, India
| | - Rupam Kapoor
- Department of Botany, University of Delhi, Delhi 110007, India
| |
Collapse
|
24
|
Youssef MS, Ahmed SI, Mohamed IMA, Abdel-Kareem MM. Biosynthesis, Spectrophotometric Follow-Up, Characterization, and Variable Antimicrobial Activities of Ag Nanoparticles Prepared by Edible Macrofungi. Biomolecules 2023; 13:1102. [PMID: 37509137 PMCID: PMC10377419 DOI: 10.3390/biom13071102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
The biosynthesis of silver nanoparticles (Ag NPs) could play a significant role in the development of commercial antimicrobials. Herein, the biosynthesis of Ag NPs was studied using the edible mushroom Pleurotus floridanus, and following its formation, spectrophotometry was used to detect the best mushroom content, pH, temperature, and silver concentration. After that, the morphology was described via transmission electron microscopy (TEM), and nanoscale-size particles were found ranging from 11 to 13 nm. The best conditions of Ag content and pH were found at 1.0 mM and 11.0, respectively. In addition, the best mushroom extract concentration was found at 30 g/L. According to XRD analysis, the crystal structure of the formed amorphous Ag NPs is cubic with a space group of fm-3m and a space group number of 225. After that, the function groups at the surface of the prepared Ag NPs were studied via FTIR analysis, which indicated the presence of C=O, C-H, and O-H groups. These groups could indicate the presence of mushroom traces in the Ag NPs, which was confirmed via the amorphous characteristics of Ag NPs from the XRD analysis. The prepared Ag NPs have a high impact against different microorganisms, which could be attributed to the ability of Ag NPs to penetrate the cell bacterial wall.
Collapse
Affiliation(s)
- Mohamed S Youssef
- Botany and Microbiology Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Sanaa Ibrahim Ahmed
- Botany and Microbiology Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Ibrahim M A Mohamed
- Chemistry Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Marwa M Abdel-Kareem
- Botany and Microbiology Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
| |
Collapse
|
25
|
Yu C, Zhang Y, Ren Y, Zhao Y, Song X, Yang H, Chen M. Composition and contents of fatty acids and amino acids in the mycelia of Lentinula edodes. Food Sci Nutr 2023; 11:4038-4046. [PMID: 37457198 PMCID: PMC10345669 DOI: 10.1002/fsn3.3392] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/23/2023] [Accepted: 04/12/2023] [Indexed: 07/18/2023] Open
Abstract
With the global shortages of animal protein foods, mycoprotein as a low-cost alternative source of protein by its high-protein and low-fat content has become a development trend. Lentinula edodes (L. edodes) is a healthy food with high protein and low fiber. This work evaluated the nutritional value of L. edodes mycelia, and determined the composition and contents of fatty acids and amino acids. Eleven saturated fatty acids (SFAs) and 12 unsaturated fatty acids (UFAs) were detected in the mycelia of L. edodes. The UFA content accounted for 75.7% and 73.1% of the total fatty acid content in the mycelia of strains 18 and 18N44, respectively. Linoleic acid was the major polyunsaturated fatty acid (PUFA) in the mycelia, accounting for 91.0% and 86.3% of the UFAs, respectively. The mycelia of the two strains contained 17 types of amino acids, and the essential amino acids were sufficient (357.92 ± 0.42 and 398.38 ± 4.52 mg/g pro, respectively), both close to the WHO/FAO reference protein pattern value. The most abundant essential amino acid was Lys, and the limiting amino acids were Met + Cys and Ile, respectively. The SRC values in the mycelia of the two strains were 68.07 and 54.86, and the EAAI values were 67.70 and 74.42, respectively, both being close to those of ovalbumin. It is concluded that L. edodes mycelia are rich in easily absorbed high-quality proteins and PUFAs, and can be used as a source for meat analog required by vegetarians. This study provides a scientific basis for the further utilization of mycelial resources.
Collapse
Affiliation(s)
- Chang‐Xia Yu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South)Ministry of AgricultureShanghaiChina
| | - Ya‐Ru Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South)Ministry of AgricultureShanghaiChina
| | - Yun‐Fei Ren
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South)Ministry of AgricultureShanghaiChina
| | - Yan Zhao
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South)Ministry of AgricultureShanghaiChina
| | - Xiao‐Xia Song
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South)Ministry of AgricultureShanghaiChina
| | - Huan‐Ling Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South)Ministry of AgricultureShanghaiChina
| | - Ming‐Jie Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South)Ministry of AgricultureShanghaiChina
| |
Collapse
|
26
|
Ayimbila F, Keawsompong S. Nutritional Quality and Biological Application of Mushroom Protein as a Novel Protein Alternative. Curr Nutr Rep 2023; 12:290-307. [PMID: 37032416 PMCID: PMC10088739 DOI: 10.1007/s13668-023-00468-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 04/11/2023]
Abstract
PURPOSE OF REVIEW Global concerns about population growth, economic, and nutritional transitions and health have led to the search for a low-cost protein alternative to animal origins. This review provides an overview of the viability of exploring mushroom protein as a future protein alternative considering the nutritional value, quality, digestibility, and biological benefits. RECENT FINDINGS Plant proteins are commonly used as alternatives to animal proteins, but the majority of them are low in quality due to a lack of one or more essential amino acids. Edible mushroom proteins usually have a complete essential amino acid profile, meet dietary requirements, and provide economic advantages over animal and plant sources. Mushroom proteins may provide health advantages by eliciting antioxidant, antitumor, angiotensin-converting enzyme (ACE), inhibitory and antimicrobial properties over animal proteins. Protein concentrates, hydrolysates, and peptides from mushrooms are being used to improve human health. Also, edible mushrooms can be used to fortify traditional food to increase protein value and functional qualities. These characteristics highlight mushroom proteins as inexpensive, high-quality proteins that can be used as a meat alternative, as pharmaceuticals, and as treatments to alleviate malnutrition. Edible mushroom proteins are high in quality, low in cost, widely available, and meet environmental and social requirements, making them suitable as sustainable alternative proteins.
Collapse
Affiliation(s)
- Francis Ayimbila
- Specialized Research Units: Prebiotics and Probiotics for Health, Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, 10900, Thailand
- Center for Advanced Studies for Agriculture and Food, KU Institute of Advanced Studies, Kasetsart University (CASAF, NRU-KU), Bangkok, 10900, Thailand
| | - Suttipun Keawsompong
- Specialized Research Units: Prebiotics and Probiotics for Health, Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, 10900, Thailand.
- Center for Advanced Studies for Agriculture and Food, KU Institute of Advanced Studies, Kasetsart University (CASAF, NRU-KU), Bangkok, 10900, Thailand.
| |
Collapse
|
27
|
Yan MQ, Feng J, Liu YF, Hu DM, Zhang JS. Functional Components from the Liquid Fermentation of Edible and Medicinal Fungi and Their Food Applications in China. Foods 2023; 12:foods12102086. [PMID: 37238904 DOI: 10.3390/foods12102086] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Functional raw materials rich in various effective nutrients and active ingredients that are of stable quality can be obtained from the liquid fermentation of edible and medicinal fungi. In this review, we systematically summarize the main findings of this comparative study that compared the components and efficacy of liquid fermented products from edible and medicinal fungi with those from cultivated fruiting bodies. Additionally, we present the methods used in the study to obtain and analyze the liquid fermented products. The application of these liquid fermented products in the food industry is also discussed. With the potential breakthrough of liquid fermentation technology and the continued development of these products, our findings can serve as a reference for further utilization of liquid fermented products derived from edible and medicinal fungi. Further exploration of liquid fermentation technology is necessary to optimize the production of functional components from edible and medicinal fungi, and to enhance their bioactivity and safety. Investigation of the potential synergistic effects of combining liquid fermented products with other food ingredients is also necessary to enhance their nutritional values and health benefits.
Collapse
Affiliation(s)
- Meng-Qiu Yan
- Key Laboratory of Edible Fungi Resources and Utilization (South), Key Laboratory of Agricultural Genetics and Breeding of Shanghai, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Ministry of Agriculture of P. R. China, Shanghai 201403, China
| | - Jie Feng
- Key Laboratory of Edible Fungi Resources and Utilization (South), Key Laboratory of Agricultural Genetics and Breeding of Shanghai, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Ministry of Agriculture of P. R. China, Shanghai 201403, China
| | - Yan-Fang Liu
- Key Laboratory of Edible Fungi Resources and Utilization (South), Key Laboratory of Agricultural Genetics and Breeding of Shanghai, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Ministry of Agriculture of P. R. China, Shanghai 201403, China
| | - Dian-Ming Hu
- Bioengineering and Technological Research Centre for Edible and Medicinal Fungi, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jing-Song Zhang
- Key Laboratory of Edible Fungi Resources and Utilization (South), Key Laboratory of Agricultural Genetics and Breeding of Shanghai, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Ministry of Agriculture of P. R. China, Shanghai 201403, China
| |
Collapse
|
28
|
Rauf A, Joshi PB, Ahmad Z, Hemeg HA, Olatunde A, Naz S, Hafeez N, Simal-Gandara J. Edible mushrooms as potential functional foods in amelioration of hypertension. Phytother Res 2023. [PMID: 37157920 DOI: 10.1002/ptr.7865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/07/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023]
Abstract
Edible mushrooms are popular functional foods attributed to their rich nutritional bioactive constituent profile influencing cardiovascular function. Edible mushrooms are omnipresent in various prescribed Dietary Approaches to Stop Hypertension, Mediterranean diet, and fortified meal plans as they are rich in amino acids, dietary fiber, proteins, sterols, vitamins, and minerals. However, without an understanding of the influence of mushroom bioactive constituents, mechanism of action on heart and allergenicity, it is difficult to fully comprehend the role of mushrooms as dietary interventions in alleviating hypertension and other cardiovascular malfunctions. To accomplish this endeavor, we chose to review edible mushrooms and their bioactive constituents in ameliorating hypertension. Hypertension and cardiovascular diseases are interrelated and if the former is managed by dietary changes, it is postulated that overall heart health could also be improved. With a concise note on different edible varieties of mushrooms, a particular focus is presented on the antihypertensive potential of mushroom bioactive constituents, mode of action, absorption kinetics and bioavailability. Ergosterol, lovastatin, cordycepin, tocopherols, chitosan, ergothioneine, γ-aminobutyric acid, quercetin, and eritadenine are described as essential bioactives with hypotensive effects. Finally, safety concerns on allergens and limitations of consuming edible mushrooms with special reference to chemical toxins and their postulated metabolites are highlighted. It is opined that the present review will redirect toxicologists to further investigate mushroom bioactives and allergens, thereby influencing dietary interventions for heart health.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Pakistan
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Payal B Joshi
- Operations and Method Development, Shefali Research Laboratories, Ambernath, India
| | - Zubair Ahmad
- Department of Chemistry, University of Swabi, Swabi, Pakistan
| | - Hassan A Hemeg
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, Al Madinah Al Munawwarah, Saudi Arabia
| | - Ahmed Olatunde
- Department of Medical Biochemistry, Abubakar Tafawa Balewa University, Bauchi, Nigeria
| | - Saima Naz
- Department of Biotechnology, Bacha Khan University, Khyber Pakhtunkhwa, Pakistan
| | - Nabia Hafeez
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, Pakistan
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, Universidade de Vigo, Ourense, Spain
| |
Collapse
|
29
|
Yusran Y, Erniwati E, Khumaidi A, Pitopang R, Jati IRAP. Diversity of substrate type, ethnomycology, mineral composition, proximate, and phytochemical compounds of the Schizopyllum commune Fr. in the area along Palu-Koro Fault, Central Sulawesi, Indonesia. Saudi J Biol Sci 2023; 30:103593. [PMID: 36879672 PMCID: PMC9985035 DOI: 10.1016/j.sjbs.2023.103593] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/11/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
Schizophyllum commune Fr. is a wild macro fungus species, which is often used as a food source by the indigenous Kaili tribe along the Palu-Koro fault, Central Sulawesi, Indonesia. This fungus has a wide variety in terms of the weathered wood substrate as a place to grow and is found in almost all types of ecosystems. Although its diversity has been investigated, there is no identification of the weathered wood type as a substrate for growth. Some communities in Indonesia have not also known its potential and benefits. Therefore, this research aims to determine the wood type that grows S. commune fungus, ethnomycology, mineral composition, proximate, and phytochemical compounds. It was carried out using the descriptive explanatory approach and the fungi location as well as wood substrate sampling, was determined through the purposive sampling technique in forest areas, agroforestry, and community gardens along the Palu-Koro fault, Central Sulawesi. The samples of unknown wood types were through the collection of tree parts, namely twigs, leaves, flowers, and fruits, which were brought to Herbarium Celebense, Tadulako University for identification. Analysis of mineral content, proximate, and fungal phytochemical compounds was carried out based on the method according to the existing protocol. The results showed that 92 types of rotted wood found where the fungus S. commune grew, belonged to 36 families. The nutritional content is also good, although it varies based on the type of wood growing media. Therefore, it can be used and processed into various health-beneficial food products. This showed that domestication of the fungus needs to be carried out to support its commercialization as food and medicine in the future.
Collapse
Affiliation(s)
- Yusran Yusran
- Department of Forestry, Faculty of Forestry, Tadulako University, Jl. Soekarno-Hatta Km.9, Palu, Central Sulawesi 94118, Indonesia
| | - Erniwati Erniwati
- Department of Forestry, Faculty of Forestry, Tadulako University, Jl. Soekarno-Hatta Km.9, Palu, Central Sulawesi 94118, Indonesia
| | - Akhmad Khumaidi
- Department of Pharmacy, Faculty of Mathematics and Natural Science, Tadulako University, Jl. Soekarno-Hatta Km.9, Palu, Central Sulawesi 94118, Indonesia
| | - Ramadanil Pitopang
- Department of Biology, Faculty of Mathematic and Natural Science, Tadulako University, Jl. Soekarno-Hatta Km.9, Palu, Central Sulawesi 94118, Indonesia
| | | |
Collapse
|
30
|
Jo C, Zhang J, Tam JM, Church GM, Khalil AS, Segrè D, Tang TC. Unlocking the magic in mycelium: Using synthetic biology to optimize filamentous fungi for biomanufacturing and sustainability. Mater Today Bio 2023; 19:100560. [PMID: 36756210 PMCID: PMC9900623 DOI: 10.1016/j.mtbio.2023.100560] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023] Open
Abstract
Filamentous fungi drive carbon and nutrient cycling across our global ecosystems, through its interactions with growing and decaying flora and their constituent microbiomes. The remarkable metabolic diversity, secretion ability, and fiber-like mycelial structure that have evolved in filamentous fungi have been increasingly exploited in commercial operations. The industrial potential of mycelial fermentation ranges from the discovery and bioproduction of enzymes and bioactive compounds, the decarbonization of food and material production, to environmental remediation and enhanced agricultural production. Despite its fundamental impact in ecology and biotechnology, molds and mushrooms have not, to-date, significantly intersected with synthetic biology in ways comparable to other industrial cell factories (e.g. Escherichia coli,Saccharomyces cerevisiae, and Komagataella phaffii). In this review, we summarize a suite of synthetic biology and computational tools for the mining, engineering and optimization of filamentous fungi as a bioproduction chassis. A combination of methods across genetic engineering, mutagenesis, experimental evolution, and computational modeling can be used to address strain development bottlenecks in established and emerging industries. These include slow mycelium growth rate, low production yields, non-optimal growth in alternative feedstocks, and difficulties in downstream purification. In the scope of biomanufacturing, we then detail previous efforts in improving key bottlenecks by targeting protein processing and secretion pathways, hyphae morphogenesis, and transcriptional control. Bringing synthetic biology practices into the hidden world of molds and mushrooms will serve to expand the limited panel of host organisms that allow for commercially-feasible and environmentally-sustainable bioproduction of enzymes, chemicals, therapeutics, foods, and materials of the future.
Collapse
Affiliation(s)
- Charles Jo
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
| | - Jing Zhang
- Biological Design Center, Boston University, Boston, MA, USA
- Graduate Program in Bioinformatics, Boston, MA, USA
| | - Jenny M. Tam
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - George M. Church
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Ahmad S. Khalil
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Daniel Segrè
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
- Graduate Program in Bioinformatics, Boston, MA, USA
- Department of Biology, Boston University, Boston, MA, USA
- Department of Physics, Boston University, Boston, MA, USA
| | - Tzu-Chieh Tang
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| |
Collapse
|
31
|
Nowacka M, Trusinska M, Chraniuk P, Drudi F, Lukasiewicz J, Nguyen NP, Przybyszewska A, Pobiega K, Tappi S, Tylewicz U, Rybak K, Wiktor A. Developments in Plant Proteins Production for Meat and Fish Analogues. Molecules 2023; 28:molecules28072966. [PMID: 37049729 PMCID: PMC10095742 DOI: 10.3390/molecules28072966] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/25/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023] Open
Abstract
In recent years, there have been significant developments in plant proteins production for meat and fish analogues. Some of the key developments include the use of new plant protein sources such as soy, legumes, grains, potatoes, and seaweed, as well as insect proteins, leaf proteins, mushrooms, and microbial proteins. Furthermore, to improve the technological and functional properties of plant proteins, they can be subjected to traditional and unconventional treatments such as chemical (glycosylation, deamidation, phosphorylation, and acylation), physical (pulsed electric fields, ultrasound, high hydrostatic pressure, dynamic high-pressure treatment, and cold plasma), and biological (fermentation and enzymatic modification). To obtain the high quality and the desired texture of the food product, other ingredients besides proteins, such as water, fat, flavors, binders, dyes, vitamins, minerals, and antioxidants, also have to be used. The final product can be significantly influenced by the matrix composition, variety of ingredients, and water content, with the type of ingredients playing a role in either enhancing or constraining the desired texture of the food. There are several types of technologies used for meat and fish analogues production, including extrusion, shear cell technology, spinning, 3D printing, and others. Overall, the technologies used for meat and fish analogues production are constantly evolving as new innovations are developed and existing methods are improved. These developments have led to the creation of plant-based products that have a similar texture, taste, and nutritional profile to meat and fish, making them more appealing to consumers seeking alternatives to animal-based products.
Collapse
|
32
|
Scholtmeijer K, van den Broek LAM, Fischer ARH, van Peer A. Potential Protein Production from Lignocellulosic Materials Using Edible Mushroom Forming Fungi. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4450-4457. [PMID: 36883423 PMCID: PMC10037329 DOI: 10.1021/acs.jafc.2c08828] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
There is a need for new protein sources to feed the world in a sustainable way. Converting non-food-grade "woody" side streams into food containing proteins will contribute to this mission. Mushroom forming fungi are unique in their capability to convert lignocellulosic substances into edible biomass containing protein. Especially if substrate mycelium can be used instead of mushrooms, this technology could be a serious contribution to addressing the protein challenge. In this Perspective, we discuss challenges toward production, purification, and market introduction of mushroom mycelium based foods.
Collapse
Affiliation(s)
- Karin Scholtmeijer
- Wageningen
Plant Breeding Research, Mushroom Research
Group, Droevensdaalsesteeg
1, 6708PB Wageningen, The Netherlands
| | | | - Arnout R. H. Fischer
- Wageningen
University Marketing and Consumer Behaviour Group, Hollandseweg 1, 6706KN Wageningen, The Netherlands
| | - Arend van Peer
- Wageningen
Plant Breeding Research, Mushroom Research
Group, Droevensdaalsesteeg
1, 6708PB Wageningen, The Netherlands
| |
Collapse
|
33
|
Quintieri L, Nitride C, De Angelis E, Lamonaca A, Pilolli R, Russo F, Monaci L. Alternative Protein Sources and Novel Foods: Benefits, Food Applications and Safety Issues. Nutrients 2023; 15:nu15061509. [PMID: 36986239 PMCID: PMC10054669 DOI: 10.3390/nu15061509] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/16/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
The increasing size of the human population and the shortage of highly valuable proteinaceous ingredients has prompted the international community to scout for new, sustainable, and natural protein resources from invertebrates (e.g., insects) and underutilized legume crops, unexploited terrestrial and aquatic weeds, and fungi. Insect proteins are known for their nutritional value, being rich in proteins with a good balance of essential amino acids and being a valuable source of essential fatty acids and trace elements. Unconventional legume crops were found rich in nutritional, phytochemical, and therapeutic properties, showing excellent abilities to survive extreme environmental conditions. This review evaluates the recent state of underutilized legume crops, aquatic weeds, fungi, and insects intended as alternative protein sources, from ingredient production to their incorporation in food products, including their food formulations and the functional characteristics of alternative plant-based proteins and edible insect proteins as novel foods. Emphasis is also placed on safety issues due to the presence of anti-nutritional factors and allergenic proteins in insects and/or underutilized legumes. The functional and biological activities of protein hydrolysates from different protein sources are reviewed, along with bioactive peptides displaying antihypertensive, antioxidant, antidiabetic, and/or antimicrobial activity. Due to the healthy properties of these foods for the high abundance of bioactive peptides and phytochemicals, more consumers are expected to turn to vegetarianism or veganism in the future, and the increasing demand for such products will be a challenge for the future.
Collapse
Affiliation(s)
- Laura Quintieri
- Institute of Sciences of Food Production, National Research Council of Italy (ISPA-CNR), Via Giovanni Amendola 122/O, 70126 Bari, Italy
| | - Chiara Nitride
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Elisabetta De Angelis
- Institute of Sciences of Food Production, National Research Council of Italy (ISPA-CNR), Via Giovanni Amendola 122/O, 70126 Bari, Italy
| | - Antonella Lamonaca
- Institute of Sciences of Food Production, National Research Council of Italy (ISPA-CNR), Via Giovanni Amendola 122/O, 70126 Bari, Italy
| | - Rosa Pilolli
- Institute of Sciences of Food Production, National Research Council of Italy (ISPA-CNR), Via Giovanni Amendola 122/O, 70126 Bari, Italy
| | - Francesco Russo
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS "Saverio de Bellis", 70013 Castellana Grotte, Italy
| | - Linda Monaci
- Institute of Sciences of Food Production, National Research Council of Italy (ISPA-CNR), Via Giovanni Amendola 122/O, 70126 Bari, Italy
| |
Collapse
|
34
|
De Cianni R, Pippinato L, Mancuso T. A systematic review on drivers influencing consumption of edible mushrooms and innovative mushroom-containing products. Appetite 2023; 182:106454. [PMID: 36623772 DOI: 10.1016/j.appet.2023.106454] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 01/01/2023] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Edible mushrooms are attractive for their low calorie content, high-quality protein, low lipid levels, and therapeutic properties; furthermore, mushroom-containing products are gaining interest in light of the world's increasing need for protein source diversification to meet the global protein demand. At present, there is a strong heterogeneity worldwide in terms of mushroom consumption and, to date, few surveys exist on the factors influencing this. This review, through the PICo and PRISMA statements, identified and analysed 31 papers to answer the question: What are the determinants that drive consumers towards the consumption and purchase of edible mushrooms and novel products containing mushrooms? The expected outcome is to provide an overview of key research issues used thus far, identify current research gaps, and discuss implications for industries and policy-makers. Consumer attitude - including fear of poisoning - towards innovative mushroom-containing products has been poorly analysed in Europe and USA; what we do know is that processed mushrooms appeared more attractive to European and American mainlanders. Few studies have considered the ethnicity of participants, which is an important factor since mushrooms and their culinary applications appear to be known mainly thanks to family tradition. New strategies are needed to increase people's familiarity with these products and to contrast neophobic phenomena. If mushroom price is an obstacle for both companies and purchasers, intrinsic characteristics such as umami taste and positive health and sustainability benefits are strengths to consider in the development of the supply chain, public education, and information initiatives. This should be useful in directing consumer preferences towards meat alternatives containing mushrooms.
Collapse
Affiliation(s)
- Rachele De Cianni
- Department of Agricultural, Forest, and Food Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095, Italy
| | - Liam Pippinato
- Department of Agricultural, Forest, and Food Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095, Italy.
| | - Teresina Mancuso
- Department of Agricultural, Forest, and Food Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095, Italy
| |
Collapse
|
35
|
Kozarski M, Klaus A, van Griensven L, Jakovljevic D, Todorovic N, Wan-Mohtar WAAQI, Vunduk J. Mushroom β-glucan and polyphenol formulations as natural immunity boosters and balancers: nature of the application. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
36
|
An Insight into Recent Advancement in Plant- and Algae-Based Functional Ingredients in 3D Food Printing Ink Formulations. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-03040-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
37
|
Physicochemical Characteristics and Storage Stability of Hybrid Beef Patty Using Shiitake Mushroom (Lentinus edodes). J FOOD QUALITY 2023. [DOI: 10.1155/2023/7239709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
This study evaluated the physicochemical characteristics and storage stability (at 0, 3, and 7 days) of hybrid beef patties with different amount of shiitake mushrooms (Lentinus edodes) added. Shiitake mushrooms contain healthy ingredients such as ergosterol and β-glucan. Four proportions of shiitake mushrooms were added to beef patties (T1, 20%, T2, 40%, T3, 60%, T4, 80%) as a substitute for beef and compared with a control group (CON 0%). Chemical composition, water holding capacity (WHC), cooking loss, pH, color, texture profile analysis, and sensory properties of the products were compared on day 0. As a storage stability experiment, volatile basic nitrogen (VBN), 2-thiobarbituric acid reactive substances (TBARS), and total microbial count were compared (0, 3, and 7 days). The results revealed that replacement with shiitake improved the WHC and cooking loss of patties but had a negative effect on sensory properties and storage stability. These results indicate that shiitake mushrooms can be added along with beef to produce hybrid patties; however, the usage amount must be considered.
Collapse
|
38
|
Hamza A, Ghanekar S, Santhosh Kumar D. Current trends in health-promoting potential and biomaterial applications of edible mushrooms for human wellness. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2022.102290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
39
|
Yang M, Qian Z, Zhan Q, Zhong L, Hu Q, Zhao L. Application of definitive screening design to optimization of the protein extraction and functional properties of proteins in Auricularia auricula. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1226-1236. [PMID: 36085582 DOI: 10.1002/jsfa.12217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/27/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Auricularia auricula (A. auricula) is one of the most abundant sources of plant protein in edible fungi. Problems of low protein yield exist in traditional methods of protein extraction such as alkali extraction and ultrasonic-assisted alkali after pretreatment with enzymes. Thus, the protein extraction process was investigated and optimized using a definitive screening design from A. auricula to improve the protein yield under practical operating conditions of temperature, the concentration of NaCl, meal/water ratio, extraction time and pH. RESULTS The yield of protein isolates of the isoelectric-ammonium sulfate precipitation (9.34% w/w) was obtained almost three times and the protein content (55.23% w/w) was approximately 1.6 times that of the traditional extraction method of isoelectric precipitation. Next, the optimized method was successfully applied to the analysis of the functional properties of the protein. A. auricula protein isolate (AAPI) had better solubility, emulsification and foaming capacity than soy protein isolate (SPI) and pea protein isolate (PPI), and the oil holding capacity of AAPI exhibited extremely well, which was approximately five times that of SPI and six times that of PPI. The texture properties of AAPI gel were similar to those of PPI gels. CONCLUSION AAPI extracted by the optimized method had a satisfactory yield and had the potential to substitute plant-originated proteins in food processing. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mengdie Yang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zheng Qian
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Qiping Zhan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Lei Zhong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Qiuhui Hu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Liyan Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
40
|
LIU H, LIU X, XIE J, CHEN S. Structure, function and mechanism of edible fungus polysaccharides in human beings chronic diseases. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.111022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Huijuan LIU
- Guizhou Medical University, China; Guizhou Medical University, China
| | | | - Jiao XIE
- Guizhou Medical University, China; Guizhou Medical University, China
| | | |
Collapse
|
41
|
Hobbs C. The Health and Clinical Benefits of Medicinal Fungi. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 184:285-356. [PMID: 37468715 DOI: 10.1007/10_2023_230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
The human uses of mushrooms and cultured mycelium products for nutrition and medicine are detailed and supported by available human studies, which in many cases are clinical trials published in peer-reviewed journals. The major medically active immunomodulating compounds in the cell walls-chitin, beta-glucans, and glycoproteins, as well as lower weight molecules-nitrogen-containing compounds, phenolics, and terpenes-are discussed in relation to their current clinical uses. The nutritional content and foods derived from mushrooms, particularly related to their medical benefits, are discussed. High-quality major nutrients such as the high amounts of complete protein and prebiotic fibers found in edible and medicinal fungi and their products are presented. Mushrooms contain the highest amount of valuable medicinal fiber, while dried fruiting bodies of some fungi have up to 80% prebiotic fiber. These fibers are particularly complex and are not broken down in the upper gut, so they can diversify the microbiome and increase the most beneficial species, leading to better immune regulation and increasing normalizing levels of crucial neurotransmitters like serotonin and dopamine. Since the growth of medicinal mushroom products is expanding rapidly worldwide, attention is placed on reviewing important aspects of mushroom and mycelium cultivation and quality issues relating to adulteration, substitution, and purity and for maximizing medicinal potency. Common questions surrounding medicinal mushroom products in the marketplace, particularly the healing potential of fungal mycelium compared with fruiting bodies, extraction methods, and the use of fillers in products, are all explored, and many points are supported by the literature.
Collapse
Affiliation(s)
- Christopher Hobbs
- Institute for Natural Products Research, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
42
|
Ogidi CO, Oyebode KO. Assessment of nutrient contents and bio-functional activities of edible fungus bio-fortified with copper, lithium and zinc. World J Microbiol Biotechnol 2022; 39:56. [PMID: 36572785 DOI: 10.1007/s11274-022-03500-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 12/14/2022] [Indexed: 12/28/2022]
Abstract
Bio-enrichment of edible mushrooms is an outstanding strategy to deliver essential nutrients to human. In this study, an edible fungus; Pleurotus pulmonarius was cultivated on spent mushroom substrate (SMS) supplemented with copper, lithium, and zinc. Proximate and mineral analysis of cultivated mushroom was determined using methods of AOAC. Antimicrobial activity of cultivated mushroom was assessed against microorganisms using agar well diffusion. Antioxidant property of mushroom was assessed against free radicals. Similar (p ≤ 0.05) protein contents of 18.93%, 18.80% and 17.90% were respectively obtained in P. pulmonarius biofortified with Cu + Li + Zn, Cu + Zn and Zn. Crude fibre in element fortified-mushroom ranged from 9.02 to 10.11%, while non-fortified mushroom was 8.66%. Copper content of P. pulmonarius fortified with Cu alone and Cu + Zn were 96.12 mg/100 g and 98.09 mg/100 g, respectively. Mushroom fortified with Zn has the highest zinc content of 520.15 mg/100 g. Mushroom fortified with Li and Li + Zn have a similar (p ≤ 0.05) Li content of 106.02 mg/100 g and 104.30 mg/100 g, respectively. Extract from mushroom-fortified with copper has the highest zone of inhibition (15.1 mm) against Klebsiella pneumoniae at 1.0 mg/ml. Mushroom fortified with Cu + Li + Zn and Li + Zn, respectively have similar (p ≤ 0.05) scavenging activities of 79.10 and 81.0% against DPPH. Mushroom fortified with Zn or Zn + Cu enhanced the growth of Lactobacillus acidophilus and Lactobacillus plantarum. Antimicrobial, antioxidant and prebiotic activities of fortified-mushroom could be attributed to arrays of phytochemicals and bio-accumulated elements. Hence, bio-fortified mushrooms can be used as functional foods and as biopharmaceuticals to treat ailments associated with nutrient deficient.
Collapse
Affiliation(s)
- Clement Olusola Ogidi
- Department of Food Science and Technology, School of Agriculture, Food and Natural Resources, Olusegun Agagu University of Science and Technology, PMB 353, Okitipupa, Nigeria.
| | | |
Collapse
|
43
|
Biochemical characterization and bioactivity of methanolic and acetonic extracts of Laetiporus sulphureus basidiocarps. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01742-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
44
|
Zhu Y, Begho T. Towards responsible production, consumption and food security in China: A review of the role of novel alternatives to meat protein. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2022.100186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
45
|
Zeng Y, Chen E, Zhang X, Li D, Wang Q, Sun Y. Nutritional Value and Physicochemical Characteristics of Alternative Protein for Meat and Dairy-A Review. Foods 2022; 11:3326. [PMID: 36359938 PMCID: PMC9654170 DOI: 10.3390/foods11213326] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/09/2022] [Accepted: 10/18/2022] [Indexed: 09/12/2023] Open
Abstract
In order to alleviate the pressure on environmental resources faced by meat and dairy production and to satisfy the increasing demands of consumers for food safety and health, alternative proteins have drawn considerable attention in the food industry. However, despite the successive reports of alternative protein food, the processing and application foundation of alternative proteins for meat and dairy is still weak. This paper summarizes the nutritional composition and physicochemical characteristics of meat and dairy alternative proteins from four sources: plant proteins, fungal proteins, algal proteins and insect proteins. The difference between these alternative proteins to animal proteins, the effects of their structural features and environmental conditions on their properties, as well as the corresponding mechanism are compared and discussed. Though fungal proteins, algal proteins and insect proteins have shown some advantages over traditional plant proteins, such as the comparable protein content of insect proteins to meat, the better digestibility of fungal proteins and the better foaming properties of algal proteins, there is still a big gap between alternative proteins and meat and dairy proteins. In addition to needing to provide amino acid composition and digestibility similar to animal proteins, alternative proteins also face challenges such as maintaining good solubility and emulsion properties. Their nutritional and physicochemical properties still need thorough investigation, and for commercial application, it is important to develop and optimize industrial technology in alternative protein separation and modification.
Collapse
Affiliation(s)
- Yan Zeng
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Xiqidao No. 32, Airport Economic Area, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Enhui Chen
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Xiqidao No. 32, Airport Economic Area, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Xuewen Zhang
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Xiqidao No. 32, Airport Economic Area, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Demao Li
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Xiqidao No. 32, Airport Economic Area, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Qinhong Wang
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Xiqidao No. 32, Airport Economic Area, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Yuanxia Sun
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Xiqidao No. 32, Airport Economic Area, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
46
|
Correlating rheology with 3D printing performance based on thermo-responsive κ-carrageenan/Pleurotus ostreatus protein with regard to interaction mechanism. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
47
|
Pukalski J, Latowski D. Secrets of Flavonoid Synthesis in Mushroom Cells. Cells 2022; 11:cells11193052. [PMID: 36231014 PMCID: PMC9562910 DOI: 10.3390/cells11193052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/16/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Flavonoids are chemical compounds that occur widely across the plant kingdom. They are considered valuable food additives with pro-health properties, and their sources have also been identified in other kingdoms. Especially interesting is the ability of edible mushrooms to synthesize flavonoids. Mushrooms are usually defined as a group of fungal species capable of producing macroscopic fruiting bodies, and there are many articles considering the content of flavonoids in this group of fungi. Whereas the synthesis of flavonoids was revealed in mycelial cells, the ability of mushroom fruiting bodies to produce flavonoids does not seem to be clearly resolved. This article, as an overview of the latest key scientific findings on flavonoids in mushrooms, outlines and organizes the current state of knowledge on the ability of mushroom fruiting bodies to synthesize this important group of compounds for vital processes. Putting the puzzle of the current state of knowledge on flavonoid biosynthesis in mushroom cells together, we propose a universal scheme of studies to unambiguously decide whether the fruiting bodies of individual mushrooms are capable of synthesizing flavonoids.
Collapse
|
48
|
Pellegrino R, Blasi F, Angelini P, Ianni F, Alabed HBR, Emiliani C, Venanzoni R, Cossignani L. LC/MS Q-TOF Metabolomic Investigation of Amino Acids and Dipeptides in Pleurotus ostreatus Grown on Different Substrates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10371-10382. [PMID: 35944091 PMCID: PMC9413224 DOI: 10.1021/acs.jafc.2c04197] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 05/13/2023]
Abstract
The well-established correlation between diet and health arouses great interest in seeking new health-promoting functional foods that may contribute to improving health and well-being. Herein, the metabolomic investigation of Pleurotus ostreatus samples grown on two different substrates (black poplar wood logs, WS, and lignocellulosic byproducts, LcS) revealed the high potential of such a mushroom as a source of bioactive species. The liquid chromatography/mass spectrometry combined with quadrupole time-of-flight (LC/MS Q-TOF) analysis allowed the identification of essential and nonessential amino acids along with the outstanding presence of dipeptides. Multivariate statistical models highlighted important differences in the expression of both classes of compounds arising from the growth of P. ostreatus strains on WS and LcS. The former, in particular, was correlated to an increased expression of carnitine-based amino acid derivatives and proline-based dipeptides. This finding may represent a potential strategy to drive the expression of bioactive compounds of interest to obtain enriched mushrooms or useful functional ingredients from them.
Collapse
Affiliation(s)
| | - Francesca Blasi
- Department
of Pharmaceutical Sciences, University of
Perugia, 06126 Perugia, Italy
| | - Paola Angelini
- Department
of Chemistry, Biology and Biotechnology, University of Perugia, 06122 Perugia, Italy
| | - Federica Ianni
- Department
of Pharmaceutical Sciences, University of
Perugia, 06126 Perugia, Italy
| | - Husam B. R. Alabed
- Department
of Chemistry, Biology and Biotechnology, University of Perugia, 06122 Perugia, Italy
| | - Carla Emiliani
- Department
of Chemistry, Biology and Biotechnology, University of Perugia, 06122 Perugia, Italy
| | - Roberto Venanzoni
- Department
of Chemistry, Biology and Biotechnology, University of Perugia, 06122 Perugia, Italy
| | - Lina Cossignani
- Department
of Pharmaceutical Sciences, University of
Perugia, 06126 Perugia, Italy
- Center
for Perinatal and Reproductive Medicine, Santa Maria della Misericordia University Hospital, University of
Perugia, Sant’Andrea
delle Fratte, 06132 Perugia, Italy
| |
Collapse
|
49
|
Koeder C, Perez-Cueto FJA. Vegan nutrition: a preliminary guide for health professionals. Crit Rev Food Sci Nutr 2022; 64:670-707. [PMID: 35959711 DOI: 10.1080/10408398.2022.2107997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Since the beginning of the 21st century, interest in vegan diets has been rapidly increasing in most countries. Misconceptions about vegan diets are widespread among the general population and health professionals. Vegan diets can be health-promoting and may offer certain important advantages compared to typical Western (and other mainstream) eating patterns. However, adequate dietary sources/supplements of nutrients of focus specific to vegan diets should be identified and communicated. Without supplements/fortified foods, severe vitamin B12 deficiency may occur. Other potential nutrients of focus are calcium, vitamin D, iodine, omega-3 fatty acids, iron, zinc, selenium, vitamin A, and protein. Ensuring adequate nutrient status is particularly important during pregnancy, lactation, infancy, and childhood. Health professionals are often expected to be able to provide advice on the topic of vegan nutrition, but a precise and practical vegan nutrition guide for health professionals is lacking. Consequently, it is important and urgent to provide such a set of dietary recommendations. It is the aim of this article to provide vegan nutrition guidelines, based on current evidence, which can easily be communicated to vegan patients/clients, with the goal of ensuring adequate nutrient status in vegans.
Collapse
Affiliation(s)
- Christian Koeder
- Institute of Food Science and Human Nutrition, Leibniz University Hanover, Hanover, Germany
- Department of Nutrition, University of Applied Sciences Münster, Münster, Germany
| | | |
Collapse
|
50
|
Nzekoue FK, Sun Y, Caprioli G, Vittori S, Sagratini G. Effect of the ultrasound-assisted extraction parameters on the determination of ergosterol and vitamin D2 in Agaricus bisporus, A. bisporus Portobello, and Pleurotus ostreatus mushrooms. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|