1
|
Hernandes VV, Warth B. Modular, Scalable, and Customizable LC-HRMS for Exposomics. Methods Mol Biol 2025; 2855:41-66. [PMID: 39354300 DOI: 10.1007/978-1-0716-4116-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
In this chapter, we describe a multi-purpose, reversed-phase liquid chromatography-high-resolution mass spectrometry (LC-HRMS) workflow for acquiring high-quality, non-targeted exposomics data utilizing data-dependent acquisition (DDA) combined with the use of toxicant inclusion lists for semi-targeted analysis. In addition, we describe expected retention times for >160 highly diverse xenobiotics in human plasma and serum samples. The method described is intended to serve as a generic LC-HRMS exposomics workflow for research and educational purposes. Moreover, it may be employed as a primer, allowing for further adaptations according to specialized research needs, e.g., by including reference and/or internal standards, by expanding to data-independent acquisition (DIA), or by modifying the list of compounds prioritized in fragmentation experiments (MS2).
Collapse
Affiliation(s)
- Vinicius Verri Hernandes
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Exposome Austria, Research Infrastructure and National EIRENE Node, Vienna, Austria
| | - Benedikt Warth
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria.
- Exposome Austria, Research Infrastructure and National EIRENE Node, Vienna, Austria.
| |
Collapse
|
2
|
Ducrocq T, Merel S, Miège C. Review on analytical methods and occurrence of organic contaminants in continental water sediments. CHEMOSPHERE 2024; 365:143275. [PMID: 39277038 DOI: 10.1016/j.chemosphere.2024.143275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/31/2024] [Accepted: 09/04/2024] [Indexed: 09/17/2024]
Abstract
Various industries produce a myriad of synthetic molecules used to satisfy our needs, but all these molecules are likely to reach aquatic environments. The number of organic contaminants found in rivers and lakes continues to rise, and part of this contamination gets transferred into sediments. Analytical methods to detect problematic substances in the environment often use mass spectrometry coupled with chromatography. Here we reviewed a set of 163 articles and compiled the relevant information into a comprehensive database for analysing organic contaminants in continental sediments including suspended particulate matter and surface and bottom sediments in lakes, rivers and estuaries. We found 1204 compounds detected at least once in sediments, and classified them into 11 categories, i.e. hydrocarbons, flame retardants, polychlorinated biphenyls (PCB), plasticizers, per- and poly-fluoroalkyl substances (PFAS), organochlorines (OCP) and other pesticides, pharmaceuticals, hormones, personal care products (PCP), and other contaminants. Concentrations of these compounds varied from a few ng to several mg/kg of dry sediment. Even hydrophilic compounds were detected in high concentrations. Well-known hydrophobic and persistent contaminants tend to be analysed with mass spectrometry coupled to gas chromatography (GC-MS) whereas contaminants of emerging concern (CEC) are usually analysed with liquid chromatography- mass spectrometry (LC-MS). Suspect screening and non-target analysis (NTA), which use high-resolution mass spectrometry, are still scarcely used on sediment but hold promise for gaining deeper knowledge of organic contamination in aquatic environments.
Collapse
Affiliation(s)
- Tom Ducrocq
- INRAE, UR RiverLy, 5 Rue de la Doua, F-69625, Villeurbanne, France
| | - Sylvain Merel
- INRAE, UR RiverLy, 5 Rue de la Doua, F-69625, Villeurbanne, France
| | - Cécile Miège
- INRAE, UR RiverLy, 5 Rue de la Doua, F-69625, Villeurbanne, France.
| |
Collapse
|
3
|
Tarábek P, Leonova N, Konovalova O, Kirchner M. Identification of organic contaminants in water and related matrices using untargeted liquid chromatography high-resolution mass spectrometry screening with MS/MS libraries. CHEMOSPHERE 2024; 366:143489. [PMID: 39374668 DOI: 10.1016/j.chemosphere.2024.143489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/02/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Nontargeted and suspect screening with liquid chromatography-high resolution mass spectrometry (LC-HRMS) has become an indispensable tool for quality assessment in the aquatic environment - complementary to targeted analysis of organic (micro)contaminants. An LC-HRMS method is presented, suitable for the analysis of a wide variety of water related matrices: surface water, groundwater, wastewater, sediment and sludge, including extracts from passive samplers and on-site solid phase enrichment, while focusing on the data processing aspect of the method. A field study is included to demonstrate the practical application and versatility of the whole process. HRMS/MS data were recorded following LC separation in both (ESI) positive and negative ionization modes using data dependent as well as data independent acquisition. Two vendor (Agilent's Personal Compound Database and Library and from National Institute of Standards and Technology) and one open (MassBank/EU) tandem mass spectral libraries were utilized for the identification of compounds via mass spectral match. The development of a novel software tool for parsing, grouping and reduction of MS/MS features in data files converted to mascot generic format (MGF) helped to substantially decrease the amount of time and effort needed for MS library search. While applying the method, in the course of the entire field study, 18771 detections (from 870 individual compounds) in total were recorded in 275 samples, resulting in 68.3 identified compounds per sample, on average. Among the top ten most frequently detected contaminants across all samples and sample types were pharmaceutical compounds carbamazepine, 4-acetamidoantipyrine, 4-formylaminoantipyrine, tramadol, lamotrigine and phenazone and industrial contaminants toluene-2-sulfonamide, tolytriazole, tris(2-butoxyethyl) phosphate and benzotriazole. Exploratory data analysis methods and tools enabled us to discover organic pollutant occurrence patterns within the comprehensive sets of qualitative data collected from various projects between the years 2018-2023. The results may be used as valuable inputs for future water quality monitoring programs.
Collapse
Affiliation(s)
- Peter Tarábek
- Water Research Institute, Nábr. arm. gen. L. Svobodu 5, 81249, Bratislava, Slovakia.
| | - Nataliia Leonova
- Water Research Institute, Nábr. arm. gen. L. Svobodu 5, 81249, Bratislava, Slovakia
| | - Olga Konovalova
- Water Research Institute, Nábr. arm. gen. L. Svobodu 5, 81249, Bratislava, Slovakia
| | - Michal Kirchner
- Water Research Institute, Nábr. arm. gen. L. Svobodu 5, 81249, Bratislava, Slovakia
| |
Collapse
|
4
|
Peets P, Rian MB, Martin JW, Kruve A. Evaluation of Nontargeted Mass Spectral Data Acquisition Strategies for Water Analysis and Toxicity-Based Feature Prioritization by MS2Tox. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17406-17418. [PMID: 39297340 PMCID: PMC11447898 DOI: 10.1021/acs.est.4c02833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 10/02/2024]
Abstract
The machine-learning tool MS2Tox can prioritize hazardous nontargeted molecular features in environmental waters, by predicting acute fish lethality of unknown molecules based on their MS2 spectra, prior to structural annotation. It has yet to be investigated how the extent of molecular coverage, MS2 spectra quality, and toxicity prediction confidence depend on sample complexity and MS2 data acquisition strategies. We compared two common nontargeted MS2 acquisition strategies with liquid chromatography high-resolution mass spectrometry for structural annotation accuracy by SIRIUS+CSI:FingerID and MS2Tox toxicity prediction of 191 reference chemicals spiked to LC-MS water, groundwater, surface water, and wastewater. Data-dependent acquisition (DDA) resulted in higher rates (19-62%) of correct structural annotations among reference chemicals in all matrices except wastewaters, compared to data-independent acquisition (DIA, 19-50%). However, DIA resulted in higher MS2 detection rates (59-84% DIA, 37-82% DDA), leading to higher true positive rates for spectral library matching, 40-73% compared to 34-72%. DDA resulted in higher MS2Tox toxicity prediction accuracy than DIA, with root-mean-square errors of 0.62 and 0.71 log-mM, respectively. Given the importance of MS2 spectral quality, we introduce a "CombinedConfidence" score to convey relative confidence in MS2Tox predictions and apply this approach to prioritize potentially ecotoxic nontargeted features in environmental waters.
Collapse
Affiliation(s)
- Pilleriin Peets
- Department
of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius Väg 16, SE-106
91, Stockholm, Sweden
- Institute
of Biodiversity, Faculty of Biological Science, Cluster of Excellence
Balance of the Microverse, Friedrich-Schiller-University
Jena, 07743, Jena, Germany
| | - May Britt Rian
- Department
of Environmental Science, Stockholm University, Svante Arrhenius Väg 16, SE-106 91 Stockholm, Sweden
| | - Jonathan W. Martin
- Department
of Environmental Science, Stockholm University, Svante Arrhenius Väg 16, SE-106 91 Stockholm, Sweden
- National
Facility for Exposomics, Metabolomics Platform, Science for Life Laboratory, Stockholm University, Solna 171 65, Sweden
| | - Anneli Kruve
- Department
of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius Väg 16, SE-106
91, Stockholm, Sweden
- Department
of Environmental Science, Stockholm University, Svante Arrhenius Väg 16, SE-106 91 Stockholm, Sweden
| |
Collapse
|
5
|
Margoum C, Bedos C, Munaron D, Nélieu S, Achard AL, Pesce S. Characterizing environmental contamination by plant protection products along the land-to-sea continuum:a focus on France and French overseas territories. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34945-9. [PMID: 39279021 DOI: 10.1007/s11356-024-34945-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/05/2024] [Indexed: 09/18/2024]
Abstract
Environmental compartments are contaminated by a broad spectrum of plant protection products (PPPs) that are currently widely used in agriculture or, for some of them, whose use was banned many years ago. The aim of this study is to draw up an overview of the levels of contamination of soils, continental aquatic environments, seawaters and atmosphere by organic PPPs in France and the French overseas territories, based on data from the scientific publications and the grey literature. It is difficult to establish an exhaustive picture of the overall contamination of the environment because the various compartments monitored, the monitoring frequencies, the duration of the studies and the lists of substances are not the same. Of the 33 PPPs most often recorded at high concentration levels in at least one compartment, 5 are insecticides, 9 are fungicides, 15 are herbicides and 4 are transformation products. The PPP contamination of the environment shows generally a seasonal variation according to crop cycles. On a pluriannual scale, the contamination trends are linked to the level of use driven by the pest pressure, and especially to the ban of PPP. Overall, the quality of the data acquired has been improved thanks to new, more integrative sampling strategies and broad-spectrum analysis methods that make it possible to incorporate the search for emerging contaminants such as PPP transformation products. Taking into account additional information (such as the quantities applied, agricultural practices, meteorological conditions, the properties of PPPs and environmental conditions) combined with modelling tools will make it possible to better assess and understand the fate and transport of PPPs in the environment, inter-compartment transfers and to identify their potential impacts. Simultaneous monitoring of all environmental compartments as well as biota in selected and limited relevant areas would also help in this assessment.
Collapse
Affiliation(s)
| | - Carole Bedos
- UMR ECOSYS, Université Paris-Saclay, INRAE, 91120, Palaiseau, AgroParisTech, France
| | | | - Sylvie Nélieu
- UMR ECOSYS, Université Paris-Saclay, INRAE, 91120, Palaiseau, AgroParisTech, France
| | | | | |
Collapse
|
6
|
Pedersen AF, Bayen S, Liu L, Dietz R, Sonne C, Rosing-Asvid A, Ferguson SH, McKinney MA. Nontarget and suspect screening reveals the presence of multiple plastic-related compounds in polar bear, killer whale, narwhal and long-finned pilot whale blubber from East Greenland. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124417. [PMID: 38909771 DOI: 10.1016/j.envpol.2024.124417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/05/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
The monitoring of legacy contaminants in sentinel northern marine mammals has revealed some of the highest concentrations globally. However, investigations into the presence of chemicals of emerging Arctic concern (CEACs) and other lesser-known chemicals are rarely conducted, if at all. Here, we used a nontarget/suspect approach to screen for thousands of different chemicals, including many CEACs and plastic-related compounds (PRCs) in blubber/adipose from killer whales (Orcinus orca), narwhals (Monodon monoceros), long-finned pilot whales (Globicephala melas), and polar bears (Ursus maritimus) in East Greenland. 138 compounds were tentatively identified mostly as PRCs, and four were confirmed using authentic standards: di(2-ethylhexyl) phthalate (DEHP), diethyl phthalate (DEP), di(2-propylheptyl) phthalate (DPHP), and one antioxidant (Irganox 1010). Three other PRCs, a nonylphenol isomer, 2,6-di-tert-butylphenol, and dioctyl sebacate, exhibited fragmentation patterns matching those in library databases. While phthalates were only above detection limits in some polar bear and narwhal, Irganox 1010, nonylphenol, and 2,6-di-tert-butylphenol were detected in >50% of all samples. This study represents the first application of a nontarget/suspect screening approach in Arctic cetaceans, leading to the identification of multiple PRCs in their blubber. Further nontarget analyses are warranted to comprehensively characterize the extent of CEAC and PRC contamination within Arctic marine food webs.
Collapse
Affiliation(s)
- Adam F Pedersen
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada.
| | - Stéphane Bayen
- Department of Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Lan Liu
- Department of Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Rune Dietz
- Department of Ecoscience, Arctic Research Centre, Aarhus University, Roskilde DK-4000, Denmark
| | - Christian Sonne
- Department of Ecoscience, Arctic Research Centre, Aarhus University, Roskilde DK-4000, Denmark
| | - Aqqalu Rosing-Asvid
- Department of Birds and Mammals, Greenland Institute of Natural Resources, Nuuk GL-3900, Greenland
| | - Steven H Ferguson
- Arctic Aquatic Research Division, Fisheries and Oceans Canada, Winnipeg, MB R3T 2N6, Canada
| | - Melissa A McKinney
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| |
Collapse
|
7
|
Lee THY, Li C, Dos Santos MM, Tan SY, Sureshkumar M, Srinuansom K, Ziegler AD, Snyder SA. Assessment of emerging and persistent contaminants in an anthropogenic-impacted watershed: Application using targeted, non-targeted, and in vitro bioassay techniques. CHEMOSPHERE 2024; 364:143067. [PMID: 39128775 DOI: 10.1016/j.chemosphere.2024.143067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 06/10/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Emerging and persistent contaminants (EPC) pose a significant challenge to water quality monitoring efforts. Effect-based monitoring (EBM) techniques provide an efficient and systematic approach in water quality monitoring, but they tend to be resource intensive. In this study, we investigated the EPC distribution for various land uses using target analysis (TA) and non-target screening (NTS) and in vitro bioassays, both individually and integrated, in the upper Ping River Catchment, northern Thailand. Our findings of NTS showed that urban areas were the most contaminated of all land use types, although agriculture sites had high unexpected pollution levels. We evaluated the reliability of NTS data by comparing it to TA and observed varying inconsistencies likely due to matrix interferences and isobaric compound interferences. Integrating NTS with in vitro bioassays for a thorough analysis posed challenges, primary due to a scarcity of concentration data for key compounds, and potentially additive or non-additive effects of mixture samples that could not be accounted for. While EBM approaches place emphasis on toxic sites, this study demonstrated the importance of considering non-bioactive sites that contain toxic compounds with antagonistic effects that may go undetected by traditional monitoring approaches. The present work emphasizes the importance of improving NTS workflows and ensuring high-quality EBM analyses in future water quality monitoring programs.
Collapse
Affiliation(s)
- Theodora Hui Yian Lee
- Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141, Singapore
| | - Caixia Li
- Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141, Singapore
| | - Mauricius Marques Dos Santos
- Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141, Singapore
| | - Suan Yong Tan
- Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141, Singapore
| | - Mithusha Sureshkumar
- Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141, Singapore
| | - Khajornkiat Srinuansom
- Faculty of Fisheries Technology & Aquatic Resources, Maejo University, Nong Han, San Sai District, Chiang Mai, 50290, Thailand
| | - Alan D Ziegler
- Faculty of Fisheries Technology & Aquatic Resources, Maejo University, Nong Han, San Sai District, Chiang Mai, 50290, Thailand; Water Resources Research Center, University of Hawai'i at Mānoa, 2540 Dole St., Holmes Hall 283, Honolulu, HI, 96822, USA
| | - Shane Allen Snyder
- Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141, Singapore.
| |
Collapse
|
8
|
Karnaeva AE, Sholokhova AY. Validation of the identification reliability of known and assumed UDMH transformation products using gas chromatographic retention indices and machine learning. CHEMOSPHERE 2024; 362:142679. [PMID: 38909863 DOI: 10.1016/j.chemosphere.2024.142679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Thirty two commercially available standards were used to determine chromatographic retention indices for three different stationary phases (non-polar, polar and mid-polar) commonly used in gas chromatography. The selected compounds were nitrogen-containing heterocycles and amides, which are referred to in the literature as unsymmetrical dimethylhydrazine (UDMH) transformation products or its assumed transformation products. UDMH is a highly toxic compound widely used in the space industry. It is a reactive substance that forms a large number of different compounds in the environment. Well-known transformation products may exceed UDMH itself in their toxicity, but most of the products are poorly investigated, while posing a huge environmental threat. Experimental retention indices for the three stationary phases, retention indices from the NIST database, and predicted retention indices are presented in this paper. It is shown that there are virtually no retention indices for UDMH transformation products in the NIST database. In addition, even among those compounds for which retention indices were known, inconsistencies were identified. Adding retention indices to the database and eliminating erroneous data would allow for more reliable identification when standards are not available. The discrepancies identified between experimental retention index values and predicted values will allow for adjustments to the machine learning models that are used for prediction. Previously proposed compounds as possible transformation products without the use of standards and NMR method were confirmed.
Collapse
Affiliation(s)
- Anastasia E Karnaeva
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia.
| | - Anastasia Yu Sholokhova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
9
|
Lai Y, Koelmel JP, Walker DI, Price EJ, Papazian S, Manz KE, Castilla-Fernández D, Bowden JA, Nikiforov V, David A, Bessonneau V, Amer B, Seethapathy S, Hu X, Lin EZ, Jbebli A, McNeil BR, Barupal D, Cerasa M, Xie H, Kalia V, Nandakumar R, Singh R, Tian Z, Gao P, Zhao Y, Froment J, Rostkowski P, Dubey S, Coufalíková K, Seličová H, Hecht H, Liu S, Udhani HH, Restituito S, Tchou-Wong KM, Lu K, Martin JW, Warth B, Godri Pollitt KJ, Klánová J, Fiehn O, Metz TO, Pennell KD, Jones DP, Miller GW. High-Resolution Mass Spectrometry for Human Exposomics: Expanding Chemical Space Coverage. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12784-12822. [PMID: 38984754 PMCID: PMC11271014 DOI: 10.1021/acs.est.4c01156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/11/2024]
Abstract
In the modern "omics" era, measurement of the human exposome is a critical missing link between genetic drivers and disease outcomes. High-resolution mass spectrometry (HRMS), routinely used in proteomics and metabolomics, has emerged as a leading technology to broadly profile chemical exposure agents and related biomolecules for accurate mass measurement, high sensitivity, rapid data acquisition, and increased resolution of chemical space. Non-targeted approaches are increasingly accessible, supporting a shift from conventional hypothesis-driven, quantitation-centric targeted analyses toward data-driven, hypothesis-generating chemical exposome-wide profiling. However, HRMS-based exposomics encounters unique challenges. New analytical and computational infrastructures are needed to expand the analysis coverage through streamlined, scalable, and harmonized workflows and data pipelines that permit longitudinal chemical exposome tracking, retrospective validation, and multi-omics integration for meaningful health-oriented inferences. In this article, we survey the literature on state-of-the-art HRMS-based technologies, review current analytical workflows and informatic pipelines, and provide an up-to-date reference on exposomic approaches for chemists, toxicologists, epidemiologists, care providers, and stakeholders in health sciences and medicine. We propose efforts to benchmark fit-for-purpose platforms for expanding coverage of chemical space, including gas/liquid chromatography-HRMS (GC-HRMS and LC-HRMS), and discuss opportunities, challenges, and strategies to advance the burgeoning field of the exposome.
Collapse
Affiliation(s)
- Yunjia Lai
- Department
of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Jeremy P. Koelmel
- Department
of Environmental Health Sciences, Yale School
of Public Health, New Haven, Connecticut 06520, United States
| | - Douglas I. Walker
- Gangarosa
Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Elliott J. Price
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Stefano Papazian
- Department
of Environmental Science, Science for Life Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
- National
Facility for Exposomics, Metabolomics Platform, Science for Life Laboratory, Stockholm University, Solna 171 65, Sweden
| | - Katherine E. Manz
- Department
of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Delia Castilla-Fernández
- Department
of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, 1010 Vienna, Austria
| | - John A. Bowden
- Center for
Environmental and Human Toxicology, Department of Physiological Sciences,
College of Veterinary Medicine, University
of Florida, Gainesville, Florida 32611, United States
| | | | - Arthur David
- Univ Rennes,
Inserm, EHESP, Irset (Institut de recherche en santé, environnement
et travail) − UMR_S, 1085 Rennes, France
| | - Vincent Bessonneau
- Univ Rennes,
Inserm, EHESP, Irset (Institut de recherche en santé, environnement
et travail) − UMR_S, 1085 Rennes, France
| | - Bashar Amer
- Thermo
Fisher Scientific, San Jose, California 95134, United States
| | | | - Xin Hu
- Gangarosa
Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Elizabeth Z. Lin
- Department
of Environmental Health Sciences, Yale School
of Public Health, New Haven, Connecticut 06520, United States
| | - Akrem Jbebli
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Brooklynn R. McNeil
- Biomarkers
Core Laboratory, Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Dinesh Barupal
- Department
of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Marina Cerasa
- Institute
of Atmospheric Pollution Research, Italian National Research Council, 00015 Monterotondo, Rome, Italy
| | - Hongyu Xie
- Department
of Environmental Science, Science for Life Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Vrinda Kalia
- Department
of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Renu Nandakumar
- Biomarkers
Core Laboratory, Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Randolph Singh
- Department
of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Zhenyu Tian
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Peng Gao
- Department
of Environmental and Occupational Health, and Department of Civil
and Environmental Engineering, University
of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- UPMC Hillman
Cancer Center, Pittsburgh, Pennsylvania 15232, United States
| | - Yujia Zhao
- Institute
for Risk Assessment Sciences, Utrecht University, Utrecht 3584CM, The Netherlands
| | | | | | - Saurabh Dubey
- Biomarkers
Core Laboratory, Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Kateřina Coufalíková
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Hana Seličová
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Helge Hecht
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Sheng Liu
- Department
of Environmental Health Sciences, Yale School
of Public Health, New Haven, Connecticut 06520, United States
| | - Hanisha H. Udhani
- Biomarkers
Core Laboratory, Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Sophie Restituito
- Department
of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Kam-Meng Tchou-Wong
- Department
of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Kun Lu
- Department
of Environmental Sciences and Engineering, Gillings School of Global
Public Health, The University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jonathan W. Martin
- Department
of Environmental Science, Science for Life Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
- National
Facility for Exposomics, Metabolomics Platform, Science for Life Laboratory, Stockholm University, Solna 171 65, Sweden
| | - Benedikt Warth
- Department
of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, 1010 Vienna, Austria
| | - Krystal J. Godri Pollitt
- Department
of Environmental Health Sciences, Yale School
of Public Health, New Haven, Connecticut 06520, United States
| | - Jana Klánová
- RECETOX,
Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Oliver Fiehn
- West Coast
Metabolomics Center, University of California−Davis, Davis, California 95616, United States
| | - Thomas O. Metz
- Biological
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, United States
| | - Kurt D. Pennell
- School
of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Dean P. Jones
- Department
of Medicine, School of Medicine, Emory University, Atlanta, Georgia 30322, United States
| | - Gary W. Miller
- Department
of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| |
Collapse
|
10
|
Sadia M, Boudguiyer Y, Helmus R, Seijo M, Praetorius A, Samanipour S. A stochastic approach for parameter optimization of feature detection algorithms for non-target screening in mass spectrometry. Anal Bioanal Chem 2024:10.1007/s00216-024-05425-3. [PMID: 38995405 DOI: 10.1007/s00216-024-05425-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/05/2024] [Accepted: 06/18/2024] [Indexed: 07/13/2024]
Abstract
Feature detection plays a crucial role in non-target screening (NTS), requiring careful selection of algorithm parameters to minimize false positive (FP) features. In this study, a stochastic approach was employed to optimize the parameter settings of feature detection algorithms used in processing high-resolution mass spectrometry data. This approach was demonstrated using four open-source algorithms (OpenMS, SAFD, XCMS, and KPIC2) within the patRoon software platform for processing extracts from drinking water samples spiked with 46 per- and polyfluoroalkyl substances (PFAS). The designed method is based on a stochastic strategy involving random sampling from variable space and the use of Pearson correlation to assess the impact of each parameter on the number of detected suspect analytes. Using our approach, the optimized parameters led to improvement in the algorithm performance by increasing suspect hits in case of SAFD and XCMS, and reducing the total number of detected features (i.e., minimizing FP) for OpenMS. These improvements were further validated on three different drinking water samples as test dataset. The optimized parameters resulted in a lower false discovery rate (FDR%) compared to the default parameters, effectively increasing the detection of true positive features. This work also highlights the necessity of algorithm parameter optimization prior to starting the NTS to reduce the complexity of such datasets.
Collapse
Affiliation(s)
- Mohammad Sadia
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands.
| | - Youssef Boudguiyer
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Rick Helmus
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Marianne Seijo
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Antonia Praetorius
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Saer Samanipour
- Van'T Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Han Y, Hu LX, Liu T, Dong LL, Liu YS, Zhao JL, Ying GG. Discovering transformation products of pharmaceuticals in domestic wastewaters and receiving rivers by using non-target screening and machine learning approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174715. [PMID: 39002592 DOI: 10.1016/j.scitotenv.2024.174715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
Wastewater treatment plants (WWTPs) are an important source of pharmaceuticals in surface water, but information about their transformation products (TPs) is very limited. Here, we investigated occurrence and transformation of pharmaceuticals and TPs in WWTPs and receiving rivers by using suspect and non-target analysis as well as target analysis. Results showed identification of 113 pharmaceuticals and 399 TPs, including mammalian metabolites (n = 100), environmental microbial degradation products (n = 250), photodegradation products (n = 44) and hydrolysis products (n = 5). The predominant parent pharmaceuticals (n = 37) and transformation products (n = 68) were mainly derived from antimicrobials, accounting for 32.7 % and 17.0 %, respectively. The identified compounds were found in the influent (387-428) and effluent (227-400) of WWTPs, as well as upstream (290-451) and downstream (322-416) of receiving rivers, most predominantly from antimicrobials, followed by analgesic and antipyretic drugs. A total of 399 identified TPs were transformed by 110 pathways, of which the oxidation reaction was predominant (27.0 %), followed by photodegradation reaction (10.7 %). Of the 399 TPs, 49 (with lower PNECs) were predicted to be more toxic than their parents. Compounds with potential high risks (hazard quotient >1 and risk index (RI) > 0.1) were found in the WWTP influent (126), effluent (53) and river (61), and the majority were from the antimicrobial and antihypertensive classes. In particular, the potential risks (RI) of TPs from roxithromycin and irbesartan were found higher than those for their corresponding parents. The findings from this study highlight the need to monitor TPs from pharmaceuticals in the environment.
Collapse
Affiliation(s)
- Yu Han
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Li-Xin Hu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| | - Ting Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Liang-Li Dong
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - You-Sheng Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Jian-Liang Zhao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| |
Collapse
|
12
|
Pandey A, Kasuga I, Furumai H, Kurisu F. Non-target liquid chromatography high-resolution mass spectrometry screening to prioritize unregulated micropollutants that persist through domestic wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174486. [PMID: 38969135 DOI: 10.1016/j.scitotenv.2024.174486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/06/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Efforts to regulate and monitor emerging contaminants are insufficient because new chemicals are continually brought to market, and many are unregulated and potentially harmful. Domestic wastewater treatment plants are not designed to remove micropollutants and are important sources of emerging contaminants in the aquatic environment. In this study, non-target screening, an unbiased method for analyzing compounds without prior information, was used to identify compounds that may be emitted in wastewater treatment plant effluent and should be monitored. Nine wastewater treatment plants using different treatment methods were studied, and a non-target screening data-processing method was used. The frequencies at which the contaminants were detected and contaminant persistence through the treatment processes were considered, and then the contaminants were prioritized. The predicted no-effect concentration of each prioritized contaminant was used to determine whether further analysis and monitoring of the contaminant was necessary. Quantitative analyses of five compounds (amantadine, atenolol, benzotriazole, diphenhydramine, and sulpiride) were performed using reference standards. Probable molecular formulae and structures were proposed for 17 contaminants, and the risks posed by the contaminants were estimated using predicted no-effect concentrations. The results provide valuable insights into how unregulated micropollutants can be identified and prioritized for monitoring in future studies.
Collapse
Affiliation(s)
- Aishwarya Pandey
- Graduate School of Engineering, the University of Tokyo, Tokyo 113-8656, Japan; National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| | - Ikuro Kasuga
- Research Centre for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan
| | - Hiroaki Furumai
- Research and Development Initiative, Chuo University, Tokyo 112-8551, Japan
| | - Futoshi Kurisu
- Graduate School of Engineering, the University of Tokyo, Tokyo 113-8656, Japan.
| |
Collapse
|
13
|
Vergara-Luis I, Jin M, Baez-Millán JC, González-Gaya B, Ijurco I, Lacuesta M, Olivares M, Prieto A. Multitarget and suspect-screening of antimicrobials in vegetables samples: Uptake experiments and identification of transformation products. Food Chem 2024; 444:138643. [PMID: 38340504 DOI: 10.1016/j.foodchem.2024.138643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/17/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
This work provided an accurate analytical method to perform a multitarget analysis of a variety of antimicrobials (AMs) including sulfonamides, tetracyclines, macrolides, fluoroquinolones and quinolones, one imidazole and one nitroimidazole, one triazole, one diaminopyridine and one derivative of Penicillium stoloniferum in vegetables. The analysis is performed using liquid-chromatography coupled to a low-resolution triple quadrupole mass spectrometer (UHPLC-MS/MS) to detect the target analytesor coupled to a high-resolution q-Orbitrap (HRMS) to monitor the formed transformation products (TPs). Both instruments were compared in terms of limits of quantification and matrix effect at the detection. The method was applied to determine the presence of AMs in organic and non-organic vegetables, where sulfadiazine and mycophenolic acid were detected. On the other hand, the transference of four AMs (trimethoprim, sulfamethazine, enrofloxacin, and chlortetracycline) from soils to lettuces was evaluated through controlled uptake experiments. The choice of AMs was based on the classification into different families, and on the fact that those AM families are the most frequently detected in the environment. In this case, each of the AMs with which the soils were contaminated were found in the exposed lettuces. Moreover, in both studies, specific TPs of the AMs were identified, posing the necessity of assessing their effects in relation to food and human safety.
Collapse
Affiliation(s)
- I Vergara-Luis
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain.
| | - M Jin
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
| | - J C Baez-Millán
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
| | - B González-Gaya
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - I Ijurco
- Department of Plant Biology and Ecology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Basque Country, Spain
| | - M Lacuesta
- Department of Plant Biology and Ecology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Basque Country, Spain
| | - M Olivares
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - A Prieto
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| |
Collapse
|
14
|
Hanwen S, Xiaoqing Z, Xiong X, Xuemin F, Da S, Ali I, Junrui C, Changsheng P. Non-target screening and prioritization of organic contaminants in seawater desalination and their ecological risk assessment. CHEMOSPHERE 2024; 358:142055. [PMID: 38641292 DOI: 10.1016/j.chemosphere.2024.142055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/09/2024] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
The impact of desalination brine on the marine environment is a global concern. Regarding this, salinity is generally accepted as the major environmental factor in desalination concentrate. However, recent studies have shown that the influence of organic contaminants in brine cannot be ignored. Therefore, a non-targeted screening method based on comprehensive two-dimensional gas chromatography-quadrupole mass spectrometry (GC × GC-qMS) was developed for identifying organic contaminants in the desalination brine. A total of 404 compounds were tentatively identified from four seawater desalination plants (three reverse osmosis plants and one multiple effect distillation plant) in China. The identified compounds were prioritized based on their persistence, bioaccumulation, ecotoxicity, usage, and detection frequency. Twenty-one (21) compounds (seven phthalates, ten pesticides, four trihalomethanes) were then selected for further quantitative analysis and ecological risk assessment, including compounds from the priority list along with substances from the same chemical classes. Ecologically risky substances in brine include diisobutylphthalate and bis(2-Ethylhexyl) phthalate, atrazine and acetochlor, and bromoform. Most of the contaminants come from raw seawater, and no high risk contaminants introduced by the desalination process have been found except for disinfection by-products. In brine discharge management, people believed that all pollution in raw seawater was concentrated by desalination process. This study shows that not all pollutants are concentrated during the desalination process. In this study, the total concentration of pesticide in the brine increased by 58.42%. The concentration of ∑PAEs decreased by 13.65% in reverse osmosis desalination plants and increased by 10.96% in the multi-effect distillation plant. The concentration of trihalomethane increased significantly in the desalination concentrate. The change in the concentration of pollutants in the desalination concentrate was related to the pretreatment method and the chemical characteristics of the contaminants. The method and results given in this study hinted a new idea to identify and control the environmental impact factors of brine.
Collapse
Affiliation(s)
- Song Hanwen
- The Institute of Seawater Desalination and Multipurpose Utilization MNR, Tianjin, 300192, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Zhang Xiaoqing
- The Institute of Seawater Desalination and Multipurpose Utilization MNR, Tianjin, 300192, China.
| | - Xu Xiong
- Chengdu Shanyu Environmental Technology Ltd., Chengdu, 610213, China; Research Center for Eco-Environmental Sciences Chinese Academy of Sciences, Beijing, 100085, China.
| | - Feng Xuemin
- The Institute of Seawater Desalination and Multipurpose Utilization MNR, Tianjin, 300192, China.
| | - Song Da
- The Institute of Seawater Desalination and Multipurpose Utilization MNR, Tianjin, 300192, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Imran Ali
- College of Environment, Hohai University, Nanjing, 210098, China.
| | - Cao Junrui
- The Institute of Seawater Desalination and Multipurpose Utilization MNR, Tianjin, 300192, China.
| | - Peng Changsheng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, China.
| |
Collapse
|
15
|
Tintrop LK, Bräkling S, Vetter M, Eßer W, Drees F, Salemi A, Jochmann MA, Klee S, Schmidt TC. Evaluation of GC-EI&CI-TOFMS for Nontarget Analysis of Industrial Wastewater Using Hydrophilic-Lipophilic-Balanced SPME. Anal Chem 2024; 96:6122-6130. [PMID: 38603779 DOI: 10.1021/acs.analchem.3c04114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
The evaluation of nontarget analysis (NTA) techniques for the monitoring of wastewater is important as wastewater is an anthropogenic pollution source for aquatic ecosystems and a threat to human and environmental health. This study presents the proof-of-concept NTA of industrial wastewater samples. A prototype hydrophilic-lipophilic-balanced (HLB) SPME and gas chromatography interfaced with time-of-flight high-resolution mass spectrometry (GC-TOFMS) with electron ionization (EI) and chemical ionization (CI) in parallel are employed. The HLB-SPME consists of a poly(divinylbenzene-co-N-vinylpyrrolidone) structure, allowing the extraction of hydrophilic as well as lipophilic substances. As the combination of parallel CI and EI data provides a comprehensive data set as a unique feature, this study is strongly focused on the compound identification procedure and confidence reporting of exemplary substances. Furthermore, the use of three different CI reagent ions, including [N2H]+/[N4H]+, [H3O]+, and [NH4]+, enables a broad range of analytes to be ionized in terms of selectivity and softness. The complementary information provided by EI and CI data allows a level 3 identification or higher in 69% of cases. The polarity coverage based on the physicochemical properties of the analytes (such as volatility, water solubility, hydrophilicity, and lipophilicity) was visualized by using Henry's law and octanol-water partitioning constants. In conclusion, the presented approach is shown to be valuable for water analysis and allows enhanced and accelerated compound identification compared to utilizing only one type of ionization.
Collapse
Affiliation(s)
- Lucie K Tintrop
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
- Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | | | | | - Willi Eßer
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | - Felix Drees
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | - Amir Salemi
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | - Maik A Jochmann
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
- Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | - Sonja Klee
- TOFWERK AG, Schorenstrasse 39, 3645 Thun, Switzerland
| | - Torsten C Schmidt
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
- Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
- IWW Water Centre, Moritzstrasse 26, 45476 Mülheim an der Ruhr, Germany
| |
Collapse
|
16
|
Vosough M, Schmidt TC, Renner G. Non-target screening in water analysis: recent trends of data evaluation, quality assurance, and their future perspectives. Anal Bioanal Chem 2024; 416:2125-2136. [PMID: 38300263 PMCID: PMC10951028 DOI: 10.1007/s00216-024-05153-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 02/02/2024]
Abstract
This trend article provides an overview of recent advancements in Non-Target Screening (NTS) for water quality assessment, focusing on new methods in data evaluation, qualification, quantification, and quality assurance (QA/QC). It highlights the evolution in NTS data processing, where open-source platforms address challenges in result comparability and data complexity. Advanced chemometrics and machine learning (ML) are pivotal for trend identification and correlation analysis, with a growing emphasis on automated workflows and robust classification models. The article also discusses the rigorous QA/QC measures essential in NTS, such as internal standards, batch effect monitoring, and matrix effect assessment. It examines the progress in quantitative NTS (qNTS), noting advancements in ionization efficiency-based quantification and predictive modeling despite challenges in sample variability and analytical standards. Selected studies illustrate NTS's role in water analysis, combining high-resolution mass spectrometry with chromatographic techniques for enhanced chemical exposure assessment. The article addresses chemical identification and prioritization challenges, highlighting the integration of database searches and computational tools for efficiency. Finally, the article outlines the future research needs in NTS, including establishing comprehensive guidelines, improving QA/QC measures, and reporting results. It underscores the potential to integrate multivariate chemometrics, AI/ML tools, and multi-way methods into NTS workflows and combine various data sources to understand ecosystem health and protection comprehensively.
Collapse
Affiliation(s)
- Maryam Vosough
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstr. 5, Essen, 45141, North Rhine-Westphalia, Germany.
- Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstr. 2, Essen, 45141, North Rhine-Westphalia, Germany.
- Department of Clean Technologies, Chemistry and Chemical Engineering Research Center of Iran, P.O. Box 14335-186, Tehran, Iran.
| | - Torsten C Schmidt
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstr. 5, Essen, 45141, North Rhine-Westphalia, Germany
- Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstr. 2, Essen, 45141, North Rhine-Westphalia, Germany
- IWW Water Centre, Moritzstr. 26, Mülheim an der Ruhr, 45476, North Rhine-Westphalia, Germany
| | - Gerrit Renner
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstr. 5, Essen, 45141, North Rhine-Westphalia, Germany.
- Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstr. 2, Essen, 45141, North Rhine-Westphalia, Germany.
| |
Collapse
|
17
|
Altamirano JC, Yin S, Belova L, Poma G, Covaci A. Exploring the hidden chemical landscape: Non-target and suspect screening analysis for investigating solid waste-associated environments. ENVIRONMENTAL RESEARCH 2024; 245:118006. [PMID: 38154568 DOI: 10.1016/j.envres.2023.118006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/11/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
Solid waste is an inevitable consequence of urbanization. It can be safely managed in municipal landfills and processing plants for volume reduction or material reuse, including organic solid waste. However, solid waste can also be discarded in (un-)authorized dumping sites or inadvertently released into the environment. Legacy and emerging contaminants have the potential to leach from solid waste, making it a significant pathway to the environment. Non-target screening (NTS) and suspect screening analysis (SSA) have become helpful tools in environmental science for the simultaneous analysis of a wide range of chemical compounds. However, the application of these analytical approaches to environmental samples related to Raw or Processed Solid Waste (RPSW) has been largely neglected so far. This perspective review examines the potential and policy relevance of NTS and SSA applied to waste-related samples (liquid, gaseous and solid). It addresses the hurdles associated with the chemical safety of solid waste accumulation, processing, and reuse, and the need for landfill traceability, as well as effectiveness of leachate treatments. We reviewed the current applications of NTS and SSA to environmental samples of RPSW, as well as the potential adaptation of NTS and SSA techniques from related fields, such as oilfield and metabolomics, to the solid waste domain. Despite the ongoing technical challenges, this review highlights the significant potential for the implementation of NTS and SSA approaches in solid waste management and related scientific fields and provides support and guidance to the regulatory authorities.
Collapse
Affiliation(s)
- Jorgelina Cecilia Altamirano
- Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA), CONICET-UNCuyo-Government of Mendoza, P.O. Box. 331, 5500, Mendoza, Argentina; Universidad Nacional de Cuyo, Facultad de Ciencias Exactas y Naturales, Padre Jorge Contreras 1300, 5500, Mendoza, Argentina; Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium.
| | - Shanshan Yin
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| | - Lidia Belova
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium
| | - Giulia Poma
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium.
| |
Collapse
|
18
|
Musatadi M, Baciero-Hernández I, Prieto A, Olivares M, Etxebarria N, Zuloaga O. Development and evaluation of a comprehensive workflow for suspect screening of exposome-related xenobiotics and phase II metabolites in diverse human biofluids. CHEMOSPHERE 2024; 351:141221. [PMID: 38224745 DOI: 10.1016/j.chemosphere.2024.141221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/07/2023] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
Suspect and non-target screening (SNTS) methods are being promoted in order to decode the human exposome since a wide chemical space can be analysed in a diversity of human biofluids. However, SNTS approaches in the exposomics field are infra-studied in comparison to environmental or food monitoring studies. In this work, a comprehensive suspect screening workflow was developed to annotate exposome-related xenobiotics and phase II metabolites in diverse human biofluids. Precisely, human urine, breast milk, saliva and ovarian follicular fluid were employed as samples and analysed by means of ultra-high performance liquid chromatography coupled with high resolution tandem mass spectrometry (UHPLC-HRMS/MS). To automate the workflow, the "peak rating" parameter implemented in Compound Discoverer 3.3.2 was optimized to avoid time-consuming manual revision of chromatographic peaks. In addition, the presence of endogenous molecules that might interfere with the annotation of xenobiotics was carefully studied as the employment of inclusion and exclusion suspect lists. To evaluate the workflow, limits of identification (LOIs) and type I and II errors (i.e., false positives and negatives, respectively) were calculated in both standard solutions and spiked biofluids using 161 xenobiotics and 22 metabolites. For 80.3 % of the suspects, LOIs below 15 ng/mL were achieved. In terms of type I errors, only two cases were identified in standards and spiked samples. Regarding type II errors, the 7.7 % errors accounted in standards increased to 17.4 % in real samples. Lastly, the use of an inclusion list for endogens was favoured since it avoided 18.7 % of potential type I errors, while the exclusion list caused 7.2 % of type II errors despite making the annotation workflow less time-consuming.
Collapse
Affiliation(s)
- Mikel Musatadi
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), 48940, Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country (UPV/EHU), 48620, Plentzia, Basque Country, Spain.
| | - Inés Baciero-Hernández
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), 48940, Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country (UPV/EHU), 48620, Plentzia, Basque Country, Spain
| | - Ailette Prieto
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), 48940, Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country (UPV/EHU), 48620, Plentzia, Basque Country, Spain
| | - Maitane Olivares
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), 48940, Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country (UPV/EHU), 48620, Plentzia, Basque Country, Spain
| | - Nestor Etxebarria
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), 48940, Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country (UPV/EHU), 48620, Plentzia, Basque Country, Spain
| | - Olatz Zuloaga
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), 48940, Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country (UPV/EHU), 48620, Plentzia, Basque Country, Spain
| |
Collapse
|
19
|
Partington JM, Rana S, Szabo D, Anumol T, Clarke BO. Comparison of high-resolution mass spectrometry acquisition methods for the simultaneous quantification and identification of per- and polyfluoroalkyl substances (PFAS). Anal Bioanal Chem 2024; 416:895-912. [PMID: 38159142 DOI: 10.1007/s00216-023-05075-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 11/02/2023] [Accepted: 11/23/2023] [Indexed: 01/03/2024]
Abstract
Simultaneous identification and quantification of per- and polyfluoroalkyl substances (PFAS) were evaluated for three quadrupole time-of-flight mass spectrometry (QTOF) acquisition methods. The acquisition methods investigated were MS-Only, all ion fragmentation (All-Ions), and automated tandem mass spectrometry (Auto-MS/MS). Target analytes were the 25 PFAS of US EPA Method 533 and the acquisition methods were evaluated by analyte response, limit of quantification (LOQ), accuracy, precision, and target-suspect screening identification limit (IL). PFAS LOQs were consistent across acquisition methods, with individual PFAS LOQs within an order of magnitude. The mean and range for MS-Only, All-Ions, and Auto-MS/MS are 1.3 (0.34-5.1), 2.1 (0.49-5.1), and 1.5 (0.20-5.1) pg on column. For fast data processing and tentative identification with lower confidence, MS-Only is recommended; however, this can lead to false-positives. Where high-confidence identification, structural characterisation, and quantification are desired, Auto-MS/MS is recommended; however, cycle time should be considered where many compounds are anticipated to be present. For comprehensive screening workflows and sample archiving, All-Ions is recommended, facilitating both quantification and retrospective analysis. This study validated HRMS acquisition approaches for quantification (based upon precursor data) and exploration of identification workflows for a range of PFAS compounds.
Collapse
Affiliation(s)
- Jordan M Partington
- Australian Laboratory for Emerging Contaminants, School of Chemistry, University of Melbourne, Victoria, 3010, Australia
| | - Sahil Rana
- Australian Laboratory for Emerging Contaminants, School of Chemistry, University of Melbourne, Victoria, 3010, Australia
| | - Drew Szabo
- Australian Laboratory for Emerging Contaminants, School of Chemistry, University of Melbourne, Victoria, 3010, Australia
- Department of Materials and Environmental Chemistry, Stockholm University, 11418, Stockholm, Sweden
| | - Tarun Anumol
- Agilent Technologies Inc, Wilmington, DE, 19808, USA
| | - Bradley O Clarke
- Australian Laboratory for Emerging Contaminants, School of Chemistry, University of Melbourne, Victoria, 3010, Australia.
| |
Collapse
|
20
|
Aguilar-Alarcón P, Gonzalez SV, Mikkelsen Ø, Asimakopoulos AG. Molecular formula assignment of dissolved organic matter by ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry using two non-targeted data processing approaches: A case study from recirculating aquaculture systems. Anal Chim Acta 2024; 1288:342128. [PMID: 38220272 DOI: 10.1016/j.aca.2023.342128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND The accumulation of dissolved organic matter (DOM) poses an issue in the management of the water quality from recirculating aquaculture systems (RAS), but its characterization is often not detailed enough to understand the DOM transformations in RAS. In this study, we investigated the application of two distinct non-targeted data processing approaches using ultra-performance liquid chromatography (UPLC) with quadrupole time-of-flight mass spectrometry (QTOF-MS) and two software with different algorithmic designs: PetroOrg and Progenesis QI to accurately characterize the molecular composition of DOM in RAS by UPLC-QTOF-MS. RESULTS The UPLC-QTOF-MS resolution in combination with PetroOrg and Progenesis QI software successfully assigned 912 and 106 unique elemental compositions, respectively, including compounds containing carbon, hydrogen, and oxygen (CHO) and nitrogen-containing CHO compounds (CHON), in the DOM samples from RAS. The results of these two distinct data processing approaches were consistent with the list of DOM formulas from RAS identified by higher resolution mass spectrometry techniques confirming their reliability. PetroOrg approach revealed only compositional information in the DOM samples from RAS, while Progenesis QI in addition to identifying new elemental compositions, increased their chemical space by giving information about their polarity and their possible key structures. DOM samples from RAS were found to be rich in unsaturated CHO compounds, with tentatively key structures of terpenoids with medium polarity indicating natural origins in their composition. The analysis also revealed probable structures of sucrose fatty acid esters and polyethylene glycol, indicating anthropogenic sources. SIGNIFICANCE AND NOVELTY The combination of these two non-targeted data processing approaches significantly improves the characterization of the complex mixture of DOM from RAS by UPLC-QTOF-MS reporting for the first time accurate DOM results in terms of its composition, while proposing its key structures. The presented methods can also be used to analyze different DOM samples with other HRMS techniques and software.
Collapse
Affiliation(s)
- Patricia Aguilar-Alarcón
- Department of Chemistry, Norwegian University of Science and Technology, Høgskoleringen 1, 7491, Trondheim, Norway; Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, H2O Building, C/Emili Grahit, 101, E17003, Girona, Spain; University of Girona, 17071, Girona, Spain.
| | - Susana V Gonzalez
- Department of Chemistry, Norwegian University of Science and Technology, Høgskoleringen 1, 7491, Trondheim, Norway
| | - Øyvind Mikkelsen
- Department of Chemistry, Norwegian University of Science and Technology, Høgskoleringen 1, 7491, Trondheim, Norway
| | - Alexandros G Asimakopoulos
- Department of Chemistry, Norwegian University of Science and Technology, Høgskoleringen 1, 7491, Trondheim, Norway
| |
Collapse
|
21
|
Qi Z, Zhang Z, Jin R, Zhang L, Zheng M, Li J, Wu Y, Li C, Lin B, Liu Y, Liu G. Target Analysis of Polychlorinated Naphthalenes and Nontarget Screening of Organic Chemicals in Bovine Milk, Infant Formula, and Adult Milk Powder by High-Resolution Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:773-782. [PMID: 38109498 DOI: 10.1021/acs.jafc.3c07579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Infant formula is intended as an effective substitute for breast milk but is the main source of polychlorinated naphthalenes (PCNs) to nonbreastfed infants. We performed target and nontarget analyses to determine PCNs and identify other organic contaminants in infant formula. The mean PCN concentrations in infant formula, milk powder, and bovine milk were 106.1, 88.8, and 78.2 μg kg-1 of dry weight, respectively. The PCN congener profiles indicated that thermal processes and raw materials were probably the main sources of PCNs in infant formula. A health risk assessment indicated that PCNs in infant formula do not pose health risks to infants. Using gas chromatography-Orbitrap mass spectrometry, 352, 372, and 161 organic chemicals were identified in the infant formula, milk powder, and bovine milk samples, respectively. Phthalate esters were detected in all four plastic-packed milk powder samples. The results indicated milk becomes more contaminated with organic chemicals during manufacturing, processing, and packaging.
Collapse
Affiliation(s)
- Ziyuan Qi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zherui Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Jin
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Lei Zhang
- China National Center for Food Safety Risk Assessment, Beijing 100021, P. R. China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingguang Li
- China National Center for Food Safety Risk Assessment, Beijing 100021, P. R. China
| | - Yongning Wu
- China National Center for Food Safety Risk Assessment, Beijing 100021, P. R. China
| | - Cheng Li
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P. R. China
| | - Bingcheng Lin
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Yahui Liu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
22
|
Mattoli L, Proietti G, Fodaroni G, Quintiero CM, Burico M, Gianni M, Giovagnoni E, Mercati V, Santi C. Suspect screening analysis to improve untargeted and targeted UHPLC-qToF approaches: the biodegradability of a proton pump inhibitor medicine and a natural medical device. Sci Rep 2024; 14:51. [PMID: 38167521 PMCID: PMC10761695 DOI: 10.1038/s41598-023-49948-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
Suspect screening and untargeted analysis using UHPLC-qToF are two advanced analytical approaches now used to achieve an extensive chemical profile of samples, which are then typically confirmed through targeted analysis. These techniques can detect a large number of chemical features simultaneously and are currently being introduced into the study of contaminants of emerging concern (CECs) and into the study of the extent of human chemical exposure (the exposome). Here is described the use of these techniques to characterize chemical mixtures derived from the OECD 301F ready biodegradability test (RBT) of a chemical and natural formulation currently used to treat reflux disease and functional dyspepsia. Untargeted analysis clearly evidenced a different behavior between formulations containing only natural products with respect to that containing synthetic and non-naturally occurring substances. Suspect screening analysis improved the untargeted analysis of the omeprazole-based medicine, leading to the tentative identification of a number of omeprazole-derived transformation products, thereby enabling their preliminary quali-quantitative evaluation. Targeted analysis was then performed to confirm the preliminary data gained from the suspect screening approach. The validation of the analytical method for the quantitative determination of omeprazole and its major metabolite, omeprazole sulphide, has provided robust data to evaluate the behavior of omeprazole during the OECD 301F test. Using advanced analytical approaches, the RBT performed on the two products under investigation confirmed that omeprazole is not readily biodegradable, while the medical device made of natural substances has proven to be readily biodegradable.
Collapse
Affiliation(s)
- Luisa Mattoli
- Metabolomics and Analytical Sciences, Aboca SpA, Sansepolcro, AR, Italy
| | - Giacomo Proietti
- Metabolomics and Analytical Sciences, Aboca SpA, Sansepolcro, AR, Italy
| | - Giada Fodaroni
- Metabolomics and Analytical Sciences, Aboca SpA, Sansepolcro, AR, Italy
| | | | - Michela Burico
- Metabolomics and Analytical Sciences, Aboca SpA, Sansepolcro, AR, Italy
| | - Mattia Gianni
- Metabolomics and Analytical Sciences, Aboca SpA, Sansepolcro, AR, Italy
| | | | - Valentino Mercati
- Metabolomics and Analytical Sciences, Aboca SpA, Sansepolcro, AR, Italy
| | - Claudio Santi
- Group of Catalysis, Synthesis and Organic Green Chemistry, Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123, Perugia, Italy.
- Centro di Eccellenza Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via Elce di Sotto 8, 06123, Perugia, Italy.
| |
Collapse
|
23
|
Schreiner T, Eggerstorfer NM, Morlock GE. Towards non-target proactive food safety: identification of active compounds in convenience tomato products by ten-dimensional hyphenation with integrated simulated gastrointestinal digestion. Anal Bioanal Chem 2024; 416:715-731. [PMID: 36988684 PMCID: PMC10766732 DOI: 10.1007/s00216-023-04656-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/12/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023]
Abstract
Current strategies for non-target food screening focus mainly on known hazardous chemicals (adulterants, residues, contaminants, packaging migrants, etc.) instead of bioactive constituents in general and exclude the biological effect detection. To widen the perspective, a more proactive non-target effect-directed strategy is introduced to complement food safety in order to detect not only known but also unknown bioactive compounds. The developed 10-dimensional hyphenation included on-surface digestion (1D), planar chromatographic separation (2D), visualization using white light (3D), UV light (4D), fluorescence light (5D), effect-directed assay analysis (6D), heart-cut zone elution to an orthogonal reversed phase column chromatography including online desalting (7D) with subsequent diode array detection (8D), high-resolution mass spectrometry (9D), and fragmentation (10D). Metabolism, i.e., intestinal digestion of each sample, was simulated and integrated on the same adsorbent surface to study any changes in the compound profiles. As proof of principle, nine convenience tomato products and a freshly prepared tomato soup were screened via five different planar assays in a non-targeted mode. Non-digested and digested samples were compared side by side. In their effect-directed profiles, 14 bioactive compounds from classes of lipids, plant hormones, spices, and pesticides were identified. In particular, bioactive compounds coming from the lipid class were increased by gastrointestinal digestion, while spices and pesticides remained unaffected. With regard to food safety, the determination of the two dinitrophenol herbicides dinoterb and dinoseb in highly processed tomato products should be given special attention. The hyphenation covered a broad analyte spectrum and showed robust and reliable results.
Collapse
Affiliation(s)
- Tamara Schreiner
- Institute of Nutritional Science, Chair of Food Science, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Naila M Eggerstorfer
- Institute of Nutritional Science, Chair of Food Science, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Gertrud E Morlock
- Institute of Nutritional Science, Chair of Food Science, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.
| |
Collapse
|
24
|
Spilsbury F, Kisielius V, Bester K, Backhaus T. Ecotoxicological mixture risk assessment of 35 pharmaceuticals in wastewater effluents following post-treatment with ozone and/or granulated activated carbon. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167440. [PMID: 37774874 DOI: 10.1016/j.scitotenv.2023.167440] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
Reducing the risk posed by mixtures of pharmaceuticals is a goal of current initiatives such as the European Green Deal to reduce anthropological environmental impacts. Wastewater effluent typically contains large numbers of active pharmaceutical ingredients (APIs). For some APIs, existing technology such as conventional activated sludge (CAS) wastewater treatment plants (WWTPs) have removal rates below 20 %, thus the WWTP discharges are adding to the toxic burden of receiving waters. We present an environmental risk assessment of mixtures of 35 APIs in effluent samples from 82 Northern European WWTPs using the concentration addition model, and identify the respective risk-driving APIs. This is then compared to a corresponding mixture risk assessment of effluent samples from the Danish Hillerød WWTP subjected to post-treatment with varying specific ozone doses (0.15-1.05 mgO3/mgDOC) and/or granulated activated carbon (GAC). All 82 WWTP effluent samples exceeded risk thresholds by at least a factor of 30, with a median RQSUM of 92.9, highlighting the need for effluent post-treatment and/or a substantial dilution in the recipient waters. Antibiotics, analgesics and anti-depressants were among the top risk drivers with 99 % of the average mixture risk attributable to azithromycin, diclofenac, venlafaxine, clarithromycin and mycophenolic acid. Effluent mixture risk was reduced by ozonation in a concentration-dependent manner, decreasing below threshold levels to a median RQSUM of 0.83 following treatment with 0.65 mgO3/mg DOC. Fresh GAC was also effective at reducing the mixture risk both alone and with ozone treatment, with median RQSUM of 0.04 and 0.07 respectively. To our knowledge, this is the first study to present a risk assessment of pharmaceutical mixtures in effluent comparing "conventional" WWTP processes with additional post-treatment with ozone and/or GAC for reducing the joint risks of pharmaceutical mixtures for recipient waters. We demonstrate the need for additional WWTP treatment technologies, and the efficacy of GAC and ozonation in decreasing the risk to the aquatic environment from pharmaceutical mixtures to below acceptable threshold limits.
Collapse
Affiliation(s)
- Francis Spilsbury
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg 40530, Sweden.
| | - Vaidotas Kisielius
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Kai Bester
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Thomas Backhaus
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg 40530, Sweden; Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, D-52074 Aachen, Germany
| |
Collapse
|
25
|
Latz M, Böhme A, Ulrich N. Reactivity-based identification of oxygen containing functional groups of chemicals applied as potential classifier in non-target analysis. Sci Rep 2023; 13:22828. [PMID: 38129561 PMCID: PMC10739825 DOI: 10.1038/s41598-023-50240-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/17/2023] [Indexed: 12/23/2023] Open
Abstract
In this work, we developed a reactivity-based strategy to identify functional groups of unknown analytes, which can be applied as classifier in non-target analysis with gas chromatography. The aim of this strategy is to reduce the number of potential candidate structures generated for a molecular formula determined by high resolution mass spectrometry. We selected an example of 18 isomers with the molecular formula C12H10O2 to test the performance of different derivatization reagents, whereas our aim was to select mild and fast reaction conditions. Based on the results for the isomers, we developed a four-step workflow for the identification of functional groups containing oxygen.
Collapse
Affiliation(s)
- Milena Latz
- Department of Ecological Chemistry, Helmholtz Centre for Environmental Research - UFZ, 04318, Leipzig, Germany
- Faculty of Chemistry and Mineralogy, Leipzig University, 04103, Leipzig, Germany
| | - Alexander Böhme
- Department of Ecological Chemistry, Helmholtz Centre for Environmental Research - UFZ, 04318, Leipzig, Germany
| | - Nadin Ulrich
- Department of Ecological Chemistry, Helmholtz Centre for Environmental Research - UFZ, 04318, Leipzig, Germany.
| |
Collapse
|
26
|
Zhong C, Li S, Yin N, Zhang L, Jiang J, Wang X, Li P. Single extraction and integrated non-target data acquisition with data mining workflow for analysis of hazardous substances in agricultural plant products. Food Chem 2023; 429:136899. [PMID: 37478607 DOI: 10.1016/j.foodchem.2023.136899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/28/2023] [Accepted: 07/14/2023] [Indexed: 07/23/2023]
Abstract
Identifying contaminants in agricultural plant food products (APFPs) is a major problem. In this study, we developed a single-step extraction and integrated non-target data acquisition (INDA) workflow for increasing hazardous substances coverage. D-optimal experimental designs were applied to optimize filter plate extraction (FPE) for one-single extraction of multipolar hazardous substances. The vDIA mode was used to collect all precursor ion fragments within the range to supplement data loss caused by DDA mode. The underlying principle of vDIA is to increase the utilization rate of MS2 spectra that are likely to identify a maximum number and minimum amounts of hazardous substances. Compared with traditional DDA mode alone, a combination of the two modes increased the rate of identification of hazardous substances by 18.5%. The molecular network of hazardous substance provided by GNPS could enable some metabolites and structure-related products to discover potentially hazardous substance.
Collapse
Affiliation(s)
- Cheng Zhong
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; National Reference Laboratory for Agricultural Testing, Wuhan 430062, China; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Songhe Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; National Reference Laboratory for Agricultural Testing, Wuhan 430062, China; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Nanri Yin
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; National Reference Laboratory for Agricultural Testing, Wuhan 430062, China; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Liangxiao Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; National Reference Laboratory for Agricultural Testing, Wuhan 430062, China; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Jun Jiang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; National Reference Laboratory for Agricultural Testing, Wuhan 430062, China; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Xiupin Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; National Reference Laboratory for Agricultural Testing, Wuhan 430062, China; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China.
| | - Peiwu Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; National Reference Laboratory for Agricultural Testing, Wuhan 430062, China; Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| |
Collapse
|
27
|
Pesce S, Sanchez W, Leenhardt S, Mamy L. Recommendations to reduce the streetlight effect and gray areas limiting the knowledge of the effects of plant protection products on biodiversity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-31310-0. [PMID: 38051484 DOI: 10.1007/s11356-023-31310-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/27/2023] [Indexed: 12/07/2023]
Abstract
Preserving biodiversity against the adverse effects of plant protection products (PPPs) is a major environmental and societal issue. However, despite intensive investigation into the ecotoxicological effects of PPPs, the knowledge produced remains fragmented given the sheer diversity of PPPs. This is due, at least in part, to a strong streetlight effect in the field of ecotoxicology. Indeed, while some PPPs have been investigated in numerous ecotoxicological studies, there are many for which the scientific literature still has little or no information on their ecotoxicological risks and effects. The PPPs under the streetlight include a large variety of legacy substances and a more limited number of more recent or currently-in-use substances, such as the herbicide glyphosate and the neonicotinoid insecticides. Furthermore, many of the most recent PPPs (including those used in biocontrol) and PPP transformation products (TPs) resulting from abiotic and/or biotic degradation are rarely addressed in the international literature in the field of ecotoxicology. Here, based on a recent collective scientific assessment of the effects of PPPs on biodiversity and ecosystem services in the French and European contexts, this article sets out to illustrate the limitations and biases caused by the streetlight effect and numbers of gray areas, and issue recommendations on how to overcome them.
Collapse
Affiliation(s)
| | | | | | - Laure Mamy
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France
| |
Collapse
|
28
|
Adeniji A, El-Hage R, Brinkman MC, El-Hellani A. Nontargeted Analysis in Tobacco Research: Challenges and Opportunities. Chem Res Toxicol 2023; 36:1656-1665. [PMID: 37903095 DOI: 10.1021/acs.chemrestox.3c00150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Tobacco products are evolving at a pace that has outstripped tobacco control, leading to a high prevalence of tobacco use in the population. Researchers have been tirelessly developing suitable techniques to assess these products' emissions, toxicity, and public health impact. The nonclinical testing of tobacco products to assess the chemical profile of emissions is needed for evidence-based regulations. This testing has largely relied on targeted analytical methods that focus on constituent lists that may fall short in determining the toxicity of newly designed tobacco products. Nontargeted analysis (NTA), or the process of identifying and quantifying compounds within a complex matrix without prior knowledge of its chemical composition, is a promising technique for tobacco regulation, but it is not without challenges. The lack of standardized methods for sample generation, sample preparation, chromatographic separation, compound identification, and data analysis and reporting must be addressed so that the quality and reproducibility of the data generated by NTA can be benchmarked. This review discusses the challenges and highlights the opportunities of NTA in studying tobacco product constituents and emissions.
Collapse
Affiliation(s)
- Ayomipo Adeniji
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Tobacco Research, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43214, United States
| | - Rachel El-Hage
- Department of Chemistry, Faculty of Arts and Sciences, American University of Beirut, Beirut 1107 2020, Lebanon
- Center for the Study of Tobacco Products, Virginia Commonwealth University, Richmond, Virginia 23220, United States
| | - Marielle C Brinkman
- Division of Epidemiology, College of Public Health, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Tobacco Research, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43214, United States
| | - Ahmad El-Hellani
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Tobacco Research, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43214, United States
| |
Collapse
|
29
|
Kim Y, Pike KA, Gray R, Sprankle JW, Faust JA, Edmiston PL. Non-targeted identification and semi-quantitation of emerging per- and polyfluoroalkyl substances (PFAS) in US rainwater. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:1771-1787. [PMID: 36341487 DOI: 10.1039/d2em00349j] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
High-resolution mass spectrometry was used to screen for emerging per- and polyfluorinated alkyl substances (PFAS) in precipitation samples collected in summer 2019 at seven sites in the United States. We previously quantified the concentration of ten PFAS in the rainwater samples using the method of isotopic dilution (Pike et al., 2021). Nine of these targeted analytes belonged to the U.S. Environmental Protection Agency Regional Screening Level list, herein referred to as EPA-monitored analytes. In this new work, we identify emerging PFAS compounds by liquid chromatography quadrupole time-of-flight mass spectrometry. Several emerging PFAS were detected across all samples, with the most prevalent compounds being C3-C8 hydrogen-substituted perfluorocarboxylic acids (H-PFCAs) and fluorotelomer carboxylic acids (FTCAs). Concentrations of emerging PFAS were in the 10-1000 ng L-1 range (approximately 1-2 orders of magnitude greater than EPA-monitored PFAS) at all sites except Wooster, OH, where concentrations were even higher, with a maximum estimated ΣPFAS of 16 400 ng L-1. The elevated levels of emerging PFAS in the Wooster samples were predominantly even and odd chain-length H-PFCAs and FTCAs comprised of complex mixtures of branched isomers. This unique composition did not match any known manufactured PFAS formulation reported to date, but it could represent thermally transformed by-products emitted by a local point source. Overall, the results indicate that PFAS outside of the standard analyte lists make up a significant and previously unappreciated fraction of contaminants in rainwater collected within the central U.S.-and potentially world-wide-especially in proximity to localized point sources.
Collapse
Affiliation(s)
- Yubin Kim
- Department of Chemistry, College of Wooster, Wooster, OH, USA.
| | - Kyndal A Pike
- Department of Chemistry, College of Wooster, Wooster, OH, USA.
- Department of Mathematical & Computational Sciences, College of Wooster, Wooster, OH, USA
| | - Rebekah Gray
- Department of Chemistry, College of Wooster, Wooster, OH, USA.
| | - Jameson W Sprankle
- Department of Chemistry, College of Wooster, Wooster, OH, USA.
- Department of Earth Sciences, College of Wooster, Wooster, OH, USA
| | | | - Paul L Edmiston
- Department of Chemistry, College of Wooster, Wooster, OH, USA.
| |
Collapse
|
30
|
Dürig W, Lindblad S, Golovko O, Gkotsis G, Aalizadeh R, Nika MC, Thomaidis N, Alygizakis NA, Plassmann M, Haglund P, Fu Q, Hollender J, Chaker J, David A, Kunkel U, Macherius A, Belova L, Poma G, Preud'Homme H, Munschy C, Aminot Y, Jaeger C, Lisec J, Hansen M, Vorkamp K, Zhu L, Cappelli F, Roscioli C, Valsecchi S, Bagnati R, González B, Prieto A, Zuloaga O, Gil-Solsona R, Gago-Ferrero P, Rodriguez-Mozaz S, Budzinski H, Devier MH, Dierkes G, Boulard L, Jacobs G, Voorspoels S, Rüdel H, Ahrens L. What is in the fish? Collaborative trial in suspect and non-target screening of organic micropollutants using LC- and GC-HRMS. ENVIRONMENT INTERNATIONAL 2023; 181:108288. [PMID: 37918065 DOI: 10.1016/j.envint.2023.108288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/04/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
A collaborative trial involving 16 participants from nine European countries was conducted within the NORMAN network in efforts to harmonise suspect and non-target screening of environmental contaminants in whole fish samples of bream (Abramis brama). Participants were provided with freeze-dried, homogenised fish samples from a contaminated and a reference site, extracts (spiked and non-spiked) and reference sample preparation protocols for liquid chromatography (LC) and gas chromatography (GC) coupled to high resolution mass spectrometry (HRMS). Participants extracted fish samples using their in-house sample preparation method and/or the protocol provided. Participants correctly identified 9-69 % of spiked compounds using LC-HRMS and 20-60 % of spiked compounds using GC-HRMS. From the contaminated site, suspect screening with participants' own suspect lists led to putative identification of on average ∼145 and ∼20 unique features per participant using LC-HRMS and GC-HRMS, respectively, while non-target screening identified on average ∼42 and ∼56 unique features per participant using LC-HRMS and GC-HRMS, respectively. Within the same sub-group of sample preparation method, only a few features were identified by at least two participants in suspect screening (16 features using LC-HRMS, 0 features using GC-HRMS) and non-target screening (0 features using LC-HRMS, 2 features using GC-HRMS). The compounds identified had log octanol/water partition coefficient (KOW) values from -9.9 to 16 and mass-to-charge ratios (m/z) of 68 to 761 (LC-HRMS and GC-HRMS). A significant linear trend was found between log KOW and m/z for the GC-HRMS data. Overall, these findings indicate that differences in screening results are mainly due to the data analysis workflows used by different participants. Further work is needed to harmonise the results obtained when applying suspect and non-target screening approaches to environmental biota samples.
Collapse
Affiliation(s)
- Wiebke Dürig
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, 75007 Uppsala, Sweden.
| | - Sofia Lindblad
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, 75007 Uppsala, Sweden.
| | - Oksana Golovko
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, 75007 Uppsala, Sweden.
| | - Georgios Gkotsis
- Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece.
| | - Reza Aalizadeh
- Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece.
| | - Maria-Christina Nika
- Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece.
| | - Nikolaos Thomaidis
- Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece.
| | - Nikiforos A Alygizakis
- Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; Environmental Institute, Okružná 784/42, 97241 Koš, Slovakia.
| | - Merle Plassmann
- Department of Environmental Science, Stockholm University, 10691 Stockholm, Sweden.
| | - Peter Haglund
- Department of Chemistry, Chemical Biological Centre (KBC), Umeå University, Linnaeus väg 6, 90187 Umeå, Sweden.
| | - Qiuguo Fu
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland; Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany.
| | - Juliane Hollender
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Universitätstrasse 16, 8092 Zürich, Switzerland.
| | - Jade Chaker
- Université de Rennes, Inserm, EHESP, Irset - UMR_S, 1085 Rennes, France.
| | - Arthur David
- Université de Rennes, Inserm, EHESP, Irset - UMR_S, 1085 Rennes, France.
| | - Uwe Kunkel
- Bavarian Environment Agency, Bürgermeister-Ulrich-Straße 160, 86179 Augsburg, Germany.
| | - André Macherius
- Bavarian Environment Agency, Bürgermeister-Ulrich-Straße 160, 86179 Augsburg, Germany.
| | - Lidia Belova
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Giulia Poma
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | | | - Catherine Munschy
- Ifremer, CCEM Contamination Chimique des Écosystèmes Marins, 44000 Nantes, France.
| | - Yann Aminot
- Ifremer, CCEM Contamination Chimique des Écosystèmes Marins, 44000 Nantes, France.
| | - Carsten Jaeger
- Bundesanstalt für Materialforschung und -prüfung (BAM), Analytical Chemistry, Richard-Willstätter-Straße 11, 12489 Berlin, Germany.
| | - Jan Lisec
- Bundesanstalt für Materialforschung und -prüfung (BAM), Analytical Chemistry, Richard-Willstätter-Straße 11, 12489 Berlin, Germany.
| | - Martin Hansen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark.
| | - Katrin Vorkamp
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark.
| | - Linyan Zhu
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark.
| | - Francesca Cappelli
- Water Research Institute, National Research Council of Italy, Via del Mulino 19, 20861 Brugherio MB, Italy.
| | - Claudio Roscioli
- Water Research Institute, National Research Council of Italy, Via del Mulino 19, 20861 Brugherio MB, Italy.
| | - Sara Valsecchi
- Water Research Institute, National Research Council of Italy, Via del Mulino 19, 20861 Brugherio MB, Italy.
| | - Renzo Bagnati
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy.
| | - Belén González
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Areatza Pasealekua 47, 48620 Plentzia, Spain.
| | - Ailette Prieto
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Areatza Pasealekua 47, 48620 Plentzia, Spain.
| | - Olatz Zuloaga
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Areatza Pasealekua 47, 48620 Plentzia, Spain.
| | - Ruben Gil-Solsona
- Catalan Institute for Water Research (ICRA), Carrer Emili Grahit 101, 17003 Girona, Spain; Universitat de Girona, Girona, Spain; Institute of Environmental Assessment and Water Research - Severo Ochoa Excellence Center (IDAEA), Spanish Council of Scientific Research (CSIC), Barcelona 08034, Spain.
| | - Pablo Gago-Ferrero
- Catalan Institute for Water Research (ICRA), Carrer Emili Grahit 101, 17003 Girona, Spain; Institute of Environmental Assessment and Water Research - Severo Ochoa Excellence Center (IDAEA), Spanish Council of Scientific Research (CSIC), Barcelona 08034, Spain.
| | - Sara Rodriguez-Mozaz
- Catalan Institute for Water Research (ICRA), Carrer Emili Grahit 101, 17003 Girona, Spain; Universitat de Girona, Girona, Spain.
| | - Hélène Budzinski
- University Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, 33600 Pessac, France.
| | - Marie-Helene Devier
- University Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, 33600 Pessac, France.
| | - Georg Dierkes
- Federal Institute of Hydrology, Am Mainzer Tor 1, 56068 Koblenz, Germany.
| | - Lise Boulard
- Federal Institute of Hydrology, Am Mainzer Tor 1, 56068 Koblenz, Germany; Metabolomics Core Facility, Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, France.
| | - Griet Jacobs
- Flemish Institute for Technological Research (VITO), Unit Separation and Conversion Technology, Boeretang 200, 2400 Mol, Belgium.
| | - Stefan Voorspoels
- Flemish Institute for Technological Research (VITO), Unit Separation and Conversion Technology, Boeretang 200, 2400 Mol, Belgium.
| | - Heinz Rüdel
- Fraunhofer Institute for Molecular Biology and Applied Ecology (Fraunhofer IME), Auf dem Aberg 1, 57392 Schmallenberg, Germany.
| | - Lutz Ahrens
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, 75007 Uppsala, Sweden.
| |
Collapse
|
31
|
Das S, Helmus R, Dong Y, Beijer S, Praetorius A, Parsons JR, Jansen B. Organic contaminants in bio-based fertilizer treated soil: Target and suspect screening approaches. CHEMOSPHERE 2023; 337:139261. [PMID: 37379984 DOI: 10.1016/j.chemosphere.2023.139261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/11/2023] [Accepted: 06/16/2023] [Indexed: 06/30/2023]
Abstract
Using bio-based fertilizer (BBF) in agricultural soil can reduce the dependency on chemical fertilizer and increase sustainability by recycling nutrient-rich side-streams. However, organic contaminants in BBFs may lead to residues in the treated soil. This study assessed the presence of organic contaminants in BBF treated soils, which is essential for evaluating sustainability/risks of BBF use. Soil samples from two field studies amended with 15 BBFs from various sources (agricultural, poultry, veterinary, and sludge) were analyzed. A combination of QuEChERS-based extraction, liquid chromatography quadrupole time of flight mass spectrometry-based (LC-QTOF-MS) quantitative analysis, and an advanced, automated data interpretation workflow was optimized to extract and analyze organic contaminants in BBF-treated agricultural soil. The comprehensive screening of organic contaminants was performed using target analysis and suspect screening. Of the 35 target contaminants, only three contaminants were detected in the BBF-treated soil with concentrations ranging from 0.4 ng g-1 to 28.7 ng g-1; out of these three detected contaminants, two were also present in the control soil sample. Suspect screening using patRoon (an R-based open-source software platform) workflows and the NORMAN Priority List resulted in tentative identification of 20 compounds (at level 2 and level 3 confidence level), primarily pharmaceuticals and industrial chemicals, with only one overlapping compound in two experimental sites. The contamination profiles of the soil treated with BBFs sourced from veterinary and sludge were similar, with common pharmaceutical features identified. The suspect screening results suggest that the contaminants found in BBF-treated soil might come from alternative sources other than BBFs.
Collapse
Affiliation(s)
- Supta Das
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands.
| | - Rick Helmus
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Yan Dong
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Steven Beijer
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Antonia Praetorius
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - John R Parsons
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Boris Jansen
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
32
|
Damont A, Legrand A, Cao C, Fenaille F, Tabet JC. Hydrogen/deuterium exchange mass spectrometry in the world of small molecules. MASS SPECTROMETRY REVIEWS 2023; 42:1300-1331. [PMID: 34859466 DOI: 10.1002/mas.21765] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 06/07/2023]
Abstract
The combined use of hydrogen/deuterium exchange (HDX) and mass spectrometry (MS), referred to as HDX-MS, is a powerful tool for exploring molecular edifices and has been used for over 60 years. Initially for structural and mechanistic investigation of low-molecular weight organic compounds, then to study protein structure and dynamics, then, the craze to study small molecules by HDX-MS accelerated and has not stopped yet. The purpose of this review is to present its different facets with particular emphasis on recent developments and applications. Reversible H/D exchanges of mobilizable protons as well as stable exchanges of non-labile hydrogen are considered whether they are taking place in solution or in the gas phase, or enzymatically in a biological media. Some fundamental principles are restated, especially for gas-phase processes, and an overview of recent applications, ranging from identification to quantification through the study of metabolic pathways, is given.
Collapse
Affiliation(s)
- Annelaure Damont
- Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, Université Paris-Saclay, CEA, INRAE, Gif-sur-Yvette, France
| | - Anaïs Legrand
- Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, Université Paris-Saclay, CEA, INRAE, Gif-sur-Yvette, France
| | - Chenqin Cao
- Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, Université Paris-Saclay, CEA, INRAE, Gif-sur-Yvette, France
| | - François Fenaille
- Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, Université Paris-Saclay, CEA, INRAE, Gif-sur-Yvette, France
| | - Jean-Claude Tabet
- Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, Université Paris-Saclay, CEA, INRAE, Gif-sur-Yvette, France
- Faculté des Sciences et de l'Ingénierie, Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université, Paris, France
| |
Collapse
|
33
|
Bieber S, Letzel T, Kruve A. Electrospray Ionization Efficiency Predictions and Analytical Standard Free Quantification for SFC/ESI/HRMS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023. [PMID: 37358930 DOI: 10.1021/jasms.3c00156] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Supercritical fluid chromatography (SFC) is a promising, sustainable, and complementary alternative to liquid chromatography (LC) and has often been coupled with high resolution mass spectrometry (HRMS) for nontarget screening (NTS). Recent developments in predicting the ionization efficiency for LC/ESI/HRMS have enabled quantification of chemicals detected in NTS even if the analytical standards of the detected and tentatively identified chemicals are unavailable. This poses the question of whether analytical standard free quantification can also be applied in SFC/ES/HRMS. We evaluate both the possibility to transfer an ionization efficiency predictions model, previously trained on LC/ESI/HRMS data, to SFC/ESI/HRMS as well as training a new predictive model on SFC/ESI/HRMS data for 127 chemicals. The response factors of these chemicals ranged over 4 orders of magnitude in spite of a postcolumn makeup flow, expectedly enhancing the ionization of the analytes. The ionization efficiency values were predicted based on a random forest regression model from PaDEL descriptors and predicted values showed statistically significant correlation with the measured response factors (p < 0.05) with Spearman's rho of 0.584 and 0.669 for SFC and LC data, respectively. Moreover, the most significant descriptors showed similarities independent of the chromatography used for collecting the training data. We also investigated the possibility to quantify the detected chemicals based on predicted ionization efficiency values. The model trained on SFC data showed very high prediction accuracy with median prediction error of 2.20×, while the model pretrained on LC/ESI/HRMS data yielded median prediction error of 5.11×. This is expected, as the training and test data for SFC/ESI/HRMS have been collected on the same instrument with the same chromatography. Still, the correlation observed between response factors measured with SFC/ESI/HRMS and predicted with a model trained on LC data hints that more abundant LC/ESI/HRMS data prove useful in understanding and predicting the ionization behavior in SFC/ESI/HRMS.
Collapse
Affiliation(s)
- Stefan Bieber
- AFIN-TS GmbH (Analytisches Forschungsinstitut für Non-Target Screening), Am Mittleren Moos 48, 86167 Augsburg, Germany
| | - Thomas Letzel
- AFIN-TS GmbH (Analytisches Forschungsinstitut für Non-Target Screening), Am Mittleren Moos 48, 86167 Augsburg, Germany
| | - Anneli Kruve
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius Väg 16, 10691 Stockholm, Sweden
- Department of Environmental Science, Stockholm University, Svante Arrhenius Väg 16, 10691 Stockholm, Sweden
| |
Collapse
|
34
|
Li L, Chen R, Wang L, Jia Y, Shen X, Hu J. Discovery of Three Organothiophosphate Esters in River Water Using High-Resolution Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7254-7262. [PMID: 37092689 DOI: 10.1021/acs.est.2c09416] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Records of the environmental occurrence of organothiophosphate esters (OTPEs), which are used as flame retardants and food and industrial additives, are unavailable. In this study, we discovered three OTPEs, namely O,O,O-tris(2,4-di-tert-butylphenyl) phosphorothioate (AO168═S), O-butyl O-(butyl-methylphenyl) O-(di-butylphenyl) phosphorothioate (BBMDBPt)/O,O-bis(dibutylphenyl) O-methyl phosphorothioate (BDBPMPt), and O-butyl O-ethyl O-hydrogen phosphorothioate (BEHPt), in the surface water of the Yangtze River Basin by applying a characteristic phosphorothioate fragment-directed high-resolution mass spectrometry method. Among the 17 water samples tested, the detection frequencies of AO168═S and BEHPt were 100% and that of BBMDBPt/BDBPMPt was 29%. The mean concentration of AO168═S was 56.9 ng/L (30.5-148 ng/L), and semi-quantitative analysis revealed that the mean concentrations of BEHPt and BBMDBPt/BDBPMPt were 17.2 ng/L (5.5-65.4 ng/L) and 0.8 ng/L (<the limit of quantification, LOQ, to 6.3 ng/L), respectively. Twelve organophosphate esters were also detected, of which the highest mean concentration was found for tris(2,4-di-tert-butylphenyl) phosphate (AO168═O, 366 ng/L), followed by triphenyl phosphate (84.3 ng/L), triethyl phosphate (19.3 ng/L), and tributyl phosphate (15.7 ng/L). The Spearman's correlation coefficient between AO168═S and AO168═O was 0.547 (p < 0.05), suggesting that AO168═S commonly transforms into AO168═O or that these chemicals have a similar source and behavior in the environment. Future studies are warranted to assess the potential toxicity, environmental behavior, and health risks posed by OTPEs.
Collapse
Affiliation(s)
- Linwan Li
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Ruichao Chen
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Lei Wang
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Yingting Jia
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Xinming Shen
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Jianying Hu
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
35
|
Nugumanova G, Ponomarev ED, Askarova S, Fasler-Kan E, Barteneva NS. Freshwater Cyanobacterial Toxins, Cyanopeptides and Neurodegenerative Diseases. Toxins (Basel) 2023; 15:toxins15030233. [PMID: 36977124 PMCID: PMC10057253 DOI: 10.3390/toxins15030233] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/13/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
Cyanobacteria produce a wide range of structurally diverse cyanotoxins and bioactive cyanopeptides in freshwater, marine, and terrestrial ecosystems. The health significance of these metabolites, which include genotoxic- and neurotoxic agents, is confirmed by continued associations between the occurrence of animal and human acute toxic events and, in the long term, by associations between cyanobacteria and neurodegenerative diseases. Major mechanisms related to the neurotoxicity of cyanobacteria compounds include (1) blocking of key proteins and channels; (2) inhibition of essential enzymes in mammalian cells such as protein phosphatases and phosphoprotein phosphatases as well as new molecular targets such as toll-like receptors 4 and 8. One of the widely discussed implicated mechanisms includes a misincorporation of cyanobacterial non-proteogenic amino acids. Recent research provides evidence that non-proteinogenic amino acid BMAA produced by cyanobacteria have multiple effects on translation process and bypasses the proof-reading ability of the aminoacyl-tRNA-synthetase. Aberrant proteins generated by non-canonical translation may be a factor in neuronal death and neurodegeneration. We hypothesize that the production of cyanopeptides and non-canonical amino acids is a more general mechanism, leading to mistranslation, affecting protein homeostasis, and targeting mitochondria in eukaryotic cells. It can be evolutionarily ancient and initially developed to control phytoplankton communities during algal blooms. Outcompeting gut symbiotic microorganisms may lead to dysbiosis, increased gut permeability, a shift in blood-brain-barrier functionality, and eventually, mitochondrial dysfunction in high-energy demanding neurons. A better understanding of the interaction between cyanopeptides metabolism and the nervous system will be crucial to target or to prevent neurodegenerative diseases.
Collapse
Affiliation(s)
- Galina Nugumanova
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - Eugene D Ponomarev
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - Sholpan Askarova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| | - Elizaveta Fasler-Kan
- Department of Pediatric Surgery, Children's Hospital, Inselspital Bern, University of Bern, 3010 Bern, Switzerland
| | - Natasha S Barteneva
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
- The Environment & Resource Efficiency Cluster (EREC), Nazarbayev University, Astana 010000, Kazakhstan
| |
Collapse
|
36
|
Suspect Screening of Chemicals in Hospital Wastewaters Using Effect-Directed Analysis Approach as Prioritization Strategy. Molecules 2023; 28:molecules28031212. [PMID: 36770879 PMCID: PMC9921743 DOI: 10.3390/molecules28031212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/28/2023] Open
Abstract
The increasing number of contaminants in the environment has pushed water monitoring programs to find out the most hazardous known and unknown chemicals in the environment. Sample treatment-simplification methods and non-target screening approaches can help researchers to not overlook potential chemicals present in complex aqueous samples. In this work, an effect-directed analysis (EDA) protocol using the sea urchin embryo test (SET) as a toxicological in vivo bioassay was used as simplified strategy to identify potential unknown chemicals present in a very complex aqueous matrix such as hospital effluent. The SET bioassay was used for the first time here to evaluate potential toxic fractions in hospital effluent, which were obtained after a two-step fractionation using C18 and aminopropyl chromatographic semi-preparative columns. The unknown compounds present in the toxic fractions were identified by means of liquid chromatography coupled to a Q Exactive Orbitrap high-resolution mass spectrometer (LC-HRMS) and using a suspect analysis approach. The results were complemented by gas chromatography-mass spectrometry analysis (GC-MS) in order to identify the widest range of chemical compounds present in the sample and the toxic fractions. Using EDA as sample treatment simplification method, the number of unknown chemicals (>446 features) detected in the raw sample was narrowed down to 94 potential toxic candidates identified in the significantly toxic fractions. Among them, the presence of 25 compounds was confirmed with available chemical standards including 14 pharmaceuticals, a personal care product, six pesticides and four industrial products. The observations found in this work emphasize the difficulties in identifying potential toxicity drivers in complex water samples, as in the case of hospital wastewater.
Collapse
|
37
|
Nanusha MY, Frøkjær EE, Liigand J, Christensen MR, Hansen HR, Hansen M. Unravelling the occurrence of trace contaminants in surface waters using semi-quantitative suspected non-target screening analyses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120346. [PMID: 36202272 DOI: 10.1016/j.envpol.2022.120346] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Several classes of anthropogenic chemicals such as pesticides and pharmaceuticals are frequently used in human-related life activities and are discharged into the aquatic environment. These compounds can exert an unknown effect on aquatic life and humans if the water is used for human consumption. Thus, unravelling their occurrence in the aquatic system is crucial for the well-being of life and monitoring purposes. To this end, we used nanoflow-liquid and ion-exchange chromatography hyphenated with orbitrap high-resolution tandem mass spectrometry to detect several thousands of features (chemical entities) in surface water. Later, the features were narrowed down to a few focused lists using a stepwise filtering strategy, for which the structural elucidation was made. Accordingly, the chemical structure was confirmed for 83 compounds from different application areas, mainly being pharmaceuticals, pesticides, and other multiple application industrial compounds and xenobiotic degradation products. The compounds with the highest concentration were lamotrigine (27.6 μg/L), valsartan (14.4 μg/L), and ibuprofen (12.7 μg/L). Some compounds such as prosulfocarb, fluopyram, and tris(3-chloropropyl) phosphate were found to be the most abundant and widespread contaminants. Of the 32 sampling sites, nearly half of the sites (47%) contained more than 30 different compounds. Two sampling sites were far more contaminated than other sites based on the estimated concentration and the number of identified contaminants they contained. Our triplicate analysis revealed a low relative standard deviation between replicates, advocating for the added value in analysing more sampling sites instead of sample repetition. Overall, our study elucidated the occurrence of organic contaminants from a variety of sources in the aquatic environment. Furthermore, our findings highlighted the role of suspected non-target screening in exposing a snapshot of the chemical composition of surface water and the localized possible contamination sources.
Collapse
Affiliation(s)
- Mulatu Yohannes Nanusha
- Environmental Metabolomics Lab, Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Emil Egede Frøkjær
- Environmental Metabolomics Lab, Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Jaanus Liigand
- Quantem Analytics OÜ, Narva mnt 149-8, Tartu, 51008, Estonia
| | | | - Helle Rüsz Hansen
- Danish Environmental Protection Agency, Tolderlundsvej 5, 5000, Odense C, Denmark
| | - Martin Hansen
- Environmental Metabolomics Lab, Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark.
| |
Collapse
|
38
|
Roggeman M, Belova L, Fernández SF, Kim DH, Jeong Y, Poma G, Remy S, Verheyen VJ, Schoeters G, van Nuijs ALN, Covaci A. Comprehensive suspect screening for the identification of contaminants of emerging concern in urine of Flemish adolescents by liquid chromatography high-resolution mass spectrometry. ENVIRONMENTAL RESEARCH 2022; 214:114105. [PMID: 35981609 DOI: 10.1016/j.envres.2022.114105] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
The increasing human exposure to contaminants of emerging concern (CECs) cannot be fully assessed by targeted biomonitoring methods alone as these are limited to a subset of known analytes. On the contrary, suspect screening approaches based on liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS) allow the simultaneous detection of a high number of CECs and/or their (predicted) metabolites leading to a more comprehensive assessment of possible human exposure to these compounds. Within this study, 83 urine samples of Flemish adolescents (47 males, 36 females) collected in the frame of the 4th cycle of the Flemish Environment and Health Study (FLEHS IV) were selected with the aim of including a high and a low exposure group based on the overall exposure of 45 known contaminants. Samples were analyzed using a previously developed method involving a suspect screening approach to annotate CECs and their metabolites. The applied suspect list contained a total of >12,500 CECs and their known and predicted metabolites resulting from metabolization reactions, such as hydroxylation, glucuronidation and methylation. In total, 63 compounds were annotated at a confidence level of 3 or better, with most of the detected compounds not included in current biomonitoring programs. 5 out of the 63 compounds could be assigned with confidence level 2. Five compounds could unequivocally be identified (confidence level 1) through the comparison with reference standards. Personal care products were the main detected compound class (42% of detected compounds). Additionally, a detailed literature search indicated potential toxic effects for several of the detected CECs. Lastly, in the urine samples, a significantly higher number (p < 0.05) of compounds was detected in the high exposure group as opposed to the low exposure group. This difference could only be observed between high and low exposure load samples of female participants (p < 0.01).
Collapse
Affiliation(s)
| | - Lidia Belova
- Toxicological Centre, University of Antwerp, Antwerp, Belgium
| | - Sandra F Fernández
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Valencia, Spain
| | - Da-Hye Kim
- Toxicological Centre, University of Antwerp, Antwerp, Belgium
| | - Yunsun Jeong
- Toxicological Centre, University of Antwerp, Antwerp, Belgium
| | - Giulia Poma
- Toxicological Centre, University of Antwerp, Antwerp, Belgium
| | - Sylvie Remy
- Flemish Institute for Technological Research (VITO), Mol, Belgium
| | | | - Greet Schoeters
- Flemish Institute for Technological Research (VITO), Mol, Belgium
| | | | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
39
|
Hader JD, Lane T, Boxall ABA, MacLeod M, Di Guardo A. Enabling forecasts of environmental exposure to chemicals in European agriculture under global change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 840:156478. [PMID: 35667426 DOI: 10.1016/j.scitotenv.2022.156478] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/16/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
European agricultural development in the 21st century will be affected by a host of global changes, including climate change, changes in agricultural technologies and practices, and a shift towards a circular economy. The type and quantity of chemicals used, emitted, and cycled through agricultural systems in Europe will change, driven by shifts in the use patterns of pesticides, veterinary pharmaceuticals, reclaimed wastewater used for irrigation, and biosolids. Climate change will also impact the chemical persistence, fate, and transport processes that dictate environmental exposure. Here, we review the literature to identify research that will enable scenario-based forecasting of environmental exposures to organic chemicals in European agriculture under global change. Enabling exposure forecasts requires understanding current and possible future 1.) emissions, 2.) persistence and transformation, and 3.) fate and transport of agricultural chemicals. We discuss current knowledge in these three areas, the impact global change drivers may have on them, and we identify knowledge and data gaps that must be overcome to enable predictive scenario-based forecasts of environmental exposure under global change. Key research gaps identified are: improved understanding of relationships between global change and chemical emissions in agricultural settings; better understanding of environment-microbe interactions in the context of chemical degradation under future conditions; and better methods for downscaling climate change-driven intense precipitation events for chemical fate and transport modelling. We introduce a set of narrative Agricultural Chemical Exposure (ACE) scenarios - augmenting the IPCC's Shared Socio-economic Pathways (SSPs) - as a framework for forecasting chemical exposure in European agriculture. The proposed ACE scenarios cover a plausible range of optimistic to pessimistic 21st century development pathways. Filling the knowledge and data gaps identified within this study and using the ACE scenario approach for chemical exposure forecasting will support stakeholder planning and regulatory intervention strategies to ensure European agricultural practices develop in a sustainable manner.
Collapse
Affiliation(s)
- John D Hader
- Department of Environmental Science, Stockholm University, 10691 Stockholm, Sweden
| | - Taylor Lane
- Department of Environment and Geography, University of York, Heslington, York, North Yorkshire YO10 5NG, United Kingdom
| | - Alistair B A Boxall
- Department of Environment and Geography, University of York, Heslington, York, North Yorkshire YO10 5NG, United Kingdom
| | - Matthew MacLeod
- Department of Environmental Science, Stockholm University, 10691 Stockholm, Sweden.
| | - Antonio Di Guardo
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, CO, Italy
| |
Collapse
|
40
|
Sanseverino I, Gómez L, Navarro A, Cappelli F, Niegowska M, Lahm A, Barbiere M, Porcel-Rodríguez E, Valsecchi S, Pedraccini R, Crosta S, Lettieri T. Holistic approach to chemical and microbiological quality of aquatic ecosystems impacted by wastewater effluent discharges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155388. [PMID: 35489490 DOI: 10.1016/j.scitotenv.2022.155388] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Wastewater treatment plants (WWTPs) collect wastewater from various sources and use different treatment processes to reduce the load of pollutants in the environment. Since the removal of many chemical pollutants and bacteria by WWTPs is incomplete, they constitute a potential source of contaminants. The continuous release of contaminants through WWTP effluents can compromise the health of the aquatic ecosystems, even if they occur at very low concentrations. The main objective of this work was to characterize, over a period of four months, the treatment steps starting from income to the effluent and 5 km downstream to the receiving river. In this context, the efficiency removal of chemical pollutants (e.g. hormones and pharmaceuticals, including antibiotics) and bacteria was assessed in a WWTP case study by using a holistic approach. It embraces different chemical and biological-based methods, such as pharmaceutical analysis by HPLC-MSMS, growth rate inhibition in algae, ligand binding estrogen receptor assay, microbial community study by 16S and shotgun sequencing along with relative quantification of resistance genes by quantitative polymerase chain reaction. Although both, chemical and biological-based methods showed a significant reduction of the pollutant burden in effluent and surface waters compared to the influent of the WWTP, no complete removal of pollutants, pathogens and antibiotic resistance genes was observed.
Collapse
Affiliation(s)
| | - Livia Gómez
- European Commission, Joint Research Centre (JRC), I-21027 Ispra, VA, Italy
| | - Anna Navarro
- European Commission, Joint Research Centre (JRC), I-21027 Ispra, VA, Italy
| | - Francesca Cappelli
- Water Research Institute IRSA-CNR, Via del Mulino 19, Brugherio 20861, MB, Italy; University of Insubria, Department of Science and High Technology, Via Valleggio 11, 22100 Como, Italy
| | | | - Armin Lahm
- Bioinformatics Project Support, P.zza S.M. Liberatrice 18, 00153 Roma, Italy
| | - Maurizio Barbiere
- European Commission, Joint Research Centre (JRC), I-21027 Ispra, VA, Italy
| | | | - Sara Valsecchi
- Water Research Institute IRSA-CNR, Via del Mulino 19, Brugherio 20861, MB, Italy
| | | | | | - Teresa Lettieri
- European Commission, Joint Research Centre (JRC), I-21027 Ispra, VA, Italy.
| |
Collapse
|
41
|
Musatadi M, Caballero C, Mijangos L, Prieto A, Olivares M, Zuloaga O. From target analysis to suspect and non-target screening of endocrine-disrupting compounds in human urine. Anal Bioanal Chem 2022; 414:6855-6869. [PMID: 35904524 PMCID: PMC9436830 DOI: 10.1007/s00216-022-04250-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 11/04/2022]
Abstract
In the present work, a target analysis method for simultaneously determining 24 diverse endocrine-disrupting compounds (EDCs) in urine (benzophenones, bisphenols, parabens, phthalates and antibacterials) was developed. The target analysis approach (including enzymatic hydrolysis, clean-up by solid-phase extraction and analysis by liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS)) was optimized, validated and applied to volunteers’ samples, in which 67% of the target EDCs were quantified. For instance, benzophenone-3 (0.2–13 ng g−1), bisphenol A (7.7–13.7 ng g−1), methyl 3,5-dihydroxybenzoate (8–254 ng g−1), mono butyl phthalate (2–17 ng g−1) and triclosan (0.3–9 ng g−1) were found at the highest concentrations, but the presence of other analogues was detected as well. The developed target method was further extended to suspect and non-target screening (SNTS) by means of LC coupled to high-resolution MS/MS. First, well-defined workflows for SNTS were validated by applying the previously developed method to an extended list of compounds (83), and then, to the same real urine samples. From a list of approximately 4000 suspects, 33 were annotated at levels from 1 to 3, with food additives/ingredients and personal care products being the most abundant ones. In the non-target approach, the search was limited to molecules containing S, Cl and/or Br atoms, annotating 4 pharmaceuticals. The results from this study showed that the combination of the lower limits of detection of MS/MS and the identification power of high-resolution MS/MS is still compulsory for a more accurate definition of human exposome in urine samples.
Collapse
Affiliation(s)
- Mikel Musatadi
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), Leioa, Basque Country, 48940, Spain. .,Research Centre for Experimental Marine Biology and Biotechnology (PiE), University of the Basque Country (UPV/EHU), Basque Country, Plentzia, 48620, Spain.
| | - Claudia Caballero
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), Leioa, Basque Country, 48940, Spain
| | - Leire Mijangos
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), Leioa, Basque Country, 48940, Spain.,Research Centre for Experimental Marine Biology and Biotechnology (PiE), University of the Basque Country (UPV/EHU), Basque Country, Plentzia, 48620, Spain
| | - Ailette Prieto
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), Leioa, Basque Country, 48940, Spain.,Research Centre for Experimental Marine Biology and Biotechnology (PiE), University of the Basque Country (UPV/EHU), Basque Country, Plentzia, 48620, Spain
| | - Maitane Olivares
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), Leioa, Basque Country, 48940, Spain.,Research Centre for Experimental Marine Biology and Biotechnology (PiE), University of the Basque Country (UPV/EHU), Basque Country, Plentzia, 48620, Spain
| | - Olatz Zuloaga
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), Leioa, Basque Country, 48940, Spain.,Research Centre for Experimental Marine Biology and Biotechnology (PiE), University of the Basque Country (UPV/EHU), Basque Country, Plentzia, 48620, Spain
| |
Collapse
|
42
|
Chen L, Pan M, Lu P, Hu D. Combined Experimental and Computational Study on the Transformation of a Novel 1,3,4-Oxadiazole Thioether Nematicide in Aqueous Solutions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8963-8973. [PMID: 35848219 DOI: 10.1021/acs.jafc.2c02649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
It has been demonstrated that Exianliuyimi (EXLYM) exhibits good nematocidal activity. As a potential nematicide, EXLYM and its transformation products (TPs) may generate emerging pollutants with hazardous effects on the ecosystem. In this study, the fate of EXLYM in aqueous solutions was investigated using experimental and theoretical approaches. Laboratory-scale experiments showed that EXLYM is hydrolytically stable. Microbial processes are primarily responsible for the oxidation of sulfur in aqueous solutions. Under simulated sunlight, the t1/2 values of EXLYM in acidic, neutral, and alkaline buffer solutions were 5.02, 3.83, and 5.55 h, respectively. Six TPs were identified using a non-target screening strategy realized by ultra-high-performance liquid chromatography coupled with Q-Exactive Orbitrap high-resolution mass spectrometry and 18O-labeling experiments. Four of these were unambiguously confirmed using authentic standards. Reactive oxygen species scavenging experiments, 18O-labeling experiments, and quantum-theoretical calculations suggested that EXLYM could degrade mainly through four pathways: sulfur oxidation, nucleophilic aromatic photosubstitution, C-S bond cleavage, and oxidative ring-opening. The proposed degradation kinetics, TPs, and transformation pathways in aqueous solutions provide valuable information on the fate of EXLYM in aquatic ecosystems and lay the foundation for further toxicological tests.
Collapse
Affiliation(s)
- Lingzhu Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, P. R. China
| | - Mengyuan Pan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, P. R. China
| | - Ping Lu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, P. R. China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, P. R. China
| |
Collapse
|
43
|
Tadić Đ, Manasfi R, Bertrand M, Sauvêtre A, Chiron S. Use of Passive and Grab Sampling and High-Resolution Mass Spectrometry for Non-Targeted Analysis of Emerging Contaminants and Their Semi-Quantification in Water. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103167. [PMID: 35630644 PMCID: PMC9146997 DOI: 10.3390/molecules27103167] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022]
Abstract
Different groups of organic micropollutants including pharmaceuticals and pesticides have emerged in the environment in the last years, resulting in a rise in environmental and human health risks. In order to face up and evaluate these risks, there is an increasing need to assess their occurrence in the environment. Therefore, many studies in the past couple of decades were focused on the improvements in organic micropollutants’ extraction efficiency from the different environmental matrices, as well as their mass spectrometry detection parameters and acquisition modes. This paper presents different sampling methodologies and high-resolution mass spectrometry-based non-target screening workflows for the identification of pharmaceuticals, pesticides, and their transformation products in different kinds of water (domestic wastewater and river water). Identification confidence was increased including retention time prediction in the workflow. The applied methodology, using a passive sampling technique, allowed for the identification of 85 and 47 contaminants in the wastewater effluent and river water, respectively. Finally, contaminants’ prioritization was performed through semi-quantification in grab samples as a fundamental step for monitoring schemes.
Collapse
Affiliation(s)
- Đorđe Tadić
- Hydrosciences Montpellier, University Montpellier, CNRS, IRD, 34090 Montpellier, France; (R.M.); (S.C.)
- Correspondence:
| | - Rayana Manasfi
- Hydrosciences Montpellier, University Montpellier, CNRS, IRD, 34090 Montpellier, France; (R.M.); (S.C.)
| | - Marine Bertrand
- Hydrosciences Montpellier, University Montpellier, IMT Mines Ales, CNRS, IRD, 30100 Ales, France; (M.B.); (A.S.)
| | - Andrés Sauvêtre
- Hydrosciences Montpellier, University Montpellier, IMT Mines Ales, CNRS, IRD, 30100 Ales, France; (M.B.); (A.S.)
| | - Serge Chiron
- Hydrosciences Montpellier, University Montpellier, CNRS, IRD, 34090 Montpellier, France; (R.M.); (S.C.)
| |
Collapse
|
44
|
Haglund P, Rebryk A. Biomagnification and Temporal Trends of New and Emerging Dechloranes and Related Transformation Products in Baltic Sea Biota. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2022; 9:406-412. [PMID: 35573270 PMCID: PMC9097483 DOI: 10.1021/acs.estlett.2c00171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 05/26/2023]
Abstract
To enhance knowledge of the environmental distribution and temporal trends of dechloranes and their transformation products (TPs) we performed suspect screening of Baltic Sea biota (eelpout, herring, harbor porpoise, guillemot and white-tailed sea eagle). Evaluation of new and "digitally frozen" gas chromatography/high-resolution mass spectrometry data revealed 31 compounds: five dechloranes (Dechlorane [Mirex], Dechlorane 602, Dechlorane 603, and syn-/anti-Dechlorane Plus [DP]), three isomers, and 23 TPs. Six new Dechlorane 603 TPs and two new DP TPs were detected, including one hydroxy-TP. Some TPs occurred at much higher concentrations than the parent compounds (e.g., Dechlorane 603 TPs were >10-fold more abundant than their parent). Concentrations of contaminants in the most contaminated species (white-tailed sea eagle) changed little over the period 1965-2017. Slow declines were detected for most compounds (median, 2% per year), although concentrations of DP and DP-TPs increased by 1% per year. Ten contaminants biomagnify, and the trophic magnification factors for TPs of Mirex, Dechlorane 602 and Dechlorane 603 (8.2 to 17.8) were similar to the parent compounds (6.6 to 12.4) and higher than that of DP (2.4, nonsignificant). The results are discussed in relation to the current review of DP for potential listing under the Stockholm Convention on POPs.
Collapse
|
45
|
From monitoring to treatment, how to improve water quality: The pharmaceuticals case. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100245] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
46
|
El-Deen AK, Shimizu K. Suspect and non-target screening workflow for studying the occurrence, fate, and environmental risk of contaminants in wastewater using data-independent acquisition. J Chromatogr A 2022; 1667:462905. [DOI: 10.1016/j.chroma.2022.462905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/07/2022] [Accepted: 02/12/2022] [Indexed: 10/19/2022]
|
47
|
Lebedev AT, Richardson SD. Planet Contamination with Chemical Compounds. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27051621. [PMID: 35268722 PMCID: PMC8911829 DOI: 10.3390/molecules27051621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 11/24/2022]
Affiliation(s)
- Albert T. Lebedev
- Chemistry Department, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
- Correspondence:
| | - Susan D. Richardson
- Department of Chemistry & Biochemistry, University of South Carolina, Columbia, SC 29208, USA;
| |
Collapse
|
48
|
Lopez-Herguedas N, González-Gaya B, Castelblanco-Boyacá N, Rico A, Etxebarria N, Olivares M, Prieto A, Zuloaga O. Characterization of the contamination fingerprint of wastewater treatment plant effluents in the Henares River Basin (central Spain) based on target and suspect screening analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151262. [PMID: 34715212 DOI: 10.1016/j.scitotenv.2021.151262] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/03/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
The interest in contaminants of emerging concern (CECs) has increased lately due to their continued emission and potential ecotoxicological hazards. Wastewater treatment plants (WWTPs) are generally not capable of eliminating them and are considered the main pathway for CECs to the aquatic environment. The number of CECs in WWTPs effluents is often so large that complementary approaches to the conventional target analysis need to be implemented. Within this context, multitarget quantitative analysis (162 compounds) and a suspect screening (>40,000 suspects) approaches were applied to characterize the CEC fingerprint in effluents of five WWTPs in the Henares River basin (central Spain) during two sampling campaigns (summer and autumn). The results indicated that 76% of the compounds quantified corresponded to pharmaceuticals, 21% to pesticides and 3% to industrial chemicals. Apart from the 82 compounds quantified, suspect screening increased the list to 297 annotated compounds. Significant differences in the CEC fingerprint were observed between summer and autumn campaigns and between the WWTPs, being those serving the city of Alcalá de Henares the ones with the largest number of compounds and concentrations. Finally, a risk prioritization approach was applied based on risk quotients (RQs) for algae, invertebrates, and fish. Azithromycin, diuron, chlortoluron, clarithromycin, sertraline and sulfamethoxazole were identified as having the largest risks to algae. As for invertebrates, the compounds having the largest RQs were carbendazim, fenoxycarb and eprosartan, and for fish acetaminophen, DEET, carbendazim, caffeine, fluconazole, and azithromycin. The two WWTPs showing higher calculated Risk Indexes had tertiary treatments, which points towards the need of increasing the removal efficiency in urban WWTPs. Furthermore, considering the complex mixtures emitted into the environment and the low dilution capacity of Mediterranean rivers, we recommend the development of detailed monitoring plans and stricter regulations to control the chemical burden created to freshwater ecosystems.
Collapse
Affiliation(s)
- N Lopez-Herguedas
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain.
| | - B González-Gaya
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain.
| | - N Castelblanco-Boyacá
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
| | - A Rico
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Alcalá de Henares, Madrid, Spain; Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Paterna, Valencia, Spain
| | - N Etxebarria
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - M Olivares
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - A Prieto
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| | - O Zuloaga
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Plentzia, Basque Country, Spain
| |
Collapse
|
49
|
Evaluation of Sample Preparation Methods for Non-Target Screening of Organic Micropollutants in Urban Waters Using High-Resolution Mass Spectrometry. Molecules 2021; 26:molecules26237064. [PMID: 34885646 PMCID: PMC8659043 DOI: 10.3390/molecules26237064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 02/02/2023] Open
Abstract
Non-target screening (NTS) has gained interest in recent years for environmental monitoring purposes because it enables the analysis of a large number of pollutants without predefined lists of molecules. However, sample preparation methods are diverse, and few have been systematically compared in terms of the amount and relevance of the information obtained by subsequent NTS analysis. The goal of this work was to compare a large number of sample extraction methods for the unknown screening of urban waters. Various phases were tested for the solid-phase extraction of micropollutants from these waters. The evaluation of the different phases was assessed by statistical analysis based on the number of detected molecules, their range, and physicochemical properties (molecular weight, standard recoveries, polarity, and optical properties). Though each cartridge provided its own advantages, a multilayer cartridge combining several phases gathered more information in one single extraction by benefiting from the specificity of each one of its layers.
Collapse
|