1
|
Sultanov M, Koot JAR, de Bock GH, Greuter MJW, Beltman JJ, de Fouw M, de Zeeuw J, Kabukye J, Stekelenburg J, van der Schans J. High-risk human papillomavirus testing for cervical cancer screening in Uganda: Considering potential harms and benefits in a low-resource setting. PLoS One 2024; 19:e0312295. [PMID: 39441790 PMCID: PMC11498676 DOI: 10.1371/journal.pone.0312295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
OBJECTIVES The World Health Organization supports both the screen-and-treat (ST) approach and the screen, triage and treat (STT) approach to cervical cancer screening using high-risk human papillomavirus (hrHPV) testing. For Uganda, the sequence of hrHPV-ST and hrHPV-STT could be similar, with visual inspection with acetic acid (VIA) after positive hrHPV tests in both. To consider potential tradeoffs (overtreatment in ST versus missed cancer cases in STT), we compared hrHPV-STT with VIA triage (STT-VIA), and STT with HPV 16/18 genotyping risk stratification, to hrHPV-ST for Uganda, in terms of overtreatment, cervical cancer incidence, and life years, for the general female population of Uganda. METHODS A microsimulation model of cervical cancer was adapted. Incremental benefit-harm ratios of STT were calculated as ratios of prevented overtreatment to reduced life years, and to increased cancer cases. Additional scenarios with 20% difference in intra- and inter-screening follow-up between ST and STT were modeled. RESULTS Both STT strategies resulted in life year losses on average compared to ST. STT-VIA prevented more overtreatment but led to increased cervical cancer incidence and life year losses. STT-G-VIA resulted in better harm-benefit ratios and additional costs. With better follow-up, STT prevented overtreatment and improved outcomes. DISCUSSION For Uganda, the STT approach appears preferrable, if the screening sequences of hrHPV-based ST and STT are similar in practice. While VIA triage alone would reduce overtreatment the most, it could also result in more cancer cases. Risk stratification via genotyping could improve STT. Potential follow-up differences and resource availability should be considered by decision-makers when planning Uganda's hrHPV-based screening strategy.
Collapse
Affiliation(s)
- Marat Sultanov
- Global Health Unit, Department of Health Sciences, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jaap A. R. Koot
- Global Health Unit, Department of Health Sciences, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Geertruida H. de Bock
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Marcel J. W. Greuter
- Department of Radiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jogchum J. Beltman
- Department of Gynecology, Leiden University Medical Center, Leiden University, Leiden, Netherlands
| | - Marlieke de Fouw
- Department of Gynecology, Leiden University Medical Center, Leiden University, Leiden, Netherlands
| | - Janine de Zeeuw
- Global Health Unit, Department of Health Sciences, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | | | - Jelle Stekelenburg
- Global Health Unit, Department of Health Sciences, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Obstetrics and Gynecology, Medical Center Leeuwarden, Leeuwarden, Netherlands
| | - Jurjen van der Schans
- Global Health Unit, Department of Health Sciences, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Economics, Econometrics and Finance, Faculty of Economics and Business, University of Groningen, Groningen, Netherlands
| |
Collapse
|
2
|
Goldstein A, Gersh M, Skovronsky G, Moss C. The Future of Cervical Cancer Screening. Int J Womens Health 2024; 16:1715-1731. [PMID: 39464249 PMCID: PMC11512781 DOI: 10.2147/ijwh.s474571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/11/2024] [Indexed: 10/29/2024] Open
Abstract
Purpose Cervical cancer remains a significant health concern, particularly in developing countries, where it is a leading cause of cancer-related deaths among women. Innovative technologies have emerged to improve the efficiency, cost-effectiveness, and sensitivity of cervical cancer screening and treatment methods. This study aims to explore the various approaches for the detection and treatment of human papillomavirus (HPV), cervical dysplasia (CD), and cervical cancer, highlighting new technologies and updated screening strategies in developing areas. Patients and Methods A comprehensive literature search was conducted using PubMed to identify relevant publications on the subject of cervical cancer screening and HPV detection. Results HPV infection and cervical cancer continue to pose significant global health challenges. Emerging technologies such as rapid, low-cost HPV testing combined with high-resolution digital colposcopy and artificial intelligence interpretation hold promise for efficient and sensitive screening. Advancements in HPV vaccine distribution, high-risk HPV screening, DNA methylation assays, dual-stain cytology, lab-on-chip assays, and deep learning technologies offer new avenues for improved detection and risk stratification.Research and innovations in detection and treatment methods are crucial for reducing the burden of these diseases worldwide. Conclusion Screening for HPV and CD plays a pivotal role in reducing the risk of cervical cancer-related mortality. The development of novel technologies, along with efforts to enhance global health equity and integrate cervical cancer prevention with HIV screening and treatment programs, represent critical steps toward achieving comprehensive cervical cancer screening on a global scale.
Collapse
Affiliation(s)
| | | | | | - Chailee Moss
- George Washington University School of Medicine and Health Sciences, Washington, D.C., USA
| |
Collapse
|
3
|
Chilou C, Espirito Santo I, Faes S, St-Amour P, Jacot-Guillarmod M, Pache B, Hübner M, Hahnloser D, Grass F. Concomitant Cervical and Anal Screening for Human Papilloma Virus (HPV): Worth the Effort or a Waste of Time? Cancers (Basel) 2024; 16:3534. [PMID: 39456627 PMCID: PMC11506812 DOI: 10.3390/cancers16203534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND This study represents a follow-up analysis of the AnusGynecology (ANGY) study. METHODS This prospective, cross-sectional, single-center study recruited women for concomitant cervical and anal screening of HPV genotypes and cytology during a single appointment. All women with findings of either HPV or any type of dysplastic lesions on anal smears were offered follow-up in a specialized high-resolution anoscopy (HRA) outpatient clinic, representing the study cohort for this follow-up study. RESULTS Overall, 275 patients (mean age 42 ± 12) were included. Among them, 102 (37%) had cervical high-risk (HR) HPV. In total, HPV was (incidentally) revealed in 91 patients (33%) on anal smears, while any degree of anal squamous intraepithelial lesion (SIL) was found in 30 patients (11%), 6 if which were high-grade SIL (H-SIL). Furthermore, 10 out of 19 biopsies were positive (3 H-SIL lesions). Only half (48/91, 53%) of the women agreed to undergo the recommended specialized follow-up evaluation. Of them, 18 (38%) were diagnosed with dysplastic lesions (9 low grade (L-SIL) and 9 H-SIL, respectively) on biopsies, while the remaining visits revealed no abnormalities. Multivariable analysis revealed cervical HR-HPV infection (OR 4, 95% CI 2.2-7.5) and anal intercourse (OR 3.1, 95% CI 1.7-5.9) as independent risk factors for anal HR-HPV infection. CONCLUSIONS Close follow-up of these women is hence strongly recommended.
Collapse
Affiliation(s)
- Camille Chilou
- Department of Visceral Surgery, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), 1011 Lausanne, Switzerland; (C.C.)
| | - Iolanda Espirito Santo
- Department of Visceral Surgery, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), 1011 Lausanne, Switzerland; (C.C.)
| | - Seraina Faes
- Department of Visceral Surgery, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), 1011 Lausanne, Switzerland; (C.C.)
- Stadtspital Triemli Zürich, 8063 Zürich, Switzerland
| | - Pénélope St-Amour
- Department of Visceral Surgery, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), 1011 Lausanne, Switzerland; (C.C.)
| | - Martine Jacot-Guillarmod
- Gynecology Department, Department Women-Mother-Child, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland; (M.J.-G.)
| | - Basile Pache
- Gynecology Department, Department Women-Mother-Child, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland; (M.J.-G.)
| | - Martin Hübner
- Department of Visceral Surgery, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), 1011 Lausanne, Switzerland; (C.C.)
| | - Dieter Hahnloser
- Department of Visceral Surgery, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), 1011 Lausanne, Switzerland; (C.C.)
| | - Fabian Grass
- Department of Visceral Surgery, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), 1011 Lausanne, Switzerland; (C.C.)
| |
Collapse
|
4
|
Lu Z, Haghollahi S, Afzal M. Potential Therapeutic Targets for the Treatment of HPV-Associated Malignancies. Cancers (Basel) 2024; 16:3474. [PMID: 39456568 PMCID: PMC11506301 DOI: 10.3390/cancers16203474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
This review article aims to summarize broadly recent developments in the treatment of HPV-associated cancers, including cervical cancer and head and neck squamous cell carcinoma. Relatively new treatments targeting the key HPV E6 and E7 oncoproteins, including gene editing with TALENs and CRISPR/Cas9, are discussed. Given the increased immunogenicity of HPV-related diseases, other therapies such as PRR agonists, adoptive cell transfer, and tumor vaccines are reaching the clinical trial phase. Due to the mechanism, immunogenicity, and reversibility of HPV carcinogenesis, HPV-related cancers present unique targets for current and future therapies.
Collapse
|
5
|
Bano F, Soria-Martinez L, van Bodegraven D, Throsteinsson K, Brown AM, Fels I, Snyder NL, Bally M, Schelhaas M. Site-specific sulfations regulate the physicochemical properties of papillomavirus-heparan sulfate interactions for entry. SCIENCE ADVANCES 2024; 10:eado8540. [PMID: 39365863 PMCID: PMC11451526 DOI: 10.1126/sciadv.ado8540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/30/2024] [Indexed: 10/06/2024]
Abstract
Certain human papillomaviruses (HPVs) are etiological agents for several anogenital and oropharyngeal cancers. During initial infection, HPV16, the most prevalent cancer-causing type, specifically interacts with heparan sulfates (HSs), not only enabling initial cell attachment but also triggering a crucial conformational change in viral capsids termed structural activation. It is unknown, whether these HPV16-HS interactions depend on HS sulfation patterns. Thus, we probed potential roles of HS sulfations using cell-based functional and physicochemical assays, including single-molecule force spectroscopy. Our results demonstrate that N-sulfation of HS is crucial for virus binding and structural activation by providing high-affinity sites, and that additional 6O-sulfation is required to mechanically stabilize the interaction, whereas 2O-sulfation and 3O-sulfation are mostly dispensable. Together, our findings identify the contribution of HS sulfation patterns to HPV16 binding and structural activation and reveal how distinct sulfation groups of HS synergize to facilitate HPV16 entry, which, in turn, likely influences the tropism of HPVs.
Collapse
Affiliation(s)
- Fouzia Bano
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Laura Soria-Martinez
- Institute of Cellular Virology, ZMBE, University of Münster, Münster, Germany
- Research Group “ViroCarb: Glycans controlling non-enveloped virus infections” (FOR2327), Coordinating University of Tübingen, Germany
| | - Dominik van Bodegraven
- Institute of Cellular Virology, ZMBE, University of Münster, Münster, Germany
- Research Group “ViroCarb: Glycans controlling non-enveloped virus infections” (FOR2327), Coordinating University of Tübingen, Germany
| | - Konrad Throsteinsson
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Anna M. Brown
- Department of Chemistry, Davidson College, Davidson, NC, USA
| | - Ines Fels
- Institute of Cellular Virology, ZMBE, University of Münster, Münster, Germany
| | | | - Marta Bally
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Mario Schelhaas
- Institute of Cellular Virology, ZMBE, University of Münster, Münster, Germany
- Research Group “ViroCarb: Glycans controlling non-enveloped virus infections” (FOR2327), Coordinating University of Tübingen, Germany
| |
Collapse
|
6
|
Han F, Guo XY, Jiang MX, Xia NS, Gu Y, Li SW. Structural biology of the human papillomavirus. Structure 2024:S0969-2126(24)00380-0. [PMID: 39368462 DOI: 10.1016/j.str.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/23/2024] [Accepted: 09/10/2024] [Indexed: 10/07/2024]
Abstract
Human papillomavirus (HPV), known for its oncogenic properties, is the primary cause of cervical cancer and significantly contributes to mortality rates. It also plays a considerable role in the globally rising incidences of head and neck cancers. These cancers pose a substantial health burden worldwide. Current limitations in diagnostic and treatment strategies, along with inadequate coverage of preventive vaccines in low- and middle-income countries, hinder the progress toward the World Health Organization (WHO) HPV prevention and control targets set for 2030. In response to these challenges, extensive research in structural virology has explored the properties of HPV proteins, yielding crucial insights into the mechanisms of HPV infection that are important for the development of prevention and therapeutic strategies. This review highlights recent advances in understanding the structures of HPV proteins and discusses achievements and future opportunities for HPV vaccine development.
Collapse
Affiliation(s)
- Feng Han
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China
| | - Xin-Ying Guo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China
| | - Ming-Xia Jiang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China
| | - Ning-Shao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China
| | - Ying Gu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China.
| | - Shao-Wei Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
7
|
Jin J, Li S, Huang H, Li J, Lyu Y, Ran Y, Chang H, Zhao X. Development of human papillomavirus and its detection methods (Review). Exp Ther Med 2024; 28:382. [PMID: 39161614 PMCID: PMC11332130 DOI: 10.3892/etm.2024.12671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/04/2024] [Indexed: 08/21/2024] Open
Abstract
Human papillomavirus (HPV) infection plays an important role in cervical cancer. HPV is classified within the Papillomaviridae family and is a non-enveloped, small DNA virus. HPV infection can be classified into two distinct scenarios: i) With or without integration into the host chromosomes. Detection of its infection can be useful in the study of cervical lesions. In the present review, the structural and functional features of HPV, HPV typing, infection and transmission mode, the risk factors for cervical susceptibility to infection and HPV detection methods are described in detail. The development of HPV detection methods may have far-reaching significance in the prevention and treatment of cervical disease. This review summarizes the advantages and limitations of each HPV detection method.
Collapse
Affiliation(s)
- Jian Jin
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450002, P.R. China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan 450002, P.R. China
- Tianjian Laboratory of Advanced Biomedical Sciences, School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Shujuan Li
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450002, P.R. China
| | - Hehuan Huang
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450002, P.R. China
| | - Junqi Li
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450002, P.R. China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan 450002, P.R. China
- Tianjian Laboratory of Advanced Biomedical Sciences, School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Yuan Lyu
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450002, P.R. China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan 450002, P.R. China
- Tianjian Laboratory of Advanced Biomedical Sciences, School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Yunwei Ran
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450002, P.R. China
| | - Hui Chang
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450002, P.R. China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan 450002, P.R. China
- Tianjian Laboratory of Advanced Biomedical Sciences, School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
- School of Public Health, Xi'an Jiaotong University, Xi'an, Shanxi 710049, P.R. China
| | - Xin Zhao
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450002, P.R. China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan 450002, P.R. China
- Tianjian Laboratory of Advanced Biomedical Sciences, School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450002, P.R. China
| |
Collapse
|
8
|
Sebutsoe XM, Tsotetsi NJN, Jantjies ZE, Raphela-Choma PP, Choene MS, Motadi LR. Therapeutic Strategies in Advanced Cervical Cancer Detection, Prevention and Treatment. Onco Targets Ther 2024; 17:785-801. [PMID: 39345275 PMCID: PMC11439348 DOI: 10.2147/ott.s475132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/08/2024] [Indexed: 10/01/2024] Open
Abstract
Cervical cancer is ranked the fourth most common cause of cancer related deaths amongst women. The situation is particularly dire in low to lower middle-income countries. It continues to affect these countries due to poor vaccine coverage and screening. Cervical cancer is mostly detected in the advanced stages leading to poor outcomes. This review focuses on the progress made to date to improve early detection and targeted therapy using both circulating RNA. Vaccine has played a major role in cervical cancer control in vaccinated young woman in mainly developed countries yet in low-income countries with challenges of 3 dose vaccination affordability, cervical cancer continues to be the second most deadly amongst women. In this review, we show the progress made in reducing cervical cancer using vaccination that in combination with other treatments that might improve survival in cervical cancer. We further show with both miRNA and siRNA that targeted therapy and specific markers might be ideal for early detection of cervical cancer in low-income countries. These markers are either upregulated or down regulated in cancer providing clue to the stage of the cancer.
Collapse
Affiliation(s)
- Xolisiwe M Sebutsoe
- Department of Biochemistry C2 Lab, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg, South Africa
| | | | - Zodwa Edith Jantjies
- Department of Biochemistry C2 Lab, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg, South Africa
| | - Portia Pheladi Raphela-Choma
- Department of Biochemistry C2 Lab, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg, South Africa
| | - Mpho S Choene
- Department of Biochemistry C2 Lab, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg, South Africa
| | - Lesetja R Motadi
- Department of Biochemistry C2 Lab, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg, South Africa
| |
Collapse
|
9
|
Maghiar L, Sandor M, Sachelarie L, Bodog R, Huniadi A. Skin Lesions Caused by HPV-A Comprehensive Review. Biomedicines 2024; 12:2098. [PMID: 39335611 PMCID: PMC11428284 DOI: 10.3390/biomedicines12092098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/31/2024] [Accepted: 09/01/2024] [Indexed: 09/30/2024] Open
Abstract
This narrative review provides a comprehensive analysis of skin lesions caused by human papillomavirus (HPV). Human papillomavirus is an infection involving a virus that is omnipresent and can range from benign wart lesions to malignant skin growths. This review includes an analysis of the skin manifestations caused by HPV, and the need for continued successful diagnostic techniques and treatment methods, given the increasing rates of infection among people worldwide. We reviewed all 135 studies related to pathophysiology involving skin, risk factors, and early detection methods like biopsy and molecular testing, from 2000 to 2023. The current treatments, including cryotherapy and laser therapy, are discussed, while the review emphasizes the role of HPV vaccination in preventing infection. Recommendations for the future would involve the improvement of public education and increased vaccine coverage, together with innovative therapies toward better management or control of skin diseases associated with the human papillomavirus (HPV). By advancing these recommendations, we will be in a better position to prevent and treat HPV skin conditions, thus improving the health condition of the general public across the world.
Collapse
Affiliation(s)
- Laura Maghiar
- Department of Surgical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 1st December Square 10, 410073 Oradea, Romania; (L.M.); (R.B.); (A.H.)
- Preclinical Sciences Department, Faculty of Medicine and Pharmacy, University of Oradea, 1st December Square 10, 410073 Oradea, Romania
- Pelican Clinical Hospital Oradea, Str. Corneliu Coposu nr.14A-14B, 410450 Oradea, Romania
| | - Mircea Sandor
- Department of Surgical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 1st December Square 10, 410073 Oradea, Romania; (L.M.); (R.B.); (A.H.)
| | - Liliana Sachelarie
- Preclinical Sciences Department, Faculty of Medicine, Apollonia University, 700511 Iasi, Romania
| | - Ruxandra Bodog
- Department of Surgical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 1st December Square 10, 410073 Oradea, Romania; (L.M.); (R.B.); (A.H.)
| | - Anca Huniadi
- Department of Surgical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 1st December Square 10, 410073 Oradea, Romania; (L.M.); (R.B.); (A.H.)
- Preclinical Sciences Department, Faculty of Medicine and Pharmacy, University of Oradea, 1st December Square 10, 410073 Oradea, Romania
| |
Collapse
|
10
|
Embry A, Gammon DB. Abortive Infection of Animal Cells: What Goes Wrong. Annu Rev Virol 2024; 11:193-213. [PMID: 38631917 PMCID: PMC11427174 DOI: 10.1146/annurev-virology-100422-023037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Even if a virus successfully binds to a cell, defects in any of the downstream steps of the viral life cycle can preclude the production of infectious virus particles. Such abortive infections are likely common in nature and can provide fundamental insights into the cell and host tropism of viral pathogens. Research over the past 60 years has revealed an incredible diversity of abortive infections by DNA and RNA viruses in various animal cell types. Here we discuss the general causes of abortive infections and provide specific examples from the literature to illustrate the range of abortive infections that have been reported. We also discuss how abortive infections can have critical roles in shaping host immune responses and in the development of virus-induced cancers. Finally, we describe how abortive infections can be applied to basic and clinical research, underscoring the importance of understanding these fascinating aspects of virus biology.
Collapse
Affiliation(s)
- Aaron Embry
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA;
| | - Don B Gammon
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA;
| |
Collapse
|
11
|
Rizkalla CN, Huang EC. Cervical Human Papillomavirus Testing: Current and Future Impact on Patient Care. Surg Pathol Clin 2024; 17:431-439. [PMID: 39129141 DOI: 10.1016/j.path.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Cervical cancer is the fourth most common malignancy in women worldwide. The identification of human papillomavirus (HPV) as the main etiologic cause of cervical cancer has led to the development and adaptation of HPV molecular diagnostics as a cervical cancer screening and prevention tool. This article highlights six Food and Drug Administration-approved HPV molecular platforms, each with unique advantages and disadvantages. In addition, HPV vaccination and the emergence of HPV self-collection as an alternative testing strategy are discussed.
Collapse
Affiliation(s)
- Carol N Rizkalla
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, 1959 NE Pacific Street, Box 357470, Seattle, WA 98195, USA. https://twitter.com/Carol2Path
| | - Eric C Huang
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Harborview Medical Center, 325 9th Avenue, Box 359791, Seattle, WA 98104, USA.
| |
Collapse
|
12
|
Talapko J, Erić S, Meštrović T, Stipetić MM, Juzbašić M, Katalinić D, Bekić S, Muršić D, Flam J, Belić D, Lešić D, Fureš R, Markanović M, Škrlec I. The Impact of Oral Microbiome Dysbiosis on the Aetiology, Pathogenesis, and Development of Oral Cancer. Cancers (Basel) 2024; 16:2997. [PMID: 39272855 PMCID: PMC11394246 DOI: 10.3390/cancers16172997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common head and neck cancer. Although the oral cavity is an easily accessible area for visual examination, the OSCC is more often detected at an advanced stage. The global prevalence of OSCC is around 6%, with increasing trends posing a significant health problem due to the increase in morbidity and mortality. The oral cavity microbiome has been the target of numerous studies, with findings highlighting the significant role of dysbiosis in developing OSCC. Dysbiosis can significantly increase pathobionts (bacteria, viruses, fungi, and parasites) that trigger inflammation through their virulence and pathogenicity factors. In contrast, chronic bacterial inflammation contributes to the development of OSCC. Pathobionts also have other effects, such as the impact on the immune system, which can alter immune responses and contribute to a pro-inflammatory environment. Poor oral hygiene and carbohydrate-rich foods can also increase the risk of developing oral cancer. The risk factors and mechanisms of OSCC development are not yet fully understood and remain a frequent research topic. For this reason, this narrative review concentrates on the issue of dysbiosis as the potential cause of OSCC, as well as the underlying mechanisms involved.
Collapse
Affiliation(s)
- Jasminka Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Suzana Erić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Radiotherapy and Oncology, University Hospital Center Osijek, 31000 Osijek, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Tomislav Meštrović
- University Centre Varaždin, University North, 42000 Varaždin, Croatia
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA 98195, USA
- Department for Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Marinka Mravak Stipetić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Martina Juzbašić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Darko Katalinić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Sanja Bekić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Family Medicine Practice, 31000 Osijek, Croatia
| | - Dora Muršić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Radiotherapy and Oncology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Josipa Flam
- Department of Radiotherapy and Oncology, University Hospital Center Osijek, 31000 Osijek, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Dino Belić
- Department of Radiotherapy and Oncology, University Hospital Center Osijek, 31000 Osijek, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | | | - Rajko Fureš
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Gynecology and Obstetrics, Zabok General Hospital and Croatian Veterans Hospital, 49210 Zabok, Croatia
| | - Manda Markanović
- Department of Clinical and Molecular Microbiology, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|
13
|
Maueia C, Carulei O, Murahwa AT, Taku O, Manjate A, Mussá T, Williamson AL. Identification of HPV16 Lineages in South African and Mozambican Women with Normal and Abnormal Cervical Cytology. Viruses 2024; 16:1314. [PMID: 39205288 PMCID: PMC11360388 DOI: 10.3390/v16081314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Human papillomavirus 16 (HPV16) is an oncogenic virus responsible for the majority of invasive cervical cancer cases worldwide. Due to genetic modifications, some variants are more oncogenic than others. We analysed the HPV16 phylogeny in HPV16-positive cervical Desoxyribonucleic Acid (DNA) samples collected from South African and Mozambican women to detect the circulating lineages. METHODS Polymerase chain reaction (PCR) amplification of the long control region (LCR) and 300 nucleotides of the E6 region was performed using HPV16-specific primers on HPV16-positive cervical samples collected in women from South Africa and Mozambique. HPV16 sequences were obtained through Next Generation Sequencing (NGS) methods. Geneious prime and MEGA 11 software were used to align the sequences to 16 HPV16 reference sequences, gathering the A, B, C, and D lineages and generating the phylogenetic tree. Single nucleotide polymorphisms (SNPs) in the LCR and E6 regions were analysed and the phylogenetic tree was generated using Geneious Prime software. RESULTS Fifty-eight sequences were analysed. Of these sequences, 79% (46/58) were from women who had abnormal cervical cytology. Fifteen SNPs in the LCR and eight in the E6 region were found to be the most common in all sequences. The phylogenetic analysis determined that 45% of the isolates belonged to the A1 sublineage (European variant), 34% belonged to the C1 sublineage (African 1 variant), 16% belonged to the B1 and B2 sublineage (African 2 variant), two isolates belonged to the D1-3 sublineages (Asian-American variant), and one to the North American variant. CONCLUSIONS The African and European HPV16 variants were the most common circulating lineages in South African and Mozambican women. A high-grade squamous intraepithelial lesion (HSIL) was the most common cervical abnormality observed and linked to European and African lineages. These findings may contribute to understanding molecular HPV16 epidemiology in South Africa and Mozambique.
Collapse
Affiliation(s)
- Cremildo Maueia
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa; (O.C.); (A.T.M.); (O.T.); (A.-L.W.)
- Departamento de Microbiologia, Faculdade de Medicina, Universidade Eduardo Mondlane, Maputo P.O.Box 257, Mozambique; (A.M.); (T.M.)
- Instituto Nacional de Saúde, Maputo 3943, Mozambique
| | - Olivia Carulei
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa; (O.C.); (A.T.M.); (O.T.); (A.-L.W.)
| | - Alltalents T. Murahwa
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa; (O.C.); (A.T.M.); (O.T.); (A.-L.W.)
| | - Ongeziwe Taku
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa; (O.C.); (A.T.M.); (O.T.); (A.-L.W.)
| | - Alice Manjate
- Departamento de Microbiologia, Faculdade de Medicina, Universidade Eduardo Mondlane, Maputo P.O.Box 257, Mozambique; (A.M.); (T.M.)
| | - Tufária Mussá
- Departamento de Microbiologia, Faculdade de Medicina, Universidade Eduardo Mondlane, Maputo P.O.Box 257, Mozambique; (A.M.); (T.M.)
| | - Anna-Lise Williamson
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa; (O.C.); (A.T.M.); (O.T.); (A.-L.W.)
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa
- SAMRC Gynaecological Cancer Research Centre, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
14
|
Shi Y, Wang W, Bai Y, Liu X, Wu L, Liu N. IL-37 attenuated HPV induced inflammation and growth of oral epithelial cells via regulating autophagy. Heliyon 2024; 10:e35131. [PMID: 39157375 PMCID: PMC11328067 DOI: 10.1016/j.heliyon.2024.e35131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024] Open
Abstract
This study investigated the impact of Human Papillomavirus (HPV) on inflammation and growth in oral epithelial cells, with a focus on the role of Interleukin-37 (IL37). Oral epithelial cells, including HOEC and HSC-3 cells, were employed in the research. The results revealed that HPV significantly induced inflammation in both types of oral epithelial cells, concurrently promoting cell growth and inhibiting apoptosis. IL37, a cytokine, was found to mitigate HPV-induced inflammation in oral epithelial cells. Moreover, IL37 counteracted HPV's effects on apoptosis and cell viability in oral epithelial cells. The study also identified a reduction in autophagy in HPV-infected oral epithelial cells, a phenomenon alleviated by IL37. Furthermore, chemical inhibition of autophagy was observed to attenuate HPV-induced inflammation and growth in oral epithelial cells. These findings contribute valuable insights into the pathogenesis of inflammation in oral epithelial cells associated with HPV and oral cancers, offering potential avenues for novel therapeutic strategies.
Collapse
Affiliation(s)
- Yahong Shi
- Department of Stomatology, Second Hospital of Shijiazhuang, Shijiazhuang, Hebei, 050000, PR China
| | - Wenjing Wang
- Department of Stomatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, PR China
| | - Yunfang Bai
- Department of Emergency, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, PR China
| | - Xiaoying Liu
- Department of Stomatology, Third Hospital of Shijiazhuang, Shijiazhuang, Hebei, 050011, PR China
| | - Liwei Wu
- Department of Stomatology, Third Hospital of Shijiazhuang, Shijiazhuang, Hebei, 050011, PR China
| | - Ning Liu
- Department of Endoscopy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, PR China
| |
Collapse
|
15
|
Golalipour A, Mohammadi A, Hosseinzadeh S, Soltani A, Erfani-Moghadam V. Synergistic cytotoxicity of olive leaf extract-loaded lipid nanocarriers combined with Newcastle disease virus against cervical cancer cells. PLoS One 2024; 19:e0308599. [PMID: 39141643 PMCID: PMC11324187 DOI: 10.1371/journal.pone.0308599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/28/2024] [Indexed: 08/16/2024] Open
Abstract
Despite recent medical progress, cervical cancer remains a major global health concern for women. Current standard treatments have limitations such as non-specific toxicity that necessitate development of safer and more effective therapeutic strategies. This research evaluated the combinatorial effects of olive leaf extract (OLE), rich in anti-cancer polyphenols, and the oncolytic Newcastle disease virus (NDV) against human cervical cancer cells. OLE was efficiently encapsulated (>94% loading) within MF59 lipid nanoparticles and nanostructured lipid carriers (NLCs; contains Precirol as NLC-P, contains Lecithin as NLC-L) to enhance stability, bioavailability, and targeted delivery. Physicochemical analysis confirmed successful encapsulation of OLE within nanoparticles smaller than 150 nm. In vitro cytotoxicity assays demonstrated significantly higher toxicity of the OLE-loaded nanoparticle formulations on HeLa cancer cells versus HDF normal cells (P<0.05). MF59 achieved the highest encapsulation efficiency, while NLC-P had the best drug release profile. NDV selectively infected and killed HeLa cells versus HDF cells. Notably, combining NDV with OLE-loaded nanoparticles led to significantly enhanced synergistic cytotoxicity against cancer cells (P<0.05), with NLC-P (OLE) and NDV producing the strongest effects. Apoptosis and cell cycle analyses confirmed the increased anti-cancer activity of the combinatorial treatment, which induced cell cycle arrest. This study provides evidence that co-delivery of OLE-loaded lipid nanoparticles and NDV potentiates anti-cancer activity against cervical cancer cells in vitro through a synergistic mechanism, warranting further development as a promising alternative cervical cancer therapy.
Collapse
Affiliation(s)
- Arash Golalipour
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Ali Mohammadi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Saeid Hosseinzadeh
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Alireza Soltani
- Golestan Rheumatology Research Center, Golestan University of Medical Science, Gorgan, Iran
| | - Vahid Erfani-Moghadam
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
16
|
Wang S, Qiao X, Cui Y, Liu L, Cooper T, Hu Y, Lin J, Liu H, Wang M, Hayball J, Wang X. NCAPH, ubiquitinated by TRIM21, promotes cell proliferation by inhibiting autophagy of cervical cancer through AKT/mTOR dependent signaling. Cell Death Dis 2024; 15:565. [PMID: 39103348 PMCID: PMC11300717 DOI: 10.1038/s41419-024-06932-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024]
Abstract
Autophagy is closely related to the occurrence and development of human malignancies; however, the detailed mechanisms underlying autophagy in cervical cancer require further investigation. Previously, we found that the ectopic expression of NCAPH, a regulatory subunit of condensed protein complexes, significantly enhanced the proliferation of tumor cells; however, the underlying mechanisms were unclear. Here, we revealed that NCAPH is a novel autophagy-associated protein in cervical cancer that promotes cell proliferation by inhibiting autophagosome formation and reducing autophagy, with no effect on the cell cycle, apoptosis, or aging. Tripartite motif-containing protein 21 (TRIM21) is well known to be involved in inflammation, autoimmunity and cancer, mainly via its E3 ubiquitin ligase activity. Mass spectrometry and immunoprecipitation assays showed that TRIM21 interacted with NCAPH and decreased the protein stability of NCAPH via ubiquitination at the K11 lysine residue. Structural domain mutation analysis revealed that TRIM21 combined with NCAPH through its PRY/SPRY and CC domains and accelerated the degradation of NCAPH through the RING domain. Furthermore, TRIM21 promoted autophagosome formation and reduced cell proliferation by inhibiting NCAPH expression and the downstream AKT/mTOR pathway in cervical cancer cells. Immunohistochemical staining revealed that the protein expression of TRIM21 was negatively correlated with that of NCAPH and positively correlated with that of beclin-1 in cervical cancer tissues. Therefore, we provide evidence for the role of the TRIM21-NCAPH axis in cervical cancer autophagy and proliferation and the involvement of the AKT/mTOR signaling pathway in this process. These results deepen our understanding of the carcinogenesis of cervical cancer, broaden the understanding of the molecular mechanisms of TRIM21 and NCAPH, and provide guidance for individualized treatment of cervical cancer in the future.
Collapse
Affiliation(s)
- Shiqi Wang
- Department of Pathology, School of Basic Medical Sciences and Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Xiaowen Qiao
- Department of Pathology, School of Basic Medical Sciences and Qilu Hospital, Shandong University, Jinan, Shandong Province, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Yaqi Cui
- Department of Pathology, School of Basic Medical Sciences and Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Liang Liu
- Experimental Therapeutics Laboratory, School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, Adelaide, SA, Australia
| | - Tamara Cooper
- Experimental Therapeutics Laboratory, School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, Adelaide, SA, Australia
| | - Yingxin Hu
- Department of Pathology, School of Basic Medical Sciences and Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Jiaxiang Lin
- Department of Pathology, School of Basic Medical Sciences and Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Haiting Liu
- Department of Pathology, School of Basic Medical Sciences and Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Meng Wang
- Department of Pathology, School of Basic Medical Sciences and Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - John Hayball
- Experimental Therapeutics Laboratory, School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, Adelaide, SA, Australia
| | - Xiao Wang
- Department of Pathology, School of Basic Medical Sciences and Qilu Hospital, Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
17
|
Gusakov K, Kalinkovich A, Ashkenazi S, Livshits G. Nature of the Association between Rheumatoid Arthritis and Cervical Cancer and Its Potential Therapeutic Implications. Nutrients 2024; 16:2569. [PMID: 39125448 PMCID: PMC11314534 DOI: 10.3390/nu16152569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
It is now established that patients with rheumatoid arthritis (RA) have an increased risk of developing cervical cancer (CC) or its precursor, cervical intraepithelial neoplasia (CIN). However, the underlying mechanisms of this association have not been elucidated. RA is characterized by unresolved chronic inflammation. It is suggested that human papillomavirus (HPV) infection in RA patients exacerbates inflammation, increasing the risk of CC. The tumor microenvironment in RA patients with CC is also marked by chronic inflammation, which aggravates the manifestations of both conditions. Gut and vaginal dysbiosis are also considered potential mechanisms that contribute to the chronic inflammation and aggravation of RA and CC manifestations. Numerous clinical and pre-clinical studies have demonstrated the beneficial effects of various nutritional approaches to attenuate chronic inflammation, including polyunsaturated fatty acids and their derivatives, specialized pro-resolving mediators (SPMs), probiotics, prebiotics, and certain diets. We believe that successful resolution of chronic inflammation and correction of dysbiosis, in combination with current anti-RA and anti-CC therapies, is a promising therapeutic approach for RA and CC. This approach could also reduce the risk of CC development in HPV-infected RA patients.
Collapse
Affiliation(s)
- Kirill Gusakov
- Department of Morphological Sciences, Adelson School of Medicine, Ariel University, Ariel 4077625, Israel; (K.G.); (S.A.)
| | - Alexander Kalinkovich
- Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv 6905126, Israel;
| | - Shai Ashkenazi
- Department of Morphological Sciences, Adelson School of Medicine, Ariel University, Ariel 4077625, Israel; (K.G.); (S.A.)
| | - Gregory Livshits
- Department of Morphological Sciences, Adelson School of Medicine, Ariel University, Ariel 4077625, Israel; (K.G.); (S.A.)
- Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, Tel-Aviv University, Tel-Aviv 6905126, Israel;
| |
Collapse
|
18
|
Pereira D, Alves N, Sousa Â, Valente JFA. Metal-based approaches to fight cervical cancer. Drug Discov Today 2024; 29:104073. [PMID: 38944184 DOI: 10.1016/j.drudis.2024.104073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/11/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
Cervical cancer (CC) is one of the leading causes of death among women worldwide. The current treatments for this cancer consist of invasive methods such as chemotherapeutic drugs, radiation, immunotherapy and surgery, which could lead to severe side effects and hinder the patient's life quality. Although metal-based therapies, including cisplatin and ruthenium-based compounds, offer promising alternatives, they lack specificity and harm healthy cells. Combining metal nanoparticles with standard approaches has demonstrated remarkable efficacy and safety in the fight against CC. Overall, this review is intended to show the latest advancements and insights into metal-based strategies, creating a promising path for more effective and safer treatments in the battle against CC.
Collapse
Affiliation(s)
- Diana Pereira
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; CDRSP-IPL-Centre for Rapid and Sustainable Product Development, Polytechnic Institute of Leiria, Marinha Grande, 2430-028 Leiria, Portugal
| | - Nuno Alves
- CDRSP-IPL-Centre for Rapid and Sustainable Product Development, Polytechnic Institute of Leiria, Marinha Grande, 2430-028 Leiria, Portugal
| | - Ângela Sousa
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal.
| | - Joana F A Valente
- CDRSP-IPL-Centre for Rapid and Sustainable Product Development, Polytechnic Institute of Leiria, Marinha Grande, 2430-028 Leiria, Portugal.
| |
Collapse
|
19
|
Iamborwornkun N, Kitkumthorn N, Stevenson A, Kirk A, Graham SV, Chuen-im T. Identifying regulatory elements and their RNA-binding proteins in the 3' untranslated regions of papillomavirus late mRNAs. Biomed Rep 2024; 21:125. [PMID: 39006509 PMCID: PMC11240274 DOI: 10.3892/br.2024.1813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/23/2024] [Indexed: 07/16/2024] Open
Abstract
Human papillomaviruses (HPVs) infect cutaneous and mucosal epithelia to cause benign (warts) and malignant lesions (e.g. cervical cancer). Bovine papillomaviruses (BPVs) infect fibroblasts to cause fibropapillomas but can also infect cutaneous epithelial cells. For HPV-1, -16, -31 and BPV-1, cis-acting RNA elements in the late 3' untranslated region (3'UTR) control expression of virus proteins by binding host cell proteins. The present study compared the effects on gene expression of the cis-acting elements of seven PV late 3'UTRs (HPV-6b, -11, -16, -31 and BPV-1, -3 and -4) representing a range of different genera and species and pathological properties. pSV-beta-galactosidase reporter plasmids containing the late 3'UTRs from seven PVs were transiently transfected into cervical adenocarcinoma HeLa cells, and reporter gene expression quantified by reverse transcription-quantitative PCR and a beta-galactosidase assay. All elements inhibited gene expression in keratinocytes. Cancer-related types HPV-16 and -31, had the greatest inhibitory activity whereas the lowest inhibition was found in the non-cancer related types, BPV-3 and HPV-11. Using RBPmap version 1.1, bioinformatics predictions of factors binding the elements identified proteins which function mainly in mRNA splicing. Markedly, in terms of protein binding motifs, BPV late 3'UTR elements were similar to those of HPV-1a but not to other HPVs. Using HPV-1a as a model and siRNA depletion, the bioinformatics predictions were tested and it was found that PABPC4 was responsible for some of the 3'UTR repressive activity. The data revealed candidate proteins that could control PV late gene expression.
Collapse
Affiliation(s)
- Nuttawan Iamborwornkun
- Department of Microbiology, Faculty of Science, Silpakorn University, Sanam Chandra Palace Campus, Nakhon Pathom 73000, Thailand
| | - Nakarin Kitkumthorn
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, Bangkok 10400, Thailand
| | - Andrew Stevenson
- MRC-University of Glasgow Centre for Virus Research, School of Infection and Immunity, College of Medical Veterinary and Life Sciences University of Glasgow, Glasgow, G61 1QH, UK
| | - Anna Kirk
- MRC-University of Glasgow Centre for Virus Research, School of Infection and Immunity, College of Medical Veterinary and Life Sciences University of Glasgow, Glasgow, G61 1QH, UK
| | - Sheila V. Graham
- MRC-University of Glasgow Centre for Virus Research, School of Infection and Immunity, College of Medical Veterinary and Life Sciences University of Glasgow, Glasgow, G61 1QH, UK
| | - Thanaporn Chuen-im
- Department of Microbiology, Faculty of Science, Silpakorn University, Sanam Chandra Palace Campus, Nakhon Pathom 73000, Thailand
| |
Collapse
|
20
|
Bogka E, Naoum P, Pavi E, Athanasakis K. What Influences Parents on Their Decision to Vaccinate Their Daughters Against HPV? J Pediatr Adolesc Gynecol 2024; 37:396-401. [PMID: 38367952 DOI: 10.1016/j.jpag.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/28/2024] [Accepted: 02/11/2024] [Indexed: 02/19/2024]
Abstract
STUDY OBJECTIVE To investigate and compare the attitudes of parents who initiated their daughters' HPV vaccination with parents who did not. METHODS Data were collected through telephone interviews with a close-end questionnaire on parents' knowledge, attitudes towards the vaccine, and the reasons for vaccinating or not their daughters against HPV. The sample was random, stratified by geographic region and urbanization level, national, and representative of the general population of parents of girls aged 11-18 in Greece. Statistical analysis consisted of descriptives, an inferential analysis with hypothesis testing, and a logistic regression model. RESULTS Overall, 996 parents were included in the analysis, 99.0% of which were women. Forty-seven percent of them initiated their daughters' HPV vaccination, with physician recommendation stated as the most important reason for this decision (50.2%). For those who had not initiated their daughters' HPV vaccination (53%), lack of information was the most important reason (25.6%). In the hypothesis testing, parents with unvaccinated daughters agreed more with the statements "I do not have enough information for the HPV vaccine to decide," and "My child is very young to be vaccinated for an STD" (P < .05), but no significant difference found for the statement "It's more possible for a vaccinated girl to begin sexual activities" (P > .05). CONCLUSIONS Lack of information, young age of the daughter, and perceived effectiveness of the vaccine are the most important hesitation factors. Physician recommendation is the most important reason to initiate vaccination.
Collapse
Affiliation(s)
- Elissavet Bogka
- Department of Public Health Policy, Laboratory for Health Technology Assessment, University of West Attica, Athens, Greece.
| | - Panagiota Naoum
- Department of Public Health Policy, Laboratory for Health Technology Assessment, University of West Attica, Athens, Greece
| | - Elpida Pavi
- Department of Public Health Policy, Laboratory for Health Technology Assessment, University of West Attica, Athens, Greece
| | - Kostas Athanasakis
- Department of Public Health Policy, Laboratory for Health Technology Assessment, University of West Attica, Athens, Greece
| |
Collapse
|
21
|
Mlynarczyk-Bonikowska B, Rudnicka L. HPV Infections-Classification, Pathogenesis, and Potential New Therapies. Int J Mol Sci 2024; 25:7616. [PMID: 39062859 PMCID: PMC11277246 DOI: 10.3390/ijms25147616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
To date, more than 400 types of human papillomavirus (HPV) have been identified. Despite the creation of effective prophylactic vaccines against the most common genital HPVs, the viruses remain among the most prevalent pathogens found in humans. According to WHO data, they are the cause of 5% of all cancers. Even more frequent are persistent and recurrent benign lesions such as genital and common warts. HPVs are resistant to many disinfectants and relatively unsusceptible to external conditions. There is still no drug available to inhibit viral replication, and treatment is based on removing lesions or stimulating the host immune system. This paper presents the systematics of HPV and the differences in HPV structure between different genetic types, lineages, and sublineages, based on the literature and GenBank data. We also present the pathogenesis of diseases caused by HPV, with a special focus on the role played by E6, E7, and other viral proteins in the development of benign and cancerous lesions. We discuss further prospects for the treatment of HPV infections, including, among others, substances that block the entry of HPV into cells, inhibitors of viral early proteins, and some substances of plant origin that inhibit viral replication, as well as new possibilities for therapeutic vaccines.
Collapse
|
22
|
Patterson MR, Cogan JA, Cassidy R, Theobald DA, Wang M, Scarth JA, Anene CA, Whitehouse A, Morgan EL, Macdonald A. The Hippo pathway transcription factors YAP and TAZ play HPV-type dependent roles in cervical cancer. Nat Commun 2024; 15:5809. [PMID: 38987584 PMCID: PMC11237029 DOI: 10.1038/s41467-024-49965-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 06/21/2024] [Indexed: 07/12/2024] Open
Abstract
Human papillomaviruses (HPVs) cause most cervical cancers and an increasing number of anogenital and oral carcinomas, with most cases caused by HPV16 or HPV18. HPV hijacks host signalling pathways to promote carcinogenesis. Understanding these interactions could permit identification of much-needed therapeutics for HPV-driven malignancies. The Hippo signalling pathway is important in HPV+ cancers, with the downstream effector YAP playing a pro-oncogenic role. In contrast, the significance of its paralogue TAZ remains largely uncharacterised in these cancers. We demonstrate that TAZ is dysregulated in a HPV-type dependent manner by a distinct mechanism to that of YAP and controls proliferation via alternative cellular targets. Analysis of cervical cancer cell lines and patient biopsies revealed that TAZ expression was only significantly increased in HPV18+ and HPV18-like cells and TAZ knockdown reduced proliferation, migration and invasion only in HPV18+ cells. RNA-sequencing of HPV18+ cervical cells revealed that YAP and TAZ have distinct targets, suggesting they promote carcinogenesis by different mechanisms. Thus, in HPV18+ cancers, YAP and TAZ play non-redundant roles. This analysis identified TOGARAM2 as a previously uncharacterised TAZ target and demonstrates its role as a key effector of TAZ-mediated proliferation, migration and invasion in HPV18+ cancers.
Collapse
Affiliation(s)
- Molly R Patterson
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK.
| | - Joseph A Cogan
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Rosa Cassidy
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Daisy A Theobald
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Miao Wang
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - James A Scarth
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Chinedu A Anene
- Barts Cancer Institute, Queen Mary University of London, London, UK
- Centre for Biomedical Science Research, Leeds Beckett University, Leeds, UK
| | - Adrian Whitehouse
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Ethan L Morgan
- School of Life Sciences, University of Sussex, Brighton, UK
| | - Andrew Macdonald
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK.
| |
Collapse
|
23
|
Wang S, Li G, Wang Z, Luo Q, Zeng J, Xiao J. Exploring the mechanisms of Qingdu Fang for the treatment of cervical HR-HPV using UPLC-QTOF-MS, network pharmacology, and cell experimentation. Front Pharmacol 2024; 15:1415422. [PMID: 39076591 PMCID: PMC11284526 DOI: 10.3389/fphar.2024.1415422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/20/2024] [Indexed: 07/31/2024] Open
Abstract
Background: Qingdu Fang (QDF) is a traditional Chinese herbal formula with remarkable clinical effect in the treatment of HR-HPV, but its mechanism remains unclear. In this study, UPLC-QTOF-MS was used to detect its components, network pharmacology was used to explore the traditional Chinese medicine monomers and their related targets for the treatment of HR-HPV in QDF. Molecular docking and in vitro experiments were performed to verify the results. Methods: QDF constituents and active compounds were identified using UPLC-QTOF-MS analysis. TCMSP and GeneCard databases were used to identify active components, targets, and potential therapeutic targets in HR-HPV. PPI network was constructed using the String database to analyze protein-protein interactions. Cytoscape3.7.2 was used to construct PPI networks, while GO enrichment and KEGG pathway analyses with R. The effect of QDF on H8 cell proliferation was measured using the CCK-8 method, and apoptosis and cell cycle was assessed with flow cytometry. The effects of QDF on PI3K/AKT pathway were detected by Western blotting. Results: A total of 27 compounds were identified on QDF by UPLC-QTOF-MS. Base on Network pharmacology,a total of 254 target genes are involved in the action of QDF on cervical HR-HPV. PPI analysis suggested that TP53, JUN, AKT1, STAT3, TNF and IL6 were potential targets for QDF treatment of HR-HPV. Molecular docking shows that two compounds have strong binding activity with AKT1. CCK-8 and morphological observation have shown that QDF inhibits H8 cell proliferation in a dose-dependent manner. Flow cytometry experiments suggest that QDF induces apoptosis and cell cycle arrest in H8 cells. Western blotting experiments reveal that QDF inhibits the PI3K/AKT signaling pathway. Conclusion: QDF has a multi-faceted therapeutic approach for HR-HPV, targeting inflammation, oxidation, and apoptosis. It induces apoptosis in H8 cells by inhibiting the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Shanyun Wang
- The Second Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Zhongshan Hospital of Traditional Chinese Medicine, Zhongshan, Guangdong, China
| | - Guangru Li
- Zhanjiang Institute of Clinical Medicine, Central People’s Hospital of Zhanjiang, Zhanjiang, Guangdong, China
- Zhanjiang Key Laboratory of Leukemia Pathogenesis and Targeted Therapy Research, Zhanjiang, Guangdong, China
| | - Zhuqiang Wang
- Zhongshan Hospital of Traditional Chinese Medicine, Zhongshan, Guangdong, China
| | - Qing Luo
- Zhongshan Hospital of Traditional Chinese Medicine, Zhongshan, Guangdong, China
| | - Jianfeng Zeng
- Zhongshan Hospital of Traditional Chinese Medicine, Zhongshan, Guangdong, China
| | - Jing Xiao
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
24
|
Nascimento KCG, São Marcos BDF, Fontes PHB, Isídio BEDO, Leão SL, da Silva GRP, Lussón DB, dos Santos DL, Leal LRS, Espinoza BCF, de Macêdo LS, de França Neto PL, Silva AJD, Silva Neto JC, Santos VEP, de Freitas AC. HPV Detection in Breast Tumors and Associated Risk Factors in Northeastern Brazil. Cells 2024; 13:1132. [PMID: 38994984 PMCID: PMC11240692 DOI: 10.3390/cells13131132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024] Open
Abstract
Breast cancer risk factors include lifestyle, genetic-hormonal influences, and viral infections. Human papillomavirus (HPV), known primarily as the etiological agent of cervical cancer, also appears active in breast carcinogenesis, as evidenced in our study of 56 patients from northeastern Brazil. We assessed the clinical and sociodemographic characteristics, correlating them with various breast cancer tumor types. HPV detection involved amplifying the L1 region, with viral load measured using the E2/E6 ratio and viral activity indicated by E5 oncogene expression. Predominantly, patients over 56 years of age with healthy lifestyles showed a high incidence of invasive ductal carcinoma and triple-negative breast cancer. HPV was detected in 35.7% of cases, mostly HPV16, which is associated with high viral loads (80 copies per cell) and significant E5 expression. These results hint at a possible link between HPV and breast carcinogenesis, necessitating further studies to explore this association and the underlying viral mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Antonio Carlos de Freitas
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235. Cidade Universitária Recife, Pernambuco, Recife 50670901, PE, Brazil; (K.C.G.N.); (B.d.F.S.M.); (P.H.B.F.); (B.E.d.O.I.); (S.L.L.); (G.R.P.d.S.); (D.B.L.); (D.L.d.S.); (L.R.S.L.); (B.C.F.E.); (L.S.d.M.); (P.L.d.F.N.); (A.J.D.S.); (J.C.S.N.); (V.E.P.S.)
| |
Collapse
|
25
|
Makioka D, Inada M, Awano M, Saito E, Shinoda T, Abe S, Yoshimura T, Müller M, Sasagawa T, Ito E. Quantification of HPV16 E7 Oncoproteins in Urine Specimens from Women with Cervical Intraepithelial Neoplasia. Microorganisms 2024; 12:1205. [PMID: 38930587 PMCID: PMC11205804 DOI: 10.3390/microorganisms12061205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/03/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
We present the validity of using an ultrasensitive enzyme-linked immunosorbent assay (ELISA) for quantifying high-risk human papillomavirus (HPV) 16 E7 oncoproteins in urine specimens as a noninvasive method of analyzing the oncogenic activity of HPV. Some reports claim that the oncogenic activity of HPV is a more relevant clinical indicator than the presence of HPV DNA for estimating malignant potential. In the present study, urine containing HPV16 and related types were selected by uniplex E6/E7 polymerase chain reaction and classified according to the pathologic diagnosis of cervical intraepithelial neoplasia (CIN) in cervical biopsy specimens. Our ultrasensitive ELISA was able to detect attomole levels of HPV16 E7 oncoproteins, and it detected HPV16-positive SiHa cells at >500 cells/mL without detecting HPV18-positive cells. Our ELISA results showed E7 oncoproteins in 80% (4/5) of urine specimens from women with HPV16-positive CIN1, 71% (5/7) of urine specimens from CIN2 patients, and 38% (3/8) of urine specimens from CIN3 patients. Some urine specimens with undetectable E7 oncoproteins were thought to be negative for live HPV 16-positive cells or in an inactivated state of infection. These results provide the basis for assessing oncogenic activity by quantifying E7 oncoproteins in patient urine.
Collapse
Affiliation(s)
- Daiki Makioka
- Department of Biology, Waseda University, Shinjuku, Tokyo 162-8480, Japan; (D.M.); (M.I.); (M.A.); (E.S.); (T.S.); (S.A.)
| | - Mikio Inada
- Department of Biology, Waseda University, Shinjuku, Tokyo 162-8480, Japan; (D.M.); (M.I.); (M.A.); (E.S.); (T.S.); (S.A.)
| | - Masayuki Awano
- Department of Biology, Waseda University, Shinjuku, Tokyo 162-8480, Japan; (D.M.); (M.I.); (M.A.); (E.S.); (T.S.); (S.A.)
| | - Ema Saito
- Department of Biology, Waseda University, Shinjuku, Tokyo 162-8480, Japan; (D.M.); (M.I.); (M.A.); (E.S.); (T.S.); (S.A.)
| | - Takuya Shinoda
- Department of Biology, Waseda University, Shinjuku, Tokyo 162-8480, Japan; (D.M.); (M.I.); (M.A.); (E.S.); (T.S.); (S.A.)
| | - Satoko Abe
- Department of Biology, Waseda University, Shinjuku, Tokyo 162-8480, Japan; (D.M.); (M.I.); (M.A.); (E.S.); (T.S.); (S.A.)
| | - Teruki Yoshimura
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Tobetsu 061-0293, Hokkaido, Japan;
| | - Martin Müller
- Tumorvirus-Specific Vaccination Strategies, Deutsche Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany;
| | - Toshiyuki Sasagawa
- Department of Obstetrics and Gynecology, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan
| | - Etsuro Ito
- Department of Biology, Waseda University, Shinjuku, Tokyo 162-8480, Japan; (D.M.); (M.I.); (M.A.); (E.S.); (T.S.); (S.A.)
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
26
|
Fobian SF, Mei X, Crezee J, Snoek BC, Steenbergen RDM, Hu J, Ten Hagen TLM, Vermeulen L, Stalpers LJA, Oei AL. Increased human papillomavirus viral load is correlated to higher severity of cervical disease and poorer clinical outcome: A systematic review. J Med Virol 2024; 96:e29741. [PMID: 38922964 DOI: 10.1002/jmv.29741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 05/14/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024]
Abstract
Cervical cancer is the fourth most common cancer in women worldwide and is caused by persistent infection with high-risk types of human papillomavirus (HPV). HPV viral load, the amount of HPV DNA in a sample, has been suggested to correlate with cervical disease severity, and with clinical outcome of cervical cancer. In this systematic review, we searched three databases (EMBASE, PubMed, Web of Science) to examine the current evidence on the association between HPV viral load in cervical samples and disease severity, as well as clinical outcome. After exclusion of articles not on HPV, cervical cancer, or containing clinical outcomes, 85 original studies involving 173 746 women were included. The vast majority (73/85 = 85.9%) reported that a higher viral load was correlated with higher disease severity or worse clinical outcome. Several studies reported either no correlation (3/85 = 3.5%), or the opposite correlation (9/85 = 10.6%); possible reasons being different categorization of HPV viral load levels, or the use of specific sampling methods. Despite variations in study design and populations, the above findings suggest that HPV viral load is correlated to clinical outcome, and may become an important biomarker for treatment selection and response monitoring for cervical cancer.
Collapse
Affiliation(s)
- Seth-Frerich Fobian
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Center for Experimental and Molecular Medicine (CEMM), Laboratory for Experimental Oncology and Radiobiology (LEXOR), Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Xionge Mei
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Center for Experimental and Molecular Medicine (CEMM), Laboratory for Experimental Oncology and Radiobiology (LEXOR), Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Johannes Crezee
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Barbara C Snoek
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Center for Experimental and Molecular Medicine (CEMM), Laboratory for Experimental Oncology and Radiobiology (LEXOR), Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | | | - Jiafen Hu
- Jake Gittlen Laboratories of Cancer Research, Department of Pathology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Timo L M Ten Hagen
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Louis Vermeulen
- Center for Experimental and Molecular Medicine (CEMM), Laboratory for Experimental Oncology and Radiobiology (LEXOR), Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - Lukas J A Stalpers
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Center for Experimental and Molecular Medicine (CEMM), Laboratory for Experimental Oncology and Radiobiology (LEXOR), Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Arlene L Oei
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Center for Experimental and Molecular Medicine (CEMM), Laboratory for Experimental Oncology and Radiobiology (LEXOR), Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| |
Collapse
|
27
|
Cao F, Li YZ, Zhang DY, Wang XY, Chen WX, Liu FH, Men YX, Gao S, Lin CQ, Zou HC, Gong TT, Wu QJ. Human papillomavirus infection and the risk of cancer at specific sites other than anogenital tract and oropharyngeal region: an umbrella review. EBioMedicine 2024; 104:105155. [PMID: 38744109 PMCID: PMC11108822 DOI: 10.1016/j.ebiom.2024.105155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Despite numerous studies having evaluated the associations between human papillomavirus (HPV) infection and risk of specific cancers other than anogenital tract and oropharyngeal, the findings are inconsistent and the quality of evidence has not been systematically quantified. We aimed to summarise the existing evidence as well as to evaluate the strength and credibility of these associations. METHODS We conducted an umbrella review of systematic reviews and meta-analyses of observational studies. PubMed, EMBASE, and Web of Science were searched from inception to March 2024. Studies with systematic reviews and meta-analyses that examined associations between HPV or HPV-associated genotypes infection and specific cancers were eligible for this review. The quality of the methodology was evaluated using A Measurement Tool to Assess systematic Reviews (AMSTAR). The credibility of the evidence was assessed using GRADE. The protocol was preregistered with PROSPERO (CRD42023439070). FINDINGS The umbrella review identified 31 eligible studies reporting 87 associations with meta-analytic estimates, including 1191 individual studies with 336,195 participants. Of those, 29 (93.5%) studies were rated as over moderate quality by AMSTAR. Only one association indicating HPV-18 infection associated with an increased risk of breast cancer (odds ratio [OR] = 3.48, 95% confidence interval [CI] = 2.24-5.41) was graded as convincing evidence. There were five unique outcomes identified as highly suggestive evidence, including HPV infection increased the risk of oral squamous cell carcinoma (OR = 7.03, 95% CI = 3.87-12.76), oesophageal cancer (OR = 3.32, 95% CI = 2.54-4.34), oesophageal squamous cell carcinoma (OR = 2.69, 95% CI = 2.05-3.54), lung cancer (OR = 3.60, 95% CI = 2.59-5.01), and breast cancer (OR = 6.26, 95% CI = 4.35-9.00). According to GRADE, one association was classified as high, indicating that compared with the controls in normal tissues, HPV infection was associated with an increased risk of breast cancer. INTERPRETATION The umbrella review synthesised up-to-date observational evidence on HPV infection with the risk of breast cancer, oral squamous cell carcinoma, oesophageal cancer, oesophageal squamous cell carcinoma, and lung cancer. Further larger prospective cohort studies are needed to verify the associations, providing public health recommendations for prevention of disease. FUNDING National Key Research and Development Program of China, Natural Science Foundation of China, Outstanding Scientific Fund of Shengjing Hospital of China Medical University, and 345 Talent Project of Shengjing Hospital of China Medical University.
Collapse
Affiliation(s)
- Fan Cao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Zi Li
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - De-Yu Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiao-Ying Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wen-Xiao Chen
- Department of Sports Medicine and Joint Surgery, The People's Hospital of Liaoning Province, Shenyang, China
| | - Fang-Hua Liu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Xuan Men
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Song Gao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chun-Qing Lin
- National Clinical Research Center for Cancer, National Cancer Center, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Hua-Chun Zou
- School of Public Health, Fudan University, Shanghai, China; Kirby Institute, University of New South Wales, Sydney, Australia.
| | - Ting-Ting Gong
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Qi-Jun Wu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China; Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China; NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
| |
Collapse
|
28
|
Lo Cigno I, Calati F, Girone C, Catozzo M, Gariglio M. High-risk HPV oncoproteins E6 and E7 and their interplay with the innate immune response: Uncovering mechanisms of immune evasion and therapeutic prospects. J Med Virol 2024; 96:e29685. [PMID: 38783790 DOI: 10.1002/jmv.29685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/22/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Human papillomaviruses (HPVs) are double-stranded DNA (dsDNA) tumor viruses causally associated with 5% of human cancers, comprising both anogenital and upper aerodigestive tract carcinomas. Despite the availability of prophylactic vaccines, HPVs continue to pose a significant global health challenge, primarily due to inadequate vaccine access and coverage. These viruses can establish persistent infections by evading both the intrinsic defenses of infected tissues and the extrinsic defenses provided by professional innate immune cells. Crucial for their evasion strategies is their unique intraepithelial life cycle, which effectively shields them from host detection. Thus, strategies aimed at reactivating the innate immune response within infected or transformed epithelial cells, particularly through the production of type I interferons (IFNs) and lymphocyte-recruiting chemokines, are considered viable solutions to counteract the adverse effects of persistent infections by these oncogenic viruses. This review focuses on the complex interplay between the high-risk HPV oncoproteins E6 and E7 and the innate immune response in epithelial cells and HPV-associated cancers. In particular, it details the molecular mechanisms by which E6 and E7 modulate the innate immune response, highlighting significant progress in our comprehension of these processes. It also examines forward-looking strategies that exploit the innate immune system to ameliorate existing anticancer therapies, thereby providing crucial insights into future therapeutic developments.
Collapse
Affiliation(s)
- Irene Lo Cigno
- Virology Unit, Department of Translational Medicine, Eastern Piedmont University, Novara, Italy
| | - Federica Calati
- Virology Unit, Department of Translational Medicine, Eastern Piedmont University, Novara, Italy
| | - Carlo Girone
- Virology Unit, Department of Translational Medicine, Eastern Piedmont University, Novara, Italy
| | - Marta Catozzo
- Virology Unit, Department of Translational Medicine, Eastern Piedmont University, Novara, Italy
| | - Marisa Gariglio
- Virology Unit, Department of Translational Medicine, Eastern Piedmont University, Novara, Italy
| |
Collapse
|
29
|
Tran NH, Sais D, Tran N. Advances in human papillomavirus detection and molecular understanding in head and neck cancers: Implications for clinical management. J Med Virol 2024; 96:e29746. [PMID: 38884391 DOI: 10.1002/jmv.29746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 06/18/2024]
Abstract
Head and neck cancers (HNCs), primarily head and neck squamous cell carcinoma (HNSCC), are associated with high-risk human papillomavirus (HR HPV), notably HPV16 and HPV18. HPV status guides treatment and predicts outcomes, with distinct molecular pathways in HPV-driven HNSCC influencing survival rates. HNC incidence is rising globally, with regional variations reflecting diverse risk factors, including tobacco, alcohol, and HPV infection. Oropharyngeal cancers attributed to HPV have significantly increased, particularly in regions like the United States. The HPV16 genome, characterized by oncoproteins E6 and E7, disrupts crucial cell cycle regulators, including tumor protein p53 (TP53) and retinoblastoma (Rb), contributing to HNSCC pathogenesis. P16 immunohistochemistry (IHC) is a reliable surrogate marker for HPV16 positivity, while in situ hybridization and polymerase chain reaction (PCR) techniques, notably reverse transcription-quantitative PCR (RT-qPCR), offer sensitive HPV detection. Liquid-based RT-qPCR, especially in saliva, shows promise for noninvasive HPV detection, offering simplicity, cost-effectiveness, and patient compliance. These molecular advancements enhance diagnostic accuracy, guide treatment decisions, and improve patient outcomes in HNC management. In conclusion, advances in HPV detection and molecular understanding have significant clinical management implications. Integrating these advancements into routine practice could ultimately improve patient outcomes.
Collapse
Affiliation(s)
- Ngoc Ha Tran
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia
| | - Dayna Sais
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia
| | - Nham Tran
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
30
|
Amato M, Santonocito S, Bruno MT, Polizzi A, Mastroianni A, Chaurasia A, Isola G. Oral and periodontal manifestation related during human papilloma virus infections: Update on early prognostic factors. Heliyon 2024; 10:e31061. [PMID: 38813162 PMCID: PMC11133762 DOI: 10.1016/j.heliyon.2024.e31061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/11/2024] [Accepted: 05/09/2024] [Indexed: 05/31/2024] Open
Abstract
Human Papilloma Virus (HPV) is considered one of the most common sexually transmitted infections and has been shown to play an important role in the pathogenesis of squamous cell carcinomas (SCC) of the cervix and head and neck. Manifestations of HPV infections can be manifold, ranging from asymptomatic infections to benign or potentially malignant lesions to intraepithelial neoplasms and invasive carcinomas. The heterogeneity of clinical manifestations from HPV infection depends on the interactions between the viral agent and the host, a direct consequence of the ability on the part of HPV is to remain silent and to evade and convey the action of the host immune system. The oral mucosa represents one of the tissues for which HPV has a distinct tropism and is frequently affected by infection. While much information is available on the role that HPV infection plays in the development of SCC in the oral cavity, there is less information on asymptomatic infections and benign HPV-induced oral lesions. Therefore, the purpose of this review is to analyze, in light of current knowledge, the early clinical and bio-humoral prognostic features related to the risk of HPV malignant transformation, focusing on subclinical conditions, benign lesions, and the correlation between oral infection and infection in other districts. The data show that the main risk associated with HPV infection is related to malignant transformation of lesions. Although HPV-driven OPSCC is associated with a better prognosis than non-HPV-driven OPSCC, primary prevention and early detection of the infection and affected genotype are essential to reduce the risk of malignant neoplastic complications and improve the prognosis.
Collapse
Affiliation(s)
- Mariacristina Amato
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, AOU "Policlinico-San Marco", Via S. Sofia 78, 95124, Catania, Italy
| | - Simona Santonocito
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, AOU "Policlinico-San Marco", Via S. Sofia 78, 95124, Catania, Italy
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University of Messina, 98100 Messina, Italy
| | - Maria Teresa Bruno
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, AOU "Policlinico-San Marco", Via S. Sofia 78, 95124, Catania, Italy
- Research Center of “Human Papilloma Virus” University of Catania, AOU "Policlinico-San Marco", Via S. Sofia 78, 95124, Catania, Italy
| | - Alessandro Polizzi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, AOU "Policlinico-San Marco", Via S. Sofia 78, 95124, Catania, Italy
| | - Alessandro Mastroianni
- Dentistry Unit, Department of Clinical Sciences and Translational Medicine, University of Tor Vergata, 00133, Rome, Italy
| | - Akhilanand Chaurasia
- Department of Oral Medicine & Radiology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, AOU "Policlinico-San Marco", Via S. Sofia 78, 95124, Catania, Italy
- Research Center of “Human Papilloma Virus” University of Catania, AOU "Policlinico-San Marco", Via S. Sofia 78, 95124, Catania, Italy
| |
Collapse
|
31
|
Graham SV. HPV and RNA Binding Proteins: What We Know and What Remains to Be Discovered. Viruses 2024; 16:783. [PMID: 38793664 PMCID: PMC11126060 DOI: 10.3390/v16050783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/08/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
Papillomavirus gene regulation is largely post-transcriptional due to overlapping open reading frames and the use of alternative polyadenylation and alternative splicing to produce the full suite of viral mRNAs. These processes are controlled by a wide range of cellular RNA binding proteins (RPBs), including constitutive splicing factors and cleavage and polyadenylation machinery, but also factors that regulate these processes, for example, SR and hnRNP proteins. Like cellular RNAs, papillomavirus RNAs have been shown to bind many such proteins. The life cycle of papillomaviruses is intimately linked to differentiation of the epithelial tissues the virus infects. For example, viral late mRNAs and proteins are expressed only in the most differentiated epithelial layers to avoid recognition by the host immune response. Papillomavirus genome replication is linked to the DNA damage response and viral chromatin conformation, processes which also link to RNA processing. Challenges with respect to elucidating how RBPs regulate the viral life cycle include consideration of the orchestrated spatial aspect of viral gene expression in an infected epithelium and the epigenetic nature of the viral episomal genome. This review discusses RBPs that control viral gene expression, and how the connectivity of various nuclear processes might contribute to viral mRNA production.
Collapse
Affiliation(s)
- Sheila V Graham
- MRC-University of Glasgow Centre for Virus Research, School of Infection and Immunity, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| |
Collapse
|
32
|
Cabibi D, Giannone AG, Quattrocchi A, Lo Coco R, Formisano E, Porcasi R, Benfante V, Comelli A, Capra G. High-Risk HPV CISH Detection in Cervical Biopsies with Weak and/or Focal p16 Immunohistochemical Positivity. Int J Mol Sci 2024; 25:5354. [PMID: 38791395 PMCID: PMC11121605 DOI: 10.3390/ijms25105354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/19/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
In cervical biopsies, for diagnosis of Human Papilloma Virus (HPV) related conditions, the immunohistochemical staining for p16 has a diagnostic value only if diffusely and strongly positive, pattern named "block-like". "Weak and/or focal (w/f) p16 expression" is commonly considered nonspecific. In our previous study, we demonstrated the presence of high-risk HPV (hrHPV) DNA by LiPa method in biopsies showing w/f p16 positivity. The aim of the present study was to investigate the presence of hrHPV-DNA by CISH in the areas showing w/f p16 expression. We assessed the presence of hrHPV16, 18, 31, 33, 51 by CISH in a group of 20 cervical biopsies showing w/f p16 expression, some with increased Ki67, and in 10 cases of block-like expression, employed as control. The immunohistochemical p16 expression was also assessed by digital pathology. hrHPV-CISH nuclear positivity was encountered in 12/20 cases of w/f p16 expression (60%). Different patterns of nuclear positivity were identified, classified as punctate, diffuse and mixed, with different epithelial distributions. Our results, albeit in a limited casuistry, show the presence of HPV in an integrated status highlighted by CISH in w/f p16 positive cases. This could suggest the necessity of a careful follow-up of the patients with "weak" and/or "focal" immunohistochemical patterns of p16, mainly in cases of increased Ki67 cell proliferation index, supplemented with molecular biology examinations.
Collapse
Affiliation(s)
- Daniela Cabibi
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy
| | - Antonino Giulio Giannone
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy
| | - Alberto Quattrocchi
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy
| | - Roberta Lo Coco
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy
| | - Eleonora Formisano
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy
| | - Rossana Porcasi
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy
| | - Viviana Benfante
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy
| | - Albert Comelli
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy
| | - Giuseppina Capra
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
33
|
Sibeko S, Sanderson M, Moyo S, Botha MH. Role of the epithelium in human papillomavirus and human immunodeficiency virus infections in the female genital tract. FRONTIERS IN REPRODUCTIVE HEALTH 2024; 6:1408198. [PMID: 38764554 PMCID: PMC11100325 DOI: 10.3389/frph.2024.1408198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 04/17/2024] [Indexed: 05/21/2024] Open
Abstract
Background Two-thirds of people living with human immunodeficiency virus type 1 (HIV-1) infection reside in Sub-Saharan Africa, where there are the highest prevalence and incidence rates of human papillomavirus (HPV) infection. Both infections are sexually transmitted and enter the body via the epithelium. This review describes the extent of involvement of the epithelium in each infection in the female genital tract. Methods A narrative review was conducted on the role of the epithelium in HPV and HIV-1 infections. Results An intact epithelial barrier is the predominant form of protection against viral entry and infection, including from HIV-1 and HPV. HPV is an intraepithelial pathogen, and thus, its growth and amplification, which are dependent on squamous cell differentiation, occur in the epithelium. It gains entry to the basal cells of the stratified squamous epithelium via micro-abrasions or other epithelial injuries that expose the basement membrane. HIV-1, conversely, passes through the epithelium to infect subepithelial tissues. Following deposition of the HIV-1-containing inoculum into the lumen, the virus enters the mucosa through breaks in the epithelial barrier within hours of infection. Further, HIV-1 penetrates the epithelium via various mechanisms, including paracellular passage or across epithelial cells through transcytosis. The capture of the virus from the mucosal surface by intraepithelial and/or subepithelial target cells has also been documented. Conclusions Epithelial disruption is the major pathogenetic pathway in HIV-1 and HPV infections. Therefore, biochemical compounds that strengthen the epithelial barrier must be prioritized to prevent these infections.
Collapse
Affiliation(s)
- Sengeziwe Sibeko
- Public Health, Societies and Belonging Division, Human Sciences Research Council, Durban, South Africa
| | - Micheline Sanderson
- Division of Anatomical Pathology, Department of Pathology, Stellenbosch University, Cape Town, South Africa
| | - Sizulu Moyo
- Public Health, Societies and Belonging Division, Human Sciences Research Council, Durban, South Africa
| | - Matthys H. Botha
- Department of Obstetrics and Gynaecology, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
34
|
Zeber-Lubecka N, Kulecka M, Dabrowska M, Baginska-Drabiuk K, Glowienka-Stodolak M, Nowakowski A, Slabuszewska-Jozwiak A, Bednorz B, Jędrzejewska I, Piasecka M, Pawelec J, Wojciechowska-Lampka E, Ostrowski J. Cervical microbiota dysbiosis associated with high-risk Human Papillomavirus infection. PLoS One 2024; 19:e0302270. [PMID: 38669258 PMCID: PMC11051640 DOI: 10.1371/journal.pone.0302270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/31/2024] [Indexed: 04/28/2024] Open
Abstract
High-risk Human Papillomavirus (HR-HPV) genotypes, specifically HPV16 and HPV18, pose a significant risk for the development of cervical intraepithelial neoplasia and cervical cancer. In the multifaceted cervical microenvironment, consisting of immune cells and diverse microbiota, Lactobacillus emerges as a pivotal factor, wielding significant influence in both stabilizing and disrupting the microbiome of the reproductive tract. To analyze the distinction between the cervical microbiota and Lactobacillus-dominant/non-dominant status of HR-HPV and non-infected healthy women, sixty-nine cervical swab samples were analyzed, included 44 with HR-HPV infection and healthy controls. All samples were recruited from Human Papillomavirus-based cervical cancer screening program and subjected to 16s rRNA sequencing analysis. Alpha and beta diversity analyses reveal no significant differences in the cervical microbiota of HR-HPV-infected women, including 16 and 18 HPV genotypes, and those with squamous intraepithelial lesion (SIL), compared to a control group. In this study we identified significantly lower abundance of Lactobacillus mucosae in women with HR-HPV infection compared to the control group. Furthermore, changes in bacterial diversity were noted in Lactobacillus non-dominant (LND) samples compared to Lactobacillus-dominant (LD) in both HR-HPV-infected and control groups. LND samples in HR-HPV-infected women exhibited a cervical dysbiotic state, characterized by Lactobacillus deficiency. In turn, the LD HR-HPV group showed an overrepresentation of Lactobacillus helveticus. In summary, our study highlighted the distinctive roles of L. mucosae and L. helveticus in HR-HPV infections, signaling a need for further research to demonstrate potential clinical implications of cervical microbiota dysbiosis.
Collapse
Affiliation(s)
- Natalia Zeber-Lubecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Maria Kulecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Michalina Dabrowska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | | | - Maria Glowienka-Stodolak
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Andrzej Nowakowski
- Department of Cancer Prevention, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | | | - Bożena Bednorz
- Department of Cancer Prevention, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Ilona Jędrzejewska
- Department of Cancer Prevention, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Magdalena Piasecka
- Department of Cancer Prevention, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Jolanta Pawelec
- Department of Cancer Prevention, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | | | - Jerzy Ostrowski
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| |
Collapse
|
35
|
Karaoğlan BB, Ürün Y. Unveiling the Role of Human Papillomavirus in Urogenital Carcinogenesis a Comprehensive Review. Viruses 2024; 16:667. [PMID: 38793549 PMCID: PMC11125962 DOI: 10.3390/v16050667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/27/2024] [Accepted: 04/09/2024] [Indexed: 05/26/2024] Open
Abstract
Human papillomavirus (HPV), an oncogenic DNA virus, is the most common sexually transmitted virus and significant public health concern globally. Despite the substantial prevalence of HPV infection among men, routine testing remains elusive due to the lack of approved HPV tests and the complexity of detection methods. Various studies have explored the link between HPV and genitourinary cancers, revealing different associations influenced by geographic variation, histological subtype and methodological differences. These findings underscore the importance of further research to elucidate the role of HPV in male urogenital cancers. This comprehensive review delves into the intricate relationship between HPV and male genitourinary cancers, shedding light on the virus's oncogenic mechanisms and its reported prevalence. A deeper understanding of HPV's implications for male health is essential for advancing public health initiatives and reducing the burden of urogenital cancers worldwide.
Collapse
Affiliation(s)
- Beliz Bahar Karaoğlan
- Department of Medical Oncology, Ankara University Faculty of Medicine, 06620 Ankara, Türkiye;
- Faculty of Medicine, Department of Internal Medicine, Division of Internal Medicine, Ankara University Cancer Research Institute, 06620 Ankara, Türkiye
| | - Yüksel Ürün
- Department of Medical Oncology, Ankara University Faculty of Medicine, 06620 Ankara, Türkiye;
- Faculty of Medicine, Department of Internal Medicine, Division of Internal Medicine, Ankara University Cancer Research Institute, 06620 Ankara, Türkiye
| |
Collapse
|
36
|
Ward Grados DF, Ergun O, Miller CD, Gaburak P, Frimpong NA, Shittu O, Warlick CA. Prostate Tissue Microbiome in Patients with Prostate Cancer: A Systematic Review. Cancers (Basel) 2024; 16:1549. [PMID: 38672631 PMCID: PMC11048594 DOI: 10.3390/cancers16081549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/05/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Some researchers have speculated that the prostatic microbiome is involved in the development of prostate cancer (PCa) but there is no consensus on certain microbiota in the prostatic tissue of PCa vs. healthy controls. This systematic review aims to investigate and compare the microbiome of PCa and healthy tissue to determine the microbial association with the pathogenesis of PCa. We searched MEDLINE, Embase, and Scopus databases. Articles were screened by two independent and blinded reviewers. Literature that compared the prostatic tissue microbiome of patients with PCa with benign controls was included. We found that PCa may be associated with increased Propionibacterium acnes, the herpesviridae and papillomaviridae families, and Mycoplasma genitalium, but definitive conclusions cannot be drawn from the existing data. Challenges include the difficulty of obtaining uncontaminated tissue samples and securing tissue from healthy controls. As a result, methods are varied with many studies using cancerous and "healthy" tissue from the same prostate. The organisms chosen for each study were also highly variable, making it difficult to compare studies. These issues have led to lower confidence in our results. Overall, further work is warranted to better understand the implications of the prostatic microbiome in the pathogenesis of PCa.
Collapse
|
37
|
Raguz J, Pinto C, Pölzlbauer T, Habbeddine M, Rosskopf S, Strauß J, Just V, Schmidt S, Bidet Huang K, Stemeseder F, Schippers T, Stewart E, Jez J, Berraondo P, Orlinger KK, Lauterbach H. Preclinical evaluation of two phylogenetically distant arenavirus vectors for the development of novel immunotherapeutic combination strategies for cancer treatment. J Immunother Cancer 2024; 12:e008286. [PMID: 38631709 PMCID: PMC11029282 DOI: 10.1136/jitc-2023-008286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Engineered arenavirus vectors have recently been developed to leverage the body's immune system in the fight against chronic viral infections and cancer. Vectors based on Pichinde virus (artPICV) and lymphocytic choriomeningitis virus (artLCMV) encoding a non-oncogenic fusion protein of human papillomavirus (HPV)16 E6 and E7 are currently being tested in patients with HPV16+ cancer, showing a favorable safety and tolerability profile and unprecedented expansion of tumor-specific CD8+ T cells. Although the strong antigen-specific immune response elicited by artLCMV vectors has been demonstrated in several preclinical models, PICV-based vectors are much less characterized. METHODS To advance our understanding of the immunobiology of these two vectors, we analyzed and compared their individual properties in preclinical in vivo and in vitro systems. Immunogenicity and antitumor effect of intratumoral or intravenous administration of both vectors, as well as combination with NKG2A blockade, were evaluated in naïve or TC-1 mouse tumor models. Flow cytometry, Nanostring, and histology analysis were performed to characterize the tumor microenvironment (TME) and T-cell infiltrate following treatment. RESULTS Despite being phylogenetically distant, both vectors shared many properties, including preferential infection and activation of professional antigen-presenting cells, and induction of potent tumor-specific CD8+ T-cell responses. Systemic as well as localized treatment induced a proinflammatory shift in the TME, promoting the infiltration of inducible T cell costimulator (ICOS)+CD8+ T cells capable of mediating tumor regression and prolonging survival in a TC-1 mouse tumor model. Still, there was evidence of immunosuppression built-up over time, and increased expression of H2-T23 (ligand for NKG2A T cell inhibitory receptor) following treatment was identified as a potential contributing factor. NKG2A blockade improved the antitumor efficacy of artARENA vectors, suggesting a promising new combination approach. This demonstrates how detailed characterization of arenavirus vector-induced immune responses and TME modulation can inform novel combination therapies. CONCLUSIONS The artARENA platform represents a strong therapeutic vaccine approach for the treatment of cancer. The induced antitumor immune response builds the backbone for novel combination therapies, which warrant further investigation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Ethan Stewart
- Vienna BioCenter Core Facilities GmbH (VBCF), Vienna, Austria
| | - Jakub Jez
- Vienna BioCenter Core Facilities GmbH (VBCF), Vienna, Austria
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | | | | |
Collapse
|
38
|
Alouini S, Pichon C. Therapeutic Vaccines for HPV-Associated Cervical Malignancies: A Systematic Review. Vaccines (Basel) 2024; 12:428. [PMID: 38675811 PMCID: PMC11054545 DOI: 10.3390/vaccines12040428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/07/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
IMPORTANCE Despite widespread prophylactic vaccination, cervical cancer continues to be a major health problem with considerable mortality. Currently, therapeutic vaccines for HPV-associated cervical malignancies are being evaluated as a potential complement to the standard treatment. OBJECTIVE The present systematic review was conducted on randomized controlled trials (RCTs) to investigate the effects of therapeutic vaccines on the treatment of patients with cervical cancer and cervical intraepithelial neoplasia (CIN) of Grades 2 and 3. EVIDENCE REVIEW The PubMed, Embase, and Cochrane Central Register of Controlled Trials databases were searched. Only articles in English published up until 31 January 2024 were selected. Also, reference lists of the selected original papers and recent review articles were manually searched for additional sources. Data on study characteristics were extracted from the selected articles. Data on outcomes of interest were synthesized, and vaccine efficacy endpoints (histological lesion regression, clinical response, and overall survival) were selected as the basis for grouping the studies. FINDINGS After screening 831 articles, nine RCTs with 800 participants were included, of which seven studies with 677 participants involved CIN2 and CIN3 and examined lesion regression to ≤CIN1 as the efficacy endpoint. Results of two of these studies were deemed to have a high risk of bias, and another one did not contain statistical analyses. Results of the other four studies were quantitively synthesized, and the pooling of p-values revealed a significant difference between the vaccine and placebo groups in terms of lesion regression (p-values of 0.135, 0.049, and 0.034 in RCTs, yielding a combined p-value of 0.010). The certainty of the evidence was rated as moderate. Patients with advanced cervical cancers were studied in two RCTs with 123 participants. Clinical response and overall survival were taken as endpoints, and the results were reported as not significant. The certainty of the evidence of these results was rated as very low, mainly due to the very small number of events. All studies reported good tolerance for the vaccines. CONCLUSIONS AND RELEVANCE The results indicate the potential for therapeutic vaccines in the regression of CIN2 and CIN3 lesions. Moreover, a potential gap in evidence is identified regarding the very low number of RCTs in patients with advanced cervical cancer.
Collapse
Affiliation(s)
- Souhail Alouini
- Departement of Gynecological Surgery, Centre Hospitalier Universitaire d’Orléans, 14 Avenue de l’Hôpital, 45100 Orleans, France
- Faculté de Médecine, Université d’Orléans, 45100 Orleans, France
| | - Chantal Pichon
- Institut Universitaire de France, 1 rue Descartes, 75035 Paris, France;
- INSERM ART ARNm, University of Orléans, 45100 Orleans, France
| |
Collapse
|
39
|
Duś-Ilnicka I, Hałoń A, Perra A, Radwan-Oczko M. HPV related p16 INK4A and HSV in benign and potentially malignant oral mucosa pathologies. BMC Oral Health 2024; 24:347. [PMID: 38500158 PMCID: PMC10949823 DOI: 10.1186/s12903-024-04105-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 03/05/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND The association of Human Papilloma Virus (HPV) and Human Syncytial Virus (HSV) infection with inflammatory and potentially malignant disorders of the oral cavity (OPMD) is unknown. The aim of this cross-sectional study was to stablish the expression of the p16INK4A and HSV proteins, to test potential correlation between those parameters in biopsies from clinically diagnosed oral lesions. METHODS Immunochemical analysis of 211 formalin-fixed, paraffin-embedded (FFPE) blocks from 211 individuals was provided. The clinical diagnosis included in the research were Oral lichen planus (N = 30), Oral Leukoplakia (N = 13) Mucocele (N = 25), Erosion/ulceration/ inflammation of mucosa (N = 8), Overgrowth of mucosa (N = 135). RESULTS Two hundred eleven analyzed FFPE samples resulted with the median age of 58.5 years (the average age 54.0 years and SD ± 17 years). The female/male ratio was 2.3 (69.7% vs 30.3% respectively). All the samples positive for HSV also expressed p16INK4A (p = 0.000), that's showed various levels of association with the diverse clinical diagnosis reaching the higher level in OM 49.1% (29 positive samples) and OLP 30.5% (18). p16INK4A was associated with OLP at 30.5% (18), and fibroma 30.5%. HSV expression was mostly present in fibroma at 47.6% (10 positive samples). CONCLUSION HSV and p16INK4A positivity in relation to diagnosis of the biopsies showed statistically most often p16INK4A in OLP and fibroma. The results of co-expression of p16INK4A and HSV in mucocele and fibroma in oral mucosa suggest a cooperation between the molecular alterations induced by these two viruses. Squamous papilloma samples positive for p16INK4A were also positive for HSV, suggesting that the putative pro-oncogenic action of HSV could be an early event.
Collapse
Affiliation(s)
- Irena Duś-Ilnicka
- Oral Pathology Department, Faculty of Dentistry, Wroclaw Medical University, Ul. Krakowska 26, Wroclaw, 50-425, Poland.
| | - Agnieszka Hałoń
- Division of Clinical Pathology, Department of Clinical and Experimental Pathology, Wroclaw Medical University, Ul. Borowska 213, Wroclaw, Poland
| | - Andrea Perra
- Section of Pathology, Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria - Monserrato, Monserrato, Italy
| | - Małgorzata Radwan-Oczko
- Oral Pathology Department, Faculty of Dentistry, Wroclaw Medical University, Ul. Krakowska 26, Wroclaw, 50-425, Poland
| |
Collapse
|
40
|
Molenberghs F, Verschuuren M, Vandeweyer L, Peeters S, Bogers JJ, Novo CP, Vanden Berghe W, De Reu H, Cools N, Schelhaas M, De Vos WH. Lamin B1 curtails early human papillomavirus infection by safeguarding nuclear compartmentalization and autophagic capacity. Cell Mol Life Sci 2024; 81:141. [PMID: 38485766 PMCID: PMC10940392 DOI: 10.1007/s00018-024-05194-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/21/2024] [Accepted: 03/01/2024] [Indexed: 03/18/2024]
Abstract
Human papillomavirus (HPV) infection is a primary cause of cervical and head-and-neck cancers. The HPV genome enters the nucleus during mitosis when the nuclear envelope disassembles. Given that lamins maintain nuclear integrity during interphase, we asked to what extent their loss would affect early HPV infection. To address this question, we infected human cervical cancer cells and keratinocytes lacking the major lamins with a HPV16 pseudovirus (HP-PsV) encoding an EGFP reporter. We found that a sustained reduction or complete loss of lamin B1 significantly increased HP-PsV infection rate. A corresponding greater nuclear HP-PsV load in LMNB1 knockout cells was directly related to their prolonged mitotic window and extensive nuclear rupture propensity. Despite the increased HP-PsV presence, EGFP transcript levels remained virtually unchanged, indicating an additional defect in protein turnover. Further investigation revealed that LMNB1 knockout led to a substantial decrease in autophagic capacity, possibly linked to the persistent activation of cGAS by cytoplasmic chromatin exposure. Thus, the attrition of lamin B1 increases nuclear perviousness and attenuates autophagic capacity, creating an environment conducive to unrestrained accumulation of HPV capsids. Our identification of lower lamin B1 levels and nuclear BAF foci in the basal epithelial layer of several human cervix samples suggests that this pathway may contribute to an increased individual susceptibility to HPV infection.
Collapse
Affiliation(s)
- Freya Molenberghs
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Marlies Verschuuren
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Lauran Vandeweyer
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Sarah Peeters
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Johannes J Bogers
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Claudina Perez Novo
- Cell Death Signaling Lab, Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Wim Vanden Berghe
- Cell Death Signaling Lab, Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Hans De Reu
- Laboratory of Experimental Hematology, Faculty Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Nathalie Cools
- Laboratory of Experimental Hematology, Faculty Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Mario Schelhaas
- Institute of Cellular Virology, University of Münster, Münster, Germany
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium.
| |
Collapse
|
41
|
Dellino M, Pinto G, D’Amato A, Barbara F, Di Gennaro F, Saracino A, Laganà AS, Vimercati A, Malvasi A, Malvasi VM, Cicinelli E, Vitagliano A, Cascardi E, Pinto V. Analogies between HPV Behavior in Oral and Vaginal Cavity: Narrative Review on the Current Evidence in the Literature. J Clin Med 2024; 13:1429. [PMID: 38592283 PMCID: PMC10932293 DOI: 10.3390/jcm13051429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/10/2024] Open
Abstract
Human genital papilloma virus infection is the most prevalent sexually transmitted infection in the world. It is estimated that more than 75% of sexually active women contract this infection in their lifetime. In 80% of young women, there is the clearance of the virus within 18-24 months. In developed countries, oral squamous cell carcinoma (OSCC) is now the most frequent human papilloma virus (HPV)-related cancer, having surpassed cervical cancer, and it is predicted that by 2030 most squamous cell carcinomas will be the HPV-related rather than non-HPV-related form. However, there are currently no screening programs for oral cavity infection. While the natural history of HPV infection in the cervix is well known, in the oropharynx, it is not entirely clear. Furthermore, the prevalence of HPV in the oropharynx is unknown. Published studies have found wide-ranging prevalence estimates of 2.6% to 50%. There are also conflicting results regarding the percentage of women presenting the same type of HPV at two mucosal sites, ranging from 0 to 60%. Additionally, the question arises as to whether oral infection can develop from genital HPV infection, through oral and genital contact or by self-inoculation, or whether it should be considered an independent event. However, there is still no consensus on these topics, nor on the relationship between genital and oral HPV infections. Therefore, this literature review aims to evaluate whether there is evidence of a connection between oral and cervical HPV, while also endorsing the usefulness of the screening of oral infection in patients with high-risk cervical HPV as a means of facilitating the diagnosis and early management of HPV-related oral lesions. Finally, this review emphasizes the recommendation for the use of the HPV vaccines in primary prevention in the male and female population as the most effective means of successfully counteracting the increasing incidence of OSCC to date.
Collapse
Affiliation(s)
- Miriam Dellino
- 1st Unit of Obstetrics and Gynecology, Department of Interdisciplinary Medicine, University of Bari, 70124 Bari, Italy; (M.D.); (A.V.); (A.M.); (E.C.); (A.V.); (V.P.)
| | - Grazia Pinto
- Dentistry Unit, Department of Interdisciplinary Medicine, University of Bari Medical School, 70124 Bari, Italy;
| | - Antonio D’Amato
- 1st Unit of Obstetrics and Gynecology, Department of Interdisciplinary Medicine, University of Bari, 70124 Bari, Italy; (M.D.); (A.V.); (A.M.); (E.C.); (A.V.); (V.P.)
| | - Francesco Barbara
- Unit of Otolaryngology, Department of Ophtalmology and Otolaryngology, University of Bari, 70124 Bari, Italy;
| | - Francesco Di Gennaro
- Clinic of Infectious Diseases, Department of Precision and Regenerative Medicine and Ionian Area, Polyclinic of Bari, University Hospital Polyclinic, University of Bari, Piazza Giulio Cesare n. 11, 70124 Bari, Italy; (F.D.G.); (A.S.)
| | - Annalisa Saracino
- Clinic of Infectious Diseases, Department of Precision and Regenerative Medicine and Ionian Area, Polyclinic of Bari, University Hospital Polyclinic, University of Bari, Piazza Giulio Cesare n. 11, 70124 Bari, Italy; (F.D.G.); (A.S.)
| | - Antonio Simone Laganà
- Unit of Obstetrics and Gynecology, “Paolo Giaccone” Hospital, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy;
| | - Antonella Vimercati
- 1st Unit of Obstetrics and Gynecology, Department of Interdisciplinary Medicine, University of Bari, 70124 Bari, Italy; (M.D.); (A.V.); (A.M.); (E.C.); (A.V.); (V.P.)
| | - Antonio Malvasi
- 1st Unit of Obstetrics and Gynecology, Department of Interdisciplinary Medicine, University of Bari, 70124 Bari, Italy; (M.D.); (A.V.); (A.M.); (E.C.); (A.V.); (V.P.)
| | | | - Ettore Cicinelli
- 1st Unit of Obstetrics and Gynecology, Department of Interdisciplinary Medicine, University of Bari, 70124 Bari, Italy; (M.D.); (A.V.); (A.M.); (E.C.); (A.V.); (V.P.)
| | - Amerigo Vitagliano
- 1st Unit of Obstetrics and Gynecology, Department of Interdisciplinary Medicine, University of Bari, 70124 Bari, Italy; (M.D.); (A.V.); (A.M.); (E.C.); (A.V.); (V.P.)
| | - Eliano Cascardi
- Pathology Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari, Piazza Giulio Cesare 11, 70121 Bari, Italy;
| | - Vincenzo Pinto
- 1st Unit of Obstetrics and Gynecology, Department of Interdisciplinary Medicine, University of Bari, 70124 Bari, Italy; (M.D.); (A.V.); (A.M.); (E.C.); (A.V.); (V.P.)
| |
Collapse
|
42
|
Mikuličić S, Shamun M, Massenberg A, Franke AL, Freitag K, Döring T, Strunk J, Tenzer S, Lang T, Florin L. ErbB2/HER2 receptor tyrosine kinase regulates human papillomavirus promoter activity. Front Immunol 2024; 15:1335302. [PMID: 38370412 PMCID: PMC10869470 DOI: 10.3389/fimmu.2024.1335302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/16/2024] [Indexed: 02/20/2024] Open
Abstract
Human papillomaviruses (HPVs) are a major cause of cancer. While surgical intervention remains effective for a majority of HPV-caused cancers, the urgent need for medical treatments targeting HPV-infected cells persists. The pivotal early genes E6 and E7, which are under the control of the viral genome's long control region (LCR), play a crucial role in infection and HPV-induced oncogenesis, as well as immune evasion. In this study, proteomic analysis of endosomes uncovered the co-internalization of ErbB2 receptor tyrosine kinase, also called HER2/neu, with HPV16 particles from the plasma membrane. Although ErbB2 overexpression has been associated with cervical cancer, its influence on HPV infection stages was previously unknown. Therefore, we investigated the role of ErbB2 in HPV infection, focusing on HPV16. Through siRNA-mediated knockdown and pharmacological inhibition studies, we found that HPV16 entry is independent of ErbB2. Instead, our signal transduction and promoter assays unveiled a concentration- and activation-dependent regulatory role of ErbB2 on the HPV16 LCR by supporting viral promoter activity. We also found that ErbB2's nuclear localization signal was not essential for LCR activity, but rather the cellular ErbB2 protein level and activation status that were inhibited by tucatinib and CP-724714. These ErbB2-specific tyrosine kinase inhibitors as well as ErbB2 depletion significantly influenced the downstream Akt and ERK signaling pathways and LCR activity. Experiments encompassing low-risk HPV11 and high-risk HPV18 LCRs uncovered, beyond HPV16, the importance of ErbB2 in the general regulation of the HPV early promoter. Expanding our investigation to directly assess the impact of ErbB2 on viral gene expression, quantitative analysis of E6 and E7 transcript levels in HPV16 and HPV18 transformed cell lines unveiled a noteworthy decrease in oncogene expression following ErbB2 depletion, concomitant with the downregulation of Akt and ERK signaling pathways. In light of these findings, we propose that ErbB2 holds promise as potential target for treating HPV infections and HPV-associated malignancies by silencing viral gene expression.
Collapse
Affiliation(s)
- Snježana Mikuličić
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Merha Shamun
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Annika Massenberg
- University of Bonn, Faculty of Mathematics and Natural Sciences, Life & Medical Sciences (LIMES) Institute, Bonn, Rheinland-Pfalz, Germany
| | - Anna-Lena Franke
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Kirsten Freitag
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Tatjana Döring
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Johannes Strunk
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Stefan Tenzer
- Institute for Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Rheinland-Pfalz, Germany
- Helmholtz Institute for Translational Oncology (HI-TRON) Mainz, Mainz, Rheinland-Pfalz, Germany
| | - Thorsten Lang
- University of Bonn, Faculty of Mathematics and Natural Sciences, Life & Medical Sciences (LIMES) Institute, Bonn, Rheinland-Pfalz, Germany
| | - Luise Florin
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
43
|
Li S, Zhao M, Luo M, Wu J, Duan Z, Huang X, Lu S, Zu Q, Xiao Q, Ying J. Evaluation of combination of ALA-PDT and interferon for cervical low-grade squamous intraepithelial lesion (LSIL). Photodiagnosis Photodyn Ther 2024; 45:103967. [PMID: 38224725 DOI: 10.1016/j.pdpdt.2024.103967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Abstract
BACKGROUND Cervical LSIL is a precancerous disease which requires regular follow-up. High risk patients need active interventions. Interferon and topical PDT have been used in the treatment of cervical LSIL. The aim of this study was to evaluate the combination use of topical PDT and interferon in the treatment of cervical LSIL. MATERIALS AND METHODS A prospective study was carried out involving 159 women with cervical LSIL and high risk human papillomaviruses (hr-HPV) infection. Patients were divided into three groups. Group 1-receiving interferon suppository only, Group 2-receiving 19 mg/cm2 ALA plus post PDT interferon, and Group 3-receiving 38 mg/cm2 ALA plus post PDT interferon. The primary endpoint was pathological regression. The secondary endpoints were the HPV negative conversion rate and the adverse effects of treatment. RESULTS At 6-12 months after PDT, for Group 1, the effective rate, CR rate and HPV negative conversion rate was 48.3 %, 43.3 % and 24.0 %, respectively. For Group 2, the effective rate, CR rate and HPV negative conversion rate were 89.3 %, 71.4 %, and 72.4 %, respectively. For Group 3, the effective rate, CR rate and HPV negative conversion rate were 91.5 %, 66.1 %, and 64.4 %, respectively, significantly higher than those of interferon only group. Two ALA dose group study showed similar efficacy. No patient experienced serious adverse effects. CONCLUSIONS ALA-PDT combined with interferon therapy was feasible and tolerable. Two ALA dose groups showed similar outcomes in treating cervical LSIL.
Collapse
Affiliation(s)
- Sijing Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing 400000, China
| | - Min Zhao
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing 400000, China
| | - Ming Luo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing 400000, China
| | - Jin Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing 400000, China
| | - Zhaoning Duan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing 400000, China
| | - Xiaoling Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing 400000, China
| | - Shan Lu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing 400000, China
| | - Qiao Zu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing 400000, China
| | - Qun Xiao
- Department of Obstetrics and Gynecology, The People's Hospital of Nanchuan, Nanchuan District, Chongqing 408400, China
| | - Jia Ying
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing 400000, China.
| |
Collapse
|
44
|
Kirk A, Graham SV. The human papillomavirus late life cycle and links to keratinocyte differentiation. J Med Virol 2024; 96:e29461. [PMID: 38345171 DOI: 10.1002/jmv.29461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/21/2023] [Accepted: 01/25/2024] [Indexed: 02/15/2024]
Abstract
Regulation of human papillomavirus (HPV) gene expression is tightly linked to differentiation of the keratinocytes the virus infects. HPV late gene expression is confined to the cells in the upper layers of the epithelium where the virus capsid proteins are synthesized. As these proteins are highly immunogenic, and the upper epithelium is an immune-privileged site, this spatial restriction aids immune evasion. Many decades of work have contributed to the current understanding of how this restriction occurs at a molecular level. This review will examine what is known about late gene expression in HPV-infected lesions and will dissect the intricacies of late gene regulation. Future directions for novel antiviral approaches will be highlighted.
Collapse
Affiliation(s)
- Anna Kirk
- Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Sheila V Graham
- Centre for Virus Research, University of Glasgow, Glasgow, UK
| |
Collapse
|
45
|
Ho WCS, Boon SS, Chong KC, Lai CKC, Sze RKH, Khan ATK, Xing RL, Sukarom I, Wu YH, Chau RWY, Chan PKS. Prevalence of oral human papillomavirus infection among the general adult population in Hong Kong. J Med Virol 2024; 96:e29460. [PMID: 38348874 DOI: 10.1002/jmv.29460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/15/2024]
Abstract
A cross-sectional study in 2021-23 collected oral rinse gargle samples from an human papillomaviruses (HPV) vaccine-naïve general adult population in Hong Kong. HPV was detected by a PCR using SPF10 primers, and genotyped by a linear array covering 25 genotypes. Epidemiologic information including sociodemographics, medical history, oral health, and sexual behavior were collected by a self-administered questionnaire. Altogether, 2323 subjects aged 18-75 (median 47) years with 50.1% male were recruited. The prevalence for oral HPV infection with all genotypes combined, high-risk, and low-risk genotypes was 1.5%, 0.7%, and 0.7%, respectively; and with no statistically significant difference between participant gender. The prevalence increased with age and was highest in women at 45-54 years (2.7% for all genotypes combined), and highest in men aged >64 years (4.1% for all genotypes combined). HPV52 was the most common genotype among all participants. Univariate analysis suggested more lifetime sexual or oral sexual partners as risk factors, but they did not reach statistical significance upon multivariate analysis; whereas higher educational level had an independent protective effect. To conclude, oral HPV prevalence increased with age in Hong Kong. Strategies to prevent oral HPV infection and the associated cancers are urgently needed.
Collapse
Affiliation(s)
- Wendy C S Ho
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Siaw S Boon
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ka Chun Chong
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Christopher K C Lai
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ryan K H Sze
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Aaron T K Khan
- Global Medical and Scientific Affairs, MSD, Hong Kong, China
| | - Rachel L Xing
- Global Medical and Scientific Affairs, MSD, Hong Kong, China
| | - Isaya Sukarom
- Center for Observational and Real-world Evidence, MSD Thailand, Bangkok, Thailand
| | - Ying-Hui Wu
- Global Medical and Scientific Affairs, MSD, Taipei, Taiwan
| | - Rene W Y Chau
- Global Medical and Scientific Affairs, MSD, Hong Kong, China
| | - Paul K S Chan
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
46
|
Chen YM, Lu CT, Wang CW, Fischer WB. Repurposing dye ligands as antivirals via a docking approach on viral membrane and globular proteins - SARS-CoV-2 and HPV-16. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184220. [PMID: 37657640 DOI: 10.1016/j.bbamem.2023.184220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/03/2023]
Abstract
A series of dye ligands are docked to three different proteins, E and 3a of severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) and E6 of human papilloma virus type 16 (HPV-16) using three different software. A four-level selection algorithm is used based on nonparametric statistics of numerical key values such as the "rank" derived from (i) averaged estimated binding energies (EBEs) and (ii) absolute EBE value of each of the software, (iii) frequency of ranking and (iv) rank of the area-under-curve values (AUCs) from decoy docking. A series of repurposing drugs and known antivirals used in experimental studies are docked for comparison. One dye ligand is ranked best for all proteins using the selection algorithm levels i - iii. Another three dye ligands are ranked top for the proteins individually when using all four levels.
Collapse
Affiliation(s)
- Yi-Ming Chen
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ching-Tai Lu
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chia-Wen Wang
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wolfgang B Fischer
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
47
|
Duncan CL, Gunosewoyo H, Mocerino M, Payne AD. Small Molecule Inhibitors of Human Papillomavirus: A Review of Research from 1997 to 2021. Curr Med Chem 2024; 31:5308-5350. [PMID: 37448363 DOI: 10.2174/0929867331666230713165407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/14/2023] [Accepted: 05/23/2023] [Indexed: 07/15/2023]
Abstract
Human papillomavirus (HPV) infections are the cause of warts, lesions and cancer, with different types of HPV causing different symptoms. HPV infections are the primary cause of cervical cancer. There are over 220 different types of HPV, and only nine of these can currently be vaccinated. There is a need to treat these viral infections without just treating the symptoms of the infection, as is currently the main method. There is a wide range of small molecules that have been used to inhibit various stages of the HPV infectious cycle. This review examined 132 small molecules from 121 studies that specifically target aspects of HPV infections. HPV DNA encodes for six early genes (E1 to E7, skipping E3) and two late genes (L1 and L2). According to the results, these targets for small molecule inhibitors fall into three categories: those targeting E1 and E2, targeting E6 and E7 and, finally, targeting L1 and L2. Inhibitors of E6 and E7 are the most widely studied targets, with the majority of HPV inhibition in this area. While compounds targeting both E1/E2 and E6/E7 have made it to clinical trials, there has been no significant advancement on the topic.
Collapse
Affiliation(s)
- Caitlin L Duncan
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| | - Hendra Gunosewoyo
- Curtin Medical School, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| | - Mauro Mocerino
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| | - Alan D Payne
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| |
Collapse
|
48
|
Yadav R, Bhawale R, Kapoor DN, Singh SB, Mehra NK. Experimental design approach for development of carboplatin loaded chitosan modified liposomal formulation with improved topical vaginal therapeutic potential. Pharm Dev Technol 2024; 29:1-12. [PMID: 38015058 DOI: 10.1080/10837450.2023.2289133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/20/2023] [Indexed: 11/29/2023]
Abstract
One of the most prevalent cancers affecting women globally is cervical cancer. Cervical cancer is thought to cause 570 000 new cases annually, and standard treatments can have serious side effects. In this work, the main aim is to design, fabrication, and evaluation of carboplatin loaded chitosan coated liposomal formulation (CCLF-I) for vaginal delivery in the treatment of cervical cancer. The particle size and polydispersity index of the CCLF-1 were observed at 269.33 ± 1.15 and 0.40 ± 0.002 nm, respectively. The in vitro mucin binding studies showed good adhesiveness of CCLF-I as compared to plain liposomes (CPLF-I), which was found at 23.49 and 10.80%, respectively. The ex-vivo percent drug permeation from plain liposomal formulation (CPLF-I) was found to be higher in comparison to chitosan coated liposomal formulation which was 56.33% while in CCLF-I it was observed 47.32% this is due to, higher retainability of delivery system (CCLF-I) on targeted site attained by coating of mucoadhesive polymer on liposomes. Ex vivo tissue retention studies exhibited 24.2% of CCLF-I in comparison to 10.34% from plain drug formulation (CPLF-I). The in vivo vaginal retention studies exhibited 14% of drug retention after 24 h from the novel formulation in comparison to 6% from the plain formulation. The developed CCLF-I formulation would open a new avenue in the cervical treatment.
Collapse
Affiliation(s)
- Rati Yadav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, India
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Rohit Bhawale
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Deepak N Kapoor
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Neelesh Kumar Mehra
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| |
Collapse
|
49
|
Dai L, Wilson LG, Nakagawa M, Qin Z. Coinfections with additional oncoviruses in HPV+ individuals: Status, function and potential clinical implications. J Med Virol 2024; 96:e29363. [PMID: 38178584 PMCID: PMC10783544 DOI: 10.1002/jmv.29363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024]
Abstract
Oncovirus infections account for an estimated 12%-20% of human cancers worldwide. High-risk human papillomavirus (HPV) infection is the etiological agent of some malignancies such as cervical, oropharyngeal, anal, penile, vaginal, and vulvar cancers. However, HPV infection is not the only cause of these cancers or may not be sufficient to initiate cancer development. Actually, certain other risk factors including additional oncoviruses coinfections have been reported to increase the risk of patients exposed to HPV for developing different HPV-related cancers. In the current review, we summarize recent findings about coinfections with different oncoviruses in HPV+ patients from both clinical and mechanistic studies. We believe such efforts may lead to an interesting direction for improving our understanding and developing new treatments for virus-induced cancers.
Collapse
Affiliation(s)
- Lu Dai
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR 72205, USA
| | - Lillie G. Wilson
- Department of Internal Medicine, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR 72205, USA
| | - Mayumi Nakagawa
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR 72205, USA
| | - Zhiqiang Qin
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR 72205, USA
| |
Collapse
|
50
|
Sharma S, Chauhan D, Kumar S, Kumar R. Impact of HPV strains on molecular mechanisms of cervix cancer. Microb Pathog 2024; 186:106465. [PMID: 38036109 DOI: 10.1016/j.micpath.2023.106465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/07/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
PURPOSE Cervical cancer accounts for a high number of deaths worldwide. Risk factors are extensive for cervix cancer but Human papillomavirus (HPV) plays a prime role in its development. Different strains of HPV are prevalent globally, which show different grades of mortality and morbidity among women. This study is planned to evaluate the molecular mechanism of different strains of HPV infection and progression leading to cervix cancer. METHODS This review includes different research articles on cervix cancer progression reported from India and all over the world. RESULTS HPV 16 and 18 are prevalent strains using heparan sulfate-independent and dependent pathways for viral replication inside the cell. It also uses transcription mechanisms through NF-kappa B, FOXA-1, and AP-1 genes while strains like HPV-35, 45, and 52 are also predominant in India, which showed a very slow mechanism of progression due to which mortality rate is low after their infection with these strains. CONCLUSION HPV uses E6 and E7 proteins which activate NF-kappa B and AP-1 pathway which suppresses the tumor suppressor gene and activates cytokine production, causing inflammation and leading to a decrease in apoptosis due to Caspase-3 activation. In contrast, the E7 protein involves HOXA genes and decreases apoptotic factors due to which mortality and incidence rates are low in viruses that use E7 motifs. Some HPV strains employ the cap-dependent pathway, which is also associated with lower mortality and infection rates.
Collapse
Affiliation(s)
- Sunidhi Sharma
- Central University of Himachal Pradesh, Dharamshala, Himachal Pradesh, 176215, India.
| | - Disha Chauhan
- Central University of Himachal Pradesh, Dharamshala, Himachal Pradesh, 176215, India.
| | - Sunil Kumar
- Central University of Himachal Pradesh, Dharamshala, Himachal Pradesh, 176215, India.
| | - Ranjit Kumar
- Nagaland University, Lumami, Nagaland, 798627, India.
| |
Collapse
|