1
|
Popescu M, Radivojevic K, Trasca DM, Varut RM, Enache I, Osman A. Natural Antidiabetic Agents: Insights into Ericaceae-Derived Phenolics and Their Role in Metabolic and Oxidative Modulation in Diabetes. Pharmaceuticals (Basel) 2025; 18:682. [PMID: 40430501 PMCID: PMC12115297 DOI: 10.3390/ph18050682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Revised: 05/01/2025] [Accepted: 05/01/2025] [Indexed: 05/29/2025] Open
Abstract
Diabetes mellitus (DM) is a chronic disease with a growing prevalence worldwide, leading to severe health complications. Current treatment relies on antidiabetic medications, which may have adverse effects, highlighting the need for alternative approaches. Natural compounds, such as phenolic compounds, have shown promise in glucose modulation. The Ericaceae family includes several plants with potential antidiabetic properties. This review examines the pathophysiology of diabetes, chemical composition, and specific Ericaceae species that have demonstrated antidiabetic effects. Studies indicate that Vaccinium species and other Ericaceae plants can lower blood glucose levels and improve insulin sensitivity through mechanisms such as enzyme inhibition. These findings suggest that Ericaceae plants may serve as complementary strategies for diabetes management.
Collapse
Affiliation(s)
- Mihaela Popescu
- Department of Endocrinology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Kristina Radivojevic
- Research Methodology Department, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Diana-Maria Trasca
- Department of Internal Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Renata Maria Varut
- Research Methodology Department, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Irina Enache
- Discipline of Anatomy, Department of Anatomy, University of Medicine and Pharmacy, 200349 Craiova, Romania; (I.E.); (A.O.)
| | - Andrei Osman
- Discipline of Anatomy, Department of Anatomy, University of Medicine and Pharmacy, 200349 Craiova, Romania; (I.E.); (A.O.)
| |
Collapse
|
2
|
Sinuhaji TRF, Ramadhani S, Setiawan VK, Baroroh U. Targeting diabetes with flavonoids from Indonesian medicinal plants: a review on mechanisms and drug discovery. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04139-2. [PMID: 40202673 DOI: 10.1007/s00210-025-04139-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 04/01/2025] [Indexed: 04/10/2025]
Abstract
The rich biodiversity of Indonesia provides a wide variety of plants rich in flavonoids, which show promising potential as antidiabetic agents. Flavonoids are polyphenolic compounds recognized for their broad biological activities, such as antioxidant, anti-inflammatory, and antidiabetic effects. Traditional Indonesian medicinal plants such as Syzygium cumini, Moringa oleifera, and Curcuma longa are currently being studied for their flavonoid content and potential in diabetes treatment. Studies suggest that flavonoids can influence crucial pathways in diabetes management, including enhancing insulin sensitivity, boosting insulin production, and safeguarding pancreatic β cells against damage caused by oxidative stress. For example, quercetin and kaempferol, flavonoids in many Indonesian plants, have demonstrated potential for managing glucose metabolism and lowering high blood sugar levels. Additionally, these substances have been shown to inhibit enzymes such as α-glucosidase and α-amylase, which are involved in the breakdown of carbohydrates, thus aiding in the regulation of blood sugar levels after meals. The antioxidant qualities of flavonoids play a crucial role in fighting oxidative stress and are a significant contributor to the development of diabetes and related complications. Flavonoids help neutralize free radicals and enhance the body's antioxidant protection, reducing oxidative harm and promoting metabolic wellness. Additionally, their anti-inflammatory properties aid in reducing the chronic inflammation linked to insulin resistance and β-cell dysfunction. Formulation advancements, such as nanocarrier technology, have been explored to boost the effectiveness of flavonoid-based therapies. Due to its vast plant diversity, Indonesia offers a potential reservoir for new antidiabetic drugs, meriting additional research and development with the aim of this review providing new knowledge on the potential of flavonoids that can play a role in the treatment of diabetes.
Collapse
Affiliation(s)
- Tubagus Rayyan Fitra Sinuhaji
- Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, 50275, Semarang, Indonesia.
- The Indonesian Society for Bioinformatics and Biodiversity - Masyarakat Bioinformatika Dan Biodiversitas Indonesia (MABBI), 11510, Jakarta, Indonesia.
| | - Sintha Ramadhani
- The Indonesian Society for Bioinformatics and Biodiversity - Masyarakat Bioinformatika Dan Biodiversitas Indonesia (MABBI), 11510, Jakarta, Indonesia
- Department of Biology Education, Faculty of Teacher Training and Education, Universitas Muhammadiyah Prof. Dr. Hamka, 13460, Jakarta, Indonesia
| | - Volta Kellik Setiawan
- The Indonesian Society for Bioinformatics and Biodiversity - Masyarakat Bioinformatika Dan Biodiversitas Indonesia (MABBI), 11510, Jakarta, Indonesia
- Department of Biology Education, Faculty of Teacher Training and Education, Mulawarman University, 75119, Samarinda, Indonesia
| | - Umi Baroroh
- The Indonesian Society for Bioinformatics and Biodiversity - Masyarakat Bioinformatika Dan Biodiversitas Indonesia (MABBI), 11510, Jakarta, Indonesia
- Department of Biotechnology Pharmacy, Indonesian School of Pharmacy, 40266, Bandung, Indonesia
| |
Collapse
|
3
|
Babotă M, Frumuzachi O, Tanase C, Mocan A. Efficacy of Myricetin Supplementation on Glucose and Lipid Metabolism: A Systematic Review and Meta-Analysis of In Vivo Mice Studies. Nutrients 2024; 16:3730. [PMID: 39519561 PMCID: PMC11547919 DOI: 10.3390/nu16213730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND/OBJECTIVES Type 2 diabetes mellitus (T2DM) is a disorder characterized by insulin resistance, hyperglycemia, and dyslipidemia. Myricetin, a flavonoid found in various plants, has shown potential anti-diabetic effects in murine studies. This meta-analysis aimed to evaluate the impact of myricetin supplementation on glucose metabolism and lipid profiles in mouse models of metabolic diseases. METHODS A systematic review and meta-analysis were conducted in accordance with PRISMA guidelines (PROSPERO: CRD42024591569). Studies involving mice with metabolic disease models and exclusively using myricetin supplementation were checked across four databases (Embase, Scopus, PubMed, and WoS) until 23rd September 2024. The primary outcomes assessed were blood glucose (BG), insulin levels, triacylglycerol (TAG), total cholesterol (TC), HDL, and LDL. A random-effects model was applied to estimate standardized mean differences (SMD), and SYRCLE's risk-of-bias tool for animal studies was used. RESULTS Twenty-one studies with 514 mice met the inclusion criteria. Myricetin supplementation significantly reduced BG (SMD = -1.45, CI: -1.91 to -0.99, p < 0.00001, I2 = 74%), insulin (SMD = -1.78, CI: -2.89 to -0.68, p = 0.002, I2 = 86%), TAG (SMD = -2.60, CI: -3.24 to -1.96, p < 0.00001, I2 = 81%), TC (SMD = -1.86, CI: -2.29 to -1.44, p < 0.00001, I2 = 62%), and LDL (SMD = -2.95, CI: -3.75 to -2.14, p < 0.00001, I2 = 74%). However, the effect on HDL was not statistically significant (SMD = 0.71, CI: -0.01 to 1.43, p = 0.05, I2 = 83%). CONCLUSIONS Myricetin supplementation improved glucose metabolism and lipid profiles in mouse models, suggesting its potential as a therapeutic agent for managing T2DM. However, further research is needed to confirm these findings in human studies.
Collapse
Affiliation(s)
- Mihai Babotă
- Department of Pharmaceutical Botany, Faculty of Pharmacy, "George Emil Palade" University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 540139 Târgu Mures, Romania
- Research Center of Medicinal and Aromatic Plants, "George Emil Palade" University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 540139 Târgu Mures, Romania
| | - Oleg Frumuzachi
- Department of Pharmaceutical Botany, "Iuliu Haţieganu" University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Corneliu Tanase
- Department of Pharmaceutical Botany, Faculty of Pharmacy, "George Emil Palade" University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 540139 Târgu Mures, Romania
- Research Center of Medicinal and Aromatic Plants, "George Emil Palade" University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 540139 Târgu Mures, Romania
| | - Andrei Mocan
- Department of Pharmaceutical Botany, "Iuliu Haţieganu" University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| |
Collapse
|
4
|
Lumbanraja MP, Anggadiredja K, Kurniati NF, Muhammad HN. Pandanus amaryllifoius Roxb. Leaves Ethanol Extract Ameliorates Lipid and Proinflammatory Cytokines Profiles in a Rat Model of Dyslipidemia. J Pharmacopuncture 2024; 27:101-109. [PMID: 38948314 PMCID: PMC11194525 DOI: 10.3831/kpi.2024.27.2.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/10/2023] [Accepted: 05/16/2024] [Indexed: 07/02/2024] Open
Abstract
Objectives Dyslipidemia has currently become a major health challenge that still opens for safer and more effective modes of treatment. The plant Pandanus amaryllifolius Roxb. (pandan) has been indicated to contain active ingredients that interfere with the pathological pathway of dyslipidemia. The aim of the study was to test the effects of pandan leaves ethanol extract on lipid and proinflammatory profiles in a rat dyslipidemic model. Methods Dyslipidemia was induced by administration of high-fat feed for 8 weeks. Treatments (vehicle, the reference drug simvastatin at 1.8 mg/kg, and extract at 200, 300 or 600 mg/kg) were given for 4 weeks following the completion of induction. Results Significant post-treatment decreases in total cholesterol, low density lipoprotein (LDL), and triglyceride levels in groups receiving all doses of extract and simvastatin were observed. Similar results were also found in regards to proinflammatory cytokines levels. Pandan extracts significantly lowered the concentrations of IL-6, TNF-α, and NFκB p65. Characterization of metabolite contents of the extract confirmed the presence of the previously suggested active alkaloids pandamarilactonine-A and B. Conclusion Taken together, results of the present study implied the ameliorating effects of pandan leaves ethanol extract in dyslipidemic condition which is potential for opening an avenue in combating this essential component of metabolic disorder.
Collapse
Affiliation(s)
- Martohap Parotua Lumbanraja
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, Institut Teknologi Bandung, Bandung, Indonesia
| | - Kusnandar Anggadiredja
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, Institut Teknologi Bandung, Bandung, Indonesia
| | - Neng Fisheri Kurniati
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, Institut Teknologi Bandung, Bandung, Indonesia
| | - Hubbi Nashrullah Muhammad
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, Institut Teknologi Bandung, Bandung, Indonesia
| |
Collapse
|
5
|
Mishra S, Rout M, Singh MK, Dehury B, Pati S. Classical molecular dynamics simulation identifies catechingallate as a promising antiviral polyphenol against MPOX palmitoylated surface protein. Comput Biol Chem 2024; 110:108070. [PMID: 38678726 DOI: 10.1016/j.compbiolchem.2024.108070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 05/01/2024]
Abstract
Cumulative global prevalence of the emergent monkeypox (MPX) infection in the non-endemic countries has been professed as a global public health predicament. Lack of effective MPX-specific treatments sets the baseline for designing the current study. This research work uncovers the effective use of known antiviral polyphenols against MPX viral infection, and recognises their mode of interaction with the target F13 protein, that plays crucial role in formation of enveloped virions. Herein, we have employed state-of-the-art machine learning based AlphaFold2 to predict the three-dimensional structure of F13 followed by molecular docking and all-atoms molecular dynamics (MD) simulations to investigate the differential mode of F13-polyphenol interactions. Our extensive computational approach identifies six potent polyphenols Rutin, Epicatechingallate, Catechingallate, Quercitrin, Isoquecitrin and Hyperoside exhibiting higher binding affinity towards F13, buried inside a positively charged binding groove. Intermolecular contact analysis of the docked and MD simulated complexes divulges three important residues Asp134, Ser137 and Ser321 that are observed to be involved in ligand binding through hydrogen bonds. Our findings suggest that ligand binding induces minor conformational changes in F13 to affect the conformation of the binding site. Concomitantly, essential dynamics of the six-MD simulated complexes reveals Catechin gallate, a known antiviral agent as a promising polyphenol targeting F13 protein, dominated with a dense network of hydrophobic contacts. However, assessment of biological activities of these polyphenols need to be confirmed through in vitro and in vivo assays, which may pave the way for development of new novel antiviral drugs.
Collapse
Affiliation(s)
- Sarbani Mishra
- Bioinformatics Division, ICMR-Regional Medical Research Centre, Nalco Square, Chandrasekharpur, Bhubaneswar, Odisha 751023, India
| | - Madhusmita Rout
- Bioinformatics Division, ICMR-Regional Medical Research Centre, Nalco Square, Chandrasekharpur, Bhubaneswar, Odisha 751023, India
| | - Mahender Kumar Singh
- Data Science Laboratory, National Brain Research Centre, Gurgaon, Haryana 122052, India
| | - Budheswar Dehury
- Bioinformatics Division, ICMR-Regional Medical Research Centre, Nalco Square, Chandrasekharpur, Bhubaneswar, Odisha 751023, India; Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India.
| | - Sanghamitra Pati
- Bioinformatics Division, ICMR-Regional Medical Research Centre, Nalco Square, Chandrasekharpur, Bhubaneswar, Odisha 751023, India.
| |
Collapse
|
6
|
Bouyahya A, Balahbib A, Khalid A, Makeen HA, Alhazmi HA, Albratty M, Hermansyah A, Ming LC, Goh KW, El Omari N. Clinical applications and mechanism insights of natural flavonoids against type 2 diabetes mellitus. Heliyon 2024; 10:e29718. [PMID: 38694079 PMCID: PMC11061711 DOI: 10.1016/j.heliyon.2024.e29718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/03/2024] [Accepted: 04/14/2024] [Indexed: 05/03/2024] Open
Abstract
Diabetes is a complex disease that affects a large percentage of the world's population, and it is associated with several risk factors. Self-management poses a significant challenge, but natural sources have shown great potential in providing effective glucose reducing solutions. Flavonoids, a class of bioactive substances found in different natural sources including medicinal plants, have emerged as promising candidates in this regard. Indeed, several flavonoids, including apigenin, arbutin, catechins, and cyanidin, have demonstrated remarkable anti-diabetic properties. The clinical effectiveness of these flavonoids is linked to their potential to decrease blood glucose concentration and increase insulin concentration. Thus, the regulation of certain metabolic pathways such as glycolysis and neoglycogenesis has also been demonstrated. In vitro and in vivo investigations revealed different mechanisms of action related to flavonoid compounds at subcellular, cellular, and molecular levels. The main actions reside in the activation of glycolytic signaling pathways and the inhibition of signaling that promotes glucose synthesis and storage. In this review, we highlight the clinical efficiency of natural flavonoids as well as the molecular mechanisms underlying this effectiveness.
Collapse
Affiliation(s)
- Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, 60115 Surabaya, Indonesia
| | - Abdelaali Balahbib
- High Institute of Nursing Professions and Health Techniques of Errachidia, Errachidia, Morocco
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan, Saudi Arabia
- Medicinal and Aromatic Plants Research Institute, National Center for Research, P.O. Box: 2424, Khartoum-11111, Sudan
| | - Hafiz A. Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, Faculty of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hassan A. Alhazmi
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan, Saudi Arabia
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Postal Code 45142, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Postal Code 45142, Jazan, Saudi Arabia
| | - Andi Hermansyah
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, 60115 Surabaya, Indonesia
| | - Long Chiau Ming
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, 60115 Surabaya, Indonesia
- School of Medical and Life Sciences, Sunway University, Sunway City 47500, Malaysia
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia
| | - Nasreddine El Omari
- High Institute of Nursing Professions and Health Techniques of Tetouan, Tetouan, Morocco
| |
Collapse
|
7
|
Tura A, Herfs V, Maaßen T, Zuo H, Vardanyan S, Prasuhn M, Ranjbar M, Kakkassery V, Grisanti S. Quercetin Impairs the Growth of Uveal Melanoma Cells by Interfering with Glucose Uptake and Metabolism. Int J Mol Sci 2024; 25:4292. [PMID: 38673877 PMCID: PMC11049862 DOI: 10.3390/ijms25084292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Monosomy 3 in uveal melanoma (UM) increases the risk of lethal metastases, mainly in the liver, which serves as the major site for the storage of excessive glucose and the metabolization of the dietary flavonoid quercetin. Although primary UMs with monosomy 3 exhibit a higher potential for basal glucose uptake, it remains unknown as to whether glycolytic capacity is altered in such tumors. Herein, we initially analyzed the expression of n = 151 genes involved in glycolysis and its interconnected branch, the "pentose phosphate pathway (PPP)", in the UM cohort of The Cancer Genome Atlas Study and validated the differentially expressed genes in two independent cohorts. We also evaluated the effects of quercetin on the growth, survival, and glucose metabolism of the UM cell line 92.1. The rate-limiting glycolytic enzyme PFKP was overexpressed whereas the ZBTB20 gene (locus: 3q13.31) was downregulated in the patients with metastases in all cohorts. Quercetin was able to impair proliferation, viability, glucose uptake, glycolysis, ATP synthesis, and PPP rate-limiting enzyme activity while increasing oxidative stress. UMs with monosomy 3 display a stronger potential to utilize glucose for the generation of energy and biomass. Quercetin can prevent the growth of UM cells by interfering with glucose metabolism.
Collapse
Affiliation(s)
- Aysegül Tura
- Department of Ophthalmology, University of Lübeck, Ratzeburger Allee 160, 23562 Luebeck, Germany; (V.H.); (T.M.); (H.Z.); (S.V.); (M.P.); (V.K.); (S.G.)
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Liu L, Ma Z, Han Q, Meng W, Wang H, Guan X, Shi Q. Myricetin Oligomer Triggers Multi-Receptor Mediated Penetration and Autophagic Restoration of Blood-Brain Barrier for Ischemic Stroke Treatment. ACS NANO 2024; 18:9895-9916. [PMID: 38533773 DOI: 10.1021/acsnano.3c09532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Restoration of blood-brain barrier (BBB) dysfunction, which drives worse outcomes of ischemic stroke, is a potential target for therapeutic opportunities, whereas a sealed BBB blocks the therapeutics entrance into the brain, making the BBB protection strategy paradoxical. Post ischemic stroke, hypoxia/hypoglycemia provokes the up-regulation of transmembrane glucose transporters and iron transporters due to multiple metabolic disorders, especially in brain endothelial cells. Herein, we develop a myricetin oligomer-derived nanostructure doped with Ce to bypass the BBB which is cointermediated by glucose transporters and iron transporters such as glucose transporters 1 (GLUT1), sodium/glucose cotransporters 1 (SGLT1), and transferrin(Tf) reporter (TfR). Moreover, it exhibits BBB restoration capacity by regulating the expression of tight junctions (TJs) through the activation of protective autophagy. The myricetin oligomers scaffold not only acts as targeting moiety but is the prominent active entity that inherits all diverse pharmacological activities of myricetin. The suppression of oxidative damage, M1 microglia activation, and inflammatory factors makes it a multitasking nanoagent with a single component as the scaffold, targeting domain and curative components.
Collapse
Affiliation(s)
- Lei Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhifang Ma
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Qiaoyi Han
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Wei Meng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Haozheng Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Xinghua Guan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Qiang Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| |
Collapse
|
9
|
Łysiak GP, Szot I. The Possibility of Using Fruit-Bearing Plants of Temperate Climate in the Treatment and Prevention of Diabetes. Life (Basel) 2023; 13:1795. [PMID: 37763199 PMCID: PMC10532890 DOI: 10.3390/life13091795] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Diabetes mellitus is one of the most dangerous metabolic diseases. The incidence of this disease continues to increase and is often associated with severe complications. Plants and natural plant products with a healing effect have been successfully used in the treatment of many disease entities since the beginning of the history of herbalism and medicine. At present, great emphasis is placed on the biodiversity of crops and the replacement of the monoculture production system of popular temperate climate plants, such as apple, pear, plum, and vine, with alternative fruit species. Very promising fruit plants are Cornelian cherry (Cornus mas); mulberry (Morus alba); bird cherry (Prunus padus); sour cherry (Prunus cerasus); plants of the genus Amelanchier, Sorbus, and Crategus; medlar (Mespilus germanica); quince (Cydonia oblonga); plants of the genus Vaccinium; and wild roses. When promoting the cultivation of alternative fruit-bearing plants, it is worth emphasizing their beneficial effects on health. This systematic review indicates that the antidiabetic effect of various parts of fruit plants is attributed to the presence of polyphenols, especially anthocyanins, which have different mechanisms of antidiabetic action and can be used in the treatment of diabetes and various complications associated with this disease.
Collapse
Affiliation(s)
- Grzegorz P. Łysiak
- Department of Ornamental Plants, Dendrology and Pomology, Faculty of Horticulture and Landscape Architecture, University of Life Sciences, Dąbrowskiego 159, 60-594 Poznań, Poland;
| | - Iwona Szot
- Subdepartment of Pomology, Nursery and Enology, Institute of Horticulture Production, Faculty of Horticulture and Landscape Architecture, University of Life Sciences in Lublin, Głęboka 28, 20-612 Lublin, Poland
| |
Collapse
|
10
|
Venturini G, Alvim JM, Padilha K, Toepfer CN, Gorham JM, Wasson LK, Biagi D, Schenkman S, Carvalho VM, Salgueiro JS, Cardozo KHM, Krieger JE, Pereira AC, Seidman JG, Seidman CE. Cardiomyocyte infection by Trypanosoma cruzi promotes innate immune response and glycolysis activation. Front Cell Infect Microbiol 2023; 13:1098457. [PMID: 36814444 PMCID: PMC9940271 DOI: 10.3389/fcimb.2023.1098457] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/16/2023] [Indexed: 02/08/2023] Open
Abstract
Introduction Chagas cardiomyopathy, a disease caused by Trypanosoma cruzi (T. cruzi) infection, is a major contributor to heart failure in Latin America. There are significant gaps in our understanding of the mechanism for infection of human cardiomyocytes, the pathways activated during the acute phase of the disease, and the molecular changes that lead to the progression of cardiomyopathy. Methods To investigate the effects of T. cruzi on human cardiomyocytes during infection, we infected induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM) with the parasite and analyzed cellular, molecular, and metabolic responses at 3 hours, 24 hours, and 48 hours post infection (hpi) using transcriptomics (RNAseq), proteomics (LC-MS), and metabolomics (GC-MS and Seahorse) analyses. Results Analyses of multiomic data revealed that cardiomyocyte infection caused a rapid increase in genes and proteins related to activation innate and adaptive immune systems and pathways, including alpha and gamma interferons, HIF-1α signaling, and glycolysis. These responses resemble prototypic responses observed in pathogen-activated immune cells. Infection also caused an activation of glycolysis that was dependent on HIF-1α signaling. Using gene editing and pharmacological inhibitors, we found that T. cruzi uptake was mediated in part by the glucose-facilitated transporter GLUT4 and that the attenuation of glycolysis, HIF-1α activation, or GLUT4 expression decreased T. cruzi infection. In contrast, pre-activation of pro-inflammatory immune responses with LPS resulted in increased infection rates. Conclusion These findings suggest that T. cruzi exploits a HIF-1α-dependent, cardiomyocyte-intrinsic stress-response activation of glycolysis to promote intracellular infection and replication. These chronic immuno-metabolic responses by cardiomyocytes promote dysfunction, cell death, and the emergence of cardiomyopathy.
Collapse
Affiliation(s)
- Gabriela Venturini
- Department of Genetics, Harvard Medical School, Boston, MA, United States,Laboratory of Genetics and Molecular Cardiology, University of São Paulo Medical School, São Paulo, Brazil
| | - Juliana M. Alvim
- Laboratory of Genetics and Molecular Cardiology, University of São Paulo Medical School, São Paulo, Brazil
| | - Kallyandra Padilha
- Laboratory of Genetics and Molecular Cardiology, University of São Paulo Medical School, São Paulo, Brazil
| | - Christopher N. Toepfer
- Department of Genetics, Harvard Medical School, Boston, MA, United States,Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom,Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Joshua M. Gorham
- Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - Lauren K. Wasson
- Department of Genetics, Harvard Medical School, Boston, MA, United States
| | | | - Sergio Schenkman
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, São Paulo, Brazil
| | | | | | | | - Jose E. Krieger
- Laboratory of Genetics and Molecular Cardiology, University of São Paulo Medical School, São Paulo, Brazil
| | - Alexandre C. Pereira
- Department of Genetics, Harvard Medical School, Boston, MA, United States,Laboratory of Genetics and Molecular Cardiology, University of São Paulo Medical School, São Paulo, Brazil
| | | | - Christine E. Seidman
- Department of Genetics, Harvard Medical School, Boston, MA, United States,Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States,Howard Hughes Medical Institute, Chevy Chase, MD, United States,*Correspondence: Christine E. Seidman,
| |
Collapse
|
11
|
Vaccinium Species (Ericaceae): Phytochemistry and Biological Properties of Medicinal Plants. Molecules 2023; 28:molecules28041533. [PMID: 36838522 PMCID: PMC9966428 DOI: 10.3390/molecules28041533] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
The Vaccinium L. (Ericaceae) genus consists of a globally widespread and diverse genus of around 4250 species, of which the most valuable is the Vaccinioidae subfamily. The current review focuses on the distribution, history, bioactive compounds, and health-related effects of three species: cranberry, blueberry, and huckleberry. Several studies highlight that the consumption of Vaccinium spp. presents numerous beneficial health-related outcomes, including antioxidant, antimicrobial, anti-inflammatory, and protective effects against diabetes, obesity, cancer, neurodegenerative diseases and cardiovascular disorders. These plants' prevalence and commercial value have enhanced in the past several years; thus, the generated by-products have also increased. Consequently, the identified phenolic compounds found in the discarded leaves of these plants are also presented, and their impact on health and economic value is discussed. The main bioactive compounds identified in this genus belong to anthocyanins (cyanidin, malvidin, and delphinidin), flavonoids (quercetin, isoquercetin, and astragalin), phenolic acids (gallic, p-Coumaric, cinnamic, syringic, ferulic, and caffeic acids), and iridoids.
Collapse
|
12
|
Li F, Yang C, Zhang L, Li W. Synthesis of myricetin derivatives and evaluation of their hypoglycemic activities. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02992-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Jiawei Yanghe Decoction Regulates Bone-Lipid Balance through the BMP-SMAD Signaling Pathway to Promote Osteogenic Differentiation of Bone Mesenchymal Stem Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2885419. [PMID: 35769158 PMCID: PMC9236768 DOI: 10.1155/2022/2885419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/21/2022] [Indexed: 11/17/2022]
Abstract
Background The Jiawei Yanghe decoction (JWYHD) is a traditional Chinese medicine formula for the treatment of osteoporosis, but its therapeutic mechanism has not been fully elucidated, and the therapeutic target of the intervention disease needs to be further verified. The dysfunction of bone mesenchymal stem cells (BMSCs) is considered to be an important pathogenesis of postmenopausal osteoporosis (PMOP). The purpose of this study was to explore how JWYHD regulates BMSC differentiation through the BMP-SMAD signal pathway. Methods In the in vivo study, we used an ovariectomized PMOP rat (n = 36, 2-month-old, 200 ± 20 g) model and femur micro-CT analysis to study the effect of JWYHD on bone loss in rats. By immunofluorescence, the translocation expression of BMP2, a key protein in the pathway, was detected. Serum bone metabolism was detected by an enzyme-linked immunosorbent assay (ELISA). Alkaline phosphatase (ALP) activity was detected by alkaline phosphatase staining (ALPS), osteogenesis and matrix mineralization were detected by alizarin red staining (ARS), the adipogenic ability of BMSCs was detected by oil red staining (ORS), and CFU is used to detect the ability of cells to form colonies. The expression of related proteins was detected by western blotting. Results In vivo and in vitro, the OP phenotypes of SD rats induced by ovariectomy (OVX) included impaired bone mineral density and microstructure, abnormal bone metabolism, and impaired MSC differentiation potential. JWYHD treatment reversed this trend and restored the differentiation potential of MSCs. JWYHD medicated serum and direct intervention of drugs activated the BMP-SMAD signaling pathway, promoted the osteogenic differentiation of BMSCs, and inhibited their adipogenic differentiation. Conclusions Our data identified that JWYHD is an effective alternative drug for the treatment of PMOP that functions to stimulate the differentiation of BMSCs into osteoblasts in the BMP-SMAD signaling-dependent mechanism.
Collapse
|
14
|
Anghel SA, Badea RA, Chiritoiu G, Patriche DS, Alexandru PR, Pena F. Novel luciferase-based GLP-1 reporter assay reveals naturally-occurring secretagogues. Br J Pharmacol 2022; 179:4738-4753. [PMID: 35736785 DOI: 10.1111/bph.15896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 04/22/2022] [Accepted: 05/15/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND AND PURPOSE Glucagon-like peptide 1 (GLP-1) is a hormone derived from preproglucagon. It is secreted by enteroendocrine cells in response to feeding, and, in turn, acts as a critical regulator of insulin release. Modulating GLP-1 secretion thus holds promise as a strategy for controlling blood glucose levels. EXPERIMENTAL APPROACH To dissect GLP-1 regulation and to discover specific secretagogues, we engineered a reporter cell line introducing a luciferase within proglucagon sequence in GLUTag cells. The assay was validated using western blotting and ELISA. A focused natural compounds library was screened. We measured luminescence, glucose uptake and ATP to investigate the mechanism by which newly found secretagogues potentiate GLP-1 secretion. KEY RESULTS The newly created reporter cell line is ideal for the rapid, sensitive and quantitative assessment of GLP-1 secretion. The small molecule screen identified non-toxic GLP-1 modulators. Quercetin is the most potent newly found GLP-1 secretagogue, while other flavonoids also potentiate GLP-1 secretion. Quercetin requires glucose and extracellular calcium to act as GLP-1 secretagogue. Our results support a mechanism whereby flavonoids cause GLUTag cells to utilize glucose more efficiently, leading to elevated ATP levels, followed by KATP channel blockade and GLP-1 exocytosis. CONCLUSION AND IMPLICATIONS Our methodology enables finding of new GLP-1 secretagogues. Quercetin is a potent, naturally occuring GLP-1 secretagogue. Mechanistic studies of newly found secretagogues are possible in newly created reporter cell line. Further validation in more physiological systems, such as primary L-cells or whole organisms is needed. GLP-1 secretagogues might serve as leads for developing alternative glucose-lowering therapies.
Collapse
Affiliation(s)
- Sorina Andreea Anghel
- Department of Molecular Cell Biology, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Rodica Aura Badea
- Department of Enzymology, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Gabriela Chiritoiu
- Department of Molecular Cell Biology, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - David Sebastian Patriche
- Department of Viral Glycoproteins, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Petruta Ramona Alexandru
- Department of Molecular Cell Biology, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Florentina Pena
- Department of Molecular Cell Biology, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| |
Collapse
|
15
|
Wang K, Deng Y, Zhang J, Cheng B, Huang Y, Meng Y, Zhong K, Xiong G, Guo J, Liu Y, Lu H. Toxicity of thioacetamide and protective effects of quercetin in zebrafish (Danio rerio) larvae. ENVIRONMENTAL TOXICOLOGY 2021; 36:2062-2072. [PMID: 34227734 DOI: 10.1002/tox.23323] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/17/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
Quercetin is a flavonoid compound with a variety of biological properties that is widely distributed throughout the plant kingdom. Studies have found that quercetin has anti-inflammatory, antioxidant, and liver-protective effects, while thioacetamide (TAA) can cause inflammation and liver damage in zebrafish larvae. The purpose of this study was to evaluate whether quercetin can prevent TAA-induced inflammation and liver damage in zebrafish larvae and to investigate the molecular mechanisms involved. Zebrafish Tg transgenic lines were used as the experimental animals. Behavioral, oxidative stress level, proliferative antigen chromogenic antibody, and western blot analyses were carried out on zebrafish larvae in the control group and groups treated with TAA and 12 μM quercetin. The results indicated that quercetin promoted the development of zebrafish larvae damaged by TAA, exhibited antioxidant and anti-inflammatory properties, and promoted cell proliferation. Quercetin reduced the expression of p53 protein in zebrafish larvae injured by TAA, resulting in decreased levels of Bax and increased levels of Bcl-2. The findings suggested quercetin has antiapoptotic action. Quercetin reduced the expression of DKK1 and DKK2 genes related to the Wnt signaling pathway in zebrafish larvae damaged by TAA and increased the expression of Lef1 and wnt2bb. Quercetin may regulate the development of zebrafish larvae damaged by TAA through the Wnt signaling pathway. This study provides the scientific basis for the development and utilization of quercetin and the development of new related drugs.
Collapse
Affiliation(s)
- Kexin Wang
- College of life sciences, Jiangxi Normal university, Nanchang, Jiangxi, China
| | - Yunyun Deng
- College of life sciences, Jiangxi Normal university, Nanchang, Jiangxi, China
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China
- Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China
| | - June Zhang
- College of life sciences, Jiangxi Normal university, Nanchang, Jiangxi, China
| | - Bo Cheng
- Center for drug screening and research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi, China
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China
- Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China
| | - Yong Huang
- Center for drug screening and research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi, China
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China
- Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China
| | - Yunlong Meng
- Center for drug screening and research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi, China
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China
- Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China
| | - Keyuan Zhong
- Center for drug screening and research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Guanghua Xiong
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China
- Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China
| | - Jing Guo
- College of life sciences, Jiangxi Normal university, Nanchang, Jiangxi, China
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China
- Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China
| | - Yi Liu
- College of life sciences, Jiangxi Normal university, Nanchang, Jiangxi, China
| | - Huiqiang Lu
- Center for drug screening and research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi, China
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China
- Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, Jiangxi, China
| |
Collapse
|
16
|
Zhou JF, Wang WJ, Yin ZP, Zheng GD, Chen JG, Li JE, Chen LL, Zhang QF. Quercetin is a promising pancreatic lipase inhibitor in reducing fat absorption in vivo. FOOD BIOSCI 2021; 43:101248. [DOI: 10.1016/j.fbio.2021.101248] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Moroccan antidiabetic medicinal plants: Ethnobotanical studies, phytochemical bioactive compounds, preclinical investigations, toxicological validations and clinical evidences; challenges, guidance and perspectives for future management of diabetes worldwide. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
Mahmud S, Biswas S, Paul GK, Mita MA, Promi MM, Afrose S, Hasan MR, Zaman S, Uddin MS, Dhama K, Emran TB, Saleh MA, Simal-Gandara J. Plant-Based Phytochemical Screening by Targeting Main Protease of SARS-CoV-2 to Design Effective Potent Inhibitors. BIOLOGY 2021; 10:589. [PMID: 34206970 PMCID: PMC8301192 DOI: 10.3390/biology10070589] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023]
Abstract
Currently, a worldwide pandemic has been declared in response to the spread of coronavirus disease 2019 (COVID-19), a fatal and fast-spreading viral infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The low availability of efficient vaccines and treatment options has resulted in a high mortality rate, bringing the world economy to its knees. Thus, mechanistic investigations of drugs capable of counteracting this disease are in high demand. The main protease (Mpro) expressed by SARS-CoV-2 has been targeted for the development of potential drug candidates due to the crucial role played by Mpro in viral replication and transcription. We generated a phytochemical library containing 1672 phytochemicals derived from 56 plants, which have been reported as having antiviral, antibacterial, and antifungal activity. A molecular docking program was used to screen the top three candidate compounds: epicatechin-3-O-gallate, psi-taraxasterol, and catechin gallate, which had respective binding affinities of -8.4, -8.5, and -8.8 kcal/mol. Several active sites in the targeted protein, including Cys145, His41, Met49, Glu66, and Met165, were found to interact with the top three candidate compounds. The multiple simulation profile, root-mean-square deviation, root-mean-square fluctuation, radius of gyration, and solvent-accessible surface area values supported the inflexible nature of the docked protein-compound complexes. The toxicity and carcinogenicity profiles were assessed, which showed that epicatechin-3-O-gallate, psi-taraxasterol, and catechin gallate had favorable pharmacological properties with no adverse effects. These findings suggest that these compounds could be developed as part of an effective drug development pathway to treat COVID-19.
Collapse
Affiliation(s)
- Shafi Mahmud
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.M.); (G.K.P.); (S.Z.); (M.S.U.)
| | - Suvro Biswas
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (M.A.M.); (M.M.P.); (S.A.); (M.R.H.)
| | - Gobindo Kumar Paul
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.M.); (G.K.P.); (S.Z.); (M.S.U.)
| | - Mohasana Akter Mita
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (M.A.M.); (M.M.P.); (S.A.); (M.R.H.)
| | - Maria Meha Promi
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (M.A.M.); (M.M.P.); (S.A.); (M.R.H.)
| | - Shamima Afrose
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (M.A.M.); (M.M.P.); (S.A.); (M.R.H.)
| | - Md. Robiul Hasan
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.B.); (M.A.M.); (M.M.P.); (S.A.); (M.R.H.)
| | - Shahriar Zaman
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.M.); (G.K.P.); (S.Z.); (M.S.U.)
| | - Md. Salah Uddin
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.M.); (G.K.P.); (S.Z.); (M.S.U.)
| | - Kuldeep Dhama
- Division of Pathology, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India;
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Md. Abu Saleh
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (S.M.); (G.K.P.); (S.Z.); (M.S.U.)
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo–Ourense Campus, E32004 Ourense, Spain
| |
Collapse
|
19
|
Ouassou H, Bouhrim M, Kharchoufa L, Imtara H, Daoudi NE, Benoutman A, Bencheikh N, Ouahhoud S, Elbouzidi A, Bnouham M. Caralluma europaea (Guss) N.E.Br.: A review on ethnomedicinal uses, phytochemistry, pharmacological activities, and toxicology. JOURNAL OF ETHNOPHARMACOLOGY 2021; 273:113769. [PMID: 33412248 DOI: 10.1016/j.jep.2020.113769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/10/2020] [Accepted: 12/27/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Caralluma europaea (Guss) N.E.Br. (Apocynaceae), is a medicinal plant distributed in Morocco, Algeria, Tunisia, Libya, Egypt, Jordan, Spain, and Italy. The different parts of the plant are used traditionally to treat various diseases such as diabetes mellitus, flu, caught, kidney stones, cysts, respiratory infection, cancer, digestives disorders, urogenital infections, metabolic disorders, and cardiovascular problems. AIM OF THE REVIEW In this review, previous reports on C. europaea concerning its morphological description, geographical distribution, ethnomedicinal uses, phytochemistry, pharmacological properties, and toxicological studies were critically summarized. MATERIALS AND METHODS A systematic review of the literature on C. europaea was performed by searching the scientific databases Science Direct, PubMed, Scopus, and Google Scholar. RESULTS In traditional medicine, C. europaea used to treat several illnesses including diabetes, cancer, and kidney stones. Our analysis of the previous reports confirmed the scientific evidence of C. europaea ethnomedicinal uses, especially the antidiabetic activity. However, there was no clear correlation between previous pharmacological reports on C. europaea and its other ethnomedicinal uses in the treatment of kidney stones, flu, caught, metabolic, digestive, cardiovascular and respiratory disorders. The essential oils and extracts of C. europaea exhibited several in vitro and in vivo pharmacological properties such as antidiabetic, antioxidant, anti-inflammatory, analgesic, anti-proliferative, antibacterial, antimicrobial, toxicological, and immunomodulatory effects. Phytochemical characterization of C. europaea revealed the presence of several classes of secondary metabolites such as terpenoids, polyphenols, and flavonoids compounds. Finally, the food preservative ability of the extracts and essential oil obtained from C. europaea has been fully discussed. CONCLUSION Ethnomedicinal surveys indicated the use of C. europaea for the treatment of numerous diseases. Pharmacological reports showed that C. europaea exhibited significant antidiabetic, antioxidant, anti-inflammatory, analgesic, anti-proliferative, antibacterial, antimicrobial, and immunomodulatory effects. Further studies on the phytochemistry of bioactive compounds should be performed by using bioactivity-guided isolation strategy and improve their biological potency as well as scientific exploitation of traditional uses. An in-depth investigation is needed to valid the food preservative properties.
Collapse
Affiliation(s)
- Hayat Ouassou
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Mohammed First University, Faculty of Sciences, Oujda, Morocco.
| | - Mohamed Bouhrim
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Mohammed First University, Faculty of Sciences, Oujda, Morocco.
| | - Loubna Kharchoufa
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Mohammed First University, Faculty of Sciences, Oujda, Morocco.
| | - Hamada Imtara
- Faculty of Arts and Sciences, Arab American University Palestine, P. O. Box 240, Jenin, Palestine.
| | - Nour Elhouda Daoudi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Mohammed First University, Faculty of Sciences, Oujda, Morocco.
| | - Amina Benoutman
- Laboratory of Biology, Environment, and Sustainable Development, Higher Normal School, Abdelmalek Essaadi University, Tetouan, Morocco.
| | - Noureddine Bencheikh
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Mohammed First University, Faculty of Sciences, Oujda, Morocco.
| | - Saber Ouahhoud
- Laboratory of Biochemistry and Biotechnology, Department of Biology, Mohammed First University, Faculty of Sciences, Oujda, Morocco.
| | - Amine Elbouzidi
- Faculty of Sciences, Mohamed First University, Boulevard Mohamed VI BP 717, Oujda, 60000, Morocco.
| | - Mohamed Bnouham
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Mohammed First University, Faculty of Sciences, Oujda, Morocco.
| |
Collapse
|
20
|
Rosenzweig T, Sampson SR. Activation of Insulin Signaling by Botanical Products. Int J Mol Sci 2021; 22:ijms22084193. [PMID: 33919569 PMCID: PMC8073144 DOI: 10.3390/ijms22084193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/19/2022] Open
Abstract
Type 2 diabetes (T2D) is a worldwide health problem, ranked as one of the leading causes for severe morbidity and premature mortality in modern society. Management of blood glucose is of major importance in order to limit the severe outcomes of the disease. However, despite the impressive success in the development of new antidiabetic drugs, almost no progress has been achieved with regard to the development of novel insulin-sensitizing agents. As insulin resistance is the most eminent factor in the patho-etiology of T2D, it is not surprising that an alarming number of patients still fail to meet glycemic goals. Owing to its wealth of chemical structures, the plant kingdom is considered as an inventory of compounds exerting various bioactivities, which might be used as a basis for the development of novel medications for various pathologies. Antidiabetic activity is found in over 400 plant species, and is attributable to varying mechanisms of action. Nevertheless, relatively limited evidence exists regarding phytochemicals directly activating insulin signaling, which is the focus of this review. Here, we will list plants and phytochemicals that have been found to improve insulin sensitivity by activation of the insulin signaling cascade, and will describe the active constituents and their mechanism of action.
Collapse
Affiliation(s)
- Tovit Rosenzweig
- Departments of Molecular Biology and Nutritional Studies, Ariel University, Ariel 4077625, Israel
- Correspondence:
| | - Sanford R. Sampson
- Department of Molecular Cell Biology, Rehovot and Faculty of Life Sciences, Weizmann Institute of Science, Bar-Ilan University, Ramat-Gan 5290002, Israel;
| |
Collapse
|
21
|
Wang Y, Alkhalidy H, Liu D. The Emerging Role of Polyphenols in the Management of Type 2 Diabetes. Molecules 2021; 26:molecules26030703. [PMID: 33572808 PMCID: PMC7866283 DOI: 10.3390/molecules26030703] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Type 2 diabetes (T2D) is a fast-increasing health problem globally, and it results from insulin resistance and pancreatic β-cell dysfunction. The gastrointestinal (GI) tract is recognized as one of the major regulatory organs of glucose homeostasis that involves multiple gut hormones and microbiota. Notably, the incretin hormone glucagon-like peptide-1 (GLP-1) secreted from enteroendocrine L-cells plays a pivotal role in maintaining glucose homeostasis via eliciting pleiotropic effects, which are largely mediated via its receptor. Thus, targeting the GLP-1 signaling system is a highly attractive therapeutic strategy to treatment T2D. Polyphenols, the secondary metabolites from plants, have drawn considerable attention because of their numerous health benefits, including potential anti-diabetic effects. Although the major targets and locations for the polyphenolic compounds to exert the anti-diabetic action are still unclear, the first organ that is exposed to these compounds is the GI tract in which polyphenols could modulate enzymes and hormones. Indeed, emerging evidence has shown that polyphenols can stimulate GLP-1 secretion, indicating that these natural compounds might exert metabolic action at least partially mediated by GLP-1. This review provides an overview of nutritional regulation of GLP-1 secretion and summarizes recent studies on the roles of polyphenols in GLP-1 secretion and degradation as it relates to metabolic homeostasis. In addition, the effects of polyphenols on microbiota and microbial metabolites that could indirectly modulate GLP-1 secretion are also discussed.
Collapse
Affiliation(s)
- Yao Wang
- Department of Human Nutrition, Foods and Exercise, College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA 24060, USA;
| | - Hana Alkhalidy
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Dongmin Liu
- Department of Human Nutrition, Foods and Exercise, College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA 24060, USA;
- Correspondence: ; Tel.: +1-540-231-3402; Fax: +1-540-231-3916
| |
Collapse
|
22
|
Xie Y, Wang Y, Xiang W, Wang Q, Cao Y. Molecular Mechanisms of the Action of Myricetin in Cancer. Mini Rev Med Chem 2020; 20:123-133. [PMID: 31648635 DOI: 10.2174/1389557519666191018112756] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/31/2019] [Accepted: 09/26/2019] [Indexed: 02/07/2023]
Abstract
Natural compounds, such as paclitaxel and camptothecin, have great effects on the treatment of tumors. Such natural chemicals often achieve anti-tumor effects through a variety of mechanisms. Therefore, it is of great significance to conduct further studies on the anticancer mechanism of natural anticancer agents to lay a solid foundation for the development of new drugs. Myricetin, originally isolated from Myrica nagi, is a natural pigment of flavonoids that can inhibit the growth of cancer cells (such as liver cancer, rectal cancer, skin cancer and lung cancer, etc.). It can regulate many intracellular activities (such as anti-inflammatory and blood lipids regulation) and can even be bacteriostatic. The purpose of this paper is to outline the molecular pathways of the anticancer effects of myricetin, including the effect on cancer cell death, proliferation, angiogenesis, metastasis and cell signaling pathway.
Collapse
Affiliation(s)
- Yutao Xie
- Department of Pharmacy, Nanchong Center Hospital, The Second Clinical Medical College, North Sichuan Medical College (University), Nanchong, 637000, Sichuan, China
| | - Yunlong Wang
- Department of Pharmacy, Nanchong Center Hospital, The Second Clinical Medical College, North Sichuan Medical College (University), Nanchong, 637000, Sichuan, China
| | - Wei Xiang
- Department of Pharmacy, Nanchong Center Hospital, The Second Clinical Medical College, North Sichuan Medical College (University), Nanchong, 637000, Sichuan, China
| | - Qiaoying Wang
- Department of Cardiothoracic Surgery, Nanchong Center Hospital, The Second Clinical Medical College, North Sichuan Medical College (University), Nanchong, 637000, Sichuan, China
| | - Yajun Cao
- Department of Pharmacy, Nanchong Center Hospital, The Second Clinical Medical College, North Sichuan Medical College (University), Nanchong, 637000, Sichuan, China
| |
Collapse
|
23
|
Mirsafaei L, Reiner Ž, Shafabakhsh R, Asemi Z. Molecular and Biological Functions of Quercetin as a Natural Solution for Cardiovascular Disease Prevention and Treatment. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2020; 75:307-315. [PMID: 32588290 DOI: 10.1007/s11130-020-00832-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cardiovascular disease (CVD) is a worldwide health problem with growing up rates of mortality and morbidity. Many risk factors, including high blood pressure, cigarette smoking, diabetes, obesity, and dyslipidemia are responsible for CVD. CVD can be prevented by some simple and cost-effective steps such as smoking cessation, normalizing body weight, regular physical activity, and dietary changes, including decreasing saturated fats, increasing the intake of vegetables and fruits, and reducing sugar intake. In the last decades, growing up number of studies were performed to explain the possible function of non-nutrient substances from the diet which might prevent CVD. One of these natural compounds is quercetin which is widely present in vegetables, tea, fruits and wine. Many in vitro, in vivo and clinical studies have indicated the cardioprotective functions of quercetin. They can be explained by quercetin's reducing blood pressure, antioxidant potential and some other activities. This review evaluates the experimental and clinical studies that have studied the effect of quercetin in CVD and summarizes the molecular mechanisms of action as well as clinical effects of quercetin in CVD.
Collapse
Affiliation(s)
- Liaosadat Mirsafaei
- Department of Cardiology, Ramsar Campus, Mazandaran University of Medical Sciences, Sari, Iran
| | - Željko Reiner
- Department of Internal Medicine, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, IR, Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, IR, Iran.
| |
Collapse
|
24
|
Tauchen J, Huml L, Rimpelova S, Jurášek M. Flavonoids and Related Members of the Aromatic Polyketide Group in Human Health and Disease: Do They Really Work? Molecules 2020; 25:E3846. [PMID: 32847100 PMCID: PMC7504053 DOI: 10.3390/molecules25173846] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 02/07/2023] Open
Abstract
Some aromatic polyketides such as dietary flavonoids have gained reputation as miraculous molecules with preeminent beneficial effects on human health, for example, as antioxidants. However, there is little conclusive evidence that dietary flavonoids provide significant leads for developing more effective drugs, as the majority appears to be of negligible medicinal importance. Some aromatic polyketides of limited distribution have shown more interesting medicinal properties and additional research should be focused on them. Combretastatins, analogues of phenoxodiol, hepatoactive kavalactones, and silymarin are showing a considerable promise in the advanced phases of clinical trials for the treatment of various pathologies. If their limitations such as adverse side effects, poor water solubility, and oral inactivity are successfully eliminated, they might be prime candidates for the development of more effective and in some case safer drugs. This review highlights some of the newer compounds, where they are in the new drug pipeline and how researchers are searching for additional likely candidates.
Collapse
Affiliation(s)
- Jan Tauchen
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, Praha 6, 165 00 Praha, Czech Republic
| | - Lukáš Huml
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Technická 5, Prague 6, 166 28 Prague, Czech Republic; (L.H.); (M.J.)
| | - Silvie Rimpelova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 3, Prague 6, 166 28 Prague, Czech Republic;
| | - Michal Jurášek
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Technická 5, Prague 6, 166 28 Prague, Czech Republic; (L.H.); (M.J.)
| |
Collapse
|
25
|
Pan Y, Zhao X, Kim SH, Kang SA, Kim YG, Park KY. Anti-inflammatory effects of Beopje curly dock (Rumex crispus L.) in LPS-induced RAW 264.7 cells and its active compounds. J Food Biochem 2020; 44:e13291. [PMID: 32458452 DOI: 10.1111/jfbc.13291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/20/2020] [Accepted: 05/02/2020] [Indexed: 12/21/2022]
Abstract
Inflammation is a defense response of the body to stimuli. Curly dock (CD) is an herbal food with anti-inflammatory effects. Beopje is an herbal food processing method that reduces toxicity and enhances beneficial effects. This study investigated the effects of CD and Beopje curly dock (CD-B) extracts on lipopolysaccharide (LPS)-induced inflammatory damage in RAW 264.7 cells. Cell survival rate and nitrite concentration were determined using the MTT assay and Griess method, respectively. Enzyme-linked immunosorbent assay was used to detect the inflammatory cytokine levels. The mRNA and protein expression levels of inflammatory associated genes were detected by qPCR and Western blot, respectively. CD and CD-B extracts compositions were assessed by UPLC-Q-TOF MS analysis. Our results indicate that CD-B has a more significant inhibitory effect on the LPS-induced inflammatory response in RAW 264.7 cells than CD, suggesting that the Beopje process potentially enhances the anti-inflammatory effect of CD. PRACTICAL APPLICATIONS: Long-term inflammation can cause a variety of chronic diseases. Therefore, it is necessary to suppress the occurrence of body inflammation in time. This study preliminarily clarified the mechanism of herbal foods to alleviate inflammation by regulating the immune response, and further confirms that applying the Beopje process enhances the anti-inflammatory effect. This research can serve as a significant reference for future research, prevention and treatment of inflammation-related diseases, and the development of functional foods with anti-inflammatory activity. It also provides a theoretical basis for the further reasonable application of Beopje processing method.
Collapse
Affiliation(s)
- Yanni Pan
- Department of Food Science and Biotechnology, Cha University, Seongnam, South Korea.,Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| | - Seung-Hee Kim
- Department of Conversing Technology, Graduate School of Venture, Hoseo University, Seoul, South Korea
| | - Soon-Ah Kang
- Department of Conversing Technology, Graduate School of Venture, Hoseo University, Seoul, South Korea
| | | | - Kun-Young Park
- Department of Food Science and Biotechnology, Cha University, Seongnam, South Korea.,Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, China
| |
Collapse
|
26
|
Jia E, Yan Y, Zhou M, Li X, Jiang G, Liu W, Zhang D. Combined effects of dietary quercetin and resveratrol on growth performance, antioxidant capability and innate immunity of blunt snout bream (Megalobrama amblycephala). Anim Feed Sci Technol 2019. [DOI: 10.1016/j.anifeedsci.2019.114268] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
27
|
Chen H, Han Y, Jahan I, Wu S, Clark BC, Wiseman JS. Extracts of maca (Lepidium meyenii) root induce increased glucose uptake by inhibiting mitochondrial function in an adipocyte cell line. J Herb Med 2019. [DOI: 10.1016/j.hermed.2019.100282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
28
|
Lesjak M, K S Srai S. Role of Dietary Flavonoids in Iron Homeostasis. Pharmaceuticals (Basel) 2019; 12:E119. [PMID: 31398897 PMCID: PMC6789581 DOI: 10.3390/ph12030119] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/29/2019] [Accepted: 08/05/2019] [Indexed: 01/14/2023] Open
Abstract
Balancing systemic iron levels within narrow limits is critical for human health, as both iron deficiency and overload lead to serious disorders. There are no known physiologically controlled pathways to eliminate iron from the body and therefore iron homeostasis is maintained by modifying dietary iron absorption. Several dietary factors, such as flavonoids, are known to greatly affect iron absorption. Recent evidence suggests that flavonoids can affect iron status by regulating expression and activity of proteins involved the systemic regulation of iron metabolism and iron absorption. We provide an overview of the links between different dietary flavonoids and iron homeostasis together with the mechanism of flavonoids effect on iron metabolism. In addition, we also discuss the clinical relevance of state-of-the-art knowledge regarding therapeutic potential that flavonoids may have for conditions that are low in iron such as anaemia or iron overload diseases.
Collapse
Affiliation(s)
- Marija Lesjak
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia.
| | - Surjit K S Srai
- Research Department of Structural and Molecular Biology, Division of Biosciences, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
29
|
Ahn-Jarvis JH, Parihar A, Doseff AI. Dietary Flavonoids for Immunoregulation and Cancer: Food Design for Targeting Disease. Antioxidants (Basel) 2019; 8:E202. [PMID: 31261915 PMCID: PMC6680729 DOI: 10.3390/antiox8070202] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 12/13/2022] Open
Abstract
Flavonoids, one of the most abundant phytochemicals in a diet rich in fruits and vegetables, have been recognized as possessing anti-proliferative, antioxidant, anti-inflammatory, and estrogenic activities. Numerous cellular and animal-based studies show that flavonoids can function as antioxidants by preventing DNA damage and scavenging reactive oxygen radicals, inhibiting formation of DNA adducts, enhancing DNA repair, interfering with chemical damage by induction of Phase II enzymes, and modifying signaling pathways. Recent evidence also shows their ability to regulate the immune system. However, findings from clinical trials have been mixed with no clear consensus on dose, frequency, or type of flavonoids best suited to elicit many of the beneficial effects. Delivery of these bioactive compounds to their biological targets through "targeted designed" food processing strategies is critical to reach effective concentration in vivo. Thus, the identification of novel approaches that optimize flavonoid bioavailability is essential for their successful clinical application. In this review, we discuss the relevance of increasing flavonoid bioavailability, by agricultural engineering and "targeted food design" in the context of the immune system and cancer.
Collapse
Affiliation(s)
| | - Arti Parihar
- Department of Science, Bellingham Technical College, WA, 98225, USA
| | - Andrea I Doseff
- Department of Physiology and Department of Pharmacology & Toxicology, Michigan State University, MI, 48864, USA.
| |
Collapse
|
30
|
Chen PB, Kim JH, Young L, Clark JM, Park Y. Epigallocatechin gallate (EGCG) alters body fat and lean mass through sex-dependent metabolic mechanisms in Drosophila melanogaster. Int J Food Sci Nutr 2019; 70:959-969. [PMID: 31010351 DOI: 10.1080/09637486.2019.1602113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There is increasing interest in the potential role of epigallocatechin gallate (EGCG) in changing body composition to lower body fat with increased lean mass. In this study, we examined the sex-dependent effect of EGCG on body composition, locomotion, feeding behaviour, sugar levels, and transcription levels of key regulators in lipid, carbohydrate, and energy metabolisms in Drosophila melanogaster. EGCG had no effects on body weights in both females and males, but decreased fat accumulation in females compared to the control, accompanied by a reduction in food intake. EGCG treatments increased lean mass and locomotor activity, and downregulated transcription levels of brummer (bmm), adipokinetic hormone (akh), and Drosophila insulin-like peptide 2 (dilp2), and upregulated spargel (srl) in males. In addition, EGCG decreased sugar levels in both females and males. In conclusion, EGCG promotes lean phenotype in D. melanogaster via sex-specific metabolic regulations.
Collapse
Affiliation(s)
- Phoebe B Chen
- Department of Food Science, University of Massachusetts , Amherst , USA
| | - Ju Hyeon Kim
- Department of Veterinary and Animal Sciences, University of Massachusetts , Amherst , USA
| | - Lynnea Young
- Department of Food Science, University of Massachusetts , Amherst , USA
| | - John M Clark
- Department of Veterinary and Animal Sciences, University of Massachusetts , Amherst , USA
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts , Amherst , USA
| |
Collapse
|
31
|
Li W, Qu G, Choi SC, Cornaby C, Titov A, Kanda N, Teng X, Wang H, Morel L. Targeting T Cell Activation and Lupus Autoimmune Phenotypes by Inhibiting Glucose Transporters. Front Immunol 2019; 10:833. [PMID: 31057554 PMCID: PMC6478810 DOI: 10.3389/fimmu.2019.00833] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/29/2019] [Indexed: 12/20/2022] Open
Abstract
CD4+ T cells have numerous features of over-activated cellular metabolism in lupus patients and mouse models of the disease. This includes a higher glycolysis than in healthy controls. Glucose transporters play an essential role in glucose metabolism by controlling glucose import into the cell from the extracellular environment. We have previously shown that treatment of lupus-prone mice with 2-deoxy-D-glucose, which inhibits the first step of glycolysis was sufficient to prevent autoimmune activation. However, direct targeting of glucose transporters has never been tested in a mouse model of lupus. Here, we show that CG-5, a novel glucose transporter inhibitor, ameliorated autoimmune phenotypes in a spontaneous lupus-prone mouse model, B6.NZM2410.Sle1.Sle2.Sle3 (Triple-congenic, TC), and in a chronic graft- vs. host-disease (cGVHD) model of induced lupus. In vitro, CG-5 blocked glycolysis in CD4+ T cells, and limited the expansion of CD4+ T cells induced by alloreactive stimulation. CG-5 also modulated CD4+ T cell polarization by inhibiting Th1 and Th17 differentiation and promoting regulatory T (Treg) induction. Moreover, CG-5 treatment reduced lupus phenotypes including the expansion of germinal center B (GC B) cells, as well as the production of autoantibodies in both TC mice and cGVHD models. Finally, CG-5 blocked glycolysis in human T cells. Overall, our data suggest that blocking glucose uptake with a small molecule inhibitor ameliorates autoimmune activation, at least partially due to its inhibition of glycolysis in CD4+ T cells.
Collapse
Affiliation(s)
- Wei Li
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Ganlin Qu
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Seung-Chul Choi
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Caleb Cornaby
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Anton Titov
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Natalie Kanda
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Xiangyu Teng
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Haiting Wang
- Department of Rheumatology, RenJi Hospital South, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Laurence Morel
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
32
|
Dludla PV, Nkambule BB, Jack B, Mkandla Z, Mutize T, Silvestri S, Orlando P, Tiano L, Louw J, Mazibuko-Mbeje SE. Inflammation and Oxidative Stress in an Obese State and the Protective Effects of Gallic Acid. Nutrients 2018; 11:nu11010023. [PMID: 30577684 PMCID: PMC6356415 DOI: 10.3390/nu11010023] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/08/2018] [Accepted: 11/17/2018] [Indexed: 12/12/2022] Open
Abstract
Metabolic complications in an obese state can be aggravated by an abnormal inflammatory response and enhanced production of reactive oxygen species. Pro-inflammatory response is known to be associated with the formation of toxic reactive oxygen species and subsequent generation of oxidative stress. Indeed, adipocytes from obese individuals display an altered adipokine profile, with upregulated expression and secretion of pro-inflammatory cytokines such as tumor necrosis factor alpha (TNF-α) and interleukin (IL-6). Interestingly, natural compounds, including phenolic enriched foods are increasingly explored for their ameliorative effects against various metabolic diseases. Of interest is gallic acid, a trihydroxybenzoic acid that has progressively demonstrated robust anti-obesity capabilities in various experimental models. In addition to reducing excessive lipid storage in obese subjects, gallic acid has been shown to specifically target the adipose tissue to suppress lipogenesis, improve insulin signaling, and concomitantly combat raised pro-inflammatory response and oxidative stress. This review will revise mechanisms involved in the pathophysiological effects of inflammation and oxidative stress in an obese state. To better inform on its therapeutic potential and improvement of human health, available evidence reporting on the anti-obesity properties of gallic acid and its derivatives will be discussed, with emphases on its modulatory effect on molecular mechanisms involved in insulin signaling, inflammation and oxidative stress.
Collapse
Affiliation(s)
- Phiwayinkosi V Dludla
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy.
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa.
| | - Bongani B Nkambule
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa.
| | - Babalwa Jack
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa.
| | - Zibusiso Mkandla
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa.
| | - Tinashe Mutize
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa.
| | - Sonia Silvestri
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy.
| | - Patrick Orlando
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy.
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy.
| | - Johan Louw
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa.
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa.
| | - Sithandiwe E Mazibuko-Mbeje
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa.
- Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa.
| |
Collapse
|
33
|
Ahmed QU, Sarian MN, Mat So'ad SZ, Latip J, Arief Ichwan SJ, Hussein NN, Taher M, Alhassan AM, Hamidon H, Fakurazi S. Methylation and Acetylation Enhanced the Antidiabetic Activity of Some Selected Flavonoids: In Vitro, Molecular Modelling and Structure Activity Relationship-Based Study. Biomolecules 2018; 8:E149. [PMID: 30445784 PMCID: PMC6316872 DOI: 10.3390/biom8040149] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 11/09/2018] [Indexed: 12/14/2022] Open
Abstract
Flavonoids have been reported to exert antihyperglycemic effects and have potential to enhance the current therapy options against type 2 diabetes mellitus. However, the structure activity relationships (SAR) studies of flavonoids against this disease have not been thoroughly comprehended. Hence, in the present study, 14 structurally related flavonoids viz. wogonin, techtochrysin, norwogonin, isoscutellarein, hypolaetin, kaempferol, quercetin, methyl ether of wogonin, acetate of wogonin, acetate of norwogonin, 8-hydroxy-7-methoxyflavone, chrysin, (+)-catechin and (-)-epicatechin were taken into account for in vitro antidiabetic evaluation. Cell viability of RIN-5F pancreatic cells and 3T3-L1 pre-adipocyte cells was initially tested, then an insulin secretion assay of RIN-5F as well as adipogenesis and glucose uptake measurements of adipocyte were investigated. Subsequently, protein expressions study through adipokines measurement (leptin, adiponectin, TNF-α, RBP-4) via enzyme-linked immunosorbent assay (ELISA) kit, Western blotting analysis against GLUT4 and C/EBP-α as well as molecular docking against GLUT1 were analyzed. The results from cell culture antidiabetic assays (insulin secretion, adipogenesis, and glucose uptake), protein expressions and molecular docking pointed that the methoxy group at position C-8 is responsible for antidiabetic property of selected flavonoids via glucose uptake mechanism indicated by up regulation of GLUT4 and C/EBP-α expressions. The mechanism could be enhanced by the addition of an acetate group at C-5 and C-7 of the flavone skeleton.
Collapse
Affiliation(s)
- Qamar Uddin Ahmed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang DM, Malaysia.
| | - Murni Nazira Sarian
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang DM, Malaysia.
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Siti Zaiton Mat So'ad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang DM, Malaysia.
| | - Jalifah Latip
- School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia.
| | | | - Nurlaili Najmie Hussein
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang DM, Malaysia.
| | - Muhammad Taher
- Department of Pharmaceutical Technology, Faculty of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang DM, Malaysia.
| | - Alhassan Muhammad Alhassan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang DM, Malaysia.
| | - Hanisuhana Hamidon
- Department of Pharmaceutical Technology, Faculty of Pharmacy, International Islamic University Malaysia, Kuantan 25200, Pahang DM, Malaysia.
| | - Sharida Fakurazi
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| |
Collapse
|
34
|
Ojelabi OA, Lloyd KP, De Zutter JK, Carruthers A. Red wine and green tea flavonoids are cis-allosteric activators and competitive inhibitors of glucose transporter 1 (GLUT1)-mediated sugar uptake. J Biol Chem 2018; 293:19823-19834. [PMID: 30361436 DOI: 10.1074/jbc.ra118.002326] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 10/19/2018] [Indexed: 12/11/2022] Open
Abstract
The antioxidant- and flavonoid-rich contents of red wine and green tea are reported to offer protection against cancer, cardiovascular disease, and diabetes. Some studies, however, show that flavonoids inhibit GLUT1-mediated, facilitative glucose transport, raising the possibility that their interaction with GLUT1 and subsequent downstream effects on carbohydrate metabolism may also impact health. The present study explores the structure-function relationships of flavonoid-GLUT1 interactions. We find that low concentrations of flavonoids act as cis-allosteric activators of sugar uptake, whereas higher concentrations competitively inhibit sugar uptake and noncompetitively inhibit sugar exit. Studies with heterologously expressed human GLUT1, -3, or -4 reveal that quercetin-GLUT1 and -GLUT4 interactions are stronger than quercetin-GLUT3 interactions, that epicatechin gallate (ECG) is more selective for GLUT1, and that epigallocatechin gallate (EGCG) is less GLUT isoform-selective. Docking studies suggest that only one flavonoid can bind to GLUT1 at any instant, but sugar transport and ligand-binding studies indicate that human erythrocyte GLUT1 can bind at least two flavonoid molecules simultaneously. Quercetin and EGCG are each characterized by positive, cooperative binding, whereas ECG shows negative cooperative binding. These findings support recent studies suggesting that GLUT1 forms an oligomeric complex of interacting, allosteric, alternating access transporters. We discuss how modulation of facilitative glucose transporters could contribute to the protective actions of the flavonoids against diabetes and Alzheimer's disease.
Collapse
Affiliation(s)
- Ogooluwa A Ojelabi
- From the Department of Biochemistry and Molecular Pharmacology, Graduate School of Biomedical Sciences, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Kenneth P Lloyd
- From the Department of Biochemistry and Molecular Pharmacology, Graduate School of Biomedical Sciences, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Julie K De Zutter
- From the Department of Biochemistry and Molecular Pharmacology, Graduate School of Biomedical Sciences, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Anthony Carruthers
- From the Department of Biochemistry and Molecular Pharmacology, Graduate School of Biomedical Sciences, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| |
Collapse
|
35
|
Csepregi R, Temesfői V, Sali N, Poór M, W Needs P, A Kroon P, Kőszegi T. A One-Step Extraction and Luminescence Assay for Quantifying Glucose and ATP Levels in Cultured HepG2 Cells. Int J Mol Sci 2018; 19:E2670. [PMID: 30205572 PMCID: PMC6163413 DOI: 10.3390/ijms19092670] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 08/31/2018] [Accepted: 08/31/2018] [Indexed: 12/25/2022] Open
Abstract
A fluorescence-based enzymatic microplate intracellular glucose assay was designed and fully validated. The method was tested in a hepatocellular cancer cell line (HepG2). Our novel one-step extraction reagent gave stable cell lysates for glucose, adenosine triphosphate (ATP), and total protein determination from the same sample. Limit of detection for glucose was 0.13 µM (26 pmol/well), which is superior to commercially available glucose assays. Both intra- and interday assay imprecision in HepG2 cultures were less than 12% coefficient of variance (CV). In cell lysates spiked with glucose, recovery at two levels varied between 83.70% and 91.81%, and both linearity and stability were acceptable. HepG2 cells treated with agents affecting glucose uptake/metabolism (phloretin, quercetin, quercetin-3'-sulfate, NaF, 3-bromopyruvate, NaN₃, oligomycin A, ochratoxin A, cytochalasin B, and anti-GLUT1 antibody) showed dose-dependent changes in glucose and ATP levels without total protein (cell) loss. Finally, we performed flow cytometric glucose uptake measurement in the treated cells using 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxyglucose fluorescent glucose analog. Glucose uptake did not always mirror the intracellular glucose levels, which most likely reflects the differences between the two methodologies. However, interpreting data obtained by both methods and taking ATP/protein levels at the same time, one can get information on the mode of action of the compounds.
Collapse
Affiliation(s)
- Rita Csepregi
- Department of Laboratory Medicine, Medical School, University of Pécs, Ifjúság u. 13, H-7624 Pécs, Hungary.
- János Szentágothai Research Center, Ifjúság u. 20, H-7624 Pécs, Hungary.
| | - Viktória Temesfői
- Department of Laboratory Medicine, Medical School, University of Pécs, Ifjúság u. 13, H-7624 Pécs, Hungary.
- János Szentágothai Research Center, Ifjúság u. 20, H-7624 Pécs, Hungary.
| | - Nikolett Sali
- Department of Laboratory Medicine, Medical School, University of Pécs, Ifjúság u. 13, H-7624 Pécs, Hungary.
| | - Miklós Poór
- János Szentágothai Research Center, Ifjúság u. 20, H-7624 Pécs, Hungary.
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Szigeti u. 12, H-7624 Pécs, Hungary.
| | - Paul W Needs
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UA, UK.
| | - Paul A Kroon
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UA, UK.
| | - Tamás Kőszegi
- Department of Laboratory Medicine, Medical School, University of Pécs, Ifjúság u. 13, H-7624 Pécs, Hungary.
- János Szentágothai Research Center, Ifjúság u. 20, H-7624 Pécs, Hungary.
| |
Collapse
|
36
|
Flavonoids, Potential Bioactive Compounds, and Non-Shivering Thermogenesis. Nutrients 2018; 10:nu10091168. [PMID: 30149637 PMCID: PMC6164844 DOI: 10.3390/nu10091168] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/15/2018] [Accepted: 08/18/2018] [Indexed: 12/17/2022] Open
Abstract
Obesity results from the body having either high energy intake or low energy expenditure. Based on this energy equation, scientists have focused on increasing energy expenditure to prevent abnormal fat accumulation. Activating the human thermogenic system that regulates body temperature, particularly non-shivering thermogenesis in either brown or white adipose tissue, has been suggested as a promising solution to increase energy expenditure. Together with the increasing interest in understanding the mechanism by which plant-derived dietary compounds prevent obesity, flavonoids were recently shown to have the potential to regulate non-shivering thermogenesis. In this article, we review the latest research on flavonoid derivatives that increase energy expenditure through non-shivering thermogenesis.
Collapse
|
37
|
Li ZP, Liu HB, Zhang QW, Li LF, Bao WR, Ma DL, Leung CH, Bian ZX, Lu AP, Han QB. Interference of Quercetin on Astragalus Polysaccharide-Induced Macrophage Activation. Molecules 2018; 23:E1563. [PMID: 29958399 PMCID: PMC6100010 DOI: 10.3390/molecules23071563] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/22/2018] [Accepted: 06/26/2018] [Indexed: 01/24/2023] Open
Abstract
Polysaccharides, which exert immunoregulatory effects, are becoming more and more popular as food supplements; however, certain components of ordinary foods could be reducing the polysaccharides beneficial effects. Quercetin, a flavonoid found in common fruits and vegetables, is one such component. This study investigated the effects of quercetin on Astragalus polysaccharide RAP induced-macrophage activation. The results show quercetin decreases the NO production and iNOS gene expression in RAW264.7 cells, and it inhibits the production of cytokines in RAW264.7 cells and peritoneal macrophages. Western blot analysis results suggest that quercetin inhibits the phosphorylation of Akt/mTORC1, MAPKs, and TBK1, but has no effect on NF-κB in RAP-induced RAW264.7 cells. Taken together, the results show that quercetin partly inhibits macrophage activation by the Astragalus polysaccharide RAP. This study demonstrates that quercetin-containing foods may interfere with the immune-enhancing effects of Astragalus polysaccharide RAP to a certain extent.
Collapse
Affiliation(s)
- Zhi-Peng Li
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Hong-Bing Liu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Quan-Wei Zhang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Li-Feng Li
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Wan-Rong Bao
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Zhao-Xiang Bian
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Ai-Ping Lu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Quan-Bin Han
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
38
|
Fan XX, Pan HD, Li Y, Guo RJ, Leung ELH, Liu L. Novel therapeutic strategy for cancer and autoimmune conditions: Modulating cell metabolism and redox capacity. Pharmacol Ther 2018; 191:148-161. [PMID: 29953901 DOI: 10.1016/j.pharmthera.2018.06.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dysregulation of cell metabolism and redox balance is implicated in the pathogenesis and progression of cancer and autoimmune diseases. Because the cell proliferation and apoptotic regulatory pathways are interconnected with metabolic and redox signalling pathways, the current mono-target treatment is ineffective, and multi-drug resistance remains common. Complex diseases are often implicated in a network-based context of pathology; therefore, a new holistic intervention approach is required to block multi-crosstalk in such complicated circumstances. The use of therapeutic agents isolated from herbs to holistically modulate metabolism and redox state has been shown to relieve carcinoma growth and the inflammatory response in autoimmune disorders. Multiple clinically applied or novel herbal chemicals with metabolic and redox modulatory capacity as well as low toxicity have recently been identified. Moreover, new metabolic targets and mechanisms of drug action have been discovered, leading to the exploration of new pathways for drug repositioning, clinical biomarker spectra, clinical treatment strategies and drug development. Taken together with multiple supporting examples, the modulation of cell metabolism and the redox capacity using herbal chemicals is emerging as a new, alternative strategy for the holistic treatment of cancer and autoimmune disorders. In the future, the development of new diagnostic tools based on the detection of metabolic and redox biomarkers, reformulation of optimized herbal compositions using artificial intelligence, and the combination of herbs with mono-targeting drugs will reveal new potential for clinical application.
Collapse
Affiliation(s)
- Xing-Xing Fan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, SAR, China
| | - Hu-Dan Pan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, SAR, China
| | - Ying Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, SAR, China
| | - Rui-Jin Guo
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, SAR, China
| | - Elaine Lai-Han Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, SAR, China; Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Hubei, China; Department of Thoracic Surgery, Guangzhou Institute of Respiratory Health and State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, SAR, China.
| |
Collapse
|
39
|
Quercetin inhibits glucose transport by binding to an exofacial site on GLUT1. Biochimie 2018; 151:107-114. [PMID: 29857184 DOI: 10.1016/j.biochi.2018.05.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 05/25/2018] [Indexed: 12/27/2022]
Abstract
Quercetin, a common dietary flavone, is a competitive inhibitor of glucose uptake and is also thought to be transported into cells by GLUT1. In this study, we confirm that quercetin is a competitive inhibitor of GLUT1 and also demonstrate that newly synthesized compounds, WZB-117 and BAY-876 are robust inhibitors of GLUT1 in L929 cells. To measure quercetin interaction with L929 cells, we develop a new fluorescent assay using flow cytometry. The binding of quercetin and its inhibitory effects on 2-deoxyglucose (2DG) uptake showed nearly identical dose dependent effects, with both having maximum effects between 50 and 100 μM and similar half maximum effects at 8.9 and 8.5 μM respectively. The interaction of quercetin was rapid with t1/2 of 54 s and the onset and loss of its inhibitory effects on 2DG uptake were equally fast. This suggests that either quercetin is simply binding to surface GLUT1 or its transport in and out of the cell reaches equilibrium very quickly. If quercetin is transported, the co-incubation of quercetin with other glucose inhibitors should block quercetin uptake. However, we observed that WZB-117, an exofacial binding inhibitor of GLUT1 reduced quercetin interaction, while cytochalasin B, an endofacial binding inhibitor, enhanced quercetin interaction, and BAY-876 had no effect on quercetin interaction. Taken together, these data are more consistent with quercetin simply binding to GLUT1, but not actually being transported into L929 cells via the glucose channel in GLUT1.
Collapse
|
40
|
Semaan DG, Igoli JO, Young L, Gray AI, Rowan EG, Marrero E. In vitro anti-diabetic effect of flavonoids and pheophytins from Allophylus cominia Sw. on the glucose uptake assays by HepG2, L6, 3T3-L1 and fat accumulation in 3T3-L1 adipocytes. JOURNAL OF ETHNOPHARMACOLOGY 2018; 216:8-17. [PMID: 29339110 DOI: 10.1016/j.jep.2018.01.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/12/2017] [Accepted: 01/11/2018] [Indexed: 06/07/2023]
Abstract
BACKGROUND AND PURPOSE Based on ethno-botanical information collected from diabetic patients in Cuba and firstly reported inhibition of PTP1B and DPPIV enzymes activities, Allophylus cominia (A. cominia) was identified as possible source of new drugs that could be used for the treatment of type 2 diabetes mellitus (T2-DM). EXPERIMENTAL APPROACH in this study, the activity of the characterised extracts from A. cominia was tested on the glucose uptake using HepG2 and L6 cells, 3T3-L1 fibroblasts and adipocytes as well as their effect on the fat accumulation using 3T3-L1 adipocytes. KEY RESULTS on 2-NBDG glucose uptake assay using HepG2 and L6 cells, extracts from A. cominia enhanced insulin activity by increasing glucose uptake. On HepG2 cells Insulin EC50 of 93 ± 21nM decreased to 13 ± 2nM in the presence of the flavonoids mixture from A.cominia. In L6 cells, insulin also produced a concentration-dependent increase with an EC50 of 28.6 ± 0.7nM; EC50 decreased to 0.08 ± 0.02nM and 5 ± 0.9nM in the presence of 100μg/ml of flavonoids and pheophytins mixtures, respectively. In 3T3-L1 fibroblasts, insulin had an EC50 of >1000nM that decreased to 38 ± 4nM in the presence of the flavonoids extract. However, in adipocytes, insulin produced a significant concentration-dependent increase and an EC50 of 30 ± 8nM was a further confirmation of the insulin responsiveness of the adipocytes to the insulin. At 100µg/ml, flavonoids and pheophytins extracts decreased fat accumulation in 3T3-L1 adipocytes by two folds in comparison to the control differentiated cells (p < 0.05). The crude extract of A. cominia did not show any enhancement of 2-NBDG uptake by 3T3-L1 adipocytes in the presence or absence of 100nM insulin. In addition, in fully differentiated adipocytes, both extracts produced significant decrease in lipid droplets in the cells and no lipid accumulation were seen after withdrawal of the extracts from the cell growth medium. However, there was no effect of both extracts on total protein concentration in cells as well as on Glut-4 transporters. CONCLUSIONS AND IMPLICATIONS the pharmacological effects of the extracts from A. cominia observed in experimental diabetic models were shown in this study. A. cominia is potentially a new candidate for the treatment and management of T2-DM.
Collapse
Affiliation(s)
- D G Semaan
- Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, Scotland, United Kingdom.
| | - J O Igoli
- Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, Scotland, United Kingdom; Department of Chemistry, University of Agriculture, PMB 2373 Makurdi, Nigeria
| | - L Young
- Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, Scotland, United Kingdom
| | - A I Gray
- Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, Scotland, United Kingdom
| | - E G Rowan
- Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, Scotland, United Kingdom
| | - E Marrero
- National Centre for Animal and Plant Health (Centro Nacional de Sanidad Agropecuaria), San José de las Lajas, Mayabeque, Cuba
| |
Collapse
|
41
|
Gauer JS, Tumova S, Lippiat JD, Kerimi A, Williamson G. Differential patterns of inhibition of the sugar transporters GLUT2, GLUT5 and GLUT7 by flavonoids. Biochem Pharmacol 2018; 152:11-20. [PMID: 29548810 DOI: 10.1016/j.bcp.2018.03.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/09/2018] [Indexed: 11/16/2022]
Abstract
Only limited data are available on the inhibition of the sugar transporter GLUT5 by flavonoids or other classes of bioactives. Intestinal GLUT7 is poorly characterised and no information exists concerning its inhibition. We aimed to study the expression of GLUT7 in Caco-2/TC7 intestinal cells, and evaluate inhibition of glucose transport by GLUT2 and GLUT7, and of fructose transport by GLUT2, GLUT5 and GLUT7, by flavonoids. Differentiated Caco-2/TC7 cell monolayers were used to investigate GLUT7 expression, as well as biotinylation and immunofluorescence to assess GLUT7 location. For mechanistic sugar transport studies, X. laevis oocytes were injected with individual mRNA, and GLUT protein expression on oocyte membranes was confirmed. Oocytes were incubated with D-[14C(U)]-glucose or D-[14C(U)]-fructose in the presence of flavonoids, and uptake was estimated by liquid scintilation counting. In differentiated Caco-2/TC7 cell monolayers, GLUT7 was mostly expressed apically. When applied apically, or to both compartments, sorbitol, galactose, L-glucose or sucrose did not affect GLUT7 mRNA expression. Fructose applied to both sides increased GLUT7 mRNA (13%, p ≤ 0.001) and total GLUT7 protein (2.7-fold, p ≤ 0.05), while the ratio between apical, basolateral and total GLUT7 protein was unchanged. In the X. laevis oocyte model, GLUT2-mediated glucose and fructose transport were inhibited by quercetin, (-)-epigallocatechin gallate (EGCG) and apigenin, GLUT5-mediated fructose transport was inhibited by apigenin and EGCG, but not by quercetin, and GLUT7-mediated uptake of both glucose and fructose was inhibited by apigenin, but not by quercetin nor EGCG. Expression of GLUT7 was increased by fructose, but only when applied to Caco-2/TC7 cells both apically and basolaterally. Since GLUT2, GLUT5 and GLUT7 show different patterns of inhibition by the tested flavonoids, we suggest that they have the potential to be used as investigational tools to distinguish sugar transporter activity in different biological settings.
Collapse
Affiliation(s)
- Julia S Gauer
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Sarka Tumova
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Jonathan D Lippiat
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Asimina Kerimi
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Gary Williamson
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
42
|
Ting Y, Chang WT, Shiau DK, Chou PH, Wu MF, Hsu CL. Antiobesity Efficacy of Quercetin-Rich Supplement on Diet-Induced Obese Rats: Effects on Body Composition, Serum Lipid Profile, and Gene Expression. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:70-80. [PMID: 29249156 DOI: 10.1021/acs.jafc.7b03551] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The antiobesity effects of quercetin-rich supplement (QRS), which contain quercetin, lycopene, taurine, and litchi flower extract, on a high-fat diet (HFD)-induced obese rats were investigated. The rats that consume HFD with QRS (185 mg/kg rat) have significantly modulated the final body weights [490 ± 11 (HFD) → 441 ± 11 (HFD+QRS) g], total body fat [112.9 ± 4.5 (HFD) → 86.6 ± 5.7 (HFD+QRS) g], liver weights [14.8 ± 0.4 (HFD) → 12.6 ± 0.4 (HFD+QRS) g/rat], and the serum TG [102.5 ± 7.3 (HFD) → 90.7 ± 6.5 (HFD+QRS) mg/dL] to a level that resembled the regular diet-consumed rats (p < 0.05). The excretion of lipid in the faeces augmented in QRS groups as compared with the nonsupplemented HFD group [faecal total lipid: 62.43 ± 2.80 (HFD) → 73.15 ± 0.88 (HFD+QRS) mg/g dried faeces, p < 0.05]. In the histological analysis, quercetin-rich formulation supplemented groups presented a much less lipid accumulation and smaller size of adipocytes. Moreover, a decreased serum thiobarbituric acid reactive substances [1.55 ± 0.17 (HFD) → 0.78 ± 0.04 (HFD+QRS) nmol MDA eq/mL serum] increased levels of serum Trolox equivalent antioxidant capacity [3.89 ± 0.08 (HFD) → 6.46 ± 0.20 (HFD+QRS) μmol/mL serum], and more active hepatic antioxidant enzymes were observed in the supplemented groups (p < 0.05). The result of this work is a good demonstration of how a combination of bioactive compounds could work synergistically and become very effective in disease prevention.
Collapse
Affiliation(s)
- Yuwen Ting
- Graduate Institute of Food Science and Technology, National Taiwan University , Taipei, Taiwan
| | - Wei-Tang Chang
- Department of Nutrition, Chung Shan Medical University , Taichung, Taiwan
| | - Duen-Kai Shiau
- Department of Industrial Engineering and Systems Management, Feng Chia University , Taichung, Taiwan
- Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology , Taichung, Taiwan
| | - Pei-Hsuan Chou
- Department of Nutrition, Chung Shan Medical University , Taichung, Taiwan
| | - Mei-Fang Wu
- Department of Industrial Engineering and Systems Management, Feng Chia University , Taichung, Taiwan
| | - Chin-Lin Hsu
- Department of Nutrition, Chung Shan Medical University , Taichung, Taiwan
- Department of Nutrition, Chung Shan Medical University Hospital , Taichung, Taiwan
| |
Collapse
|
43
|
Ahmad M, Sultana M, Raina R, Pankaj NK, Verma PK, Prawez S. Hypoglycemic, Hypolipidemic, and Wound Healing Potential of Quercetin in Streptozotocin-Induced Diabetic Rats. Pharmacogn Mag 2017; 13:S633-S639. [PMID: 29142425 PMCID: PMC5669108 DOI: 10.4103/pm.pm_108_17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/13/2017] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Among the dietary polyphenolic, quercetin is the most common compound available in vegetables and fruits. The phytochemicals are used to treat diabetic wounds and diabetes, and specifically dietary polyphenols are being extensively studied for their anti-inflammatory and antioxidant abilities. OBJECTIVE The objective of the study was to assess the hypoglycemic, hypolipidemic, and wound healing potential of quercetin in streptozotocin (STZ)-induced diabetic Wistar rats. MATERIALS AND METHODS Induction of diabetes was done by intraperitoneally administration of STZ at the dose of 55 mg/kg in Wistar rats. An excision wound was created in diabetic rats that were treated with quercetin (100 mg/kg) orally and quercetin ointment topically to evaluate the antidiabetic and wound healing potential of quercetin. RESULTS Repeated oral administration of quercetin along with topical application of quercetin ointment in diabetic rats normalized the altered blood glucose, hydroxyproline, and glucosamine levels. Topical application of quercetin ointment alone on the excised wound was sufficient enough to heal the wound area in diabetic rats. CONCLUSIONS The result of the present study indicates that quercetin produces hypoglycemic effect in STZ-induced diabetic rats and normalized plasma lipids and protein profiles. Besides, this quercetin also has an excellent wound healing property when applied topically on the wound area in diabetic rats. SUMMARY Quercetin has hypoglycaemic and hypolipidemic potential in streptozotocin induced diabetes in wistar ratsDermal application along with oral administrations of quercetin has more effective in wound healing in diabetic animalsHistopathological studies of pancreas, skin and liver shows significant reduction in archaeological alterations on quercetin administrations in diabetic rats. Abbreviation used: STZ: Streptozotocin; CMC: Carboxy methyl cellulose; HDL: High density lipoproteins; LDL: low density lipoproteins.
Collapse
Affiliation(s)
- Mahrukh Ahmad
- Division of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Science and Animal Husbandry, Jammu, Jammu and Kashmir, India
| | - Mudasir Sultana
- Division of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Science and Animal Husbandry, Jammu, Jammu and Kashmir, India
| | - Rajinder Raina
- Division of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Science and Animal Husbandry, Jammu, Jammu and Kashmir, India
| | - Nrip Kishore Pankaj
- Division of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Science and Animal Husbandry, Jammu, Jammu and Kashmir, India
| | - Pawan Kumar Verma
- Division of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Science and Animal Husbandry, Jammu, Jammu and Kashmir, India
| | - Shahid Prawez
- Division of Veterinary Pharmacology and Toxicology, Banaras Hindu University, Banaras, Uttar Pradesh, India
| |
Collapse
|
44
|
Abstract
Facilitative carbohydrate transporters-Gluts-have received wide attention over decades due to their essential role in nutrient uptake and links with various metabolic disorders, including diabetes, obesity, and cancer. Endeavors directed towards understanding the mechanisms of Glut-mediated nutrient uptake have resulted in a multidisciplinary research field spanning protein chemistry, chemical biology, organic synthesis, crystallography, and biomolecular modeling. Gluts became attractive targets for cancer research and medicinal chemistry, leading to the development of new approaches to cancer diagnostics and providing avenues for cancer-targeting therapeutics. In this review, the current state of knowledge of the molecular interactions behind Glut-mediated sugar uptake, Glut-targeting probes, therapeutics, and inhibitors are discussed.
Collapse
Affiliation(s)
- Marina Tanasova
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
| | - Joseph R Fedie
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
| |
Collapse
|
45
|
Free radical scavenging and antidiabetic activities of Euonymus laxiflorus Champ. extract. RESEARCH ON CHEMICAL INTERMEDIATES 2017. [DOI: 10.1007/s11164-017-2951-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
46
|
AMPK modulatory activity of olive-tree leaves phenolic compounds: Bioassay-guided isolation on adipocyte model and in silico approach. PLoS One 2017; 12:e0173074. [PMID: 28278224 PMCID: PMC5344353 DOI: 10.1371/journal.pone.0173074] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 02/14/2017] [Indexed: 12/31/2022] Open
Abstract
Scope Olive-tree polyphenols have demonstrated potential for the management of obesity-related pathologies. We aimed to explore the capacity of Olive-tree leaves extract to modulate triglyceride accumulation and AMP-activated protein kinase activity (AMPK) on a hypertrophic adipocyte model. Methods Intracellular triglycerides and AMPK activity were measured on the hypertrophic 3T3-L1 adipocyte model by AdipoRed and immunofluorescence microscopy, respectively. Reverse phase high performance liquid chromatography coupled to time-of-flight mass detection with electrospray ionization (RP-HPLC-ESI-TOF/MS) was used for the fractionation of the extract and the identification of the compounds. In-silico molecular docking of the AMPK alpha-2, beta and gamma subunits with the identified compounds was performed. Results Olive-tree leaves extract decreased the intracellular lipid accumulation through AMPK-dependent mechanisms in hypertrophic adipocytes. Secoiridoids, cinnamic acids, phenylethanoids and phenylpropanoids, flavonoids and lignans were the candidates predicted to account for this effect. Molecular docking revealed that some compounds may be AMPK-gamma modulators. The modulatory effects of compounds over the alpha and beta AMPK subunits appear to be less probable. Conclusions Olive-tree leaves polyphenols modulate AMPK activity, which may become a therapeutic aid in the management of obesity-associated disturbances. The natural occurrence of these compounds may have important nutritional implications for the design of functional ingredients.
Collapse
|
47
|
Li Y, Zheng X, Yi X, Liu C, Kong D, Zhang J, Gong M. Myricetin: a potent approach for the treatment of type 2 diabetes as a natural class B GPCR agonist. FASEB J 2017; 31:2603-2611. [PMID: 28270518 PMCID: PMC5434659 DOI: 10.1096/fj.201601339r] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/13/2017] [Indexed: 01/08/2023]
Abstract
The physiologic properties of glucagon-like peptide 1 (GLP-1) make it a potent candidate drug target in the treatment of type 2 diabetes mellitus (T2DM). GLP-1 is capable of regulating the blood glucose level by insulin secretion after administration of oral glucose. The advantages of GLP-1 for the avoidance of hypoglycemia and the control of body weight are attractive despite its poor stability. The clinical efficacies of long-acting GLP-1 derivatives strongly support discovery pursuits aimed at identifying and developing orally active, small-molecule GLP-1 receptor (GLP-1R) agonists. The purpose of this study was to identify and characterize a novel oral agonist of GLP-1R (i.e., myricetin). The insulinotropic characterization of myricetin was performed in isolated islets and in Wistar rats. Long-term oral administration of myricetin demonstrated glucoregulatory activity. The data in this study suggest that myricetin might be a potential drug candidate for the treatment of T2DM as a GLP-1R agonist. Further structural modifications on myricetin might improve its pharmacology and pharmacokinetics.-Li, Y., Zheng, X., Yi, X., Liu, C., Kong, D., Zhang, J., Gong, M. Myricetin: a potent approach for the treatment of type 2 diabetes as a natural class B GPCR agonist.
Collapse
Affiliation(s)
- Ying Li
- Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Xuemin Zheng
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Xiulin Yi
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Changxiao Liu
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Dexin Kong
- Department of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Jianning Zhang
- Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China;
| | - Min Gong
- Department of Pharmacy, Tianjin Medical University, Tianjin, China; .,Department of Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
48
|
Arévalo-Ruiz M, Doria F, Belmonte-Reche E, De Rache A, Campos-Salinas J, Lucas R, Falomir E, Carda M, Pérez-Victoria JM, Mergny JL, Freccero M, Morales JC. Synthesis, Binding Properties, and Differences in Cell Uptake of G-Quadruplex Ligands Based on Carbohydrate Naphthalene Diimide Conjugates. Chemistry 2017; 23:2157-2164. [PMID: 27925323 DOI: 10.1002/chem.201604886] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Indexed: 11/06/2022]
Abstract
The G-quadruplexes (G4s) are currently being explored as therapeutic targets in cancer and other pathologies. Six carbohydrate naphthalene diimide conjugates (carb-NDIs) have been synthesized as G4 ligands to investigate their potential selectivity in G4 binding and cell penetration. Carb-NDIs have shown certain selectivity for G4 structures against DNA duplexes, but different sugar moieties do not induce a preference for a specific G4 topology. Interestingly, when monosaccharides were attached through a short ethylene linker to the NDI scaffold, their cellular uptake was two- to threefold more efficient than that when the sugar was directly attached through its anomeric position. Moreover, a correlation between more efficient cell uptake of these carb-NDIs and their higher toxicity in cancerous cell lines has been observed. Carb-NDIs seem to be mainly translocated into cancer cells through glucose transporters (GLUT), of which GLUT4 plays a major role.
Collapse
Affiliation(s)
- Matilde Arévalo-Ruiz
- Department of Biochemistry and Molecular Pharmacology, Instituto de Parasitología y Biomedicina, CSIC, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento, s/n, 18016, Armilla, Granada, Spain
| | - Filippo Doria
- Department of Chemistry, University of Pavia, V.le Taramelli 10, 27100, Pavia, Italy
| | - Efres Belmonte-Reche
- Department of Biochemistry and Molecular Pharmacology, Instituto de Parasitología y Biomedicina, CSIC, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento, s/n, 18016, Armilla, Granada, Spain
| | - Aurore De Rache
- Institut Européen de Chimie Biologie (IECB), ARNA Laboratory, Université de Bordeaux, Inserm U1212, CNRS UMR5320, 2, rue Robert Escarpit, Pessac, France
| | - Jenny Campos-Salinas
- Department of Biochemistry and Molecular Pharmacology, Instituto de Parasitología y Biomedicina, CSIC, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento, s/n, 18016, Armilla, Granada, Spain
| | - Ricardo Lucas
- Department of Biochemistry and Molecular Pharmacology, Instituto de Parasitología y Biomedicina, CSIC, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento, s/n, 18016, Armilla, Granada, Spain
| | - Eva Falomir
- Department of Inorganic and Organic Chemistry, University Jaume I, 12071, Castellón, Spain
| | - Miguel Carda
- Department of Inorganic and Organic Chemistry, University Jaume I, 12071, Castellón, Spain
| | - José María Pérez-Victoria
- Department of Biochemistry and Molecular Pharmacology, Instituto de Parasitología y Biomedicina, CSIC, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento, s/n, 18016, Armilla, Granada, Spain
| | - Jean-Louis Mergny
- Institut Européen de Chimie Biologie (IECB), ARNA Laboratory, Université de Bordeaux, Inserm U1212, CNRS UMR5320, 2, rue Robert Escarpit, Pessac, France
| | - Mauro Freccero
- Department of Chemistry, University of Pavia, V.le Taramelli 10, 27100, Pavia, Italy
| | - Juan Carlos Morales
- Department of Biochemistry and Molecular Pharmacology, Instituto de Parasitología y Biomedicina, CSIC, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento, s/n, 18016, Armilla, Granada, Spain
| |
Collapse
|
49
|
Granchi C, Fortunato S, Minutolo F. Anticancer agents interacting with membrane glucose transporters. MEDCHEMCOMM 2016; 7:1716-1729. [PMID: 28042452 DOI: 10.1039/c6md00287k] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The altered metabolism observed in cancer cells generally consists in increased glucose uptake and glycolytic activity. This is associated with an overexpression of glucose transporter proteins (GLUTs), which facilitate glucose uptake across the plasma membrane and play a crucial role in the survival of cancer cells. Therefore GLUTs are considered as suitable targets for the treatment of cancer. Herein we review some of the most relevant GLUT inhibitors that have been recently developed as prospective anticancer agents.
Collapse
Affiliation(s)
- C Granchi
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - S Fortunato
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - F Minutolo
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, 56126 Pisa, Italy
| |
Collapse
|
50
|
Lu YR, He SZ, Tong XL, Han MJ, Li CL, Li ZQ, Dai FY. Microarray analysis of New Green Cocoon associated genes in silkworm, Bombyx mori. INSECT SCIENCE 2016; 23:386-395. [PMID: 26936509 DOI: 10.1111/1744-7917.12328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/28/2016] [Accepted: 02/12/2016] [Indexed: 06/05/2023]
Abstract
Green cocoons in silkworm, Bombyx mori, are caused by flavonoids accumulation in the silk proteins, fibroin and sericin. Despite the economic value of natural green cocoon and medical value of flavonoids, there is limited understanding of the molecular mechanism regulating flavonoids uptake in silkworm, which is tightly associated with the trait of green cocoon. The purpose of this study is to perform a comprehensive analysis to understand the molecular mechanisms of flavonoids uptake in silkworm based on microarray analyses. The study subject was the New Green Cocoon from the silkworm strains, G200 and N100, a new spontaneous dominant green cocoon trait identified in the 2000s. The genes regulating this trait are independent of other green cocoon genes previously reported. Genome-wide gene expression was compared between the New Green Cocoon producing silkworm strains, G200 and N100, and the control sample, which is the white cocoon producing strain 872B. Among these strains, N100 and 872B are near-isogenic lines. The results showed that 130 genes have consistently changing expression patterns in the green cocoon strains when compared with the white cocoon strain. Among these, we focused on the genes related to flavonoids metabolism and absorption, such as sugar transporter genes and UDP-glucosyltransferase genes. Based on our findings, we propose the potential mechanisms for flavonoids absorption and metabolism in silkworm. Our results imply that silkworm might be used as an underlying model for flavonoids in pharmaceutical research.
Collapse
Affiliation(s)
- Ya-Ru Lu
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, China
- Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Song-Zhen He
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, China
- Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Xiao-Ling Tong
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, China
- Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Min-Jin Han
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, China
- Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Chun-Lin Li
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, China
- Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Zhi-Quan Li
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, China
- Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing, 400715, China
| | - Fang-Yin Dai
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, China
- Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, College of Biotechnology, Southwest University, Chongqing, 400715, China
| |
Collapse
|